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Chapter 1

Introduction

1.1 The Standard Model of particle physics

One of the greatest achievements of theoretical physics in the XX century is the
establishment of the Standard Model (SM) of elementary particles and interac-
tions. This theory describes successfully the Universe at the smallest known scales
(probed at high-energy accelerators like the Large Hadron Collider at CERN), and
at the largest, cosmological scales. Historically, the electromagnetic forces (like
those which bind nuclei and electrons into atoms), the weak forces (responsible
for the nuclear beta-decay) and the strong forces (which form nuclei from nu-
cleons) were thought to be disconnected in their origin. However, the attempts
to build a consistent theory of weak interactions gave unphysical predictions for
the scattering processes (like eν → eν) at large energies. In order to change the
situation, it was suggested that weak and electromagnetic interactions are unified
at large energies [1, 2, 3], in a framework of SUL(2)× UY (1) gauge theory. This
unification predicted the existence of new particles, and in further attempts to
build a complete and self-consistent theory, people were forced to introduce even
more new particles. Since the 1960s, when the simplest version of the unified the-
ory was first proposed, we have found many of these particles. Together with the
recent discovery of the Higgs boson, all the predicted particles have been finally
observed, and their properties match the theoretical predictions. Meanwhile, it
turned out that the strong interactions are mediated by gauge forces as well [4, 5]
with group SUC(3), which allowed to include the strong interactions in the frame-
work of a single SUL(2)× UY (1)× SUC(3) gauge theory. This theory is actually
what we call the Standard Model.

It is worth noting here that the SM has a peculiar structure. First, there is
the intrinsic violation of parity under spatial reflections (P -violation). In par-
ticular, neutrinos can be only left-handed, and although the other fermions have
both left and right components, these left and right components act differently
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1.2 Beyond the Standard Model (BSM) phenomena

in electroweak interactions (for example, right components do not take part in
SUL(2) interaction). Second, the fermions are organized in three copies (gener-
ations), which have identical properties, except for the mass. Among the other
peculiarities are the very small magnitude of CP -violation and the wide range of
the masses of fermions (they span many orders of magnitude).

1.2 Beyond the Standard Model (BSM) phenom-
ena

Despite the great success of the SM, which has been confirmed in numerous ac-
celerator experiments, in the process of testing this model a number of observ-
able phenomena in particle physics, astrophysics, and cosmology were found that
remain unexplained. These problems, which usually are referred to as the Be-
yond the Standard Model (BSM) problems, indicate that the SM is not the final
theory. It is worth noting that the BSM problems were found initially in the
non-accelerator observations, as we will see below.

1.2.1 Neutrino masses and oscillations
The first BSM problem that we will consider is the existence of neutrino os-
cillations. In the Standard Model, there are three types (flavours) of neutrinos:
electronic (νe), muonic (νµ), and tauonic (ντ ). Neutrino oscillations are the
transitions of one neutrino flavour into another, which take place even
in empty space (in vacuum).

The existence of these transitions indicates that the numbers of particles of a
given flavour (lepton numbers) are not conserved individually. The indication
for neutrino oscillations was first found in studies of fluxes of solar neutrinos [6],
which were different from the theoretical expectations based on the so-called Stan-
dard Solar Model. The experimental evidence in favour of oscillations has grown:
oscillations were confirmed for neutrinos that come from interactions of high-
energy particles with the Earth atmosphere [7], reactor neutrinos [8, 9, 10] and
accelerator neutrinos [11, 12, 13] oscillate as well. The results of all the well-
established experiments in the domain of oscillations fit into the three-flavour
mixing scheme [14], for a review, see [15]. In this scheme, neutrinos have mass,
but a state with definite flavour does not have a definite mass. In other words,
the basis of quantum-mechanical mass eigenstates does not coincide with the ba-
sis of flavour eigenstates, but these two bases are related by a non-trivial linear
transformation described by unitary matrix, which is called the Pontecorvo-Maki-
Nakagawa-Sakata matrix [16, 17, 18].

It is interesting to note that neutrino oscillations can be included in the Stan-
dard Model. Indeed, oscillations can be described by including the Majorana mass
terms mαβνcανβ in the Lagrangian. However these terms do not obey SUL(2)
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gauge invariance of the theory, since the neutrino field να (α = e, µ, τ) is a com-
ponent of the SUL(2) lepton doublet L (Le = (νe, e)T ), which mixes with the
other component under the gauge transformation. In order to write a gauge-
invariant Lagrangian, which describes neutrino masses, one has to introduce the
Higgs doublet field H,

∆L =
∑
α,β

Fαβ
Λ

(LαH̃)(H†Lcβ), (1.1)

As a result, we get a higher-order operator, the so-called Weinberg operator [19].
Here Lc = iγ2(L†α)T is the charge-conjugated leptonic field, H̃ = iσ2(H†)T . Then,
after the spontaneous breaking of electroweak symmetry, neutrinos receive masses
of order Fv2/Λ, where v ∼ 200 GeV is the vacuum expectation value of the Higgs
field, and F is a typical value of the matrix elements Fαβ . By a rescaling of
variables F and Λ, one can make F ∼ 1 without loss of generality. Noting
that the cosmological and terrestial observations imply an upper bound on the
neutrino masses of order of eV [20, 21], we conclude that Λ & 1014 GeV. Although
the Standard Model can accomodate the neutrino oscillations by introducing the
Weinberg operator, this higher-order correction implies existence of new physics
(which is not captured by the Standard Model) at the energy E which cannot be
higher than Λ.1 At the same time, although the energy scale of 1014 GeV is huge,
it is still much smaller than the Planck massMPl ∼ 1019 GeV, which is thought to
be the scale where on the one hand, gravity can be no longer described classically,
and on the other hand, the actual quantum description is not known. Therefore,
the new physics indicated by presence of the Weinberg operator is expected to be
in the regime where gravity is not quantized.

1.2.2 Dark matter

The evidence of the second phenomenon beyond the Standard Model was found
outside the Earth, and is related to the existence of the so-called Dark Matter
(DM). Dark matter manifests itself via different independent types of observa-
tions, at very different lengthscales, starting from changing the motion of stars [22]
and galaxies, and up to the cosmological scales, affecting formation of large-scale
structures and dynamics of the Universe as a whole [23].

1Otherwise, at higher energies, the unitarity of the scattering matrix is lost, so that some
scattering processes can have probability larger than 1, which makes theory inconsistent.
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There are three independent traces of gravitational potential in astrophysical
systems (velocity curves of stars and galaxies, X-ray emission of intergalactic
gas and gravitational lensing [24]) that all show that gravity in these objects
deviates significantly from what is predicted for the observed distribu-
tions of ordinary matter by Newton’s (or, equally Einstein’s) theory
of gravity. Independently, the observed properties of CMB suggest that with-
out an additional component that does not interact with light, ordinary matter
would not have enough time to develop all the structure observed in the Universe
at the present day [25, 26, 27]. This body of independent evidence suggests that
some additional matter, called Dark Matter really exists.

In all these cases, however, the only way DM manifests itself is through gravita-
tional interactions with ordinary matter. The origin of this effect can be either
in the existence of massive particles that are not involved in the SM gauge in-
teractions (then indeed we deal with “matter”), or in modifications of the laws of
gravity. The attempts to modify the gravitational laws at large scales encounter
many problems, both from theoretical and experimental sides. The scenario where
the DM is composed of particles is simple, natural and universal (for a review,
see [28, 29]).

But if the Dark Matter is made of new particles, which particles are they?
Can we find them?

Although the Dark Matter constitutes the majority of the matter in the Uni-
verse, there is no suitable candidate in the Standard Model that can play a role
of the DM particle. At first sight, neutrinos seem to look promising but actually
they cannot constitute more than few percent of Dark Matter. Indeed, assuming
that all existing particles and interactions are described by the SM, we can unam-
biguously calculate the number density of relic neutrinos at the present epoch. If
the mass of these particles is too large, the contribution to energy density would
be too large as well. This gives an upper bound on the mass of the “DM neu-
trino”. On the other hand, the astrophysical observations of dwarf galaxies, which
are DM-dominated compact objects, show that if the Dark Matter particle is a
fermion, then its mass should exceed several hundred eV (otherwise, the number
phase space density of the particles would have to exceed that of a degenerate
Fermi gas and violate the Pauli principle to explain the observed mass distribu-
tions in these objects) [30, 31]. This gives a lower bound. Therefore, cosmological
and astrophysical requirements for the properties of SM neutrinos to serve as the
DM particle contradict to each other.

Moreover, we know now from particle physics experiments that the masses
of SM neutrinos can not exceed a few eV. For such small particle masses, the
structure formation would proceed in a qualitatively different way, with large ob-
jects forming earlier than the small ones, which contradicts observations [27, 32].
The data on the abundances of primordial elements and on the properties of the
Cosmic Microwave Background also confirm independently that the contribution

12



Introduction

of neutrinos to the present-day energy density is very small [20, 33]. Thus we can
robustly conclude that the SM by itself does not explain Dark Matter and some
new physics is required.

1.2.3 Matter-antimatter asymmetry of the Universe

The third BSM problem that we want to mention is related to the observation
that we live in a world filled almost exclusively by matter, with no
significant traces of primordial antimatter.

Let us go back in time, to when the Universe was hot. At high enough temper-
atures, particles that constitute the matter were relativistic, and were produced
in particle-antiparticle pairs. Therefore, the individual densities of baryons nB
and anti-baryons n̄B were not conserved, only their asymmetry was conserved,
nB − n̄B . The densities of relativistic particles are comparable to each other,
therefore nB ∼ nγ (density of photons).

All pairs later annihilate to the photons and therefore the asymmetry at later
times is characterised by the so-called baryon-to-photon ratio. This quantity
affects a number of observables and therefore its present-day value is known rel-
atively well [34]:

ηB =
nB − n̄B

nγ
= (6.047± 0.074)× 10−10, (1.2)

The quantity ηB does not change with time, up to the temperatures of about
100 GeV. This property is called the Baryon Asymmetry of the Universe (BAU).

Although ηB is small, it requires an explanation, since if the theory possesses
exact symmetry between particles and anti-particles, ηB would never change dur-
ing the evolution. In such a theory, the only way to have non-zero ηB would be
to postulate it as an initial condition. Indeed, our description of the Universe
based on the hot Big-Bang cosmology cannot be extended arbitrary far into the
past, not only because for high enough temperatures we do not have observational
data, but also because we cannot trust the Standard Model anymore (indeed, for
energies which are close to the Planck scale, we do not know what is the correct
physical description of the Universe). Therefore, maybe the value of the baryon
asymmetry is given by initial conditions?

However, if the flatness of the Universe, the initial spectrum of density pertur-
bations (required for development of the observed large-scale structure) and other
observed properties of the Universe are explained by an epoch of rapid accelerated
expansion (the model of cosmological inflation [35, 36, 37], that is well motivated
by the data and has no compelling alternatives at present [38]) – this scenario
becomes very unlikely. Indeed, in the inflationary picture all the densities of all
charges, including the baryon asymmetry, would be diluted by a very huge factor
like e−60, and at the beginning of the post-inflationary stage, all the initial condi-
tions would be “forgotten” [39]. All subsequent dynamics should be governed by
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the SM, or we should assume the existence of some new particle physics. Regard-
less, we need a particle physics mechanism that would explain the change of ηB
and, therefore, introduce some asymmetry between particles and antiparticles at
a fundamental level. In principle, such a mechanism could exist in the SM (the
so-called electro-weak baryogenesis) if the spontaneous breaking of the electro-
weak symmetry would go through a first-order phase transition, which requires
the mass of the Higgs boson below 70 GeV [40, 41, 42]. However, since the time
of the Large Electron Positron (LEP) collider experiment, we know the mass of
the Higgs boson should above 114GeV [43] (according to the LHC data, the mass
is 125GeV [44, 45]). Therefore the electroweak baryogenesis should not take place
in the early Universe, and we face a real BSM problem here.

