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c© 2015, Tjarda C. N. Boekholt
Chaotic Dynamics in N-body Systems
PhD Thesis, Universiteit Leiden

ISBN:

Dit proefschrift werd mede mogelijk gemaakt door financiële steun van NWO
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Preface

”This is how one tries to put the comet, which has caused so much
fear, at the service of humour and of innocent children’s play and it
is clear that such things can count on a wide flow” — Leeuwarder
Courant June 27, 1910

So ends the article in the Leeuwarder Courant June 27, 1910 entitled
”The toy industry dedicated to Halley’s Comet”. And fear there was!
The News of the Day for the Dutch East-Indies of June 7, 1910 re-
ported a farmer from Eifeldorf-Geizenburg who threw her four month
old baby in a pit out of fear of the destruction of the world by the
arrival of Halley’s Comet. The baby drowned. Also, the Algemeen
Handelsblad of July 2, 1910 reported on numerous cases of suicide and
insanity in Italy, and attacks of rage and suicide in France.

The close encounter of a comet with earth produces one of the most
beautiful and dramatic sceneries we can observe, together with solar
eclipses or the Aurora Borealis. Throughout history, the appearance
of a comet was interpreted as a supernatural omen for good or bad
things to come. As the examples above illustrate, the ignorance in the
workings of nature and the belief in superstitions have caused harmless
wonders of the universe to have horrific consequences. It is one of the
tasks of the astronomer to understand the whereabouts of comets and
other objects in the universe, and to explain them to the public.

The author thanks R. Boekholt for retrieving the newspaper articles
and aiding with the text.

It is a pleasure to acknowledge the fruitful discussions and construc-
tive feedback on the content and presentation of this thesis, received
from various colleagues, including P. Hut, J. Makino, S. McMillan,
A. Quillen, I. Pelupessy, M. Fujii, A. L. Varri, S. Toonen, L. J́ılková,
G. Costigan, G. G. Ferrari, A. Hamers, D. Caputo and A. Rimoldi.
A special thanks to D. C. Heggie for many interesting discussions and
providing improvements for every chapter in this thesis. I also thank
the referees of the three different journals (MNRAS, ApJ and ComAC)
for critically reviewing my work and providing useful suggestions. I
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wish to thank A. Young, R. Boekholt and M. Baten for making text
corrections throughout this thesis. Part of the numerical computa-
tions in this thesis were carried out on the Little Green Machine at
Leiden University and on the Lisa cluster at SURFSara in Amsterdam.

This work was supported by the Netherlands Research Council (NWO)
(grants #643.200.503, #639.073.803 and #614.061.608) and by the
Netherlands Research School for Astronomy (NOVA).
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”The Sun, with all those planets revolving around it
and dependent on it, can still ripen a bunch of grapes

as if it had nothing else in the Universe to do.”
Galileo Galilei
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Introduction

This thesis focusses on the evolution of dynamical systems in the uni-
verse. The main systems of interest are planetary systems and star
clusters. Understanding the structure and evolution of these systems
includes calculating the orbits of the constituent bodies. This is rather
complex due to the non-linear, chaotic nature of most orbits. There-
fore, we need to resort to numerical N-body techniques to approximate
the orbits using sophisticated software and modern hardware.

A central theme in this thesis is the growth of a small perturba-
tion. This could be a small numerical error that propagates through
the system causing numerical noise. This could bias results from N-
body simulations, questioning their reliability. The initial perturbation
could also be physical and its propagation determines the stability of
an orbit.

This chapter provides a general introduction to the topics mentioned
above, and subsequent work in this thesis on two new N-body algo-
rithms, testing the reliability of N-body simulations and determining
the origin of chaos in the orbit of Comet Halley.

1.1 DYNAMICAL SYSTEMS

In the universe there is an endless number of examples of dynamical
systems. Any system that consists of a collection of objects or so-
called bodies, which move around through space and time due to their
mutual forces, is a valid candidate.

Our solar system is a familiar example consisting of several types
of objects. We have the sun at the center (Copernicus, 1543), the
planets revolving around the sun in ellipses (Kepler, 1609), moons
orbiting the planets (Galilei, 1610), and many smaller objects such as
asteroids, comets (Halley, 1705) and so on (see Fig. 1.1, top image).
These objects all have one thing in common, they all have mass. Since
the pioneering work by Newton (1687), we know that bodies with
mass attract each other. Every object feels the gravity from the other
objects. As a consequence, our solar system is not static, but evolves
because all the bodies are moving. If all the bodies in the system are

1



2 CHAPTER 1. INTRODUCTION

moving, then it is also possible for two of them to experience a close
encounter, like Halley’s Comet and Earth back in 1910.

A different kind of dynamical system is a star cluster (see Fig. 1.1,
bottom image). To first order, such a system consists solely of stars.
The number of stars varies per cluster, from a few dozen to millions.
The number of stars matters for the evolution of the system as a whole.
Hypothetically speaking, if we put our sun in a star cluster (modern
theories actually predict this was the case when our sun was younger
(Mart́ınez-Barbosa et al., 2015; J́ılková et al., 2015)) and there are only
a few other stars in the cluster, then the gravitational pull from each
star on the sun would form a significant contribution. If instead, we
have a million other stars, each individual contribution becomes very
small and so the sun would follow a smoother orbit set by the overall,
background potential. This dependency on the number of stars is
usually captured by the relaxation time of the cluster (Chandrasekhar,
1942), which is the time scale on which the sun would significantly alter
its orbit in its birth cluster.

Only in the dense cores of massive star clusters, do close encoun-
ters between two or more stars become important again. Three-body
encounters especially, form a separate category of dynamical systems.
They are important for the formation of binary stars. Initially three
stars will encounter each other and exchange some energy. If one of
the three stars manages to steal enough energy from the other two, it
will fly away out of the core of the cluster. The remaining two stars
have lost energy and form a bound two-body system, e.g. a binary
star (Szebehely, 1972). This binary star will interact with the other
surrounding stars, effectively inserting kinetic energy into the core of
the cluster. Many theoretical and numerical studies have been per-
formed to measure these detailed energy exchanges and its feedback
on the cluster (e.g. Heggie, 1975; Hut & Bahcall, 1983; McMillan &
Hut, 1996; Boekholt et al., 2015). For a more general background on
star cluster dynamics, the following books are highly recommended:
?, ? and ?.

Planetary systems, star clusters and three-body scatterings are just
a few examples of dynamical systems in the universe. There are many
more, such as galaxies consisting of billions of stars or galactic nuclei
which include supermassive black holes. For all these dynamical sys-
tems there are several things we would like to know. Specifically, how
many and what type of bodies are present in the system, how they
are distributed throughout the system, how does the global structure
evolve and what is its final fate. As an illustration, we take our own
solar system again, but only consider the sun and the planets. We have
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Figure 1.1: Two examples of dynamical systems: schematic overview of our
solar system, including the sun, the planets and our moon (top image) and the
star cluster 47Tuc, consisting of over a million stars (bottom image). Credit to
Copernicus (1543) and Dieter Willasch (Astro-Cabinet).
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measured their masses, positions and velocities as they are currently.
One of the open problems is how these orbits evolve over billions of
years. One possibility is that the solar system will always remain more
or less the same, i.e. the system is stable (Ito & Tanikawa, 2002). Some
studies have shown that it is also possible for orbits to change signif-
icantly, resulting in collisions between planets (Laskar & Gastineau,
2009) or an escape from the system altogether (Laskar, 2008). To
investigate the origin and evolution of dynamical systems we need a
mathematical model that captures the behaviour of bodies in motion.

1.2 THE N-BODY PROBLEM

Newton (1687) defined a mathematical model, called the N-body prob-
lem, which describes the following: we have a dynamical system con-
sisting of N bodies (with N = 1, 2, 3, ...), each having a mass, position
and a velocity. What are the positions and velocities at any time
in the future or in the past? If the bodies would not influence each
other, Newton’s first law states that the body will continue moving on
a straight trajectory with constant velocity. If the bodies do feel each
other through a mutual force, they will experience an acceleration and
generally follow curved trajectories. This relation is given by Newton’s
second law of motion

F = ma, (1.1)

with F the force, m the mass of the body experiencing the force and a
the acceleration. When the apple hit Newton’s head, he realized that
the attractive force that acts between all bodies with mass is gravity.
The force of gravity is proportional to the masses of the two bodies
and inversely proportional to the square of the distance between them

F =
GMm

r2
. (1.2)

Here G is the gravitational constant, M and m are the masses of the
two interacting bodies and r the distance between them. To be more
precise, the mass in Eq. 1.1 is the inertial mass, whereas the mass in
Eq. 1.2 is the gravitational mass. Experiments have shown however,
that they are equal up to at least 13 decimal places (Poisson & Will,
2014). We can therefore equate Eq. 1.1 and 1.2 and at the same time
take the sum over all other bodies

~ai = G
∑
j 6=i

mj

r3
ij

~rij . (1.3)
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Here ~ai is the total acceleration experienced by particle i, due to all
other particles with masses mj at distances of rij = |~rj−~ri|. For every
object we calculate its acceleration due to all the other objects. Next
step is to use this acceleration to calculate the position and velocity
at some time in the future. This is the tricky part.

The acceleration as a function of time is generally not a simple
function, but rather complex and chaotic. Except for a few cases with
N = 2 (Newton, 1687) and N = 3 (Euler, 1767; Lagrange, 1772) we
can solve the orbits analytically. For the rest of the cases we need to
measure the acceleration, time step by time step. This discretisation
of the N-body problem introduces an error in the solutions, but makes
it ideal for solving it on a computer.

1.3 N-BODY SIMULATIONS

1.3.1 Algorithms

Soon after the invention of the computer, did the first N-body simu-
lations arise. Among the first ones to solve the N-body problem on a
computer were von Hoerner (1960) and Aarseth (1963), with the aim
of solving the orbits of stars under their mutual gravity.

Solving the N-body problem on a computer involves two main in-
gredients: an integration method and a time step criterion. The in-
tegration method determines how the new position and velocity are
calculated from the current position, velocity and acceleration. The
simplest integrator is the Euler method:

r (t+ ∆t) = r (t) + v (t) ∆t, (1.4)

v (t+ ∆t) = v (t) + a (t) ∆t. (1.5)

Here t is the current time, ∆t is the time step size, r is the position
and v the velocity. By iteratively performing the algorithm of applying
Eq. 1.3, 1.4 and 1.5, we can sample the orbits of the bodies in time
and study the evolution of dynamical systems.

The Euler algorithm is very simple and clear, but not very precise.
If we regard it as a first order Taylor expansion, then the higher order
terms are neglected which introduces truncation error in the results.
One way to reduce this type of error is to select an appropriate time
step criterion. In principle the time step size should be as small as
possible, but this will increase the number of integration steps, which
dramatically increases the amount of CPU time. Therefore, there is
a trade off between the amount of precision and speed. A variety of
time step criteria exist in the literature, two of which are
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∆t = min

{
rij
vij

}
, (1.6)

∆t = min

{√
rij
aij

}
, (1.7)

The first criterion makes sure that the closest pair of bodies cannot
collide within a single time step, because the time step size becomes
smaller if there are close encounters. The second criterion is similar
but also works for zero velocities. For more advanced time step criteria
and also further details on N-body algorithms and simulations we refer
the reader to Aarseth (2003) and The Art of Computational Science
project by Hut and Makino1.

Two commonly used N-body integrators are the Leapfrog and the
Hermite method. The Leapfrog algorithm goes as follows

v(t+
∆t

2
) = v (t) + a (t)

∆t

2
, (1.8)

r(t+ ∆t) = r (t) + v (t) ∆t+
1

2
a (t) ∆t2, (1.9)

v(t+ ∆t) = v(t+
∆t

2
) + a (t+ ∆t)

∆t

2
. (1.10)

Compared to the Euler scheme, the new position is calculated using
an extra term proportional to ∆t2. The main difference is that the
velocity is updated in two steps. First, half of the time step is taken
using the current acceleration, then the second half of the time step is
taken using the new acceleration which is calculated at time t+∆t. The
updated positions and accelerations in the second step of the velocity
calculation, has the result that the energy error remains bound. This
property is characteristic for symplectic methods, and is especially
useful for integrations of planetary systems (?).

The Hermite integrator (?) is a fourth-order, non-symplectic method
that is useful for accurate integration of collisional systems such as star
clusters. The algorithm consists of a prediction step

rp = r (t) + v (t) ∆t+
1

2
a(t)∆t2 +

1

6
j(t)∆t3, (1.11)

vp = v (t) + a (t) ∆t+
1

2
j(t)∆t2, (1.12)

1http://www.artcompsci.org/
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and then a correction step that makes use of the initial coordinates
and the predicted coordinates:

r(t+ ∆t) = r(t) +
1

2
(v(t) + vp) ∆t+

1

12
(a(t)− ap) ∆t2, (1.13)

v(t+ ∆t) = v(t) +
1

2
(a(t) + ap) ∆t+

1

12
(j(t)− jp) ∆t2. (1.14)

Here j(t) is the jerk which is the time derivative of the acceleration,
and ap is the acceleration calculated using the predicted positions1.

Once the software has been written it has to run on a piece of hard-
ware. For simulations of a few particles a personal desktop is sufficient.
A gain in speed can be obtained by using the fastest processors avail-
able on the market. For larger dynamical systems it becomes efficient
to parallellise the computations. As was shown in the previous section,
to calculate the acceleration of a single body, we need to iterate over
all the other bodies, which is an operation of order N . However, we
want to know the acceleration of each particle, which is another factor
N , so that the total cost is of order N2. Dividing the computational
work over as many cores as possible can lead to an increase in speed.
It is worth noting that there is a trade off between the time the com-
puter spends calculating and the amount of time the computer cores
are communicating and passing data. The challenge for N-body de-
velopers is to design a code which runs efficiently with as many cores
as possible (Portegies Zwart et al., 2008).

Approximate methods exist which trade in some precision for better
performance by relieving the constraint of having to consider all pairs
of bodies. One familiar example is the tree method where clumps of
bodies are replaced by a single, centre of mass body (??). Finally,
calculations on Graphic Processing Units (GPUs), instead of Central
Processing Units (CPUs), can decrease the duration of the simulations
by one or two orders of magnitude. The current fastest N-body code
on the planet is a tree method compatible with clusters of GPUs (?).

Since the N-body problem cannot be solved exactly, much effort
has gone into looking for new, improved algorithms for solving the
N-body problem. Different methods can be more appropriate for dif-
ferent problems. For example, some might aim for speed in order to
be able to handle large simulations of globular clusters and galaxies,
whereas others might aim for high precision for planetary and few-
body systems. The quest for the ultimate N-body method that is fast
and precise still continues.
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Figure 1.2: N-body simulation of a 16-body star cluster. The white stars rep-
resent the solution obtained by the Leapfrog method, and the red painted stars
are obtained using the Hermite method. We show the initial condition (top row,
left), and three snapshots a few crossing times apart (from left to right, and top to
bottom), illustrating the divergence between neighbouring solutions.

1.3.2 Accuracy of N-body Results

The aim of any N-body simulation is to calculate the unique, math-
ematical solution to the N-body problem, given a set of initial con-
ditions. The exact solution cannot generally be obtained analytically
and so we have to resort to approximate, numerical methods. How do
we know that the calculated solution is accurate?

The best way to quantify the accuracy of an approximate solution
is to compare it to the true solution, but since the true solution is not
available we need other methods. The most often used method is to
check for energy conservation. As can be derived from the equations
of motion, the total energy of a dynamical system is a conserved quan-
tity. Any simulated N-body solution should not make too large energy
errors in order to remain trustworthy (?). On the other hand, there are
an infinite number of configurations on the energy hyperspace in the
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multi-dimensional phase space, so that while the total energy might be
conserved exactly, the precise configuration could still be completely
wrong.

Another type of test is for reversibility. We start integrating the
initial configuration up to some time t, then we change the direction
of time and integrate backwards to t = 0. Ideally, we should repro-
duce the initial conditions, but due to error growth in the mean time,
this might not be the case. For example, in a star cluster simulation
consisting of single stars, the cluster will evolve towards core collapse,
where its core density becomes extremely high and where binaries are
formed due to three-body interactions (?). If we then reverse the arrow
of time, we would expect the opposite evolution, where the core density
gradually decreases and binaries get ionized. This backward evolution
is however very unstable, and small deviations from this track will
cause the evolution to go forwards again towards higher core density
and binary formation.

Convergence tests are often performed to show that the obtained
N-body results are safe and sound. After all, by decreasing the time
step systematically, the discretisation error will become smaller up
to the point that the first few decimal places will start to converge.
The required precision however, depends on the specific configuration.
For very chaotic systems, the necessary time step could be so small,
that round-off errors due to the many time steps and operations, will
become dominant and prevent any convergence. Every result obtained
from N-body simulations should be treated carefully to make sure that
we do not get led astray.

1.4 CHAOTIC DYNAMICS

Central in this thesis is the growth of a small initial perturbation
in a dynamical system. Consider a slight perturbation of only one
coordinate of a single body in the system. If we then calculate the
accelerations of all the bodies, they will be slightly perturbed as well
due to the slightly perturbed distances to the perturbed body. The
new positions and velocities at a time step ∆t later, will inherit the
perturbation as well. Subsequent integration steps will magnify the
perturbation until it has become the size of the system.

This mechanism is investigated from two different perspectives. First
of all, we take the small initial perturbation to be a numerical error,
so that we are looking at the growth of numerical noise in N-body
simulations. As described in the previous section, it is challenging to
obtain true solutions to the N-body problem due to different sources



10 CHAPTER 1. INTRODUCTION

of error (see Fig. 1.2). The main reason that small integration errors
cause problems is that many dynamical systems are inherently chaotic.
Similar to the familiar butterfly effect, a small integration error can be
magnified by orders magnitude within a finite time (???). This limits
the predictability of the positions of the bodies after a certain amount
of time. To some degree, high-precision N-body methods can fight the
exponentially growing numerical errors.

In the second interpretation, the small initial perturbation is phys-
ical and introduced manually in the initial conditions for the N-body
experiment. By measuring the growth of the perturbation we can
determine the stability of a dynamical system. If two neighbouring
solutions remain close on the time scale of interest, then small pertur-
bations do not alter the evolution significantly and we say the system is
stable to small deviations. In this case the perturbation usually grows
linear in time. If, on the other hand, a perturbed solution is completely
different after a relatively short time, then the system is categorized
as unstable and chaotic, and the perturbations grow exponentially.

Increasing our understanding of the way perturbations grow in dy-
namical systems is crucial for designing improved N-body methods
and for determining the stability of dynamical systems and their long
term evolution. One illustrative example is the stability of planetary
systems. Hundreds of exoplanets have been discovered orbiting other
stars and in a wide variety of orbits2. A significant fraction of exo-
planetary systems are much more compact than our solar system. By
understanding the reason why some configurations are stable and oth-
ers unstable, we can learn about the evolution of planetary systems
and the likelihood to observe them in a certain state.

1.5 THIS THESIS

This thesis presents five studies on new N-body algorithms, the relia-
bility of N-body results, and finally the origin of chaos in dynamical
systems. Below we introduce these topics and related research ques-
tions in somewhat more detail.

Chapter 2

As mentioned in Sec. 1.3.2, the best way to quantify the accuracy of
an N-body simulation is to compare it to the true solution. We design
the new N-body code Brutus which solves the N-body problem to a
pre-defined precision. This code adaptively reduces the time step size

2http://exoplanets.org/
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to control the discretisation errors, and it uses an arbitrary-precision
library to control the round-off errors. By making the time step smaller
and by increasing the number of used digits, we obtain solutions with
an increasing precision up to convergence. These converged N-body
solutions approach the true solution up to the first specified number of
decimal places. Using this code we are able to quantify the accuracy
of approximate solutions and for the first time obtain true solutions
to general N-body configurations.

Chapter 3

We explore a conceptually novel idea for an N-body algorithm. It is
based on two main arguments: the two-body problem can be solved
analytically and the superposition principle holds in the calculation of
the accelerations. Therefore, are we able to solve every pair of two-
body problem in the system and combine them to solve the overall
N-body problem? We demonstrate that this is indeed the case and
perform several validation and performance tests. This code turns out
to be very efficient on parallel supercomputers.

Chapter 4

The assumption in the N-body community is that even though N-body
solutions inherently possess some numerical noise, the results are still
valid statistically. We test this assumption for three-body scatter-
ing systems as described briefly in Sec. 1.1. We compare statistics
on triple interactions and dynamically formed binary stars, obtained
from an ensemble of converged solutions (obtained by Brutus) to those
obtained from an ensemble of approximate solutions (obtained by Her-
mite). We find that for sufficient energy conservation, three-body scat-
tering statistics are preserved under divergence of individual solutions,
which is good news for the N-body user.

Chapter 5

In this Letter, we discuss in more detail the observation from the pre-
vious chapter, that an ensemble of approximate solutions preserves
the global statistical distributions. We analyse the results from three-
body scattering experiments and illustrate this quasi-ergodic prop-
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erty of gravity, i.e. ”Nagh-Hoch”3, which exposes itself particularly in
chaotic systems. This property is crucial for the reliability of N-body
simulations, which inherently possesses numerical noise.

Chapter 6

Having determined in previous chapters that chaotic systems show an
exponential growth of small perturbations, we now want to understand
why these systems show this behaviour. Why are some systems chaotic
and others regular and is it possible to go from order to chaos and vice
versa? We construct a model for the growth of perturbations based
on two-body Keplerian systems being perturbed by a third body. We
apply the model to Halley’s orbit and find its Liapounov time, i.e. the
e-folding time for exponential growth, to be about 300 years. This sur-
prisingly short time scale follows naturally from the encounter density
(Halley and Jupiter are close to a 3:19 mean motion resonance) and
the strength of each close encounter.

Chapter 7

The field of N-body code development and simulations has matured
since the first simulations performed in the 1960s. There are however
still many areas to explore or to improve. We briefly describe several
open problems, which should be solved within the next decade.

3Klingon for ”Ensemble of Stone”, referring to the preservation of ensemble
statistics under numerical errors.
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A Precise N-body Code:
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The general consensus in the N-body community is that statistical
results of an ensemble of collisional N-body simulations are accurate,
even though individual simulations are not. A way to test this hy-
pothesis is to make a direct comparison of an ensemble of solutions
obtained by conventional methods with an ensemble of true solutions.
In order to make this possible, we wrote an N-body code called Bru-
tus, that uses arbitrary-precision arithmetic. In combination with the
Bulirsch–Stoer method, Brutus is able to obtain converged solutions,
which are true up to a specified number of digits.

In this chapter we present the structure of Brutus and illustrate
the method of convergence by applying it to several small-N systems.
For the first time, we can exactly determine how accurate our N-body
results are, and obtain true solutions to general N-body configurations.
Finally, we construct a model for the scaling of Brutus with N , for
converged solutions to reach core collapse. We conclude that it scales
roughly exponentially, which is effectively caused by the exponential
divergence between neighbouring solutions.

2.1 INTRODUCTION

Analytical solutions to the N-body problem are known for N = 2,
which are the familiar conic sections. Also, for several systems pos-
sessing symmetries, analytical solutions have been found, for example
the equilateral triangle (Lagrange, 1772). For a more general initial
configuration, solutions have to be obtained by means of numerical
integration. Given an initial N-body realisation, one can calculate all
mutual forces and subsequently the net acceleration of each particle.

13
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Different integration methods exist which take the accelerations, and
update the positions and velocities to a time t + ∆t, with ∆t the
time-step size. This process is repeated until the end time is reached.

? recognised that obtaining the solution to an N-body problem
by numerical integration is difficult. This is caused by exponential
divergence. Consider a certain N-body problem, i.e. N point-particles,
each with a given mass, position and velocity. This system evolves
with time in a definite and unique way. If one goes back to the initial
state and slightly perturbs only one coordinate of a single particle,
the perturbed N-body problem will also have a definite and unique
but different solution than the original one. When the two solutions
are compared as a function of time, it is observed that differences
can grow exponentially (????). If the initial perturbation is due to
a numerical error, the calculated solution will also diverge away from
the true solution.

Several authors have estimated the time-scale of this divergence
(??), and arrived at an e-folding time-scale of the order a dynamical,
crossing time. Simulation times of interest are typically much longer
than a crossing time and therefore staying close to the true solution is
numerically challenging.

If the result of a direct N-body simulation of for example a star
cluster, has diverged away from the true solution, the result may well
be meaningless (?). The general consensus however, is that statisti-
cally the results are representative for the true solution to the N-body
problem (???). The underlying idea is that the statistics of an en-
semble of N-body simulations are representative for the true statistics,
obtained by an ensemble of true solutions, with the same set of initial
conditions. We regard this the hypothesis we want to test.

One way to test this hypothesis is to directly compare statistics
obtained by conventional methods, with the statistics obtained from
an ensemble of true solutions (see Chapter 4). To obtain true solutions,
we wrote an N-body code which can solve the N-body problem to
arbitrary precision.

Such a code can be realised if the different sources of error are con-
trolled. The error has contributions from the time discretisation of the
integrator and the round-off due to the limited precision of the com-
puter (?). Another possible source of error is in the initial conditions,
for example the configuration of the solar system is only approximately
known (Ito & Tanikawa, 2002). However, if the initial condition is a
random realisation of a distribution function, this is less often a prob-
lem. Using the Bulirsch–Stoer method (??), the discretisation error
can be controlled to stay within a specified tolerance. Using arbitrary-



2.2. METHODS 15

precision arithmetic instead of conventional double-precision or single-
precision, the round-off error can be reduced by increasing the number
of digits.

We obtain converged solutions to the N-body problem by decreas-
ing the Bulirsch–Stoer tolerance and increasing the number of digits
systematically. We define a converged solution in our experiments as a
solution for which the first specified number of decimal places of every
phase-space coordinate in our final configuration in the N-body ex-
periment becomes independent of the length of the mantissa and the
Bulirsch–Stoer tolerance. We explain the method of convergence in
Sec. 2.2, we give examples of the procedure in Sec. 2.3 and we measure
the scaling of Brutus in Sec. 2.4.

