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ABSTRACT
Purpose Obtaining pharmacologically relevant exposure
levels of antibiotics in the epithelial lining fluid (ELF) is of
critical importance to ensure optimal treatment of lung infec-
tions. Our objectives were to develop a model for the predic-
tion of the ELF-plasma concentration ratio (EPR) of antibi-
otics based on their chemical structure descriptors (CSDs).
Methods EPRdata was obtained by aggregating ELF and plas-
ma concentrations from historical clinical studies investigating
antibiotics and associated agents. An elastic net regularized re-
gression model was used to predict EPRs based on a large num-
ber of CSDs. The model was tuned using leave-one-drug-out
cross validation, and the predictions were further evaluated using
a test dataset.
Results EPR data of 56 unique compounds was included. A
high degree of variability in EPRs both between- and within
drugs was apparent. No trends related to study design or
pharmacokinetic factors could be identified. The model pre-
dicted 80% of the within-drug variability (R2

WDV) and 78.6%
of drugs were within 3-fold difference from the observations.
Key CSDs were related to molecular size and lipophilicity.
When predicting EPRs for a test dataset the R2

WDV was 75%.
Conclusions This model is of relevance to inform dose selec-
tion and optimization during antibiotic drug development of
agents targeting lung infections.

KEY WORDS antibiotics . elastic net . epithelial lining fluid .
lung infection . machine learning . modeling . pharmacokinetics .
pneumonia

ABBREVIATIONS
ELF Epithelial lining fluid
EPR ELF/plasma concentration ratio
LOOCV Leave-one-drug-out cross validation
WDV Within-drug variability

INTRODUCTION

Hospital- or ventilator acquired pneumonia (HAP, VAP) is
associated with a high mortality (1). Therefore, reaching effi-
cacious effect-site concentrations of antibiotics is essential for
successful treatment (2) and to suppress the emergence of re-
sistance (3,4). For the majority of lung infections, the site of
infection is the epithelial lining fluid (ELF). In order to reach
the ELF, antibiotics needs to pass from the lung capillary into
the interstitial space and subsequently move across the alveo-
lar wall epithelium (Fig. 1). The alveolar membrane acts as a
semi-permeable barrier due to the presence of tight junctions
(5) and the presence of drug transporter proteins (6). This
results in ELF concentrations that may be several folds lower
or higher than the corresponding plasma concentration, as
was nicely summarized by Kiem et al. (7) and Rodvold et al.
(8). Therefore, the consideration of ELF concentrations dur-
ing development of antibiotic agents for lung infections is of
considerable importance.

The quantification of antibiotic concentrations in ELF is
challenging. Bronchoalveolar lavage (BAL) is currently the
most frequently used procedure (9) for such measurements.
Limitations of this procedure include the indirect method of
quantifying drug concentrations, the burden for volunteers
due to its invasive nature, and the possibility of obtaining only
single time-point samples among additional methodological
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limitations (10). A more recent and promising technique for
measuring ELF concentrat ions i s bronchoscopic
microsampling (BMS), which allows for repeated measure-
ment of concentrations over time (11). Considerable variabil-
ity has been reported for ELF concentrations not only be-
tween subjects but also within subjects (7,8). Such variation
can be related to the aforementioned methodological issues,
the drug-distribution related pharmacokinetics (PK), and po-
tentially other physiological disease related factors such as
edema and potential effects of inflammation on membrane
permeability.

Although conducting lung PK studies is currently the stan-
dard for evaluating pulmonary exposure of antibiotics, in silico
approaches to predict partitioning of antibiotics into the ELF
space based on chemical structure properties would be of
considerable relevance. Such predictive models could either
inform or replace the design of complex and burdensome
clinical lung PK studies. As such, predictive models can sup-
port clinical dose selection studies.