In order to explain the abovementioned observational BSM problems, re-
searchers come up with new theories. These theories, on the one hand, should
reproduce the behaviour of the Standard Model, which was confirmed in the
numerous past experiments, and on the other hand, provide new particles and
interactions that are responsible for the new physics.

1.2.4 Approaches to resolve the BSM problems

“BSM model-building” can be roughly divided into two types: the “top-down”
and “bottom-up” approaches. In the top-down approach, one attempts to guess
the correct theory, which is based on a new physical principle (among the repre-
sentative examples are supersymmetric theories, theories with extra dimensions
and string theory). To guess the correct fundamental principle one may use as
a criterion “naturalness”, by trying to explain certain peculiar properties of the
SM (hierarchy problem, strong CP-problem etc), or even try to solve a more fun-
damental problem, e.g. to build a theory of quantum gravity. Solutions to the
observational BSM problems typically appear as possible by-products of the pos-
tulated fundamental principle. Sometimes the richness of the top-down models
becomes their phenomenological drawback, as it is very challenging to falsify the
whole class of models based on the same fundamental principle (like, for example,
the whole class of supersymmetric extensions of the SM).

The bottom-up approach concentrates on the solution of the BSM problems, by
building a theory, falsifiable with available experimental means. If such a theory
is confirmed experimentally, one would then start to explore its structure, such as
hidden symmetries underlying small parameters, etc. Since the abovementioned
BSM phenomena are apparently unrelated, once we have a theory that explains
them all simultaneously, a number of non-trivial independent experimental checks
becomes available. In what follows we will concentrate on the bottom-up approach.
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1.3 Sterile neutrinos and the νMSM model
In the bottom-up approach, an interesting possibility to solve several BSM problems
is provided by the right-handed neutrino. We have already noticed above that,
in the SM, neutrinos can be only left-handed. However, a more precise statement
would be that if we add right-handed neutrinos to the SM, these particles will
not interact through electromagnetic, weak or strong forces and, therefore, will
not affect the confirmed phenomenology of the Standard Model. These right-
handed particles are usually called “sterile” neutrinos, and in this context the
usual neutrinos are called “active”. More formally, “sterile” means that the fields
NI(x) of right-handed neutrinos are singlets under the UY (1)×SUL(2)×SUC(3)
gauge group of the Standard Model, therefore sterile neutrinos are sometimes
called singlet neutrinos.

Once we include a right-handed neutrino N to the spectrum of particles, the
so-called Yukawa coupling

∆LY = −FL̄(x)H̃(x)N(x) + h.c., (1.3)

between left (L) leptons, right neutrinos and the Higgs field H is possible (we use
the same notation as before, H̃ = iσ2(H†)T ). After the spontaneous symmetry
breaking, this term has the form of the “Dirac mass” MDν̄N .2 This way, left-
handed neutrinos receive mass, which is the same as the mass of the right-handed
partner. Here, we have considered for simplicity only one lepton generation and
one singlet neutrino, but the numbers of left and right particles can be easily
extended so that oscillations between different active flavours may take place. In
this scenario, neutrinos are Dirac particles, the masses of sterile neutrinos are
the same as the masses of active neutrinos, and are very small according to the
observations.

However, neutrinos should not be necessarily Dirac particles. Instead, since
right-handed neutrinos are neutral, they can carry no conserved quantum number
(like the lepton number), so that the additional term becomes possible,

∆LMaj = −Ms

2
N cN + h.c., (1.4)

the so-called Majorana mass term, where Ms is the Majorana mass of the parti-
cle. Since right-handed neutrinos are singlets, the Majorana mass term does not
violate the gauge symmetry of the SM, in contrast to the Majorana mass term
mννcν for left-chiral neutrinos. If we consider singlet neutrinos, which have both
the Dirac MD and Majorana MM masses, then neither of the flavour eigenstates
ν and N has a definite mass. In other words, mass eigenstates NM , νM do not

2Note that the coupling of neutrinos to the Higgs field in (1.3) is important, since L(x) is
a two-component field (SUL(2)-doublet), and it transforms non-trivially under SUL(2) trans-
formations. Recalling that N does not transform under SUL(2), one concludes that the simple
combination L̄N is not gauge-invariant, so that presence of this term would make the extension
of the SM self-inconsistent. On the other hand, the combination L̄HN is gauge-invariant.
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coincide with the flavour eigenstates. Instead, the two bases are related by a
2× 2 unitary transformation, which can be reduced to an orthogonal matrix (by
a phase redefinition of the fields ν(x), νM (x), N(x), and NM (x)),(

νM
NM

)
=
(

cos θ sin θ
− sin θ cos θ

)(
ν
N

)
(1.5)

The real-valued parameter θ describes the quantum-mechanical mixing between
the flavour and mass eigenbases, and is usually called the mixing angle. In what
follows, we concentrate on the particular case of small Dirac mass, MD � MM .
Then, as a result of diagonalization of the Lagrangian with Dirac and Majorana
terms, the mixing angle is found to be

θ =
MD

Ms
� 1, (1.6)

the lighter mass eigenstate νM is close to the active flavour eigenstate ν, and it
has mass

mν ∼
M2
D

Ms
. (1.7)

The heavier mass eigenstate NM is close to the sterile flavour eigenstate N , and
has mass approximately equal to Ms.

If singlet neutrinos are neutral with respect to the SM gauge group, then
how do these particles interact with ordinary matter at all? The interaction is
described in Fig. 1.1: although sterile neutrinos do not interact directly, they
couple to active neutrinos via the Dirac mass, so that a sterile neutrino can
trasform into an active neutrino with probability proportional to the squared
mixing angle, θ2. Therefore, we conclude that sterile neutrinos interact with the
effective coupling constant θGF , where GF is the Fermi constant.

If we consider energies E much smaller than the Majorana mass, E �Ms, then
the singlet state is not produced as a real particle, and the effective interaction of
active neutrinos is described by

Lmass =
F 2

Ms
(L̄H̃)(H†Lc), (1.8)

which is illustrated at the level of Feynman diagrams in Fig. 1.2. One recognizes
in Lmass the Weinberg operator (1.1), if one identifies Λ with Ms.

By looking at (1.7), we can note two important things. First, for MD �Ms,
the active neutrino massmν can be arbitrary small, mν �MD, for anyMD. This
explanation of the smallness of the observed neutrino masses (which are below
eV) is usually referred to as the “see-saw” mechanism [46, 47, 48, 49]. Second,
in neutrino oscillation experiments we measure two independent combinations of
neutrino masses mi, namely m2

1 −m2
2 and m2

1 −m2
3. This means that we need at
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Figure 1.1: Fermi-like super-weak interactions of sterile neutrino

H H

νe νµN

H H

νe νµ

Figure 1.2: Neutrino oscillation νe → νµ is mediated by sterile neutrino N (left
panel). At low energies, the sterile neutrino line shrinks to a point, so that the
local Weinberg operator appears (right panel). In both panels, H is the Higgs
field.

least two singlet neutrinos to explain the observations, in which case the lightest
active neutrino mass eigenstate is massless [50]. But the absolute value of these
neutrino masses is not fixed by the data and if the smallest neutrino mass is
different from zero, the minimal number of right-handed neutrinos, needed to
explain neutrino flavour oscillations, will be three.

For an arbitrary number of right-handed neutrinos the Lagrangian of the cor-
responding extension of the SM will be then

L = LSM + iN̄Iγ
µ∂µNI −

(
FαI L̄αNIH̃ +

MI

2
N c
INI + h.c.

)
. (1.9)

Here the sum over the indices of sterile neutrinos I and over the flavour indices
α is understood, and LSM is the Lagrangian of the Standard Model. In the case
of three right-handed neutrinos we have equal numbers of right-handed (sterile)
and left-handed (active) neutrinos of the SM and the symmetry between left and
right fermions is restored, see Fig. 1.3. Moreover, it turns out that this number

17



1.3 Sterile neutrinos and the νMSM model

Figure 1.3: The Standard Model extended with three right-handed (sterile) neu-
trinos, N1, N2, and N3.

is enough to explain all the three abovementioned BSM problems, as we discuss
below.

In the case of three sterile neutrinos, the see-saw relation (1.7) is generalized
to

m̂ν = M̂D diag
(

1
M1

,
1
M2

,
1
M3

)
M̂T
D , (1.10)

where m̂ν is the 3 × 3 mass matrix of active neutrinos, (M̂D)αI = FαIv is the
matrix of Dirac masses. According to this formula, the absolute scale of Majorana
masses of sterile neutrinos is not fixed. These masses can be as large as 1015 GeV,
or they can be very small, in principle.
In what follows, we consider a model where there are right-handed (sterile) neu-
trinos that have masses below the electroweak scale of 100 GeV, so that no new
high-energy scale is added to the Standard Model. In this case the mixing
angles are small and these particles are very hard to observe at accelerators. They
do not change the phenomenology of previous experiments and special strategy
should be implemented to detect them (see below). Their role in cosmology,
however, can be profound. Indeed, the small probability of interac-
tions can be overcome by the high density of the SM particles in the
extreme conditions of the early Universe.

1.3.1 Sterile neutrinos in the early Universe
To describe the dynamics of sterile neutrinos in the early Universe let us recall that
their interaction with the SM matter goes through mixing with active neutrinos.
The properties of active neutrinos are modified (renormalized) in the presence of
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the dense medium of the hot Universe and, therefore, the active-sterile mixing is
modified as well. Indeed, a probe neutrino that propagates through a medium, in-
teracts weakly with all the particles of this medium, and if we average statistically
over these interactions, the usual Dirac equation,

i∂µγ
µν(x) = 0 (1.11)

which describes neutrinos in vacuum, is modified in presence of medium,

(i∂µγµ − Σ)ν(x) = 0. (1.12)

The neutrino gets “dressed” by medium, and the effect of dressing is described by
the self-energy Σ, which has the form [51]

Σ = γ0

[
b
GF
M2
W

pT 4 + c GF (nL − n̄L)
]
, (1.13)

where nL and n̄L are the equilibrium densities of leptons and antileptons, re-
spectively. The dimensionless coefficients b and c depend on the particle content
of the plasma, and on the neutrino flavour, but regardless both of them are of
order 1. Neutrinos with different momenta p get dressed differently, therefore Σ
is momentum-dependent.

The presence of self-energy in the modified Dirac equation (1.12) indicates
that the dispersion relation of neutrinos in medium is modified,

E(p) = p+ V, (1.14)

where the quantity

V = V (p, T ) ≡ γ0Σ (1.15)

has the meaning of effective potential of the particle in plasma. This potential
depends both on temperature and particle momentum. Since the presence of a
medium introduces a preferred frame of reference (the one where the plasma is at
rest as a whole), the dispersion relation (1.14) no longer has a Lorentz-covariant
form. It implies that if we define mass mν of neutrino through m2

ν = E2 − p2,
then we find that neutrinos with different momenta have different masses.