2.2 METHODS

2.2.1 The Benchmark Integrator

The gravitational N-body problem aims to solve Newton’s equations of
motion under gravity for N stars (Newton, 1687). A popular integra-
tor to perform this task is the fourth-order Hermite predictor-corrector
scheme (?), using double-precision arithmetic. The experiments we
discuss in Sec. 4.1 will use this integrator as a benchmark test. We
adopt a shared, adaptive time-stepping scheme with the following cri-
terion:

∆t = ηmin
√

∆rij/∆aij . (2.1)

Here η is the time-step parameter and ∆rij and ∆aij are the rela-
tive distance and acceleration for the pair of particles i and j. We
implement no further constraints on the time-step size.

To test how inaccurate we are allowed to integrate while still ob-
taining accurate statistics (??) we vary the time-step parameter η, to
obtain statistics from conventional simulations with different precision.

2.2.2 The Brutus N-body Code

The results obtained with the benchmark integrator will be compared
to those obtained with Brutus (see Chapter 4), which uses an arbitrary-
precision library 1. With this library we can specify the number of bits,
Lw, used to store the mantissa, while the exponent has a fixed word-
length. The length of the mantissa can be specified and increased,
with the aim of controlling the round-off error.

1We use the open-source library GMP: http://gmplib.org/
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The integration of the equations of motion is realised using the
Verlet-Leapfrog scheme (?). The time-step is shared among all parti-
cles, but varies for every step according to Eq. 2.1.

To control the discretisation error, we implemented the Bulirsch–
Stoer (BS) method, which uses iterative integration and polynomial
extrapolation to infinitesimal time-step size (??). An integration step
is accepted, when two subsequent BS iterations have converged to
below the BS tolerance level, ε.

The time-step parameter η and the BS tolerance ε, both influence
the performance. If η is too big, convergence may not be achieved for
any tolerance. If η is too small, the many integration steps will render
the integration too expensive. There is an optimal value for η as a
function of ε. We measured this relation empirically, which results in:

log10 η = A log10 ε+B. (2.2)

For ε < 10−50 the power law converges to A = 0.029 and B = 0.45.
Extrapolating this relation to ε > 10−50 will cause the time-step size
to become larger than the time scale for the closest encounter in the
system. Therefore this relation saturates to a flatter power law for
ε > 10−50 with A = 0.012 and B = −0.40. Compared to a fixed value
for η, this relation speeds up the iterative procedure by about a factor
three or more. The code is implemented as a community code in the
AMUSE framework (?) under the name Brutus.

2.2.3 Method of Convergence

For every simulation we have to define the BS tolerance parameter
ε and the word-length Lw. In an iterative procedure we vary both
parameters systematically, each time carrying out a simulation until
t = tend. We subsequently calculate the phase space distance, δ2

A,B,
between two solutions A and B:

δ2
A,B =

1

6N

N∑
i=1

6∑
j=1

(qA,i,j − qB,i,j)2 . (2.3)

The first summation is over all particles and the second summation is
over the six phase-space coordinates denoted by q (?). We normalise
by 6N , so that δ represents the average difference per phase-space
coordinate between two solutions A and B. In our experiments we
adopt Hénon units 2 (??), in which the typical values for the distance

2Formerly known as N-body units. Introduced by D. Heggie at MODEST14.
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and velocity are of the same order. We will also use the distance in
just position or just velocity space as they might behave differently.

We consider the solutions A and B to be converged when δA,B <
10−p at all times during the simulation. Note that converged in this
case means convergence of the total solution, contrary to convergence
per integration step as in the previous section. This criterion for con-
vergence is roughly equivalent to comparing the first p decimal places
of the positions and velocities for all N stars, in two subsequent cal-
culations A, B. In most of our experiments we adopt p = 3, i.e. all
coordinates have to converge to about three decimal places or more.
We perform a subset of simulations with p = 15 to investigate the
effect of small errors (see Sec. 4.2.4).

Each simulation starts by specifying the initial positions and ve-
locities of N stars in double-precision (see Sec. 4.1). The simulation
is carried out with the parameter set (ε, Lw). We start each simu-
lation with ε = 10−6 and Lw = 56 bits. This corresponds to a level
of accuracy similar to what we reach with the conventional Hermite
integrator. After this simulation, we increase Lw, for example to 72
bits (∼ 22 decimal places), redo the simulation and calculate δ2. We
repeat this procedure until δ < 10−p. When this is achieved, we have
obtained a solution in which the round-off error is below a specified
number of decimal places for this particular value of ε.

We now reduce the tolerance parameter ε, for example by a factor
of 100, and repeat the procedure of increasing Lw. This series will
again lead to a converged solution, but this time it is obtained using
a smaller ε, and is likely to be different than the previous converged
solution. We continue decreasing the value of ε by factors of 100 and
repeat the procedure, until two subsequent iterations in ε lead to a
converged solution with a value of δ < 10−p. By this time we are
assured of having a solution to the gravitational N-body problem, that
is accurate up to at least p decimal places.

In practice, we speed up the procedure by writing the word-length
as a function of BS tolerance. Consider for example a BS tolerance
of 10−20. To reach convergence up to this level, we need at least 20
decimal places. Adding an extra buffer of 10 digits gives a total of
30 digits, or equivalently a word-length of about 112 bits. For this
example, 112 bits turns out to be a good minimum word-length. For
a first estimate of the word-length, we use:

Lw = 4 |log10 ε|+ 32 bits. (2.4)

With this relation, we will only have to specify a single parameter ε,
which directly controls the discretisation error and indirectly controls
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the round-off error. For most of the systems in our experiment the
discretisation error turns out to be the dominant source of error and
as a consequence ε has to decrease quite drastically. When ε decreases,
Lw increases, even up to the point that there are many more digits
available than really needed to control the round-off error. In the case
when the discretisation error dominates, the above defined minimum
word-length for a given BS tolerance will result in the converged solu-
tion. When the round-off error dominates the word-length should be
varied independently.

2.3 VALIDATION AND PERFORMANCE

2.3.1 The Pythagorean Problem

To show that our method works, we adopt the Pythagorean 3-body
system (?). Previous numerical studies have shown that this system
dissolves into a binary and an escaper (??). After many complex, close
encounters the dissolution happens at about t = 60 time units (?), or
about 16 crossing times.

We adopt the initial conditions for the Pythagorean problem and
integrate up to t = 100. To illustrate how the method works we start
with a high tolerance and short word-length, (ε = 10−2, Lw = 40 bits),
which is less precise than double-precision. In Fig. 2.1, this calculation
is compared to a simulation with (ε = 10−4, Lw = 48 bits), through
the yellow (upper) curves in the first three panels. After the first BS
integration step, δ obtains a value of the order of the BS tolerance,
and continues to increase due to exponential divergence, to eventually
exceed δ ∼ 10−1, after which the errors become on the order of the
typical distance and speed in the system.

In the following step, we repeat the calculation with a precision of
(ε = 10−6, Lw = 56 bits), and compare the result with the calculation
using (ε = 10−4, Lw = 48 bits). The comparison is represented by the
orange curves (second from above) in Fig. 2.1. The overall behaviour
of δ is similar, but the system diverges at a later time due to a higher
initial precision.

We continue the iterative procedure until a converged solution has
been obtained. In the first three panels of Fig. 2.1, it can be seen that
subsequent simulations with higher precision shift the curve to lower
values of δ. Superposed on the steady growth of the error are sharp
spikes, where the error grows by several orders of magnitude, after
which the error restores again (?). These spikes are dominated by
errors in the velocity, as can be deduced by comparing the magnitude
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Figure 2.1: Exponential divergence in the Pythagorean problem. In the top two
panels and the lower left panel, Brutus is compared with Brutus with increasing
precision. The curves at the top of each panel compare a tolerance of 10−2 with
10−4, the curve below compares 10−4 with 10−6 and so on. The word-length is a
function of the tolerance as in Eq. 2.4. In the top left panel we show the distance in
position-space, in the top right panel in velocity-space and in the bottom left panel
in the full phase-space (all normalized by the number of stars and coordinates).
The lower right panel compares the converged solution (the lowest curve in the
other plots), with Hermite solutions with time-step parameters η = 2−3, 2−5, 2−7

up to 2−13.
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of the spikes in position and velocity-space. Eccentric binaries which
are out of phase when comparing two solutions cause large, periodic
errors in the velocity. We finish the procedure when a solution is
obtained for which the criterion for convergence is fulfilled, considering
the magnitude of the error between the sharp spikes (bottom, black
curves).

In the bottom right panel of Fig. 2.1, we compare solutions obtained
by the Hermite integrator to the converged solution. The different
curves belong to different time-step parameters; η = 2−3, 2−5, 2−7 up
to 2−13. Note that for a time-step parameter η < 2−9, the curve is not
shifted to lower values of δ, but even increases again. At this point
round-off error becomes important, making the solution less accurate.
The final close encounter in the Pythagorean problem occurs around 60
time units, after which a permanent binary and an escaper are formed.
The Hermite integrator is able to accurately reproduce the evolution
up to this point, but not subsequently, because δ has increased to
values of order unity or higher. This can be explained by a small
error in the final close encounter between all three stars, such that the
direction of the escaper is slightly different.

To obtain the converged solution up to the first three decimal places,
a tolerance of 10−14 and a word-length of 88 bits were needed. The
simulation was about twice as slow compared to the Hermite simula-
tion with η = 2−9. The Hermite simulation, however, had a slightly
different solution and a final, relative energy conservation of 10−8, De-
creasing the value of η will improve the level of energy conservation,
but due to round-off error δ will not decrease.

2.3.2 The Equilateral Triangle

As a second test case, we adopt the 3-body equilateral triangle as an
initial condition (Lagrange, 1772). In the exact solution this config-
uration remains intact, but small perturbations, such as produced by
numerical errors, quickly cause the triangle to fall apart. For this prob-
lem, we also have a source of error in the initial conditions. Whereas
the Pythagorean problem can be set up using integers, the initial condi-
tion for the equilateral triangle contains irrational numbers. To control
the error in the initial condition, we calculate the initial coordinates
with the same word-length as used for the simulation.

In the left panel of Fig. 2.2, a similar diagram is shown as for the
Pythagorean problem in the lower left panel of Fig. 2.1. The start-
ing precision is ε = 10−10 and the word-length is a function of ε as
in Eq. 2.4. Subsequent simulations are performed with a 10 orders of
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Figure 2.2: Divergence in the equilateral triangle configuration. In the top panel
we show the divergence as a function of time. The solid curves compare Brutus
solutions with increasing precision, where subsequent precisions are increased by
10 orders of magnitude and where the word-length is a function of tolerance as in
Eq. 2.4. The dotted curves show results for similar simulations, but with a much
longer, fixed word-length of 512 bits. The initial power law phase of divergence
lasts longer in this case. The exponential divergence becomes dominant when the
round-off error has had time to accumulate to become of the order the discretisa-
tion error. The dashed curves compare the highest precision Brutus solution with
Hermite solutions with time-step parameters 10−1, 10−2, 10−3 and 10−4. In the
bottom panel we show for Brutus, the duration for which the triangular configu-
ration remains intact as a function of Bulirsch–Stoer tolerance ε. Note that the
time is in units of the period of one complete rotation of the system. The small
scatter in the data is due to the discrete times at which we check the triangular
configuration.
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magnitude higher precision. For a short initial phase of 5 time units,
the rate of divergence follows a power law. At later time, the solutions
start to diverge exponentially with a characteristic rate independent
of the tolerance and word-length. To investigate this transition, we
redo the simulations with a large, fixed word-length of 512 bits (green
dotted curves). This way, we reduce the amount of round-off error. As
a consequence the rate of divergence is first dominated by the accu-
mulation of discretisation errors and this phase lasts for a longer time,
until the transition in the behaviour of the divergence, is reached, but
now at ∼ 45 time units. The time of the transition depends on word-
length. Why the exponential divergence starts once the round-off error
has kicked in, is a question that is still under investigation.

The red dashed curves in the same diagram in Fig. 2.2 give the re-
sults of the fourth-order Hermite, which are compared with the most
precise Brutus simulation (with ε = 10−80, Lw = 352 bits). The time-
step parameter η = 10−1, 10−2, 10−3 and 10−4 for subsequent curves.
The Hermite integrations show a similar behaviour as the Brutus re-
sults, which could imply that the rate of divergence is a physical prop-
erty of the configuration, rather than a property of the integrator.

In the right panel of Fig. 2.2 we show the duration for which the
triangular configuration remains intact as a function of BS tolerance.
For this experiment we halt the simulation when the distance between
any two particles has increased or decreased by 10%, after which the
triangle falls apart quickly. This diagram also illustrates the linear
relation between accuracy and time in this system, which is caused
by the constant number of digits being lost during every unit of time.
The small scatter is due to the discrete times at which we check the
triangular configuration. The solid, blue line is a fit to the data and
its slope is −0.52(3), which is equivalent to a loss of 1.9(1) digits per
cycle.

2.3.3 A Plummer Distribution with N=16

As a third test we simulate the dynamical formation of the first hard
binary in a small star cluster. We select a moderate number of sixteen
equal mass stars and draw them randomly from a Plummer distribu-
tion (?). We integrate this system for about ten crossing times and
apply the method of convergence. In Fig. 2.3 we present how two solu-
tions with the same initial conditions, but different precisions, diverge
as a function of time. The rate of exponential divergence, on average,
starts rather constant, with a loss of ∼ 2/3 digits per time unit. This
is equivalent to an e-folding time of te = 0.65, which is consistent with
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Figure 2.3: Exponential divergence in a 16-body cluster. In the top panel we il-
lustrate the exponential divergence between Brutus simulations with increasing pre-
cision. In the bottom panel we show the final relative energy conservation (bullets,
solid line) and the final normalized phase space distance between two subsequent
simulations (triangles, dashed line) versus the Bulirsch–Stoer tolerance parameter
ε. The solution starts to converge at a level of final relative energy conservation of
∼ 10−34.
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the results of Goodman, Heggie and Hut (1993) (see their Fig. 8).
From t = 20 onwards, the rate of divergence experiences systematic
changes, in particular a steep rise of the error of about 10 orders of
magnitude between t = 26 and t = 29. Such rises are a signature for
the presence of a hard binary interacting with surrounding stars.

The right panel in Fig. 2.3 shows the energy conservation (black
bullets, solid line) and the normalized phase space distance (red tri-
angles, dashed line) versus ε. Energy conservation is proportional to
ε, but the solutions only start to converge for ε < 10−34. More gen-
erally, even if conserved quantities like total energy are conserved to
machine-precision or better, it is not guaranteed that the solution itself
has converged.

The highest precision Brutus simulation in this example, (ε = 10−50,
Lw = 232 bits), took about a day of wall-clock time, which is about
7000 times slower than a simulation with Hermite using η = 2−9.

2.4 SCALING OF THE WALL-CLOCK TIME

The use of arbitrary-precision arithmetic dramatically increases the
CPU time of N-body simulations. Also the BS method, which per-
forms integration steps iteratively, makes an integration scheme more
expensive by at least a factor two or more. To investigate for example
how feasible it would be to run a converged N-body simulation for 103

stars through core collapse, we perform a scaling test in which we vary
the number of particles and the precision, ε and Lw.

We randomly select positions and velocities for N equal mass stars
from the virialised Plummer distribution (?), for N = 2, 4, 8, ..., up
to 1024. The BS tolerance is fixed at a level of 10−6 and the word-
length at 64 bits. We integrate the systems for one Hénon time unit
and measure the wall-clock time. In the top left panel in Fig. 2.4 we
show the wall-clock time as a function of N , which fit the relation
tCPU ∝ N2.6.

For N > 32, it becomes efficient to parallellise the code. Our ver-
sion implements i-parallellisation (Portegies Zwart et al., 2008) in the
calculation of the accelerations. In the top right panel of Fig. 2.4, we
plot the speed-up, S, against the number of cores. For N = 1024, we
obtain a speed up of a factor 30 using 64 cores.

In the lower panels of Fig. 2.4 we present the scaling of the wall-clock
time with BS tolerance and word-length. To measure the dependence
on BS tolerance, we simulated a 16-body cluster for 1 Hénon time
unit. We varied the BS tolerance while keeping the word-length fixed
at Lw = 1024 bits. The relation obtained converges to tCPU ∝ ε−0.032.
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Figure 2.4: In the top left panel we show the scaling of the wall-clock time for
Brutus as a function of number of stars N . The dotted curve is a fit to the data
given by tCPU ∝ N2.6. In the top right panel we show the speed-up when the
number of cores, p, is increased. The bottom, solid curve represents N = 32 and
each curve above has an N a factor two higher than the previous curve. The dotted
curve represents ideal scaling. In the bottom left panel we plot the slowdown factor
as a function of the Bulirsch–Stoer tolerance ε, for a fixed word-length of 1024 bits.
In the bottom right panel we plot the slowdown factor as a function of word-length
Lw, for a fixed tolerance of 10−10. The slowdown of the simulations is mainly
caused by the very small Bulirsch-Stoer tolerances required.
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A similar experiment was performed to measure the dependence on
word-length. This time we fixed the BS tolerance at ε = 10−10 and
varied the word-length. For Lw < 1024, the relation can be estimated
as tCPU ∝ L0.33

w , while for Lw > 1024, tCPU ∝ Lw. This transition
depends on the internal workings of the arbitrary-precision library
which we will not discuss here.

Using a very long word-length of 4096 bits, i.e. ∼ 103 digits, results
in a slowdown of a factor fs ∼ 16 compared to 64 bits. But for some
simulations a BS tolerance smaller than 10−50 can easily be required
to reach convergence, and this will result in a slowdown of a factor
fs > 100. The very small BS tolerance is often the main cause for the
slowdown of the simulations, instead of the increased word-length.

Using the above results, we can construct the following model to
estimate the wall-clock time for integrating 1 Hénon time unit with
Lw < 1024 bits:

tCPU =

(
N

512

)2.6 ( ε

10−6

)−0.032
(
Lw
64

)0.33

104 [s]. (2.5)

Integrating N = 1024 with standard precision, (ε = 10−6, Lw =
64 bits), up to core collapse at ∼ 300 time units, and taking into ac-
count a speed up of a factor 30 due to parallellisation, we estimate a
total wall-clock time of a week. Increasing the precision to (ε = 10−20,
Lw = 112 bits), will take about a month. A precision of (ε = 10−50,
Lw = 232 bits) will take roughly a year. To estimate how much preci-
sion is needed, we will assume that the rate of exponential divergence
before the formation of the first hard binary is approximately constant.
In the left panel of Fig. 2.3, the initial slopes correspond to a loss of
∼ 2/3 digits per time unit. We construct the following approximate
model for the initial BS tolerance needed to end up with a converged
solution:

log10 ε = log10 δfinal −Rdivtcc. (2.6)

Here ε is the BS tolerance parameter, δfinal is the final precision of all
the coordinates in the system, Rdiv is the approximately constant rate
of divergence, e.g. the number of accurate digits lost per unit of time,
and tcc is the core collapse time. We set the final precision to 10−6, i.e.
convergence to the first 6 decimal places, and we set the core collapse
time to ∼ 300 as before. If we adopt Rdiv = 2/3, we estimate that
we need an ε ∼ 10−206. This would take about 105 years to finish. It
would be more practical to simulate a 256-body cluster. If we set the
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core collapse to 100 time units we estimate ε ∼ 10−73, which would
take about a month on a cluster of 64 Intel(R) Xeon(R) E5530 cores.

For direct N-body codes, the time for integrating up to core collapse
usually scales as O(N3). Using the analysis above, we estimate that
the time for converged core collapse simulations scales approximately
exponentially. This is effectively caused by the exponential divergence.
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N-body Code: Sakura

Based on: A Keplerian-based Hamiltonian Splitting for Gravitational N-body

Simulations by G. Gonçalves Ferrari, T. C. N. Boekholt and S. F. Portegies Zwart
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We develop a Keplerian-based Hamiltonian splitting for solving the
gravitational N -body problem. This splitting allows us to approxi-
mate the solution of a general N -body problem by a composition of
multiple, independently evolved 2-body problems. While the Hamil-
tonian splitting is exact, we show that the composition of independent
2-body problems results in a non-symplectic non-time-symmetric first-
order map. A time-symmetric second-order map is then constructed
by composing this basic first-order map with its self-adjoint. The re-
sulting method is precise for each individual 2-body solution and pro-
duces quick and accurate results for near-Keplerian N -body systems,
like planetary systems or a cluster of stars that orbit a supermassive
black hole. The method is also suitable for integration of N -body
systems with intrinsic hierarchies, like a star cluster with primordial
binaries. The superposition of Kepler solutions for each pair of par-
ticles makes the method excellently suited for parallel computing; we
achieve & 64% efficiency for only eight particles per core, but close to
perfect scaling for 16384 particles on a 128 core distributed-memory
computer. We present several implementations in Sakura, one of which
is publicly available via the AMUSE framework.

3.1 INTRODUCTION

Since the pioneering work of von Hoerner (1960), Aarseth (1963) and
? N -body simulations have been an essential tool for the theoretical
understanding of self-gravitating astrophysical systems. Such systems
often show a large dynamic range of time scales. Thus, instead of a

29
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fixed or adaptive global time step, most of the N -body codes adopt
individual or block time step algorithms in order to advance the par-
ticles in time (??Aarseth, 2003). In addition, different approaches to
calculate the acceleration of each particle, such as using grids (?) or
a hierarchical tree data structure (?), are commonly employed to de-
crease the computational cost of the simulations. These approaches
allow the use of a larger number of particles, despite only giving an
approximation to the true acceleration of each particle. Therefore,
these codes should not inadvertently be used in simulations of colli-
sional systems such as planetary systems, dense star clusters or the
inner parts of galactic nuclei.

In collisional systems the individual interactions between particles
play an important role in the dynamical evolution of the system as
a whole. For example, the formation of hard binaries in star cluster
core collapse (?) requires very precise integration methods to correctly
evolve close encounters between particles. This precision is only pos-
sible if we use more accurate, direct brute-force methods, to calculate
the accelerations due to each pair of particles in the system. The main
difficulty here is that with the formation of the first hard binary in the
system, the simulation as a whole experiences a slow-down in perfor-
mance due to the necessity to decrease the time-step size in order to
accurately integrate such compact sub-systems.

Currently, the most effective and common approach to overcome
such obstacles seems to be a combination of the block time step al-
gorithm (?), Ahmad-Cohen neighbour scheme (?) and some sort of
2-body regularization (????) in order to handle very compact sub-
systems efficiently. This is the approach used in modern Hermite in-
tegrators for collisional stellar systems (?Aarseth, 2003).

In this chapter, we develop a new Keplerian-based Hamiltonian
splitting for the gravitational N -body problem. This splitting allows
us to approximate the solution of a general N -body problem by a
composition of independently evolved two-body problems. While the
Hamiltonian splitting is exact, we show in section 3.2 that the compo-
sition of independent two-body problems results in a non-symplectic
non-time-symmetric first-order map. A time-symmetric second-order
map is then constructed by composing this basic first-order map with
its self-adjoint. The advantages of this Keplerian-based integrator are:
i) a guarantee that every pair of particles is always integrated pre-
cisely; ii) the method does not suffer from slow-down in performance
when tight binaries are present in the simulation, and iii) the method
allows for good parallel efficiency (?).
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3.2 METHOD

3.2.1 Hamiltonian Splitting

We begin the derivation of our scheme for the numerical integration
of a gravitational N -body system by considering its Hamiltonian,

H = HT +HU . (3.1)

Here,

HT ≡
N∑
i=1

HTi , HTi ≡
1

2
miv

2
i , (3.2)

and

HU ≡
1

2

N∑
i=1

N∑
j 6=i

HUij , HUij ≡ −
mimj

rij
, (3.3)

are the kinetic and potential energies of the system, respectively; mi

and vi = |vi| are the mass and velocity of the i-th particle and rij =
|rij | = |ri − rj | is the relative distance between particles i and j.

The time evolution of a Hamiltonian system is formally given by the

operator1 eτĤ , which can be approximated by a composition of individ-

ually solvable operators eτĤA and eτĤB in cases when the Hamiltonian

can be split as Ĥ = ĤA + ĤB. The simplest example of Hamiltonian

splitting is the case when ĤA = ĤT and ĤB = ĤU , for which we
can generate the time-symmetric second-order Drift-Kick-Drift (DKD)

variant of the Leapfrog integrator: eτĤ ≈ e
τ
2
ĤT eτĤU e

τ
2
ĤT . This Hamil-

tonian splitting is not the only possibility and many other ways of
subdividing the system have been tried (?????).

In the present chapter we introduce a way to split the Hamiltonian
of an N -body system, which is based on two main arguments: i) the
validity of the superposition principle2, and ii) the existence of an
analytical solution for the 2-body problem. Therefore, a natural way
to approximate the time evolution of an N -body system is by using
a composition of 2-body problems to solve a more general N -body
problem. While this approach may seem computationally expensive,

1Hamiltonian associated operators are denoted by a ̂ symbol.
2Recall that the gravitational potential and acceleration at the position of a given

particle consists of a superposition of 2-body contributions due to the interaction
with every other particle in the system.
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our aim here is to present a theoretical formulation of the method.
Possible optimizations, such as applying the Kepler-solver only to a
few close pairs in the simulation, or to make use of Newton’s third law
during the force loop, are left for future implementations.