The prediction of various PK properties including the pre-
diction of partition coefficients into various tissues is an
important and widely explored field. Indeed, previously
developed models allow prediction of such partition
coefficients in various tissues (12,13) based on both drug-
specific physico-chemical properties, and system-specific
properties related to, for instance, tissue composition (14,15).
However, when there is a gap in knowledge of active transport
processes, such as for the alveolar barrier or the blood-brain
barrier, these approaches provide poor predictions. In such
cases, data-driven approaches can be useful, because strong
mechanistic understanding is not required for these ap-
proaches. The relevance of such empirical, data-driven
modeling for predicting partitioning into the blood-brain bar-
rier has already been widely demonstrated (13,16–19).

Data-driven models for drug distribution aim to relate
drug-specific chemical properties derived from their structure
to the PK property of interest, and may be referred to as

quantitative structure-property relationship (QSPR) models.
These chemical descriptors are either properties directly de-
rived from the molecular structure, e.g. number of nitrogen
atoms, or, properties like log P that can be predicted using
well-established equations. Subsequently, statistical modelling
approaches can be applied to construct predictive models that
associate these chemical descriptors to the PK property of
interest.

Predictive QSPR models have often been based on
ordinary least squares based linear regression modeling.
However, such approaches deal poorly with the large
number of highly correlated chemical descriptors. More-
over, in many cases, the predictors outnumber the ob-
servations, which leads to over-fitting and poor general-
izability. One important statistical modeling approach
that addresses this limitation by imposing a penalty on
the size of coefficients is the penalized regularized re-
gression modelling approach implemented by ridge re-
gression and lasso regression, which use the λ1 and λ2
penalties, respectively. Both λ1 and λ2 are shrinkage
methods that aim to prevent over-parametrization due
to correlations of predictors by shrinking regression co-
efficients to zero. While the λ1 penalty encourages re-
gression coefficients becoming zero (i.e. variable selec-
tion), the λ2 penalty encourages highly correlated vari-
ables to have similar regression coefficients (i.e. group-
ing), resulting in small but non-zero coefficients. Anoth-
er regression method is the partial least squares regres-
sion (20). Partial least squares regression and ridge re-
gression behave similarly, except that ridge regression
can be considered slightly more flexible, and therefore
more powerful (20). More recently, elastic net regression
has been proposed as a linear combination of the λ1
and λ2 penalties, as such combining lasso and ridge
regression, Here, the total amount of shrinkage is deter-
mined by both, λ1 and λ2. Their values can be tuned
using various methods such the bootstrap or cross vali-
dation methods. Often, the lasso regression penalty λ1 is
parameterized by s which is the fraction of the L1-norm
of the penalized coefficient vector over the unpenalized
coefficient vector, bounded between 0 and 1. A higher
value of s reflects a lower λ1 penalty, since the sum of
the absolute coef f ic ient values i s c loser to i t s
unpenalized maximum. Setting λ2 to 0 performs lasso
regression whereas setting s to 1 performs ridge
regression.

The objective of this paper is to develop a QSPRmodel for
structure-based prediction of elastic net EPRs of anti-infective
agents and associated agents (e.g. β-lactamase inhibitors)
based on literature reported values for lung and plasma drug
concentrations. The developed model can be used to provide
quantitative understanding of effective site concentrations for
antibiotic drug development targeting lung infections.

Fig. 1 Schematic overview of lung tissue depicting different physiological
barriers that antibiotics need to cross in order to reach the epithelial lining fluid.
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MATERIALS AND METHODS

This analysis was performed as follows: i) original publications
reporting ELF concentrations were collected and relevant da-
ta was extracted; ii) an exploratory analysis of the EPRs was
performed evaluating the effect of various factors not related
to chemical descriptors; iii) an elastic net model was trained
based on the chemical descriptors of identified antibiotics and
associated drugs; iv) the optimal model was evaluated using a
test dataset not used for model development.

