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Chapter 1
General Introduction

1.1 Aquaculture and food

Many of the anthropogenic pressures currently pushing the planet’s ecosystems to their limits 
are a direct result to food and feed production (Steffen et al. 2015): forests have to give way to 
agricultural fields, pastures and aquaculture ponds (Galford et al. 2010; Donato et al. 2011; Smith 
et al. 2013), large quantities of pesticides and herbicides are dispersed into nature (González-
Rodríguez et al. 2011), enteric and other anoxic degradation of biomass result in large methane 
emissions (Pelletier and Tyedmers 2010a; Lindquist et al. 2012), soils are being eroded (Stoate et al. 
2001; Wiloso et al. 2014), and extensive external energy inputs are needed to maintain production 
(Pelletier et al. 2011). As a result, biodiversity is being lost at record rates (Hooper et al. 2012; 
Steffen et al. 2015), natural cycles of nitrogen and phosphorus are being distorted (Bouwman 
et al. 2013), and the regenerative capacity of many biotic resources are being undermined by 
overexploitation (Foley et al. 2007; Burgess et al. 2013). Meanwhile, the planet’s human population 
continues to grow, as is the per capita demand for animal proteins with increasing standards of 
living (FAO 2006; Godfray et al. 2010).

Livestock dominates animal production by mass, but is also commonly identified as the 
environmentally worst food group (FAO 2006; Duarte et al. 2009; Röös et al. 2015). ‘Fish’ (see 
glossary), in the meantime, supplied roughly 17% of the animal proteins consumed globally in 2010 
(FAO 2014a). Per capita consumption of fish has, however, doubled over the last fifty years, thanks 
to improved logistics, production practices and processing techniques (Muir 2005). In some parts 
of the world, fish are even the primary source of proteins and/or the major source of income (FAO 
2014a). Capture fisheries’ catches, historically the dominating source of fish, supplied most of the 
increases in production until the early 1990s when landings peaked and have since stagnated, or 
even declined, as a result of overexploitation (FAO 2014a). Increases in demand for aquatic food 
products have therefore instead been met by aquaculture, the currently fastest growing animal food 
sector (Duarte et al. 2009). Exhibiting a rough doubling in production every decade (Duarte et 
al. 2009) and today providing half of all finfish consumed globally (FAO 2014a), the aquaculture 
industry has grown to become a cornerstone for feeding future generations.

1
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Aquaculture holds many advantages over capture fisheries and other food production systems by 
avoiding undersized catches and bycatch, stabilising market prices, allowing for live fish transports 
and genetic improvements, and improving resilience by accommodating more diverse production 
practices (Muir 2005; Belton and Thilsted 2014; Troell et al. 2014). The diversity in the number 
of species farmed exceeds both that of agriculture (30 species make up 90% of production) and 
livestock production (5 species make up 90% of production), with around 35 species making up 
90% of production (Duarte et al. 2009; Troell et al. 2014). Aquaculture also has the advantage 
of being able to shift production to meet demand and has therefore often thrived upon markets 
where overharvested wild fish-stocks have left shortages in supply and soaring prices (Diana 
2009). The salmon industry is maybe the most notable such market, where landings of wild salmon 
started declining in 1990 only to be replaced by farmed salmon (Diana 2009). Similar situations 
exist throughout Asia, where aquaculture has maintained prices for many species at affordable 
levels (Belton and Thilsted 2014).

Over the more recent decades, increases in demand have shifted aquaculture production towards 
more intensive monoculture practices that source feed resources from globally diverse origins 
(Muir 2005; Tacon and Metian 2008; FAO 2014a). It is, for example, not unusual that fish today 
are grown on feeds containing both wild fish, agriculture products and livestock byproducts (Fig 
1.1). These resources are generally opportunistically sourced from global markets, where fish may 
be fed raw materials originating from more than three continents, processed in another country, 
only to be consumed in a seafood restaurant on the opposite side of the globe.

2

Fig. 1.1: Modern aquaculture is a globalised industry, relying upon fisheries, agriculture and livestock 
products from around the world, with roughly 40% of the seafood produced entering global markets.
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Intensification of production has also brought with it concerns about negative environmental 
consequences, including the release of nutrients and chemicals, introduction of non-indigenous 
species, habitat destruction, reliance on wild fish stocks, energy usage, spread/amplification of 
diseases and parasites, mangrove deforestation and appropriation of ecological goods and services 
(Beveridge et al. 1997; Pelletier and Tyedmers 2008; Henriksson et al. 2011). The increasingly 
diverse selection of resources used to support modern aquaculture production is also related to 
environmental concerns of its own. To date, most of these concerns have been related to feeds, 
including the provision of fishmeal, soybeans, wheat, maize, meat and bone meal, and various 
other resources. Other environmental concerns are related to the supply of juveniles (which still 
are collected in the wild for many farmed species) (Ahamed et al. 2012), provision of energy (Ayer 
and Tyedmers 2009), cooling/freezing (Winther et al. 2009), etc. While practices have been greatly 
improved over the last decade with regards to some of these concerns (Vanhonacker et al. 2011; 
Rico et al. 2013; Noor Uddin et al. 2013), a wide range of issues remain. Many of these issues are, 
however, associated to specific farming systems (e.g. eutrophication to cages systems or aquaculture 
ponds to deforestation). In order to identify best farming practices, one therefore needs to consider 
the diverse set of environmental impacts caused by fish farming, capture fisheries, agriculture, 
livestock farming and other supporting processes.

1.2 Aquaculture production systems

Aquaculture production can be divided into many different categories, with one of the crudest 
being that into farming in fresh-, brackish- or marine-water (mariculture). By weight, mariculture 
is dominated by aquatic plants, but by value molluscs and finfish are the main commodity groups 
(Table 1.1) (FAO 2014b). In freshwater, finfish makes up roughly half of aquaculture production 
by volume, mainly by different carp species. Representing 67% of all finfish farmed, the most 
common carp species include: common (Cyprinus carpio), grass (Ctenopharyngodon idella), silver 
(Hypophthalmichthys molitrix), bighead (Hypophthalmichthys nobilis), catla (Catla catla) and crucian 
(Carassius carassius) carps. Most carp species are, however, consumed locally, where they yield 
relatively low market prices, thus shifting the focus in monetary terms towards species like Chinese 
mitten crabs (Eriocheir sinensis) (6.3% by value), Nile tilapia (Oreochromis niloticus) (5.1%), whiteleg 
shrimps (Litopenaeus vannamei) (4.4%) and pangasius (Pangasianodon hypophthalmus) (3.3%) 
(Table 1.2) (FAO 2014b). While the Chinese mitten crab is a species almost solely grown and 
consumed in China, the other three are globally traded commodities. Frozen shrimps and finfish 
fillets are actually the two most frequently traded aquatic products by value, followed by fishmeal 
(FAO 2014b).

3

Brackish Freshwater Marine % of total
Aquatic plants 0.8 0.1 22.9 26%
Crustaceans 3.2 2.5 0.7 7%
Finfish 2.1 37.7 4.4 49%
Molluscs 0.1 0.3 14.8 17%
Others 0.0 0.5 0.4 1%
% of total 7% 46% 48%

Table 1.1: Global production volume of aquaculture commodities in 2012 (million tonnes). 
From: FAO (2014b).
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Another crude division that can be made is that into fed and non-fed aquaculture. Non-fed 
aquaculture refers to photosynthesisers, extensively farmed animals and filter-feeders. Filter-
feeders, in turn, are mainly made up of bivalves, but also by filter-feeding finfish such as the bighead 
carp that are commonly found in Chinese aquaculture ponds. Extensive farming relates to systems 
that are large enough to maintain enough primary production to sustain the organisms farmed 
(Table 1.3). Fed aquaculture, on the other hand, include many of the most valued organisms and is 
also responsible for most of the recent increases in production. These systems can be semi-intensive, 
intensive or hyper-intensive, depending upon how densely they are stocked. The definitions for 
these different systems, however, often differ amongst publications, with the definitions used in the 
present research presented alongside FAO’s definitions presented in Table 1.3.

4

FAO definition Definition in this thesis

Extensive Exclusion of predators and 
control of competitors yielding no 
more than 500 kg ha-1 yr-1

Passive stocking of seed, no added 
feeds, fertilisers, 1-3 fish m-2

Improved extensive n/a Passive/active stocking of seed, no 
feeds, fertilisers, <10 fish m-2

Semi-intensive Semi-intensive – supplementary 
feed and fry, yielding 0.5 to 20 
tonnes ha-1 yr-1

Active stocking of seed, feed, 
fertilisation, <30 fish m-2

Intensive Intensive systems – provision 
of all nutritional requirements, 
yielding up to 200 tonnes ha-1 yr-1

Active stocking of seed, feed, 
fertilisation, >30 fish m-2

Hyper-intensive Hyper intensive – Usually 
pumped or gravity supplied water 
or cage-based, yielding more than 
200 tonnes ha-1 yr-1

n/a

Table 1.3: Definitions for different farming intensities as presented by FAO (Crespi and Coche 2008) and 
in this thesis (Murray et al. 2014).

Brackish Freshwater Marine % of total
Aquatic plants 125 42 6202 4%
Crustaceans 13929 13962 2972 21%
Finfish 4671 62270 20558 61%
Molluscs 297 248 15312 11%
Others 1 2540 1194 3%
% of total 13% 55% 32%

Table 1.2: Global value of aquaculture commodities in 2012 (million USD). From: FAO (2014b).
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1.3 Problem identification

Like the production of most commodities in today’s globalised society, modern aquaculture 
subjects stress on ecosystems around the world. For example, half of the fishmeal currently used 
in fed aquaculture practices originates from the Peruvian anchoveta (Engraulis ringens) fishery, a 
fishery that already has experienced a collapse due to overfishing (Sandweiss et al. 2004). Soybean is 
another resource commonly used in aquaculture feeds that is related to its own controversies, with 
marginal demands subjecting the Amazon forest to constant encroachments by agricultural farmers 
seeking new fertile agricultural soils (Dalgaard 2008; Galford et al. 2010). Similar problems apply 
to cattle and other livestock production systems that displace large land areas either as pastures 
or for feed provision (Cederberg et al. 2011; Middelaar et al. 2013). More global concerns involve 
the great dependence on inorganic fertilisers in agricultural practices that threatens to unbalance 
global nutrient cycles and exhaust finite resource deposits, while consuming vast quantities of 
energy (Rockström et al. 2009; Cordell et al. 2009; Pelletier and Leip 2013). Food production 
actually accounts for 20% to 25% of the energy use in developed countries, with an average of 
about five kcal of anthropogenic energy (mainly fossil fuels) going into each kcal of food produced 
(Carlsson-Kanyama 2003). In addition to this, it is estimated that about 30% to 40% of global food 
supplies never are consumed, but end up as waste (Godfray et al. 2010); a fraction that might be 
higher for fresh fish as it is a highly perishable commodity.

Apart from reducing food waste, the most efficient way of shrinking the environmental footprint 
of food provision is to promote more sustainable food products, while trying to displace any 
detrimental hot-spots in the production chain. In order to identify these hot-spots, the whole 
value chain needs to be evaluated. Life cycle assessment (LCA) is a quantitative tool developed to 
perform such evaluations. The tool has a history running back more than forty years and has over 
the last decades become commonplace in environmental standards, labelling schemes, policy and 
even legislation (Guinée et al. 2011). Supported by its own ISO standard (ISO 14044 2006), LCA 
is often said to capture a product’s environmental impacts from “cradle to grave”. Thus referring to 
emissions resulting from the extraction of raw materials, to the end of life of those materials. The 
most common goal when applying LCAs, however, is to determine if product A is environmentally 
more sound than product B (Guinée et al. 2011). 

Comparisons of LCA results have, to date, mainly been done on a point-value basis. In the 
meantime, there are many discrepancies influencing outcomes, originating from methodological 
choices and sourcing of data (de Koning et al. 2009). In response, several initiatives have tried to 
standardise methodological choices (e.g. JRC’s ILCD handbook or UNEP-SETAC’s Life Cycle 
Initiative) and a number of LCA studies have quantified the uncertainties around LCA results. 
Limited consensus has, however, been reached with regards to methodological choices, as the 
goals of studies differ, as does the mindsets of practitioners. Quantified uncertainty estimates have 
also had limited success as they generally have been too data intensive or complex, restraining 
practitioners to only consider some sources of uncertainty or regress to conjectural estimates. Most 
LCA studies also lack a predefined hypothesis, indicating a rare use of significance tests in the 
field of LCA. Little is therefore known about the level of confidence behind LCA conclusions 
(Huijbregts et al. 2004).

5
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1.4 Research questions

The objective of the present research was to evaluate European imports of Asian aquaculture 
products using LCA. The main research question was accordingly:

Are there significant differences among the environmental impacts resulting from the 
production of Asian aquaculture commodities, and if so, what are the main causes?

In order to address this question, four sub-question arose and were addressed:

1.	 Are there shortcomings in methods, data or coverage in existing aquaculture LCAs?

2.	 Can variance parameters be defined for unit process data in aquaculture LCAs?

3.	 Can these variance parameters be processed into ranges of results?

4.	 How can we determine if the LCA results of two systems fulfilling the same functional unit 
are significantly different?

In order to address the main research question, a total of 21 LCAs were conducted for four 
major aquaculture commodities commonly found in European freezers, namely frozen Pangasius 
fillets, tilapia fillets, peeled tail-on (PTO) shrimp and headless shell-on (HLSO) prawn from 
Bangladesh, China, Thailand and Vietnam.

1.5 The species and countries under study

Asia has always been dominating when it comes to aquaculture production and still accounts for 
(88%) of global production by weight (FAO 2014a). China is the main producing country, but also 
a major consumer, of aquaculture products. Europe, in turn, is struggling with declining fisheries 
landings, while being the origin of only 4% of global aquaculture production (FAO 2014b). Europe 
is, in the meantime, home to some of the world’s largest fish consuming nations, including Spain, 
Portugal and Norway, all which have an annual per capita consumption of over 40 kg. This has 
resulted in Europe becoming the largest single market for international trade of aquatic products, 
responsible for 36% of total world imports by value (FAO 2014a).

The selection of the cultured species investigated in the current research was based upon their 
long export history, large trade or rapid growth. The two shrimp species are often farmed under 
similar circumstances in brackish water (Fig. 1.2), with the indigenous Asian tiger shrimp (Panaeus 
monodon) being replaced by the whiteleg shrimp (Litopenaeus vannamei) from the Eastern Pacific 
due to persisting disease problems (Lebel et al. 2010). In contrast to these two crustaceans, the 
indigenous giant river prawn (Macrobrachium rosenbergii) was selected as a crustacean representative 
produced in freshwater systems, where production practices have evolved in response to local 
opportunities and resource constraints, rather than to global demands (Fig. 1.3). Two freshwater 
finfish were also evaluated, namely Pangasius catfish (Fig. 1.4) and tilapia (Fig. 1.5). Tilapia 
is the common name for a wide range of cichlids originating from Africa that have become 
extremely popular in Asian aquaculture, with the Nile tilapia (Oreochromis niloticus) being the most 
commonly farmed species (71% of Asian tilapia production by weight) (FAO 2014b). However, 
many other species of tilapia are prevalent in Asian aquaculture, including countless strains of 
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hybrids (Thodesen et al. 2013). Pangasius catfish (Pangasius spp.), in the meantime, constitute 
a more closely related group of freshwater finfish indigenous to South East Asia. The striped 
catfish (Pangasius hypophthalmus) is the most commonly farmed species and the Mekong delta the 
dominating producing region.

Unlike salmon that is a carnivorous species, all of the species here under study are omnivorous, 
allowing for lower inclusions of fishmeal and fish oil in diets, and therefore potentially greater net 
gains of fish protein. In the meantime, many Asian countries lack regulations on farming practices, 
chemical use, employment conditions, water treatment, etc., that are often expected by European 
consumers. In addition to this, many aquaculture systems in Asia are reliant on local resources 
that are related to their own sets of environmental interactions. For example, fish are often fed 
rice derived products (rice bran, rice husks, boiled rice, etc.), a crop that is responsible for a large 
share of anthropogenic methane emissions (Yan et al. 2009). There is also a flow of regionally 
caught low-value fish (also referred to as trash fish) into Asian aquaculture production, with 
social and environmental consequences (Edwards et al. 2004; Cao et al. 2015). Nutrient run-off 
from aquaculture cages and ponds have also resulted in regional algae blooms and anoxic aquatic 
conditions (Verdegem 2013). This in addition to the many concerns raised above highlights the 
broad range of both proximal and global environmental impacts related to Asian aquaculture 
production.

7

Fig. 1.4: Different countries contribution to the 
production of Pangasius catfish (Pangasianodon 
hypophthalmus)

Fig. 1.5: Different countries contribution to the 
production of tilapia (Oreochromis niloticus)

Fig. 1.2: Different countries contribution to the 
production of whiteleg (Litopenaeus vannamei) and 
Asian tiger shrimp (Penaeus monodon).

Fig. 1.3: Different countries contribution to the 
production of giant river prawn (Macrobrachium 
rosenbergii)
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In order to evaluate the environmental impacts throughout production chains in a systematic 
way, the present research applied LCA to different Asian aquaculture production systems. Given 
the diversity of producing countries and production systems, a selection limited the scope of 
the study to four countries, five species and 21 production systems. The environmental impacts 
evaluated were also limited to those supported by rigorous impact assessment methods, deemed 
relevant to aquaculture production and relevant to the inventory data.

1.6 Life Cycle Assessment (LCA) and associated uncertainties

The ISO standard (ISO 14040 2006) define four phases of an LCA: goal and scope definition, 
life cycle inventory analysis (LCI), life cycle impact assessment (LCIA) and interpretation. The 
goal and scope is a qualitative description of the methodological choices and assumptions made 
throughout the LCA. These choices are important as they greatly influence outcomes, which is 
why several guidelines have been produced to harmonise results (ISO 14044 2006; BSI 2008; 
JRC 2010a; JRC 2010b). The second phase, the LCI, is the most data intensive part of most 
LCAs, detailing all the connections among economic and environmental flows entering or exiting 
the product’s lifecycle. Several software and databases have in response been established to make 
LCIs more easily attainable and complete, ecoinvent being the most extensive. In the LCIA 
phase, the environmental flows from the LCI are classified and characterised towards the impact 
categories detailed in the goal and scope. Each impact category is generally supported by one or 
more impact assessment methods that can be either midpoint-oriented (characterising elementary 
flows to a common indicator close to the elementary flows, e.g. radiative forcing for greenhouse 
gas emissions) or endpoint-oriented (characterising elementary flows to a common indicator close 
to the areas of protection, e.g. temperature increase for the same greenhouse gases). Finally the 
outcomes are evaluated and conclusions are drawn in the interpretation phase.

LCA results have, to date, generally been presented as point-values that are often compared 
to each other without any indication of the confidence behind the estimates. In the meantime, 
methodological choices and assumptions made in the goal and scope can have huge influence on 
outcomes (de Koning et al. 2009). For studies following the same standard these discrepancies 
can, at least in theory, be greatly reduced. This is, however, more difficult in the LCI phase, as each 
of the diverse production systems supporting aquaculture farming are subject to their own sets of 
uncertainties and variability (from here on jointly referred to as dispersions). Ranging from natural 
fluctuations in fish stocks (Sandweiss et al. 2004), to variations in agricultural yields (Naylor et al. 
1997), to uncertainty around the emissions from manure management (De Vries et al. 2013), to 
simply different energy efficiencies in machinery, these variables are next to impossible to normalise 
across studies.

Also in the LCIA phase are there uncertainties related to the classification and characterisation 
of environmental emissions. All these different sources of dispersions have, up until recently, 
mainly been addressed by performing sensitivity analyses (Lloyd and Ries 2007). While sensitivity 
analyses are useful for increasing the understanding of the relationships between input parameters/
choices and results (Middelaar et al. 2013; van der Harst and Potting 2014), they fail to account for 
the cumulative effect from all dispersions influencing aggregated LCA results and therefore greatly 
limit available post-hoc analyses. A more holistic indicator of the accuracy of LCA results can 
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instead be generated by quantifying and aggregating the dispersions related to input parameters 
and choices.

The importance of providing quantified dispersions around LCA results have since long been 
recognised (Hanssen and Asbjørnsen 1996; Finnveden 1998) and repeatedly upturned (Björklund 
2002; Ross et al. 2002). Ross et al. (2002), for example, state: “If practitioners of LCA continue 
to neglect the problem of uncertainty in their work, they run the risk of generating conclusions 
that cannot be justified by the indicator results”. In response, early estimates of inherent 
uncertainties were also quantified as early as in the 1990s for a number of emission parameters 
(Hanssen and Asbjørnsen 1996; Finnveden 1998). Around the same time, there were also several 
new methodologies suggested for how to include quantitative uncertainties in LCIs (Heijungs 
1996; Weidema and Wesnaes 1996; Huijbregts 1998a; Huijbregts 1998b; Huijbregts et al. 2001). 
Weidema and Wesnaes (1996), for example, presented a pedigree approach for addressing data 
quality issues in LCIs, while Heijungs (1996) suggested a more empirical approach. These and 
other efforts were followed up by Huijbregts (2001), who also developed the ideas surrounding 
uncertainties related to characterisation factors. Despite these initiatives, only a few LCA studies 
had quantified uncertainties around results at the beginning of the present research (Lloyd and 
Ries 2007), none of which focused on aquaculture production. Most of the studies that did 
quantify uncertainties, moreover, only evaluated specific sources of uncertainty and/or only used 
conjectural dispersion estimates. In other cases, the drivers behind the presented ranges simply 
remained unclear (Steinmann et al. 2014). Concerns were even raised that if all dispersion sources 
were accounted for, LCA results might be rendered meaningless (Huijbregts et al. 2004).

Only in the past few years have some LCA studies moved closer towards a complete inclusion 
of dispersions derived from empirical data (Mattila et al. 2011; Steinmann et al. 2014; Hauck et al. 
2014). The reasons for why quantitative uncertainties have not been more extensively implemented 
before are many, including lack of data, no uncertainty estimates in databases, many unquantifiable 
sources of dispersions, an absence of propagation methods in LCA software, insufficient 
computing power, time limitations, or simply the lack of a comprehensive methodology (Björklund 
2002; Ross et al. 2002; Lloyd and Ries 2007). For example, data limitations forced ecoinvent 
(v2) to only rely upon generic uncertainties and a pedigree approach when they finally included 
uncertainty estimates in their LCI database (Frischknecht et al. 2007b). This sudden widespread 
availability of uncertainty parameters, however, initiated many software developers to allow for the 
inclusion of uncertainties. In the meantime, computing power and software algorithms improved 
substantially, providing the standard personal laptop with more than sufficient processing power 
for normal dispersion calculations. Remaining unresolved, however, was a method that allowed 
for the inclusion of quantified dispersions based upon empirical data together with a standardised 
nomenclature. While some attempts had been made to meet this need, their outcomes were often 
too complex to be attainable to LCA modellers, which, in their defence, already need to be experts 
in two topics apart from statistical theory (those of LCA and the production system under study).

By developing a method for identifying and quantifying the dispersions around LCA results, 
the quantification of dispersions around results could become commonplace. This would also allow 
for the implementation of significance tests, which, in turn, would allow for statistically supported 
conclusions to be made. This would further open questions about the type of significance tests to be 
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used, with regards to  the characteristics of the data. Applying the wrong test might result in Type 
I statistical error, where a null-hypothesis is falsely rejected (false positive), or a Type II statistical 
error, where the null-hypothesis is falsely retained (false negative). In addition, being transparent 
about eventual shortcomings of analyses made is of utter importance, especially with regards 
to LCA that is an applied science where many values are ‘soft’ and underpinned by subjective 
judgement (Ravetz 1999).

1.7 Thesis outline

In order to provide a platform to extend this research from, Chapter 2 of this thesis presents a 
review of existing aquaculture LCAs (Henriksson et al. 2012c). At the time of the review, twelve 
peer-reviewed LCAs of aquaculture systems were found in the literature, two of which were PhD 
theses. The LCA studies were evaluated on the systems evaluated, methodological choices made, 
data sourcing, interpretation techniques and conclusions drawn.

From the review, data sourcing and data quality stood out as important topics for improving 
aquaculture LCAs. This is also the topic of Chapter 3 of the present thesis — A protocol for 
horizontal averaging of unit process data—including estimates for uncertainty (Henriksson et al. 
2013). Building upon earlier efforts by Funtowicz and Ravetz (1990), Heijungs (1996), Weidema 
and Wesnaes (1996), Huijbregts (2001), Sonnemann et al. (2011) and others, this article tries to 
identify the major sources of dispersions in unit process data and present a workable method for 
quantifying these (Henriksson et al. 2013).

In order to evaluate the protocol and to identify the best method for propagating unit processes 
into LCI results, an updated unit process dataset for coal-based energy in China was used as an 
example. Chinese coal power was selected as it presents a much more limited model than the 
generally diverse aquaculture production chains, and since it was surprisingly poorly represented 
in LCA literature and inventory databases. Chapter 4 consequently explores different levels for 
averaging unit process data and methods for propagating these into results (Henriksson et al. 
2014c).

Once ranges could be produced as results, the question of which conclusions could be drawn 
from these arose. In Chapter  5, entitled “Product carbon footprints and their uncertainties in 
comparative decision contexts”, an approach for propagating and interpreting LCA results using 
significance tests was therefore developed (Henriksson et al. 2015a). This chapter also highlighted 
the importance of defining a hypothesis to work towards.

In Chapter  6, the methodological advancements developed were finally used to test the 
main research question. Using significance tests, the hypothesis “different production systems 
providing the same aquaculture commodity to European consumers are associated with different 
environmental impacts” was tested (Henriksson et al. 2015b). Three impact categories (global 
warming, eutrophication and freshwater ecotoxicity) were evaluated. Alongside identifying 
production systems associated with significantly lower environmental impacts, best practices are 
promoted.