We first rewrite the potential energy term in Eq. 3.3 as follows:

HU =
1

2

N∑
i=1

N∑
j 6=i

HUij

=
1

2

N∑
i=1

N∑
j 6=i
−mimj

rij

=
1

2

N∑
i=1

N∑
j 6=i
−µij

(mi +mj)

rij

=
1

2

N∑
i=1

N∑
j 6=i

µij

{[
1

2
v2
ij −

(mi +mj)

rij

]
− 1

2
v2
ij

}

=
1

2

N∑
i=1

N∑
j 6=i

(
HKij −HTij

)
=

1

2

N∑
i=1

N∑
j 6=i

HWij ≡ HW . (3.4)

Here,

HKij ≡ µij
[

1

2
v2
ij −

(mi +mj)

rij

]
(3.5)

is the 2-body Keplerian Hamiltonian and

HTij ≡
1

2
µijv

2
ij , (3.6)

where µij = mimj/(mi + mj) is the reduced mass of the i − j pair.
The original N -body Hamiltonian in Eq. 3.1 can now be rewritten as
follows:

H = HT +HW =
N∑
i=1

HTi +
1

2

N∑
i=1

N∑
j 6=i

HWij , (3.7)

with

HWij = HKij −HTij ≡ HUij . (3.8)
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We note that Eq. 3.7, as is clear from the equivalence in Eq. 3.8, can
always be reduced by simplification into Eq. 3.1, which implies that, in
principle, our Keplerian-based Hamiltonian splitting does not change
the dynamics of the system.

3.2.2 Equations of Motion

According to the general theory of geometric integrators (?) we can
construct a time-symmetric second-order method by composing a (pos-
sible non-time-symmetric) first order method, φ(τ), with its self-adjoint,
φ†(τ). Moreover, the composition Ψ(τ) = φ( τ2 ) ◦φ†( τ2 ) is symplectic if

both φ(τ) and φ†(τ) are symplectic methods.
In our Keplerian-based Hamiltonian splitting, time evolution oper-

ators can be constructed by taking into account that

eτĤT =
N∏
i=1

eτĤTi , (3.9)

eτĤU =
N∏
i=1

eτ
1
2
ĤUi =

N∏
i=1

e
τ 1
2

∑N
j 6=i ĤUij . (3.10)

and, by Eq. 3.4,

eτĤW =

N∏
i=1

eτ
1
2
ĤWi =

N∏
i=1

e
τ 1
2

∑N
j 6=i ĤWij , (3.11)

where the last term on the right hand side in eqs. 3.10 and 3.11 is a

simple substitution of the definition of operators ĤUi and ĤWi , i.e.,

ĤUi =
∑N

j 6=i ĤUij and similar for ĤWi , and the presence of the factor

1/2 follows from the fact that we have to take into account each i− j
pair only once. In eqs. 3.9, 3.10 and 3.11 the individual operators

eτĤTi , eτĤUi and eτĤWi act on the 6N dimensional array (ri,vi). Here
the “one-subscript” operators individually commutate since they can
only act on the corresponding coordinates with subscript i. Therefore,
the order in which the product of operators is executed in each of
eqs. 3.9, 3.10 and 3.11 is unimportant. In order to proceed with the
derivation we present these operators in a more explicit form as follows:

eτĤTi :

(
ri
vi

)
←
(

ri
vi

)
+ τ

(
vi
0

)
, (3.12)
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eτĤUi :

(
ri
vi

)
←
(

ri
vi

)
+ τ

(
0
ai

)
, (3.13)

eτĤWi :

(
ri
vi

)
←
(

ri
vi

)
+

(
δri
δvi

)
, (3.14)

where ai is the acceleration and (δri, δvi) are the increments in abso-
lute coordinates and will be specified later on in Eq. 3.23.

In a similar way, individual “two-subscript” operators are explicitly
written as follows:

e
τĤUij :

(
rij
vij

)
←
(

rij
vij

)
+ τ

(
0

aij

)
, (3.15)

e
τĤWij :

(
rij
vij

)
←
(

rij
vij

)
+

(
δrij
δvij

)
, (3.16)

e
τ
(
−ĤTij

)
:

(
rij
vij

)
←
(

rij
vij

)
− τ

(
vij
0

)
, (3.17)

e
τĤKij : rij ,vij ← kepler solver(τ,mij , rij ,vij) , (3.18)

where mij = mi+mj , aij = −mijrij/r
3
ij is the relative 2-body acceler-

ation. The increments in relative coordinates, (δrij , δvij), are obtained
independently for each i − j pair from the application of one of the
first-order maps:

e
τ
(
ĤKij−ĤTij

)
≈ eτ

(
−ĤTij

)
e
τĤKij , (3.19a)

e
τ
(
ĤKij−ĤTij

)
≈ eτĤKij eτ

(
−ĤTij

)
. (3.19b)

Eqs. 3.12 to 3.17 are first-order approximations to the respective
operators in these equations. It will be clear below that this low-order
approximation is enough for our purposes since, ultimately, the order
of the full time evolution operator in Eq. 3.25 will be determined by
the composition of those operators. In this sense, if a high-order ap-
proximation of the method presented here is needed, we argue that this
should be obtained not by extending eqs. 3.12 to 3.17 to higher order,
but rather, by making a high-order composition of these operators in
a similar way as in symplectic integrators (??), where a second-order
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map is constructed as a composition of first-order operators, and so
on.

We notice here that, contrary to the “one-subscript” operators, the
“two-subscript” operators act on the 6N(N − 1)/2 dimensional ar-
ray (rij ,vij). Therefore, it remains to be shown how to relate “one-
subscript” and “two-subscript” operators in a consistent way. From
Eq. 3.10 and the definition of HUij , it is easy to see that the equiva-
lence,

N∏
j 6=i

e
τĤUij ≡ eτ

∑N
j 6=i ĤUij = eτĤUi , (3.20)

is valid for every N because the operators e
τĤUij commutate. On the

other hand, from Eq. 3.11, an equivalence similar to Eq. 3.20 relating

ĤW -type operators is only possible forN = 2. ForN > 2 the operators

e
τĤWij do not commutate. However, we can write a similar equation

approximately as

N∏
j 6=i

e
τĤWij+O(τ2) ≈ eτ

∑N
j 6=i ĤWij = eτĤWi , (3.21)

where the error O(τ2) is not guaranteed to be Hamiltonian due to the
fact that we treat each i− j pair independently. As a consequence the
symplecticity of the present method is lost.

Apart from the loss of symplecticity, as mentioned above, a time-
symmetric second-order method for our Keplerian-based Hamiltonian
splitting can still be constructed by using a composition of self-adjoint
first-order methods (see ?).

In order to construct φ(τ) and φ†(τ) we first need to specify the
increments δri and δvi in Eq. 3.14. Since in the present method we
take advantage of a Kepler-solver to evolve each pair of particles inde-
pendently, the relative increments (δrij , δvij) can be easily calculated
for each interaction after application of one of the maps in eqs. 3.19a
or 3.19b. Here, what we seek is an approximate relation between the
increments in relative coordinates (δrij , δvij) and those in absolute co-
ordinates (δri, δvi), in order to construct the full integrator. By noting

that increments associated with operators ĤUij and ĤUi are related by

τ

(
0
ai

)
=

1

mi

N∑
j 6=i

µijτ

(
0

aij

)
, (3.22)
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a way to specify (δri, δvi) consists of exploring the equivalence between
HU and HW , as first presented in Eq. 3.4. In addition, if we take into
account the discussion above regarding to eqs. 3.10, 3.11, 3.20 and 3.21,
a relation between relative and absolute increments can be defined in
analogy to Eq. 3.22 as follows:

(
δri
δvi

)
=

1

mi

N∑
j 6=i

µij

(
δrij
δvij

)
+O(τ2) , (3.23)

which constitutes a first-order approximation as explained above (see
Eq. 3.21). While we were not able to provide a more formal derivation
to Eq. 3.23, we will show below (see explanation about Eq. 3.28) that
when we calculate the relative increments from an ordinary Leapfrog
map rather than the Kepler-solver in Eq. 3.18, then Eq. 3.23 reduces
to Eq. 3.22.

We can now define a time-symmetric second-order map for our
Keplerian-based Hamiltonian splitting as follows:

Ψ(τ) ≡ φ(
τ

2
) ◦ φ†(τ

2
) ,

≡ e
τ
2
ĤT e

τ
2
ĤW ◦ e

τ
2
ĤW e

τ
2
ĤT , (3.24)

where the increments (δrij , δvij) which appear in the e
τ
2
ĤW operator

on the left side of ◦ are independently obtained after application of
Eq. 3.19a for each i − j pair, while those which appear on the right
side of ◦ are independently obtained after application of the (self-
adjoint) method in Eq. 3.19b for each i − j pair. Eq. 3.24 can be
further simplified by merging operators on both sides of ◦, giving,

Ψ(τ) ≡ e
τ
2
ĤT eτĤW e

τ
2
ĤT , (3.25)

in which case the increments (δrij , δvij) appearing in the eτĤW op-
erator should be independently obtained after application of a time-
symmetric second-order map for each i− j pair,

e
τ
(
ĤKij−ĤTij

)
≈ e

τ
2

(
−ĤTij

)
e
τĤKij e

τ
2

(
−ĤTij

)
. (3.26)
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The equations of motion that result from the full map in Eq. 3.25
can be written in the following discrete form:

r
1/2
i = r0

i +
τ

2
v0
i , (3.27a)

r̃i = r
1/2
i +

1

mi

N∑
j 6=i

µijδrij , (3.27b)

v1
i = v0

i +
1

mi

N∑
j 6=i

µijδvij , (3.27c)

r1
i = r̃i +

τ

2
v1
i , (3.27d)

where r1
i = ri(t+ τ), r0

i = ri(t) and similar for vi, and the increments
(δrij , δvij) are calculated independently as explained above.

As it can be seen, eqs. 3.27 are remarkably similar to the Leapfrog
method. It remains to be shown that these equations effectively reduce
to the Leapfrog equations when we substitute the 2-body Kepler-solver
to a simple DKD-type integrator. In this case, the map in Eq. 3.26
becomes:

rij ← rij −
τ

2
vij , (3.28a)

rij ← rij +
τ

2
vij , (3.28b)

vij ← vij + τ aij , (3.28c)

rij ← rij +
τ

2
vij , (3.28d)

rij ← rij −
τ

2
vij , (3.28e)

which results in δvij = τaij and δrij = 0 and, in view of eqs. 3.22 and
3.23, completes the demonstration. It should be noted that in this
particular case, the error in Eq. 3.23 disappears because δrij = 0 and
Eq. 3.21 reduces to Eq. 3.20, restoring the symplecticity of the method.
Note also that this is true only if we use a DKD-type integrator as a
2-body solver. For a KDK-type 2-body solver the symplecticity of the
method is not restored because the order in which (rij ,vij) is evolved
in eqs. 3.28 changes and δrij 6= 0. In other words, using a simple
DKD-type integrator as a 2-body solver in the scheme above results
in a very expensive implementation of a traditional Leapfrog method.

On the other hand, with the Kepler-solver function as a 2-body
solver, a non-Hamiltonian error is made due to the non-commutativity
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of the e
τĤWij operators and the fact that each i−j pair is treated inde-

pendently, leading to the loss of symplecticity of the resulting method.
Because our Keplerian-based integrator is constructed as a composi-
tion of self-adjoint first-order maps, it still preserves time-reversibility
and second-order convergence (error O(τ3)).

The advantage of using the Kepler-solver instead, comes from the
fact that it is guaranteed that all pairwise interactions are always in-
tegrated precisely, which, in practical N -body simulations, is a much
stronger requirement than the symplecticity of the Hamiltonian flow.

3.2.3 Implementation

The method described in the previous section has been implemented
in a new code called Sakura, which is available in Astrophysical MUlti-
purpose Software Environment (AMUSE3, ?). In order to clarify the
implementation, Listing 3.1 shows a Python4 code for the main loop
calculation which evolves the particle’s coordinates according to the
map in Eq. 3.25 or, equivalently, eqs. 3.27. The Kepler-solver function
at line 47 implements a universal variable Kepler-solver closely follow-
ing ?. Note that the memory and CPU requirements of this code scales
as O(N) and O(N2), respectively.

Listing 3.1: Python code for the main loop in Sakura integrator

1 """The functions below implement the main
2 steps of Sakura integrator.
3

4 The required parameters are the following:
5

6 :param tau: the time -step size.
7 :param n: the number of particles.
8 :param m: array with particles ’ masses.
9 :param r: 3D array with particles ’ positions.

10 :param v: 3D array with particles ’ velocities.
11 """
12

13 def do_step(tau , n, m, r, v):
14 r, v = evolve_HT(tau/2, n, m, r, v)
15 r, v = evolve_HW(tau , n, m, r, v)
16 r, v = evolve_HT(tau/2, n, m, r, v)
17 return r, v
18

19 def evolve_HT(tau , n, m, r, v):

3www.amusecode.org
4The actual implementation has been done in C/C++ for efficiency purposes.
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20 for i in range(n):
21 for k in range (3):
22 r[i][k] += v[i][k] * tau
23 return r, v
24

25 def evolve_HW(tau , n, m, r, v):
26 # Allocate/initialize 3D arrays to store
27 # increments in position/velocity due to
28 # 2-body interactions.
29 dmr = numpy.zeros((n, 3))
30 dmv = numpy.zeros((n, 3))
31

32 # For each i-j pair , this corresponds to
33 # the Eq. 26 in the main text.
34 for i in range(n):
35 for j in range(n):
36 if i != j:
37 mij = m[i] + m[j]
38 mu = m[i] * m[j] / mij
39 for k in range (3):
40 rr0[k] = r[i][k] - r[j][k]
41 vv0[k] = v[i][k] - v[j][k]
42 ###
43 for k in range (3):
44 r0[k] = rr0[k] - vv0[k] * tau / 2
45 v0[k] = vv0[k]
46 #
47 r1, v1 = kepler_solver(tau , mij , r0, v0)
48 #
49 for k in range (3):
50 rr1[k] = r1[k] - v1[k] * tau / 2
51 vv1[k] = v1[k]
52 ###
53 for k in range (3):
54 dmr[i][k] += mu * (rr1[k] - rr0[k])
55 dmv[i][k] += mu * (vv1[k] - vv0[k])
56

57 # This corresponds to eqs. 27b and 27c
58 # in the main text.
59 for i in range(n):
60 for k in range (3):
61 r[i][k] += dmr[i][k] / m[i]
62 v[i][k] += dmv[i][k] / m[i]
63 return r, v
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3.3 VALIDATION AND PERFORMANCE

In order to verify that Sakura performs well on collisional N -body
systems, we present some tests for N ranging from a few to a thou-
sand. We compare the results of Sakura to those obtained using a
modified version of the Leapfrog integrator and a standard 4-th order
Hermite integrator, available in the AMUSE framework. The mod-
ification in the Leapfrog integrator consists of the introduction of a
routine to allow the use of adaptive time-steps. In this case the time-
symmetry of the Leapfrog method is still preserved because we adopted
the recipe for time-symmetrisation as suggested in ?. A comparison
of the computational costs and scalings with N is also presented. We
emphasize that the base time-step size in each of the tests of Sakura is
kept constant during the simulation, whilst in Leapfrog and Hermite
integrations a shared adaptive time-step scheme has been adopted.
The time-step criterion used within Leapfrog integrations is the time-
symmetrized version of τ ∼ min((rij/aij)

1/2), whilst in Hermite code
the standard Aarseth-criterion is used. For other details about these
codes we refer the reader to the AMUSE documentation3. The value
of the constant time-step size in Sakura is chosen in such a way that
the same number of integration steps is taken as in the case of the
Hermite integrations. Similarly, the time-step parameter in Leapfrog
integrations is chosen to give approximately the same number of steps
as in Hermite integrations. Note that, by construction, Sakura does
not admit any softening parameter. Therefore, we also use zero soft-
ening in the other methods.

3.3.1 Small-N Systems

We start by presenting some numerical tests for well known simple
small-N systems including the figure-eight system (N = 3; ?), the
Pythagorean system (N = 3; ?) and the sun with planets5 (N = 10;
Ito & Tanikawa (2002)). We do not show results for a single binary
system (N = 2), since in this case Sakura reduces to an ordinary
Kepler-solver which gives a solution for the binary orbit accurate to
machine precision. The simulation time spans 100 N -body units (?)
in the case of the first two systems and 103 yr in the case of the solar
system.

In Fig. 3.1, we present the relative energy error as a function of
the average time-step size (left panels) and CPU time vs relative

5We include Pluto in our simulations of the solar system since we use the initial
conditions as given in Ito & Tanikawa (2002).
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energy error (right panels) for the figure-eight system (top panels),
Pythagorean system (middle panels) and sun with planets (bottom
panels), for the Leapfrog, 4-th order Hermite and Sakura. We note
that for the figure-eight system the 4-th order Hermite usually per-
forms better than Leapfrog and Sakura for a level of energy conser-
vation . 10−6. We attribute this to the fact that in this system the
intrinsic time-step size of the particles does not change considerably
during the orbital evolution and then, for smaller τ , the 4-th order
convergence rate of the Hermite integrator outperforms Leapfrog and
Sakura, which are of 2-nd order. We notice that in this case, where
all three particles democratically interact among themselves, Sakura
is not expected to be the most suitable method of integration due to
the non-commutativity of 2-body interactions. Nevertheless, as we see
in Fig. 3.1 (top panels), its performance is comparable to that of the
Leapfrog integrator. For the Pythagorean system, which contains sev-
eral close encounters between particles during its orbital evolution, all
three integration methods are somewhat comparable, despite Sakura
using constant time-steps and the other two methods using adaptive
time-steps. For the solar-system, in which the orbital evolution of
the planets is almost Keplerian, Sakura delivers about four orders of
magnitude better energy conservation than Leapfrog, being also more
precise than Hermite integration for time-steps & 10−3, while consum-
ing the least amount of CPU time.

For those kind of systems, an integration step using Sakura is usu-
ally more expensive than an integration step using Hermite or Leapfrog
by a factor 2 − 4. Also, since all these codes scales as O(N2), these
figures are expected to remain unchanged when the number of par-
ticles increases. However, due to the fact that Sakura can handle
compact binaries and/or resolve close encounters even with constant
τ , less time-steps are required for a given level of energy conservation
implying that in these cases Sakura might outperform Hermite and
Leapfrog integrations. In order to confirm this, we also include a test
with a specially constructed initial condition which consists of a hier-
archical binary system (N = 4) with two tight binaries orbiting around
each other in a circular orbit with semi-major axis aouter = 1 (N -body
units). The particles in each tight binary are themselves in a circular
orbit with semi-major axis ainner. We have selected a semi-major axis
ratio in the range aouter/ainner = 10 − 1000, and performed a simula-
tion for these systems for a time span of one Pouter, i.e., the largest
orbital period in the system (which is the same for all semi-major axis
ratios). In Fig. 3.2 we present the relative energy error as a function of
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Figure 3.1: Relative energy error as a function of the average time-step size (left
panels) and CPU time (in seconds) vs relative energy error (right panels) for the
Leapfrog integrator (triangles), 4-th order Hermite (squares) and Sakura (bullets)
for three different systems: figure-eight system (top panels), Pythagorean system
(middle panels) and sun with planets (bottom panels). 〈τ〉 is given in N -body units
and stands for the average value of the shared adaptive time-step size in Hermite
integrations.
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the time-step size (left panels) and CPU time vs relative energy error
(right panels) for the 4-th order Hermite, Leapfrog and Sakura.

For the aouter/ainner = 10 case (top panels in Fig. 3.2), Sakura deliv-
ers the same level of energy conservation as Leapfrog, although being
more time consuming, whilst 4-th order Hermite has better energy
conservation due to its higher order convergence for time-step sizes
. 10−2. However, for tighter interacting binaries (middle and bottom
panels in Fig. 3.2), Sakura shows increasingly better performance with
the compactness of the interacting binaries. In particular, for a level
of energy conservation of 10−6, typically adopted in collisional N -body
simulations, Sakura is more than a order of magnitude faster than Her-
mite for the tightest binary configuration, aouter/ainner = 1000, while
having a similar speed as Leapfrog. Also for the tightest binary con-
figuration, Sakura is the most precise integration method for a range
in time-steps of 6 orders of magnitude. On the other hand, for this
latter system, the 4-th order Hermite results only start converging
to good energy conservation when using time-steps . 10−5.5, which
in some circumstances might be impractical in computational terms,
when systems of this kind are present in a large-scale simulation.

3.3.2 Large-N Systems

To test how Sakura behaves with a more general N -body problem,
we use as initial condition a 128-body Plummer sphere containing a
black-hole in its center. We assume equal mass for the stars and con-
struct the system in virial equilibrium but for different black-hole to
star mass ratios, q ≡ Mbh/Mstar, ranging from q = 1 (no black-hole)
to q = 1012. We performed simulations for each of these initial condi-
tions for 1 N -body time unit. Once again, the performance of Sakura
is compared with that of the Leapfrog and standard 4-th order Her-
mite integrators. The results are shown in Fig. 3.3 which presents the
relative energy error as a function of the mass ratio for time-step sizes
〈τ〉 = 10−3, 10−4, 10−5 (top, middle and bottom lines), and Fig. 3.4
which present the CPU time vs relative energy error for different mass
ratios: q = 103 (top left), q = 106 (top right), q = 109 (bottom left)
and q = 1012 (bottom right).

In Fig. 3.3 we see that the relative energy error for all three methods
initially increases with the mass ratio till the point when q ∼ 102. For
larger mass ratios, the behaviour of Sakura clearly differs from the
other two methods. While in Leapfrog and Hermite integrators the
energy error stabilizes at a certain level, in Sakura we observe a very
interesting trend in which its energy error decreases with increasing
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Figure 3.2: The same as Fig. 3.1 but for the hierarchical binary system for the
following semi-major axis ratios: aouter/ainner = 10 (top panels), aouter/ainner = 100
(middle panels), aouter/ainner = 1000 (bottom panels).
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Figure 3.3: For a Plummer sphere with a central black hole, the panels show
a comparison of the relative energy error as a function of the black-hole to stellar
mass ratio for time-step sizes 〈τ〉 = 10−3, 10−4, 10−5 (top, middle and bottom lines).
The left panel present the results for Leapfrog (triangles) and Sakura (bullets) and
the right panel present the results for 4-th order Hermite (squares) and Sakura
(bullets).
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Figure 3.4: For the same system as in Fig. 3.3, the panels show the CPU time (in
seconds) vs relative energy error for the following mass ratios: q ≡Mbh/Mstar = 103

(top left), q = 106 (top right), q = 109 (bottom left) and q = 1012 (bottom right).
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mass ratio. In other words, Sakura becomes more precise and therefore
more efficient when the mass ratio grows, as can be seen in Fig. 3.4
for mass ratios (top left), q = 106 (top right), q = 109 (bottom left)
and q = 1012 (bottom right). An explanation of why these methods
behave this way is as follows.

When no dominant massive particle is present in the system (q ∼
1− 10), after only 1 N -body time unit the system has not evolved for
enough time to form a close binary (which is an outcome of strong few-
body interactions, see e.g. ?). Therefore, in these circumstances most
of the particles interact weakly among themselves and all the methods
are able to integrate the orbital evolution of stars with relatively good
energy conservation. Around a mass ratio q ∼ 10 − 103 the massive
particle quickly forms a binary system with a close neighbour, which
eventually experiences several interactions with close perturbers, thus
deteriorating the precision of the integration in all three methods. For
mass ratios q & 103 the orbital motion of stars becomes predomi-
nantly Keplerian. In this regime, the orbits in the system become
mostly regular, and close encounters between stars become gradually
less important. Therefore, the energy error is expected to converge to
the truncation error associated to each of these methods. In Leapfrog
and Hermite integrators, by decreasing the time-step size the energy
conservation is thus improved but it remains approximately at the
same level of conservation regardless the mass ratio (for q & 103). On
the other hand, Sakura departs from a constant level of energy conser-
vation observed in the other two integrators, and becomes increasingly
more precise with the mass ratio. This happens because in Sakura,
the truncation error comes from two different sources: i) the error due
to the Kepler-solver, which is essentially at machine precision, and
ii) the error associated to the non-commutativity of 2-body interac-
tions in close multiple-body encounters. With this knowledge, it is
easy to intuitively understand why Sakura becomes more precise with
the increase of the mass ratio: simply because the error associated to
the non-commutativity of 2-body interactions becomes less important
and, thus the overall error of the integrator converges to that of the
Kepler-solver.

For 〈τ〉 ∼ 10−4, which corresponds to the middle lines (for each
integrator) in Fig. 3.3, Sakura is ∼ 5 (∼ 6) orders of magnitude more
precise than Hermite (Leapfrog), for a mass ratio q = 106. Also,
as is shown in Fig. 3.4, Sakura’s performance is similar to Leapfrog,
for a mass ratio q = 103, and becomes gradually more efficient than
Hermite and Leapfrog, when the mass ratio increases. This happens
due to a change in slope of Sakura’s curves in panels showing the CPU
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time vs relative energy error when the mass ratio goes from q = 103

to q = 1012 in Fig. 3.4, which means that for mass ratios q & 1012,
Sakura can give very accurate results (dE/E ∼ 10−10 − 10−12) even
when using relatively large time-steps, thus saving a big amount of
computational time compared to Leapfrog and Hermite integrators.

As an additional general N -body test we performed a simulation of
a 1024-body system through core collapse using Sakura with several
time-step sizes τ = 100, 10−1, 10−2, 10−4, and the Leapfrog and stan-
dard 4-th order Hermite code using shared adaptive time-steps. For
the parameter of precision we choose η = 2−5 ≈ 0.03 in order to have
a level of energy conservation of about 10−4 by the moment of core
collapse in Hermite integration. In this particular test, we have used
a parallel version of Sakura (see section 3.4) running on a 4-core Intel
Xeon CPU @2.40 GHz. For the Leapfrog and Hermite codes (which
are also parallelised) we setup the number of MPI processes to 4. In
Fig. 3.5 we present the time evolution of the core radius using these
codes. We see from this figure that for a sufficiently small time-step
size (τ ∼ 10−4, lowest black curve in Fig. 3.5) Sakura is able to evolve
the system through core collapse. As expected from the exponen-
tial orbital instability (?), the results from Sakura slightly differ from
Hermite and Leapfrog calculations. Apart from that, the core radius
evolution obtained using Sakura follows remarkably well the results
from the other two integrators.

In Sakura, the appearance of close binaries does not represent a
computational challenge. Therefore, in this simulation no slow down
in performance is observed, as is the case in most other N -body codes
that also try to correctly evolve such compact sub-systems. As a con-
sequence, the most expensive simulation using Sakura (bottom black
line in Fig. 3.5) was completed in about three days of CPU time. The
Leapfrog integration took about a week of processing time, whereas
the Hermite simulation, after more than a month of CPU time (on the
same machine), had not been completed, due to the dynamical for-
mation of very close binaries and consequent decrease of the adaptive
time-step size.