Data Collection, Extraction and Curation Procedure

The model training dataset was based on two previously re-
ported systematic reviews of clinical studies quantifying con-
centrations of anti-infective agents (antibiotics, antifungals and
associated agents such as β-lactamase inhibitors) in plasma
and ELF (7,8). The original publications included in these
two systematic reviews were considered to represent a com-
plete overview of available literature on ELF lung concentra-
tions reported for anti-infective agents up to 2011. Potentially
the training dataset could have been extended slightly further
by searching for studies of drugs that were not used for the
treatment of lung infections. However, we had some concerns
about including compounds that are structurally completely
different as this could introduce bias to the predictions of
EPRs of anti-infective agents; the primary application area
of the model. Therefore no other unrelated agents were in-
cluded in the model training dataset.

The external model evaluation dataset was based on: i) the
results of a lung PK study for imipenem and MK-7655 that
included contributions from some of the co-authors contrib-
uted (21) and ii) additional lung PK studies of anti-infective
agents identified in the literature for the period between 2011
and 2014 and which were not already included in the training
dataset. The following PubMed search query was used to
identify additional relevant studies: (ELF or Bepithelial lining
fluid^) and antibiotic and (B2011/10/08^[PDat] : B2015/01/
01^[PDat]) NOT (murine or mice) NOTReview[ptyp] NOT
Bin vitro^.

The extraction of data from the original publications (7,8)
proceeded as follows. First, all individual publications from
literature were systematically retrieved. Subsequently, we col-
lected the following data for each paper: i) individual or mean
paired concentrations or AUC values for plasma and ELF; ii)
the method of measurement of lung concentrations (e.g. BAL
or BMS); iii) details of the study design (dose, time of measure-
ment, route of administration); iv) measurement of either total
or unbound drug concentration; v) disease state of the subject
(healthy volunteer, patient with lung-disease, patient without
lung-disease); vi) the number of subjects on which the ELF/
plasma observations were based. In all cases, individual obser-
vations were used if available.

The plasma and ELF concentration data included concen-
trations that were below the lower limit of quantification
(LLOQ). Different scenarios were identified for either the
plasma or the ELF observations, or both, being below LLOQ.
First, if both the plasma and ELF concentrations were below
LLOQ, then the observations were omitted from the analysis.
Second, if only either the plasma or the ELF concentration
was below the LLOQ, then LLOQ/4 was imputed for the
missing concentration, because LLOQ/4 was chosen as con-
servative estimate of the concentration which was expected to
be closer to zero than to LLOQ. Third, if only either the
plasma or the ELF concentration was below the LLOQ and
the LLOQ was unknown for that study, then an LLOQ of
0.1 mg/L was assumed and LLOQ/4 was imputed for the
missing concentration. The value of 0.1 mg/L was considered
as a realistically low value based on the observed distribution
of concentrations. We evaluated the impact of this imputation
strategy by training models based on the data without LLOQ
and with LLOQ imputation and using both models for pre-
diction within the same dataset, which featured only above-
LLOQdata. The impact of LLOQ imputation was quantified
in terms of RMSE. If the RMSE would be significantly higher
for the model with LLOQ imputation than for the model with
LLOQ exclusion, it would be an indication that LLOQ im-
putation biases the above-LLOQ predictions.

Plasma concentrations that were reported as total concen-
trations were converted to the unbound concentration bymul-
tiplication with their fraction unbound, which was obtained
for the majority of drugs from the DrugBank database (22).
For the ELF concentrations we assumed that protein binding
plays a negligible role since protein concentrations in the ELF
are much lower than in plasma (23). an assumption also made
by other investigators (7).

After this curation procedure we calculated the EPRs,
which were subsequently transformed using the natural loga-
rithm in order to obtain a more symmetric distribution of the
ratios suitable for regression analysis.