We define the effective mixing angle θ in medium through

Ĥ =
(

cos θ − sin θ
sin θ cos θ

)(
E1 0
0 E2

)(
cos θ sin θ
− sin θ cos θ

)
, (1.16)

where

Ĥ ≡
(

cos θ0 − sin θ0

sin θ0 cos θ0

)(
p 0
0
√
p2 +m2

N

)(
cos θ0 sin θ0

− sin θ0 cos θ0

)
+
(
V 0
0 0

)
(1.17)
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1.3 Sterile neutrinos and the νMSM model

is the effective Hamiltonian of active and sterile neutrinos in medium. Here we
write the Hamiltonian in the flavour eigenbasis. In other words, θ describes the
relation between flavour and mass eigenstates in medium.3 The first term on
the right-hand side of Eq. (1.17) is the same as in vacuum, and tells us that the
vacuum mass eigenstates are related to vacuum flavour eigenstates by a rotation
with angle θ0, according to Eq.(1.5) (the subscript 0 indicates here that the mixing
angle corresponds to zero temperature). The second term on the right-hand side,
however, is the medium correction. This correction is present only for the active
flavour eigenstate, since sterile flavour eigenstate does not interact directly via
weak interactions.

At finite temperature, the effective mixing angle θ is different from the vacuum
mixing angle, and the diagonalization of the effective Hamiltonian shows

θ = θ(T ) ≈ arctan

[
θ0

2∆Evac

∆Evac + V +
√

(∆Evac + V )2 + 4θ2
0∆E2

vac

]
, (1.18)

Temperature dependence enters through the potential V (1.15). Here ∆Evac =
m2
N/2p is the difference of energies for active and sterile neutrinos in vacuum, for

a given common momentum p. At non-zero temperature, however, this difference
of energies is modified,

∆E(p) ≡ E2(p)− E1(p) =
√

(∆Evac + V )2 + 4θ2
0∆E2

vac. (1.19)

Since active neutrinos are in thermal equilibrium at high temperatures, most of
them have momentum p ∼ T . As a consequence, sterile neutrinos have momenta
in the same range.

In absence of lepton asymmetry, nL − n̄L = 0, the mixing angle increases
monotonically with lowering the temperature, and reaches the maximal value at
zero temperature, θ = θ0, see the left panel in Fig. 1.4. Therefore, in this case
the mixing angle remains small all the time.

In presence of lepton asymmetry, however, the behaviour of the mixing angle
changes. First, the temperature dependence of the mixing angle is non-monotonic
anymore, and second, mixing angle can reach large values, θ ∼ 1. (See the right
panel in Fig. 1.4.) This large value of the mixing happens when ∆Evac + V = 0,
and according to (1.19) it is accompanied by suppression of the energy splitting
∆E. It means that levels of active and sterile neutrinos almost cross each other,
so that resonance happens.

In order to find the interaction rate ΓN of sterile neutrinos in medium, one
can use the estimate ΓN ∼ nσN , where n is the concentration of the SM particles,
σN is the cross-section of a typical reaction with sterile neutrino, for example
N + ν → ν+ ν. Concentrations of relativistic particles are n ∼ T 3, and the cross-
section of sterile neutrino is the same as for active neutrino, only the additional

3In agreement with what was said above about the neutrino mass in medium, by “mass
eigenstates” in medium we mean states that have definite energy for a given momentum.
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Figure 1.4: Temperature dependence of active-sterile mixing angle. Left panel:
Ms = 1 GeV, no lepton asymmetry. Right panel: Ms = 10 keV, the ratio of the
lepton number L to the entropy S is L/S = 10−5. In both panels, the vacuum
mixing angle is θ0 = 10−6, the neutrino energy is equal to temperature, E = T .

suppression factor θ2 is added, σN ∼ θ2G2
FT

2. Therefore,

ΓN ∼ θ2(T )G2
FT

5. (1.20)

If the interaction rate ΓN is much smaller than the Hubble expansion rate
H(T ), then singlet neutrinos do not reach thermal equilibrium. In other words,
if the Universe expands faster, than the interactions take place, the particles do
not have time to come into equilibrium with the rest of the plasma.

From the Friedmann equation H2 = 8πρ/3M2
Pl, the Hubble rate can be esti-

mated as

H(T ) ∼ T 2

MPl
. (1.21)

Here MPl ≈ 1.2× 1019 GeV is the Planck mass, and ρ ∼ T 4 is the plasma energy
density.

If we neglect the temperature dependence (1.18), then at some sufficiently
high temperature the interaction rate (1.20) becomes larger than the expansion
rate (1.21). However, the temperature dependence of the mixing angle invalidates
this conclusion. Instead, the ratio ΓN/H has a peak at some temperature, as it
is illustrated in Fig. 1.5.
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1.3 Sterile neutrinos and the νMSM model

Figure 1.5: Temperature evolution of the ratio ΓN/H of the sterile neutrino
production rate ΓN to the Hubble expansion rate H. Ms = 1 GeV, vacuum
mixing angle is θ0 = 10−6, no lepton asymmetry is present in the Universe. The
energy of sterile neutrino is equal to temperature, E = T .

The two different scenarios for the evolution of sterile neutrinos in the early
Universe are possible.

1. Although the mixing angle is much smaller than 1, the rate of interactions
ΓN can exceed the expansion rate at some temperature, T = T+, and
sterile neutrino reaches thermal equilibrium. At smaller temperatures, the
interaction rate decreases faster than the expansion rate, so at some point
(T = T−) sterile neutrinos fall out of equilibrium.

2. The mixing angle is so small, that thermal equilibrium of N is never
reached. In this case, the sterile neutrino number density nN is smaller
than the equibrium value, nN < neq ∼ T 3, but anyway this density can be
significant, especially at the later stages of the Universe evolution, as we
will see below.

The ratio ΓN/H for the first scenario is plotted in Fig. 1.5. For the second
scenario, when ΓN � H all the time, the density of sterile neutrinos can be
estimated very roughly as

nN
neq
∼
(

ΓN
H

)
Max
∼ θ2

0MsMPlG
3/2
F MW '

θ2
0

10−13

Ms

GeV
(No lepton asymmetry)

(1.22)

in absence of lepton asymmetry. Here we have noticed that the ratio ΓN/H peaks
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around the temperature

T ∼
(
M2
WM

2
s

GF

)1/6

' 10 GeV ×
(
Ms

GeV

)1/3

, (1.23)

where the terms ∆Evac and V in Eq. (1.18) are of the same order.
Here one has to distinguish number density nN and energy density ρN . Even if

the number of sterile neutrinos is much smaller than the number of SM particles,
nN � T 3, it does not mean that they do not contribute to the energy density.
Indeed, although sterile neutrinos are produced relativistic, their momenta get
smaller with the Hubble expansion, due to the gravitational redshift. It means
that if their mass is sufficiently large, these particles can become non-relativistic
at some point, and their energy density ρN ∼ nNMs can become comparable to
the energy density of SM particles, ρSM ∼ T 4.

For the resonantly produced sterile neutrinos, their density has the same order
of magnitude as the density of lepton number,

nN ∼ nL − n̄L (Large lepton asymmetry) (1.24)

Indeed, sterile neutrinos are produced relativistic, which means that the mass
is not important for them. For neutrinos, which are almost massless, the ac-
tive+sterile lepton number (the SM lepton number plus number of left-helical
sterile neutrinos minus number of right-helica sterile neutrinos) is conserved dur-
ing the oscillations and collisions. The effective resonant production implies then
that the significant fraction of SM lepton number was transferred to the “sterile
lepton number”.
In case when sterile neutrinos do not reach thermal equilibrium, their out-of-
equilibrium abundance is different in the two cases:

1. If lepton asymmetry is absent, the effective mixing angle does not exceed
its vacuum value θ0, and the abundance is suppressed by θ2

0 (non-resonant
production).

2. If lepton asymmetry is present, resonant enhancement of the effective mix-
ing angle can happen, the abundance of sterile neutrinos is not suppressed
by θ2

0, and is proportional to lepton asymmetry (resonant production).

As we have noticed above, extensions of the Standard Model should explain
all the previous experiments, which were expained by the SM. Similarly, the well-
established cosmological phenomena, which were explained by the SM, should
not change in these extensions as well. For example, the SM describes very good
the so-called Big-Bang Nucleosynthesis (BBN), which is essentially the epoch,
when the first light nuclei are formed out of the initial neutrons and protons (see
reviews [52, 53, 54]). Theoretical predictions of the SM are in nice agreement with
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1.3 Sterile neutrinos and the νMSM model

the astrophysical observations of the relic abundances of light nuclei such as 2H,
3He, and 4He [52]. If the Standard Model is extended with sterile neutrinos, this
agreement should not be lost.

What is the influence of sterile neutrinos on the BBN? First, presence of sterile
neutrinos increases the energy density of plasma, and according to the Friedmann
equations, it increases the expansion rate of the Universe. Second, sterile neutrinos
introduce deviation from thermal equilibrium, so that spectra of active neutrinos
are distorted, the rate of weak reactions is altered, and the moment when neutrons
fall out of equilibrium is shifted (this moment is crucial, since it defines the ratio
of concentrations of neutrons and protons at the onset of the BBN).
In order not to spoil the agreement between the SM predictions of the Big-Bang
Nucleosynthesis and observations, sterile neutrino should be either long-lived and
be present in negligible amount in plasma, or to be short-lived, and to decay be-
fore the nucleosynthesis starts. If sterile neutrinos describe neutrino oscillations,
their mixing angles are large enough so that the scenario with long-lived particles
does not take place for them. The impact on the nucleosynthesis of such
sterile neutrinos is discussed in detail in Chapter 3.

Having discussed the potential importance of sterile neutrino in the early Uni-
verse, below we will discuss in detail how this particle can play a role of Dark
Matter, and how it can give rise to the Baryon Asymmetry of the Universe.

1.3.2 Sterile neutrino Dark Matter

It is known that sterile neutrino N with mass in the keV region is a viable
Dark Matter candidate [55, 56, 57]. Then, this neutrino has to be stable on the
cosmological timescales, or equivalently, its lifetime should exceed the age of the
Universe. Therefore, N has a small mixing angle.

Moreover, if we return to the previous discussion of the dynamics of sterile
neutrino in the early Universe, we can conclude that the mixing angle should be
small enough for sterile neutrino not to reach equilibrium in the early Universe.
Indeed, if our DM particle went through the equilibrium period, its number den-
sity nN would be comparable to the number density of photons or ordinary neu-
trinos or be even larger. Therefore, like for active neutrinos, to give the correct
DM mass density, the mass of sterile neutrino with such a number density would
have to be Ms ' 10 eV (see e.g. [33]). Exactly like for ordinary neutrinos, this
number would contradict the Pauli principle applied to DM-dominated astrophys-
ical objects (Tremaine-Gunn bound [30]), which implies that Ms & 400 eV [31].
Therefore, the DM sterile neutrinos should be out of thermal equilibrium at all
temperatures and therefore their number density is suppressed as compared to
the number density of ordinary neutrinos or photons, and mass can be in keV
range (or it can be even larger).
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Figure 1.6: Comparison of sterile neutrino distribution function fs(p)p2/T 2 and
the equilibrium Fermi distribution fFermi(p)p2/T 2 (p is the particle momentum, T
is temperature). The mass of sterile neutrino is Ms = 10 keV, the vacuum mixing
angle is θ0 = 10−6, lepton asymmetry is absent. The absolute scale of the Fermi
distribution is reduced so that the two spectra vary in the same range.