Although Sakura integrates all pairwise interactions exactly, the
presence of close perturbers for a particular i − j pair represents the
main source of error during the integration. The reason for that orig-
inates from our assumption that each pair of particles can be treated
as an independent 2-body problem during a time-step τ . If τ is larger
than the time scale of interaction between the i − j pair and its per-
turber, the perturbation will be delayed by τ , leading to spurious in-
tegration of a tight multi-component sub-system in an N -body sim-
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Figure 3.5: Core radius vs simulation time for a 1024-body Plummer sphere. We
compare Sakura using different time-step sizes (solid lines, τ = 100, 10−1, 10−2, 10−4

from top to bottom) to Leapfrog (dotted line) and standard 4-th order Hermite
(dashed line), using shared adaptive time-steps with a parameter of precision η ≈
0.03. All the quantities are presented in N -body units.
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ulation. This is a consequence of the non-commutativity of 2-body
interactions. In Fig. 3.5, the use of relatively large time-steps reveals
this issue: although the system as a whole stays bound, strong few-
body interactions in the cluster core are not correctly integrated and
as a consequence the core radius expands. However, by using smaller
τ the numerical issues due to strong perturbations on the i− j pair is
diminished and as a consequence Sakura evolves the multi-component
sub-systems that may form dynamically during the simulation more
precisely. In those calculations, the level of energy conservation at the
moment of core collapse stayed within dE/E . 10−4 for Hermite, and
dE/E . 10−2 for Leapfrog and Sakura (for the bottom black line in
Fig. 3.5), even though Sakura used a constant time-step.

The possibility to include a variable time-step scheme in Sakura
might improve its results and is currently under investigation. The
fact that Sakura evolves each pair of particles exactly, implies that the
time-step criterion does not need to be so restrictive as in the case of
traditional integration schemes. For example, if we consider the case
of a hierarchical triple system in which the orbital period of the inner
binary is a certain factor shorter than the time-scale of interaction
between the binary and the outer perturber, we have observed in our
tests (not reported here) that choosing a time-step size comparable
to the longest time-scale still preserves the binary orbital evolution.
In traditional codes, this would not be possible and the inner binary
would end up being artificially disrupted if the time-step size has not
been decreased to a fraction of its orbital period. Therefore, for Sakura
we suspect that a time-step criterion based on the closest perturber
distance to a given pair being evolved seems to be a more appropriate
choice than an Aarseth-like time-step criterion. We will further discuss
this issue on section 3.5.

3.4 PARALLELIZATION

We have implemented three different versions of Sakura: i) a single
GPU implementation using OpenCL; ii) a distributed memory par-
allel implementation using MPI, and iii) a serial implementation in
C/C++ (used in all the tests presented above, with exception of the
one in Fig. 3.5, for which the MPI version was used). The parallelisa-
tion schemes adopted for distributed memory and GPU versions are
quite similar as those adopted for conventional N -body codes on those
platforms (see Portegies Zwart et al. 2008 and ?, respectively). At the
current stage of development our GPU implementation is not yet very
efficient due to many branch conditions present in the Kepler-solver.
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Figure 3.6: For the MPI version of Sakura the plots show the strong scaling
(left panel) and the parallel efficiency (right panel) for four different problem sizes:

N = 1k̃ (solid lines), N = 4k̃ (dashed lines), N = 16k̃ (dot-dashed lines) and

N = 64k̃ (dotted lines). Here, k̃ stands for 1024 and p is the number of processor
cores used for the run.

Here we mainly present some performance results using the MPI
version of Sakura for tests using up to 128 CPU cores. The test simu-
lations consist of a Plummer sphere with N equal mass particles being
integrated for 1 N -body time unit. We use four different number of
particles N = 1k̃, 4k̃, 16k̃, 64k̃ (k̃ stands for 1024) and in each case we
measure the total wall clock time needed to complete the simulation
with different number of cores. In Fig. 3.6 we present, for four differ-
ent problem sizes, the performance measurements in the form of the
strong scaling (TCPU (p) vs p) and the parallel efficiency:

Efficiency ≡ TCPU (p)

pTCPU (1)
, (3.29)

where TCPU (p) is the CPU time measured when using p processor
cores.

As is evident from the Fig. 3.6, Sakura exhibits an almost perfect
strong scaling (top panel) and a remarkably good parallel efficiency

(bottom panel). For the worst case scenario presented here (N = 1k̃,
using 128 CPU cores), Sakura achieves a parallel efficiency as good as
64%, even though the workload in this case is as small as 8 particles
per core. In addition, the strong scaling plot shows that, even in this
worst case scenario, the CPU time could still be decreased by using a
higher number p of processor cores. For N > 4k̃, the parallel efficiency
of Sakura stays very close to 100%.
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3.5 SUMMARY AND DISCUSSION

We have described a Keplerian-based Hamiltonian splitting for gravita-
tional N -body simulations and its implementation in a new code called
Sakura. In this method a general N -body problem can be solved as
a composition of multiple, independent, 2-body problems. The inte-
gration scheme is constructed on the assumption that, during a small
time interval τ , each pair of particles in the system can be treated
as an independent 2-body problem. With this splitting an analyti-
cal Kepler-solver can be used to accurately, and independently, evolve
each 2-body interaction in the system, thus making the code espe-
cially suitable for simulations in which compact primordial binaries or
close dynamically formed binaries are present. Hierarchies in which
one of the components is a compact binary and systems with a central
dominant mass are also examples of physical systems in which Sakura
performs well when compared to traditional codes.

Because Sakura can easily handle arbitrarily compact binaries in an
N -body simulation, the code is able to evolve a star-cluster through
core-collapse without much difficulty. In particular, since Sakura can
do this even with the use of constant time-steps, the simulation does
not suffer from any slow down in performance as is the case in other
non-regularized N -body codes. As an example, in the 1024-bodies
core-collapse simulation presented in section 3.3.2, Sakura was able to
complete the run in about 3 days of CPU time on a 4-core machine.
The same system being integrated with a 4-th order Hermite integrator
took more than one month of CPU time on the same machine, due to
a severe slow down in performance after the formation of the first hard
binary in the system.

There are, however, some circumstances in which Sakura may not
be the most suitable code to perform an N -body simulation. For
example, for systems in which multiple bodies democratically interact
among themselves, Sakura may perform almost as badly as a simple
Leapfrog integrator, as demonstrated in the integrations of a figure-
eight system in section 3.3.1. This happens because of our underlying
assumption that the N -body problem can be decomposed in multiple,
independent, 2-body problems. Such decomposition in fact constitutes
the main source of error when a given i−j pair is being integrated with
a time-step τ which is larger than the time-scale of the perturbation
due to a close neighbour. In many cases this issue may be surpassed by
decreasing the constant time-step size used in the simulation. However,
the cause of the problem lies on the non-commutativity of 2-body
interactions when multiple bodies are involved in a democratic close
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encounter. While it is not easy to solve this issue without breaking
our Keplerian splitting approach, the introduction of an adaptive time-
step scheme in Sakura might alleviate these numerical difficulties and
is currently under investigation.

According to some of our tests (not reported in the present paper),
a time-step criterion based on the strength of the perturbation on a
given i− j pair seems to work relatively well compared to a constant
τ . However, this improvement is only significant when close multiple-
body encounters take place. On the other hand, one could in principle
choose τ ∼ min(rij/vij), τ ∼ min((rij/aij)

1/2) or use a traditional
Aarseth-like time-step criterion, but we advocate that this may not be
the optimal choice because these criteria also include the contribution
of the i−j pair itself, which in principle contributes to a severe decrease
in time-steps if a close binary is present in the system. In Sakura,
these severely short time-steps are not necessary, because the use of a
Keplerian treatment for each pair of particles automatically regularizes
every 2-body interaction in the system. It is only when multiple-
body encounters happens that the time-step should adapt itself to
properly resolve the approximation of a perturber. Therefore, we stress
here our preference for a perturbation-based time-step criterion rather
than an Aarseth-like criterion for use in Sakura. Whether or not such
perturbation-based criterion is the best choice for Sakura is a matter
that will be addressed elsewhere.

Another point we want to emphasize here is the behaviour of Sakura
when integrating a system with a central massive black-hole. As shown
in Fig. 3.3, the level of energy conservation in Leapfrog and 4-th order
Hermite integrations remains approximately constant with the increase
of the black-hole to stellar mass ratio. For Sakura, we found that it
performs much better than previous approaches, becoming gradually
more precise with the increase of the mass ratio. In particular, for the
case of a mass ratio q = 106 Sakura can give & 5 orders of magnitude
better energy conservation than Hermite integrator, being at the same
time up to 4 orders of magnitude faster when the mass ratio increases
to q & 109. The fact that Sakura can be, at the same time, fast
and accurate in this regime, makes this code highly suitable for nearly
Keplerian systems where a massive particle dominates the evolution of
surrounding particles, such as in planetary systems and galactic nuclei
with super-massive black-holes.

Lastly, Sakura has proven to be quite easy to parallelise for dis-
tributed memory systems using MPI. The GPU implementation, even
though theoretically easy, is still not totally efficient due to the pres-
ence of many branching conditions in the Kepler-solver. In algorithmic
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terms, the bulk of computation in Sakura occurs inside a double loop,
similar to the one used to calculate the acceleration of particles in
conventional N -body codes. Therefore, we were able to immediately
employ existent parallelisation schemes in Sakura without much effort.
We argue that the fact that our GPU implementation is not yet very
efficient is not a problem due to the parallelisation scheme itself, but
rather due to the poor/inefficient support for branch conditions in cur-
rent GPUs. A restructure in our Kepler-solver in order to eliminate
(or minimize) these branch conditions may address this issue, and pos-
sibly speed up even more the MPI version on CPUs, which has already
shown a remarkable parallel efficiency, with close to 100 percent effi-
ciency for 16k̃ particles on 128 cores, and 64 percent efficiency when
using only eight particles per core.
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On the Reliability
of N-body Simulations

Based on: On the Reliability of N-body Simulations by T. C. N. Boekholt and

S. F. Portegies Zwart in Computational Astrophysics and Cosmology, Volume 2,

article id. #2, 21 pp. (2015), Ch.4-7

As mentioned in Chapter 2, the general consensus in the N-body
community is that statistical results of an ensemble of collisional N-body
simulations are accurate, even though individual simulations are not.
In order to test this assumption, we developed the new N-body code
Brutus that solves the N-body problem to a pre-defined precision.

Using this new, brute force N-body code, we test the reliability of
N-body simulations by a controlled numerical experiment. In this ex-
periment we perform a series of resonant 3-body simulations, where
the term resonant implies a phase or multiple phases during the in-
teraction where the stars are more or less equidistant (Hut & Bahcall,
1983). These phases are intermingled by ejections, where a binary and
single star are clearly separated. We perform the simulations with
conventional double-precision, and with arbitrary-precision to reach
the converged solution. In Sec. 4.1 we explain the experiment in more
detail, and in Sec. 4.2 we compare the solutions individually to in-
vestigate the distribution of the errors. We also compare the global
statistical distributions using two-sample Kolmogorov–Smirnov tests
(??).

In summary, we find that on average at least half of the conventional
simulations diverge from the converged solution, such that the two
solutions are microscopically incomparable. For the solutions which
have not diverged significantly, we observe that if the integrator has
a bias in energy and angular momentum, this propagates to a bias
in the statistical properties of the binaries. In the case when the
conventional solution has diverged onto an entirely different trajectory
in phase-space, we find that the errors are centred around zero and
symmetric; the error due to divergence is unbiased, as long as the time-

55
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step parameter, η ≤ 2−5 and when simulations which violate energy
conservation by more than 10% are excluded. For resonant 3-body
interactions, we conclude that the statistical results of an ensemble of
conventional solutions are indeed accurate.

4.1 PRECISION OF STATISTICAL RESULTS:
EXPERIMENTAL SETUP

In the previous section we demonstrated that it is possible to obtain
a converged solution for a particular initial condition. We have also
shown that a solution obtained by Hermite diverges from the converged
solution, even up to the point that the microscopic solution given by
Hermite is beyond recognition. We now perform a statistical study, to
examine the hypothesis that double-precision N-body simulations pro-
duce statistically indistinguishable results, from those obtained from
an ensemble of converged solutions with the same set of initial condi-
tions. Because it is computationally expensive to reach convergence,
we start investigating the hypothesis above by exploring the accuracy
of 3-body statistics.

The N = 3 experiment is inspired by the Pythagorean problem,
where after a complex 3-body interaction, a binary and an escaper are
formed. As a variation to this, we define four different sets of initial
conditions as follows:

1. Plummer distribution equal mass

2. Plummer distribution with masses 1:2:4

3. Plummer distribution equal mass with zero velocities

4. Plummer distribution with masses 1:2:4 and zero velocities.

The positions and velocities of the three stars are selected randomly
from a virialised Plummer distribution (??). For the cold collapse
systems, we set the velocities to zero. Then we rescale the positions
and velocities to virialise the systems if the initial velocities are non-
zero, or we set the total energy equal to E = −0.25 if the system starts
out cold. We adopt standard Hénon units (??) throughout.

In the case of the cold initial conditions, the systems start demo-
cratically, i.e. the minimal distance between each pair of particles is
greater than N−1. We reject initial conditions in which this crite-
rion is not satisfied. This is to prevent initial realisations where two
stars which are very near, fall to each other radially causing very long
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wall-clock times for the integration. When starting with a democratic
configuration, there will also be an initial close triple encounter (?),
which is hard to integrate accurately and is therefore a good test. A
total of 10000 random realisations are generated for each set of initial
conditions and can be found in the accompanying data files.

We stop the simulations when the system is dissolved into a perma-
nent binary and an escaper. The criteria used to detect an escaper are
the following:

1. escaper has a positive energy, E > 0,

2. is a certain distance away from the center of mass, r > 2 rvirial,

3. is moving away from the center of mass, r · v > 0,

The energy of the escaper is calculated in the barycentric frame of the
three particles and rvirial is the virial radius of the system, which is of
the order unity in Hénon units.

There may be situations in which a star is ejected without actually
escaping from the binary. After a long excursion the star turns around
and once again engages the binary in a 3-body resonance (Hut & Bah-
call, 1983). Because these systems need to be integrated for a longer
time, they also require higher precision to reach convergence, which
takes a long time to integrate (see also ?). To deal with this issue, we
perform the simulations iteratively by increasing the final integration
time tend. Starting with tend = 50 Hénon time units, we evolve ev-
ery system and detect those that are dissolved. Then we increase tend

to 100, 150, 200 etc., but only for those systems which have not yet
dissolved. A complete ensemble of solutions is obtained up to tend ∼
500, or equivalently ∼ 180 crossing times where the crossing time has
a value of 2

√
2 in Hénon units (??). Systems which take a longer time

to integrate are not taken into account in this research. The fraction
of long-lived systems is however a statistic we measure. We gathered
the final, converged configurations in the accompanying data files.

Each initial realisation is run with the Hermite code, using standard
double-precision, and with Brutus, using arbitrary-precision until a
converged solution is obtained. At the end of each simulation, we
investigate the nature of the binary and the escaper. In addition to the
BS tolerance, word-length, CPU time and dissolution time, we record
the mass, speed and escape direction of the escaping single star, and
the semimajor axis, binding energy and eccentricity of the binary. In
this way, we obtain statistics for N = 3 generated by a conventional
N-body solver and by Brutus.
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4.2 RESULTS

Before we perform a detailed comparison between results obtained by
Hermite and Brutus, we first compare the Brutus results with ana-
lytical distributions from the literature in order to relate to previous
studies. We compare Hermite and Brutus on a global level by perform-
ing two-sample Kolmogorov–Smirnov tests (??) to see whether global
distributions are statistically indistinguishable. We also compare the
distribution of lifetimes of triples to see whether precision influences
the stability and we measure the typical CPU time and BS tolerance
needed to obtain a converged solution. After this, we compare Her-
mite and Brutus per individual system, with the aim of investigating
the nature of the differences of every individual outcome. Finally, we
define categories which classify a conventional simulation as a preser-
vation or exchange, depending on whether the identity of the escaping
star is consistent between Hermite and Brutus.

4.2.1 Brutus versus Analytical Distributions

In Fig. 4.1, the distributions obtained by converged solutions are given
for the following quantities: velocity and kinetic energy of the escaper
in the barycentric reference frame, and semimajor axis, binding energy
and eccentricity of the binary. We start by looking at the eccentricity
distributions (bottom panel in Fig. 4.1). These distributions can be
estimated analytically by assuming that the probability of a certain
configuration is proportional to the associated volume in phase space
(??) or by considering an equilibrium distribution of binary stars in
a cluster (Heggie, 1975). The resulting thermal distribution in the
three-dimensional case is given by

f(e) = 2e, (4.1)

and in the two-dimensional case by

f(e) =
e√

1− e2
, (4.2)

The 3-body cold collapse problem is essentially a two-dimensional
problem. We compare the empirical and theoretical distributions by
means of the K–S test (see also next section). It turns out that the
distributions in eccentricity are statistically distinguishable. By in-
spection by eye we observe that in the virialised case, there are slight
deviations at high eccentricities. In the case of the equal-mass, cold
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Figure 4.1: Comparison of Brutus results and analytical distributions. Distribu-
tions are given for the escaper speed (top left) and kinetic energy (top right), binary
semimajor axis (middle left), binding energy (middle right) and binary eccentricity
(bottom). The results from the Brutus simulations are represented by the data
points, for each of the four sets of initial conditions: Plummer equal mass (bullets),
Plummer with different masses (triangles), cold Plummer equal mass (squares) and
cold Plummer with different masses (stars).. Note that we use standard Hénon
units (??). Analytical models from the literature are fitted to the empirical dis-
tributions represented by the curves. For the eccentricities we plot the thermal
distributions.
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Velocity α β
Plummer equal mass 2.5 ± 0.09 6.7 ± 1.02
Plummer mass ratio 3.8 0.16 4.4 0.43
Cold Plummer equal
mass

2.6 0.19 3.8 0.28

Cold Plummer mass
ratio

3.4 0.45 3.4 0.19

Kinetic energy
Plummer equal mass 0.9 0.02 1.8 0.04
Plummer mass ratio 0.8 0.02 1.6 0.04
Cold Plummer equal
mass

0.99 0.02 1.3 0.03

Cold Plummer mass
ratio

0.98 0.03 1.2 0.02

Binding energy
Plummer equal mass 4.31 0.13
Plummer mass ratio 5.12 0.32
Cold Plummer equal
mass

2.37 0.11

Cold Plummer mass
ratio

2.38 0.12

Table 4.1: Fitted power law indices for the velocity and kinetic energy distribu-
tions of the escaping stars and for the binding energy distribution of the binary
stars. Note that we use equal intervals in logarithmic space.
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systems, there are more low eccentricity binaries compared to the the-
oretical prediction. They coincide at an eccentricity of about 0.7, after
which they deviate again. For the cold systems with unequal masses,
this behaviour is the other way around. The analytical predictions
are able to capture the empirical distributions only in a qualitative
manner.

The velocity distribution of the single escaping star can be estimated
analytically in a similar way as was done for the eccentricities. The
resulting distribution is predicted to be a double power law given by
(??):

f(v) ∝ vα

(1 + γv2)β
. (4.3)

We fit this model to the data (see Fig. 4.1, first panel) and obtain
values for α and β which are given in Table 4.1. The power law indices
vary with mass ratio and total angular momentum. To remove the
dependence on mass ratio, we plot the kinetic energy of the escaper
(see Fig. 4.1, top right panel). Again, we fit a double power law of
a similar form as Eq. 4.3, and the power law indices are given in
Table 4.1. Both the escaper velocity and kinetic energy are consistent
with a double power law distribution.

The binary semimajor axis and binding energy are related quanti-
ties. We fit the binding energy distribution (see Fig. 4.1, middle right
panel) to a power law (Heggie, 1975; ?; ?):

f(EB) ∝ E−αB . (4.4)

The fitted power law indices are given in Table 4.1. The empirical dis-
tributions are consistent with a power law, although somewhat steeper
than predicted (Heggie, 1975; ?; ?). The slopes do tend to vary some-
what as a function of angular momentum (??).

The empirical distributions obtained by Brutus are in qualitative
agreement with the analytical estimates present in the literature (Heg-
gie, 1975; ?; ?). Slight variations are present due to the dependence on
total angular momentum, a limited statistical sampling and assump-
tions made in the derivation of the analytical distributions. Neverthe-
less, a similar qualitative agreement has been obtained between the an-
alytical distributions discussed above and empirical distributions from
an ensemble of conventional numerical solutions, e.g. not converged
(?, chapters 7–8 and references therein). The question remains to what
extend conventional and converged solutions agree quantitatively.
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Figure 4.2: Two-sample K–S tests on distributions obtained by Hermite and
Brutus. We compare distributions of dissolution time (top left), escaper speed (top
right), binary semimajor axis (bottom left) and binary eccentricity (bottom right).
Two-sample K–S tests are performed and the p–value is plotted versus Hermite
time-step parameter η. The dashed line represents the 5% significance level. For
η < 2−5, the distributions are not significantly different. (The different curves
represent the different data sets similar as in Fig. 4.1)

4.2.2 Brutus versus Hermite: Global Comparison

A quantitative way to compare global distributions is by performing
two-sample Kolmogorov–Smirnov tests (K–S tests) (??). The K–S
test gives the likelihood that two samples are drawn from the same
distribution, quantified by the value called p. When the p-value is
below five percent, the distributions are considered to be significantly
different.

In Fig. 4.2 we plot the p-value obtained by comparing the Brutus
distribution with the Hermite distribution versus time-step parameter
η used for Hermite. In the panel showing the data for the binary semi-
major axis, the distributions of the cold systems become significantly
different for η > 2−6. The distributions from the initially virialised sys-
tems start to differ for η > 2−4. The cold systems are harder to model
accurately, because of the close encounters that occur shortly after
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Figure 4.3: Lifetime of triple systems. We plot the fraction of triple systems
that have not dissolved yet into a permanent binary and escaping single star con-
figuration, as a function of simulation time (in units of crossing time). The curves
through the data points represent the interpolated Hermite results with a time-step
parameter η = 2−5. (The different curves represent the different data sets similar
as in Fig. 4.1)

the start. The reason the distributions start to become significantly
different at large time-steps is because at these large time-steps most
simulations violate energy conservation by |∆E/E| > 0.1. When this
occurs, solutions might reach regions in 6N -dimensional phase-space,
which theoretically are forbidden. The distribution then becomes bi-
ased by these outlier solutions.

4.2.3 Lifetime of Triple Systems

In Fig. 4.3, we present the fraction of triple systems which are undis-
solved, i.e. still interacting, as a function of time. The results by Bru-
tus are represented by the data points: equal-mass Plummer (black
bullets), Plummer with different masses (red triangles), equal-mass
cold Plummer (blue squares) and cold Plummer with different masses
(green stars). The results by Hermite for a time-step parameter η =
2−5 are represented by the curves appearing to go through the data
points.
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Figure 4.4: CPU time and precision as a function of time for Brutus. On the
left, we plot the CPU time of the simulation which took the longest, as a function
of dissolution time. On the right, we plot the Bulirsch–Stoer tolerance of the
simulation which needed the highest precision, as a function of dissolution time.
The different curves represent the four sets of initial conditions as in the previous
plots.

The initially cold systems dissolve faster than the initially virialised
systems. This is somewhat expected due to the close triple encounter
resulting from the initial cold collapse: the rate of energy exchange
can be very high for these encounters (?). After ∼ 180 crossing times,
about 40% of the systems which started with an equal-mass Plummer
initial configuration, are undissolved, compared to about 10% for the
cold Plummer with different masses. Systems which include stars with
different masses dissolve faster than their equal mass counterparts.
Energy equipartition tends to cause the lightest particle to quickly
reach the escape velocity.

In Fig. 4.3, the grey curves through the data points represent the
interpolated Hermite results. Even though Hermite and Brutus use
different algorithms and precisions to solve the equations of motion,
we find that the lifetime of an unstable triple is statistically indis-
tinguishable between converged Brutus and non-converged Hermite
solutions (but see also Sec. 4.3.3).

In Fig. 4.4, we plot the maximum CPU time and minimum BS
tolerance, both as a function of dissolution time. This is shown for
the Brutus simulations, for the four different initial conditions. The
longer it takes for a system to dissolve, the longer the CPU time and
the higher the precision needed to reach a converged solution. To reach
∼180 crossing times, there are systems which require a BS tolerance of
the order 10−100, with the final converged run taking of the order a few
days. The average CPU time as a function of time is about an order
of magnitude smaller than the maximum CPU time. The average BS
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tolerance ranges from ∼ 10−20 to 10−30. For systems which dissolve
within 100 crossing times, Brutus is on average about a factor 120
slower than Hermite.

We were able to obtain a complete ensemble of systems dissolving
within ∼ 180 crossing times. Simulations which take longer than this
are not taken into account in this experiment. The fraction of long-
lived systems as obtained by Hermite and Brutus are consistent. For
our purpose of comparing results from conventional integrators with
the converged solution, integrating up to ∼ 180 crossing times is suffi-
cient, in the sense that there is enough time for conventional solutions
to diverge from the true solution (see Sec. 4.2.4). Including the long-
lived triple systems may however influence the statistical distributions
and biases on the long term.

4.2.4 Brutus versus Hermite: Individual Comparison

For the individual comparison, we take a certain initial realisation
and compare the solutions of Hermite and Brutus. In Fig. 4.5 we
show scatter plots of the Hermite solution (with time-step parameter
η = 2−5) versus the converged Brutus solution for the equal-mass
Plummer data set.