10
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Life cycle assessment of aquaculture 
systems—a review of methodologies
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Accepted: 9 December 2011. International Journal of Life Cycle Assessment. Vol. 17, 
pp. 304-313. DOI: 10.1007/s11367-011-0369-4

Abstract 

Purpose: As capture fishery production has reached its limits and global demand for aquatic 
products is still increasing, aquaculture has become the world’s fastest growing animal production 
sector. In attempts to evaluate the environmental consequences of this rapid expansion, life cycle 
assessment (LCA) has become a frequently used method. The present review of current peer-
reviewed literature focusing on LCA of aquaculture systems is intended to clarify the methodological 
choices made, identify possible data gaps, and provide recommendations for future development 
within this field of research. The results of this review will also serve as a start-up activity of the EU 
FP7 SEAT (Sustaining Ethical Aquaculture Trade) project, which aims to perform several LCA 
studies on aquaculture systems in Asia over the next few years.

Methods: From a full analysis of methodology in LCA, six phases were identified to differ the 
most amongst ten peer-reviewed articles and two PhD theses (functional unit, system boundaries, 
data and data quality, allocation, impact assessment methods, interpretation methods). Each phase 
is discussed with regards to differences amongst the studies, current LCA literature followed by 
recommendations where appropriate. The conclusions and recommendations section reflects on 
aquaculture-specific scenarios as well as on some more general issues in LCA. 

Results: Aquaculture LCAs often require large system boundaries, including fisheries, 
agriculture, and livestock production systems from around the globe. The reviewed studies offered 
limited coverage of production in developing countries, low-intensity farming practices, and non-
finfish species, although most farmed aquatic products originate from a wide range of farming 
practices in Asia. Apart from different choices of functional unit, system boundaries and impact 
assessment methods, the studies also differed in their choice of allocation factors and data sourcing. 
Interpretation of results also differed amongst the studies, and a number of methodological choices 
were identified influencing the outcomes.

Conclusions and recommendations: Efforts should be made to increase transparency to allow 
the results to be reproduced, and to construct aquaculture related database(s). More extensive 
data reporting, including environmental flows, within the greater field of LCA could be achieved, 
without compromising the focus of studies, by providing supporting information to articles and/or 
reporting only ID numbers from background databases. More research is needed into aquaculture 
in Asia based on the latest progress made by the LCA community.



C
ha

pt
er

 2

C
ha

pt
er

 2

14

2.1 Introduction

Historical increases of yields from capture fisheries have been achieved by increasing fishing 
efforts and exploring new fishing grounds. Around 1990, however, global fish landings levelled 
off, followed by increases in fuel consumption as fishing boats had to cover larger distances to 
reach productive fishing grounds and greater efforts were required to maintain catches (Tlusty and 
Lagueux 2009; FAO 2010a). As a result of this development, aquaculture has become increasingly 
important in meeting the rising global demand for aquatic food products, with annual per capita 
supply from aquaculture growing from 0.7 to 7.8 kg globally since the 1970s (FAO 2010a). Farming 
methods for aquatic organisms are highly diverse, and 91% of global production is based in Asia 
(FAO 2010b). Global aquaculture production is dominated by finfish (49% by weight), followed by 
aquatic plants (23%), bivalves (19%), and crustaceans (7%) (FAO 2010b). Small-scale production 
of freshwater fish from ponds in Asia is the most common production system, with a general global 
trend towards intensification (Naylor et al. 2000; Muir 2005; FAO 2010a).

The rapid expansion of the aquaculture sector has been associated with many sustainability 
concerns, such as emissions leading to climate change, eutrophication, toxic and ecotoxic impacts, 
use of antibiotics, use of land and water needed for feed production, loss of biodiversity, introduction 
of non-indigenous species, spread/amplification of parasites and disease, genetic pollution, 
dependence on capture fisheries, and socio-economic concerns (Naylor et al. 2000; Pelletier et al. 
2007; Pelletier and Tyedmers 2008; Ayer and Tyedmers 2009; Naylor et al. 2009). In the process 
of better understanding the environmental impacts of aquaculture, life cycle assessment (LCA) 
has become more frequently used to identify best practices and to assess overall environmental 
performance (Pelletier and Tyedmers 2008). As part of the EU FP7 SEAT project (Sustaining 
Ethical Aquaculture Trade, www.seatglobal.eu), LCA studies of shrimp, freshwater prawn, tilapia, 
and catfish will be performed in Bangladesh, Thailand, Vietnam, and China during the upcoming 
years. To provide a starting point for these studies, we have reviewed ten articles found in ISI Web 
of Knowledge (accessed on 30-Nov-2010) and two PhD theses focusing on LCA of aquaculture 
systems. Although several other studies are available, this review only focuses on peer-reviewed 
literature. The present review aims to clarify the methodological choices made, identify possible 
data gaps, and provide recommendations for future developments in this field of research, as well 
as for the upcoming SEAT LCA studies. 

2.2 Materials and methods 

Originally developed for industrial production and processes, LCA was later applied to food 
products with the first LCA studies of food production being published in the early 1990s (Roy et 
al. 2009). These allowed for the first aquaculture LCAs, where agricultural and livestock systems 
provide resources for fish-feed production. The first published aquaculture-related LCA was done 
by Papatryphon et al. (2004) in order to evaluate salmon feed. This was followed by a number 
of publications on aquaculture production in the second half of that decade (Table 2.1). The 
most productive institutes in this field of research have been the French INRA-IFREMER and 
Dalhousie University, Canada. Ten of the LCAs focused on finfish production, while Mungkung 
(2005) studied shrimp farming and Iribarren et al. (2010) examined mussel production. Of the ten 
finfish studies, nine focused on intensive production, and one (Phong 2010; Phong et al. 2011) 
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described integrated semi-intensive farming systems. Six studies examined production systems 
based in Europe, three in Asia, and two in North America, while one study described global 
production. 

Below, we discuss the LCA methodology that exhibited the greatest difference amongst the 
LCA studies listed in Table 2.1 (Guinée et al. 2002):

•	 Functional unit •	 Allocation
•	 System boundaries •	 Impact assessment methods
•	 Data and data quality •	 Interpretation methods 

The selection of these six phases is based on an analysis of all methodological assumptions 
and choices made and data sources adopted for the different steps of Goal and Scope definition, 
Inventory Analysis, Impact Assessment, and Interpretation. An analysis of other methodological 
phases and a detailed discussion of the impact categories are published as online resource to this 
article. Each of the six phases listed above is analyzed below in terms of differences amongst 
the studies, followed by a summary of the current LCA literature and, where appropriate, 
recommendations for research or harmonization.

2.3 Results

2.3.1 Functional unit 

The functional unit is the reference unit used to quantify the performance of a production system 
(ISO 14044 2006). The most commonly used functional unit in the twelve studies reviewed here is 
1 ton of live fish at the farm gate (six studies; see Table 2.1). Two other studies also limit themselves 
to the farm gate, with Grönroos et al. (2006) adopting dead weight and Phong (2010) adopting 1 
kcal alongside 1 kg as his two functional units. Four studies defined their functional unit in terms 
of edible yield, defined as the main part of the organism that was marketed (fillets, flesh or tails).

The functional unit is the basis of comparison in comparative LCAs. The functional unit follows 
the goal of the study, since different goals may require different functional units. The goal of the 
study and the associated functional unit partially defines the system boundary of the inventory. 
For example, if frozen fillets in supermarkets are chosen as a functional unit, the system boundary 
needs to be defined so as to include processing, transportation, and distribution. The functional 
unit may, moreover, significantly influence comparative LCAs involving different species, since the 
edible portions and nutritional values of products can differ by an order of magnitude (Roy et al. 
2009). Mussels and shrimp, for example, provide respectively, 13.6 and 140 kg of protein per ton 
of whole animals harvested (Mungkung 2005; Iribarren et al. 2010; www.nutraqua.com accessed 
23-June-2010). 

The choice of the functional unit is important for comparisons between species as well as across 
cultures, as the definition of edible will depend on cultural influenced consumer preferences. The 
choice of functional unit will also influence allocation decisions at the farm gate where more 
descriptive functional units, such as kilocalorie, may be more appropriate for comparisons between 
multi-output systems (Phong 2010). We therefore recommended to carefully choose a functional 
unit tailored to the goal and scope of the study. 
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2.3.2 System boundaries 

The system boundary determines which unit processes will be included within an LCA study and 
which ones are to be excluded. With respect to the diverse goals of the reviewed studies, few have 
considered supply chain impacts beyond the farm gate (Pelletier and Tyedmers 2010b). Iribarren 
et al. (2010), however, did include the whole production chain and found that a significant part of 
the emissions from mussel production is related to processing and marketing, with dispatch centers 
contributing significantly to the overall emissions from live mussel production. Infrastructure is 
also often excluded, due to the large amount of time that has to be invested in calculating the total 
input in relation to the small impact that is considered (Ayer and Tyedmers 2009). Where included 
and distinguished (Aubin et al. 2006; Aubin et al. 2009; Ayer and Tyedmers 2009; d’Orbcastel et 
al. 2009), however, infrastructure was found to contribute between 0% and 19.0% to the overall 
impacts in terms of global warming, eutrophication, and acidification indicators. Common cut-
offs were based on the outcomes of previous studies, selection of impact categories, available data, 
and resource constraints (Mungkung 2005; Ellingsen and Aanondsen 2006; Grönroos et al. 2006; 
Pelletier et al. 2009; Pelletier and Tyedmers 2010b).

The selection of the system boundary should be consistent with the goal of the study, and the 
criteria used to establish the system boundary should be identified and explained (ISO 14044 
2006). In aquaculture systems, the length of the full production chain is largely dependent on 
the type of system (Fig. 2.1). For example, external inputs of feed and hatchery-reared juveniles 
may not be needed in extensive systems and if the product is sold fresh on the market it needs no 
processing (e.g., carp in China). Fish and seafood are also the most perishable of food products, 
and the level of processing will influence the longevity of the product, as well as the amounts 
wasted, hence the environmental impacts (Sonesson et al. 2005).

The problem in defining cut-offs for the quantification of inventories is a lack of readily accessible 
data, implying disproportionate expenditure of funds and efforts on data collection. Limitations 
of time, funds, or data access will inevitably lead to the exclusion of processes and to less complete 
and accurate results. Nowadays, it is, however, possible to handle the cut-off problem better, by 
estimating the environmental interventions associated with flows for which no readily accessible 
data is available using environ- mentally extended input–output analysis (EIOA) (Suh et al. 2004). 
For the purpose of consumer guidance, we recommend a more extensive system boundary at or 
beyond the market, as impacts may otherwise be underestimated (Iribarren et al. 2010). Further 
efforts should also be directed towards expanding current knowledge about the contributions from 
infrastructure, as this has been reported to have a larger influence on agriculture than on most 
other industrial processes (Frischknecht et al. 2007a).

Fig. 2.1: Simplified flow chart of aquaculture production. The inclusion of some processes (dashed lines) 
are dependent upon the system in focus.
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2.3.3 Data and data quality

Although all of the studies reviewed here model relevant agriculture, fisheries and other related 
processes—to different extents—most of the inventory details of these modeling efforts remain 
unpublished. Articles that do extensively report the data mainly specify economic flows, with 
environmental flows often limited to nutrient balances. This may be due to the aquaculture-
based background of most of the researchers for whom eutrophication has historically been a 
major concern. In various articles, it remains unclear whether background databases were used 
or whether real foreground data (site-samples) had been collected (ILCD 2010); neither is it 
always clear which processes that were included in the study. Consequently, reproducing their 
results is difficult or impossible. For example, Ellingsen and Aanondsen (2006) reported: “Data are 
generally collected from various sources by both literature surveys, a study of available data sources, 
telephone conversations, and meetings”. This, unfortunately, provides no clue as to which processes, 
data, or data sources were included in the study. 

Background data used in the studies were derived from a wide range of databases, including some 
which were quite outdated (ETH 1996 and BUWAL 250) (see Table 2.1). Some authors used 
combinations of different databases or did not clearly specify the precise database(s) consulted. 
Several studies, for example, reported that they had used SimaPro software, with all of the databases 
included in it. As SimaPro includes many different databases (e.g., Ecoinvent, US LCI database, 
US IO dbase, Danish IO dbase, Dutch IO dbase, LCA food dbase, Industry data, Japanese IO 
dbase, IVAM dbase; see http://www.pre.nl/ simapro/inventory_databases.htm), the actual data 
sources used in these studies remain unclear. All studies, moreover, rely on European databases 
(commonly different versions of Ecoinvent), even though various studies dealt with aqua- culture 
in non-European countries. Although the authors of several studies did invest much effort in 
adapting inventories to regional conditions, there remains a real need for databases representing 
technologies of developing countries.

The focus of the studies ranged from single farms (Aubin et al. 2009; Ayer and Tyedmers 
2009) to small samples of each farming system (Phong 2010), to aggregated industry averages 
representing significant parts of national outputs (Pelletier et al. 2009; Pelletier and Tyedmers 
2010b). However, the quality of foreground data available for aquaculture systems often depends 
on the intensity of the system and the region of data collection. Highly intensive systems, such as 
land-based salmon systems, often keep more complete records of all inputs and outputs, while only 
general estimations are available for most extensive pond systems in rural areas. Accessibility to 
feed inventories may, moreover, be subject to the scale and nature of the feed mill, as exact mixtures 
of ingredients often are held confidential. Site-specific measurements are, moreover, dependent on 
the resources available. The articles offer limited reporting on other environmental flows beyond 
nutrient budgets (including methane, nitrous oxide emissions, copper-based anti-fouling agents, 
antibiotics, etc.).

The International Organization for Standardization (ISO 14044 2006) states that data quality 
requirements should be specified to enable the goal and scope of the LCA to be met, and also that 
the treatment of missing data should be documented, and that data sources as well as an assessment 
of the reproducibility of the study results by independent practitioners should be addressed as part 
of the data quality requirements. ISO does not, however, demand publication of all data used.
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Transparency in the reporting of data and reproducibility of results are important for proper 
peer-reviewing and interpretation of background data, at least to the extent that this is possible 
with regards to sensitive industry inventory data. A good example of the way data can be published 
without compromising the focus of the article was given by Grönroos et al. (2006) and Pelletier 
et al. (2009), who both published supporting documents describing inventories (although with 
different coverage of environmental data; see above), core processes, assumptions, and calculations. 
Another solution to fitting large inventories to the often restricted format of scientific journals 
is to report which processes derived from a background database (e.g., ecoinvent) were included 
in the study without actually including the data of that process. Such processes could simply be 
reported using the process ID numbers, rather than the full process names. This kind of more open 
reporting of data is critical for developing specific LCA data sets for aquaculture-related processes, 
as much primary data currently are lost by aggregating results and by only presenting impacts, 
rather than inventories. It should, however, be pointed out that the data sourcing and reporting 
issues discussed here are not unique to aquaculture LCAs, but rather apply to the majority of LCA 
studies published, whether peer-reviewed or not.

2.3.4 Allocation 

Some of the main differences amongst the studies reviewed here are related to allocation. While 
all of the most commonly applied procedures for allocation (including mass, economic value, 
gross energetic content, and system expansion) have been applied to aquaculture LCAs, economic 
value and gross nutritional energy content have more frequently been used in the more recent 
publications (see Table 2.1). This is also the main methodological difference between the two main 
publishing institutions, with INRA-IFREMER applying economic allocation, while researchers 
at Dalhousie University commonly prefer gross energy content as the basis for allocation (see 
Table 2.1).

Four publications applied system expansion to certain allocation situations (Ayer and Tyedmers 
2009; Pelletier et al. 2009; Iribarren et al. 2010; Pelletier and Tyedmers 2010b). Iribarren et al. 
(2010), for example, used system expansion for Spanish mussel production (with mussel as the 
main product and shells as a co-product) with the assumption that mussel shells could be used to 
replace conventional calcium carbonate production. Grönroos et al. (2006) restricted their analysis 
to whole fish at the farm gate to avoid allocation in the processing phase, while mass allocation 
was used for feed inputs. Some authors did not report their allocation decisions in their articles.

Most industrial processes yield more than one product, and some recycle expanded products as 
raw materials. As a result, the materials and energy flows, as well as the associated environmental 
releases, have to be allocated to the different products according to clearly stated and justified 
procedures. In aquaculture, many of the feed inputs are co-produced in other production systems 
(e.g., rice bran, fisheries by-catch, and co-products from livestock processing), and co-products also 
occur in the processing phase.

It is our belief that the multi-functionality problem is an artefact of the desire to isolate one 
function out of many and as artefacts can only be resolved in an artificial way, there will always be 
more than one way of solving the multi- functionality problem. This is illustrated by the debate 
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on methods to deal with the multi-functionality problem over the last two to three decades which 
still has not provided a generally accepted method. Depending on the application (e.g., policy 
or scientific publications), using alternative allocation methods could be seen as an opportunity 
to produce more realistic ranges of results and provide stronger conclusions. There are, however, 
certain requirements that need to be addressed when dealing with allocation issues, such as that 
the solution should be consistent, well justified and in-line with main methodological principles 
(Guinée et al. 2004; ILCD 2010). It is also important to always report on the allocation method(s) 
applied and perform a sensitivity analysis, as allocation plays a pivotal role in the performance of a 
production system (ISO 14044 2006).

2.3.5 Life cycle impact assessment methods 

All reviewed studies applied one or more life-cycle impact assessment methods. The major impact 
assessment method- ology used for characterization was the midpoint CML baseline method 
(Guinée et al. 2002) with only Ellingsen and Aanondsen (2006) applying an endpoint approach 
(eco-indicator 99 method; Goedkoop and Spriensma 1999). Grönroos et al. (2006) choose to 
use region-specific characterization factors for eutrophication and acidification, while making 
a distinction between aquatic and terrestrial emissions. Only climate change, acidification, and 
eutrophication were adopted as impact categories by all studies. In addition, a few novel methods 
were introduced for biotic resource use, water dependency, and land (surface) use (Table 2.2).

As regards climate change, the characterization factors suggested by the international panel on 
climate change (IPCC; Houghton et al. 2001) were the basis for all reviewed studies. This therefore 
enables for valid conclusions to be drawn amongst the studies, e.g., the great importance of feed 
inputs for aquaculture systems.

As regards acidification, all but three studies adopted the approach developed by Huijbregts 
(1999). Apart from Ellingsen and Aanondsen (2006) and Grönroos et al. (2006), Phong (2010) 
chose alternative characterization factors, in this case, the older Heijungs et al. (1992) acidification 
method. 

As regards eutrophication, similar differences are found as for acidification, while Grönroos et al. 
(2006) chose to separate terrestrial and aquatic emissions due to their distinct association to feed 
production and feed application, respectively. Phong (2010), again, refers to an older alternative 
publication, Weidema et al. (1996). 

Cumulative primary fossil energy demand was the fourth most commonly included impact 
category amongst the studies and showed a large overlap with abiotic resource depletion (Ayer 
and Tyedmers 2009). Strikingly, six studies adopted and quantified a novel impact category, biotic 
resource use. Its use aims to capture the ultimate carbon-based energy stemming from biological 
systems that support fed aquaculture production, although a standardized protocol for this impact 
category still remains to be developed (Pelletier et al. 2007). Marine exotoxicity, an impact category 
for which the existing characterization methods have been widely debated within the LCA 
community (Gloria et al. 2006; Pettersen and Hertwich 2008), was adopted and quantified in four 
studies. A range of other toxicity related impact categories were less frequently adopted, along with 
abiotic resource depletion and ozone depletion. Water dependency and land use were represented 
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in only two studies each, using own methodology. Little consideration was, however, given to the 
type of water use (e.g., marine or freshwater, degradative or consumptive; Bayart et al. 2010) on 
either the input or the output side, nor were emissions relating to land use and transformation 
considered (ILCD 2010). Other concerns not covered by the LCA methodologies reported in our 
review include impacts on the seafloor from capture fisheries, the introduction of invasive species, 
the spread of diseases, genetic pollution, and socio-economic concerns (Pelletier et al. 2007).

Impact category ∑ Impact Assessment method

Global warming 12 Houghton et al. 20011,2,3,4,5,6,7,8,9,10,11,12

Acidification 12 Huijbregts 1999a1,2,5,6,7,8.9,10,11; Goedkoop and Spriensma 
19993; Seppälä et al. 20064; Heijungs et al. 199212

Eutrophication 12
Heijungs et al. 19921,2,5,6,7,8,9,10; Goedkoop and Spriensma 
19993; Weidema et al. 199612, Seppälä et al. 20044a; Seppälä 
et al. 20064a

Energy use 8 VDI 19972,5,6,7,8,9,11; Goedkoop and Spriensma 19993; Article 
specific12

Biotic resource use 6 Papatryphon et al.20042,6,8; Pelletier and Tyedmers 20075,9,11

Marine aquatic ecotoxicity 4 Huijbregts 1999b5,7,10; Meent and Klepper 19973b

Abiotic depletion potential 3 Guinée and Heijungs 19951,7,10

Ozone depletion potential 3 WMO19991,10; Goedkoop and Spriensma 19993

Human toxicity 3 Huijbregts 1999b1,7,10

Water dependence 2 Own methodology6,8

Photochemical oxidant 
formation 2 Derwent et al. 1998/Jenkin and Hayman 19991,10

Freshwater aquatic 
ecotoxicity 2 Meent and Klepper 19973b; Huijbregts 1999b10

Terrestrial ecotoxicity 2 Meent and Klepper 19973b; Huijbregts 1999b10

Surface use 2 Own methodology8, 12

Respiratory impacts from 
inorganics 1 Goedkoop and Spriensma 19993

Cancinogenic effects on 
humans 1 Goedkoop and Spriensma 19993

aAquatic and terrestrial eutrophication was reported separately
bEcotoxicity is summarized under one category

Table 2.2: Frequency of applying different impact categories in LCA studies on aquaculture, and the 
impact assessment method used. Global warming, acidification and eutrophication were the only impact 
categories applied by all authors. References: 1Mungkung 2005; 2Aubin et al. 2006; 3Ellingsen and Aanondsen 
2006; 4Grönroos et al. 2006; 5Pelletier and Tyedmers 2007; 6Aubin et al. 2009; 7Ayer and Tyedmers 2009; 
8d’Orbcastel et al. 2009; 9Pelletier et al. 2009; 10Iribarren et al. 2010; 11Pelletier and Tyedmers 2010; 12Phong  
2010. For full references on the impact assessment methods, please refer to the Online Resources online.
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In summary, the current review of aquaculture LCAs shows that impact assessment methodologies 
have been applied to all studies reviewed. The range of impact categories covered is, however, limited, 
and the methods adopted for the various categories differ, hampering comparisons of study results. 
Some authors used old characterization factors, while others developed their own quantification 
methods. Future harmonization with the developments within the LCA community is therefore 
advised, focusing on the standardization efforts promoted by ILCD (the European Commission’s 
Join Research Centre) and UNEP- SETAC (the United Nations Environment Programme and 
the Society of Environmental Toxicology and Chemistry) including the ILCD handbook (lct.jrc.
ec.europa.eu), USEtox™  (www.usetox.org), land-use (lcinitiative.unep.fr, accessed: 17-Oct-2010) 
and freshwater use (Bayart et al. 2010) (for a complete overview of the life cycle impact assessment 
methods adopted by the different studies reviewed here, please see the Online Resource to this 
paper). 

2.3.6 Interpretation methods

Although all studies performed a dominance or contribution analysis, many did not perform a 
complete set of sensitivity analyses, as is required by the current ISO standards. Ayer and Tyedmers 
(2009), however, conducted an extensive set of sensitivity analyses, one of which highlighted the 
importance of electricity sourcing. Another study by Pelletier and Tyedmers (2007) concluded 
that allocation factors strongly influence the impact of different feed inputs. Both d’Orbcastel et 
al. (2009) and Pelletier et al. (2009) drew a parallel between food conversion ratios (FCRs, defined 
as kilogram dry feed/kilogram live fish) and GHG (greenhouse gas) emissions, while Mungkung 
(2005) supported her conclusions by performing a sensitivity analysis on data assumptions for 
fishing practices as well as for different impact assessment methods. Ellingsen and Aanondsen 
(2006) also used two alternative impact assessment methods to strengthen their conclusions. 
Pelletier et al. (2009) evaluated the range of nitrous oxide emissions from nitrogen fertilizers, 
compared to the default value indicated by the IPCC. Only Phong (2010) applied statistical tools 
to different farming practices, in the form of one-way ANOVA (analysis of variance).

According to ISO (2006), the life cycle interpretation phase of an LCA comprises the 
identification of the significant issues based on the results of the LCI (life cycle inventory) and 
LCIA stages, an evaluation involving completeness, sensitivity, and consistency checks, and finally 
the formulation of conclusions, limitations, and recommendations. It is an important phase of any 
LCA study, where any weaknesses should be highlighted and results critically tested.

Irregularities at temporal and spatial scales give rise to deviations in inventories of aquaculture 
production. Underlying models, moreover, rely on assumptions and methodological choices 
influence the results. Statistical tools and sensitivity analyses are therefore important to strengthen 
the arguments and conclusions in aquaculture LCAs. Treating farms individually, rather than as 
averages, would here allow for more extensive statistical comparisons to be made between farms. 
Known pivotal factors identified in the articles reviewed here include various inventory choices 
(feeds, raw materials, infrastructure, etc.), GHG emissions from agricultural fields and aquatic 
systems, nitrogen and phosphorus emissions, allocation factors, and characterization factors. 
Further efforts are therefore needed to account for the many degrees of freedom, using more 
extensive sensitivity analyses and implementing, e.g., Monte Carlo analysis.
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2.4 Discussion

Aquaculture is currently the fastest growing animal production sector, and ever-larger amounts 
of farmed aquatic products are being traded on international markets. Increasing concerns about 
the sustainability of production have, however, been raised, and the standards and requirements 
imposed on the aquaculture sector are becoming ever stricter. In the search for best practice, 
LCA has proved to be a valuable tool to identify environmental hot spots and compare different 
production systems. To date, however, there has been limited LCA coverage of the various farming 
systems worldwide, especially in Asia from where the bulk of farmed aquatic products originate. 
The present review has identified a range of methodological and data sourcing approaches reported 
in existing publications, where methodological choices often govern the outcomes.