Generation of Chemical Descriptors

For each of the identified drugs in the training and test
datasets we computed a unique set of chemical descriptors
using the R package rcdk (24,25) that provides an interface
to the widely used chemistry development kit (CDK) software
platform (26). Molecular structures were described using
SMILES, as obtained from the PubChem database. Based
on the SMILESmolecular structure of each drug, all available
chemical descriptors within the CDK platform were generat-
ed. Subsequently descriptors that had equal values, a correla-
tion of 1, or had only 2 unique values were removed from the
descriptor dataset. Descriptors with only 2 unique values were
removed to support the leave-one-drug out cross validation.
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Exploratory Analysis of Lung Concentrations

Visualizations were generated to assess the change in EPRs in
relation to disease state (healthy, patient with lung disease,
patient without lung disease), steady state PK, and in relation
with the time after dose.

Development and Evaluation of Elastic Net Model

R (version 3.1.2) was used to perform all data manipulations
and visualization. The R package elasticnet (27) together with
the machine learning wrapper package caret were used to fit
the elastic net models (28).

The dataset included both individual measurements and
mean values. If individual values were reported we included
these in the dataset. If however only mean values were report-
ed, i.e. based on data obtained from several patients at one
time point, we included these values instead. To account for
the difference between either single individual observations or
single mean observations, weighting based on the number of
observations available was implemented.

The optimal tuning parameters of the elastic net model (s
and λ) were determined using an adapted version of the leave-
one-out cross validation (LOOCV). In this adapted version of
LOOCV, all data for one drug are iteratively removed from
the dataset and subsequently an elastic net model is fit on the
remaining data and subsequently the ELF/plasma ratio was
predicted for the left-out drug. This process was repeated for
all combinations of λ2={0, 1e-04, 1e-03, 5e-03, 1e-02, 5e-02,
1e-01, 2.5e-01, 5e-01} and s={1e-04, 1e-03, 1e-02, 0.0001,
0.001, 0.01, 0.05, 0.10, 0.15, (..), 1.00}. The RMSE of the
individually observed versus typical predicted ELF/plasma ra-
tios obtained after cross-validation for each set of tuning pa-
rameters was computed. The set of tuning parameters with
the lowest RMSE was selected to fit the full dataset using the
elastic net model.

Since the elastic net model only considered chemical de-
scriptors, within-drug variability (WDV) related to other fac-
tors cannot be predicted. Thus, a theoretical upper limit (low-
er than 1) for the R2, i.e. the R2

lim can be defined as follows:

R2
lim ¼ cor Cobs;mean;a;Cobs;i;a

� �2

where Cobs,i,a is the ith observation of the ath drug and Cobs,mean,a
is the mean observation for ath drug. Subsequently the WDV
corrected R2 (R2

WDV) was defined as follows:

R2
WDV ¼ cor mean Cobs;i;a

� �
;Cpred;a

� �2

R2
lim

where Cpred,a is the prediction of the ath drug. Here, R2
WDV

thus represents the proportion of between-drug variability
that can be predicted.

Using the trained elastic net model we predicted the EPRs
for the test dataset and computed the RMSE and R2 values of
the obtained predictions. The relative importance of the de-
scriptors was calculated by sequentially fitting a linear model
to the observed EPR data, for each of the predictors. From
these models, the statistical significances of the slopes being
different from zero were calculated for each of the predictors,
and scaled between 0 and 100 so that the maximum value of
100 signifies the strongest statistical significance between the
descriptor and EPR.

Finally, to assess the appropriateness of the rcdk descrip-
tors, we repeated this modeling procedure for another set of
descriptors computed by the open source software PaDEL-
descriptor (29). Descriptors that had equal values, a correla-
tion of 1, or had only 2 unique values were removed from the
descriptor dataset. Descriptors with only 2 unique values were
removed to support the leave-one-drug out cross validation.
Additionally, any descriptors that were included in the final list
of rcdk descriptors were removed from the PaDEL set of de-
scriptors, so that the PaDEL descriptor set would be maximal-
ly different from the rcdk descriptor set.