According to the estimate (1.23), the dominant fraction of DM particles with
keV mass is produced around the temperature T ∼ 100 MeV. Therefore (in
absence of lepton asymmetry, see below) their spectrum has form that is close to
the equilibrium Fermi-Dirac distribution with this temperature (that decreases as
the Universe expands) [55] (see Fig. 1.6), although the normalisation of spectrum
is smaller than 1, as the thermal equilibrium was not established.

As it was already discussed above, a different scenario takes place in presence
of lepton asymmetry. In this case a resonant enhancement of the effective mixing
angles takes place. This resonant production [56, 58] requires smaller vacuum
mixing angles to produce the correct DM abundance for the same particle mass,
than the non-resonant production described above. In the resonant case the shape
of the spectra of resonantly produced sterile neutrinos can deviate significantly
from the Fermi distribution [58, 59] (if the lepton asymmetry is large enough, i.e.
comparable with the number of DM particles), see Fig. 1.7. In both resonant and
non-resonant cases production of Dark Matter particles happens at temperatures
T . GeV [58, 60, 61].

Of course, here we assume (in the spirit of bottom-up approach) that sterile
neutrinos are produced only from their mixing with ordinary neutrinos. If some
other new particles exist, apart from sterile neutrinos, there can be more mech-
anisms of the sterile neutrino DM production. We do not consider these models
here.

If DM particle is a sterile neutrino, this particle has so small mixing angle that
its contribution to the active neutrino masses is negligible (see e.g. [62]).

The Dark Matter particle can be searched in the cosmic X-ray emission [63, 62].
Although N is stable on cosmological scales, it nevertheless decays. The life time
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1.3 Sterile neutrinos and the νMSM model

Figure 1.7: Sterile neutrino DM distribution function fs(q)q2 (q = p/T , where
p is the particle momentum, T is the temperature). The solid line corresponds
to resonantly produced sterile neutrino with initial ratio of lepton asymmetry to
entropy equal to 4.5 × 10−5. The dashed line is the spectrum of non-resonantly
produced sterile neutrino. The mass of sterile neutrino in both cases is Ms =
7 keV.

of this particle is defined by the dominant tree-level three-body decay channel
N → ννν̄. There exists also a radiative two-particle decay channel into neutrino
and photon, N → νγ. This decay channel is sub-dominant [64], since it involves
a combination of weak and electromagnetic processes at one loop. Although the
life time with respect to this decay channel is even longer than for the previous
one (and therefore is much longer than the life time of the Universe), the photons
emitted in this way can in principle be produced in detectable amounts, due
to very large number of DM particles in DM-dominated astrophysical objects.
As this is a two-body decay into (almost) massless particles, the energy of the
emitted photons is fixed, and is equal to one half of the sterile neutrino mass. This
property implies a peak in the X-ray spectrum of Dark-Matter dominated regions
of space [65, 66]. (The peak is smeared only slightly, by the Doppler effect, caused
by the velocity dispersion of Dark Matter particles.)

Recently, an unidentified 3.5 keV line was found in the spectrum of X-rays [67,
68]. The behaviour of this line is consistent with the DM origin: in DM-dominated
regions of space, the signal is stronger, in regions with low DM abundance the
signal is not found. Therefore, it may be an indication of Dark Matter decay.
If this signal comes from decays of DM sterile neutrinos, it should be resonantly
produced, implying large enough lepton asymmetry at the temperatures T .
GeV [59, 60, 61].

X-ray bounds show that for both resonant and non-resonant production the
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mass of DM sterile neutrino should be in the keV range (assuming no other new
physics at the relevant temperatures). Therefore, these particles are produced rel-
ativistic and have significant free-streaming length. This means that the structure
formation will be suppressed at the smaller scales as compared to the Cold Dark
Matter case (DM particle created non-relativistic). Although sterile neutrino
Dark Matter has non-thermal primordial velocity distribution, it is clear that for
the smaller masses the effect of free-streaming will be stronger (see Fig. 1.8) and
therefore cosmological observations could provide a lower bound on Dark matter
mass (for each given lepton asymmetry), while X-ray observations provide upper
bounds. Free-streaming scales corresponding to DM particles with masses in keV
range are such that, for example, CMB observations are not sensitive to them.
Cosmological lower bounds require complicated non-linear analysis of structure
formation at small scales, subject also to uncertainties related to (largely un-
known) baryonic physics. Although promising, this approach requires a lot of
additional work to be done. Nevertheless, for the case of the non-resonantly pro-
duced sterile neutrino DM, the contradiction between astrophysical X-ray upper
bound and cosmological lower bound on DMmass is rather strong (see [69, 70, 71])
and, even with all uncertainties of the method taken into account, this scenario
should be considered as strongly disfavoured by the data. For resonantly pro-
duced sterile neutrino, however, both cosmological and astrophysical bounds are
weaker, leaving enough room for sterile neutrino DM to be produced from inter-
actions with the SM particles [72].
The Dark Matter is made of sterile neutrinos produced from interactions with
the SM plasma, the observational bounds imply that they have to be produced
resonantly. This requires lepton asymmetry, which is much larger than the baryon
asymmetry, to be present at temperatures T . GeV.

1.3.3 Generation of the baryon asymmetry with sterile neu-
trinos

It turns out, that sterile neutrinos can not only explain neutrino oscillations and
serve as a Dark Matter candidate, but can also generate the Baryon Asymmetry
of the Universe, as we discuss below.

In general, to generate the baryon asymmetry, three conditions (the “Sakharov
conditions”) should be satisfied [75]

1. Baryon number is not conserved

2. C- and CP-symmetries are violated

3. The Universe must be out of thermal equilibrium during the process of
generation of the baryon asymmetry
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1.3 Sterile neutrinos and the νMSM model

Figure 1.8: Power spectrum k3P (k) (measure of inhomogeneities of matter dis-
tribution in the Universe at different wavenumbers k) for different parameters
of sterile neutrino Dark Matter. The monotonically growing solid line corre-
sponds to sterile neutrinos with negligible initial velocity dispersion (Cold Dark
Matter), the other solid line – to resonantly produced sterile neutrino with mass
Ms = 7keV, and initial ratio of lepton number to entropy equal to 4.4×10−5. The
dotted, dashed, and dot-dashed lines correspond to sterile neutrinos with masses
Ms = 1.5 keV, 2 keV, 3.3 keV respectively, which have equilibrium (Fermi) form
of spectrum. In each case, the abundance of the DM is matched to the observed
value.

The first Sakharov condition is satisfied in the Standard Model [76]. Although
the baryon number is conserved in elementary collision processes, it is violated by
the quantum phenomenon called chiral anomaly [77, 78]

∂µj
µ
B =

3g2

16π2
Tr [Fµν F̃µν ] (1.25)

where jµB is the 4-current of baryons (the zeroth component j0
B is the baryon

density), Fµν is the strength tensor of the SUL(2) gauge field, F̃µν = εµναβFαβ is
the dual field, g is the SUL(2) coupling constant, and the trace is taken over the
SU(2) indices. Similarly, the lepton current jµL is not conserved due to the same
chiral anomaly, such that the combination B −L is preserved, while B +L is not
preserved [76]. Here B =

∫
d3xj0

B is the baryon number and L =
∫
d3xj0

L is the
lepton number. In order to use the chiral anomaly for generation of B, one has to
generate first L. Here we want to note that the baryon number violation is better
constrained experimentally, than the violation of lepton number [15]. The source
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Figure 1.9: Observational constraints on the mixing angle θ of the Dark Matter
sterile neutrino. The left shaded region is excluded by the Pauli principle applied
to compact DM-dominated objects [30, 31], the upper black line corresponds to
the non-resonant production, the right orange corner is excluded by the X-ray
observations [63, 62], the region below the lower thick black line is excluded by
the Big-Bang Nucleosynthesis [73, 74]. The curves labeled by different values of
L6 correspond to resonant production of the DM at different values of lepton
asymmetry (L6 ≡ 106L/9S, where L is the lepton number, S is entropy). The
point in the center with error bars corresponds to the observed 3.5keV X-ray
signal [67, 68].

of lepton number violation can be provided by Majorana sterile neutrinos.
The integral of the expression Tr [Fµν F̃µν ] over time and space can take only

discrete values n, due to its non-trivial topological properties. Therefore, in order
for chiral anomaly to operate and to transform lepton number into baryon number,
we need SU(2) field configurations with non-zero n. These configurations exist
and are known as sphalerons [79]. They are populated in plasma only at high
temperatures, where the electroweak symmetry is unbroken (T & 100 GeV).

Sterile neutrinos lead to successful leptogenesis. If they are much heavier than
100GeV, according to the see-saw formula (1.7), they have relatively large mixing
angles, so that they enter equilibrium at T � 100 GeV. While the Universe cools
down, their interaction rate decreases, they fall out of thermal equilibrium (“freeze-
out”), and start to decay (the third Sakharov condition). Due to CP-violation,
which is present in sterile neutrino sector (the second Sakharov condition), sterile
neutrinos interact a bit differently with particles and anti-particles, so that in the
decays, the number of lepton and anti-leptons is different, and non-zero lepton
number is generated. This is the standard scenario of thermal leptogenesis [80].

29



1.3 Sterile neutrinos and the νMSM model

It turns out that leptogenesis works for lighter sterile neutrinos,Ms � 100GeV
as well [81, 82]. In this case, however, sterile neutrinos should not come into
thermal equilibrium while the electroweak symmetry is unbroken, as we argue
below. Instead, they are produced gradually in reactions of the SM particles
while the Universe cools down, and due to the CP violation, in reactions with SM
particles sterile neutrinos produce different amount of leptons and anti-leptons,
so non-vanishing lepton numbers are generated. For Ms � 100 GeV, sterile
neutrinos are relativistic, and for relativistic particles, mass does play much role
(in particular, whether it is Dirac of Majorana). It means, that the total lepton
number is effectively conserved, if one includes into this number the “sterile” lepton
number. (The sterile lepton number can be defined as the difference between left-
helical sterile neutrinos (particles) and the number of right-helical sterile neutrinos
(antiparticles).) This way, the lepton number is not produced (as it happened
for heavy sterile neutrinos above), but is distributed between active and sterile
neutrinos. In thermal equilibrium, processes that increase asymmetry in active
flavours go with the same speed as the processes that decrease the asymmetry,
and the lepton asymmetry is washed out. Therefore, sterile neutrinos should not
come into thermal equilibrium during the baryogenesis epoch (third Sakharov
condition).

How the lepton numbers in different active flavours are related to each other,
depends on the particular pattern of active-sterile mixing. For example, if sterile
neutrinos do not couple to electronic flavour, then no asymmetry between electron
neutrinos and antineutrinos is produced at high temperatures.

For successful leptogenesis, we need at least two sterile neutrinos. Note that
this is the same number, as required for neutrino oscillations. And in what fol-
lows, we will implicitly assume that the sterile neutrinos which generate lepton
asymmetry, explain neutrino oscillations at the same time. In order to produce
the required baryon asymmetry (1.2) with two neutrinos, the CP-violating effect
should be enhanced by resonance between the two neutrinos. It requires very
small splitting in their masses [82].