Nine of the twelve peer-reviewed publications included in this review focused on intensive 
finfish production, which represents a small share of the global aquaculture output. Eight of the 
studies were, moreover, limited to whole fish at the farm gate, which may give misleading results if 
consumer guidance is the objective. Distribution of fish and seafood to markets may, for example, 
contribute disproportionately to the overall impacts as these are highly perishable commodities 
with high value attached to their freshness (Tlusty and Lagueux 2009). More LCA-based research 
is therefore needed to guide this still expanding sector towards best practice. With the widespread 
of aquaculture in Asia, these studies should focus on Asian aquaculture and alternative farming 
practices, using a functional unit relevant to the aim of the study.

The greatest single methodological difference amongst the studies was in allocation, with 
monetary value and gross energy content being the most commonly applied allocation factors. 
However, the level of reasoning and consistency regarding choices made varied greatly amongst 
studies. As consensus, let alone scientific clarity, is not likely to be achieved soon, allocation choices 
should be clearly defined and justified. Inventory results with regard to the allocation method 
adopted should also be supported by thorough sensitivity analysis, as advocated by ISO. Databases 
and software should, moreover, simplify the application of alternative allocation decisions to enable 
more extensive sensitivity analyses.

All studies had adopted the IPCC recommendations for global warming, as it represents a highly 
resourceful centralized scientific body. Similar developments should be encouraged for other 
impact categories, following initiatives by ILCD and UNEP-SETAC. However, inventories of the 
characterized environmental flows need to be made available to allow alternative characterization 
factors to be implemented. Toxicological implications should also be given more attention as they 
have historical importance in the aquaculture sector (e.g., Malachite green). New characterization 
factors and standardized protocols need to be developed to address more aquaculture-specific 
concerns (e.g., seafloor disturbance and biotic resource use). A distinction between terrestrial 
and aquatic eutrophication may also have to be made, as these emissions usually have distinctly 
different origins.
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2.5 Conclusions and recommendations 

There is a need for more detailed LCA studies of non-finfish species, as well as of integrated, 
extensive, and semi- intensive production of finfish in developing countries (especially in Asia), 
in order to guide the industry towards best practice, highlight hot spots, and guide consumers. 
These studies should conform to up-to-date guidelines from, e.g., ISO, ILCD, and SETAC-
UNEP in order to move towards a more harmonized methodology. The characterization factors 
and background databases selected should also be the latest available versions. There is also a need 
to develop impact categories more specifically related to aquaculture, such as seafloor disturbance, 
biotic resource depletion, and loss of biodiversity. Moreover, the reporting of methodological 
choices and data should be improved to allow for comprehensive critical analysis and the joint 
development of extensive inventories.

Sourcing of background data should be consistent and give consideration to the underlying 
methodological and geographical characteristics of the database used. More extensive reporting of 
inventory data as online resource and by defining process numbers is also recommended, as well as 
efforts to extend the coverage of environmental flows. This would assist the development of specific 
data (and databases) for aquaculture practices and feeds, which would further promote the quantity 
and quality of aquaculture LCAs. Finally, the contribution of infrastructure seems to be strongly 
influenced by the methodology and impact categories used, while applying EIOA to aquaculture 
systems would allow the importance of missing data in aquaculture LCAs to be estimated. Many of 
the improvement options mentioned here can be implemented by increasing knowledge exchange 
between the aquaculture community, from which most of the reviewed studies originate, and the 
LCA community.

In the ongoing SEAT project, the ambition over the coming years is to describe four major 
aquaculture exports farmed in Asia. Detailed LCAs will be conducted of a representative sample 
of each major farming system, supported by a larger scoping survey collecting basic data for 1,600 
grow-out farmers in the region. Foreground data will also be collected on other actors in the value 
chain, including feed producers, processing plants, hatcheries, nurseries, and fishmeal factories in 
each country. The results of this research are to be presented in inventory and impact assessment 
reports over the upcoming years, with the ambition to adopt the recommendations suggested 
above. These efforts together with several other LCA studies published after this review (e.g. Cao 
et al. 2011; Bosma et al. 2011) will hopefully improve our current knowledge of the impacts of the 
aquaculture sector and promote best practice. 
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Abstract 

Purpose: Quantitative uncertainties are a direct consequence of averaging, a common procedure 
when building life cycle inventories (LCIs). This averaging can be amongst locations, times, 
products, scales or production technologies. To date, however, quantified uncertainties at the unit 
process level have largely been generated using a Numerical Unit Spread Assessment Pedigree 
(NUSAP) approach and often disregard inherent uncertainties (inaccurate measurements) and 
spread (variability around means).

Methods: A decision tree for primary and secondary data at the unit process level was 
initially created. Around this decision tree, a protocol was developed with the recognition that 
dispersions can be either results of inherent uncertainty, spread amongst data points or products of 
unrepresentative data. In order to estimate the characteristics of uncertainties for secondary data, a 
method for weighting means amongst studies is proposed. As for unrepresentativeness, the origin 
and adaptation of NUSAP to the field of life cycle assessment are discussed, and recommendations 
are given.

Results and discussion: By using the proposed protocol, cross- referencing of outdated data is 
avoided, and user influence on results is reduced. In the meantime, more accurate estimates can 
be made for horizontally averaged data with accompanying spread and inherent uncertainties, as 
these deviations often contribute substantially towards the overall dispersion.

Conclusions: In this article, we highlight the importance of including inherent uncertainties and 
spread alongside the NUSAP pedigree. As uncertainty data often are missing in LCI literature, we 
here describe a method for evaluating these by taking several reported values into account. While 
this protocol presents a practical way towards estimating overall dispersion, better reporting in 
literature is promoted in order to determine real uncertainty parameters.
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3.1 Introduction 

Life cycle assessment (LCA) results are commonly presented as point values without even 
giving a qualitative indication of the underlying uncertainties (Björklund 2002; Ross et al. 2002). 
Results of LCAs are also strongly influenced by the LCA practitioner, and even ISO 14044 (ISO 
14044 2006) compliant studies describing identical systems may experience an order of magnitude 
difference in assessed impacts (de Koning et al. 2009; Williams et al. 2009; da Silva et al. 2010). 
This practice easily results in unstable conclusions, which subsequently attract criticism and may 
put public trust in LCA results at risk (Williams et al. 2009; Lazarevic et al. 2012). Desired 
advancements in the field of LCA are therefore to reduce practitioner influence and to produce 
uncertainty ranges around life cycle inventory (LCI) results.

Part of the divergence in LCA outcomes relates to different methodological choices made by 
practitioners. These may include different views on system boundary setting, inclusion of capital 
goods, allocation, biogenic carbon handling and storage, end of life of products, land use change 
and characterisation factors (Finkbeiner 2009; Henriksson et al. 2011). In theory, however, all 
of the above can be resolved by a common set of product category rules (de Koning et al. 2009). 
Collecting representative LCI data, on the contrary, is like hunting a moving target as processes 
constantly change or experience natural variance. Available data for individual unit process flows 
therefore often remain outdated or of otherwise limited quality. The sourcing of representative unit 
process data is, moreover, influenced by value judgements, epistemological perspectives and ethics, 
which may further influence results (Lazarevic et al. 2012). Additional dispersion around averages, 
in the form of spread, is also introduced by the process of horizontal averaging. In the field of LCA, 
horizontal averaging is commonly performed when multiple unit processes, or aggregated datasets, 
are combined to represent a more general process (UNEP 2011). This may, e.g. be the averaging of 
thermal efficiencies amongst coal power plants in a country towards a countrywide average.

Producing uncertainty estimates around results requires input parameters and a propagation 
method (Fig. 3.1). Many methods for propagating statistical uncertainties around LCI results were 
proposed already at an early stage of LCA development, including Monte Carlo analysis, analytical 
error propagation and fuzzy logic (Heijungs 1996; Huijbregts et al. 2001; Lloyd and Ries 2007). 
Meanwhile, their application has so far been sporadic due to limitations in quality and quantity of 
input parameters, time, computing, etc. Most of these hurdles can, however, today be overcome; 
uncertainty information is becoming more and more available in background data, software allow 
for the adoption of ranges and computing power has improved. Still limited, however, are clear 
definitions of how the input parameters should be de- fined and what they need to enclose.

Uncertainty is dynamic, and it is of importance to identify all of its origins. Already in 1996, 
Heijungs made a distinction between uncertainties (lack of knowledge) and variability (likely to 
change often) at the unit process data level. Huijbregts (1998a) later classified these into parameter 
uncertainty, model uncertainty, spatial variability, temporal variability and variability between 
objects or sources. Variables are, moreover, subject to covariance (e.g. the causal relationship between 
amount of fertilizer applied and total yield), directional over time (e.g. efficiency improvements) 
and influenced by their own previous predictions (e.g. climate predictions can influence climate 
negotiations, which in turn influence climate).
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Applied and interdisciplinary sciences, including the field of LCA, are goal-oriented disciplines, 
in which social values, ethics, policies, managers, funders, competition and personal beliefs become 
unavoidable forces that may influence scientific results (Funtowicz and Ravetz 1990; Ravetz 1999; 
Lazarevic et al. 2012). These underlying forces have motivated the concept of post -normal science, 
where uncertainty is endorsed to be managed, and values are made explicit (Table 3.1) (Funtowicz 
and Ravetz 1990). In the field of LCA, this can be related to, e.g. the user influence on results 
or the often more available access to inventories describing improved or alternative production 
methods (e.g. organic farmers are often more keen to share their production practices than 
non-organic farmers). In order to acknowledge these inferences, Funtowicz and Ravetz (1990) 
introduced the Numeral Unit Spread Assessment Pedigree (NUSAP) approach. The NUSAP 
approach supplements traditional quantitative uncertainty parameters (numeral, unit and spread) 
with qualitative judgements about the information used and its scientific status (assessment and 
pedigree) (van der Sluijs et al. 2005). In this article, we will refer to this as unrepresentativeness.

NUSAP’s pedigree approach was first introduced to the field of LCA by Weidema and Wesnaes 
(1996), the pedigree serving as a data quality indicator for LCIs. Later, it was also practically 
applied as a quantitative tool within the ecoinvent database, in order to produce estimates of 
uncertainty by attributing a set of uncertainty factors, based on expert judgement, to the pedigree 
quality indicators (Frischknecht et al. 2007b). Uncertainty factors were first introduced by 
Huijbregts (1998b) as minimum and maximum estimates and later reinterpreted as geometric 
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Normal science (NUS) Post-normal science (AP)
Inherent deviations and spread of data Unrepresentativeness of data

Source: Uncertainty and variability Source: Systems uncertainty and decision 
stakes

Including: Parameter uncertainty, model 
uncertainty, spatial variability, temporal 
variability, variability between objects/sources

Including: Qualitative judgements, 
reliability, completeness, temporal 
correlation, geographical correlation and 
further technological correlation

Table 3.1: Definitions and examples of uncertainties originating from normal and post-normal science 
(Funtowicz and Ravetz 1990; Weidema and Wesnaes 1996; Huijbregts 1998a; Huijbregts 1998b; Ravetz 
1999; van der Sluijs et al. 2005).

Fig. 3.1: Types of input parameters required to process point values or range outputs.
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standard deviations, as almost all data were assumed to be lognormally distributed (Frischknecht 
et al. 2007b). This quantitative use of the pedigree part of the NUSAP scheme, however, may be 
questioned with regard to its original intent and appropriateness, and it only ever estimates the 
unrepresentativeness of a dataset to its proposed use, thus excluding any inherent uncertainty or 
spread.

The work presented here is conducted as part of the on-going Sustaining Ethical Aquaculture 
Trade project (SEAT; www.seatglobal.eu), an EU FP7-funded collaboration project that aims 
to evaluate European imports of aquatic products from Asia. As an initial step of the project, an 
integrated survey was conducted to collect an extensive sample (n = 1600 farms) of primary data 
(as defined in Table 3.2) for aquaculture farms in Bangladesh, China, Thailand and Vietnam. 
Additional primary data have also been collected for related processes, including feed mills, 
hatcheries, nurseries, processing plants, fishmeal factories and reduction fisheries (n =10–40). With 
limited representation of Asian processes in available LCI databases, most supporting processes 
need to be modelled using secondary data (e.g. electricity production in Vietnam). Many secondary 
data sources, however, report inconsistent values and often lack information on inherent uncertainty 
ranges. In response to this—and in order to support SEAT’s extensive primary dataset—we here 
propose a new, more consistent method for approaching and averaging data horizontally.

The purpose of this manuscript is to propose a methodology for horizontal averaging of data 
where dispersion from inherent uncertainty, spread and unrepresentativeness is incorporated in 
the input parameters. The methodology was developed to allow for subjective unit processes to be 
produced, which can support the LCIs produced within the SEAT project. 
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Table 3.2: Glossary of terms used throughout this study.

Primary data Data collected specifically for the intended study and  
representing relevant suppliers. (UNEP 2011)

Secondary data Previously published data describing processes for the intended 
study at different levels of aggregation and representativeness. 
(UNEP 2011)

Unit process Smallest element considered in the life cycle inventory analysis 
for which input and output data are quantified (ISO 2006).

Dispersion Any form of range around a variable, resulting from inherent un-
certainty, spread or unrepresentativeness

Inherent uncertainty Uncertainties related to the inaccuracies of measurements or 
model at no level of horizontal averaging

Spread Variability around an average resulting from horizontal averaging
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3.2 Methods 

Horizontal averaging of data is driven by many motives and goals, e.g. to comply with the goal 
of a study, ensure confidentiality, increase ease of use or provide computation efficiency (UNEP 
2011). Given that each sample ideally should be handled as a unique unit process, the level of 
averaging should be kept to a minimum (UNEP 2011). However, out of practical reasons, both 
primary and secondary data almost always need to be averaged to some extent to make them 
manageable in the inventory phase. While averaging most often is discussed on a geographical 
level, as in Fig. 3.2, it also applies to technologies, seasons, scales of production, products (e.g. 
different varieties of crops), etc. As a direct result of averaging, the level of overall dispersion will 
generally increase, partially by spread and partially from unrepresentativeness. As processes often 
are presented on a global level (734 processes in ecoinvent v2.2), using average technology, or from 
different time periods, the importance of including dispersion is again highlighted.

Every sample of values can be described by a large number of moments, of which the first four 
(a central value, a variance, a coefficient of skewness and a coefficient of kurtosis) typically suffice 
to capture the main characteristics of the distribution. The estimates of these moments should 
be consistent, unbiased, efficient, sufficient, robust and practical (Morgan and Henrion 1990). 
With focus on the practical, unit process data are often described by the two first moments fit 
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Fig. 3.2: The process of horizontal averaging displaying the cumulative effect on dispersion, originating 
from inherent uncertainty, spread and unrepresentativeness, using spatial averaging as a reference. 
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to one of a limited number of distributions (e.g. normal, uniform, triangular and log-normal). 
While the central limit theorem states that the mean values of independent random variables 
are approximately normally distributed, multiplicative independent random variables tend to be 
log-normally distributed (Limpert et al. 2001). This, in addition to the desire to avoid negative 
numbers and to better represent large variances, explains the preference for lognormal distributions 
in LCI datasets. However, where sufficient data are avail- able, the best fit distribution should 
be determined using a goodness-of-fit test for each dataset, as distributions based upon value 
choices may increase the data uncertainty it aims to describe. The choice of central value is, in the 
meantime, dependent upon the choice of software. The methodology described below will adopt 
the arithmetic mean as the central value, given that it is the input value in CMLCA. Correlating 
equations for geometric means are available as electronic supplementary material to this article. 
Dispersion measures should also correlate with the type of distribution (e.g. a geometric standard 
deviation to describe log-normally distributed data) and software used.

In order to apply the most appropriate moments to different sets of primary and secondary data, 
a decision tree was initially developed (Fig. 3.3). In the decision tree, priority is given to primary 
data (P1–3), assuming that they are more up to date and relevant, and provide a better level of 
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Fig. 3.3: Decision tree for sourcing unit process data, with regards to mean, inherent uncertainty, spread, 
unrepresentativeness and distribution. 
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understand- ing than secondary data. Where only one primary dataset is relevant (P3) to the scope 
of the study, spread can be neglected. However, if only one primary dataset is available (P3), the 
option of resolving to, or supplementing with, secondary data should be considered. For secondary 
data (S1–4), a weighting procedure amongst values is proposed, in order to acknowledge varying 
degrees of representativeness amongst secondary data sources. Where processes are unrepresented 
in literature (S4), four alternative options are suggested of which the one deemed to provide 
the most accurate estimate should be selected. Th e decision tree allows for more consistent data 
handling, while still partially relying upon expert judgement (particularly for secondary data) in 
order to approach the wide array of possible situations.

In order to more accurately determine the central value, we introduce a weighting procedure 
amongst secondary data points. Th e weighting procedure assumes that several reported values 
are available candidates for an inventory fl ow at the unit process level. Th e selection criteria for 
choosing values should be stated in the scope of the study, and the sample should preferably be well 
balanced (e.g. not all values from the same region). As each of the values will represent samples 
of diff erent accuracy, we here encourage weighting based upon representativeness (σr), defi ned 
by the overall uncertainty factor, and inherent uncertainty (σu) where available for all values. 
Th is assures that more recent and extensive studies are given more emphasis, while also allowing 
for overlapping of inventories. Compiling and comparing data may also indicate if any cross-
referencing exists amongst the secondary data sources, all of which should be removed from further 
analysis. Weighted means can be calculated using Equation 1, where x represents the vector of n 
values indexed by i, w the weighting factors (Eq. 2) and x̅(wt)  the weighted arithmetic mean. For the 
input parameter (σu+r) in the weighting factor, we recommend the square of the arithmetic standard 
deviation. However, in order to avoid bias from the scale of means where relative uncertainty 
factors are adopted, and to allow for weighting of true zero values (e.g. no fi sh in pond x when the 
question is “how many fi sh are there in the pond?”), 1/(ln(σg

u+r))2 couzld be considered if relative 
geometric standard deviations are given or the square of the coeffi  cient of variation 1/(CVu+r)2 for 
relative arithmetic standard deviations.

Th e estimate for representativeness can be derived from a NUSAP pedigree with accompanying 
uncertainty factors. Th e pedigree matrix should evaluate all of the most relevant variables, and 
its complexity may diff er depending upon the ambition and complexity of the parameter/model 
assessed (van der Sluijs et al. 2005). Pedigree criteria should, moreover, be explicitly defi ned, to 
avoid interpretation bias and ac- knowledge that information on data sometimes is lacking for 
certain pedigree criteria. Uncertainty factors should mean- while preferably be verifi ed by real data. 
As an indicator for unrepresentativeness of weighted means, we recommend the use of the lowest 
uncertainty factor within a sample to characterise the unrepresentativeness of the weighted mean, 
given that this already has been accounted for in the weighting process.
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As for inherent uncertainty, we naturally encourage the adoption of calculated arithmetic, or 
geometric (Eq. 3.3), standard deviations for primary site samples. Where standard deviations 
are reported around secondary data points, we recommend the adoption of the lowest reported 
inherent un- certainty, given the assumption that the increased sample results in more accurate 
values. Where inherent standard deviations remain unreported, estimates from related processes or 
basic uncertainties should be adopted. As for spread, the standard deviation amongst primary data 
values, or the values supporting each weighted mean, should be used.

         Eq. 3.3

In order to aggregate the uncertainty factors, the standard deviations all need to be on the 
same scale. Th e translation of standard deviations between the normal (σa) and the lognormal 
scale is therefore presented by Eqs. 3.4 and 3.5. Both of these equations, however, only provide 
approximate parameters.

   Eq. 3.4      Eq. 3.5

Assuming that inherent uncertainty (σu), spread (σs) and unrepresentativeness (σr) are independent 
and moreover described on the same scale, the overall dispersion (σo) can be calculated using 
either Eq. (6) for arithmetic standard deviations or Eq. (7) for geometric standard deviations in 
accordance with the combination rules by Frischknecht et al. (2007b). While Eq. (7) fulfi lls all 
the desired functions of combining geometric standard deviations, it is not universally recognised.

         Eq. 3.6

         Eq. 3.7

Caution is needed with regard to zeroes on the lognormal scale, as negative or zero values for 
x are not accommodated. While missing values can be excluded from the equations, for true zero 
values, we recommend that they be substituted by a value of 10 % of the lowest non-zero value 
reported elsewhere for the variable. Th is ensures that the true zeroes remain the lowest value without 
introducing the complexity of, e.g. Box–Cox transformations (Ortiz and Arocha 2004). In cases 
where two alternative fl ows fi ll an identical function (e.g. generators and grid electricity), these may 
have to be treated individually with regard to their contribution. Templates for the recom- mended 
equations and unit process collection sheets are avail- able as electronic supplementary material to 
this article.
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 33.3 A simple hypothetical example
In order to exemplify the proposed methodology, a hypothetical case will be used. Four values 

from secondary data sources (a–d) were assumed to represent a common unit process flow, each 
scaled towards a common reference flow, as is crucial before merging unit process data (Table 3.3). 
The pedigree and uncertainty factors proposed by Frischknecht et al. (2007b) and Weidema et al. 
(2012) were adopted in order to evaluate unrepresentativeness. Both of these documents evaluate 
the categories of reliability, completeness, temporal correlation, geographical correlation, and 
further technical correlation, as originally proposed by Weidema et al. (2012), with the addition of 
sample size in Frischknecht et al. (2007b). Sample size was again removed in Weidema et al. (2012), 
as default basic uncertainty factors were introduced. While the characteristics of the uncertainty 
factors in Frischknecht et al. (2007b) are not always clear, we here assume these uncertainty factors 
to be equivalent with geometric standard deviations (σg). The representativeness of each value 
is reported within brackets as pedigree scores together with the corresponding summed relative 
uncertainty factors.

In accordance to Fig. 3, the decision tree, a lognormal distribution was assumed. Using the 
method described above (Eqs. 1, 2 and 4), the weighted arithmetic mean was derived at 1.479, 
adopting the uncertainty factors of Frischknecht et al. (2007b), and 1.654 when consulting 
Weidema et al. (2012) (excluding inherent uncertainties due to incomplete reporting). Alternative 
weighting factors resulted in weighted means of 1.585 according to Frischknecht et al. (2007b) 
(wi =1/ln(σg

u +r)2), and 1.671 according to Weidema et al. (2012) (wi = 1/CV2). All of these are 
higher than the basic arithmetic mean of 1.30, as a result of the two larger values (A and B) being 
more representative. To calculate the overall deviation, we adopt the proportionally lowest reported 
inherent uncertainty (σa

u = 0.16 or σg
u ≈ 1.106 using Eq. 5) and dimensioned pedigree estimate 

(σa
r = 0.068 (from σg

r = 1.041) or 0.0017 (1.7 × 0.001)) amongst the values, depending upon the 
methodology used. The spread can be derived amongst the values to σa

s = 0.408 or, alternatively, 
σg

s = 1.381 (using Eq. 3). Finally, the overall dispersion can be estimated at σa
o=0.443 using Eq. (6) 

(assuming σa
u =0.16, σa

s =0.408 and σa
r =0.068) or σg

o =1.406 using Eq. (7) (and 5) (assuming 
σg

i =1.106, σg
s =1.381 and σg

r =1.041). 
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Table 3.3: A hypothetical list of values identified to represent a unit process flow.

Source a b c d
Value 1.6 1.7 1.0 0.9
Reported inherent standard 
deviation 0.16 n.a. 0.12 n.a.

NUSAP score (3,2,1,2,1;2) (2,2,2,3,1;3) (1,3,1,3,3;2) (2,2,4,2,4;1)
Sum of squared uncertainty 
factors, σg (Frischknecht et 
al. 2007b) 

1.051 1.041 1.100 1.251

Sum of variances, σCV 
(Weidema et al. 2012) 0.002 0.001 0.008 0.041
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3.4 Discussion 

Our proposed protocol presents a practical way to approach and organise primary and secondary 
data. While the procedure of critically evaluating data sources is time consuming, and resources often 
are limited, efforts can be restricted to the most influential parameters by initial scoping efforts and 
sensitivity analyses. By critically analysing the secondary inventory sources and weighting them 
towards a common mean, cross- referencing of outdated or estimated inventory flows is avoided. 
Horizontal averaging of data sources also allows for merging of inventories, thereby generating 
more complete unit process datasets. The proposed approach is especially useful for building more 
general processes, as primary data sources rarely represent national-level surveys, and production 
methods often differentiate geographically. 

Defining and enclosing dispersion originating from inherent uncertainty, spread and 
unrepresentativeness is more fundamental than the choice of analytical method for propagating 
uncertainties (e.g. Monte Carlo analysis or Latin hypercube). To date, inherent uncertainties 
and spread have often been neglected or replaced by pedigree-generated uncertainty factors or 
default uncertainties. Even with the extension by Frischknecht et al. (2007b), NUSAP’s pedigree 
approach, however, only estimates unrepresentativeness of data and complements, rather than 
replaces, inherent uncertainty or spread. The above proposed methodology enables for dispersions 
to be estimated for both primary and secondary data. This provides one step towards producing 
more accurate ranges in LCI results, while clearer definitions of which uncertainty parameters 
should be embedded at the unit process level are encouraged.