RESULTS

Data Collection, Extraction and Curation

Briefly, for EPRs, the dataset included 56 unique antibi-
otics or related drugs (e.g. β-lactamase inhibitors) with 672
actual observations (639 excluding LLOQ observations).
These observations were associated with 1981 underlying
paired observations, i.e. when considering mean values
based on several individual observations. A total of 97
different studies were included. A more detailed overview
of dataset composition and original references is provided
in Table S1 and a table of the raw log-transformed EPR
values is provided as Table S2. For the test dataset which
was used for model evaluation we identified 5 drugs not
included in the training dataset including imipenem (21).
MK-7655, a beta-lactamase inhibitor (21). arbekacin (30).
GSK2251052 (31) and tedizolid (32).

Of all concentrations in the training dataset, 4 and 13.5%
of respectively plasma and ELF concentrations were either not
measured or were LLOQ values. For missing ELF concentra-
tions, 34% of the data also had missing plasma concentrations
and were therefore not included in the analysis. There were
no instances of plasma concentrations and ELF concentra-
tions at the same time being above LLOQ. For the test dataset
there were no missing or LLOQ observations.

For all drugs, chemical descriptors were derived. A total of
145 descriptors were used. An overview of the correlation
structure of the different descriptors is provided in Fig. 2. This
figure illustrates the challenge of dealing with multiple highly
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correlated descriptors. An overview of the chemical structures
of the 56 antibiotics for which these descriptors were derived is
provided in Figure S1. For the set of PaDEL descriptors, 919
descriptors were used, none of which were included in the
aforementioned 145 rcdk descriptors.

Exploratory Analysis

First we evaluated the distribution of observed EPRs in the
training dataset as depicted in Fig. 3, stratifying by antibiotic
class. From this figure the large within and between antibiotic
variability in EPR ratios becomes clear. Some grouping ac-
cording to class (in color) was observed.

The effect of disease state on EPRs was explored for a
subset of antibiotics (n=11) where ratios in more than one
disease states was available (Fig. 4, top). Although differences
between disease states for different antibiotics are apparent,
no clear consistent trend was found.

Regarding pharmacokinetic factors affecting EPR, we re-
corded the steady state situation. Here, we distinguished be-
tween studies involving a single administration (i.e. not
reaching steady state), or, if repeated dosing or a prolonged
infusion was used (i.e. steady state can be assumed). In this case
the EPRs are expected to have reached a state of equilibration
and hence closer to their true partition coefficient. Again for
11 antibiotics we identified studies where both steady state and
non-steady state studies were available. Although for a few
cases, as may be expected, an increased EPR was found for

steady state (rifampicin, clarithromycin), this trend was not
consistent across the different antibiotics. (Fig. 4, bottom).

Finally we explored the effect of time of measurement after
dosing while stratifying across steady state or non-steady state
conditions, if available (Figure S2). Also here, theoretically,
trends were expected of increasing ratio’s over time, but were
not clearly observed.

Model Development

First the optimal set of tuning parameters for the elastic net
model was identified based on the lowest RMSE value iden-
tified after leave-one-drug-out cross validation (LOOCV)
(Fig. 5). The optimal LOOCV metrics were RMSE 1.36
and R2

WDV was 0.54 (Table II). The numbers are more prone
to fluctuation in the test dataset because of the small number
of compounds in that dataset (n=5). Nevertheless, the R2

WDV

was 75% for the test dataset. The final model (available as
supplementary Rdata file) with the tuned parameters resulted
in a R2

WDV of 0.80, e.g. explained 80% of the predictable
variability, and the RMSE was 1.08 (Table II). The observed
and predicted EPRs are depicted in Fig. 6. Here, the vertical
grey lines indicate the observed range of EPRs. Figure 7 out-
lines the model residuals (difference in observed versus predict-
ed) as a function of the predicted EPR. No bias can be seen in
the residuals for very low or very high EPR values. The per-
centage of drugs within a 2- and 3-fold difference from the
observations was 57.1 and 78.6%, respectively (Table II).