An important feature of sphaleron transitions is that they tend to make B ∼
L [76]. Therefore at high temperatures, when sphalerons still operate effectively,
the small value of baryon asymmetry (1.2) is accompanied by the same small value
of lepton asymmetry. However, when temperature decreases below 100 GeV, and
baryon number becomes conserved, the generation of lepton asymmetry still takes
place, and there is no reason why the value of this asymmetry cannot exceed the
value of baryon asymmetry. Production of lepton number, which is much larger
than the baryon number, is the specific feature of leptogenesis with relatively
light sterile neutrinos (masses below 100 GeV). Leptogenesis takes place until the
sterile neutrinos finally reach thermal equilibrium (T = T+). At this moment,
lepton asymmetry gets washed away, according to what was said above. Sterile
neutrinos spend some time in this equilibrium regime, until their collisions become
so rare that thermal equilibrium ceases to hold for them. (“Freeze-out” happens,
T = T−.) The subsequent evolution is similar to what happens with very heavy
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Figure 1.10: Parameter space of two sterile neutrinos which produce the observed
Baryon Asymmetry of the Universe [84, 85]. The horizontal axis corresponds to
the average mass of sterile neutrinos Ms (the difference between the two masses
is much smaller than Ms), the vertical axis corresponds to the average square
of the mixing angle, θ2. The upper filled region is excluded, since for larger
mixing angles sterile neutrinos come into thermal equilibrium before the end of
baryogenesis and therefore wash out the baryon asymmetry. The lower filled
region is excluded, since for smaller mixing angles, sterile neutrinos couple to
plasma too weakly, and are not able to produce enough baryon asymmetry.

singlet neutrinos Ms � 100 GeV: sterile neutrinos freely propagate in plasma,
until they start to decay, the numbers of particles and antiparticles produced in
these decays are a bit different, so lepton asymmetry is generated again. The
successful baryogenesis implies both the lower and the upper bounds on sterile
neutrino mass, MeV . Ms . 20 GeV [81, 82, 83].

The observed value of baryon asymmetry can be generated by sterile neutrinos
N2 and N3 with masses M2,3 in the MeV-GeV range, provided that they have
small mass splitting,

|M2 −M3| �M2 (1.26)

The generation of lepton asymmetry by these particles continues at temperatures
below 100GeV, when the baryon asymmetry is no longer generated. This way
lepton asymmetry can become much larger than the baryon asymmetry. If N1

does not describe the Dark Matter, this particle can significantly contribute to
neutrino oscillations via the see-saw mechanism, and can influence the baryogen-
esis. In this case, successful baryogenesis does not require smallness of the mass
splitting [86], and the lightest active neutrino mass eigenstate does not have to
be massless.
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1.3 Sterile neutrinos and the νMSM model

1.3.4 The Neutrino Minimal Standard Model

Since the mixing angle of the DM sterile neutrino N1 is small, it does not con-
tribute significantly to the neutrino masses via the see-saw mechanism. There-
fore, in order to explain neutrino oscillations,we need at least another two sterile
neutrinos, N2 and N3, which can simultaneously give rise to the observed baryon
asymmetry. The resulting number of right-handed neutrinos is three. If
we choose masses of sterile neutrinos below 100GeV, we get the model which is
called the Neutrino Minimal Standard model (νMSM ) [50, 82] (for a re-
cent review, see [62]). In this model, the lightest active neutrino mass eigenstate
is massless.

Although we have experimental constraints on different corners of parame-
ter space of the νMSM, there still exists large open window. Here we want to
note, that apart from the three Majorana masses M1,M2,M3, there are 15 phys-
ically observable parameters in the Yukawa matrix FαI . In total, the model is
characterized by 18 parameters [50].

If we add to the νMSM non-minimal coupling of the Higgs field to gravity,
we can provide an inflationary model, which explains very well the cosmological
observations [87, 88]. This way, the history of the Universe can be described up
to the very early stages (Planck scales).

Having this consistent theoretical framework, we can no longer consider differ-
ent phenomena independently. For example, one cannot just say that the lepton
asymmetry neeeded for resonant production of Dark-Matter particles, is some
given external quantity. As we have noticed above, the value of the lepton asym-
metry is controlled by the properties of N2 and N3, so one has to consider the in-
terplay between the properties of the light and heavy singlets consistently [85, 84].

If the large lepton asymmetry, which is needed for the resonant production
of DM particles, is generated after the freeze-out of N2,3 (T < T−), we need
such a small value of the mass splitting |M2 −M3|, that it becomes sensitive to
radiative (loop) corrections. In order to get this small number, a fine-tuning of
the νMSM parameters should be done, which makes the model “unnatural” [89].
On the other hand, if the lepton asymmetry is produced at higher temperatures
(T > T+), then according to the discussion in Sec. 1.3.3, singlet neutrinos come
to equilibrium, and the lepton asymmetry is expected to be washed out.
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No sterile neutrinos in plasma

N2 and N3 are produced and generate lepton asymmetry

Lepton asymmetry gets transferred to baryon asymmetry

N2 and N3 come into thermal equilibrium

N2 and N3 fall out of equilibrium, 

decay and produce lepton asymmetry

Dark Matter particle N1 is produced

Big-Bang Nucleosynthesis starts 

Temperature
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T+ ~ 10-100 GeV

T- ~ few GeV

300 MeV

100 keV

Figure 1.11: The timeline of the processes in the early Universe in the
νMSM model.

The νMSM is a testable model, which is constrained by a set of independent
cosmological and astrophysical observations, however the window of parameters
of this model still remains open. The systematic account of the observational
constraints, which is not finished at the present moment, will reduce the param-
eter space. For example, in order to satisfy the constraints on the DM, N2,3

should not only produce the observed baryon asymmetry, but to produce lepton
asymmetry, which is much larger than this asymmetry.
It is problematic to produce lepton asymmetry after sterile neutrinos have frozen
out (T < T−), while it is much easier to produce the asymmetry at higher
temperatures, where sterile neutrinos are still out of thermal equilirium (T > T+).
However, in the intermediate region, T− < T < T+, sterile neutrinos come into
thermal equilibrium, and how does the lepton asymmetry evolve here is an open
question. Below, we consider an additional effect, which is important for the
description of lepton asymmetry at these intermediate temperatures.

The timeline of the processes in the early Universe in the νMSM model is
plotted in Fig. 1.11.

1.3.5 Lepton asymmetry and magnetic fields

Due to the parity-violating nature of the interactions of SM fermions with elec-
troweak gauge bosons (W , Z and photons), interactions of sterile neutrinos with
left and right SM charged fermions are different. Therefore, left and right particles
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1.3 Sterile neutrinos and the νMSM model

are produced in different amounts during the leptogenesis. Namely, only neutrinos
interact with sterile neutrinos. Fast interactions with W± bosons equilibrate the
number density of neutrinos and charged leptons (electrons, muon, tau leptons).
However, all the gauge interactions respect chirality, and therefore do not change
the asymmetries in sectors of left and right particles. Nevertheless, a disbalance
between these two sectors gets relaxed to zero since all the charged particles are
massive, therefore the numbers of left and right particles are not conserved indi-
vidually. Namely, there exist collision processes (chirality-flipping processes), in
which left particle can transform into right one. An example of such a process
is Compton scattering, eLγ → eRγ, where eL and eR are left and right electrons,
respectively, and γ is a photon. However, these chirality-flipping processes are
relatively slow, chirality-flipping rate Γflip is suppressed with respect to the rate
of ordinary collisions (chirality-preserving rate) Γlte as m2/T 2, where m is the
fermion mass. Therefore, two different timescales appear in the problem.4

The first timescale, ∼ Γ−1
lte, corresponds to the time when partial equilibrium

is established in the left and right sector of the theory separately, bringing the
momentum distribution in each of the sectors to the Fermi-Dirac form:

fL(p) =
1

exp
(
Ep−µL
T

)
+ 1

, fR(p) =
1

exp
(
Ep−µR

T

)
+ 1

, (1.27)

where the chemical potentials µL and µR of these distributions are independent,
so that the axial chemical potential is non-vanishing,

µ5 ≡ µL − µR 6= 0 (1.28)

The second timescale, Γ−1
flip � Γ−1

lte, is much longer than the first one, and corre-
sponds to the time when particles reach equilibrium between left and right sectors,
due to their mass term and due to the residual Higgs boson decays, H → eL + ēR,
so that at these times left and right particles are described by the Fermi-Dirac
distribution with a common chemical potential, µ = (µL + µR)/2, corresponding
to the conserved fermion number.

In other words, fermions spend some time with chiral asymmetry, while having
equilibrium spectra (1.27). The chiral imbalance in the plasma of charged particles
has drastic consequences for its evolution.

1.3.6 Electric current along the magnetic field
In order to demonstrate how does the chiral imbalance affect the system of charged
particles, we will use the quantum mechanical description, originally presented in
the pioneering work [90]. Namely, we consider the system of charged fermions
(massless for simplicity) in the uniform magnetic field, pointing along the z axis.

4This is of course a simplification. Below we discuss the simplest case when only electrons,
neutrinos and sterile neutrinos are present in the plasma, to avoid discussing the whole hierarchy
of times, related to different particles, leptons vs. quarks, etc.
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Particles occupy the so-called Landau levels. The energies of these levels are
characterized by one discrete integer number n ≥ 0 and one continuous number
– momentum pz along the direction of the field,

εn(pz) =
√
p2
z + 2|eB|n, n = 0, 1, 2 . . . (1.29)

The level with n = 0 (lowest Landau level) is different from n > 0 levels.
The motion of particles is that of free one-dimensional massless fermions with
ε0(pz) = ±|pz| with their spin always pointing opposite to the direction of the
magnetic field. Therefore the particles with pz > 0 have negative projection of
spin onto momentum (so called left-chiral particles) and the particles with pz < 0
have positive projection of the spin onto momentum (right-chiral particles).5 The
allowed range of pz is different for n = 0 and n > 0, namely

−∞ < pz <∞ (n 6= 0, both chiralities) (1.30)
0 ≤ pz <∞ (n = 0, left chirality) (1.31)

−∞ ≤ pz ≤ 0 (n = 0, right chirality). (1.32)

(these ranges hold for both particles and anti-particles.)
In the vacuum (at zero temperature and zero chemical potentials) all the states

with εn(pz) < 0 are filled (the Dirac sea) while all the states with εn(pz) > 0
are empty. In thermal equilibrium, the distribution functions are characterized
by chiral Fermi distributions (1.27) with Ep = εn(pz), different for left and right
particles.

Given the distribution functions, the electric current density can be calculated
by the statistical formula

j = e
|eB|
2π

 ∞∫
0

dpz

2π
ψpzγψpzfL(pz) +

0∫
−∞

dpz

2π
ψ̄pzγψpzfR(pz)

+ anti-particles+

+ sum over Landau levels with n > 0
(1.33)

(where ψpz are the eigen functions of the Dirac equation on the lowest Landau
level, and the factor |eB|/2π is the number of states with given momentum pz,
per two-dimensional area perpendicular to the direction of the magnetic field).
The sum over the higher Landau levels does not contribute to the current and
therefore only the first line in (1.33) gives non-zero contribution:6

5Here, for definiteness, we have chosen eB < 0, and this choice will be used in what follows.
If the sign of eB is opposite, then the directions of propagation along z are flipped: the left-chiral
states have then pz < 0, the right-chiral states have pz > 0.

6We use bold notations for 3-dimensional vectors, x, A. Their components are denoted with
Latin indices i. 4-dimensional vectors are denoted by p, q etc and Greek indices run from 0 . . . 3.
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j = − e2

4π2
(µL − µR)B (1.34)

This current, flowing along the direction of the magnetic field and proportional
to the chiral imbalance, is known as chiral magnetic current or chiral magnetic
effect (CME).