While we here assume the arithmetic mean for the central value, this choice needs to be made 
in accordance with the specified data manager. In the meantime, the produced LCI outputs may 
better be represented by the geometric mean. More extensive statistical testing of LCI conclusions 
is also recommended, using, e.g. analysis of variance. To improve the level of detail of dispersions 
and results, we encourage underlying datasets of primary data to be made available, or at least 
to include sample size, standard deviations, and a distribution around presented means or other 
central values. Actual inherent uncertainties could then be calculated. Moreover, the application 
of NUSAP’s pedigree should also be extended beyond the averaging of data and also apply to the 
point of use of that data. This becomes relevant (see Fig. 3.2) when using ecoinvent processes for 
purposes they are not intended to represent (e.g. using the ecoinvent product “rice, at farm [US, 
2001–2006]” instead of Chinese rice in 2013). 

The quantitative adaptation of the pedigree goes beyond its original intent, but is also the only 
way to evaluate the quality of the often more than 4000+ processes commonly used in LCAs. 
We, however, encourage further advancements of the NUSAP approach within the field of LCA, 
especially the development of statistically supported uncertainty factors for individual sectors and/
or regions, as categories of processes often experience inconsistent sensitivity towards the different 
types of correlation. For example, the rate of technological advancements in rapidly developing 
countries like China, or in high-tech industries (e.g. computer components), is often faster than 
in baseline cases (Williams et al. 2009). Its original function to evaluate uncertainties related to 
post-normal science should, however, not be forgotten. Moreover, the removal of sample size as 
an indicator based upon the introduction of default uncertainties may downplay its importance, 
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especially for small samples. Sample size is a pivotal factor for any statistical model, but has so far 
played a relatively limited role in supporting LCA conclusions.

An expected advancement of ecoinvent v3 is parameterisation (Weidema et al. 2012), where raw 
data are made available for manipulation at the unit process level. The methodological advancements 
proposed here could be integrated in such parameterised LCI datasets to increase flexibility and 
transparency of data. Likewise, this protocol is useful when producing or adopting the surrogate 
global processes required in ecoinvent v3. However, more support behind the background and 
characteristics of the scale independent normal distributions, adopted in the data quality guideline, 
is encouraged.

The current simplified approach for selecting inherent un- certainties and unrepresentativeness 
around weighted means was the result of limitations in reporting on data in literature, where 
advancements are welcomed. Moreover, the weighting factor proposed for arithmetic means 
(standard deviations) become biased (favouring smaller values) by the relative uncertainties often 
proposed in available quantitative adoptions of NUSAP’s pedigree. Better justified mathematical 
approaches in the field of LCA as a whole are therefore recommended. Future efforts are also 
encouraged towards more frequent application of goodness-of-fit tests to extensive datasets, in 
order to identify which of the available distributions best characterise data categories. Moreover, 
the under- standing and handling of covariance, where variables are correlated with each other, also 
remain limited. To date, as in this manuscript, covariance is often neglected which easily results 
in incorrect estimates of uncertainties when random sampling methods such as Monte Carlo are 
applied. Additional inaccuracy relates to the current benchmarking of temporal correlation to the 
time of data evaluation, where assessments of unrepresentativeness, in, e.g. databases, easily become 
outdated over time. Additional advances include the implementation of the Bayesian theorem 
where data are imputed (Björklund 2002) and meta-analysis of input data, rather than results 
(for more, please see the special issue on meta-analysis in J Ind Ecol (2012) 16:S1). Also, the 
advancement of statistical models, and introducing concepts such as statistical power, will allow for 
even stronger conclusions to be made and reintroduce the importance of sample size.

3.5 Conclusions

Increased objectivity and the inclusion of quantitative uncertainties are pressing issues in the field 
of LCA. If the community fails to address these issues, it may jeopardise its credibility and scientific 
integrity. While all the necessities today are available for the practical inclusion of uncertainties, 
greater efforts are needed to define the uncertainty parameters at the unit process level. For this, 
we have proposed a protocol for sourcing data, with the ambition of keeping the methodology 
amenable for the everyday LCA practitioner and limiting the resource investments needed. The 
protocol developed here is meant to help practitioners select the most representative and relevant 
data for their purposes and to quantify related uncertainties. To improve the quality of the data 
itself, improved reporting of primary data is necessary, as much of the under- lying information 
on inherent uncertainties currently is lost somewhere in this reporting process. Hopefully, the 
next generation of parameterised inventories will encourage the reporting of raw data, instead of 
point values. In the meantime, better reporting on the underlying characteristics of data as online 
resource to articles is encouraged. The resulting unit process parameters from the methodology 
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proposed herein, alongside other advancements in the field of LCA, will hope- fully encourage 
more statistically rigid LCA conclusions. 

Over the coming years, the here presented approach and the methodological considerations 
presented in (Henriksson et al. 2012c) will be implemented to evaluate a number of Asian 
aquaculture products exported to Europe, as part of the ongoing EU FP7-funded SEAT project. 
Additional advancements of the present methodology will also be made available in updated 
versions of the online resource of the present article (available at www.cml.leiden.edu/software/).
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Abstract 

Purpose: Chinese coal power generation is part of the life cycle of most products and the largest 
single source for many emissions. Reducing these emissions has been a priority for the Chinese 
government over the last decade, with improvements made by replacing older power plants, 
improving thermal efficiency and installing air pollution control devices. In the present research, 
we aim to acknowledge these improvements and present updated unit process data for Chinese 
coal power. In the course of doing so, we also explore the implementation and interpretation of 
overall dispersions related to a generically averaged process, such as Chinese coal power.

Methods: In order to capture geographical and temporal dispersions, updated unit process data 
were calculated for Chinese coal power at both a national and a provincial level. The updated unit 
process dataset was also propagated into life cycle inventory (LCI) ranges using Monte Carlo 
simulations, allowing for discrepancies to be evaluated against the most commonly used inventory 
database (ecoinvent) and overall dispersions to be shown for some selected provinces.

Results and discussion: Compared to ecoinvent, the updated dataset resulted in reductions 
with between 8 and 67% for all evaluated inventory flows except for dinitrogen monoxide (N2O). 
However, interprovincial differences in emissions diverged with up to 250%. A random outcome 
in a few Monte Carlo runs was inverted operators, where positive values became negative or the 
other way around. This is a known possible outcome of matrix calculations that needs to be better 
evaluated when interpreting propagated outcomes.

Conclusions: The present manuscript provides recommendations on how to implement and 
interpret dispersions propagated into LCI results. In addition, updated and easily accessible unit 
process data for coal power plants averaged across China and for individual provinces are presented, 
with clear distinctions of inherent uncertainties, spread (variance) and unrepresentativeness. 
Recommendations are also provided for future research and software developments.



C
ha

pt
er

 4

C
ha

pt
er

 4

42

4.1 Introduction

Chinese coal power is the world’s largest single source for anthropogenic greenhouse gases 
(GHGs) and air pollutants (Guan et al. 2012; Lin et al. 2014). China produces 47% of the world’s 
coal and is also the world’s largest importer of coal, thereby accounting for more than half of global 
coal consumption (BP 2013; Wang and Ducruet 2014). The country also holds coal reserves large 
enough to maintain current domestic consumption rates for over 60 years (BP 2013), reserves not 
yet fully utilised due to infrastructure limitations between the mines in the northwest and the 
consumption centres along the coast (Wang and Ducruet 2014). In 2010, coal provided 76% (3.2 
billion GWh) of the electricity consumed in China and 94% of the thermal power production 
(NBS 2011), of which roughly a third was used for the production of goods aimed for export (Su 
and Ang 2013). The life cycle emissions from coal power in China therefore influence many life 
cycle assessments (LCAs), both in and outside of China.

Reducing the emissions from the coal power sector has been a priority for the Chinese government 
over the last decade (Xu et al. 2013). Improvements have also been made by altering the load factor 
of the power plant (capacity of plant in use), boiler types, the use of scrubbers and the size of power 
plants. Larger thermal power plants with a capacity to produce over 300 MW have to a great extent 
replaced older smaller power plants, with their contribution to the overall thermal power capacity 
increasing from 48 to 73% between 2005 and 2010 (NBS 2011; Xu et al. 2013). The majority 
(over 90%) of the power plants today are also installed with pulverised-coal burners, instead of 
the fluidised-bed furnaces and stoker-fired boilers used in some of the remaining smaller power 
plants (Tian et al. 2012). This has resulted in a thermal efficiency amongst Chinese coal power 
plants that actually surpasses that found amongst US power plants (Xu et al. 2013), a claim that to 
a great extent can be verified by the shutting down of small inefficient power plants, reductions in 
power plants’ own use of electricity and improved technology (Xu et al. 2013). China’s Electricity 
Council (CEC 2013a) also reports that the ratio of Chinese coal power plants equipped with flue-
gas desulphurisation (FGD) units today is 90% and that 98% of all newly built power plants are 
installed with low-NOx burners (LNBs). Pollution control measures for particulate matter (PM), 
including dust collectors, wet FGD units, wet scrubbers and electrostatic precipitators (ESPs), are 
also being installed at an impressive rate (Zhao et al. 2010; Cai et al. 2013), resulting in a rapid 
overall improvement of the Chinese coal sector.

In order to quantify resource extractions and emissions resulting from the provision from coal 
power, LCA is often used. An LCA quantifies the environmental and economic flows entering 
and exiting different unit processes in a product’s lifecycle. The unit processes are then scaled to a 
functional unit and aggregated into life cycle inventory (LCI) results. The LCI results can, in turn, 
be classified and characterised into different impact categories (e.g. global warming, eutrophication 
and acidification) in the life cycle impact assessment (LCIA) phase. As LCIs often involve a 
wide range of processes (including e.g. transportation, infrastructure, water, etc.), databases are 
often consulted, the most extensive and commonly used being the ecoinvent LCI database (www.
ecoinvent.org).

The ecoinvent LCI database includes unit processes for Chinese coal power, with data deriving 
mainly from Dones et al. (2004) and Dones et al. (2007), describing coal power plants in the 
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Shandong province just south of Beijing. The structure of these unit processes in version 2.2 of the 
database is illustrated in Fig. 4.1 (process IDs referred to in hard brackets). In the latest version of 
the database (v3), the related unit processes remain largely dependent upon the same unit process 
dataset, as is also clearly stated: “This is a dataset that was already contained in ecoinvent database 
version 2 that was not extensively or individually updated during the transfer to ecoinvent version 
3”. The only two changes to the dataset were the merging of burning [11094] and electricity 
production [11089] into one unit process (Treyer and Bauer 2013) and a reduction of losses in the 
transportation of coal from 3% in ecoinvent v2.2 [11094] to 0.2% in ecoinvent v3. In the meantime, 
a loss of 0.21 kg coal per kg coal mined remained indifferent between the two versions of the 
database. This loss is related to coal seam fires, started by natural causes or human error, which 
latently consume large amounts of China’s coal reserves annually (Kuenzer et al. 2007). The coal 
then enters the coal supply mix before reaching the power plants with small losses, as mentioned 

Fig. 4.1: Simplified process tree of Chinese electricity generation from coal in ecoinvent v2.2. Boxes 
indicate processes, solid lines product/environmental flows, dashed lines additional products not addressed in 
the present study, and dotted lines/boxes suggested flows/processes.
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above. Finally, the coal is burned with an assumed thermal efficiency of 35.6%, indifferent of 
database version. The ecoinvent data for coal- based electricity generation in China thus represents 
electricity generation from coal in one province of China in 1998–1999 and assumes no use of 
FGD units. The limitations of this dataset and its generic nature are also clearly stated in the 
accompanying report (Dones et al. 2007).

A more recent LCI on Chinese electricity generation was presented by Di et al. (2007), but 
again, a lack of FGD units is reported (only 2% of capacity), as well as no control of NOx in place. 
Cui et al. (2012), in the meantime, reported that 80% of the coal-fired power plants had FGDs 
and 14% denitrisation systems, but the study only evaluates three types of coal-based electricity 
generation scenarios. Similarly, Liang et al. (2013) acknowledged the extensive use of FGDs and 
other improvements but only explored possible clean coal power technologies and not the present 
scenario. The same study, in the meantime, presents data on fuel consumed in the mining process 
and for rail transportation (Liang et al. 2013). Ou et al. (2011) present LCA results for Chinese 
coal power but refer inventory data to a reference untraceable to us. Other studies have also used 
LCA to evaluate coal-to-liquid pathways (Ou et al. 2012; Yang and Jackson 2013).

China is almost the size of Europe and is a very diverse country. The performance of coal power 
plants, consequently, differs greatly amongst different provinces (NBS 2011). Coal characteristics 
also differ depending upon which mine they originate from, with e.g. sulphur contents ranging 
from 0 to 4.6% (Su et al. 2011). Scrubbing technologies, in the mean- time, tend to be more 
advanced around metropolitan areas in attempts to limit harmful particulate emissions (Tian et al. 
2012; Cai et al. 2013). The life cycle emissions per kilowatt hour (kWh) can therefore differ greatly 
amongst provinces and individual power plants. Despite these discrepancies, most LCAs of Chinese 
coal energy to date only provide point value estimates. A study of French coal power, however, 
estimated the uncertainties around life cycle emissions, using generic uncertainty estimates, and 
highlighted extensive time demands, difficulty to quantify all types of uncertainties and the choice 
of a representative probability distribution as major challenges for many unit process parameters 
(Maurice et al. 2000). In two later LCAs of US coal, Burnham et al. (2012) and Steinmann et 
al. (2014) both present detailed lists of distributions for key parameters, but it remains unclear 
how these distributions were defined (e.g. goodness-of-fit tests or simply intuition). Meanwhile, 
Venkatesh (2012) specifies the use of the Akaike information criterion (AIC) goodness-of-fit 
test in his LCA study but also encounters data that do not fit any of the common probability 
distributions. In ecoSpold v1, the file format used in ecoinvent v2.2, distributions are defined by 
two moments (a mean and a variance) fit to one out of four distributions (normal, lognormal, 
uniform and triangular). In the second version of ecoSpold, the file format used in ecoinvent 
v3, three additional distributions were added (BetaPERT, gamma and binomial) together with 
an undefined range estimate (Weidema et al. 2012). Meanwhile, lognormal is used as a default 
distribution for many parameters in both versions of the database, in order to avoid negative values 
and better represent large variances (Henriksson et al. 2013; Henriksson et al. 2014a). Distributions 
in LCIs are consequently often chosen based upon desired characteristics, rather than goodness-
of-fit. Moreover, only a few studies acknowledge the existence of covariance (correlated variables), 
with no LCA to our knowledge accounting for it.
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The study will initially detail the different methodological choices made in the goal scope 
definition in Section 2 (ISO 14044 2006). This is followed by updated unit process data for hard 
coal at mine [11092] and hard coal burned in power plant [11094], as defined in Fig. 4.1. In 
addition to these two processes, a waste process for coal seam fires is introduced and connected 
to coal mining [11092], in order to allow for the propagation of overall dispersions for both the 
amount of coal latently burned and emissions due to the burning of that coal. Subsequently, the 
results are propagated into inventory results that are presented as overall dispersions around LCI 
results in Section 3. Finally, conclusions are drawn and future research needs are suggested in 
Section 4. 

4.2 Goal and scope 

The aim of the present study was to present updated unit process data for Chinese coal power 
including estimates for overall dispersions. In the processes of doing so, many inevitable challenges 
related to calculating and interpreting data needed to be addressed. Therefore, throughout the 
averaging process, methodological choices and assumptions will be reflected upon and discussed. 
The main focus will be on pulverised-coal power plants burning bituminous coal in China, given it 
is the dominant source of Chinese coal energy.

The study adopts an attributional LCA approach, with changes only to the unit processes 
outlined in Fig. 4.1, as these had the strongest influence on LCI results. Thus, all choices related to 
background unit process data, allocation and system boundaries are those defined in ecoinvent v2.2 
(Dones et al. 2007). The functional unit is 1 kWh of net electricity at power plant. Infrastructure 
was not updated in the present study, as it was presumed to have negligible effects on overall 
emissions (Liang et al. 2013). The scope of the study was limited to six environmental flows (CO2, 
CH4, N2O, NOx, SO2 and particulate matter) as they are common contributors to many impact 
categories (e.g. global warming, eutrophication, acidification and human health). Many of the 
updated parameters also act as scaling factors and therefore result in improvements for all life 
cycle flows. Studies adopting the present dataset should, however, consider updating emissions and 
resource extractions specific to the impact categories under evaluation. 

The protocol presented in Henriksson et al. (2013) was used to define parameters. According 
to this protocol, overall dispersions (σo) are quantified as the sum of inherent uncertainties 
(σu; inaccuracies in measurements and models), spread (σs; variability in horizontally averaged 
data) and unrepresentativeness (σr; mismatch between data sources and their application). 
Unrepresentativeness was evaluated according to the pedigree scores and uncertainty factors 
presented by Frischknecht et al. (2007b) and reported as indicator scores within brackets. The 
characteristics evaluated in this pedigree include reliability, completeness, temporal correlation, 
geographical correlation, further technical correlation and sample size (Frischknecht et al. 2007b). 
The protocol further promotes central values that correspond with those assumed by the software 
used, which is the arithmetic mean for Chain Management by Life Cycle Assessment (CMLCA), 
with weighted means based upon the inherent uncertainty and unrepresentativeness representing 
secondary data (Henriksson et al. 2013; Henriksson et al. 2014a). The presented unit process 
dataset was also propagated into LCI results using Monte Carlo simulations. This allowed for the 
accuracy of results and spread amongst Chinese provinces to be evaluated.
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Ranges are presented as coefficients of variation (CVs), as these can be easily converted to either 
Phi, the input parameter for lognormal distributions in the CMLCA v5.2 software (cmlca.eu), or 
“SD95” the uncertainty parameter used in ecoSpold (Heijungs and Frischknecht 2005). Ranges 
of more than eight data points were transposed to a distribution using Anderson-Darling tests 
in the EasyFit software v5.5 (mathwave.com). The Anderson-Darling test is a modification of 
the Kolmogorov-Smirnov test that gives more weight to the tail of the distribution and has been 
argued as more robust when evaluating independent outcomes, as e.g. Monte Carlo outcomes 
(Noceti et al. 2003). When less than eight data points were available, a lognormal distribution was 
assumed. In cases where confidence intervals (CIs) were presented around central values, as e.g. in 
the Intergovernmental Panel on Climate Change (IPCC) guidelines, the distribution was assumed 
from the upper and lower 95% CI’s relation to the central value. The CV was thus estimated 
assuming Eq. (4.1) for normal distributions and Eq. (4.2) for lognormal distributions:

CI95± = x̅a ±1.96σa 							       Eq 4.1

CI95± = x̅gσg
1.96; x̅g/σg

1.96 							      Eq. 4.2

where x̅a is the arithmetic mean, σa the arithmetic standard deviation, x̅g the geometric mean and 
σg the geometric standard deviation. Additional equations used to derive and combine CVs were 
taken from Henriksson et al. (2013). For the economic flows where inherent uncertainties were 
not available, a default CV of 0.05 was assumed. We acknowledge the crudeness of some of these 
estimates and that the presented central value sometimes had to be assumed as a geometric mean, 
but find the small discrepancies resulting from the current approach are negligible in proportion 
to the scale of the overall dispersions. Covariance was not accounted for in the current models. 
Once parameters were defined, data modelling and propagation were conducted in the CMLCA 
software by running 1000 randomly sampled Monte Carlo simulations.

4.3 Life cycle inventory 

4.3.1 Unit process data 

4.3.1.1 Hard coal, at mine [11092] 

Coal production in China has increased with 36% since the release of Dones et al. (2007) to 
almost 2700 Mt year−1 (BP 2013). Meanwhile, the current amount of coal being passively burnt in 
seam fires has been reported to amount to between 5 and 200 Mt (0.2 and 7.4% of the coal mined) 
(Rosema et al. 1993; Kuenzer et al. 2007; van Dijk et al. 2011). The weighted mean amongst 
these reported values calculated according to Henriksson et al. (2013) equalled 26 g coal per kg 
coal mined (2.6%). The overall dispersion around this value, assuming an inherent uncertainty of 
σu = 0.31 according to the estimates of van Dijk et al. (2011), added up to an overall dispersion of 
σo = 1.39. As the two dispersion parameters are consequent to each other (amount of coal burned 
and resulting emissions from burning that coal) and another methane flow from coal mining 
needed to be defined for coal mine methane (CMM, see below), the best way to include coal seam 
fires was to create a waste flow and a separate process for burning in coal seam fires.
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A flow of 0.026 kg (σo = 1.39) “hard coal, burned in coal seam fires” should therefore be 
connected per kilogram coal mined [11092], and the flows defined in Table 4.1 disconnected. In 
place of methane, a flow of CMM needs to be connected. In China, CMM emissions have been 
estimated to 13.8 Mt year−1 with a release of 4.5–7.2 kg CH4 per tonne of mined coal (estimated 
σu = 0.3) (Zhang and Chen 2010; Cheng et al. 2011). The environmental outflow of methane from 
the process “hard coal, at mine [11092]” should therefore be reduced from 1.69e−2 to 6.05e−3 kg 
CH4 per kg of hard coal mined with a CV of σo = 0.385. The environmental input of “coal, hard, 
unspecified, in ground” also needs to be adjusted to 1 kg.

Mining and the supply mix of coal also consume electricity, which need to be corrected for 
in the unit process data. One of the electricity-generating processes involved, “hard coal, at coal 
mine power plant” [11088], describes highly inefficient power generation (15% thermal efficiency) 
at the mine site, thus resulting in a large coal consumption ((3.6 MJ/0.15)/ 27.1 MJ kg−1 coal = 
886 grams of coal equivalent (gce) per 3.6 MJ−1 or kWh−1) (Dones et al. 2007). Emissions from 
this power-generating process were modelled neglecting air pollution control devices, as described 
below. Moreover, noteworthy is that only one train line in China remains serviced by coal steam 
engines; transportations by rail were therefore adjusted to 71% diesel locomotives and 29% by 
electric locomotives (Liu et al. 2013).

4.3.1.2 Hard coal, burned in coal seam fires 

Emissions of carbon dioxide (CO2), methane (CH4) and dinitrogen monoxide (N2O) from 
burning of coal were calculated according to IPCC (Gómez et al. 2006), and sulphur dioxide 
(SO2), nitrogen oxides (NOx) and particulate emissions according to (Zhao et al. 2010) and Su et 
al. (2011) (see below), assuming uncontrolled burning as a proxy for coal seam fires. Also, 1 kg of 
hard coal extracted from the ground needs to be connected (Table 4.1).

Table 4.1: Unit process data for the process “Burning in coal seam fires”, resource extraction and emissions 
resulting from coal seam fires per kg of coal mined in China

Unit process flow Unit Value, kg σr σo Distribution
Waste input

Hard coal, burned in coal seam fires kg 1 - - -
Environmental input

Coal, hard unspecified kg 1 - - -
Environmental output

Carbon dioxide, to air kg 2.55 2,1,1,2,1,3 0.047 N
Methane, fossil, to air kg 2.70e-05 2,1,1,2,1,3 0.652 LN
Dinitrogen monoxide, to air kg 4.05e-05 2,1,1,2,1,3 0.652 LN
Sulphur dioxide, to air kg 1.84e-02 3,1,2,1,1,3 0.331 LN
Nitrogen oxides, to air kg 8.37e-03 3,1,2,1,1,3 0.323 LN
PM >10, to air kg 1.16e-01 2,1,2,2,1,3 0.531 LN
PM 2.5-10, to air kg 2.40e-02 2,1,2,2,1,3 0.837 LN
PM <2.5, to air 9.33e-03 2,1,2,2,1,3 0.857 LN



C
ha

pt
er

 4

C
ha

pt
er

 4

48

4.3.1.3 Burning at power plant [11089] 

Coal comes in many kinds and qualities, which influence both energy content and emissions 
(Zhao et al. 2008; Steinmann et al. 2014). Anthracite (black coal) is considered of highest quality, 
followed by bituminous coal, and finally lignite, which is also related to the largest GHG emissions 
(Steinmann et al. 2014). In 2008, roughly 77% of all coal consumed in China was bituminous, 16% 
anthracite and 7% lignite (CCI 2010). Apart from the type of coal burned, emissions from coal 
power plants are influenced by the sulphur and ash content of the fuel, the sulphur retention in ash, 
the emission control technologies adopted and the coal consumption per kilowatt hour produced 
(Zhao et al. 2008).

Higher heating values (1.07 times the lower heating value) for bituminous coal in China have 
been reported ranging from 23.7 to 30.5 MJ kg−1, while for anthracite, these values range from 
31.4 to 31.8 MJ kg−1 (Patzek and Croft 2010). Thermal power generation efficiency in Chinese 
coal power plants has increased from 392 gce kWh−1 or 33.9% in 2000 to 370 gce kWh−1 in 2005, 
333 gce kWh−1 in 2010 and 321 gce kWh−1 or 41.4% in Jan–Aug 2013 (CEC 2011; CEC 2013b). 
The thermal efficiency, however, differed greatly amongst provinces, from 282 gce kWh−1 in Beijing 
to 409 gce kWh−1 in Xinjiang (NBS 2011). As data on individual power plants were limited, the 
spread for thermal efficiency amongst power plants within provinces was estimated to σu = 0.035 
based upon Xu et al. (2011).