The variable importance plot (Fig. 8) shows the rela-
tive importance of different chemical descriptors for the
prediction of the EPR, for the 20 most important de-
scriptors. The meaning of these descriptors is described
in Table I. Most important were descriptors related to
molecular size (MDEC) (33). which concerns molecular
distances between carbons. Other important descriptors
were related to lipophilicity (XlogP, MlogP), or carbon
connectivity in molecules (khs and C3SP3).

Although ionizability is a potential relevant descriptor from
a mechanistic point of view it was not included in our model
because i) it was not included in the CDK package thereby
complicating the application by our model by others and ii) its
inclusion was not expected to substantially improve model
performance due to the inclusion of already a large number
of descriptors.

We imputed concentrations of 0.1 mg/L for ELF and plas-
ma observations that were below LLOQ. The purpose was to
avoid biasing the model towards only higher concentration
range, which could impair the ability to predict low EPR
values well. However, a downside of this approach is that
the choice of imputation value can bias the above LLOQ
predictions. To investigate the extent of this bias, we com-
pared the predictions with two models: one model was fitted
to a dataset with below-LLOQ-imputed observations, a

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2 Correlation structure of descriptors included in the analysis.
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second model was fitted to dataset with below-LLOQ-
excluded observations. Both of these models were used to
predict EPR values in a dataset with only above-LLOQ data.
The model fitted with imputed values had an RMSE of 0.97
while the model with only above LLOQ data had an RMSE
of 1.01, indicating that the imputation of 0.1 mg/L for below
LLOQ values does not bias the predictions for the rest of the
data to any relevant extent.

Finally, as an additional sanity check, we fitted an elastic
net model with the optimal tuning parameters to an alterna-
tive dataset in which mean EPR values were substituted for
the individual EPR values, with mean values still weighted by
the number of observations. The results from this model were
identical to the final model, and thus our choice of retaining
individual EPR values, when available, does not seem to affect
the modeling results.
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Fig. 3 Box-Whisker plots of observed epithelial lining fluid (ELF)/plasma concentration ratios in the training dataset for different antibiotics and the number of
underlying individual observations available for each antibiotic. The fill colors indicate different antibiotic classes.
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Model Validation

The final elastic net model was used to generate predictions
for 5 antibiotics not included in the training dataset (Fig. 6).
These predictions had an R2

WDV of 0.75 and RMSE of 0.70
(Table II), which indicates quite reasonable predictive perfor-
mance, and which is consistent with the R2

WDV obtained from
the LOOCV. The separately trained model with PaDEL-
derived set of descriptors had a slightly higher R2

WDV for
the full dataset, when compared to the R2

WDV of the rcdk-
derived descriptor set (Table II). However, the R2

WDV obtain-
ed from the LOOCV was identical between the models
trained on the two sets of descriptors (Table II), highlighting
that the two descriptor sets are equally good in predicting the
EPR of a new compound not included in the training data.
The percentage of drugs within a 2- and 3-fold difference

from the observations was 40 and 80%, respectively. Of note,
no significance should be attributed to the 2-fold and 3-fold
change for train and test datasets because the test dataset only
contains 5 compounds making these values sensitive to ran-
dom variation.

DISCUSSION

We provide the first in silico prediction model for EPRs based
on chemical descriptors from a relatively large dataset of an-
tibiotics with potentially a variety of mechanisms (e.g. passive
diffusion and active transport). The predictions obtained for
both training and test datasets indicate that a considerable
amount of between-antibiotic EPR variability could be ex-
plained by the use of this chemical descriptor-based model.