1.3.7 Chiral Magnetic Effect
In the field-theoretical approach, the existence of the Chiral Magnetic Current (1.34)
signals a presence of the parity-odd part of the low-energy effective action (free
energy) of the gauge fields,

F [A] =
1
2

∫
d3qAi(−q)Πij(q)Aj(q) (1.35)

where the parity-odd part of the polarization operator Πij is fixed by the gauge
and rotational invariance to be of the form

Πij
2 (q) = −iεijkqkΠ2(q2) (1.36)

If Π2(0) ≡ Πcs 6= 0, then a parity-odd Chern-Simons term,

Fcs[A] = Πcs

∫
d3xA ·B, (1.37)

is a part of the free energy (1.35). The current due to the field A(q) is given of
course as

〈ji(q)〉 =
δF [A]
δA

= ΠijAj(q) (1.38)

The non-zero Πcs leads to the current

j = Πcs∇×A (1.39)

which is just the current (1.34) after the identification

Πcs = − e2

4π2
(µL − µR) (1.40)

The Chern-Simons term has less derivatives than the usual kinetic term
∫
d3xB2

2 =

−
∫
d3q (q×A)2

2 and is therefore more relevant for the infrared physics (i.e., when
the wavenumbers q are very small). However, the Chern-Simons term (1.37)
is no positive definite, since it involves the odd (first) power of derivative. As
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a result, the effective action for the electromagnetic fields in the medium with
chiral imbalance is unbounded from below for sufficiently small |q| and we can
expect the development of instability for A(q). And indeed, the Maxwell equa-
tions with the current (1.34) are unstable against generation of gauge fields with
|q| � Πcs [91, 92, 93, 94].

1.3.8 Chiral anomaly and dynamics of chiral imbalance

Not only the presence of chiral imbalance changes the dynamics of electromagnetic
fields, but also the electromagnetic fields themselves affect the change in time
of the chiral chemical potential. This coupling is the consequence of the phe-
nomenon, called quantum anomaly, which was mentioned in context of baryon
asymmetry and sphaleron transitions in Sec. 1.3.3. The phenomenon of chiral
(or axial) anomaly was known for many decades [77, 78], which is basically the
non-conservation of axial fermionic charge jµ5 = 〈ψ̄γµγ5ψ〉 in presence of strong
electric E and magnetic B fields,

∂µj
µ5 = −∂µjµL + ∂µj

µ
R =

e2

2π2
E ·B. (1.41)

Here jµL is the electric current density of left-chiral particles, jµR is the contribution
of their right-chiral counterparts. Since the magnetic field is unstable, it becomes
time-dependent, which induces the electric field, according to the Faraday law,
∇ × E = −∂0B. In presence of both electric and magnetic fields, the chiral
anomaly starts to operate. Although separately the left- and right-chiral charges
are not conserved, their sum is conserved,

∂µ(jµL + jµR) = 0. (1.42)

This latter requirement is crucial for self-consistency of the theory, otherwise the
gauge invariance of the theory is lost. (At the same time, we do not associate the
axial current jµ5 with any kind of gauge symmetry, so the non-conservation of
this latter current does not spoil the theory).

As a result of chiral anomaly, the left and right charges get changed, while the
combinations

Q̃L =
∫
d3x

(
j0
L −

e2

4π2
AB

)
(1.43)

Q̃R =
∫
d3x

(
j0
R +

e2

4π2
AB

)
(1.44)

are preserved with time. Therefore, it is natural to call these two combinations
as generalized chiral charges. One may check, that at zero temperature, the
conservation of the generalized charges leads to a reduction of the energy splitting
µL − µR between the two Fermi levels εp = µL and εp = µR, with time, provided
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that the Chern-Simons contribution to the energy density (1.37) is negative. In
other words, magnetic fields get produced by “absorbing” the fermionic disbalance,
and in the asymptotic equilibrium state, one expects that the Fermi levels for
different chiralities become indistinguishable.

Inclusion of temperature does not change qualitatively the picture above, since
the form of the electric current (1.34) is independent of the temperature, and is
applicable at all temperatures. The system of hydrodynamic equations is

∇E = ρ, ∇B = 0, (1.45)

∇×E = −∂B
∂t

, ∇×B = − e2

4π2
(µL − µR)B + σE +

∂E

∂t
, (1.46)

∂(µL − µR)
∂t

= − 3e2

πT 2
E ·B − Γflip(µL − µR). (1.47)

which are the Maxwell equations together with the Adler-Bell-Jackiw equation (1.41),
where in the last one, the axial current is rewritten through chemical potentials.
Note the inclusion of the Ohmic current σE, where σ is the conductivity of plasma.
In what follows, we consider an electrically neutral plasma, so that the charge den-
sity ρ vanishes, ρ = 0. Another important simplification is that we consider rela-
tively slow evolution of the system, so that the displacement current ∂E/∂t can be
neglected, as compared to the Ohmic current. One notes, that in the Adler-Bell-
Jackiw equation, we have added contribution −Γflip(µL − µR), which describes
the change of chirality due to particle collisions (the abovementioned chirality-
flipping processes), and this tern is not related directly to chiral anomaly. Γf has
the sense of the chirality-flipping rate (number of chirality-flipping reactions for
a given particle, per unit time).

Going to Fourier space with respect to spatial coodinate x, we find that the
electric and magnetic fields are transversal, q · E = q · B = 0. Excluding the
electric field, we get

∂B

∂t
= − 1

σ
(q2B + i

e2

4π2
µ5 q ×B). (1.48)

Here the shorthand notation µ5 = µL − µR for the chiral disbalance was intro-
duced. The term with µ5 in the right-hand side involves first power of wavenumber
q, while the other term in the right-hand side involves the second power of q. The
wavenumbers where the term with µ5 becomes larger than the term with q2, are

q � e2

4π2
µ5 (1.49)

In this infrared region, the term with µ5 dominates the dynamics of the magnetic
field. On the other hand, the sign of this term depends on the helicity of the
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magnetic field (whether it is left- or right-helical), therefore one of the helicities
grows exponentially with time [92], which is the sign of the instability, which was
mentioned above.

Having in mind the setup of very early Universe, the chirality-flipping rate is
known to be larger than the Hubble expansion rate

H ∼ T 2

Mpl
, (1.50)

at temperatures T . 80 TeV [95]. (Here Mpl ∼ 1019 GeV is the Planck mass.)
This result means, that chirality-flipping reactions are very active at these tem-
peratures, and the anomalous instability process does not take place: instead
of producing magnetic fields, the chiral disbalance is washed away by collision
processes.

Therefore, we see that magnetic field affects the evolution of the chiral asym-
metry µL−µR, and these two quantities get coupled. Considered separately, both
chiral asymmetry (destroyed by chirality flips) and magnetic fields (destroyed by
magnetic diffusion) would disappear from the plasma relatively fast. The picture
changes, however, if their coupled evolution is considered.

It was shown recently [96, 97], that the evolution of this coupled system is
non-trivial, and large chiral asymmetry together with magnetic fields that are
triggered by this asymmetry may survive as long as plasma has charged fermions
which are still relativistic. Recalling that the lightest charged fermion is electron,
and that it has mass 0.5 MeV, magnetic fields can survive up to temperatures of
few MeV.

Moreover, weak interaction violates parity symmetry and therefore the effec-
tive properties of the left and right electrons in dense medium are not the same.
It was therefore argued in [98], that even if µL = µR (or if the chiral asymmetry
in the initial state of the system is small), in the presence of lepton asymmetry
weak interactions can trigger Chiral Magnetic Effect. This would mean that even
the equilibrium state of the SM plasma at high temperatures should be populated
by magnetic fields.

Although lepton asymmetry disappears from the plasma once sterile neutrinos
enter thermal equilibrium, if strong helical magnetic fields are generated as a by-
product of this lepton asymmetry, there is no reason for these magnetic fields to
disappear when sterile neutrinos are in thermal equilibrium. Then, once sterile
neutrinos are out of equilibrium again, the same CME and chiral asymmetry
that accompany helical magnetic fields would quickly regenerate effective lepton
asymmetry in the plasma.
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Lepton and chiral asymmetries are coupled to magnetic fields. In order to make
a reliable prediction of the lepton asymmetry evolution in the temperature range
T− < T < T+ in the νMSM (which is important for determination of the DM
abundance), one has to understand the coupled dynamics of these degrees of
freedom. The steps towards systematic exploration of this question are made in
Chapters 4 and 5.

1.3.9 Accelerator searches of sterile neutrinos
Sterile neutrinos can be searched at particle accelerators [99]. A number of
accelerator searches was carried out in the past and are planned for the future.
The main strategy of these searches is not to increase the energies of the colliding
particles, as it takes place in the LHC collider, where the center-of-mass energy
is of order of 10TeV (high-energy frontier), but to reach high statistics of the rare
events (high-intensity frontier).
Cosmological bounds play here important role, since they reduce the wide window
of possible parameters of the model for such terrestial searches. The νMSM can
be regarded here as a benchmark bottom-up model, which illustrates how well
can we explore the parameter space using methods of particle physics, cosmology
and astrophysics.
The systematic account of cosmological and accelerator constraints of the
νMSM is not finished at the present moment, and the current thesis attempts to
make a step in this direction.

The past experiments are reviewed in Chapter 2. Here we want to describe one
of the most promising future experiments to search for the two heavier νMSM neu-
trinos, the SHiP experiment (Search for Hidden Particles) [100, 101, 102] (the
website of the collaboration is http://ship.web.cern.ch/ship/). This experi-
ment is a proposed general-purpose fixed target facility at the CERN SPS (Super
Proton Synchrotron).

The setup of the SHiP experiment is plotted in Fig. 1.12. The incoming flux of
protons with energy 400GeV from the SPS accelerator hits the dense fixed target.
As a result of strong interactions, a flux of secondary hadrons (pions, kaons, D-
mesons) is produced, and these unstable secondary particles decay into charged
leptons and neutrinos, where in addition of active neutrinos, a small admixture
of sterile neutrinos appears. The thick wall of absorbing material behind the
target ensures that no charged particles pass through it. Next to the wall, the
large decay volume is placed, where the decays of new unstable neutral particles
can be detected. In this scheme, sterile neutrinos are produced in decays of D-
mesons, and can be detected in different two- and three-body decay channels like
N → π+e− and N → νe+e−.

In the SHiP experiment the center-of-mass energy of the colliding particles
(which are the proton from SPS and a proton of the target nucleus) is just several
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Figure 1.12: The setup of the SHiP experiment [102]. The incident proton beam
from the SPS accelerator hits the target, the charged particles are stopped in the
active muon shield, while the unstable neutral particles reach the decay volume,
where they decay.

tenths of GeV. However, the expected number of protons, which hit the target
in this experiment during the 5 years of running, is of order of 1020, which is a
tremendous number. This way, the high-intensity frontier is reached.

The mass of the D-meson is approximately 2 GeV, therefore SHiP is not sen-
sitive to sterile neutrinos heavier than 2 GeV. In order to probe the range of
larger masses, one can study the decays of heavier mesons [86], B-mesons, which
have mass around 5 GeV and are produced in large quantities in experiments like
LHCb and Belle.

For Ms > 5 GeV, searches at high-energy frontier experiments become more
perspective. An example of the planned experiment is FCC-ee [103], which is an
electron-positron collider. At this experiment, a large amount of real Z bosons
are produced (up to 1013 in a few years), which can decay into sterile neutrino.