The carbon dioxide emissions presented by the IPCC from burning of bituminous coal are 
94.6 g MJ−1 (σu=0.03) (Gómez et al. 2006). The CIs around this value also suggest a symmetric 
distribution, with the normal distribution being the most logical choice given the central limit 
theorem. However, since the tails of a normal distribution exceed the amount of CO2 that 
theoretically can be emitted by burning coal, a triangular distribution was used for carbon dioxide 
emissions. IPCC also reports methane emissions from coal power plants of 1e−03 g MJ−1 (σu = 
0.65) and emissions of N2O of 1.5e−03 g MJ−1 (σu = 0.65) (Gómez et al. 2006). Meanwhile, sulphur 
contents of coal vary from low in the northeastern parts of the country to relatively high in the 
southern parts (Su et al. 2011). The national average is 1.02% (σs = 0.326), with provincial sulphur 
contents available in the Electronic supplementary material of this article (Su et al. 2011). Reports 
on sulphur retention in ash range from 5 to 15%, with an estimated average of 10% (σu = 0.255) 
(Zhao et al. 2008; Zhao et al. 2010). Wet FGD units are most common and have a potential 
sulphur removal efficiency of 95%, while dry and simple scrubbers have removal efficiencies of 80 
and 17%, respectively (Zhao et al. 2010). However, poor performance and limited operating rates 

Flow Unit Value, CV Distribution
Coal g kWh-1 333 0.062 Lognormal
Higher heating value MJ kg-1 27.1 0.064 Normal
Sulphur content % 1.02% 0.44 Lognormal
Sulphur retention in ash % 10% 0.22 Lognormal
FGD efficiency % 59% 0.174 Normal

Table 4.2: Important parameters for calculating the emissions from Chinese power plants.
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due to high running costs have resulted in practical removal efficiencies of between 66 and 75% 
(average 70.5%, σu = 0.136) (Zhao et al. 2011; CEC 2013c).

Emissions of NOx are controlled by the temperature and degree of oxygen enrichment, which in 
turn depend upon the type of coal, unit capacity, burner and air pollution control devices. Measures 
to limit NOx emissions include LNBs and selective catalytic reduction (SCR) units, with removal 
efficiencies of 27 and 43%, respectively (Zhao et al. 2008). China’s Electricity Council (CEC 
2013a) reports that generators equipped with LNB facilities generated 28% of the thermal power 
in 2012. Meanwhile, SCRs are only incipient in China at this point (Zhao et al. 2010). From these 
data, parameters for unit process data could be calculated according to the formulas provided 
by Zhao et al. (2010) (Table 4.2). A full list of province-specific parameters is provided in the 
Electronic supplementary material of this article.

PM is one of the most prominent risks to human health associated with coal power generation 
in China (Zhang et al. 2010). The amount of particles emitted depends upon the ash content of 
the fuel, the ratio of bottom ash to total ash, the particulate mass fraction by size, the particulate 
size and again the pollution control devices adopted. The removal efficiencies of installed ESPs 
are 98.1–99.5% of total PM, while when combined with wet FGD units, up to 99.8% of the 
particulates can be removed (Zhao et al. 2010). Assuming an average ash content in fuels of 22.0% 
(σs = 0.24), the emissions could be calculated adopting equations provided by Zhao et al. (2010). As 
for NOx emissions, a pollutant concentration in the flue gas of 900 mg Nm−3 (σu=0.31) was assumed 
together with a flue gas volume of 9.3 m3 kg−1 (σu = 0.065, based upon an excess air coefficient 
of 1.25, ranging from 1.1 to 1.4). In order to be consistent with other ecoinvent processes, the 
processes “NOx retained, in SCR” [882] and “SOx retained, in hard coal flue gas desulphurisation” 
[883] also need to be connected.

Electricity is also used in the power plant itself for its operation, maintenance and repairs. 
According to the International Energy Agency (IEA; iea.org accessed October 3, 2014), the energy 
industries’ own use in China across all kinds of electricity plants amounts to 12.1%. However, with 
regard to US electricity production, the IEA reports an own use of 7.8% across power sectors, 
while a more detailed account from the US Energy Information Administration (eia.gov accessed 
October 3, 2014) reports an electricity own use of 11.5±10.4% for coal power plants. The own use 
of 12.1% reported by the IEA for China was therefore used in the present study, with an assumed 
spread of σs = 0.904 based upon the US example.

Averaged updated unit process data flows for the whole of China are presented in Table 4.3, 
alongside Beijing, Xinjiang and coal mine power plants (CPP). Beijing was selected for having 
the best thermal efficiency and Xinjiang for having the worst. Naturally, features such as coal 
quality and flue gas treatment also influence emissions, resulting in each province exhibiting 
its own unique set of emissions. However, for the purpose of the present research, we will only 
explore two provinces. Emissions from coal mine power plants were included as a rough proxy 
for unregulated coal combustion, a still common practice throughout China (e.g. in small boilers 
and power generators). Data at provincial level were calculated with regard to thermal efficiency, 
sulphur content and pollutant removal technologies (NBS 2011; Su et al. 2011; Cai et al. 2013). 
For a detailed description of all provinces, see the Electronic supplementary material of this article.
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4.3.2 Life cycle inventory results 

The propagated LCI results for the production of 1 kWh net electricity at power plant using 
ecoinvent (ecoi) data and the updated unit process datasets for China (CN), Beijing (BJ), Xinjiang 
(XJ) and coal mine power plants (MPP) are presented as box-and-whisker plots in Figs. 4.2, 4.3, 
4.4, 4.5, 4.6 and 4.7. The central line represents the median, the edges of the box the 25th and 75th 
percentiles and the whiskers the first and last deciles (10th and 90th percentiles) (see Fig. 4.2), in 
line with Bowley’s seven-figure summary (excluding the min and max values in order to maintain 
better scaling). Overall, the emissions from the updated unit process dataset averaged across 
China resulted in lower emissions than the ecoinvent estimates, with the exception of dinitrogen 
monoxide. For ecoinvent, Dones et al. (2007) assumed 0.5 kg N2O TJ−1 coal burned based upon 
a number of publications from 1988 to 1996, while the current study adopted the IPCC estimate 
of 1.5 kg N2O TJ−1 (Gómez et al. 2006). Carbon dioxide emissions were only slightly lower for 
the updated processes as they are largely based upon the amount of fuel used and the carbon 
content of that fuel. Sulphur dioxide, nitrogen oxides, methane and particulate emissions, however, 
were between 49 and 67% lower in this study compared to those in ecoinvent. Coal power plant 
emissions amongst provinces also indicated a large spread, especially for nitrogen oxides (2.5 higher 
in Xinjiang compared to Beijing). Coal mine power plants (uncontrolled) unsurprisingly had the 
largest emissions, where particulate emissions stood out as especially worrying.

Fig 4.2: Box-and-whisker plot of the life cycle 
dinitrogen monoxide emissions from the genera-
tion of 1 kWh of electricity at power plant, with 
the central line indicating the median, the box 
the 25th and 75th percentiles and the whiskers the 
10th and 90th percentiles.

Fig 4.3: Box-and-whisker plot of the life cycle 
carbon dioxide emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.
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Fig 4.4: Box-and-whisker plot of the life cycle 
methane emissions from the generation of 1 kWh 
of electricity at power plant, with the central line 
indicating the median, the box the 25th and 75th 
percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.5: Box-and-whisker plot of the life cycle 
nitrogen oxides emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.6: Box-and-whisker plot of the life cycle 
sulphur dioxide emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.

Fig 4.7: Box-and-whisker plot of the life cycle 
particulate emissions from the generation of 1 
kWh of electricity at power plant, with the central 
line indicating the median, the box the 25th and 
75th percentiles and the whiskers the 10th and 90th 
percentiles.
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Spread had a much stronger influence on economic flows (41–63% of the overall dispersions) 
than unrepresentative- ness (only 4–7% of the overall dispersions). Meanwhile, the default inherent 
uncertainties used by ecoinvent often exceeded the calculated overall dispersions for environmental 
emissions. This was the result of ecoinvent using large generic basic uncertainty factors to capture 
inherent uncertainty and spread, a simplified practice that resulted in some strange outcomes. For 
example, an environmental inflow of 1.21 kg of hard coal per kg hard coal produced was assumed 
by ecoinvent in the mining process [11092], with an accompanying lognormal uncertainty estimate 
of SD95 = 1.5, resulting in a 95% CI of 0.81–1.8 kg of coal extracted per kg delivered, which is an 
“impossible” range in terms of mass balance.

4.4 Discussion and conclusions 

Over the last decade, China has cleaned up its coal power sector quite effectively. As a 
consequence, the unit process data on coal-based electricity production in China available in the 
ecoinvent database have become outdated and overestimate most emissions from the Chinese 
coal sector. For example, the methane and carbon dioxide emissions from coal mining per kWh 
generated in the present study were only 32 and 17% of those estimated by Dones et al. (2007). 
This was largely due to increases in the quantity of coal mined (with the number of coal seam fires 
and amount of CMM seeming to have remained similar) and energy efficiency improvements 
within the power plants. A rapid implementation of air pollution control devices has also greatly 
reduced the sulphur dioxide, nitrogen oxides and particulate emissions from the Chinese power 
sector over the last decade. While generally disregarded in previous inventories, reductions of 
up to 99% of the emissions are documented in the present research. However, uncontrolled coal 
combustion, such as those at the coal mine power plant, remains a very dirty source of energy and 
is better replaced by grid electricity.

The scale of the overall dispersions estimated in this study was quite similar to that concluded 
by Steinmann et al. (2014) in their study of the US coal power sector. Steinmann et al. (2014) 
additionally concluded that spread (variability) is more prominent than inherent uncertainty, a 
conclusion that could not be reconfirmed in the present study. The reason for this could be that 
Chinese power generation is more uniform than American. Another more likely explanation is that 
the level of horizontal averaging and the modelling assumptions differ between the two studies.

Populations are difficult to typify and rarely distributed exactly as their mathematical ideals (Serlin 
2000). In the present research, many of the data ranges could neither be statistically argued to fit 
any of the distributions commonly available in LCA software and databases (uniform, triangular, 
normal or lognormal). Other ranges were fit to distributions that resulted in physically impossible 
MC outcomes (e.g. unrealistic physical balances). This is one of many inevitable consequences 
of fitting natural processes into quantitative models and one of many arguments often used to 
unsettle environmental model predictions (Pilkey and Pilkey-Jarvis 2007). Simply discounting 
unrealistic values as outliers is not recommended, as it will shift the central value. Instead, there are 
several steps that should be taken to limit the number of counter-intuitive outcomes. For example, 
in the present study, we disaggregated the emissions from coal seam fires from the mining process 
to make sure that the amount of coal leaving the mine would not exceed the amount extracted 
from the ground. Also, by adopting a triangular distribution for carbon dioxide emissions, the 
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upper bound could not exceed the physical limit set by the amount of carbon burned. Ultimately, 
however, we encourage practitioners to acknowledge that all distributions have their limitations 
and to communicate these alongside their quantitative dispersion estimates. We also encourage 
the option to enable practitioners to better define and evaluate data in software and databases, 
e.g. by allowing for the implementation of the third and fourth moments (skewness and kurtosis). 
Another desired improvement would be to allow for covariance correlations in LCI models, where 
e.g. low SO2 emissions could be correlated with the amounts of SOx retained in the flue gas 
desulphurisation unit.

Since propagated LCI results rarely are normally distributed, the use of the arithmetic means as 
the central values should also be questioned. This is due to the strong influence of outliers (which 
sometimes are produced in random Monte Carlo sampling) on arithmetic means. Box-and-
whisker plots were therefore deemed useful as they provide a rough indication of the distribution 
of these non-parameterised data. The computational matrix of LCIs can also result in inverted 
operators (pluses become minuses or the other way around) as a result of random sampling of 
normal distributions (which theoretically can yield both negative and positive operators) or circular 
product flows (e.g. if by chance the coal used by the coal mine power plant exceeds that produced in 
coal mining in one Monte Carlo run) (Heijungs and Suh 2002). This phenomenon was observed in 
the Monte Carlo outcomes of the present model (at roughly 3‰ of the iterations) but only noticed 
because the raw data were critically evaluated and negative inverted values removed. Identifying 
inverted operators would, however, be much more difficult in more complex models where only 
partial emissions are inverted and the final outcome ends up with the expected operator (e.g. 
positive values for emissions). As a result of the above-mentioned features, the mean and the 
“baseline” (the point values commonly calculated in LCIs) easily deviate from each other, which 
consequently puts point value results into question. As no clear definition of the baseline exists 
to our knowledge, and today most likely is a mix of means, medians and expert judgments, we 
promote a more robust nomenclature for statistical parameters in the field of LCA.

In a recent editorial commentary in the present journal, the limitations of case studies largely 
relying on modern LCA software and LCI databases were addressed (Klöpffer and Curran 2013). 
The large differences observed in the present research reconfirm these concerns, bringing us to 
some suggestions on how the situation could be improved. Firstly, databases should be updated 
regularly to reflect the contemporary state of technologies as appropriately as possible, for which 
sufficient resources should be made available. Secondly, LCA practitioners need to comply with 
the ISO 14044 (2006) requirement of checking the validity of LCI data, especially for processes 
that heavily contribute to important inventory results, using generic unit process data only to fill 
gaps which otherwise would be excluded. In response, presenting unit process data in a way similar 
to the present study allows practitioners to more easily amend and update their inventories. It is 
also encouraged to share raw data, as limited reporting on data has proven to be a major hurdle in 
the implementation of dispersions in the field of LCA (Henriksson et al. 2012c; Henriksson et al. 
2014b).

In the present study, we focused only on a limited number of provinces and emissions for practical 
reasons. While these emissions are related to some of the most commonly used impact categories, 
other emissions from the above-mentioned processes will most likely also be influenced 
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by the improvements in the Chinese coal power sector (e.g. heavy metals, carbon monoxide, 
etc.). We therefore encourage further efforts towards updating the inventory for the world’s single 
largest energy-producing sector. Another improvement would be to evaluate the spread amongst 
individual power plants, data that were unavailable for the present study. This could also help to 
critically evaluate some of the questionable data provided by the Chinese government (Guan et al. 
2012). We also encourage more research into the handling of dispersions in the field of LCA, as 
calculations, modelling choices and interpretation all influence outcomes. 
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Abstract

In response to growing awareness of climate change, requests to establish product carbon 
footprints have been increasing. Product carbon footprints are life cycle assessments restricted 
to just one impact category, global warming. Product carbon footprint studies generate life cycle 
inventory results, listing the environmental emissions of greenhouse gases from a product’s 
lifecycle, and characterize these by their global warming potentials, producing product carbon 
footprints that are commonly communicated as point values. In the present research we show 
that the uncertainties surrounding these point values necessitate more sophisticated ways of 
communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms 
in Vietnam as a case study. As most product carbon footprint studies only have a comparative 
meaning, we used dependent sampling to produce relative results in order to increase the power for 
identifying environmentally superior products. We therefore argue that product carbon footprints, 
supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to 
provide point value estimates or plain confidence intervals of products’ environmental performance.
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5.1 Introduction

Early enthusiasm about carbon footprinting resulted in the aim of calculating product carbon 
footprints (PCFs) for whole product assortments (Beattie 2012). The conclusions were intended 
for industry to improve the product’s or service’s lifecycle environmental performance, and for 
consumers to encourage more sustainable product procurements. These ambitions soon floundered 
after being faced with the challenges of high costs of collecting data and modeling PCFs, large 
time investments, and a lack of consensus on modeling choices (Beattie 2012). The 14067, 14040 
and 14044 ISO standards for PCF and life cycle assessment (LCA), from which PCFs originate, 
provide the principles, minimum requirements and framework for conducting and reporting such 
studies (ISO 14040 2006; ISO 14044 2006; ISO 14067 2012). ISO 14040, for example, defines 
the phases of LCAs: goal and scope definition, life cycle inventory analysis (LCI), life cycle impact 
assessment (LCIA) and interpretation (ISO 14040 2006). In addition to ISO, numerous standards 
have been produced to harmonize methods based on the ISO standards (BSI 2008; JRC 2010b). 
Inventory databases and software solutions have also made it easier to calculate life cycle inventory 
results (e.g. kg CO2, CH4 and N2O), and classify and characterize these into PCFs (kg CO2-eq.). 
Results are commonly presented as absolute point values, which theoretically could be compared 
with each other much like nutritional facts (Vandenbergh et al. 2011). Simply communicating 
the quantitative information through carbon labels has, however, been called into question, as 
consumers lack a daily or annual allowance for greenhouse gases (GHGs), unlike for nutrients 
(Upham et al. 2011).

Another reason for not communicating GHGs as point values is the large uncertainties 
surrounding these quantitative estimates. PCFs of identical products can deviate by an order of 
magnitude between studies, even if they comply with the same methodological guidelines (de 
Koning et al. 2009). This is largely due to data sourcing and modeling assumptions (de Koning et 
al. 2009; Yoshida et al. 2014), but in some cases also to different characterization factors used to 
translate the environmental emissions into impacts (Hertwich et al. 2000). The characterization 
factors for carbon footprints are typically the global warming potentials (GWPs 100-year) reported 
by the IPCC, based upon the radiative forcing of different gases.

LCA studies are often used for comparative purposes, including consumer choice. In a 
comparative context, two issues should be solved. The first is the fact that a standard LCA yields 
results on several impact categories, and that the trade-off between these categories is a delicate 
issue, requiring weighting and/or multi-criteria analysis (Linkov and Seager 2011; Prado-Lopez 
et al. 2013). The second is the fact that uncertainties in a comparative analysis require a different 
strategy, due to the fact that part of the uncertainty may be shared between the product alternatives 
(de Koning et al. 2009). In our work, we focus on the carbon footprint, so on just one category. 
Therefore the first issue is outside our scope. The second issue, however, is of central concern to 
us. While previous approaches dealt with shared uncertainties, they did not make the step to 
hypothesis testing, and neither to the implications for the labeling of individual products.

Despite the known limitations and uncertainties of PCF estimates, GHG savings have still made 
their way into regulations where they are enforced on a point-value basis. California’s Low Carbon 
Fuel Standard (California Air Resources Board 2012), for example, enforces 10% GHG savings 
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for new fuels compared to a fossil fuel reference, and the EU’s fuel quality directive (European 
Comission 2009) uses a 6% margin.

Already in the 1990s were dispersion estimates made for a number of LCI related emission 
parameters (Hanssen and Asbjørnsen 1996; Finnveden 1998). Around the same time, there were 
also several new methodologies suggested for how to include quantitative uncertainties in life cycle 
inventories (LCIs)(Weidema and Wesnaes 1996; Huijbregts 1998a; Huijbregts 1998b; Huijbregts 
et al. 2001). To date, however, the uncertainties considered have largely been limited to sensitivity 
analyses (van der Harst and Potting 2014), default inventory ranges (Huijbregts et al. 2003; Röös 
et al. 2010), characterization factors for one specific impact category (Lloyd and Ries 2007; van 
Zelm and Huijbregts 2013), or pedigree estimates (Kennedy et al. 1996; Frischknecht et al. 2007b). 
Pedigree estimates refer to a matrix of data quality indicators which evaluate the representativeness 
of the data used, which later are tentatively quantified using uncertainty factors based upon expert 
judgment or empirical data (Frischknecht et al. 2007b; Henriksson et al. 2013; Ciroth et al. 2013). 
Statistical testing of outcomes, in the meantime, is rare among LCA studies, and where consulted 
it is largely limited to quotients (A/B) (Mattila et al. 2011). Table 5.1 summarizes a selection of 
LCA studies that take uncertainty into account. The table results show that this is the first study 
that evaluates empirical LCI uncertainty data, empirical LCIA uncertainty data, in a comparative 
analysis applying Monte Carlo dependent sampling and a hypothesis based significance test.

It is our belief that failure to explicitly and properly deal with uncertainties may result in 
counterproductive decisions, and that more extensive guidelines will merely reduce the number of 
flawed conclusions. Instead, the field of LCAs and PCFs needs to review some of the fundamentals 
of the scientific method, including statistically supported conclusions.

Statistically testing a hypothesis requires a predefined null hypothesis and quantification 
of uncertainties, two requirements that are rare in PCF studies. In comparative studies, the 
hypothesis conventionally presumes one product alternative to be better or equal to an alternative. 
The hypothesis is then critically evaluated using the appropriate statistical tests for the data under 
study. A product should consequently only be deemed beneficial if the null hypothesis can be 
statistically rejected.

Quantifying the dispersions around point values requires a variance and a distribution for 
unit process data and characterization factors, in addition to the central value (step 1). Next, a 
propagation method is needed (Heijungs and Lenzen 2013). In the present study Monte Carlo 
(MC) was used as it is the most commonly available propagation method and allows for post-hoc 
analyses. In a Monte Carlo, values are randomly sampled from the unit process distributions over 
a fixed number of iterations and aggregated into LCA results using an LCA matrix (step 2). This 
procedure produces a range of possible results, which in turn could be evaluated using different 
statistical tests and analyses (step 3). The outcomes are statistically supported environmental 
recommendations that can be communicated to policy makers or consumers through different 
channels (step 4).
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If results are to be used for comparisons, e.g. to decide if fish produced in larger corporate farms 
is better in terms of climate change impacts than fish produced in smaller family owned farms, 
the sampling procedure (step 2) for the products under study can be either dependent (correlated), 
where each product footprint builds upon the same sampled parameters, or independent 
(uncorrelated), where each product footprint builds upon a uniquely drawn set of random 
samples (Fig. 5.1) (Heijungs and Kleijn 2001; Hong et al. 2010; Imbeault-Tétreault et al. 2013). 
Independent sampling yields completely stochastic, incomparable results (“absolute results”), while 
dependent sampling produces results where all footprints are derived from the same set of sample 
values for both unit process data and characterization factors in each MC run. Thus, if the fish 
produced in larger corporate farms yield a very high outcome in a particular MC run, the fish 
produced in smaller family owned farms will most likely also yield a higher than average outcome, 
assuming that the two share many processes (e.g. electricity production, transportation processes, 
and disposal). Only the comparative difference between the results of each MC run, obtained by 
subtracting the sample result of one product from that of another, is therefore of importance in 
dependent sampling. We here label this as “relative results”. For comparative purposes, dependent 
sampling is the only relevant option, and relative results can be a very useful way of presenting 
the LCA results for each sample. In addition, relative results allow for powerful paired statistical 
testing of null hypotheses (step 3). The outcomes would, in turn, be communicated as one product 
being better than one or more alternatives (step 4).

Fig. 5.1. Procedures for propagating dispersions in data into product carbon footprints.
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In order to demonstrate the advantages of dependent sampling and to evaluate how to 
communicate PCFs with statistical tests, we use an LCA study of Vietnamese catfish (Pangasius 
spp.) fillets as an example (Henriksson et al. 2014a). The hypothesis explored was “Pangasius 
fish produced in larger corporate farms have smaller PCFs per unit of fish than those produced 
in smaller family-owned farms”. This hypothesis builds upon the assumption that corporations 
generally monitor and manage their farms better than family-owned farms and rely more heavily 
upon commercial feeds tailored to Pangasius fish. Thus, the null hypothesis tested assumed that the 
mean PCF of 36 randomly sampled family-owned farms would be equal to that of 36 corporate 
farms. While the absolute overall dispersions remain large, we managed to identify significant 
trend differences between the different farming systems by using our proposed approach.

5.2 Methods

Data on the two farming systems and other related processes were collected between 2010 and 
2013 as part of the EU FP7 SEAT project (Table S5.1-5.3, available online). Additional data were 
retrieved from the literature and the ecoinvent v2.2 database (www.ecoinvent.org). A complete 
description of the data used in the present research is available as supporting information and in 
SEAT deliverable D3.5 (Henriksson et al. 2014b). Unit process distributions and variances were 
developed using the protocol presented in Henriksson et al. (Henriksson et al. 2013), reflecting 
inherent uncertainties (inaccuracies in measurements and models), spread (variability resulting 
from averaging) and unrepresentativeness (mismatch between the representativeness and use 
of data). The Anderson-Darling goodness-of-fit test was used to identify the distributions best 
representing data, limited to the four available distributions and generically assumed lognormal 
data in ecoinvent v2.2 (Henriksson et al. 2013).

The inventory flows were characterized using the GWPs and uncertainty distributions (Table 
S5.4, available online) reported in the fifth IPCC assessment report (IPCC 2013; Myhre et al. 
2013) (step 1). In introducing uncertainties to GWPs, problems arise by the fact that the GWP 
of CO2 is 1 by definition (and thus has no uncertainty), while the GWPs of all other GHGs 
are normalized by that of CO2. Underlying GWPs (in kg CO2-eq. kg-1) are the absolute GWPs 
(AGWPs), which express the time-integrated radiative forcing (in W m-2 yr-1 kg-1) (Myhre et al. 
2013). These AGWPs are uncertain, also for CO2. By adopting the uncertainty distributions on 
the level of GWPs we assume that these GWP uncertainties are based on dependent sampling of 
AGWPs in the models used by IPCC, e.g. dividing the AGWP for CH4 in each run by the AGWP 
for CO2 in the same run, thus forming a distribution of GWPs for CH4 and a point value of the 
GWP for CO2. The fifth IPCC assessment report (IPCC 2013) does not specify if the uncertainty 
estimates in the GWP of GHGs have been obtained through dependent or independent sampling, 
but judging the values of the uncertainties, we believe that dependent sampling has been used, as 
it should have been. Based on this assumption and in order to stay close to the traditional carbon 
footprint, we choose to use the GWPs with related uncertainty information for our characterization 
calculations from the fifth IPCC report (IPCC 2013; Myhre et al. 2013), thereby maintaining the 
relative units and hence calculating carbon footprints in kg CO2-eq. The standard deviations (σ) 
supporting these GWPs were back-calculated from the 90% uncertainty ranges (σ = (P95-P05) / 
(2*1.645)) presented in the fifth IPCC report (IPCC 2013; Myhre et al. 2013). For more details, 
please see Table S5.4 (available online) and Myhre et al. (Myhre et al. 2013).
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Results were scaled to one tonne of fish and propagated over 1 000 MC simulations using 
dependent sampling (step 2) and the matrix-based algebra (Heijungs and Suh 2002a) implemented 
in the CMLCA v5.2 (www.cmlca.eu) software. Statistical tests were conducted in SPSS (v.21).