Data points on the diagonal represent accurate solutions, whereas
the scatter around it represents inaccurate Hermite solutions. The di-
agonal is present in each panel and extends throughout the range of
possible outcomes. The width of the diagonal is very narrow. When
the normalized phase-space distance between the Hermite and Bru-
tus solution δ < 10−1, then the coordinates are accurate enough to
produce derived quantities accurate to at least one decimal place and
Hermite and Brutus will give similar results. Once δ > 10−1, the so-
lution has diverged to a different trajectory in phase-space leading to
a different outcome. This outcome could in principle be any of the
possible outcomes as can be derived from the amount of scatter in the
Hermite solutions at a fixed Brutus solution.

In the scatter plot of the dissolution time, we observe that for small
times (t < 10), Hermite and Brutus agree on the solution in the sense
that the data points lie on the diagonal. Systems which dissolve after
a short time don’t have sufficient time to accumulate enough error to
diverge to another trajectory in phase-space. Once however this level
of divergence is reached, the scatter immediately covers the entire,
available outcome space. This randomisation is also observed in the
other panels.
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Figure 4.5: Direct comparison of Brutus and Hermite results per individual sim-
ulation. The results are shown only for the N = 3 equal mass Plummer data set
and for a Hermite time-step parameter η = 2−5. Each dot in a panel represents a
different initial realisation. The value on the ordinate is the value obtained using
Hermite and the value on the abscissa the value obtained by Brutus. We compare
the direction of the escaper: polar angle (top left) and azimuthal angle (top right),
(with respect to the plane of the binary and pericentre direction), dissolution time
(middle left), escaper velocity (middle right), binary semimajor axis (bottom left)
and binary eccentricity (bottom right). The diagonal represents accurate Hermite
solutions. The scatter around it represents solutions where Hermite and Brutus
have diverged.
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Figure 4.6: The fraction of accurate Hermite simulations as a function of Hermite
time-step parameter η. The different curves represent the different data sets: equal
mass Plummer (bullets), Plummer with different masses (triangles), equal mass
cold Plummer (squares) and cold Plummer with different masses (stars). As η
decreases, the accurate fraction increases. However, for η < 2−7, the fraction starts
to saturate, more so for the cold data sets. At this point the effect of round-off
error becomes important.

The Fraction of Accurate Solutions

In Fig. 4.6 we estimate the fraction of data points on the diagonal as a
function of the Hermite time-step parameter, η. We only include the
data points for which the normalized phase-space distance δ < 10−1.
For the largest time-step parameters used (η > 10−1) the fraction on
the diagonal, or the accurate fraction, varies from zero to about 0.2.
By reducing the time-step parameter, the accurate fraction increases
until it saturates at about 0.4 to 0.7 depending on the initial condi-
tions. Even though by reducing η, the discretisation error decreases,
the number of integration steps increases, which then increases the
round-off error. For the data sets with zero angular momentum, the
maximum accurate fraction is obtained for η ∼ 2−9. For the initially
virialised systems this seems to occur between η ∼ 10−3 − 10−4, al-
though the actual saturation point is not visible yet. This dependence
on angular momentum is due to the initial cold collapse and subse-
quent close encounters, which increases the round-off error.
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Figure 4.7: Statistics on the error distribution of Hermite results. We present the
average error (top row), the standard deviation of the error distribution (middle
row) and the fraction of errors which are positive (bottom row). The errors are
given for the dissolution time (left column), binary semimajor axis (middle column)
and eccentricity (right column). The different curves represent the different data
sets similar as in Fig. 4.6.

The Error Distribution

In Fig. 4.7 we present statistics on the distribution of the errors, i.e.
SHermite − SBrutus, with S a statistic. For the dissolution time and
the eccentricity, the average error converges to zero for η < 10−1. For
larger time-steps, simulations which grossly violate energy conserva-
tion (|∆E/E| > 0.1) cause biases in the average error. For the binary
semimajor axis however, the data representing the cold collapse sim-
ulations also seem to be systematically biased for small time-steps, in
the sense that Hermite makes fewer tight binaries.

The width of the error distributions converge to a non-zero value.
This can be understood because with decreasing time-step, round-off
errors will become more important so that the standard deviation of
the errors will never reach zero. For the dissolution time, the width
of the error distribution for the smallest time-step parameter adopted,
varies from 60 to 100 crossing times. For the eccentricities the width
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is on average ∼ 0.2. For the semimajor axis the width approaches
∼ 0.05 (in Hénon units). In the case of the semimajor axis, the data
representing the cold collapse simulations behave differently, because
the width is much larger than the width for the data representing the
initially virialised systems.

If we regard the results given by Brutus and Hermite as random
variables drawn from the same distribution, then we can write the
variance in a certain statistic, in this example the eccentricity, as:

〈(eH − eB)2〉 = 〈e2
H〉+ 〈e2

B〉 − 2〈eH〉〈eB〉. (4.5)

Here e stands for eccentricity and the subscripts for Brutus and Her-
mite. For a thermal eccentricity distribution (Eq. 4.1), we obtain a
standard deviation of 1/3. However, this only applies to inaccurate
Hermite results, which had enough time to diverge through outcome
space. If we multiply the theoretical standard deviation calculated
above by the inaccurate fraction, we obtain a range in the standard
deviation from 0.17 to 0.27, as η ranges from the most precise value
to η = 10−1.

Symmetry of the Error Distribution

To measure the symmetry of the error distribution, we count the frac-
tion of positive errors (Fig. 4.7, bottom panels). Again for an η < 10−1,
this fraction converges to 0.5. A more detailed comparison is given in
Fig. 4.8, where we compare distribution functions of positive and neg-
ative errors. In Sec. 2.2.3, we mentioned that in our experiment we
define the Brutus solution to be converged when at least 3 decimal
places of every coordinate have converged. To investigate the symme-
try up to higher precision, we repeated a subset of 1000 simulations.
We did this only for the initial conditions with equal-mass stars picked
randomly from a virialised Plummer distribution and this time we ob-
tain solutions converged up to the first 15 decimal places.

We observe that the majority of errors are larger than ∼ 10−3 and
within the statistical error, the positive and negative errors have a
similar distribution. For the smallest errors however, we observe an
asymmetry in the sense that there are more negative, small errors.
The magnitude of the error where this excess occurs is determined by
the precision of the integration. For the smallest η, the excess is below
double-precision and thus not observable anymore (see Sec. 4.3.2 for
more explanation).
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Figure 4.8: Symmetry of the error distributions. We show distributions of the
errors in semimajor axis (left column) and eccentricity (right column) of the binaries
formed in the equal-mass Plummer data set. This is shown separately for the
positive errors (solid line) and negative errors (dashed line), to investigate the
symmetry of the error distribution. From the panels at the top to the bottom, the
time-step parameter for Hermite varies as 2−5, 2−7, 2−9 and 2−11. An asymmetry
can be observed at the smallest errors.

4.2.5 Escaper Identity

In this section we compare the solutions obtained with Hermite and
Brutus individually, by looking at which star eventually becomes the
escaper and which form the binary. We define preservation if the Her-
mite and the Brutus solution both have the same star as the escaper.
We define it as exchange if the escaping star is different. A further
distinction can be made in the preservation category, if the Hermite
simulation is also accurate. We can typify each Hermite simulation as
follows:

• Accurate: The coordinates are accurate, up to at least two
digits.

• Preservation: The coordinates are inaccurate, but same star
escapes.

• Exchange: Different star escapes.

In Fig. 4.9 we present the fraction of each category as a function of
time. As expected, systems which dissolve quickly, hardly have time
to develop errors and are categorized as accurate simulations. In time
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Figure 4.9: The evolution of the relative fraction of categories. The differ-
ent curves represent the different categories: accurate (solid curves), preservation
(dashed curves) and exchange (dotted curves). These three categories are defined
in the text. From left to right, the data are from the Plummer, Plummer with
different masses, cold Plummer and cold Plummer with different masses data sets.
In the top panels we show the results for a Hermite time-step parameter η = 2−11

and in the bottom for η = 2−3.

however, because errors grow exponentially, the solutions become in-
accurate. The fractions of preservation and exchange start to grow.
For a small time-step parameter (η = 2−11, top row in Fig. 4.9), this
growth starts after ∼ 20 crossing times for the initially virialised sys-
tems. For the initially cold systems, the inaccurate fractions already
start to grow after a single crossing time.

The cold collapse with equal-mass stars is the hardest problem to
integrate as the accurate fraction is of comparable magnitude as the
preservation and exchange fractions. The accurate fraction generally
remains dominant, with a final fraction varying from about 0.4 for the
equal-mass cold Plummer to about 0.7 for the Plummer with different
masses. For the lesser precision (η = 2−3, bottom row in the figure),
the accurate fractions decrease to below 0.2.

In the panels in Fig. 4.9, which include the data for the systems with
different masses, preservation is more common than exchange. This
can be understood, because due to energy equipartition, the lightest
particle will be more likely to escape and therefore the identity is more
often correct than in the equal mass case. For the equal mass case,
the fraction of preservation and exchange is comparable, except in the
case of the equal-mass cold Plummer with the low precision (η = 2−3,
the bottom row). If we regard the identity of the escaping star to be
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Figure 4.10: The effect of cuts in final relative energy conservation. We plot the
average error in the velocity of the escaping star (top row) and the error in the
binary semimajor axis (bottom row) as a function of Hermite time-step parameter
η (with the same relation between the curves and the data sets as in Fig. 4.6). The
three columns differ in the maximum allowed level of relative energy conservation.
In the left column we show the results for the total ensemble of solutions, in the
middle column for a maximum level of unity and in the right column for 10−1.
The bias in the left column for the binary semimajor axis is caused by solutions
which grossly violate energy conservation. Note that this only happens for the cold
collapse simulations. When these outliers are taken out of the ensemble, the bias
vanishes.

completely random once the solution has become inaccurate, we would
expect the fraction of exchange to be twice the fraction of preservation.
This is roughly what we observe in the equal mass cold collapse case
with low precision. Because of the low precision and the initial close
encounter, solutions will diverge very quickly. In the panel with the
higher precision this trend is not observed because the solutions are
less randomised. The preservation category includes solutions which
slightly differ from the converged solution only in the escape angle of
the escaper. Also the long-lived triples are not taken into account here,
which will alter these fractions.

4.3 DISCUSSION

4.3.1 Energy Conservation

In every ensemble of Hermite solutions there are some that grossly
violate conservation of energy |∆E/E| > 0.1. This deformation of
the energy hyper-surface in phase-space can allow solutions to reach
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parts of phase-space which are theoretically forbidden. This affects the
global statistical distributions. In Fig. 4.10, we replot the average error
in the binary semimajor axis as a function of the time-step parameter.
We produce similar diagrams as presented in Fig. 4.7, but this time
we introduce a maximum allowed error in the energy. If we filter
out simulations with a relative energy conservation |∆E/E| > 1, or
|∆E/E| > 0.1, we observe that the bias in the average error of the
semimajor axis of the binaries vanishes. We conclude that this bias is
caused by a few simulations which grossly violate energy conservation.
A similar bias in the velocity of the escaping star is less pronounced.

Time-reversible, symplectic integrators should in principle conserve
energy to a better level than non-symplectic integrators, since there
is no drift present in the energy error. Therefore, by using a sym-
plectic integrator, the number of simulations with large energy error
could be reduced. Using a Leapfrog integrator with constant time-
steps, we tested this assumption and we find that for resonant 3-body
interactions, it is challenging to obtain accurate solutions. The main
reason is that, contrary to regular systems like, for example, the solar
system, resonant 3-body interactions often include very close encoun-
ters, which need a very small time-step size to be resolved accurately.
This is especially the case for the initially cold systems. Adopting
such a small time-step size for the whole simulation, will increase the
wall-clock time to that of Brutus or beyond.

4.3.2 Asymmetry at Small Errors

In Sec. 4.2.4, we discussed an asymmetry at small errors. In Fig. 4.11,
we present similar diagrams as in Fig. 4.8 for the positive and negative
errors. This time we add the errors in the total energy and angular
momentum of the system and the error in the velocity of the escaper.

We also vary the integration method because different methods pro-
duce different (biased) error distributions in energy and angular mo-
mentum. We use a standard Leapfrog integrator, a standard Hermite
integrator and a Hermite integrator which uses the P(EC)n method
(we adopted n=3) (?). This last method adds an iterative procedure
to the algorithm to improve the predictions and corrections, which im-
proves the time-symmetry. For each method we implement a shared,
adaptive time-step criterion as in Eq. 2.1, with a time-step parame-
ter η = 2−7. As a consequence they will not be time-symmetric nor
symplectic.

We first look at the error distributions in the total energy and angu-
lar momentum. We observe that none of them are symmetric, in the
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Figure 4.11: Explanation of the asymmetry at small errors. We show distribu-
tions of the positive (solid curves) and negative (dashed curves) errors in the total
energy (top row), total angular momentum (second row), escaper velocity (third
row), binary semimajor axis (fourth row) and eccentricity (bottom row). This is
shown for different algorithms: Leapfrog (left column), standard Hermite (middle
column) and Hermite with P (EC)n method (right column, n = 3). Each method
implements a shared, adaptive time-step criterion according to Eq. 2.1, with a time-
step parameter η = 2−7. Each of these three integrators has a different asymmetry
in the conservation of energy and angular momentum. By propagating these asym-
metric errors as a small perturbation to the converged solution, we can estimate
the resulting asymmetry in the derived quantities. These estimated error distribu-
tions are also given separately for the positive (dot-dash, light curves) and negative
(dotted, light curves) errors. We observe that the estimated error distributions are
located at the asymmetry in the empirical error distributions. The asymmetry at
small errors is caused by a bias in the integrator.
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sense that the positive and negative errors have identical distributions,
except for the angular momentum in the Leapfrog simulations. The
Leapfrog solutions tend to gain energy, whereas the standard Hermite
loses energy. The Hermite with the P(EC)n method produces both
positive and negative errors in the energy, but not in a symmetric
manner.

To investigate whether the bias in energy and angular momentum
conservation propagates to a bias in the binary and escaper properties,
we estimate what the errors should be if we regard the error in the
energy and angular momentum as a small perturbation to the con-
verged solution. For the error in the velocity of the escaper, using the
derivative of the kinetic energy with respect to velocity, we obtain the
following expression:

δv =
1

mv
δE. (4.6)

Here m is the mass of a star, v the velocity as obtained by Brutus,
δE the energy error and δv the error in the velocity due to this energy
error. For the binary semimajor axis we obtain:

δa =
2

m2
a2δE. (4.7)

Here a is the semimajor axis from the Brutus solution. For the eccen-
tricity we obtain:

δe =
1√

1 + 2εl2

µ2

(
l2

µ2
δε+

2εl

µ2
δl). (4.8)

Here µ is the total mass of the binary, ε and l the specific energy and
specific angular momentum of the binary as obtained by Brutus. The
error in the eccentricity δe has contributions from errors in the energy
δε and angular momentum δl.

If we compare the resulting error distributions to the actual er-
ror distributions, we find that the approximated error distribution
is positioned at the asymmetry in the empirical error distribution.
This is most clearly seen for the semimajor axis and eccentricity (see
Fig. 4.11).

The reason why the approximated error distribution overestimates
the excess, is because not all errors are solely due to an error in the en-
ergy and angular momentum. In time, the numerical solution diverges
from the true solution and this error due to divergence will become
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more dominant. With this in mind, we can approximate the error in
a statistic as follows:

δS = δSconservation + δSdivergence. (4.9)

Here S is a statistic that is related to energy and/or angular momen-
tum, δSconservation is the error due to a small perturbation in the energy
and/or angular momentum and δSdivergence is the error due to diver-
gence of the solution. When the solution has not diverged appreciably
yet, the first type of error will dominate and possible biases can be
observed. When the second type of error dominates, we observe that
the symmetry is restored to within the statistical error.

Upon inspection of the velocity data, we observe no asymmetry in
the Hermite results. When we measure which fraction of the energy
error is reserved for the binary and which fraction for the escaper, we
find that in most cases the error propagates to the binary. For the
Leapfrog however, the asymmetry is still present.

4.3.3 Preservation of the Macroscopic Properties

Valtonen et al. (?) state that the final statistical distributions forget
the specific initial conditions and only depend on globally conserved
quantities. This assumption makes predictions which are verified by
our experiment. The results show that for a time-step parameter η <
2−5, the distributions are statistically indistinguishable, even though
at least half of the solutions diverged from the converged solution. If
however, energy conservation is grossly violated, biases are introduced
in the statistics. In our experiment, a maximum level of relative energy
conservation of |∆E/E| = 0.1 was sufficient to remove the biases. This
is a much milder constraint than the |∆E/E| ∼ 10−6 usually adopted
in collisional simulations. Whether 0.1 is also sufficient for systems
with more stars, should be verified experimentally. Heggie (?) for
example, finds that the energy of escaping stars in higher-N systems,
depends sensitively on integration accuracy. The maximum required
level of energy conservation should be such that it is below the energy
taken away from the cluster by the escaping stars.

The chaoticity of the 3-body problem is illustrated by the scatter
diagrams in Fig. 4.5. For a certain value of a statistic obtained by
Brutus, any other value in the allowed outcome space is reachable for
the Hermite integrator. For example, if the converged solution gives an
eccentricity for the binary of 0.6, a diverged solution can produce any
eccentricity between 0 and 1. Once the solution has diverged from the
true solution, it will start a random walk through or near the allowed
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phase-space until the 3-body system has dissolved. We observed that
this randomisation happens in such a way that the available outcome
space is still completely sampled and that it preserves global statistical
distributions.

In Sec. 4.2.3, we discussed that the lifetime of an unstable triple does
not depend on the integrator used nor on the accuracy of that integra-
tor. This last point should be interpreted in the sense that when more
effort is put into performing simulations with higher precision, that
this does not change the global statistics, even though individual so-
lutions will change with precision (see for example the Hermite results
in Fig. 2.1). If instead we continue to decrease the precision, there will
be a point where biases start to appear. Urminsky (?) analysed the
3-body Sitnikov problem and showed that the precision of the integra-
tion influences the average lifetime of triple systems, contrary to our
results. The integration times in our experiment however, are much
shorter. Obtaining a converged solution for a resonant 3-body system
for longer than 200 crossing times, is still computationally challenging.
Therefore any statistical difference on the long term will not be visible
in our experiment.

4.4 CONCLUSION

Brutus is an N-body code that uses the Bulirsch–Stoer method to con-
trol discretisation errors, and arbitrary-precision arithmetic to control
round-off errors. By using the method of convergence, where we sys-
tematically vary the Bulirsch–Stoer tolerance parameter and the word-
length, we can obtain a solution for a particular N-body problem, for
which the first p digits in the mantissa are independent of the time-
step size and word-length. We call this solution converged to p decimal
places.

Obtaining the converged solution is computationally very expensive,
mainly because of the exponential divergence of the solution. In some
cases, Bulirsch–Stoer tolerances of 10−100 are needed to reach con-
vergence. We estimate that the time for simulating a star cluster up
to core collapse, until convergence, scales approximately exponentially
with the number of stars. Simulations with 256 stars however, may be
performed within a year of computing time.

The motivation to obtain expensive, converged solutions is to test
the assumption that the statistics of an ensemble of approximate solu-
tions, are indistinguishable from the statistics of an ensemble of true
solutions. To put this assumption to the test, we have investigated
the statistics on the breakup of 3-body systems. In our experiment, a
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bound triple system will eventually dissolve into a binary and an es-
caping star. Solutions to every initial realisation were obtained using
the standard Hermite integrator and using Brutus.

For systems with a long lifetime it is challenging to obtain the con-
verged solution. Due to repeated ejections and resonances, many ac-
curate digits will be lost and so a very small Bulirsch–Stoer tolerance
is required. Therefore, we have set an integration limit at ∼ 180 cross-
ing times. For equal-mass, virialised systems, ∼ 40% of the random
initial realisations were not dissolved by this time. For the initially
cold systems with different masses this was ∼ 10%. Hermite and Bru-
tus are consistent on the average lifetime of an unstable triple system.
However, possible differences on the long term are not visible in this
experiment.

When we compare the results on an individual basis, we find that on
average about half of the Hermite solutions give accurate results, i.e. at
most a 1% relative difference compared to Brutus. For the inaccurate
results, the error distribution becomes unbiased and symmetric for a
time-step parameter η ≤ 2−5 and implementing a maximum level of
relative energy conservation of |∆E/E| < 0.1.

Once the conventional solution has diverged from the converged so-
lution, it will start a random walk through or near the allowed region
in phase space. such that any allowed outcome of a statistic is reach-
able. This randomisation process completely samples the available
outcome space of a statistic and it also preserves the global statistical
distributions.

Kolmogorov–Smirnov tests were performed to compare the global
distributions produced by Hermite and Brutus. No significant differ-
ences were detected when using the criteria mentioned above for the
time-step parameter η and relative energy conservation. This research
for the 3-body problem supports the assumption that results from
conventional N-body simulations are valid in a statistical sense. We
observed however that a bias is introduced for the smallest errors, if
the algorithm used to solve the equations of motion, is biased in the
conservation of energy and angular momentum. In this research how-
ever, this bias did not have an appreciable effect. It is important to
see whether this remains true for statistics of higher-N systems or sys-
tems with a dominant mass. An example of a higher-N system where
precision might play a role is a young star cluster (without gas) going
through the process of cold collapse (?). At the moment of deepest
collapse, a fraction of stars will obtain large accelerations, so that a
small error in the acceleration can cause large errors in the position
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and velocity. The rate of divergence can increase up to about 5 digits
per Hénon time unit for 128 particles and it increases with N.
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The conservation of energy, linear momentum, and angular momen-
tum are important drivers of our physical understanding of the evolu-
tion of the universe. These quantities are also conserved in Newton’s
laws of motion under gravity. Numerical integration of the associ-
ated equations of motion is extremely challenging, in particular due to
the steady growth of numerical errors (by round-off and discrete time-
stepping and the exponential divergence between two nearby solutions.
As a result, numerical solutions to the general N-body problem are in-
trinsically questionable. Using brute force integrations to arbitrary
numerical precision we demonstrate empirically that ensembles of dif-
ferent realizations of resonant three-body interactions produce statis-
tically indistinguishable results. Although individual solutions using
common integration methods are notoriously unreliable, we conjecture
that an ensemble of approximate three-body solutions accurately rep-
resents an ensemble of true solutions, so long as the energy during
integration is conserved to better than 1/10. We therefore provide an
independent confirmation that previous work on self-gravitating sys-
tems can actually be trusted, irrespective of the intrinsically chaotic
nature of the N-body problem.

5.1 INTRODUCTION

Newton’s law of gravitation is one of the fundamental laws in the
universe that holds everything together. Although formulated in the

81
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17th century, scientists today still study the consequences, in partic-
ular those of many-body systems, like the solar system, star clusters,
and the Milky Way. General analytic solutions to the N-body problem
only exist for configurations with one mass, commonly referred to as
N = 1 solutions, and for two masses (equivalently named N = 2; Ke-
pler (1609); Newton (1687)). Problems for N →∞ can be reduced via
Liouville’s theorem for Hamiltonian systems to the collisionless Boltz-
mann equation (??, but see also ?), and therefore analytic solutions
for the global distribution function exist.

Solutions for N in between these two limits are generally realized by
computer simulations. These so-called N-body simulations have a ma-
jor shortcoming in that the solution to any initial realization can only
be approximated. The main limiting factors in numerically obtain-
ing a true solution include errors due to round-off and approximations
both in the integration and in the time-step strategy (????). These
generally small errors are magnified by the exponentially sensitive de-
pendence on the 6N-dimensional phase-space coordinates, position and
velocity (??). As a consequence, the solution for a numerically in-
tegrated self-gravitating system of N masses diverges from the true
solution (??). This error can be controlled to some degree by se-
lecting a phase-space volume-preserving or a symplectic algorithm (?)
and by reducing the integration time step (??). The latter however,
cannot be reduced indefinitely due to the accumulation of numerical
round-off in the mantissa, which is generally limited to 53 bits (64 bits
in total, but 11 bits are reserved for the exponent, resulting in only
about 15 significant digits). The exponential divergence subsequently
causes this small error to propagate to the entire system on a dynam-
ical time-scale (?), which is the time-scale for a particle to cross the
system once. The result of these errors, together with the exponential
divergence, is the loss of predicting power for a numerical solution to
a self-gravitating system with N > 2 after a dynamical time-scale.
One can subsequently question the predicting qualities of N-body sim-
ulations for self-gravitating systems, and thereby their usefulness as a
scientific instrument.

We address this question for N = 3 using brute-force numerical in-
tegration to arbitrary precision. The choice of N = 3 is motivated by
the realization that this represents the first fundamental irregular con-
figuration with the smallest possible number of objects that cannot be
solved analytically and cannot be addressed with collisionless theory.
In addition, three-body encounters form a fundamental and frequently
occurring topology in any large N-body simulation, and therefore also
drive the global dynamics of these larger systems.
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5.2 VALIDATION OF THE UNRESTRICTED
PRECISION INTEGRATION

The divergence between two different, approximate solutions to the
N-body problem can be quantified by the phase-space distance in the
positions r and velocities v of the N particles (in dimensionless N-body
units):

δ2 =
1

6N

N∑
i=1

[
(rA − rB)2 + (vA − vB)2

]
. (5.1)

Values of δ are obtained by comparing the configurations from solution
A and solution B at any moment in time. Each star has a position and
velocity in solution A and (generally) a different position and velocity
in solution B. For each star we calculate its phase-space distance be-
tween the two solutions. By dividing by 6N , δ can be thought of as
the average difference per coordinate. The two different runs can be
performed either with the same code at a different precision, or with
two different codes, all having exactly the same initial realization. A
value of δ & 0.1 indicates that the results of the two simulations have
diverged beyond recognition. We consider a solution to be converged
to p decimal places when, for any time t > 0, δ < 10−p. (In stable hier-
archical few-body systems the value of δ can vary substantially across
the orbital phase (?), and one has to be assured that temporarily large
deviations can diminish again at a later instant.)