rifampicin pyrazinamide isoniazid ethionamide linezolid telithromycin clarithromycin azythromycin levofloxacin ciprofloxacin meropenem

rifampicin zanamivir telithromycin clarithromycin azythromycin sparfloxacin moxifloxacin levofloxacin ciprofloxacin meropenem ertapenem
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Fig. 4 The effect of disease state (healthy volunteers, patients without lung condition, patients with lung condition) on the epithelial lining fluid (ELF)/plasma ratio
of antibiotics (top). The effect of non-steady state versus steady state pharmacokinetic conditions on antibiotic ELF/plasma ratios (bottom). Shown for subset of
antibiotics for which study data for patients in different health or different steady state conditions were available.
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Previous reviews on ELF concentrations (7,8) were focused
on a more qualitative evaluation, outlining EPR trends be-
tween different antibiotic classes. Indeed, such class-based
comparisons are relevant based on the visualizations in this
article. However, in order to make an impact in antibiotic
drug development, there is a significant need for more quan-
titative models that can predict tissue site concentrations more
accurately and in such a way to further support and inform the
development of novel antibiotics.

Given the retrospective nature of the dataset analyzed,
there exist a multitude of factors that may potentially influence

observed EPRs. Firstly, no clear effects of within-antibiotic
variability related to factors such as disease state or phar-
macokinetic properties could be identified, i.e. no clear
and consistent trends were observed. While we certainly
expect that such factors may influence within-antibiotic
variability, their contribution was limited based on the
observed data. Other factors that differ both between-
and within different antibiotics are: i) errors in the applied
scaling to unbound plasma concentrations of part of the
data, ii) differences in alveolar and bronchial ELF concen-
trations, iii) various study design related factors such as the
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wide variation in time of measurement and dosing strate-
gy, and finally iv) inherent differences between BAL and
BMS assays. Nonetheless, for the various antibiotics mul-
tiple studies were pooled, allowing for potentially more
unbiased estimates of typical lung exposures while fitting
the elastic net models.

The ten most important descriptors were molecular size, as
described bymolecular distance edge descriptors between car-
bon primary, secondary, tertiary and quaternary carbons
(MDEC24, MDEC12, MDEC34), carbon binding connectiv-
ity (khs.ssssC, C3SP3), sulfur atom binding (khs.ssS), lipophi-
licity descriptors (MLogP, XLogP), and number of carboxylic
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acid groups (nAcid). The descriptors like molecular size, lipo-
philicity and acidity are expected to be related to the passive
diffusion process. However, a large number of other descrip-
tors were also seen to have a relevant (>20%) relative impor-
tance (Fig. 8). Potentially such descriptors may have also
helped in explaining the active transport process.

We imputed LLOQ values at a value of 0.1 mg/L, mainly
for ELF concentrations, as this was the commonly observed
threshold across ELF studies. We aimed to include these
LLOQ values in order to prevent bias towards predicting
higher EPRs, for drugs that actually resulted in low EPR
values below the LLOQ. However, a further decrease in im-
putation led to further decreases in R2 for the above LLOQ
values, e.g. a bias towards predicting the higher

concentrations. As such the choice of 0.1 appeared to result
in the best balance between bias towards either lower- or
higher EPR values.

Given that current mechanistic understanding of alveolar
membrane transport is limited, we aimed at developing a
statistical model for structure-based prediction of EPRs with
good predictive properties, but at its core still remains empir-
ical. Nonetheless, the identified predictors provide insights
into the relative importance of various physico-chemical prop-
erties on a global level. The use of a regularized regression
modelling approach allowed the evaluation of a large set of
chemical descriptors while appropriately managing the risks of
model over-fitting that is a major concern in such modelling
exercises. However, interpreting the model may be challeng-
ing because of the large number of regression coefficients,
which may be considered a limitation of this model.

From Fig. 6 few of the antibiotics exhibit substantial devi-
ations from the mean observed EPRs. Nonetheless, similarly,
experimental BAL studies are associated with considerable
uncertainties as shown in our analysis. Therefore, this may
provide some justification for the use of our in silico model,
or may be an inherent variability arising in the data from these
BAL studies, rather than solely attributable to model
misspecification. Moreover, when performing dose selection
studies, only very large deviations from plasma concentrations
are of relevance, i.e. minor deviations will not negatively im-
pact the design of these studies or the selection of optimal dose
levels.