1.4 This thesis

1.4.1 Chapter 2

In Chapter 2, we study the pattern of the mixings between the Standard Model
(active) neutrinos and their right-chiral (sterile) counterparts, which give rise to
active neutrino masses via the see-saw mechanism. The bounds on these mixings
are derived by combining neutrino oscillation data and results of direct accelerator
searches. We reinterpret the results of searches for sterile neutrinos by the PS191
and CHARM experiments, considering not only charged current but also neutral
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current-mediated decays, as applicable in the case of the νMSM. The resulting
lower bounds on sterile neutrino lifetime are up to an order of magnitude stronger
than previously discussed in the literature. We demonstrate that the mixing of
sterile neutrinos with any given active flavour can be significantly suppressed, as
compared to the mixings with two remaining flavours.

1.4.2 Chapter 3

In Chapter 3, we analyze the influence of sterile neutrinos on the Big-Bang Nucle-
osynthesis, in particular the primordial abundances of Helium-4 and Deuterium.
We solve explicitly the set of kinetic equations (Boltzmann equations) for all par-
ticle species, which are driven out of thermal equilibrium by presence of sterile
neutrinos, and we take into account neutrino flavour oscillations. We demonstrate
that the nuclear abundances are sensitive mostly to the sterile neutrino lifetime
and only weakly to the way how the active-sterile mixing is distributed between
flavours. The decays of sterile neutrinos also perturb the spectra of (decoupled)
active neutrinos and heats photons, changing the ratio of neutrino to photon en-
ergy density, that can be interpreted as extra neutrino species at later epochs. We
derive upper bounds on the lifetime of sterile neutrinos based on both astrophys-
ical and cosmological measurements of Helium-4 and Deuterium. Combination of
these results with the lower bound on the lifetime from Chapter 2 rules out the
possibility that two sterile neutrinos with the masses between 10 MeV and the
pion mass are solely responsible for neutrino flavour oscillations.

1.4.3 Chapter 4

In the Chapter 4, we are interested in the dynamics of primordial plasma after the
baryogenesis and long before the primordial nucleosynthesis. As we have argued
before, the leptogenesis in the νMSM still takes place at these intermediate tem-
peratures, and the chiral asymmetry is produced as a by-product. Therefore, the
Chiral Magnetic Effect may become important, and trigger the growth of mag-
netic fields. The scale of coherence of the magnetic fields, however, is very large.
On the other hand, we know that charged particles, which are the key ingridient
for the Chiral Magnetic Effect, are massive, and their mass m is larger than the
inverse lengthscale, q, of the magnetic field. However, in the literature the fermion
mass is usually neglected, which corresponds to the opposite limit, q � m. As a
result, the calculation of the current is made for massless fermions, two different
chiralities of which are in thermal equilibrium with its own chemical potential,
either µL or µR (Note that we have considered this approximation in the actual
derivation of the Eq. (1.34).) However, strictly speaking, massive fermions do
not have a definite chirality anymore, and are not in the state of thermal equilib-
rium, due to chirality-flipping processes, so the calculation of the current is not
straightforward. In order to overcome this difficulty, we consider two systems.
In the first one, we consider a definite ensemble of quantum-mechanical states,
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which corresponds to the (local) thermal equilibrium on the one hand, and is
characterized by chiral asymmetry, on the other hand. In the second system, the
chiral asymmetry is introduced at the level of the particle dispersion relation, by
introducing axial self-energy of the form (4.21). Therefore, the asymmetry is ex-
pected to be present in the state of thermal equilibrium, which allows application
of the standard equilibrium method of imaginary-time field theory (Matsubara
technique). However, if one proceeds in a straightforward way, we argue that one
does not necessarily get the correct answer for the electric current.

1.4.4 Chapter 5
As we have mentioned above, the analysis [98] indicates that the Chern-Simons
term is induced by parity-violating particle interactions in a theory with local
four-fermion interaction (Fermi theory). However, we know that in the Standard
Model, this interaction is actually non-local, but is mediated by massive W - and
Z-bosons. Therefore, in Chapter 5 we extend the original study [98] to a simplified
theory with one massive boson, which mediates the parity-violating four-fermion
interaction. The conclusion is that different contributions to the Chern-Simons
term in plasma cancel each other, so that no parity-odd effective action is induced
for the electromagnetic field. We argue that the reason of this apparent conflict
with the result of the local theory lies in that the prediction for the Chern-Simons
term in Fermi theory actually involves an ambiguity, which was not taken into
account before.
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Chapter 2

Experimental bounds on
sterile neutrino mixing angles

2.1 Introduction

As discussed in the Introduction (Section 1.2.1), neutrinos are massive and can
change their flavours while propagating (see e.g. [104] for a review). This is one
of the few firmly established phenomena beyond the Standard Model of parti-
cle physics. While the absolute scale of neutrino masses is not determined yet,
combinations of direct measurements and oscillations experiments put the sum of
their masses below 2 eV [105] while from the cosmological data one can infer an
upper bound of 0.58 eV at 95% CL [106].
Thus the neutrinos are massive but their mass is at least million times smaller
than the masses of other fermions.

A traditional explanation of both neutrino oscillations and the smallness of
neutrino masses is provided by the see-saw mechanism [46, 47, 48, 49], see also
Section 1.3. It assumes the existence of several right-handed neutrinos (Fig. 1.3)
coupled to their Standard Model counterparts via the Yukawa interaction, provid-
ing the Dirac masses, Md, for neutrinos. The Yukawa interaction terms dictate
the SM charges of the right-handed particles: they turn out to carry no electric,
weak and strong charges; therefore they are often termed “singlet,” or “sterile”
fermions. Sterile neutrinos can thus have Majorana masses, Ms, consistent with
the gauge symmetries of the Standard Model. If the Majorana masses are much
larger than the Dirac ones, the type I seesaw formula (1.10) holds [46, 47, 48, 49].
The masses of sterile neutrinos are much heavier than the active neutrino masses
as a consequence of this formula. This creates quite a unique situation: the left-
chiral and right-chiral counterparts behave as two distinct particles with different
masses and interaction strengths.
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µ

νµ
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νµ N

Figure 2.1: Leptonic decay of the Ds meson, Ds → µ+ + νµ (left) is accompanied
by the decay to sterile neutrino, N , Ds → µ+ +N (right). On the right, the weak
eigenstate νµ is converted to the mass eigenstate of N . The relative probability
of the left and right processes is different by ϑ2 = |Md/Ms|2.

As we have argued in Sec. 1.3, although sterile neutrinos are neutral with
respect to the SM charges, they interact with the SM matter through mixing
with active neutrinos, and can be detected (See Fig. 2.1). This opens a possibility
to search for sterile neutrinos at particle physics experiments.
Any process with active neutrino in the initial or final state has its coun-
terpart with sterile neutrino (if kinematically allowed) with the probability
suppressed by the squared mixing angle ϑ2.

2.1.1 Previous bounds on sterile neutrino interactions
Numerous searches for sterile neutrinos in the mass range up to ∼ 500 GeV
had been performed in the past (see the corresponding section in Particle Data
Group [105],1 see also [107, 101] and refs. therein). These searches provided upper
bounds on the strength of interaction of these neutral leptons with the SM neutri-
nos of different flavours – active-sterile neutrino mixing angles for sterile neutrino
with the mass Ms.2 These bounds then can be interpreted as lower bounds on
the lifetime of sterile neutrinos τs via

τ−1
s =

G2
FM

5
s

96π3

∑
α

ϑ2
α

∑
X

B
(α)
X , (2.1)

where the sum runs over various kinematically allowed decay modes X of sterile
neutrinos. The coefficients B(α)

X depend on the sterile neutrino mass. For example,

1http://pdglive.lbl.gov/Rsummary.brl?nodein=S077&inscript=Y
2Here and below we use the letter ϑ for active-sterile mixing angles (defined by Eq. (2.12)

below) while reserving θ12, θ13 and θ23 for the measured parameters of the active neutrinos
matrix m̂ν . These quantities ϑα are often denoted |V4α|2 or |Uxα|2 in the experimental papers,
to which we refer. Here and below the Greek letters α, β are flavour index e, µ, τ and i, j = 1, 2, 3
denote active neutrino mass eigenstates.
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if sterile neutrino is lighter than two electron masses, then the only kinematically
allowed decay mode is N → ννν̄, and

Beννν = Bµννν = Bτννν = 1 (2.2)

For higher masses, the coefficients B(α)
X can be read from [99].

The lower bound on the lifetime τs is usually dominated by the least con-
strained mixing angle, which happens to be ϑ2

τ (as will be shown later). This
bound can be made stronger if one assumes that the same particles are also re-
sponsible for the neutrino oscillations. The see-saw formula (2.3) limits (at least
partially) possible values of ratios of the mixing angles ϑ2

α/ϑ
2
β . In the simplest

case when only two sterile neutrinos are present (the minimal number, required to
explain two observed neutrino mass differences) the ratios of mixing angles varies
within a limited range, see e.g. [108, 109]. While this range can be several orders
of magnitude large (owing to our ignorance of certain oscillation parameters, such
as e.g. a CP-violating phase [108, 109]), the implied (lower) bounds on the life-
time become much stronger, essentially being determined by the strongest, rather
than the weakest direct bound on ϑα.

The structure of this Chapter

In this Chapter we summarize restrictions on sterile neutrino lifetime in view
of the recent results of the Daya Bay [10] and RENO [9] collaborations, that
measured a non-zero mixing angle θ13 (see also [13, 12]). We demonstrate that in
the case when there are only two sterile neutrinos, responsible for the observed
neutrino oscillations, the oscillation data allow for such a choice of the active-
sterile Yukawa couplings that the mixing of sterile neutrinos with any given flavour
can be strongly suppressed. This happens only for a non-zero values of θ13, in the
range consistent with the current measurements [110, 111, 10, 9]. The results of
this Chapter partially overlap with [112] (also [113]), and we make the comparison
with the previous works in the corresponding places.

This Chapter is organized as follows: in Section 2.2 we briefly describe the
model of sterile neutrinos that we use. We then investigate the relations between
different mixing angles imposed by the see-saw mechanism and demonstrate that
the mixing with any flavour ϑ2

α can become suppressed (Section 2.3). Section 2.4
is devoted to the overview of the experiments, searching for sterile neutrinos with
the masses below 2GeV, and the way one should interpret their results to apply to
the see-saw models that we study. Section 2.5 summarizes our revised bounds on
mixing angles and translates them into the resulting constraints on sterile neutrino
lifetime (Figs. 2.8). We conclude in Section 2.6, discussing implications of our
results and confronting them with the bounds from primordial nucleosynthesis.
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2.2 Sterile neutrino Lagrangian

2.2 Sterile neutrino Lagrangian

The minimal way to add sterile neutrinos to the Standard Model is provided by
the Type I see-saw model (Eq. (1.9) in Section 1.3), see also [46, 47, 48, 49],
[114, 115, 116, 117] and refs. therein). This model contains N new fermions NI
— sterile neutrinos. How many of them can there be?

The masses of the active neutrinos are given by the seesaw relation

m̂ν = −MdM
−1
s MT

d , (2.3)

where m̂ν is a 3 × 3 matrix of active neutrino masses, mixings, and (possible)
CP-violating phases, Ms is the matrix of the Majorana masses of sterile neutrinos
NI and theMd is the usual Dirac mass term coupling active and sterile neutrinos.
Formula (1.10) is a particular case of the relation (2.3) for mathcalN = 3 and
diagonal form of the Majorana matrix Ms.

The number of these singlet fermions must be N ≥ 2 to explain the data on
neutrino oscillations. In the case of N = 2 there are 11 new parameters in the
Lagrangian (1.9), while the neutrino mass/mixing matrix m̂ν has 7 parameters in
this case. The situation is even more relaxed forN > 2. The see-saw formula (2.3)
does not allow to fix the scale of Majorana and Dirac Md,αI = FαI〈Φ〉 masses.