To investigate the build-up of numerical errors and the correspond-
ing exponential divergence, we developed an N-body solver for self-
gravitating systems which solves the N-body problem to arbitrary pre-
cision. This code, named Brutus (?), is composed of a Bulirsch–Stoer
integrator (?), which conserves energy to the level of the Bulirsch–Stoer
tolerance. This tolerance is a parameter that can be interpreted as
the discretisation error per integration step. The round-off error is
controlled by choosing the word length with which all floating point
numbers in the computer code are represented. By decreasing the Bu-
lirsch–Stoer tolerance and increasing the word length, we can obtain
solutions to the N-body problem to arbitrary precision.

We tested Brutus by adopting a three-body system of identical par-
ticles, which are located on the vertices of an equilateral triangle, with
initial velocities such that the orbits are on a circle around the center
of mass (Lagrange, 1772). Because this system is intrinsically unsta-
ble, small perturbations in the position and velocity vectors cause the
triangular configuration to dissolve quickly. The time at which this
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happens depends on precision. Using Brutus we can reach arbitrary
precision, but in this validation experiment we stopped reducing the
time step and increasing the word length once the energy was con-
served up to 75 decimal places, which is sufficient to demonstrate our
point. For any pre-determined time of stability there is a combination
of word length and Bulirsch–Stoer tolerance for which Brutus con-
verges. We define a solution to be converged when the first p decimal
places become independent of the size of the time step and the word
length. This is equivalent to saying that δ is always below 10−p; for
p = 3 (at least the first three digits have converged), then δ < 10−3 at
all times.

5.3 RESULTS

Having established the possibility of integrating a self-gravitating N-
body system to arbitrary precision we can study the reliability of N-
body simulations in general. We limit ourselves to the problem of
three bodies, generating a database of different three-body problems
and solving them until a converged solution is achieved. The positions
of the particles are taken randomly from a Plummer distribution (?)
and are either cold (zero kinetic energy) or virialised. In the cold case
we ensured that the mutual distances between the particles are ini-
tially comparable (within an order of magnitude). We performed runs
with identical masses and with the masses in a ratio of 1:2:4. For each
of the four selected ensembles of initial conditions we generated 104

random realizations. The masses and coordinates for these systems
are specified in standard double-precision to ensure that the double-
precision calculations use exactly the same initial realizations as the
arbitrary-precision calculations. Every initial condition is integrated
using the Leapfrog–Verlet (?, we adopted the implementation avail-
able from http://nbabel.org) and the fourth-order Hermite predictor-
corrector scheme in a code called ph4 (?). (Both codes, Brutus and
ph4, are assimilated in the public AMUSE framework which is avail-
able at http://amusecode.org; ?). The integration continues until the
system has been dissolved into a permanent binary and a single esca-
per (Heggie, 1975; Hut & Bahcall, 1983). Dissolution is declared upon
the first integral dynamical time upon which one particle is unbound,
outside a sphere of two initial virial radii around the barycentre, and
receding from the center of mass (Hut & Bahcall, 1983). A particle
is considered unbound if its kinetic energy in the center of mass refer-
ence frame exceeds the absolute value of its potential energy, which is
stricter than adopted in Hut & Bahcall (1983). For a fraction of the
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Figure 5.1: Individual comparison of the dissolution time of three-body systems.
Each point represents one unique initial realization of three equal-mass bodies taken
randomly from a Plummer distribution in virial equilibrium. The time to dissolu-
tion given by Hermite (using η = 2−5) is on the ordinate and the converged value
given by Brutus on the abscissa. About 50 percent of the data points lie on the di-
agonal which represents the cases for which Hermite and Brutus gave very similar
results. The scatter around the diagonal is symmetric. For very short dissolu-
tion times (< 10 dynamical times), there is insufficient time to grow errors and the
results are in agreement. Once the divergence becomes important the Hermite inte-
grator can return any value allowed in the experiment irrespective of the converged
dissolution time.
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Figure 5.2: Cumulative distribution for the difference in time until dissolution
for Hermite compared to converged Brutus solutions for three different values of
η = 2−2 (solid), η = 2−3 (dashes) and η = 2−9 (dotted curves). For each value of η,
there are two curves, one for the case when Hermite lasted longer and the other for
when Brutus lasted longer. Each of these pair of curves for η ≤ 2−3 is statistically
indistinguishable, and the mean difference is centred around the origin.

simulations (see Figure 5.3), the dissolution time turns out to be very
long as the evolution consists of a sequence of ejections where a particle
almost escapes, but then still returns to once again enter a three-body
resonance. We therefore put a constraint on the integration time and
use the fraction of long-lived systems as a measurable statistic. We ob-
tain ensembles of solutions using the Hermite and Leapfrog integrators
with a time-step parameter η = 2−1, 2−2, ..., 2−11. Here we adopted
the definition for η given by ?.

We subsequently recalculate each of these initial realizations with
Brutus using the same tolerance. In subsequent calculations we sys-
tematically reduce the time-step size and increase the word length
until we obtain a converged solution (as we discussed in Section 5.2
for p = 3) for every realization of the initial conditions. This con-
verged solution is then compared to the earlier simulations performed
with the Hermite and Leapfrog integrators.
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We now have three solutions for each initial realization of the three-
body problem, one of which is the converged solution. We compare
the three solutions for the time of dissolution, the semimajor axis
(or equivalently the reciprocal of the orbital energy) of the surviving
binary, its eccentricity (equivalent to the angular momentum), and the
escaper’s velocity and direction.

In Figure 5.1 we individually compare the time to dissolution for a
certain initial realization as given by the Hermite integrator and the
converged solution as given by Brutus. About half of the individual
Hermite solutions lie along the diagonal representing the accurate solu-
tions. The other half is scattered around the diagonal. These solutions
have diverged away from the converged solution, producing a binary
and an escaper with completely different properties. For dissolutions
within ∼ 10 dynamical times, there is insufficient time for the solution
to diverge and the results of the various numerical methods are consis-
tent. But once the Hermite or Leapfrog solutions have diverged away
from the converged solution the entire parameter space of the numer-
ical experiment is sampled. A similar statement holds when instead
of comparing the dissolution time, we compare the properties of the
binaries or the escapers.

In Figure 5.2 we present the cumulative distribution function of the
difference between the time to dissolution of the Hermite and Brutus
calculations: dtdissolve = tHermite − tBrutus for three different values
of η = 2−2, η = 2−3 and η = 2−9. The differences for η ≤ 2−3 are
symmetric around the origin with a dispersion of ∼ 70 N-body time
units, but for η ≥ 2−2 it is not symmetric. The distributions in the
differences in semi-major axis, eccentricity, and the direction of the
escaper (polar and azimuthal angles with respect to the binary plane)
at the time we stop the experiment for η = 2−3 down to η = 2−11

are symmetric with respect to the origin. The global distributions
are statistically indistinguishable using a Kolmogorov–Smirnov test.
We empirically determine that for a value of the time-step parameter
η = 2−3 the majority of the ensemble conserves energy to better than
1/10.

In Figure 5.3 we present the fraction of undissolved systems in time.
The coloured symbols give the converged solutions, whereas the curves
give the results obtained using the Hermite integrator. The two solu-
tions for each ensemble of initial realizations for η ≤ 2−3 (as well as
those obtained with the Leapfrog integrator, not shown) are statisti-
cally indistinguishable after comparing 104 realizations of the initial
conditions. The distributions obtained using η ≥ 2−2 are not symmet-
ric.
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Figure 5.3: Fraction of surviving systems as a function of time for the four sets
of initial conditions. The symbols give the results calculated with Brutus, the
curves give the linear interpolation between the points calculated with the Hermite
integrator using η = 2−5. The virialised Plummer sphere with identical masses is
represented by the bullets, and with the range in masses as triangles. The squares
and stars give the results for the cold Plummer distribution without and with
different masses, respectively. The results of the runs with Hermite are statistically
indistinguishable from those with Brutus.

The duration of stability was studied as a function of accuracy by ?
using the Sitnikov problem (?). They found that the remaining time
for the system to stay bound depends on the integration accuracy. Our
simulations did not reveal this effect, because we study systems that
dissolve on a much shorter time-scale.

5.4 CONCLUSION

The properties of the binary and the escaper of a three-body sys-
tem can be described in a statistical way. This is consistent with the
findings in previous analytic (?) and numerical (?) studies. This
behaviour was named quasi-ergodicity by ?. We confirm that this
behaviour remains valid also for converged three-body solutions.
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Based on the symmetry of the distribution in dissolution times (see
Figure 5.2), the final parameters of the binary and escaper, as well
as the consistency of the mean and median values of the inaccurate
simulations when compared to the converged solution (see Figures 5.2
and 5.3) we argue that global statistical distributions are preserved
irrespective of the precision of the calculation as long as energy is
preserved to better than 1/10th of the initial energy of the system.
Although we have tested only three algorithms for solving the equa-
tions of motion we conjecture that the statistical consistency may be
also preserved for some other direct N2 methods, and these may also
require that energy and angular momentum are preserved to ≤ 1/10th.
If such direct N-body methods have the same statistical behaviour as
collisionless (N � 3) systems, it will be interesting to investigate how
other—non-N2—algorithms, like the hierarchical-tree method (?) or
particle-mesh methods (?) also behave in this respect.

In studies of self-gravitating systems which adopt the fourth-order
Hermite integrator, energy and angular momentum are generally con-
served up to ≤ 10−6 per dynamical time. Only those simulations in
which this requirement is met are often considered reliable and suit-
able for scientific interpretation. Proof for this seemingly conservative
choice has never been provided, and it is unknown whether or not
the numerical error and the exponential divergence are not preventing
certain parts of the parameter space to be accessed, or new physically
inaccessible parts in the parameter space to be explored. We argued
that for the resonant three-body problem the error made during the
integration of the equations of motion poses no problem for obtain-
ing scientifically meaningful results so long as energy is conserved to
better than about one-tenth of the initial total energy of the system.
In that case resonant three-body interactions should be treated as an
ensemble average, and individual results only contribute statistically.

By means of numerical integration, until a converged solution is ob-
tained, we find that the statistical properties of the binary and the
escaper resulting from a three-body resonant encounter are determin-
istic. This behaviour is not guaranteed to propagate to larger N (see
also ?; N > 3 requires independent testing, because these introduce
more complex solutions in the form of, for example, binary-binary out-
comes and hierarchical triples. The more extended parameter space
for increasing N from 3 to N = 4 is quite dramatic, in particular for
solving the system until a converged solution is reached.
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Event-driven Chaos
in Dynamical Systems

Based on: Event-driven Chaos in Dynamical Systems by T. C. N. Boekholt,

F. I. Pelupessy, D. C. Heggie and S. F. Portegies Zwart in preparation

In 1207BC, a year after Odysseus returned to Ithaca, the comet
P1/Halley should have been visible from the Ionian islands, but appar-
ently was not sighted (?). Since then the short-period comet P1/Halley
has intrigued astronomers, policy makers (?), religious leaders (??),
artists and the general public for its splendour.

More recently, Halley gained considerable interest because of its
importance for understanding the stability of the solar system. The
comet probably migrated towards its current orbit in the last 200,000
years (?). Small variations in its time of sighting over the last millen-
nium have prompted astronomers to the possible chaotic nature of the
comet’s orbit (?). In particular the recent discussion of the chaotic
nature of its orbit, as derived by ? requires us to revisit the chaotic
nature of Halley’s orbit, the origin of its chaos and its short Liapounov
time.

We construct a general model for the growth of perturbations in a
few-body dynamical system. Using a map to describe the time evolu-
tion of the orbital frequency of Halley’s orbit, we find that a sequence
of close encounters with Jupiter causes exponential growth with a Lia-
pounov time of order 300 years. This short Liapounov time is a natural
consequence of the density of close encounters and the strength of each
encounter. Numerical integrations however, show that Venus is cur-
rently the dominant source of chaos in Halley’s orbit.

6.1 INTRODUCTION

Whether a dynamical system, such as a planetary system, a star clus-
ter or a galaxy, is stable or unstable is an important property of the
system. For example, from an observational point of view, it tells us

91
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about the likelihood to observe a system in a certain state. If the
configuration is unstable, it will evolve to a different configuration on
a relatively short time scale, so that statistically, it is unlikely to be
observed. From a numerical perspective, the stability tells us about
the time scale on which we can accurately predict the orbits of the
constituent bodies. For a chaotic system, initially nearby solutions
will quickly diverge away from each other, resulting in very different
outcomes (????).

The stability of a configuration is determined by perturbing the
configuration and calculating how the perturbation grows in time. If
this growth follows a power law, the system is considered regular.
Examples of regular dynamical systems are two-body (point-particle)
binary stars, strictly hierarchical triples (e.g. ?) and the three-body
figure-8 orbit (??). If the growth instead is exponential, then the
system is considered to be chaotic. Examples of chaotic three-body
problems are the Pythagorean problem (???), the equilateral triangle
(e.g. ?) and the Sitnikov problem (e.g. ?).

Chaos in larger systems was investigated by ?. For time scales
shorter than a million years, the divergence of the planets in our solar
system closely resembles a power law. At later times however, it turns
out that the divergence is really an exponential with an e-folding time
of about 5 Myr (?). The time over which the stability has to be
determined is thus an important factor.

It is also possible for a system to evolve from order to chaos and
vice versa. In a different study of the solar system ? reproduced
the exponential divergence found by ?. After ∼ 50 Myr however,
they observed a transition to a faster exponential growth (?, Fig. 1).
The origin of this transition is not known. It might be physical and
related to a different chaoticity for the terrestrial and Jovian planets.
A numerical artefact is however not excluded.

A more intuitive example of a transition can be constructed for a
three-body system consisting of a binary star and a single star that is
relatively far but still bound, moving towards the binary star. Since at
the start of the experiment the single and the binary star are well sepa-
rated, the system will behave regularly. At small separations, however,
the interplay of the three particles becomes much more irregular, re-
sulting in a prolonged chaotic phase during the resonant encounter (?).
In the resonant phase perturbations can grow by orders of magnitude
(?).

Dynamical chaos is also present in star clusters, i.e. open clusters
and globular clusters. ? measured an exponential growth of pertur-
bations for a small stellar system. ? estimate the e-folding time for
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this growth to be on the order of a crossing time, which is the typ-
ical time for a star to cross the cluster once. Due to this relatively
short time scale, accurate long term integrations of star clusters are
virtually impossible. The exponential divergence can be fought us-
ing high-precision integrations, but they are prohibitively expensive
(?). Transitions in the rate of divergence also occur for star clusters.
Starting with a cluster consisting of single stars, close encounters and
interactions with a binary star during the moment of core collapse
significantly increases the rate of divergence (?, Fig. 3).

Much work has been done to measure the stability of dynamical
systems. Less work has been done on the origin of chaos in dynamical
systems and transitions in the rate of divergence. ? construct a model
for the growth of perturbations in a star cluster. In a somewhat analo-
gous way as in the derivation of the relaxation time of a stellar system
(Chandrasekhar, 1942), they relate a linear growth of error to the lin-
ear growth in separation after a deflection due to a 2-body encounter
(?, Fig 1). A sequence of 2-body encounters can result in the accu-
mulation of power laws, which approximates exponential divergence.
This is analogous to a feature already present in a hard-sphere gas (?).

We present a new model for the rate of divergence in few-body
dynamical systems, which is based on 2-body Keplerian orbits being
perturbed by a third body. Using the fact that a 2-body Keplerian
system shows linear divergence and that the accumulation of power
laws can produce exponential growth, we are able to model both regu-
lar, chaotic and transitional behaviour. We explain the model in more
detail in Sec. 6.2.

Next we turn to the case of Halley’s Comet (hereafter just Halley),
which is perturbed by the planets. Its chaoticity has been verified
in several studies (e.g. ????). The e-folding time for the exponential
divergence has been determined to be on the order of the orbital period
of Halley or less (< 76 years). One of the aims of this study is to
understand the origin of this short time scale. To this end, in Sec. 6.3
we define a map similar to those in ? and ?, which uses kick-functions
to model the perturbations due to the planets on Halley. Using this
map we investigate the onset of exponential growth of perturbations.
In Sec. 6.4 we measure the rate of divergence between neighbouring
solutions using precise N-body integrations of the orbit of Halley in
the solar system. We compare the data to our semi-analytical model
to gain a better understanding of the origin of chaos, the cause of its
short e-folding time scale, i.e. the Liapounov time, and the physical
mechanism responsible for transitions in the rate of divergence.
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Figure 6.1: Growth of displacement between neighbouring solutions during two
scattering events. The diagram, which is intended to be schematic, was plotted
using eqs.(6.1), (6.3) and (6.4) for δ0 = 10−6, a constant period P = 76 years,
f = 1/P and encounter times t1 = 5000 and t2 = 7500 years.

6.2 EVENT-DRIVEN CHAOS

Consider Kepler motion with initial semi-major axis a0, total mass m
and initial frequency f0 =

√
m/a3

0 (gravitational constant G = 1).
Let a neighbouring solution be separated by a small displacement δ0

initially. (For simplicity we also suppose that the difference in velocity
is small.) This displacement has components along and transverse to
the orbit, and we assume that they are both of equal magnitude. The
cross-orbit component gives rise to a difference in semi-major axis of
the same order, i.e. ∆a0 ∼ δ0. The resulting difference in frequency is
∆f0 ∼ δ0

√
m/a5

0. By time t > 0 the displacement along the orbit will
have grown to an amount of order

δ (t) ∼ δ0 + a0∆f0t ∼ δ0 (1 + f0t) . (6.1)

This growth is linear in t, but the growth in δ from t0 to t leads to
no growth in ∆a, because the growth is along the direction of orbital
motion.
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Now suppose a short-lived significant perturbation acts on the mo-
tion at time t1, and that the velocity of the Kepler motion changes
direction significantly. The displacement δ1 at that time now does
have a significant component which is not along the new direction of
orbital motion. Thus the variation in semi-major axis is now

∆a1 ∼ δ1, (6.2)

and this leads to a difference in orbital frequency ∆f1 ∼ ∆a1f1/a1 at
time t1. Thus for t > t1, the displacement varies as

δ (t) ∼ δ1 + ∆a1f1 (t− t1) ∼ δ1 (1 + f1 (t− t1)) . (6.3)

This is again a linear growth, but with a different frequency and initial
perturbation. If a second strong perturbation occurs at time t2 > t1,
we can see from eqs.(6.1) and (6.3) that the displacement is

δ2 ∼ δ0 (1 + f0t1) (1 + f1 (t2 − t1)) , (6.4)

with a subsequent growth of similar form as Eq. 6.3. A schematic plot
of eqs.(6.1), (6.3) and (6.4) is given in Fig.6.1. The result qualitatively
resembles the numerical result of ?, Fig. 3. The main difference is that
their numerical result has a regular oscillation superposed on the trend
illustrated, because the motion in the numerical example is eccentric.

If the perturbations recur at roughly comparable intervals ∆t, and
if f does not change by a large factor, it can be seen that the displace-
ment at some large time t will be

δ (t) ∼ δ0 (1 + f∆t)t/∆t . (6.5)

In this way we see that the linear growth of Eq.(6.1) transforms into
exponential growth, and can easily estimate that the corresponding
Liapounov exponent is of order f if f∆t . 1. This means it is of
order the reciprocal of the crossing time. The case f∆t & 1 is also of
interest, and leads to a smaller estimate of order ln(f∆t) /∆t.

Up to a point we can think of a resonant three-body scattering event
as a prolonged sequence of perturbations of Kepler motion. As long as
the three bodies remain at comparable distances and are of comparable
mass the perturbations in any of the three two-body motions will be
of order 1 and will take place at intervals of order the crossing time.
Therefore, in accordance with the above discussion, the Liapounov
exponent will be of order 1/tcr, with tcr the crossing time.

Indeed the numerical examples of ? show that the separation of
neighbouring solutions grows roughly exponentially until dissolution of
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the resonance. The lifetime of the Pythagorean problem, for example,
is about 16 crossing times (Aarseth, 2003, p. 238), and the growth of
the separation of neighbouring solutions in this time is about 8.5 dex
(?). Thus the finite-time Liapounov exponent is of order 1/tcr.

If the evolution of the triple system is dominated by protracted
excursions of the third body, of order T � tcr, then the estimate will
decrease to one of order 1/T (in accordance with the result for the
case f∆t & 1, and neglecting a logarithm). Usually, the evolution is
a mix of prolonged excursions interspersed with periods of frequent
interplay (Szebehely, 1972), and the Liapounov exponent, λ, will be
intermediate between limits 1/T . λ . 1/tcr, where T is the duration
of the longest excursion.

The model we have used neglects the fact that there are, even in the
two-dimensional problem we have discussed, four components of the
deviation to take into consideration, i.e. two in configuration space
and two in velocity space. But the only one of these which can grow
secularly (between perturbations) is the component of δ along the or-
bit, and its growth is accounted for approximately in our model.

The result of the model (that the Liapounov exponent λ is of order
1/tcr for comparable masses) is consistent with the results in ?, who
considered the general N-body problem. This is rather independent
confirmation, as their model was based on assuming that the devi-
ation between neighbouring solutions grows as a result of two-body
encounters.

6.2.1 Generalization

The secular growth of a perturbation in a two-body system is pro-
portional to the difference in orbital frequency, ∆f , between the two
neighbouring solutions. Due to events such as close encounters (or
other events such as moments of significant mass loss (?)), the differ-
ence in orbital frequency will generally be a function of time, ∆f (t).
Every time ∆f changes, the subsequent growth of the perturbation is
linear, proportional to the new value of ∆f . In general we can write

δ (t) ∼ δ0 +

∫ t

0
∆f (T ) dT. (6.6)

If ∆f (t) is a constant, ∆f , we obtain Eq. (6.1) for linear growth of
the perturbation. Other types of behaviour are also possible. For ex-
ample, if ∆f keeps flipping sign, e.g. ∆f (t) ∼ sin (t), the integral will
be zero on average and we obtain no secular growth of perturbations.
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Exponential growth of perturbations is obtained if ∆f (t) grows expo-
nentially. As described in Sec. 6.2, this can be obtained if there is
a regular sequence of close encounters, e.g. changes in ∆f . We can
estimate a finite-time Liapounov exponent by equating Eq. (6.6) to
an exponential with Liapounov exponent λ, resulting in

λ (t) =
1

t
ln

(
1 +

C

δ0

∫ t

0
∆f (T ) dT

)
. (6.7)

Here C is a constant depending on the configuration and this approx-
imate expression will approach the Liapounov exponent at large t.

6.3 THE ONSET OF EXPONENTIAL DIVERGENCE

In the previous section we have shown that an event, such as a close
encounter with a third body, can cause the rate of divergence between
two neighbouring solutions to increase. The growth of an initially small
perturbation is thus related to the encounter history of the binary with
a third body. In this section we measure the growth of perturbations
using a map similar to those of ? and ?, with a kick function to model
the effect of encounters. The model is particularly adapted to a case
like that of Comet Halley, in which the masses of the perturbers are
small, unlike the case of comparable masses considered in Sec.2.

6.3.1 Map for Changes in Orbital Frequency

We are interested in the time evolution of the difference in orbital fre-
quency, ∆f , since this quantity drives the growth of perturbations.
We consider a system similar to the three-body system consisting of
the sun, Jupiter and Comet Halley. Each orbital period Halley will
encounter Jupiter at a certain distance, R, depending on the orbital
phase of Jupiter, φ. We define the kick function K(φ) to be the 2π-
periodic function that gives the change in orbital frequency δf as a
function of φ. Depending on the geometry of the configuration, differ-
ent kick functions are possible. A sawtooth-like function is appropriate
for the configuration under discussion (??).

The map is given by

φn+1 = φn + 2π

(
fJ
fn

)
(6.8)

fn+1 = fn +K(φn+1), (6.9)
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Figure 6.2: Illustration of the three types of behaviour for the growth of per-
turbations. The time evolution of the difference in orbital frequency ∆f between
two neighbouring solutions (left column) and the consequent growth or perturba-
tion (right column), are presented for three different encounter strengths µ = 10−8,
10−5 and 10−2. In the left column, the data is represented by a thin line if ∆f > 0
and fat otherwise.
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where φn is the phase (i.e. longitude) of Jupiter at the nth perihelion
passage, fn is the frequency of Halley after the nth perihelion pas-
sage, and fJ is the (constant) frequency of Jupiter. The times can be
obtained recursively from

tn+1 = tn +
1

fn
. (6.10)

Time is measured in years, f in yr−1 and semi-major axis, when we
need it, in AU. The orbital periods of Halley and Jupiter are given by
Ph ' 75.3 yr and PJ ' 11.9 yr respectively, and we use these values
to compute the exact starting value f0 = 1/Ph, and the value of fJ .
Note that they are approximately in a 3:19 resonance.

To study the separation of neighbouring solutions we construct the
tangent map, i.e. the linearisation of the above map, given by

∆φn+1 = ∆φn − 2π
fJ
f2
n

∆fn (6.11)

∆fn+1 = ∆fn + ∆φn+1K
′(φn+1). (6.12)

We see from eqs.(6.11), (6.12) that the change in ∆φ is a negative
multiple of ∆f , whereas if K ′ > 0 the change in ∆f is a positive
multiple of ∆φ. This interplay causes interesting behaviour as we will
illustrate in Sec.6.3.2 below.

When the right side of Eq.(6.12) is expressed in terms of ∆φn and
∆fn, it takes the form

∆fn+1 = ∆fn +

(
∆φn − 2π

fJ
f2
n

∆fn

)
K ′(φn+1). (6.13)

Combining with Eq.(6.11), we see that the matrix of the linearised
map is given by

A =

 1 −2π
fJ
f2
n

K ′(φn+1) 1− 2π
fJ
f2
n

K ′(φn+1)

 . (6.14)

This matrix has determinant one, showing that our map is symplectic
(i.e. area-preserving). Thus although the variables f, φ are not canon-
ical in the usual sense (energy and phase would be better), the map
preserves the main geometrical constraint of a canonical mapping. The
eigenvalues of A, which will be useful below, are

λ = 1− πfJ
f2
n

K ′ ±

√
π
fJ
f2
n

K ′
(
π
fJ
f2
n

K ′ − 2

)
, (6.15)
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Figure 6.3: The time until the first change of sign, τflip, as a function of the
strength of the perturbation, µ. The top dotted line marks the 10 kyr time of inter-
est, whereas the bottom dotted line marks the orbital period of Halley. Exponential
divergence occurs when τflip is smaller than the orbital period.

where K ′ = K ′(φn+1).
For numerical purposes we sometimes measure the difference be-

tween two solutions by a formula adapted from Eq.(6.6), whose right
side can be computed from

δn+1 = δn + C∆fn
1

fn
. (6.16)

Another technicality of these numerical calculations is that φn and
∆φn are stored mod 2π.