For development of the QSPR model we have chosen to
include a major part of the collected compounds for model
development and only a limited set of compounds for an ex-
ternal evaluation, where we observed reasonable predictive

Table I Overview of Descriptors Used in Analysis as Part of the CDK
Package, with depicted descriptors correspond to the 20 most important
descriptors

Descriptor Description

C*SP* Carbon connectivity hybridization

khs.* Kier Hall Smarts patterns

MDEC.NM Molecular distance edge between N to M primary/secondary/
tertiary/quaternary carbons

MLogP MLogP

nAcid Number of carboxylic acid groups

nC Amino acid count descriptor

nG Amino acid count descriptor

tpsaEfficiency Fractional PSA (TPSA / molecular weight)

VCH.* Chi chain Valence chain order

XLogP XLogP

Table II Root Mean Squared Error (RMSE) and R2 Values of the Final Elastic Net Model Using rcdk Descriptor (s=0.2, λ=0.05) for Prediction of log(ELF/
plasma) Concentration Ratios, Depicted for the Full Training Dataset, the Leave-one-antibiotic-out Cross Validation (LOOCV), for the Test Dataset, and also using
an alternate set of descriptors obtained from PaDeL (s = 0.2, λ = 0.05)

Final elastic net model Comparison model with alternative descriptors External evaluation

Dataset Train dataset Train dataset Test dataset

Descriptors Rcdk PaDeL Rcdk

R2 Full data LOOCV Full data LOOCV

Theoretical upper limit 0.83 0.83 0.83 0.83 0.94

Uncorrected 0.66 0.45 0.75 0.45 0.71

Within-drug variability corrected a 0.80 0.54 0.91 0.54 0.75

RMSE

Theoretical lower limit 0.76 0.76 0.76 0.76 0.31

Uncorrected 1.08 1.36 0.92 1.36 0.70

Drugs within fold-change of predictions from observation

Drugs within 2-fold change 57.1% 35.7% 75.0% 35.7% 40%

Drugs within 3-fold change 78.6% 60.7% 91.0% 60.7% 80%

a Computed as R2 Corrected = R2 uncorrected/R
2
theoretical upper limit
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performance. How well will this model perform when used to
predict the EPR for a new antibiotic? Based on the model
evaluation performed we expect reasonable performance for
compounds with some similarity in the structural scaffolds of
various drug classes included in the model development.
However, for compounds with radically different structural
features, our model may not yield informative predictions.
However even in the case of such compounds our model can
be beneficial and confirmatory in vitro or in vivo experiments
may be warranted.

How can this model now be used in the drug development
process of anti-infective agents for lung infections? Practically,
our model can be applied in a straightforward fashion for
prediction of EPRs of new anti-infective agents. First, the de-
scriptor values can be computed using the Rcdk R package,
and subsequently the predictions can be generated using our
final model included as Rdata file as Electronic supplementary
material to this paper. An example script is also included as
Electronic supplementary material to demonstrate the appli-
cation of the QSPR model.

Conceptually, the model developed in this study could be
of considerable relevance to inform and optimize the design of
lung PK studies (34). since such studies are methodologically
complex and burdensome with respect to the obtaining
samples. Secondly, in combination with a straightforward
population PK model (35) accounting for plasma PK and its
inter-individual variability, clinical study designs can be
simulated in order to identify optimal probability of
target attainment based on the ELF concentration rath-
er than the plasma concentration. Finally, again in com-
bination with a population PK model, our model may
be of relevance for screening or generating confirmatory
evidence for antibiotics currently already used to treat
lung infections off label, but for which no formal lung
PK studies have been conducted.
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