Of the two groups, family-owned farms were more reliant on farm-made feeds and agricultural 
byproducts (31% of all feeds) than large corporate farms, which almost exclusively (94%) relied 
upon commercial feeds. Apart from feeds, all other supporting processes differed only in quantity, 
meaning that they rely upon the same shared supply chain, and hence on the same drawn 
values in each MC run, as well as stochastic GWP. Emissions resulting directly from the fish 
ponds, however, were not shared between the two farming practices and therefore resulted in 
independently sampled values. For a more complete list of the data used and more specific results, 
see the supporting information to this article.

5.3 Results

Both ranges of results were associated with large dispersions (Figure S5.1, available online). 
From these, the mean difference between the two farming practices could be found by subtracting 
the result for fish from large corporate farms from that of fish from small family-owned farms for 
each MC run (Fig. 5.2a). The mean difference between results did not follow a normal distribution 
and we therefore tested the median difference using the non-parametric one-sample Wilcoxon 
Signed Rank test (step 3), showing a highly significant (p < 0.001) difference of 859 kg CO2-eq. 
(see Fig. 5.2b), thus indicating a significantly larger median PCF for fish from family-owned farms 
compared to fish from corporate farms (step 4).

Fig. 5.2: Greenhouse gas emissions resulting from the production of one tonne of Pangasius fish in small 
and large farms. a, Box-and-whisker plot displaying the GHG emissions associated with fish from small 
(N=36) and large (N=36) sized Pangasius farms. Indicated are the median, the 25th percentile and 75th 
percentile (box), and the 10th and 90th percentiles (whiskers). b, Median difference between fish from small 
and large farms on a per MC run basis, subtracting the GHG from the large farms from that of the small 
farms. Error bars indicate the 95% confidence interval of the median differences.
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5.4 Discussion

As inventory models are data limited, most data supporting PCFs are opportunistically 
collected, rather than following a random sampling design. Concepts such as experimental design 
and statistical inference are therefore largely ignored in most footprinting exercises. Modeling 
choices also influence outcomes, including the choices of emission models, model structure, 
and mathematical equations. Product footprints are thus highly influenced by conscious and 
unconscious choices, inducing statistical inference. Dependent sampling, however, reduces the 
effect of such choices, as the underlying choices remain largely consistent. The greater statistical 
power offered by paired statistical tests also reduces the risk of Type II statistical errors.

Only considering relative uncertainties is also favorable in situations where the origins of raw 
materials or products are untraceable. For example, aluminum derives from an energy intensive 
process and enters the global market from a pool of countries. The metal is then often traded, 
alloyed, worked up and assembled on geographically dispersed locations. The origin or origins of 
the aluminum raw material are therefore next to impossible to trace, while the resulting GHG 
emissions may differ with two orders of magnitude amongst different origins (e.g. China or Iceland) 
(Liu and Müller 2012). However, if only relative uncertainties are considered, the production of 
aluminum could be horizontally averaged to a global level while different aluminum products still 
could be compared with relatively high accuracy without simplifying the data.

Where requirements such as normally distributed populations and equal variances are fulfilled, 
a paired t-test is an appropriate test for comparing two products. However, in the case of a 
comparison involving three or more alternatives (e.g. small, medium, and large sized ponds), the 
paired comparison will not work due to the increased risk of type I errors. In such cases a test for 
related multiple comparisons should be used, two-way ANOVA being the most obvious choice, 
with an added Tukey test for post-hoc grouping into clusters of alternatives that differ significantly 
from one another. A non-parametric alternative for comparisons of more than two products is 
provided by the Friedman test. The clusters identified by the post-hoc test could serve as the basis 
for eco-labeling schemes, where each cluster represents a rank or a label (red, yellow or green), 
which easily could be communicated to e.g. consumers. Alternatively, a baseline product could be 
used for each product group (e.g. farmed salmon in the current example) to communicate results 
in ways more accessible to consumers.

5.5 Conclusions

Product footprints were created to meet the need to steer our consumer society towards more 
sustainable choices. However, carbon footprints constitute a highly politicized field of science, 
where the decision stakes are high and system uncertainties large (Ravetz 1999). PCFs will therefore 
always be subject to intense scrutiny. In response, by re-evaluating PCFs as a strictly relative indicator 
while acknowledging the level of underlying uncertainty, clusters of environmentally superior 
products or production systems may be identified with a level of confidence. Our conclusions can 
be extended to other approaches for assessing products in a comparative sense, including the water 
footprint (Hoekstra et al. 2011) and life cycle costing (Swarr et al. 2011).
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Chapter 6
A comparison of Asian aquaculture products 
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Abstract

We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river 
prawn, tilapia and pangasius in Bangladesh, China, Thailand and Vietnam using life cycle 
assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing 
different aquatic food products. Our starting hypothesis was that different production systems are 
associated with significantly different environmental impacts, as the production of these aquatic 
species differs in intensity and management practices. In order to test this hypothesis, we estimated 
the systems global warming, eutrophication and freshwater ecotoxicity impacts. The contribution 
to these impacts and the overall dispersions relative to results were propagated using Monte 
Carlo simulations and dependent sampling. Paired testing showed significant (p<0.05) differences 
between the median impacts of most production systems in the intra-species comparisons, even 
after a Bonferroni correction. For the full distributions, instead of only the median, only for Asian 
tiger shrimp more than 95% of the propagated Monte Carlo results favored certain farming 
systems. The major environmental hot-spots driving the differences in environmental performance 
among systems were fishmeal from mixed fisheries for global warming, pond run-off and sediment 
discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride and other 
chlorine releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should 
therefore strive towards farming systems relying upon pelleted species-specific feeds, where the 
fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled 
in integrated organic agriculture together with efficient aeration solutions powered by renewable 
energy sources.
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6.1 Introduction

Aquaculture is the only solution for meeting the growing demand for aquatic products in a world 
where capture fishery catches have stagnated (Duarte et al. 2009; FAO 2014a). Asia is the main 
producing region with 88% of global aquaculture production by volume, and the European Union 
(EU) the largest single market with 36% of total world imports by value (FAO 2014a). However, 
while consumption trends have rapidly increased in the EU, concerns have been raised regarding 
the environmental sustainability of the fish and crustacean products imported from Asia. These 
concerns are associated with detrimental environmental consequences such as global warming, 
eutrophication, ecotoxicity, land-use and land-use change (LULUC), excessive energy use and 
freshwater use (Pelletier et al. 2006; Henriksson et al. 2012c; Jonell and Henriksson 2014).

The environmental impacts related to aquaculture commodities have been quantified in various 
life cycle assessment (LCA) studies (Henriksson et al. 2012c). However, only a handful of these 
have focused on Asian aquaculture. Four LCA studies have evaluated Vietnamese Pangasius 
catfish (Phong et al. 2011; Bosma et al. 2011; Huysveld et al. 2013; Henriksson et al. 2015a), three 
shrimp farming (Mungkung 2005; Cao et al. 2011; Jonell and Henriksson 2014), two Indonesian 
finfish (Pelletier and Tyedmers 2010b; Mungkung et al. 2013) and one Thai finfish (Pongpat and 
Tongpool 2013). Only three of these quantified the uncertainties related to results (Cao et al. 
2011; Henriksson et al. 2014a; Jonell and Henriksson 2014). Little is therefore known about the 
level of confidence behind conclusions made in previous studies, despite the increasing importance 
of LCA results in policy contexts (Henriksson et al. 2015a). Seafood standards are, for example, 
starting to incorporate carbon footprints into their recommendations (Madin and Macreadie 
2015) and a PAS2050 standard has been developed for seafood and other aquatic food products 
(BSI 2012). For such standards to be realistic and effective, differences in impacts need to be 
statistically substantiated.

In the present study, we performed life cycle assessments (LCAs) and statistically evaluated the 
environmental impacts for some of the most common Asian aquaculture commodities found on 
European markets (Henriksson et al. 2014a) (Table 6.1). From this selection, the most important 
producing regions and production systems were identified and evaluated (Henriksson et al. 2014a; 
Murray et al. 2014; Henriksson et al. 2014b). Noteworthy is that some of these production systems 
currently are not eligible for export due to existing import regulations into the EU (e.g. tilapia 
integrated with pigs in China). System characterization was based on farm scale, pond type, species 
combination and other features of the production systems (Henriksson et al. 2014a; Murray et al. 
2014).

The present study builds upon the final LCA case study report (Henriksson et al. 2014a) of the 
Sustaining Ethical Aquaculture Trade project (www.seatglobal.eu), but also includes calculated 
freshwater ecotoxicity characterization factors (FAETPs) for a number of aquaculture related 
chemicals using the USEtox model, including uncertainty estimates for characterization factors 
(Rosenbaum et al. 2008).
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In order to provide a level of confidence behind conclusions, the hypothesis “different production 
systems providing the same aquaculture commodity to European consumers are associated with 
different environmental impacts” was tested statistically. The null hypothesis tested assumed that 
the environmental lifecycle impacts of commodities originating from different aquaculture system 
were equal (e.g. system A = system B).

Two approaches were used when testing the differences between paired results as obtained in 
dependent sampling (Henriksson et al. 2015a), one using significance tests (H0:mA=mB at α=0.05) 
and the other analyzing the percentage of Monte Carlo (MC) runs in which the difference was 
lower or higher than zero (p(xA-xB<0) or p(xA-xB>0)) at p=0.95). This dual approach was chosen as 

Country Code Species Region Key characteristics

Bangladesh BD K Giant river prawn Khulna Avg. of 2 kg fish coproduced 
per kg prawn

BD B Bagerhat Avg. of 3.3 kg fish co-
produced per kg prawn

BD S&P Both Integrated with Giant tiger 
shrimp

BD W Asian tiger shrimp West Lower stocking density and 
not always fed, with fish

BD E East Higher stocking density, no 
fish

BD S&P West Integrated with Giant river 
prawn

China CN HL Whiteleg shrimp Guangdong Lined high-level ponds with 
pumped water exchange

CN LL Guangdong Low-level earthen ponds with 
tidal water exchange

CN GD Tilapia Guangdong Intensive to semi-intensive 
farms, <30 post-larvae m2

CN HI Hainan Intensive to semi-intensive 
farms, <30 post-larvae m2

CN R Both Farmed in freshwater 
reservoirs

CN IG Guangdong Ponds fertilized by integrated 
pigs on dikes

Thailand TH E Whiteleg shrimp East Electricity as main energy 
source on farm

TH S South LPG as main energy source 
on farm

Vietnam VN SI Asian tiger shrimp Soc Trang &  
Bac Lieu

Semi-intensive with <30 
shrimp post-larvae stocked 
per m2

VN I Soc Trang Intensive with >30 shrimp 
post-larvae stocked per m2

VN I Whiteleg shrimp Ben Tre Intensive with >30 shrimp 
post-larvae stocked per m2

VN S Pangasius An Giang 
&  Can Tho

Small farms with no full-time 
labor

VN M Medium privately owned with 
full time labor

VN L Large corporate farms

Table 6.1: Farming systems evaluated in the study. The systems will hereon be referred to by the code or 
the characteristic in bold.
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each of them answers different questions; significance tests for the median analyze if the distribution 
of differences has a median that deviates significantly from zero, while MC frequencies indicate 
how often a type of farming system is expected to perform better than another. Given the large 
differences in nutritional, culinary and monetary value of the different species (Schau and Fet 
2008), comparisons were only made across countries and systems, not across species.

6.2 Materials and methods

6.2.1 Goal and scope

The study aimed to evaluate the comparative eco-efficiency per functional unit of one tonne of 
frozen product for some selected aquaculture commodities commonly imported to Europe from 
Bangladesh, China, Thailand and Vietnam. The products surveyed were frozen peeled tail-on 
(PTO) whiteleg shrimp (Litopenaeus vannamei), PTO Asian tiger shrimp (Penaeus monodon), 
headless shell-on (HLSO) giant river prawn (Macrobrachium rosenbergii), tilapia fillets (mainly 
Oreochromis niloticus) and pangasius catfish fillets (Pangasianodon hypophthalmus). The 
production chains were modeled up to European ports, assuming that any processes (e.g. retailing, 
cooking and composting) downstream of this system boundary would be equivalent.

Three impact categories, global warming, eutrophication and freshwater toxicity, were evaluated. 
The selection of these represents a trade-off among access to good quality data (e.g. important 
emissions driving some impact categories could not be specified for Asian processes, such 
as halon causing ozone layer depletion or palladium resulting in abiotic resource depletion), 
avoidance of extensive multiple comparisons problems, diversity of inventory flows and impacts 
(e.g. acidification gave similar outcomes to global warming (Henriksson et al. 2014a)), and the 
different uncertainties they are subject to. Impacts were allocated among multiple co-products 
originating from the same process (e.g. fillets and heads from fish processing) based upon mass 
and economic proceeds (monetary value times mass), in order to evaluate the sensitivity of this 
highly influential methodological choice (Henriksson et al. 2012c) and to strengthen conclusions. 
These two allocation methods were chosen as they generally constitute two extreme outcomes 
and since they can be consistently applied to all allocation situations. Sensitivity in many other 
pivotal parameters of aquaculture LCAs (amount of feed used, emissions from agricultural fields 
and aquatic systems, characterization factors, etc.) (Henriksson et al. 2012c) were accounted for 
as part of the variable distributions and therefore considered in the statistical evaluation. Other 
modeling decisions that could influence outcomes (e.g. cut-off ) were not evaluated in the present 
research as they were deemed to be of only limited importance to our comparative setup. For a 
more complete set of impact categories and methodological choices, please see Henriksson et al. 
(2014a), Henriksson et al. (2014b) and the supporting information of this article. This information 
is available free of charge via the Internet at http://pubs.acs.org/.

The data sourcing procedure was based upon the protocol presented in Henriksson et al. 
(2012a). Following this protocol, secondary data were weighted (in this study based upon the 
squared coefficient of variation, wt = 1/CV2) according to their inherent uncertainty (inaccuracies 
in measurements and models) and unrepresentativeness (mismatch between the representativeness 
and use of data), defined by the Numerical Unit Spread Assessment Pedigree and quantitative 
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uncertainty factors in Frischknecht et al. (2007b). Overall dispersions were quantified as the sum 
of inherent uncertainty, spread (variability resulting from averaging) and unrepresentativeness, in 
accordance to the protocol (Henriksson et al. 2013). LCI models were constructed, propagated 
and characterized using the CMLCA 5.2 software (www.cmlca.eu) and subsequently aggregated 
towards the functional unit over 1000 MC simulations using dependent sampling (Henriksson 
et al. 2015a). Covariance was not accounted for in the current models because of methodological 
limitations. Distributions were tested using the Anderson-Darling goodness-of-fit test in the 
EasyFit v5.5 software (www.mathwave.com) and significance tests were conducted in SPSS v21 
(for a more detailed description of the statistical approach, see supporting information).

The median impact of each system was pairwise tested against that of all other systems 
used to produce the same commodity, for all three impact categories. Since the distributions 
were quite skewed, we decided to test equality of medians with the non-parametric Wilcoxon 
signed-rank test rather than equality of means with means with a paired t-test. Significant 
differences were considered as α  =  0.05. However, since 216 comparisons were made among 
the five species and 20 systems, for two allocation factors and three impact categories, there 
is over 99.99% probability that at least one of our hypothesis would be a false positive 
(1-(1-0.05)^(36 comparisons*2 allocation factors*3 impact categories)). A Bonferroni correction 
was therefore implemented, adjusting the alpha level to αb = 0.05/216 = 0.00023.

The alternative approach, looking at the cumulative frequency of one alternative to be favorable 
to another according to the MC runs, was assumed to hold if cumulative frequencies were higher 
than 95%, as described by Heijungs and Kleijn (2001), and Huijbregts et al. (2003).

6.2.2 LCI data collection

Primary data for the current study involved several actors in the aquaculture value chains 
(Fig. 6.1). Initial data collection on basic farming practices was conducted between October 2010 
and February 2011 for approximately 200 farmers for each species in each of the four countries 
(a total of about 1400 farmers were interviewed). Farm selection was performed by a random 
sampling design of farm clusters representing the most important production methods (Murray et 
al. 2014). From this dataset, 20 production systems were identified as systematically different based 
upon basic parameters such as feed used, energy sources and integrated species (Henriksson et al. 
2014b) (Table 6.1). A follow-up in-depth survey was then conducted between 2011 and 2013 with 
focus on more LCI specific data and other actors in the aquaculture value chain, including feed 
mills, capture fisheries and agricultural producers. A complete set of data is available as supporting 
information to this article and as an annex to SEAT deliverable D3.5 (Henriksson et al. 2014b).

6.2.3 LCIA data

Eutrophying emissions were characterized based upon the Redfield ratio, assuming an average 
composition of phytoplankton biomass of 106 carbon atoms, 16 nitrogen atoms and 1 phosphorus 
atom, as suggested by Heijungs et al. (1992) and neglecting any uncertainty. Emissions resulting 
in global warming were characterized using the characterization factors and uncertainty estimates 
presented in the fifth IPCC report (IPCC 2013; Myhre et al. 2013). Characterization factors for 
freshwater ecosystem impacts were derived from Rosenbaum et al. (2008), or, for non-characterized 
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chemicals used in aquaculture farming, calculated using the USEtox model. Ecotoxicity data for 
potentially toxic chemicals applied in aquaculture farms which were used in the model were 
primarily sourced from Rico et al.(Rico and Van den Brink 2014), and secondarily from the US 
Environmental Protection Agency’s (EPA) ECOTOX database (cfpub.epa.gov; accessed 25-
May-2014). For chemical characteristics, measured data were prioritized (primarily from sitem.
herts.ac.uk/aeru/vsdb/atoz.htm; accessed 25-May-2014) before quantitative structure–activity 
relationships (QSARs) were used (toxnet.nlm.nih.gov, accessed 25-May-2014; Episuite v4.11 
from US EPA). All chemicals applied to agricultural fields and ponds were assumed lost to the 
environment, in consistency with ecoinvent v2.2. For acute exposure EC50 and LC50 values were 
considered, and for chronic exposure NOECs and LOECs. Dispersions around the FEATPs were 
calculated as the sum of dispersions around acute and chronic effect concentrations within and 
among genera, and the unrepresentativeness of this data. No dispersions were, however, available 
for the FAETPs readily available in Rosenbaum et al. (2008).

Fig 6.1: Simplified flow-chart of the processes included in this LCA, where arrows symbolize transportation, 
dashed lines indicate upstream processes, white filled boxes indicate processes modeled from primary data 
and grey fill boxes indicate processes modeled based upon secondary data.
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6. 3 Results and interpretation

Significant conclusions among systems for each species are summarized below. Only conclusions 
that held for both allocation factors were considered. Relative differences as percentages and 
contribution analyses are available in the supporting information of this article. Dispersions related 
to the contribution analysis could unfortunately not be quantified using the present approach. 
These values are instead based upon the so-called baselines (point-value estimates), which in the 
current study were defined by arithmetic means, in line with the arithmetical structure of CMLCA 
(Heijungs and Suh 2002).

Asian tiger shrimp farming in Western Bangladesh was related to significantly lower median 
global warming and eutrophication impacts than all other systems, and also had the lowest 
median freshwater ecotoxic emissions alongside intensive farming in Vietnam (Table 6.2). This 
is explained by the fact that many Asian tiger shrimp farms in Western Bangladesh use limited 
feed and/or fertilizer inputs, resulting in a net sink for nutrients. The median eutrophying impacts 
of Bangladeshi farms in the east were, in the meantime, comparable with those from either of the 
Vietnamese shrimp farming systems, and worse with regards to freshwater ecotoxicity. Asian tiger 
shrimp integrated with prawn performed the worst for all impact categories except global warming. 
The poorer performance of the Bangladeshi systems with regards to toxicity was largely due to more 
extensive use of agricultural products as feed, for which pesticides are used. In Vietnam, intensive 
production of Asian tiger shrimp had significantly lower ecotoxicological and eutrophying impacts 
as compared to semi-intensive production, but similar global warming impacts.

For all three impacts, the median of related to the production of frozen peeled whiteleg shrimp 
were significantly larger for the Thai farms compared to the Vietnamese farms. Farming in low-
level ponds in China was also related to lower median environmental impacts compared to farming 
in eastern Thailand. Chinese high and low-level farms (Table 6.3), however, had similar global 
warming and eutrophication impacts, while low-level farms were related to lower freshwater 
ecotoxicity impacts. The environmental impacts of whiteleg shrimp farming in China were also 
similar to farming in Vietnam, while the allocation factor used greatly influenced results due to a 
more extensive use of fishmeal from mixed fisheries and livestock byproducts in feeds. None of the 
impacts were significantly different when analyzing the entire distribution of differences between 
systems.

Global warming Eutrophication Ecotoxicology

Rank Mass Economic Mass Economic Mass Economic
Best BD Wa BD Wa BD Wa BD Wa BD Wa BD Wa

BD Eb BD Eb BD Eb VN Ib VN Ib VN Ia

BD S&Pc VN SIc VN Ic VN SIc VN SIc VN SIb

VN Id VN Id VN SId BD Ec BD Ed BD Ec

Worst VN SId BD S&Pe BD S&Pe BD S&Pd BD S&Pe BD S&Pd

Table 6.2: Ranking of the relative environmental performance related to Asian tiger shrimp at European 
consumers. VN = Vietnam; BD = Bangladesh; I = Intensive; SI = Semi-intensive; W = West; E = East; S&P 
= Shrimp and Prawn. Different superscripted letters indicate significantly different ranges identified using 
the Wilcoxon signed-rank test and different colors indicate ranges where more than 95% of the runs favored 
the green alternative over the red.
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Allocation also had a large influence on the outcomes of the Bangladeshi giant river prawn 
systems (Table 6.4). Farms where such prawn were polycultured with Asian tiger shrimp had 
more favorable median outcomes than prawn from Khulna province farmed without shrimp with 
regards to global warming and eutrophication, while the situation was the opposite in terms of 
freshwater ecotoxicity impacts. Distributions of differences did not differ among systems.

Among the Chinese tilapia systems, fillets from ponds in Guangdong were associated with 
significantly lower median impacts compared to fillets from Hainan (Table 6.5). The Hainan farms 
were also related to larger median eutrophication and ecotoxicity impacts than farms integrated 
with pigs and reservoir systems. Distributions of differences did not differ among systems.

Global warming Eutrophication Ecotoxicology
Rank Mass Economic Mass Economic Mass Economic
Best CN GDa CN GDa CN GDa CN GDa CN GDa CN GDa

CN Rb CN Ra CN INTb CN INTb CN INTb CN Ra

CN INTc CN INTb CN Rc CN Rb CN Rb CN INTb

Worst CN HId CN HIb CN HId CN HIc CN HIc CN HIc

Table 6.5: Relative environmental performance of tilapia fillets at European consumers. Tilapia. CN = 
China; GD = Guangdong; HI = Hainan; I = Integrated; R = Reservoir. Different superscripted letters indicate 
significantly different ranges identified using the Wilcoxon signed-rank test. For none of the comparisons, 
95% of the runs favored one alternative over the other.

Global warming Eutrophication Ecotoxicology

Rank Mass Economic Mass Economic Mass Economic
Best BD Ba BD S&Pa BD S&Pa BD S&Pa BD Ba BD S&Pa

BD S&Pa BD Bb BD Bb BD Kb BD S&Pb BD Bb

Worst BD Kb BD Kb BD Kc BD Bc BD Kc BD Kb

Table 6.4: Relative environmental performance of Giant River prawn at European consumers. BD = 
Bangladesh; B = Bagerhat; K=Khulna; S&P = Shrimp and Prawn. Different superscripted letters indicate 
significantly different ranges identified using the Wilcoxon signed-rank test. For none of the comparisons, 
95% of the runs favored one alternative over the other.

Global warming Eutrophication Ecotoxicology

Rank Mass Economic Mass Economic Mass Economic
Best CN HLa VN Ia VN Ia VN Ia CN LLa VN Ia

CN LLa CN LLb CN LLa CN LLb CN HLb CN LLb

VN Ib CN HLbc CN HLa CN HLb VN Ib CN HLc

TH Sc TH Sbc TH Sb TH Sc TH Sc TH Sd

Worst TH Ed TH Ec TH Eb TH Ed TH Ed TH Ed

Table 6.3: Relative environmental performance of whiteleg shrimps at European consumers. VN = Vietnam; 
TH = Thailand; CN = China; I = Intensive; E = East; S = South; LL = Low-level; HL = High-level. Different 
superscripted letters indicate significantly different ranges identified using the Wilcoxon signed-rank test. For 
none of the comparisons, 95% of the runs favored one alternative over the other.
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All evaluated environmental median impacts caused by the production of pangasius fillets were 
found to be significantly lower in the studied large-scale farms as compared to those calculated 
for small- and medium-scale farms. (Table 6.6). Small-scaled farms also resulted in significantly 
lower median eutrophication impacts than medium-scaled farms. Distributions of differences did 
not differ among systems.

6.4 Discussion
6.4.1 Analytical approach

Unlike previous comparisons of point-values, the current approach offered a level of confidence 
to support conclusions; and unlike previous comparisons of ranges (Cao et al. 2011), by only 
considering relative uncertainties, type II statistical errors (incorrectly accepting the null 
hypothesis) were reduced. Of the systems tested, most came out to differ significantly, despite 
the conservative Bonferroni correction (Narum 2006). This is largely due to the large sample size 
used (n=1000), a sample size deemed as sufficient, but not excessive. Historically, the number of 
MC iterations has been limited by computing power, and mathematical solutions for calculating 
the number of iterations needed to achieve a desired confidence level have even been proposed 
(so called sequential stopping boundaries) (Fay et al. 2007). One could therefore argue that by 
increasing the number of MC runs any hypothesis test on means or medians will always produce 
significant results. This, by the way, is not only true for Monte Carlo, but it is also a danger of large 
real samples, and it is an inherent characteristic of classical hypothesis testing (Cohen 1994). Using 
the alternative to significance tests showed that only the comparison of Asian tiger shrimp systems 
deviated in more 95% of the MC runs in their environmental impacts.