6.3.2 Linear Kick Function

We first consider the idealised case in which the kick function is the
2π-periodic function defined by the relation

K (φ) =
µ

2π
φ on [0, 2π) (6.17)
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with µ a free parameter. Note that the derivative of the kick function is
a constant (except at the discontinuity when φ is an integral multiple
of 2π). In this model every kick has the same contribution to the
growth of perturbation in the orbital frequency. This is approximately
the case when there is a regular sequence of similar encounters, i.e. φn
is almost independent of n, mod 2π.

We start with the initial values t = 0, φ = 0, ∆φ = 0 and ∆f =
10−9 (which corresponds to a ∆a ' 10−6). We vary the value of
µ = 10−8, 10−5 and 10−2 to model encounters of different strengths. In
Fig. 6.2 we plot the time evolution of ∆f (top row) and the consequent
growth of perturbation (bottom row) through Eqs. (6.8)–(6.16).

For the weakest perturbations no variation in ∆f is detectable on
the scale of the plot, thus we get a linear growth of the perturbation.
The data points which are also plotted in this panel (bottom left) are
data from a numerical simulation where we integrated the orbit of
Halley around the sun without perturbers. A good fit is obtained for
a proportionality constant C = 20 (see Eq. 6.7). Although this value
has no particular significance, it gives an impression of how the simple
model we are considering may apply to Halley, and we use it in the
remainder of this study.

If we make the perturbations somewhat stronger (Fig. 6.2 central
panels) we observe an oscillatory behaviour such that the perturbation
in ∆f never exceeds its initial value but alternates in sign. To under-
stand this oscillatory behaviour better, we compute the eigenvalues of
the matrix A. From eqs.(6.15) and (6.17) we readily find that

λ = 1− µfJ
2f2
n

±

√
µfJ
2f2
n

(
µfJ
2f2
n

− 2

)
(6.18)

' 1± i

√
µfJ
f2
n

(6.19)

when |µ| � 1. This shows that the evolution is expected to be os-
cillatory (if µ > 0), and the period (in years) is given approximately
by

P =
2π√
µfJ

, (6.20)

which gives a value of 6854 yr for µ = 1 × 10−5, i.e. very consistent
with what would be inferred from Fig.6.2 (middle column).

For the strongest perturbation (Fig. 6.2 right panels) we observe ex-
ponential growth of perturbations. This growth saturates at log10 δ ∼
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0 since the growth is limited by ∆φ < 2π. In other words, the pertur-
bation has grown to the size of the system. We observe again the sign
flipping of ∆f , however this time it occurs after every orbital period.
The exponential growth is explained again by Eq.(6.18), which shows
that the eigenvalues λ are real if

µ >
4f2
n

fJ
=

4PJ
P 2
h

' 0.0084. (6.21)

Also, their product is unity, and so one eigenvalue has magnitude
|λ| > 1, resulting in exponential growth.

To understand the relation between the period of the oscillatory
behaviour and the secular growth of perturbations in more detail, we
plot in Fig. 6.3 the time to the first change of sign. (Note that this will
be 0.25P , in the notation of Eq.(6.21), as it is evident from Fig.6.2,
central column, that the oscillation starts at maximum.) First, we ob-
serve that towards increasing values of µ, the flip time scale decreases
as τflip ∼ µ−1/2, as predicted in Eq.(6.20). To the left of the verti-
cal, dashed line at log10 µ ∼ −6.5, the period is longer than 10 kyr,
so that on such a time scale we observe a constant ∆f and a linear
growth of perturbation. In between the two vertical dashed lines we
observe oscillatory behaviour with decreasing period. A transition in
the behaviour occurs once the period is of the order the orbital period
of Halley (marked by vertical dashed line at log10 µ ' −2.4). The
critical value of µ ' 0.004 and for larger values we obtain exponential
growth of perturbations. The theoretical prediction that exponential
growth occurs for µ >∼ 0.0084, i.e. log10 µ >∼ −2.08, is consistent with
the numerical data plotted in Figs. 6.2 and 6.3.

6.3.3 Saw-tooth Kick Function

In a more realistic kick function there will be both weak and strong
encounters present. We use the following derivative of the kick function

dK (φ)

dφ
=
µmax
2π

, φ < φc, (6.22)

dK (φ)

dφ
=
µmin
2π

, φ ≥ φc. (6.23)

To investigate transitions in the rate of divergence we take our map
from Sec. 6.3.1, and vary the free parameters in the kick function
(µmax, µmin) as follows: (10−2. 10−5), (10−2. 10−8) and (10−5. 10−8).
These pairs of values correspond to the different regimes of behaviour
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Figure 6.4: Transitions in the rate of divergence as a consequence of the close en-
counter history between Halley and Jupiter. The close encounter times are marked
by the vertical dotted lines. The panels illustrate different types of transitions:
oscillatory to exponential (top), linear to exponential (middle) and linear to oscil-
latory (bottom).
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(see Fig. 6.3). We create a small window for the strong perturbations
to occur by setting φc ∼ 0.3, which corresponds to a periodic sequence
of roughly two or three strong encounters1. We illustrate the results
belonging to the encounter history given by φ0 = 0 in Fig. 6.4. The
close encounter events are marked by the vertical, dotted lines.

In the left panel, the growth of the perturbation starts out oscilla-
tory (µ = 10−5). After about 4 kyr there is a sequence of three close
encounters causing the characteristic accumulation of power laws or
“hops” in the divergence as explained in Sec. 6.2. Once these encoun-
ters are over however, the growth becomes oscillatory again.

In the central panel of Fig. 6.4 we observe a similar behaviour,
but instead of the oscillatory behaviour we have a linear growth since
µ = 10−8 in those intervals. It is clear from these examples that these
transitions are caused by a sequence of close encounters. Finally, in
the right panel we observe a transition from power law to oscillatory
divergence which effectively produces no secular growth.

6.3.4 Liapounov Time

A characteristic time scale for divergence is somewhat difficult to de-
termine for a solution showing transitional behaviour. Once a solution
does diverge exponentially it does so with a rate that depends on the
strength of the perturbation and the density of close encounters.

To estimate a lower limit for the Liapounov time, we set the orbital
period of Halley to Ph = 76 yr and that of Jupiter to PJ = 12 yr,
so that they are exactly in a 3:19 resonance. Therefore, if Halley
once experiences a close encounter with Jupiter, it does so every three
orbital periods. We use the saw-tooth kick function with µmin = 10−8

(linear growth) and we vary µmax in the exponential regime to measure
the Liapounov time as a function of the strength of the perturbation.
We measure ∆f (t) using the map from Sec. 6.3.1 and calculate the
approximate Liapounov time using Eq. 6.7, evaluated at the moment
when the perturbation δ = 1. We show the result in Fig. 6.5.

The variation in the Liapounov time decreases as µ increases through
the critical value corresponding to log10 µ ' −2.08, i.e. the transition
from periodic behaviour to exponential growth (dashed, green line).
From values exceeding a thousand years it quickly drops to a value
of the order the orbital period of Halley (blue, horizontal line). Very

1There is a small drift in the orbital phase because Halley and Jupiter are
not exactly in a 3:19 resonance. In fact 3Ph − 19Pj = 0.2yr if Ph = 75.3yr and
Pj = 11.9yr. It is then easy to see that these sequences of close encounters recur
at intervals of about 4.5kyr.
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Figure 6.5: Estimated Liapounov time as a function of encounter strength, for a
configuration where Jupiter and Halley are in a 3:19 mean motion resonance. The
horizontal dotted line gives the orbital period of Halley, and the vertical dashed
line marks the critical value of µ as derived in Eq. 6.21.
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strong perturbations decrease the Liapounov time to values as low as
30−40 yr. What intuitively seemed like a very short time scale for the
exponential growth, actually follows naturally from the recurrence of
close encounters in time and the strength of each perturbation. The
saturation at low values of µ is due to the finite integration time,
whereas the small scatter along the curve is due to errors in calculat-
ing the Liapounov time from Eq. 6.7 and the slight variation in the
final value of δ < 1.

It must be stressed that these estimates of the Liapounov time are
based on the artificial imposition of a resonance ensuring that close
encounters recur at every third perihelion passage, i.e. every 228yr.
Their frequent recurrence will also ensure that f changes, throwing the
system out of resonance and increasing the Liapounov time. For exam-
ple, in the situation shown in Fig.6.4, corresponding to the present-day
periods, close encounters recur on average once every 1.5kyr. Further-
more we have focused on the case in which µ > 0. In case µ < 0 we
can see from Eq.(6.18) that the eigenvalues of A are always real, giving
exponential growth. When −1 � µ < 0, the Liapounov time can be
estimated from

TLiapounov '
1√
−µfj

. (6.24)

In reality, the kick function K(φ) is approximately a saw-tooth func-
tion, as we have been assuming, but there is a significant difference.
Since it is a periodic function, its derivative cannot always be pos-
itive. Indeed, as shown by ?2 K(φ) (the kick due to Jupiter) is an
increasing function of φ, except for a small range of φ in which K ′ < 0.
Thus K resembles the function considered in this section, except that
µmax < 0. (The “max” may be taken to refer to the magnitude of
µ.) It therefore seems likely that most encounters are of what we
have called the oscillatory type, while there is a minority in which the
behaviour is of exponential type.

6.4 N-BODY SIMULATIONS OF HALLEY’S ORBIT

In this section we describe several experiments in which we perform a
series of N-body simulations to measure the growth of an initial per-
turbation in Halley’s orbit. We model the dynamical evolution of the
solar system according to Newtonian dynamics, in which the bodies

2Their kick function F is defined as the change in twice the binding energy of
Halley, and the binding energy is an increasing function of f . Therefore F and K
have the same sign for a given phase.
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are mathematical point-particles. Non-gravitational effects, such as
radiation pressure from the sun, Halley’s mass loss due to the inter-
action with the stellar wind or internal processes, are neglected. This
makes our results less realistic, but for our study on the origin of chaos
in Halley’s orbit, the gravitational interaction with the sun and plan-
ets is sufficient. Relativistic effects, especially the orbital precession of
Mercury, will also be neglected. Its influence might become important
were it to be shown that Mercury affects the chaoticity of Halley in
the Newtonian limit.

We use the N-body code Brutus (?), that solves the N-body problem
to a pre-defined precision. To make sure that numerical errors do not
bias our results, we vary the precision until convergence as described
in ?.

The dominant force in Halley’s motion is the sun. Small perturba-
tions are superposed due to the interactions with the planets. solar
system bodies smaller than the planets are unlikely to be the cause of
chaos in Halley’s orbit. We therefore only consider the sun, the eight
planets and Halley in our N-body simulations. We obtain the initial
conditions from the JPL Horizons database 3.

The orbital elements of Halley are known to about six decimal places
(?). Two initial realizations which differ within the observational un-
certainty are both equally valid representations of the system. When
we measure the growth of perturbations, we will use the fiducial initial
realization and compare it to a perturbed initial realization in which
a single coordinate (usually the x-coordinate of Halley) is perturbed
by 10−6 AU (similar as in ?).

6.4.1 Phase Space Distance

A wide variety of methods are available to measure the rate of diver-
gence for a particular orbit (e.g. variational equations (?) or finite-
time Liapounov exponent (e.g. ?). We adopt a simple, direct approach.
We take a fiducial initial condition for a certain system of bodies. This
initial condition is integrated with a pre-determined precision until the
end time. We also take the perturbed initial condition, where we trans-
late the position of Halley along the x-direction by the observational
uncertainty 10−6 AU. This new initial realization is also integrated
with the same precision, until the end time. The phase space distance
as a function of time between these two solutions is calculated similar
as in ?

3http://ssd.jpl.nasa.gov/, JDCT = 2456934.5 = A.D. 2014-Oct-04 00:00:00.0000
(CT)
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Figure 6.6: Divergence between neighbouring solutions in the N = 3 sun, planet
and Halley system. We show a subset of solutions to illustrate the different be-
haviour when we vary the initial orbital phase of the planet around the sun. As
a consequence, every solution has a different encounter history with that planet.
Mercury, Uranus and Neptune do not influence Halley’s chaoticity significantly.
The other planets are able to cause exponential growth, most notably Jupiter and
Venus.
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δ2
A,B =

N∑
i=1

6∑
j=1

(qA,i,j − qB,i,j)2 . (6.25)

Here q denotes the phase space coordinate for solutions A and B. The
sums are over all particles and their phase space coordinates.

If two solutions with the same initial realization are compared, but
they were obtained with different precisions, numerical divergence
might distort the physical rate of divergence. Therefore, we always
compare solutions integrated with the same precision, but with a small,
physical perturbation in the initial conditions.

6.4.2 Three-body Divergence: sun, planet and Halley

We already showed some results of our simulations in Fig. 6.2 (bottom
left panel), where we integrated a two-body system consisting of the
sun and Halley. This result confirms the linear growth of perturbations
in two-body systems.

We now introduce a perturbing planet to the system. For each
planet we generate an ensemble of a thousand initial conditions, where
we vary the initial orbital phase of that planet. In every subsequent
integration, Halley will experience a different encounter history with
the planet, which should produce different rates of divergence as was
already illustrated in Sec. 6.3. We show a subset of illustrative cases
in Fig. 6.6.

We first observe the results by Jupiter. The rates of divergence vary
widely. There are solutions which stay almost constant within a time
span of 104 years (yellow curve). In the other extreme are solutions
that grow exponentially and have completely diverged within a few
thousand years (blue, green and red curves). In between, there are
solutions with different kind of transitions in the divergence. After an
initial flat phase of a certain duration, a transition to an exponential
growth is possible (red and purple curves), but it is also possible for
this exponential growth to convert into a power law divergence (cyan
curve).

The influence of Saturn on Halley’s stability is less strong, but some
solutions still grow exponentially for a few thousand years, after which
they make a transition to a power law divergence. The magnitude of
the perturbation never really becomes the size of the system. The
slope in the exponential part of the blue curve is also shallower than
the slope in Jupiter’s results. The remaining outer planets show a
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power law growth and thus have a negligible contribution to Halley’s
chaoticity.

The influence of the terrestrial planets varies. Mercury shows reg-
ular behaviour irrespective of its encounter history with Halley. It is
therefore likely that relativistic effects are unimportant for the chaotic-
ity of Halley’s orbit. Venus on the other hand shows a variety of solu-
tions similar to Jupiter. The most rapid growing solution looks similar
to the one of Jupiter. The majority of Earth and Mars solutions show a
power law divergence superposed with periodic variations. Note how-
ever, that they are able to generate a rapid rate of divergence in some
situations.

6.4.3 Hopping Between Planets

In this experiment we do not randomize the initial orbital phase, but
we take the fiducial initial conditions so that we can measure the actual
encounter histories of the planets with Halley. We consider the 3-
body systems including the sun, a planet and Halley, to measure the
independent rates of divergence. Based on the results of Sec. 6.4.2,
we neglect Mercury, Uranus and Neptune. We compare these results
with a simulation including all the relevant planets collectively. The
results are given in Fig. 6.7. We averaged the data over bins of two
orbital periods to reduce the short term oscillatory behaviour.

We observe that only Venus (green curve) and Jupiter (yellow curve)
produce an exponential divergence. Initially the perturbation due to
Venus dominates, but it is overtaken by Jupiter after about 3000 years.
The solution including multiple planets (black curve), follows this tran-
sition, first following the perturbations due to Venus and then hopping
onto the perturbations by Jupiter. Other effects are present since the
black curve does not lie perfectly on top of the green and yellow curves.
The superposition of independent growth rates is however a reasonable
approximation in this example.

From the time evolution of the perturbation in the complete system
(black curve) we calculate the average Liapounov time up to the point
where δ = 1 resulting in 299 yr ± 62 yr, where the uncertainty is the
standard deviation in the variation of the Liapounov time from t = 0
onwards.

To investigate the dependency on the direction of the perturbation,
we varied the initial perturbation in Halley’s orbit to lie along the x, y
or z-direction. We find that in each case Venus is dominant for at least
3000 yr. For the y-direction, Venus remains dominant up to 4000 yr.
The rate of divergence due to Venus depends sensitively on Halley’s
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Figure 6.7: Growth of perturbations in time for the different planets indepen-
dently and with the planets collectively (fat curve). Up to 3000 years, Venus is
the dominant perturber of Halley’s orbit. Then a transition occurs and Jupiter
becomes the main perturber. The transition in the rate of divergence for the solu-
tion including all planets is explained by the superposition of independent rates of
divergence of the planets.

orbit. We also performed a similar experiment where we integrated
backwards in time. We find that both Venus and Jupiter show an
exponential divergence, reaching log10 δ = 1 after 3− 4000 yr.

6.4.4 Ensemble Simulations

In the previous section we varied the perturbation in Halley’s orbit
along three different directions in space. In this experiment we want
to vary the perturbation in all directions in space. Instead of com-
paring a fiducial and a perturbed solution, we take an ensemble of
a hundred Halley-like objects, which are distributed around the fidu-
cial initial position, in a three-dimensional Gaussian distribution with
a dispersion of 10−6 AU. This eliminates any chance effects of pre-
ferred spatial directions. We only consider the perturbations due to
the sun and Jupiter. Starting points are the current positions of the
sun, Jupiter and Halley. The simulations are done with the Huayno
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integrator (?). To study the influence of the strength of the pertur-
bations, we vary the mass of Jupiter by multiplying it by a factor
ranging from zero to five. We measure the spread in the positions of
the Halley-like objects, i.e. the standard deviation in the position of
the ensemble, as a function of time.

We observe in Fig. 6.8 that if the planet has zero mass, we get
a linear growth in the dispersion of the positions of the swarm, as
expected from the imposed distribution in orbital periods. For small
Jupiter masses, i.e. a mass smaller than the actual Jupiter mass, we get
a sub-linear growth with an oscillatory behaviour, which we now can
understand from our previous analysis to be due to the weak encounter
nature of the interactions. Comparing the cases of 0.2 × Mjup and
0.5 ×Mjup we see that the mass of Jupiter is of little influence, until
there is a strong perturbation, which happens after 9000 yr for half
of Jupiter’s mass (red curve). The increase in mass versus 0.2×Mjup

remarkably does not increase the growth at all by weak perturbations
before that time, it is just increasing the probability of eventually
encountering a strong interaction. For heavier Jupiters (i.e. 1×Mjup

and heavier), we obtain a rather fast exponential divergence due to
prompt strong interactions.

Note that the experiment conducted here considers the evolution
of an ensemble of Halley-like objects, but the results equally apply
to a swarm of objects (e.g. the result of an asteroid collision or dust
emitted from a cometary nucleus). This means that in configurations
where the orbit does not encounter strong interactions, but is affected
by weak perturbations such a swarm will survive as a coherent group
longer than might be expected from the linear spreading with time.

6.5 DISCUSSION AND CONCLUSIONS

6.5.1 The Liapounov Time

Previous studies have considered the value of the Liapounov time for
the growth of perturbations in Halley’s orbit. ? gave an estimate of
a lower bound of 34 yr for the Liapounov time, and our estimate is
consistent with this. Our estimate is, however, inconsistent with the
results of ?, who found a value around 70 yr. This was based on an
initial perturbation in the y-coordinate of Halley, but they also gave re-
sults for an initial perturbation in the x-coordinate (their Fig.7) which
would give a Liapounov time only slightly longer. We note, however,
that their plot of the growth of the deviation between two orbits (their
Fig.6) indicates growth in δ (their measure of the separation of two
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Figure 6.8: Growth of the spread in position of an ensemble of Halley-like objects.
We vary the mass of Jupiter by multiplying it by a fraction given in the legend. We
reproduce the linear, sub-linear and exponential growth, depending on the strength
of the perturbation.
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orbits) by about 5 dex in 3.5 kyr, implying a Liapounov time of order
300 years, very similar to ours. Our value for the growth in the sepa-
ration of two orbits in 3.5 kyr is similar to theirs (see Fig.6.7), and so
we suspect an error in their computation of the Liapounov time from
correct data.

The Liapounov time of Halley’s Comet is determined principally by
perturbations due to Venus and Jupiter (Fig.6.6). The influence of
Earth, Mars and Saturn is smaller during the next few millennia, and
that of Mercury, Uranus and Neptune is negligible. The comparable
importance of Jupiter and Venus could not have been guessed from
their relative masses. The surprising fact that the mass of a planet
does not directly measure its influence on the Liapounov time is il-
lustrated in the very interesting calculations of the kick function (as
a function of phase φ) by ?, their Fig.2. That due to Venus has a
maximum value about one hundredth of the maximum kick due to
Jupiter, which is roughly in proportion to their mass, even though
these two planets contribute roughly equally to the Liapounov expo-
nent for Halley. The reason for this is the contribution also depends
on the distance of closest approach. This is made apparent by the fact
that the divergence caused by these two planets depends strongly on
the initial phase (Fig.6.6 again). Indeed ? draw attention to a forth-
coming relatively close encounter with Jupiter after about 3.4 kyr,
and its influence is visible in Fig.6.7. We drew attention to the impor-
tance of a near-resonance in the motions of Halley and Jupiter, and its
importance for the growth of divergence between neighbouring orbits
(Fig.6.4), and for different planets such configurations will occur at
different periods, as the orbits of the system evolve. The importance
of Venus to Halley’s chaoticity can be explained by noting that Halley
crosses the orbital plane of the solar system close to the orbit of Venus.

Much of our focus in Sec.6.3 was on the parameter µ, which measures
the derivative of our kick function K(φ). This also can be estimated
from the results of ?, bearing in mind that their kick function F (x)
is the change (per perihelion passage) in twice the binding energy of
Halley, as a function of x = φ/(2π). For Venus the largest value of
|F ′| occurs over a range of x of order 0.1 in which F decreases between
values of about ±0.5× 10−4. Thus we estimate F ′ ' −10−3, and infer
that K ′ ' −10−5, though care has to be taken with the different units
used in the two studies. This results in µ ' −6 × 10−5 and so, using
Eq.(6.24), we estimate that the corresponding Liapounov time is of
order 400 yr. This is of the correct order to account for the most rapid
growth in Fig.6.6 (second panel), but it would only occur for phase
values within a fairly narrow range. For Jupiter, similar estimates give
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a Liapounov time an order of magnitude smaller, again over a similar,
limited range of phases. For Venus there is actually another larger
range of phase with K ′ < 0, but |K ′| is smaller than the estimate we
have given, and the Liapounov time correspondingly longer. For both
planets the magnitude of K ′ is smaller than these upper limits, and
so when K ′ > 0 Halley remains in the regime of oscillatory “growth”
(Sec.6.3). When the phases are such that this occurs, it is interesting
to note that these perturbations make Halley more stable compared
to having no perturbations at all.

Even neglecting the other planets, Venus and Jupiter clearly both
contribute strongly to the growth of the divergence between neighbour-
ing orbits. Fig.6.7 illustrates that a sort of superposition principle is
approximately valid. It can be seen that the yellow curve for Jupiter
alone does not rise quickly immediately, but only after about 2 kyr.
The green curve due to Venus gives the opposite behaviour, from a
transition from rapid growth to one of slower growth. Meanwhile the
black curve (for the entire planetary system) exhibits a transition from
the green onto the yellow curve, much as if the two latter effects were
superposed. The rate of divergence of the collective system will closely
follow that of the most rapidly diverging individual perturbation.

Many factors have been ignored in our work. As shown by ?, Fig.
5, the kick functions are not constant in time. Small variations in
the orbital elements alter the maximum value of the derivative of the
kick function. The Liapounov time changes in time. In this work the
changes in ∆f were assumed to be mainly caused by close encounters
with a planet. Our model is however more general and other events
could cause a change in the orbital frequency as well. For example,
Halley lost a significant amount of mass during an event in 1991 (?),
the origin of which is unknown. Even though the mass loss will be the
same in both neighbouring solutions, the difference in orbital elements
will cause the effect of the mass loss event to be slightly different.

6.5.2 Conclusions

The orbit of Comet Halley is chaotic (????) with a Liapounov time
which we find to be 299±62 yr (measured over approximately the next
4 kyr). The aim of this study is to understand the origin of chaos in
Halley’s orbit and its relatively short Liapounov time.

We present a model to explain the origin of chaos in few-body sys-
tems with comparable masses. We start by considering a two-body
system. As is well known, in this system the difference between two
solutions grows linearly, proportional to the difference in orbital fre-
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quency, ∆f , between the two solutions. When more than two bodies
are present, a sequence of events (e.g. close encounters with a third
body) changes ∆f . A sequence of strong encounters produces an ac-
cumulation of power laws which resembles exponential growth.

Next we develop a model better adapted to the case of Comet Halley,
where the perturbations are almost always weak, because the masses of
the planets are small and very close encounters are rare. This model
uses a map to describe the evolution of ∆f in Halley’s orbit. For
very weak perturbations, ∆f remains roughly constant, which results
in a linear growth of perturbation or weak exponential divergence,
depending on the sign of the perturbation. For somewhat stronger en-
counters the perturbation shows either oscillatory behaviour without
secular growth (thus making Halley’s orbit more stable in a sense),
or exponential growth, again depending on the sign of the perturba-
tion. Above a certain threshold in the size of the perturbation, we
demonstrate that a sequence of close encounters is able to produce
exponential growth, irrespective of the sign of the perturbation, with
a Liapounov time of order the orbital period of Halley.

To calculate the growth of perturbations in Halley’s orbit more ac-
curately, we perform numerical N-body integrations. We find the sur-
prising result that Venus is the dominant cause of chaos in Halley’s
orbit (see Fig. 6.7).
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Future Directions

Several directions in the field of research of N-body systems and sim-
ulations are discussed, where further improvement is necessary. The
first one is speed of N-body simulations in order to be able to handle
large systems such as globular clusters. Especially the presence of bi-
naries causes a major slow down. The second direction is precision,
which is crucial when simulating systems including millisecond pulsars
for example. Through high precision observations and simulations we
can test theories of gravity to many decimal places. Finally, a better
understanding of the quasi-ergodic property of gravity and the growth
of perturbations will provide clues for designing new N-body methods
and a more fundamental understanding of gravity and the evolution
of dynamical systems.

7.1 SPEED

The first N-body simulations in the 1960s calculated the orbits of a
few dozen stars (von Hoerner, 1960; Aarseth, 1963; ?). Each decade
later, this number increased by an order of magnitude, due to advances
in computer hardware (?). The first star by star simulation of a rich
globular cluster, with nearly half a million stars, has been completed
recently (?), and now we are on the brink of the first such simulations
with a million bodies (?). The comparison between a million-body star
cluster simulation and observations of globular clusters, will involve
less assumptions than comparing with simulations of a smaller number
of bodies. For example, the relaxation time of a cluster depends on
the number of bodies, and also rare events, such as collisions between
stars or the fraction of exotic objects in the cluster, such as pulsars
and black holes, depend on the number of bodies in the system.

The development of N-body methods is still an ongoing process,
since there are certain types of configurations that are still hard to
simulate efficiently. For example, star clusters are born with a frac-
tion of primordial binary stars (?). The ratio between the crossing
time of the cluster and the orbital period of a binary can be as high
as six orders of magnitude. Integrating these systems directly is very

117



118 CHAPTER 7. FUTURE DIRECTIONS

computationally expensive. Approximation schemes, such as replace-
ment by a center of mass body or nearest-neighbour methods (Aarseth,
2003), have to be implemented to be able to integrate these systems
at all. Handling binary and higher-order systems in star clusters is
challenging and new methods have to be constructed to improve the
performance, while maintaining sufficient accuracy..

7.2 PRECISION

Some dynamical systems can be observed very precisely. The orbit of
Halley’s Comet for example, is known to about six decimal places (?).
Since the comet is relatively nearby, it was possible to sent a spacecraft
in 1986 to explore the comet from up close. Another example is that
of a system including a pulsar. Pulsars are fast rotating neutron stars
from which we receive a signal twice every rotational period (?). The
timing of these signals can be precise up to 15 decimal places, making
them one of the most accurate clocks in nature (?). Variations in these
timing measurements are caused by internal processes in the pulsar,
but can also hold information about its dynamical environment.

These precise systems need to be modelled using both accurate phys-
ical models and integration techniques. Starting with Newtonian dy-
namics and a precise N-body integrator such as Brutus (?), the simu-
lation data can be compared to the observations. If there are residuals
left in the comparison, higher-order effects have to be taken into ac-
count to solve for them. These could be relativistic effects in systems
with high masses or large velocities, finite size effects if objects ap-
proach each other closely, or simply reducing the effect of numerical
errors. Through studies such as these, and applying them to systems
of extreme gravity including pulsars or black holes, we can test theories
of gravity to high precision.

7.3 RELIABILITY AND CHAOS

In this thesis, we investigated the reliability of numerical integration
for a subset of three-body systems (?). The fact that we confirm the
preservation of statistics under divergence of solutions, does not guar-
antee that other N–body systems do the same (?). Starting with a
four-body system, one body can escape, leaving behind a three-body
system. The configuration of this three-body system however, is prob-
ably different than the three-body systems we investigated. Therefore,
in principle, every value of N should be tested independently.
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Such studies can only show whether the results from N-body simu-
lations are correct in a statistical sense. They do not however, explain
why this is the case. More theoretical work is needed to understand
the quasi-ergodic behaviour of gravity (?). For what type of systems
does it hold, and are there systems for which it breaks down? This last
case would be particularly interesting, because results of simulations
of such systems would have to be reconsidered.

Some light in this largely unexplored field of research, might be shed
by investigating a related topic on the dynamical stability and growth
of perturbations in dynamical systems. In this thesis, we started by
constructing a model for the growth of perturbations, explaining both
regular and chaotic behaviour in the orbit of Halley’s Comet (Boekholt
et al., In prep.). This study should be expanded by including more gen-
eral orbits and configurations. By understanding how perturbations or
errors propagate through a dynamical system, we will also be in a bet-
ter position to design new N-body methods, which are adapted to our
understanding of error growth. Apart from improving our simulation
methods, it will also provide us with a more fundamental understand-
ing of the way gravity works, which will lead to a better understanding
of the evolution of dynamical systems in the universe

The field of N-body methods and simulations has become increas-
ingly important for astronomers. It has improved our understanding
of dynamical systems, and it will continue to make a significant impact
in astronomy. In this age of big data, where many large surveys, such
as the Gaia mission1, will acquire more complex and deeper observa-
tions, more sophisticated and realistic modelling is required, in order
to interpret the observations from a dynamical point of view (?).

1http://sci.esa.int/gaia/
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A., eds, IAU Symposium Vol. 236 of IAU Symposium, On the Lya-
punov exponents of the asteroidal motion subject to resonances and
encounters. pp 15–30

Shimada M., Yoshida H., 1996, Publications of the Astronomical So-
ciety of Japan, 48, 147

Simon L., 1986, La Recherche, 17, 854
Smirnov N., 1948, The Annals of Mathematical Statistics, 19, 279
Smith Jr. H., 1979, Astronomy and Astrophysics, 76, 192
Spitzer L., 1987, Dynamical evolution of globular clusters
Sussman G. J., Wisdom J., 1992, Science, 257, 56
Szebehely V., 1972, Proceedings of the National Academy of Science,

69, 1077
Szebehely V., Peters C. F., 1967, Astronomical Journal, 72, 876
Tanikawa A., Hut P., Makino J., 2012, New Astronomy, 17, 272

125



Urminsky D., 2008, in Vesperini E., Giersz M., Sills A., eds, IAU Sym-
posium Vol. 246 of IAU Symposium, On the Calculation of Average
Lifetimes for the 3-body Problem. pp 235–236

Urminsky D. J., 2010, Monthly Notices of the Royal Astronomical
Society, 407, 804

Urminsky D. J., Heggie D. C., 2009, Monthly Notices of the Royal
Astronomical Society, 392, 1051

Valtonen M., Karttunen H., 2006, The Three-Body Problem
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Nederlandse
Samenvatting

”Ik denk vaak dat de nacht levendiger en kleurrijker is dan de dag.”

– Vincent van Gogh

DYNAMISCHE SYSTEMEN

In het heelal is een oneindig aantal voorbeelden van dynamische sys-
temen aanwezig. Elk systeem dat bestaat uit een verzameling van
objecten, ook wel lichamen genoemd, die bewegen door ruimte en tijd
onder de invloed van hun onderlinge krachten, is een geldige kandidaat.

Ons zonnestelsel is een bekend voorbeeld bestaande uit verschil-
lende soorten lichamen. We hebben de zon in het midden (Copernicus,
1543), de planeten in ellipsbanen rond de zon (Kepler, 1609), manen
in banen rond de planeten (Galilei, 1610), en dan zijn er nog zeer veel
relatief kleine lichamen, zoals asteröıden en kometen (Halley, 1705)
(zie Fig. 1.1, bovenste paneel).

Deze hemellichamen hebben allemaal één ding gemeen, ze hebben
allen massa. Sinds het baanbrekende werk van Newton (1687), weten
we dat lichamen met massa elkaar aantrekken. Elk object voelt de
aantrekkingskracht van alle andere objecten. Het gevolg is dat ons
zonnestelsel niet statisch is, maar evolueert, omdat alle lichamen be-
wegen. Als alle lichamen bewegen, dan is het ook mogelijk dat twee
van hen rakelings langs elkaar heen scheren, zoals komeet Halley en de
aarde in 1910.

Een ander voorbeeld van een dynamisch systeem is een cluster van
sterren, ook wel een bolhoop genoemd (zie Fig. 1.1, onderste paneel).
Het merendeel van de lichamen in zo’n systeem is een gewone ster,
maar vaak komen er ook exotische objecten in voor, zoals neutronen-
sterren en zwarte gaten. Een bolhoop is anders dan ons zonnestelsel,
omdat er nu niet één dominante massa aanwezig is (de zon is duizend
keer zwaarder dan alle planeten in ons zonnestelsel bij elkaar), maar
alle massa’s zijn nu gelijkwaardig. Dit zorgt voor een andere dynamica
en evolutie van het systeem als geheel.

Het aantal sterren varieert per bolhoop, van enkele tientallen tot
miljoenen. Het aantal is belangrijk omdat het invloed heeft op de
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banen van de sterren. Stel dat onze zon zich in een cluster van sterren
bevindt (men denkt dat dit zo was toen de zon nog jong was (Mart́ınez-
Barbosa et al., 2015; J́ılková et al., 2015)), en er is alleen maar een
handjevol andere sterren aanwezig, dan is de aantrekkingskracht van
elke ster op de zon een significante fractie van het totaal. Als er echter
een miljoen andere sterren aanwezig zijn, is elke individuele contributie
nietig. Het gevolg is dat de baan van de zon bepaald wordt door
alle sterren als geheel, waardoor de baan gladder is en op een langere
tijdschaal verandert. Deze tijdschaal wordt ook wel de relaxatietijd
genoemd (Chandrasekhar, 1942) en geeft de typische tijdschaal voor
een bolhoop om zijn structuur te veranderen.

In de kernen van massieve bolhopen worden interacties tussen en-
kele sterren echter weer belangrijk. Vooral drie-lichamen interacties
vormen een categorie op zich. Door de hoge dichtheid in massieve bol-
hopen, kunnen drie sterren zo dicht bij elkaar komen, dat ze voor een
relatief korte tijd effectief gëısoleerd van de rest van het systeem zijn.
Deze drie sterren wisselen energie uit en het kan gebeuren dat één van
de drie sterren genoeg energie steelt van de andere twee sterren, zo-
dat het genoeg bewegingsenergie heeft om uit de kern van het cluster
te schieten. De overgebleven twee sterren hebben energie verloren en
raken gebonden aan elkaar. Ze vormen samen een twee-lichamen sys-
teem, oftewel een dubbelster (Szebehely, 1972). Deze dubbelster zal
weer interacties aangaan met de andere nabije sterren, waarbij het be-
wegingsenergie weggeeft. Dit zorgt ervoor dat de structuur in de kern
van de bolkoop verandert. Veel theoretische en numerieke studies zijn
er gedaan van de precieze energie-uitwisseling tussen enkele en dubbel-
sterren in bolhopen (bijvoorbeeld Heggie, 1975; Hut & Bahcall, 1983;
McMillan & Hut, 1996; Boekholt et al., 2015).

Planetaire systemen, bolhopen en drie-lichamen systemen zijn maar
enkele voorbeelden van dynamische systemen in het heelal. Er zijn er
nog veel meer, bijvoorbeeld sterrenstelsels die bestaan uit miljarden
sterren, of kernen van sterrenstelsels die een supermassief zwart gat
bevatten. Van al deze systemen zijn er enkele dingen die we graag
zouden willen weten. Om precies te zijn, hoeveel en wat voor type
lichamen zijn er aanwezig in het systeem, hoe zijn ze verdeeld in de
ruimte, hoe verandert de globale structuur in de tijd en hoe zal het
systeem tot zijn einde komen? Als een specifiek voorbeeld nemen we
weer ons zonnestelsel, maar we beschouwen alleen de zon en de pla-
neten. De massa’s, posities en de snelheden zoals ze vandaag de dag
zijn, zijn heel precies gemeten. Eén van de open vragen is hoe de ba-
nen van de planeten evolueren over een tijdschaal van miljarden jaren.
Sommige studies laten zien dat het zonnestelsel altijd min of meer het-
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zelfde zal blijven, oftewel het zonnestelsel is stabiel (Ito & Tanikawa,
2002). Andere studies concluderen dat het mogelijk is dat de banen
significant kunnen veranderen, wat kan resulteren in botsingen tussen
planeten (Laskar & Gastineau, 2009) of een planeet die het zonnestel-
sel uitgeschoten wordt (Laskar, 2008). Om de oorsprong en evolutie
van dynamische systemen te onderzoeken, hebben we een wiskundig
model nodig dat het gedrag van bewegende lichamen beschrijft.

HET N-LICHAMEN PROBLEEM

Newton (1687) definieerde een wiskundig model, genaamd het N-body
(N-lichamen) probleem, dat het volgende beschrijft: stel we hebben
een dynamisch systeem van N lichamen (met N = 1, 2, 3, ...), met elk
een massa, positie en snelheid. Wat zijn de posities en snelheden op
elke tijd in de toekomst of in het verleden? Als de lichamen elkaar niet
zouden voelen, dan zegt Newton’s eerste wet dat ze zich blijven voort-
bewegen in rechte paden met een constante snelheid. Als de lichamen
elkaar wel voelen, door de gravitationele aantrekkingskracht, dan wor-
den de lichamen versneld en zullen dan gekromde paden afleggen. Dit
gedrag is vastgelegd in Newton’s tweede bewegingswet

F = ma, (1)

met F de kracht, m de massa en a de acceleratie. Toen de appel New-
ton’s hoofd raakte, realiseerde hij zich dat de attractieve kracht die
actief is tussen alle lichamen in het heelal met massa, de gravitatie-
kracht is, ook wel zwaartekracht genoemd. Deze kracht is evenredig
aan de massa’s van de twee lichamen en omgekeerd evenredig aan het
kwadraat van de afstand tussen de twee lichamen

F =
GMm

r2
. (2)

In deze formule staat G voor de gravitationele constante, M en m
voor de twee massa’s en r voor de afstand. Om iets preciezer te zijn,
de massa in vergelijking (1) is de inertiaal massa (massa is traag),
terwijl de massa in vergelijking (2) de gravitatie massa is (massa is
zwaar). Diverse experimenten hebben echter laten zien dat deze twee
gelijk zijn tot op tenminste 13 plaatsen achter de komma (Poisson &
Will, 2014). Daarom kunnen we vergelijking (1) en (2) samenvoegen
en tegelijkertijd de som nemen over alle lichamen in het systeem

~ai = G
∑
j 6=i

mj

r3
ij

~rij . (3)
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Hier staat ~ai voor de totale acceleratie ervaren door lichaam i, als
gevolg van alle andere lichamen met massa mj op afstanden rij =
|~rj − ~ri|. Voor elk object rekenen we de versnelling uit veroorzaakt
door de aantrekking van elk ander object. De volgende stap is om
deze versnelling te gebruiken om de posities en snelheden te berekenen
op een bepaalde tijd in de toekomst. Dit is het lastigste gedeelte.

De versnelling als een functie van tijd is in het algemeen geen sim-
pele functie, maar eerder complex en chaotisch. Behalve voor bepaalde
configuraties met N = 2 (Newton, 1687) en N = 3 (Euler, 1767; La-
grange, 1772), kunnen we banen analytisch oplossen. Voor alle andere
gevallen moeten we de versnelling stap voor stap meten. Deze discre-
tisatie van het N-lichamen probleem introduceert een kleine fout in de
oplossing, maar maakt het ideaal voor het gebruik van computers.

N-LICHAMEN SIMULATIES

Niet lang na de uitvinding van de computer, werden de eerste N-
lichamen simulaties al uitgevoerd. Tussen de eersten om het N-lichamen
probleem op te lossen op de computer waren von Hoerner (1960) en
Aarseth (1963), met het doel om de banen van sterren te berekenen
onder de invloed van hun onderlinge gravitatiekracht.

Het oplossen van een N-lichamen probleem op een computer bestaat
uit twee elementen: een integratiemethode en een tijdstap-criterium.
De integratie methode bepaalt hoe de nieuwe positie en snelheid wor-
den berekend uit de huidige positie, snelheid en acceleratie. De sim-
pelste integrator is de Euler methode:

r (t+ ∆t) = r (t) + v (t) ∆t, (4a)

v (t+ ∆t) = v (t) + a (t) ∆t. (4b)

Hier staat t voor de huidige tijd, ∆t voor de tijdstap grootte, r voor
de positie en v voor de snelheid. Door iteratief de vergelijkingen (3)
en (4) uit te voeren, kunnen we de banen van de lichamen berekenen
en dus de evolutie van dynamische systemen bestuderen.

De Euler methode is heel simpel en duidelijk, maar niet echt precies.
Als we het zouden beschouwen als een eerste orde Taylor-expansie, dan
worden de hogere orde termen verwaarloosd, wat zorgt voor een afkap-
pingsfout in de oplossing. Eén manier om dit type fout tegen te gaan,
is door een goed tijdstap-criterium te kiezen. In principe moet de
tijdstap zo klein mogelijk zijn, maar dit zal het aantal integratiestap-
pen vermeerderen, wat weer tot gevolg heeft dat de CPU tijd stijgt.
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Daarom is er een balans tussen de precisie en de snelheid. Er bestaan
vele tijdstap-criteria in de literatuur, zoals

∆t = min

{
rij
vij

}
, (5)

∆t = min

{√
rij
aij

}
, (6)

Het eerste criterium zorgt ervoor dat het dichtste paar van lichamen
niet kan botsen binnen een enkele tijdstap, omdat de grootte van de
tijdstap kleiner wordt naarmate lichamen dichterbij elkaar komen. Het
tweede criterium is vergelijkbaar, maar werkt ook als alle snelheden
nul zijn. Voor verdere details over integratoren, tijdstap-criteria, algo-
ritmes en simulaties verwijs ik de lezer naar Aarseth (2003) en ”The
Art of Computational Science project”door Hut and Makino2.

Als de software eenmaal geschreven is, moet het gerund worden
op een bepaalde type hardware. Voor simulaties met een paar ster-
ren is een desktop genoeg. De hoogste snelheid kan behaald worden
door gebruik te maken van de snelste processors beschikbaar op de
markt. Voor grotere dynamische systemen wordt het efficiënt om het
N-lichamen probleem in parallel op te lossen. Zoals beschreven in de
vorige sectie, als we de acceleratie van één lichaam willen bepalen,
moeten we itereren over alle andere lichamen, en dit is een operatie
van orde N . Echter, we willen de acceleraties van alle objecten weten,
wat nog een factor N oplevert, resulterend in een hoeveelheid arbeid
dat schaalt als N2. Dit werk verdelen over zoveel mogelijk CPU ker-
nen kan leiden tot een significantie versnelling van de simulatie. Het is
echter wel zo, dat met meer kernen er ook meer communicatie tussen
de kernen aanwezig is, wat weer tot vertraging leidt. Ook hier is er
weer een balans die gevonden moet worden (Portegies Zwart et al.,
2008).

Omdat het N-lichamen probleem niet exact opgelost kan worden, is
er veel tijd gestoken in het vinden van nieuwe, betere algoritmes. Zo
zijn er methodes die specifiek ontwikkeld zijn voor een bepaald pro-
bleem. Er zijn codes die gaan voor snelheid, zodat ze grote dynamische
systemen als sterrenstelsels aankunnen. Andere codes gaan meer voor
precisie, bijvoorbeeld voor het berekenen van de banen van planeten.
De zoektocht naar de ultieme N-lichamen methode die snel en precies
is duurt voort.

2http://www.artcompsci.org/
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CHAOTISCHE DYNAMICA

Een belangrijk concept in dit proefschrift is de groei van een kleine
verstoring in het dynamische systeem. Deze verstoring zal in twee
contexten behandeld worden. Ten eerste kan de kleine verstoring een
numerieke fout zijn, bijvoorbeeld de afkappingsfout. Deze numerieke
fout zal groeien door heel het systeem, waardoor de numerieke op-
lossing divergeert van de echte oplossing. Dit is een probleem dat te
allen tijde in de gaten gehouden moet worden door gebruikers van N-
lichamen simulaties. De tweede toepassing is wanneer de verstoring
fysisch is. We meten hoe twee dichtbijzijnde oplossingen uit elkaar
groeien in de tijd. Als dit heel lang duurt vergeleken met de tijdschaal
van het probleem, dan is het dynamische systeem stabiel tegen kleine
verstoringen. Als blijkt dat een kleine verstoring exponentieel groeit,
dan is het systeem instabiel en zal de structuur van het systeem veran-
deren. Dit is te vergelijken met het voorspellen van het weer; het weer
voor morgen kunnen we redelijk precies voorspellen, voor de dag erna
is de onzekerheid al groter, en voor het einde van de week weten we het
alleen heel globaal. Door het meten van de groei van een kleine versto-
ring in een dynamisch systeem, kunnen we iets leren over de stabiliteit
van het systeem. Dit is belangrijk voor de dynamische interpretatie
van waarnemingen die vaak maar een enkele snapshot van het systeem
geven.

DIT PROEFSCHRIFT: CHAOTISCHE DYNAMICA IN
N-LICHAMEN SYSTEMEN

Dit proefschrift bestaat uit vijf studies aangaande N-lichamen algorit-
mes, de betrouwbaarheid van N-lichamen statistiek en de oorsprong
van chaos in dynamische systemen. Hieronder wordt kort beschreven
wat de belangrijkste resultaten zijn.

In hoofdstuk 2 beschrijven we een nieuwe computercode voor het
oplossen van het N-lichamen probleem. Deze code is de meest precieze
code op aarde, maar ook de langzaamste. Het lost het N-lichamen
probleem op met brute kracht en heet daarom Brutus. De reden voor
deze hele precieze code is om te proberen het echte antwoord te vinden.
Veel systemen laten chaotisch gedrag zien waardoor kleine verstoringen
exponentieel toenemen, inclusief numerieke fouten. Op zich is tegen
de groei zelf niets te doen, maar door een extreem hoge precisie te
gebruiken kunnen we de numerieke fout zo klein maken, dat de versto-
ring binnen de integratietijd relatief klein blijft. Door de precisie dus
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flink op te schroeven kunnen we de echte oplossing vinden en bepalen
hoe accuraat conventionele, niet-precieze oplossingen zijn.

Hoofdstuk 3 gaat over een nieuwe N-lichamen code, genaamd Sakura,
die voor snelheid gaat. De vraag die we hier stelden is of het N-
lichamen probleem opgelost kan worden door alle twee-lichamen pro-
blemen in het systeem op te lossen. We kunnen immers een N = 2
probleem analytisch oplossen en het superpositie principe geldt voor
het berekenen van de acceleraties. We laten zien dat dit inderdaad
mogelijk is en leiden een tweede orde, niet-symplectisch algoritme af.
Deze code is heel efficiënt op parallele computers door de verdeling van
alle Kepler-problemen. Het is voor deze code dat we de Wim Nieuw-
poort Award 2013 ontvingen van SURFSara te Amsterdam voor het
efficiënte gebruik van hun supercomputer Cartesius.

In hoofdstuk 4 toetsen we de aanname dat resultaten van N-lichamen
simulaties statistisch accuraat zijn, ofschoon individuele oplossingen
besmet zijn met numerieke ruis. We doen een numeriek experiment
waarbij we drie sterren nemen die elkaar gravitationeel bëınvloeden.
Ze wisselen energie met elkaar uit, totdat één van de sterren genoeg
bewegingsenergie heeft om te ontsnappen. We hebben dan een enkele
ster die de ene richting op beweegt en een dubbelster in de tegen-
overgestelde richting. We maken een ensemble van initiële condities
en integreren deze heel precies met Brutus, en ook met conventionele
precisie. Daarna vergelijken we de statistiek van deze twee ensembles
van oplossingen. We vinden dat, naargelang de totale energie tot op
tenminste 10 procent is behouden, de globale statistiek behouden is
onder divergentie van individuele oplossingen. Dit is goed nieuws voor
de N-lichamen gemeenschap.

In hoofdstuk 5 gaan we wat dieper in op de gevolgen van de resulta-
ten in het vorige hoofdstuk. Hoe komt het dat resultaten met nume-
rieke ruis toch de globale statistische distributies behouden? Achter
dit resultaat schuilt een fundamentele werking van de gravitatie die
doet denken aan quasi-ergodiciteit. Een numerieke oplossing diver-
geert continu van het ene oplossingspad naar het andere, en dwaalt
door (een groot deel van) de fase-ruimte. Het doet dit zodanig dat het
ensemble heel de fase-ruimte bestrijkt en met de juiste frequentie zo-
dat statistische distributies behouden blijven. Meer theoretisch werk
is nodig om dit fenomeen beter te begrijpen.

We hebben laten zien in de voorgaande hoofdstukken dat chaotische
systemen een exponentiële groei van kleine verstoringen laten zien. In
hoofdstuk 6 willen we beter begrijpen waar deze groei vandaan komt,
hoe relateert het zich tot het fysische systeem? Waarom zijn sommige
systemen chaotisch en anderen ordelijk? We stellen een wiskundig
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model op dat gebaseerd is op de groei van verstoringen in het twee-
lichamen probleem dat weer verstoord wordt door een derde lichaam.
We passen dit model toe op komeet Halley en vinden dat de chaos het
gevolg is van sterke interacties met Jupiter en Venus. De groei neemt
toe op een tijdschaal van ongeveer 300 jaar, zodat over 6000 jaar we
niet meer kunnen voorspellen waar de komeet zich zal bevinden.

Het onderzoeksveld van N-lichamen codes en simulaties is volwassen
geworden sinds de eerste simulaties in de jaren 1960. Er zijn echter
nog veel onderwerpen die onderzocht moeten worden en veel onder-
werpen die verbeteringen behoeven. Met de vele waarnemingsmissies
gaande, zoals de Gaia en Kepler missies, hebben we behoefte aan codes
die sneller en precieser zijn. Hiermee kunnen we het optimale uit de
waarnemingen halen en zo meer leren over de werking van dynamische
systemen in het heelal.

134



Curriculum Vitae

“Life is nothing without a little chaos to make it interesting.”
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this was the research field for me, and immediately arranged to do my
major Master research with Simon Portegies Zwart on stellar dynamics
and N-body methods. It was from this research that the N-body code
Brutus was developed, which uses arbitrary-precision arithmetic. I
was fortunate to have found the right topic for me, with the right
supervisor, at the right time.
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