From a naive point of view, the two statistical approaches give contradictory answers, but in 
reality they answer different questions. The more suitable of the two approaches therefore depends 
upon the question needing answering, e.g. is the median of A significantly different from the 
median of B, or is a random pick of A demonstrably better than a random pick of B. Thus, while 
significance tests provide a conventional answer with respect to the median (or mean) impact, 
the proportional outcomes favoring a certain type of farming system might be more informative 
for a policy decision. In alternative words, statistical tests are about comparing distribution 
parameters, while the other approach is about a random pick from a distribution. While our belief 
is that operating within the paradigm of statistical hypotheses testing is too valuable to discard 
(Henriksson et al. 2015a), statistical significance should not always be taken at face value (Cohen 
1994; McCloskey and Ziliak 1996; Doweyko 2008). However, differences that are proclaimed to 
be “significant” should be supported by statistical tests.

Global warming Eutrophication Ecotoxicology
Rank Mass Economic Mass Economic Mass Economic
Best VN LGa VN LGa VN LGa VN LGa VN LGa VN LGa

VN SLb VN SLb VN SLb VN SLb VN SLb VN SLb

Worst VN MDb VN MDb VN MDc VN MDc VN MDb VN MDb

Table 6.6: Relative environmental performance of Pangasius fillets at European consumers. VN = Vietnam; 
SL = Small; MD = Medium; LG = Large. Different superscripted letters indicate significantly different ranges 
identified using the Wilcoxon signed-rank test. For none of the comparisons, 95% of the runs favored one 
alternative over the other.
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6.4.2 Aquaculture findings

Reflecting on previous aquaculture LCAs, many of the conclusions in the current research confirm 
the general outcomes of LCAs of fed aquaculture systems worldwide. Like tilapia and African 
catfish farming in Cameroon, eutrophication was mainly related to farm effluent (Ewoukem et 
al. 2012); and like most salmon farming, the provision of feed (including fisheries, agriculture 
and livestock) was related to most greenhouse gas emissions (Pelletier et al. 2009) (see Fig S1-
S3). Lowering the feed conversion ratio would consequently offer environmental improvements, 
where formulated feeds tailored to the nutritional needs of each species served in portions ensuring 
high availability (e.g. floating pellets) should be promoted. Reductions in aquaculture impacts, 
moreover, require agriculture to switch to less toxic pesticides or adopt organic farming practices 
to the extent possible. Developing models for reusing pond effluents and sediments locally as 
fertilizers, as already practiced in traditional Chinese aquaculture, would also reduce the impacts of 
both agri- and aquaculture, as nutrients in modern aquaculture systems are largely lost to adjacent 
water bodies where they result in eutrophication. Production systems with limited environmental 
interactions that allow for nutrients to be captured, and the influence by external parasites and 
bacterial diseases to be reduced (thus reducing the reliance on and discharge of therapeutants) 
should therefore also be favored.

Use of wild fish in aqua-feeds is one of the major critiques of the aquaculture sector, based on both 
environmental and socioeconomic arguments (Naylor et al. 2000; Cao et al. 2015). In the present 
research this also stood out as one of the major causes for global warming and eutrophication 
for many systems (see Figure S1-S2). Limiting the inclusion and choosing more sustainable 
sources of fishmeal in feeds therefore need to be priorities for reducing the environmental impacts 
of farmed aquatic products, especially for shrimp. This goal can only be achieved if both feed 
producers and farmers, who often believe that larger fishmeal inclusions result in faster growth, 
recognize advancements in dietary substitution and supplements. A more sustainable source could 
be derived from processing byproducts, as much of these are still discarded (e.g. shrimp byproducts 
in Bangladesh). This would not only reduce pressure on wild fish stocks (Newton et al. 2014; Cao 
et al. 2015), but would also reduce eutrophying emissions at landfills and recycle nutrients (Phong 
et al. 2011). Lastly, it is important to always favor feed ingredients, terrestrial or aquatic, that do not 
compete with their direct use as human food, as malnutrition still is widespread in some regions 
of Asia and elsewhere.

Intensity of systems had no clear correlation with the impacts evaluated in the present study. 
Paddle-wheel aerators were, however, more intensively used in ponds with higher stocking densities, 
with consequent global warming impacts. Monitoring oxygen levels in ponds could therefore 
help optimizing the use of paddle-wheels, and more energy efficient forms of aeration should be 
developed and promoted. The use of coal to generate the electricity that powers aerators and other 
activities also needs to be curbed or improved, as does the electricity efficiency of freezers.

On-farm chemical use made only small contributions to the overall lifecycle freshwater 
ecotoxicity impacts, with the exception of benzalkonium chloride and other chlorine releasing 
compounds used as disinfectants. Chlorine is volatile and therefore used in large quantities, but 
the presence of organic matter leads to chlorinated compounds (e.g. halogenated hydrocharbons) 
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that are more stable and induce long-term toxicity. The use of alternative, less toxic, biocidal or 
disinfection methods is therefore promoted.

6.4.3 Limitations and future research needs

When considering chemical and other emissions, it is important to acknowledge that LCA has 
limited capacity to account for spatio-temporal aspects in both the LCI and the LCIA phases 
(Guinée and Heijungs 1993; Pinsonnault et al. 2014). Thus, even if many of the local impacts 
related to the grow-out sites appeared not to exceed the buffering capacity of local ecosystems, 
they cannot be discounted as inconsequential. For example, with regards to therapeutant use in 
the present study, the peak predicted environmental concentrations for 61% of the treatments 
applied by grow-out farmers resulted in a risk quotient higher than one, implying a potential risk 
to important structural endpoints of aquatic ecosystems not accounted for in the LCAs (Rico and 
Van den Brink 2014). Similar for eutrophication, where discharge of sediments and/or sludge 
from post-harvested ponds could have severe ecological consequences through peaks in turbidity, 
oxygen depletion or ammonia toxicity. Neither are additive and synergistic effects of different 
stressors accounted for in current LCA methodology, highlighting the added value of adopting the 
refined spatio-temporal windows and mixture toxicity approaches currently used in risk assessment 
alongside LCA (Rico and Van den Brink 2014). A risk assessment approach could also provide 
better insights into other impacts that have been deemed as relevant for aquaculture LCAs (Ford 
et al. 2012), such as reduced dissolved oxygen levels, introduction of non-indigenous species, and 
spread of disease and parasites.

The large dispersions around the characterization factors for freshwater ecotoxicity originated 
partially from the eco-toxicological effect factors, with large discrepancies in experimental acute 
and chronic effect concentrations, and within and among genus. Chronic effects on different types 
of algae often expressed the largest irregularities. Many additional assumptions exist around the 
chemical properties, some of which had to be resolved using QSARs. Given that these values 
are purely based upon the theoretical properties of molecules, QSAR estimates can differ greatly 
from reality (Doweyko 2008). Many other parameters related to inventory and impact assessment 
models also lack confidence estimates (Nemecek and Schnetzer 2011; Hauschild et al. 2012), 
which in some cases were confidence estimates are almost impossible to quantify (Maurice et 
al. 2000; Björklund 2002). For example, in the present research no uncertainty estimates were 
assigned to the eutrophication potentials, as the uncertainty around the actual environmental 
consequences are hard to quantify given their complex nature and geographically specific context, 
with discrepancies induced by factors such as planktonic species assemblage, bioavailability of the 
nutrients, fate of emissions, abiotic factors and nutrient compositions in receiving environments 
(Ptacnik et al. 2010). More recent impact assessment methods that address these challenges by 
presenting country-, or even region-, specific characterization factors (Posch et al. 2008; Gallego 
et al. 2010) can, in the meantime, induce new uncertainty in the form of unknown locations of 
emissions.

In addition to this, uncertainties also arise from the limited number of distributions available to 
represent data in LCA at present and the general negligence of covariance (Maurice et al. 2000). 
Still, these are only some of the many assumptions made over the different phases of an LCA, 
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where quantitative uncertainty estimates remain incomplete or undefined, resulting in a fragile 
pyramid where the ranges of results only capture part of the underlying uncertainty. Significant 
differences thus only consider the dispersions quantified, confirming the strict relative meaning 
of comparative LCAs (Henriksson et al. 2015a). Other types of uncertainties, including several 
methodological choices, may also be more easily illustrated by performing sensitivity analyses 
(Björklund 2002) until more sophisticated approaches become available ( Jung et al. 2013; Beltran 
et al. 2014).

More extensive data on emissions related to LULUC are warranted, as the removal of mangrove 
for pond constructs is known to greatly influence both global warming and eutrophication results 
( Jonell and Henriksson 2014). More inventory and characterization data related to freshwater 
ecotoxicity are also invited, as many emissions with possible environmental effects had to be excluded 
from the present study due to resource constraints. The inclusions of infrastructure, its maintenance 
and waste disposal might, for example, alter the conclusions made related to freshwater ecotoxicity, 
as metals were a major driver for this impact category. Moreover, it is important to acknowledge 
that the data in the present research represents farming practices between 2010 and 2011, while 
aquaculture practices are notable for changing rapidly. For example, an outbreak of early mortality 
syndrome led to a rapid shift from Asian tiger shrimp to whiteleg shrimp for many Vietnamese 
farmers during the period of this research. Wild fish stocks, agricultural yields and monetary values 
are also variable over time. More extensive databases and better software that allow for more 
rapid data processing and invite practitioners to utilize methodological advancements are therefore 
desired, in order to promote more scientifically robust conclusions in future LCA studies.
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Chapter 7

General discussion and conclusions

7.1 Significant trends and environmental hot-spots in Asian aquaculture 
production chains

By using the LCA approach presented in the current research, several significant trends could 
be identified among the environmental impacts caused by different Asian aquaculture production 
systems. Most trends also persisted using both allocation methods, suggesting that many 
conclusions could be made with great confidence.

Among the conclusions reached, noteworthy was the importance of feed,  with large GHG 
emissions from capture fishing boats, livestock farming and agriculture. Excess feed was also 
the major driver for eutrophication, and agricultural pesticides an environmental hot-spot for 
freshwater ecotoxicity. Together with the significantly lower environmental impacts of the large 
commercial pangasius farms, this indicates that farm management is strongly linked with the 
environmental performance of aquaculture production. While this might not be surprising, it 
highlights the importance of training small-scale farmers, where some of the recommendations in 
the present thesis should be considered.

In China, the non-integrated tilapia farms in Guangdong had significantly lower environmental 
impacts than the other systems, with the exception of reservoirs for global warming and 
ecotoxicity. This trend was again mainly a reflection the eFCRs at the farms, given that feed was 
the main driver behind most impacts. Promoting and distributing high quality pelleted feeds 
will therefore be essential, alongside better farm management and feeding practices, to reduce 
environmental impacts. This also holds true for whiteleg shrimp, where the Vietnamese production 
systems (eFCR=1.3) resulted in significantly lower emissions than either of the Thai shrimp 
farming systems (eFCR=1.5). There was, however, no clear correlation between intensity and 
environmental impacts. Future developments of the aquaculture sector therefore need to consider 
the consequences of land-use and land-use change, stressing that sustainble intensification is the 
way forward, but that these practices need to be evaluated, identified and promoted for all types 
of farmers. 
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Common environmental hot-spots apart from overfeeding in the different production chains 
included extensive use of fishmeal (especially from mixed fisheries), dumping of sediments into 
nearby environments, , landfilling of processing byproducts, high reliance on coal power, the use 
of certain therapeutants and inefficiently processed byproduct meals. Most of these can, however, 
be addressed by implementing better policies and farming practices, as well as educating all actors 
in the aquaculture value chain about the environmental impacts related to aquatic food products.

7.2 Irregularities in current aquaculture LCAs

Several LCA studies of aquaculture systems were already available when the present research 
commenced (2010). Since, the twelve studies originally reviewed in Henriksson et al. (2011) have 
been accompanied by several additional studies, many that focus on Asian farming systems (Cao 
et al. 2011; Hall et al. 2011; Bosma et al. 2011; Mungkung et al. 2013; Huysveld et al. 2013). A 
commonly observed malpractice among the reviewed studies was the mixing of processes from 
different background databases, since each database relies upon its unique set of methodological 
choices. The resulting impacts from different databases are therefore completely incomparable. For 
example, many studies consulted the processes for the production of fishmeal and other animal 
derived products in the LCAfood (lcafood.dk) alongside ecoinvent, and/or other LCI databases. 
The LCAfood database, however, constitutes a consequential LCI database that tries to account 
for market reactions to changes in demand. Some environmental emissions can therefore come out 
as negative (e.g. if a product substitutes an environmentally poor product), resulting in emissions 
completely incompatible to those of the attributional ecoinvent LCI database. This malpractice 
is partially to blame on software developers that often use the number of available processes as 
a marketing tool and therefore allow for databases to be mixed without providing inexperienced 
users with any sort of disclaimer. A simple remedy for this problem is therefore to disable the 
option of mixing different databases in software, or at least provide warnings to users who do so.

There was also a general lack of transparency into the inventory data used, making critical 
reviews difficult and reproducing results impossible. This goes against the core of the scientific 
theory and undermines the academic integrity of most LCA results. As Ioannidis (2012) phrases 
it: “Efficient and unbiased replication mechanisms are essential for maintaining high levels of 
scientific credibility”. These concerns were amplified by the fact that most studies only present 
aggregated LCIA results, leaving no insight for reviewers or readers to critically evaluate the 
decisions made. Poor reporting on primary data also hampers the collective efforts of producing a 
more extensive LCI data library and obstructs any secondary use of that data (including citations). 
Since most LCI data have much effort invested into its collection, failing to sufficiently record this 
data is a waste of resources. More strict requirements by journals and reviewers could therefore 
transcend case studies beyond their current questionable usefulness (Klöpffer and Curran 2013). 
This reporting could easily be provided, without compromising the word limit of journals, as 
supporting information to articles. In the present research a spreadsheet was also developed for this 
purpose (available at cml.leiden.edu/software/software-quanlci.html), providing an easy way to 
record and report upon different data references and the dispersions related to them (Henriksson 
et al. 2012c).
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Additional impact categories relevant to aquaculture and food production should also be better 
established within the LCA framework, including impacts on seafloors (Hornborg et al. 2012), 
impacts on food security (Garnett 2014) and impacts on biodiversity (Ford et al. 2012). It is, 
however, important that lifecycle thinking prevails when developing these. Meaning that an impact 
assessment framework should be applicable to the whole range of different processes causing the 
environmental damage, including agriculture, livestock, industrial processes, transportation, etc. 
For those methods that are not relevant to a lifecycle perspective, a risk assessment approach might 
better be applied as it also takes into account temporal aspects, ecosystems’ carrying capacity and 
synergistic effects. Social life cycle assessments (SLCA) and life cycle costing (LCC) indicators 
also need to be developed, in order to support more holistic life cycle sustainability assessments 
(LCSA) (Guinée and Heijungs 2011). The implementation of LCSA might, for example, have 
provided a more balanced view of small-scale farming in the present research. Throughout the 
process of expanding the coverage of LCA it is also important to acknowledge that some impacts 
never will fit into a quantitative framework and therefore need to be communicated alongside 
LCA results, stressing that decisions should never be based on LCA results alone.

The main methodological topic of debate among the aquaculture LCAs reviewed was the use of 
different allocation methods. Several studies presented elaborate discussions on the topic (Pelletier 
and Tyedmers 2007; Fet et al. 2009; Avadí and Fréon 2013) and at least two articles have been 
dedicated solely to allocation in seafood LCAs (Ayer et al. 2007; Svanes et al. 2011). However, with 
the level of overall dispersions now quantified it is clear that choices regarding data sourcing often 
influence results more than the choice of an allocation factor. This becomes even more evident if 
only relative conclusions are considered (A>B), as significant trends tended to remain coherent 
across allocation methods. Thus shifting focus towards data quality.

7.3 Data quality improvement options for LCAs

LCA is a tool with inherent demarcation problems, where statistical inference is inadequate and 
confirmation bias inevitable. Results often build upon large quantities of data and outcomes from 
complex models supported by insufficient documentation, making the reproducibility of results 
next to impossible. In the meantime, results are generally presented in a way that induces high 
confidence, with comparisons of absolute results being commonplace even in scientific literature 
(Nijdam et al. 2012; Tilman and Clark 2014). Strengthening the scientific integrity of LCA 
studies and adding confidence behind conclusions were therefore identified as areas of priority in 
the present research.

Starting at the unit process level, we presented a protocol for horizontal averaging of data in 
Chapter 3, where all available datasets could be used and weighted towards a central moment, 
reducing the influence from data choices and consequently confirmation bias. In addition to this, a 
method for quantifying overall dispersions defined as the sum of inherent uncertainty, spread and 
unrepresentativeness was presented. Acknowledging resource constraints as a generic limitation of 
the data intensive LCA framework, much effort was invested into making the method accessible to 
the majority of LCA practitioners and understandable to their audiences. In the process of doing 
so, nomenclature was presented alongside a spread-sheet for calculating overall dispersions.
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The importance of defining unit process data is often underestimated, as many unit process 
parameters act as multipliers during the propagation process, meaning that one erroneous parameter 
can result in completely skewed conclusions. The generally opportunistic sourcing of unit process 
parameters is therefore to be blame for much of the discrepancies seen around LCA results today 
(de Koning et al. 2009). This was initially illustrated using the example of soybeans, where we 
showed that different sourcing of unit process data among studies describing the same system 
(soybeans from Brazil) resulted in discrepancies among results with up to an order of magnitude 
(Henriksson et al. 2012b). In the meantime, additional layers of complexity (e.g. geographically 
specific impact categories, effect oriented impact categories, etc.) are constantly being added to 
the LCA framework (Hornborg 2012; Ford et al. 2012), stressing that a general shift from point-
values towards distributions is needed.

The moments (central value, variance, etc.) describing distributions, both in unit process data 
and results, can be expressed in several ways, none of which is “correct”. The most common practice 
in the field of LCA, to my knowledge, is to use the arithmetic mean as the central value. However, 
when looking across different inventory data sources in more detail, it often becomes evident that 
mixes of different indicators for the central value are used. This in conjunction with the use of 
default uncertainties or pedigree estimates fit to a lognormal distribution often results in strange 
outcomes. For example, assume that two values of 10 are arithmetic means, with one value being 
assigned a default variance of CV=0.1 and the other value a variance of CV=0.2, both fit to a 
lognormal distribution. As these values later are propagated into results, the arithmetic means 
of the two resulting ranges will diverge, as a result of describing a lognormal distribution with 
an arithmetic mean. If the median instead was used as the indicator for the central value, this 
deviation would be reduced (but still persist). This as the median is less influenced by extreme 
values that otherwise can have strong influence on arithmetic means, especially for small sample 
sizes. The median is also the basis of comparison in non-parametric tests, the only tests that could 
be correctly consulted in the present research. It is therefore recommended to adopt the median 
consistently for all LCA parameters and results, and adjust LCA software accordingly. The ultimate 
strive, however, should be to fit all data to its own distribution and allow for the most appropriate 
moments to represent this data.

7.4 Features of horizontal averaging and propagation of LCI data

In order to explore how data best could be horizontally averaged and propagated into LCI results, 
we used the simplified example (relative to the generally complex aquaculture production chains) 
of Chinese coal power in Chapter 4. Initially, the level of horizontal averaging, which historically 
has been based upon practical classifications such as geographical regions, products produced or 
production systems, was questioned. It was also shown how these types of classifications often 
force a diverse set of practices into the same unit process. For example, the existence of flue gas 
desulphurisation units in coal power plants proved far more influential on acidifying impacts than 
the capacity or location of the power plant. This demonstrated that spread could be greatly reduced 
by reclassifying data individually for each dataset, a rationale that also was adopted in the sixth 
chapter where a unique classification of grow-out farms was defined for each species and country. 
This feature was even more prominent for other unit processes encountered throughout this thesis 
work. For example, rice farming in Bangladesh was characterised by two to three different farming 
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seasons (Amon, Aus or Boro). Each of these farming seasons were related to their own sets of 
farming practices, intensities of irrigation and yields. Consequently the environmental impacts 
related to the different harvests actually varied more among each other than compared to many 
neighbouring countries.

Once the unit process dataset had been defined, the LCI results needed to be propagated towards 
a common functional unit. Several methods for propagating results have been proposed, including 
Monte Carlo (MC) and first-order Taylor expansion (Huijbregts et al. 2001; Imbeault-Tétreault 
et al. 2013; Heijungs and Lenzen 2013). Of these, MC was decided as the most suitable for the 
pupose of the present research, as it is commonly available in software (Lloyd and Ries 2007) and 
allow for post-hoc analyses (e.g. goodness-of-fit tests and significance tests) (Heijungs and Lenzen 
2013).

7.5 Identifying significant trends using LCA

Given the many methodological limitations and sources of uncertainty identified throughout 
Chapter 2 to 4, the critical question of “which conclusions can be drawn among ranges of LCA 
results?” remained. By resolving to the concept of dependent sampling, first roughly outlined 
by Huijbregts (2001) and later explored by Heijungs and Kleijn (2001) and Hong et al. (2010), 
paired results could be generated, allowing for more powerful paired significance tests. However, 
a prerequisite for applying any significance test is the establishment of a hypothesis, a rare feature 
in LCA studies. In Chapter 5 we therefore stress the importance of defining a hypothesis in LCA 
studies, where significance tests can be used to test the LCA results and reject the null-hypothesis. 
By only considering the relative differences, one not only reduces the risk of committing a Type 
II statistical error (failing to assert what is present), but also ensures that identical methodological 
choices are maintained (with regards to functional unit, system boundaries, allocation, underlying 
database, impact assessment method, etc.).

The level of correlation of paired results is dependent upon the number of overlapping unit 
process. Comparing two different pangasius products from Vietnam therefore offers a greater 
level of correlation, and thus greater resolutions in comparisons, than comparing pangasius fillets 
from Vietnam with shrimp tails from China. This as a result of more unit processes being shared 
between the two pangasius value-chains (e.g. feed production, hatchery production, electricity 
generation, etc.) than between the pangasius value-chain and the Chinese shrimp value-chain.

7.6 Recommendations

7.6.1 Aquaculture

7.6.1.1 Improving feeding practices

Feed was the largest single driver behind most of the impact categories, either through the use of 
diesel in fishing boats, agricultural pesticides, field emissions or through nutrient effluents resulting 
from an excessive use of feed and fertilisers. Reducing the amount of feed used should therefore be 
a priority for the aquaculture sector. 
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Reducing the inclusion rates of fishmeal in feeds and sourcing fishmeal from sustainable 
sources are other priorities for lessening the environmental impact of Asian aquaculture chains. 
This as fishmeal has been associated with many negative consequences (Naylor et al. 2009), 
including overfishing (Pauly et al. 2003), physical damage on seafloors (Hornborg et al. 2012) 
and reducing protein availability for the world’s poor ( Jacquet et al. 2009). In the present research 
we also show that much of the fishmeal sourced regionally is associated with large GHG and 
eutrophying emissions. Moreover, all shrimp farming systems in the present research, except those 
in Bangladesh, required larger inputs of wild fish than shrimp produced. This indicates of a net 
loss in animal protein, pressures on wild fish stocks and competition with food availability. A 
partial solution for this problem was presented in Cao et al. (2015), where we showed that a more 
extensive use of processing byproducts in fishmeal production could satisfy between half and two-
thirds of China’s current fishmeal demand (Cao et al. 2015).

7.5.1.2 Reusing wastewater and sediments in agriculture

The grow-out site was the hot-spot for most eutrophication impacts as a result of effluents of 
wastewater and sediments. One of the most efficient ways to deal with these nutrient flows from 
aquaculture ponds is to reuse them in agricultural fields. This practice may also help to maintain 
the soil organic carbon on agricultural fields (Boyd et al. 2010; Wiloso et al. 2014) and reduce 
the addition of inorganic fertilisers. Treatment ponds and other types of effluent handling are 
also recommended, but considerations need to be made with regards to gases released from these 
instalments.

7.5.2 Aquaculture LCAs

7.5.2.1 Choosing a functional unit beyond farm-gate

Most of the aquaculture LCAs reviewed had set their system boundaries at farm-gate with a 
mass based functional unit of live fish. The consequence of these choices became that byproducts 
used in feeds (e.g. rice bran or MBM) were allocated large environmental burdens when mass or 
gross energy content was used as the basis for allocation, while the allocation towards the inevitable 
fish byproducts that ensue at fish processing remained unaccounted for. Where economic allocation 
was adopted the situation was the opposite, resulting in products having lower environmental 
impacts at farm-gate, but not necessarily as processed products (as the value of fillets or tails are 
much larger than those of the byproducts). Consequently, by choosing a functional unit beyond the 
processing stage, the discrepancies between the two allocation methods used in this study (mass 
and economic) were greatly reduced.

7.5.2.2 Land-use and land-use change related to aquaculture

Land-use and land-use change (LULUC) was not explored directly within this thesis. However, 
the research of Schoon (2013) and Jonell and Henriksson (2014) conducted in parallel to this 
work stress the importance of considering LULUC when evaluating the lifecycle of aquaculture 
products. This relates most directly to mangrove deforestation as a result of establishing new 
aquaculture ponds, but also LULUC impacts resulting from the provision of feed need to be 
considered. Middelaar et al. (2013), for example, concluded that the GHG emissions from land-
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use change (LUC) resulting from Brazilian soybean farming could be more than six times those 
resulting from operations.

7.5.3 Life Cycle Assessment

7.5.3.1 Standardising dispersions around LCA results

Producing and processing empirically quantified dispersions around LCA results is today 
practically doable for all LCA practitioners and should therefore become norm. Many improvements 
could, however, aid practitioners with this shift. Initially, the LCA community needs to agree 
upon one consistent nomenclature so that unit process data and results can be communicated 
in a correct way. Software developers also need to embrace this nomenclature and improve the 
existing options for including and analysing dispersions. This would include the options for more 
distributions or statistical moments (skewness, kurtosis, etc.), the propagation of unit process data 
alongside characterisation factors, paired sampling, multiple allocation factors, accounting for 
covariance, provide relevant statistical tests (e.g. goodness-of-fit, Wilcoxon test, Friedman test, 
etc.), R extensions, GPU support and more easily shared models/inventory data. This would also 
encourage better reporting of data and raise the standard of LCA as a science.

Improving statistical inference with the support of software is also necessary for managing big 
data in LCA (Cooper et al. 2013). The adoption of big data would reduce the incidence of flawed 
parameters in LCIs and ultimately harmonise results. It could also come to support long-term 
datasets and help to update parameters in real-time (Xu et al. 2015). The protocol developed 
presented in Chapter 3 could be used for the integration of big data into LCA, as working with 
weighted mean based upon a pedigree approach could assure more objective representation of 
different parameters (Xu et al. 2015).

7.5.3.2 Structuring LCI models to address hypotheses

When adopting dependent sampling, the structuring of the unit process dataset becomes 
increasingly important. Given that only distributions in unit processes shared by production chains 
can be dependently sampled, the LCI modelling structure will influence the level of correlation 
among results. For example, Fig. 7.1 demonstrates a hypothetical scenario where burning of 
diesel in two different fishing fleets has been separated into two country specific unit processes. 
Consequently, the distributions in the two unit processes can only be independently sampled. 
If the unit process dataset instead was modelled according to Fig. 7.2, the national label on 
emissions might be lost, but dependent sampling prevails. Similar thinking could be applied to 
all unit processes that rely upon fairly generic data, which also often is related to large spread 
(e.g. combustion of diesel in unknown engine, wastewater from processing plants, transportation 
distances, etc.). Constructing unit process datasets and LCI databases accordingly would therefore 
reduce relative uncertainties, even if absolute uncertainties might increase (by the use of more 
generic unit processes).
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7.5.3.3 Achieving mass balanced LCI models
Since the appearance of computers, mathematical modelling has become the answer for 

evaluating most of our environmental concerns. Over time, these models have become increasingly 
complex, leaving ever less room for critical evaluations of the predicted outcomes (Pilkey and 
Pilkey-Jarvis 2007). LCA is a prime example of such an environmental modelling tool where 
one flawed parameter or erroneous decimal point can skew conclusions. Striving towards mass 
balanced LCI models could therefore greatly reduce the risk of such mistakes and logically makes 
great sense (inputs=outputs). Resolving the many challenges related to this (e.g. chemical reactions 
within processes) and providing software to support mass balanced models is therefore encouraged.

Fig. 7.2: Example of a unit process dataset using only one unit process for the combustion of diesel in 
fishing boats.

Fig. 7.1: Example of a unit process dataset using separate unit processes for the combustion of diesel in 
fishing boats.
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7.5.3.4 LCA as a science – confirmatory or exploratory

Exploratory research sets out to identifying indicators, rather than being a pathfinder (Tukey 
1980). Confirmatory research, on the other hand, aims at identifying significant trends in 
stochastic environments. While the prior may provide highly valuable information, it does not 
do it with the same conviction as the latter. Throughout the present thesis, much doubt was shed 
on the confirmatory use of LCA results, but a more scientifically rigid approach to LCA was 
also presented. By adopting the suggested approach, LCA practitioners are allowed to achieve 
statistically supported conclusions, with a reduced chance of committing Type II statistical errors. 
It is, however, my personal belief that LCA should be used for both purposes, depending upon the 
goal of the study; where hot-spot analyses and system mapping may help formulate hypotheses 
for follow-up confirmatory LCAs. I also believe that methodological alternatives add confidence 
to LCA results, rather than erasing comparability. As was shown, absolute results are irrelevant, 
so fewer resources should be invested in seeking consensus on methodological choices through 
operational guidelines, PCR standards, etc. LCA results will always remain incomparable across 
studies and between LCA practitioners. Exploratory LCA case studies should therefore avoid 
comparisons with other studies apart from maybe building consensus around environmental 
hotspots. Finally, it is important to highlight that LCA is not a tool created to save individual 
species or unique locations, it is a tool crafted to steer societies (not individuals) towards more 
sustainable choices and actions.
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Summary

This thesis aims to evaluate the environmental sustainability of European imports of selected 
farmed aquatic food products from Asia using life cycle assessment (LCA) studies. LCA is 
currently one of the most popular tools for benchmarking the environmental performance of 
product systems (e.g., for biofuels, food commodities, light bulbs, drink containers).

Imports of aquatic food products from Asia to Europe have been steadily increasing since the 
turn of the millennium, the result of fully exploited, or even overexploited, regional fish stocks, 
an overall increase in the demand for fish, and changing consumer preferences. A selection of 
four Asian countries (Bangladesh, China, Thailand and Vietnam) and five farmed species (Asian 
tiger prawn, whiteleg shrimp, freshwater prawn, tilapia and pangasius catfish) were chosen as 
representatives of the Asian aquaculture industry. This selection of countries and species cov-
ered farming systems ranging from extensive, using more passive farming techniques, to highly 
intensive production units relying on a diversity of auxiliary inputs (e.g. feed, oxygen, water and 
therapeutants).

Several LCA studies already had been carried out on aquaculture products, but few of these 
focused on Asian production. Moreover, the common practice was to only calculate LCA impacts 
as point-values. Comparisons could consequently not be statistically supported, resulting in deci-
sions and even legislation deeming products superior to each other without any knowledge about 
the underlying uncertainty. Thus, in order to produce scientifically supported conclusions, the 
following main research question was defined:

Are there significant differences among the environmental impacts resulting from the 
production of Asian aquaculture commodities, and if so, what are the main causes?

As part of answering the main research question, four sub-questions (RQs) were also defined:

RQ1:	 Are there shortcomings in methods, data or coverage in existing aquaculture LCAs? 
(Chapter 2)

RQ2:	 Can variances be determined for unit process data in aquaculture LCAs? (Chapter 3)

RQ3:	 Can these variances be propagated into ranges of results? (Chapter 4)

RQ4:	 How can we determine if the LCA results of two systems fulfilling the same function 
are significantly different? (Chapter 5)

RQ1 is addressed in Chapter 2, where a review of previous aquaculture LCA studies is car-
ried out. This review highlighted that most studies up to 2011 had focused on finfish in western 
countries. Another result showed that methodological choices varied greatly among the studies, 
with different choices for functional units, system boundaries, data, life cycle impact assessment 
methods and co-product allocation methods. Of these, allocation constituted the largest meth-
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odological division, with most discussions focusing on energy based versus economic allocation. 
Moreover, inventory data were generally limited in sourcing and reporting among the different 
studies.

The issue of limited data quality (RQ2) is addressed in Chapter 3, where a protocol for 
horizontal averaging of unit process data is presented. The chapter explores previous estimates 
of quantitative uncertainties related to LCA results, and identifies three major sources that 
contribute to dispersions around LCA results; namely inherent uncertainty, spread (variability 
due to real differences among production practices) and unrepresentativeness (mismatch be-
tween the representativeness and use of data, generally quantified using the pedigree part of the 
Numerical Unit Spread Assessment Pedigree system). Collectively, these are referred to as overall 
dispersions. The protocol is based around a novel decision-tree detailing how to estimate overall 
dispersions for both primary and secondary data. Essential mathematical formulas are presented 
together with an excel template for calculating unit process parameters, allowing LCA practi-
tioners to apply the estimation protocol for themselves.

In Chapter 4, the estimation protocol from RQ2 is applied in practice to produce ranges of 
Life Cycle Inventory (LCI) results (RQ3). A case study of Chinese coal power was chosen as 
it presents a more limited set of unit process parameters than most aquaculture production case 
studies, making the links between unit process data and results more clearer. The outcome of this 
exercise highlighted some intrinsic challenges related to quantifying uncertainties around results. 
The level of horizontal averaging (e.g. geographical, technological, etc.) was initially shown to 
influence parameter estimates. Once ranges of results were propagated using Monte Carlo simu-
lations, shortcomings related to the limited number of distributions available in LCA surfaced. 
The file format of unit process in ecoinvent v2.2 (ecospold v1) only allows for normal, lognormal, 
triangular and uniform distributions. In ecoinvent v2.2, the lognormal distribution is the default. 
However, once propagated, this skewed distribution easily results in physically impossible results 
(e.g. more carbon in emissions than coal burned). The most fundamental outcome of Chapter 
4, however, was revealing the magnitude of the overall dispersions around LCI results, and as 
data sourcing cannot be harmonised in the same way as methodological choices, this complicates 
comparisons across LCA studies.

Once the relative meaning of LCA results was recognised, a statistical approach for identify-
ing significant differences among results was needed (RQ 4). Chapter 5 therefore explored how 
LCA results can be propagated in a comparative context, with a subsequent statistical analysis. 
The findings showed that dependent sampling, yielding relative results, considerably reduced the 
dispersions among alternatives in comparative studies, especially for production chains that share 
many underlying unit processes. Dependently propagated results should, consequently, be ana-
lysed on a Monte Carlo run basis, rather than as absolute ranges. This allows for more powerful 
paired statistical tests to be used, such as the Wilcoxon Signed Rank test.

Based on the set of methodological components needed to reach statistically supported LCA 
conclusions, the hypothesis “different production systems are associated with different environ-
mental impacts” was tested in Chapter 6. Allocation methods were approached as alternative 
ways of reaching results, rather than deeming one method superior another (RQ1). Since few 
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Asian processes were available in the ecoinvent v2.2 database, many had to be modelled using 
the RQ2 protocol. This ensured that overall dispersions were defined for many supporting unit 
processes. As for the aquaculture farms, the averaging of primary data was based upon an evalua-
tion of basic production parameters, such as feed use, energy sources and coproduced species. By 
challenging traditional classifications (such as countries) the spread around parameters could be 
reduced (RQ3). Processes were consequently averaged based upon practices, rather than nation-
ality. Results were later propagated over 1000 Monte Carlo runs using dependent sampling. The 
outcomes were analysed using the Wilcoxon Signed Rank test and the cumulative frequencies 
of one alternative having lower global warming, eutrophication or freshwater ecotoxicity impacts 
than another on a pair-wise basis (RQ4).

In the end, the results showed that Asian tiger shrimp farming in Western Bangladesh resulted 
in significantly lower global warming and eutrophication impacts than any of the other Asian 
tiger shrimp system. These systems had lower feed inputs and feed is the major driver behind the 
three environmental impacts evaluated. Intensity, however, had no clear correlation with envi-
ronmental impacts; neither did the median environmental impacts of Tilapia farming integrated 
with pigs differ from conventional tilapia farming. Tilapia farming on Hainan, however, was 
associated with increased environmental consequences compared to Guangdong, the result of 
different feed conversion ratios. Small and medium sized pangasius farms also had significantly 
larger environmental footprints than large farms, the result of poorer management and farm 
practices in small and medium farms.

Other common environmental hot-spots identified are fishmeal and fish oil in feeds, eutrophy-
ing effluents from farms, the use of benzalkonium chloride and other chlorine releasing com-
pounds as disinfectants, and extensive use of paddle-wheels on shrimp farms. Aquaculture farm-
ers in Asia should improve farm management by using pelleted feeds with low fishmeal content, 
limit their use of therapeutants and recycle more nutrients in agriculture.

Advocates of LCA should in the meantime, reflect upon how results have been viewed to date. 
Results cannot simply be compared across studies, even if they comply with the same methodo-
logical standard (e.g. ISO or ILCD). LCA studies should instead be used to test hypotheses, for 
which dependent sampling can offer higher resolution in comparisons and reduce the risk of type 
II statistical error (false negatives). The influence of the number of Monte Carlo runs and the 
different outcomes of the two statistical approaches used in Chapter 6, in the meantime, in-
duces caution about type I statistical error (false positives). However, the two approaches answer 
different questions, one whether medians are significantly different, and the other whether an 
alternative is environmentally better than the other. From a policy makers point-of-view, cumula-
tive frequencies might be more relevant as knowing whether one production chain is being better 
than another is clearly relevant. However, null-hypotheses assuming production chains differ in 
environmental impacts can only be discarded using significance tests.
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Samenvatting

Het doel van dit proefschrift is om de milieuduurzaamheid te evalueren van gekweekte 
aquatische voedingsproducten, door middel van levenscyclusanalyses (LCA), met de nadruk op 
vanuit Azië naar Europa geïmporteerde producten. LCA is een van de meest gebruikte hulpmid-
delen wanneer men de milieuprestaties van diverse productsystemen (bijvoorbeeld biobrandstof-
fen, levensmiddelen, lampen) wil vergelijken.

De invoer van aquatische voedingsproducten van Azië naar Europa is gestaag toegenomen 
sinds het begin van deze eeuw, als gevolg van zowel een volledig (en over-) geëxploiteerde re-
gionale visstand, als een stijgende vraag naar vis, en tot slot vanwege veranderende consumenten-
voorkeuren. Vier Aziatische landen (Bangladesh, China, Thailand en Vietnam) en vijf gekweekte 
zeediersoorten (Penaeus monodon, Litopenaeus vannamei, Macrobrachium rosenbergii, Tilapia 
spp. en Pangasius hypophthalmus) werden geselecteerd als representatieve afspiegeling van de 
Aziatische aquacultuur. Deze selectie aan landen en vissoorten omvat verschillende productiesys-
temen, variërend van extensieve (passievere productiemethoden) tot extreem intensieve viskwek-
erijen (waarbij de laatstgenoemde een breed scala aan hulpstoffen nodig heeft, zoals diervoeder, 
zuurstof, water en medicatie). 

Er zijn al verscheidene LCA studies uitgevoerd over viskwekerijproducten, maar slechts enkele 
studies hebben zich specifiek gericht op Aziatische productie. Daarnaast werden de LCA resul-
taten van deze onderzoeken doorgaans uitgedrukt als absolute puntschattingen zonder onzeker-
heidsmarges. Dit maakt het onmogelijk om statistisch onderbouwde vergelijkingen tussen studies 
te maken, met als gevolg dat beslissingen en regelgeving in plaats daarvan worden gebaseerd op 
waarden met een potentieel hoge onzekerheid. Om wetenschappelijk onderbouwde conclusies te 
kunnen trekken is derhalve de volgende onderzoeksvraag gedefinieerd:

Zijn er significante verschillen tussen de milieueffecten van de geselecteerde Aziatische 
viskwekerijproducten, en indien ja, wat zijn de belangrijkste oorzaken hiervan?

Vier deelvragen zijn gepostuleerd om deze onderzoeksvraag (RQ) te ondersteunen:

RQ1: Zijn er tekortkomingen in methodische aanpak, de data of de spreiding en geografische 
dekking van bestaande LCA studies over viskwekerijen? (Hoofdstuk 2)

RQ2: Kunnen de varianties van de procesgegevens voor viskwekerij LCAs worden bepaald? 
(Hoofdstuk 3)

RQ3: Kunnen deze varianties worden doorgerekend naar varianties in LCA resultaten? (Hoofd-
stuk 4)

RQ4: Hoe kunnen we vaststellen of de LCA-resultaten van twee systemen met dezelfde functie 
significant van elkaar verschillen? (Hoofdstuk 5)
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RQ1 wordt behandeld in hoofdstuk 2 op basis van een review van bestaande aquacultuur 
LCA-studies. Dit literatuuroverzicht toont aan dat een meerderheid van de studies gepubliceerd 
vóór 2011 zich richtte op vinvis in Westerse landen. Tevens toont dit hoofdstuk aan dat de stud-
ies sterk verschilden in de gemaakte methodische keuzes, onder andere wat betreft de keuze van 
de functionele  
eenheid, de systeemgrenzen, de data, effectbeoordelingsmethoden en co-product allocatiemeth-
oden. Allocatie zaaide de grootste verdeling onder de verschillende studies, waarbij de meeste 
discussie’s zich richtten zich op alloceren op basis van energie of op basis van economische 
waarde. Daarnaast werd er weinig nieuwe data verzameld door de verschillende studies en schoot 
de rapportage van de gebruikte data tekort.

In hoofdstuk 3 wordt de beperkte kwaliteit van beschikbare data besproken en een protocol 
gepresenteerd voor het horizontaal middelen van procesgegevens. In het hoofdstuk worden eerst 
eerdere benaderingen om de kwantitatieve  
onzekerheid van LCA resultaten te schatten besproken. Vervolgens worden drie belangrijkste 
bronnen geïdentificeerd die bijdragen aan de variantie in LCA resultaten: inherente onzekerheid, 
spreiding (variatie als gevolg van verschillen in productiewijzen) en gebrekkige representiviteit 
(discrepantie tussen de representativiteit en de toepassing van de data, gekwantificeerd met be-
hulp van het “pedigree” deel van de “Numerical Unit Spread Assessment Pedigree”). Gezamenlijk 
worden deze drie bronnen aangeduid met algehele spreiding. Het protocol is gebaseerd op een 
nieuw ontwikkelde beslisboom die aangeeft hoe de algehele spreiding geschat kan worden voor 
zowel primaire als secundaire data. De essentiële wiskundige formules worden gepresenteerd 
samen met een Excel-template voor de berekening van procesparameters. Dit maakt het protocol 
ook toegankelijk voor andere uitvoerders van LCA studies.

In hoofdstuk 4 wordt het bovengenoemde protocol toegepast in de praktijk voor het be-
rekenen van Life Cycle Inventory (LCI) resultaten (RQ3). Als case studie zijn Chinese kolen ge-
kozen omdat dit een wat kleiner productsysteem is met een daardoor beperktere set aan proces-
gegevens dan de meeste aquacultuur case studies. Hierdoor is het verband tussen procesgegevens 
en de LCA resultaten duidelijker. Het resultaat van deze oefening benadrukt de intrinsieke 
uitdagingen die samenhangen met de kwantificering van onzekerheden van LCA resultaten. De 
manier van horizontaal middelen (bijvoorbeeld geografisch of technologisch) had aanvankelijk 
invloed op de parameterschattingen. Pas nadat de spreiding in de LCA resultaten waren doorger-
ekend met Monte Carlo simulaties kwamen er een aantal tekortkomingen aan het daglicht die te 
maken hadden met het beperkte aantal beschikbare verdelingen welke gehanteerd worden voor 
LCA procesgegevens. Het bestandsformaat voor een proces in ecoinvent v2.2 (ecospold v1) laat 
alleen de keuze voor een normale, lognormale, driehoekige of uniforme verdeling toe. In ecoin-
vent v2.2 is de lognormale verdeling de standaard. Echter, na doorrekening resulteert een dergeli-
jke scheve verdeling in fysiek onmogelijke resultaten (bijvoorbeeld meer koolstof in emissies dan 
mogelijk met de hoeveelheid verbrande kolen). De belangrijkste bevinding van hoofdstuk 4 ligt 
echter in het verkregen inzicht in de grootte van de algehele spreiding van LCI resultaten. Om-
dat het verzamelen van procesgegevens bovendien niet op dezelfde wijze kan worden geharmo-
nizeerd als methodologische keuzes maakt dit vergelijkingen tussen verschillende LCA studies 
gecompliceerd.
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Met de lessen over de relatieve betekenis van LCA resultaten uit hoofdstuk 3 in het achter-
hoofd, was de volgende stap het opzetten van een statistische methode om significante verschil-
len tussen resultaten te kunnen identificeren (RQ4). In hoofdstuk 5 is daarom onderzocht 
hoe LCA resultaten kunnen worden doorberekend in een vergelijkende context, en hoe daarop 
vervolgens een statistische analyse kan worden toegepast. De bevindingen tonen dat zogenoemde 
‘afhankelijke’ steekproeven de spreiding tussen de alternatieven van een vergelijkende studies 
verminderen, met name voor alternatieven met productieketens die veel achterliggende proces-
sen gemeen hebben. Resultaten op basis van afhankelijke steekproeven moeten vervolgens per 
Monte Carlo trekking vergeleken worden, in plaats van als absolute bereiken. Dit laat krachtigere 
gepaarde statistische testen toe, zoals de Wilcoxon Signed Rank toets.

Gebaseerd op de set van methodische componenten die nodig zijn om tot statistisch relevante 
LCA conclusies te komen, is vervolgens de volgende hypothese in hoofdstuk 6 getoetst: “ver-
schillende productiesystemen kunnen worden geassocieerd met verschillende milieueffecten”. 
Allocatiemethoden werden daarbij behandeld als alternatieve manieren om resultaten te be-
reiken, in de plaats van één methode superieur te stellen aan de andere (RQ1). Omdat er slechts 
weinig typisch Aziatische processen beschikbaar zijn in de ecoinvent v2.2 database, moesten 
veel processen worden gemodelleerd met behulp van het protocol dat voor RQ2 ontwikkeld 
was. Dit zorgde er voor dat het protocol ook op veel achtergrondprocessen uit de ecoinvent v2.2 
database is toegepast. De gemiddelden voor de viskwekerijen zijn gebaseerd op een weging van 
de basis productieparameters, zoals voederverbruik, energiebronnen en coproduceerde vissoorten. 
De spreiding kon worden gereduceerd door traditionele classificaties (zoals landen) in twijfel te 
trekken; de processen werden vervolgens gemiddeld op basis van productiewijzen, in plaats van 
nationaliteit. Resultaten werden daarna gepropageerd over 1000 Monte Carlo runs, met behulp 
van afhankelijke steekproeven. De uitkomsten werden geanalyseerd met de Wilcoxon Signed 
Rank toets en op basis van de cumulatieve frequenties dat het ene alternatief paarsgewijs een 
lagere klimaat, eutrofiëring, of aquatische ecotoxiteit effectscore heeft in vergelijking met het 
andere alternatief (RQ4).

Uiteindelijk toonden de resultaten aan dat de Aziatische tijgergarnaal gekweekt in West 
Bangladesh een significant lagere klimaat- en eutrofiëringseffectscore had dan tijgergarnalen 
uit andere Aziatische kwekerijen. De productiesystemen in west Bangladesh hadden een lager 
voedergebruik, en voedergebruik is de grootste driver achter deze drie milieueffecten. Intensiteit, 
echter, had geen duidelijke correlatie met milieueffecten. De mediane waarden voor deze drie mi-
lieueffecten voor tilapiakwekerijen geïntegreerd met varkens verschilde ook niet significant met 
die van conventionele tilapiakwekerijen. Tilapiakwekerijen op Hainan, echter, hadden wel hogere 
milieuscores dan die in Guangdong, wat veroorzaakt werd door verschillende voederconversie 
waarden (FCRs). Kleine en middelgrote pangasiuskwekerijen bleken significant grotere milieuef-
fecten te hebben dan de grotere kwekerijen, wat veroorzaakt werd door slechter management en 
kwalitatief lage kwekerijpraktijken in de kleine tot middelgrote kwekerijen.

Andere algemeen bekende hotspots die hier ook voren kwamen waren vismeel en visolie in 
voeder, eutrofiëring door effluenten uit de viskwekerijen, het gebruik van benzalkonium chloride 
en andere chloor-houdende stoffen zoals desinfec-tanten, en extensief gebruik van schepraden op 
garnaalkwekerijen. Viskwekers in Azië zouden hun management moeten verbeteren door meer 
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geconcentreerd voeder in pellets te gebruiken met een laag vismeelgehalte, het gebruik van medi-
catie en antibiotica te reduceren en tot slot, het recyclen van nutriënten in de landbouw.

Voorstanders van de LCA methode zouden in de tussentijd eens goed moeten reflecteren op 
hoe men resultaten van LCA studies tot dusver heeft geÏnterpreteerd. Resultaten van verschil-
lende studies kunnen niet simpelweg met elkaar worden vergeleken, zelfs niet als zij voldoen 
aan dezelfde methodologische standaard (bijvoorbeeeld ISO of ILCD). LCA studies zouden in 
plaats daarvan moeten worden gebruikt om hypotheses te toetsen, waarbij afhankelijke steekpro-
even een hogere resolutie in vergelijkingen kunnen opleveren, en het risico voor type II statis-
tische fouten kunnen reduceren. De invloed van het aantal Monte Carlo runs en de verschillende 
resultaten van twee statistische methoden die zijn toegepast in hoofdstuk 6 kan ondertussen 
tot voorzichtigheid met betrekking tot type I statistische fouten. Echter, de twee methoden 
beantwoorden verschillende vragen. De ene methode beantwoordt de vraag of mediane waarden 
significant verschillend zijn, de andere of een alternatief aantoonbaar beter of slechter is dan de 
ander. Vanuit een beleidsmakerspersectief zijn cumulatieve frequenties wellicht relevanter, omdat 
het duidelijke relevantie heeft om te weten of de ene productieketen een betere milieuprestatie 
heeft dan de andere. Echter, nul-hypothesen die aannemen dat productieketens verschillen in 
centrale waarde van de milieueffecten kunnen enkel worden verworpen met significantietoetsen.
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CV Coefficient of variation, the standard deviation divided by the mean
Dispersions Any form of range around a variable, resulting from inherent 

uncertainty, spread or unrepresentativeness
eFCR Economic feed conversion ratio (FCR), total weight of feed in/wet-

weight of fish out
FCR Feed conversion ratio, a measurement of weight gain efficiency with 

several different definitions. Please see eFCR 
Fish Collective term for finfish, molluscs, crustaceans and other aquatic 

animals
Inherent uncertainty Uncertainties related to the inaccuracies of measurements or model 

at no level of horizontal averaging
LULUC Land-use and land-use change (LULUC)
PCR Product Category Rules
Primary data Data collected specifically for the intended study and representing 

relevant suppliers (UNEP 2011)
Secondary data Previously published data describing processes for the intended 

study at different levels of aggregation and representativeness 
(UNEP 2011)

Spread Variability around an average resulting from horizontal averaging
Unit process Smallest element considered in the life cycle inventory analysis for 

which input and output data are quantified
Unrepresentativeness Uncertainty resulting from the level of representativeness

Glossary
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