2.2.1 Two quasi-degenerate sterile neutrinos

In this work we will mostly concentrate on sterile neutrinos with their masses Ms

in the MeV–GeV range – the range in which the past direct accelerator searches
were the most sensitive. To further simplify our analysis we will concentrate on
the case when the masses of both sterile neutrinos are close to each other (so
that ∆M � Ms). One important example of such model is provided by the
Neutrino Minimal Standard Model (the νMSM) ([118, 119], see [120] for review).
Within the νMSM there are 3 sterile neutrinos, whose masses are roughly of the
order of those of other leptons in the Standard Model (see Section 1.3.4). Two
of these particles are approximately degenerate in their mass and are responsible
for baryogenesis and neutrino oscillations and the third one is playing the role of
dark matter. As we have noticed in Section 1.3, the requirement of dark matter
stability on cosmological timescales makes its coupling with the Standard Model
species so feeble, that it does not contribute significantly to the neutrino oscillation
pattern [118, 121]. Therefore, when analyzing neutrino oscillations, the N1 can
be omitted from the Lagrangian and index I in the sums runs through 2 and 3
only. Taking into account that M2 ≈ M3 ≈ Ms, we perform a rotation in the
space (N2, N3) → (N2,N3) such that the Majorana mass term of the see-saw
Lagrangian (1.9) is off-diagonal3

3This parametrization coincides with [109, Eq. (2.1)].
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∆LνMSM
N2,N3

= iN̄I/∂NI−Md,αI ν̄αNI−M∗d,αIN̄Iνα−Ms

(
N̄ c

2N3 +N̄3N
c
2 ) (2.4)

In what follows we will abuse the notations and continue to use N2, N3 also for the
basis of the Lagrangian (2.4).

2.3 Solution of the see-saw equations
In this Section we investigate how mixing angles between active and sterile neu-
trinos are related to parameters of the observable neutrino matrix m̂ν . We will
demonstrate that the mixing angle ϑ2

e in the case of normal hierarchy and the
mixing angles ϑ2

µ or ϑ2
τ in the case of inverted hierarchy, can become suppressed

as we vary the parameters of the neutrino matrix away from their best-fit values
(but within the experimentally allowed 3σ bounds).

2.3.1 Parametrization of the Dirac mass matrix
We use the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) parametrization of the
neutrino matrix m̂ν (see e.g. Eqs.(2.10) and (2.12) of [104])

m̂ν = V ∗diag(m1e
−2iζ , m2e

−2iξ, m3)V † , (2.5)

where V is the unitary matrix, whose explicit standard form is (cf. e.g. [104])

V =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13

0 eiφ 0
−s13 0 c13

 c12 s12 0
−s12 c12 0

0 0 1



=

 c12c13 c13s12 s13

−c23s12e
iφ − c12s13s23 c12c23e

iφ − s12s13s23 c13s23

s23s12e
iφ − c12c23s13 −c12s23e

iφ − c23s12s13 c13c23

 . (2.6)

where cij = cos θij , and sij = sin θij .
Redefining a Dirac mass matrix as4

Md → M̃d ≡ V TMd , (2.7)

we can rewrite the see-saw relation (2.3) in the following form:

diag(m1e
−2iζ , m2e

−2iξ, m3)ij = −M̃d,i2M̃d,j3 + M̃d,i3M̃d,j2

Ms
, (2.8)

4The Dirac matrix M̃d has indexes I = 2, 3 and i, j = 1, 2, 3, which correspond to sterile and
active neutrino mass eigenstates, respectively.
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Normal hierarchy Inverted hierarchy

∆m2
21 (7.09− 8.19)× 10−5 eV2

∆m2
31 (2.14− 2.76)× 10−3 eV2 ∆m2

13 (2.13− 2.67)× 10−3 eV2

sin2 θ12 0.27− 0.36
sin2 θ23 0.39− 0.64
sin2 θ13 0.010− 0.038 (0.013− 0.040)

Table 2.1: The 3σ bounds on the parameters of the mass matrix m̂ν , adopted
from [123, 111, 10, 9]. Here ∆m2

ij = m2
i − m2

j . The boundaries for inverted
hierarchy are the same as for the normal one, unless written explicitly. The range
of sin2 θ13 is taken from the data of the Daya Bay experiment [10] (the values in
parentheses – from RENO [9]).

The rank of the active neutrino mass matrix Mν is 2 in the case of two sterile
neutrinos, meaning that one of the masses mi is zero.
In neutrino oscillations, only two independent combinationsm2

2−m2
1 andm2

3−m2
1

of the active neutrino mass eigenvalues m1,m2,m3 are measured. Based on this,
two choices of “hierarchies” are possible, which cannot be distinguished from
neutrino oscillation data alone. The first one is called normal hierarchy (NH)
and corresponds to 0 ≤ m1 < m2 < m3. The second one is called inverted
hierarchy (IH) and is realized for 0 ≤ m3 < m1 < m2.

Once the mass Ms is fixed, the solutions of Eq. (2.8) contain one unknown
complex parameter, z. Its presence reflects a symmetry of the see-saw relation
(2.8) under the change (M̃d,i2, M̃d,i3) → (zM̃d,i2, z

−1M̃d,i3) [122]. It is this free-
dom that does not allow to fix the absolute scale of M̃d (i.e. the value of ϑ2) even
if Ms is chosen.

The change z → z−1 is equivalent to the redefinition of N2 → N3, N3 → N2

together with shift of the Majorana phase ξ → ξ + π in (2.8). Therefore in
subsequent analysis we will choose |z| ≥ 1 without the loss of generality.

2.3.2 Normal hierarchy
For normal hierarchy the explicit see-saw relation is

diag(0, m2e
−2iξ, m3)ij = −M̃d,i2M̃d,j3 + M̃d,i3M̃d,j2

Ms
. (2.9)

Diagonal components of this matrix equation give

M̃d,12M̃d,13 = 0, M̃d,22M̃d,23 =
1
2
m2Mse

−2iξ, M̃d,32M̃d,33 =
1
2
m3Ms . (2.10)

Using m2,m3 6= 0 we find that M̃d,22, M̃d,23, M̃d,32, M̃d,33 are all non-zero.
Analysis of non-diagonal terms reveals that both M̃d,12 and M̃d,13 are zero and
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there are two general solutions (c.f. [122]):

M̃±d,i2 = iz

√
Ms

2
(0, ±ie−iξ√m2,

√
m3), M̃±d,i3 = iz−1

√
Ms

2
(0, ∓ie−iξ√m2,

√
m3) .

(2.11)

The solution M̃+
d with ξ = ψ + π equals to M̃−d with ξ = ψ. It allows us to

consider only one solution M̃+
D on the interval 0 ≤ ξ < 2π. In what follows we

therefore omit the superscript +.5
The mixing angles of the active-sterile neutrinos are defined as follows:

2ϑ2
α ≡

∑
I

|(MdM
−1
s )αI |2 =

∑
I

|(V ∗M̃dM
−1
s )αI |2 =

1
M2
s

∑
I

|(V ∗M̃d)αI |2 .

(2.12)

Inserting the explicit solution (2.11) for M̃d results in

ϑ2
α =

|z|2
4Ms

∣∣√m3Vα3 − ieiξ
√
m2Vα2

∣∣2 +
1

4Ms|z|2
∣∣√m3Vα3 + ieiξ

√
m2Vα2

∣∣2 .
(2.13)

For |z| � 1 the contribution of M̃d,i3 is suppressed compared with that of M̃d,i2
and therefore we neglect the former (we will comment below on the case |z| & 1).

As the value of the Majorana phase ξ is undetermined experimentally, the
condition ϑα = 0 is satisfied iff m3|Vα3|2 = m2|Vα2|2 (we neglect second term on
the r.h.s. of (2.13)). For the electron flavour (α = e) it translates into

sin2 θ12
m2

m3
= tan2 θ13, (2.14)

which, in principle, can be satisfied only for non-zero θ13. This result has been
already obtained in [112].

The bounds on the parameters of the mass matrix m̂ν at the 3σ level that we
use are shown in Table 2.1. Note that in the present analysis we do not take into
account statistical correlations between different oscillation parameters, allowing
them to vary independently within their 3σ intervals. Consequently, we obtain
the 3σ intervals for the combinations of parameters, entering Eq. (2.14)6:

0.043 < sin2 θ12
m2
m3

< 0.070,
0.010(0.014) < tan2 θ13 < 0.039(0.042),

(2.15)

5Unlike the parametrizations used e.g. in Ref. [124, 122, 112] this way of parametrizing the
solution of the see-saw equations shows that there is only one branch of solutions, with all other
related to it via redefinitions N2 ↔ N3 and shift of the Majorana phases. In particular in the
parametrization we used it is much easier to analyze whether mixing angles become zero. The
relation |z| = exp(Im ω) holds, where the parameter ω was employed in [112].

6 Throughout this Chapter whenever two numbers are given instead of one, the first is based
on the results of the Daya Bay experiment [10], and the second one (in parentheses) is obtained
based on the result of application of the RENO bounds [9] (see Table 2.1).
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They imply that the relation (2.14) does not hold exactly for the neutrino
oscillation parameters, presented in Table 2.1. Therefore the mixing angle ϑ2

e

cannot become zero, but has a non-trivial lower bound. To find the minimal
value that it can reach, we consider the ratio of the angles ϑ2

e/(ϑ
2
e + ϑ2

µ + ϑ2
τ ).

Due to the unitarity of V , the denominator is

∑
α

ϑ2
α ≈

1
2M2

s

∑
α,β,γ

V ∗αβM̃d,β2VαγM̃
∗
d,γ2 =

1
2M2

s

∑
β

|̃Md,β2|2 =
|z|2
4Ms

(m2 +m3).

(2.16)

Let us denote the ratio of the mixing of sterile neutrinos with one flavour to the
sum of all mixings by Tα,

Tα ≡
ϑ2
α∑

β

ϑ2
β

. (2.17)

Then we get the following expression for Te:

Te =
|ieiξc13s12

√
m2
m3
− s13|2

1 + m2
m3

. (2.18)

The minimum is achieved if we push θ12 and ∆m2
21 to their 3σ lower boundaries,

θ13 and ∆m2
31 to their upper boundaries, and choose ξ = −π/2. The maximum is

achieved when we set ∆m2
31 equal to its lower bound, θ13, θ12 and ∆m2

21 to their
upper bounds, and by choosing the Majorana phase α = π/2. The bounds on Te
from Table 2.2 translate into the bound for the muon and tau flavours combined:

0.83 ≤ Tµ + Tτ . (2.19)

The minimum and maximum of different Tα are listed in the Table 2.2 and in
Fig. 2.2.

This analysis was conducted in approximation of large |z|. See Sec. 2.3.4 for
the account of finite-|z| effects.

2.3.3 Inverted hierarchy
Similarly to the previous case, for the inverted hierarchy we get a solution of the
see-saw equations (2.8)

M̃d,i2 = iz

√
Ms

2
(e−iζ

√
m1, ie

−iξ√m2, 0), M̃d,i3 = iz−1

√
Ms

2
(e−iζ

√
m1, −ie−iξ

√
m2, 0)

(2.20)
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Normal hierarchy Inverted hierarchy
Te ≤ 0.15 0.02 ≤ Te ≤ 0.98

0.09 ≤ Tµ ≤ 0.89 0 ≤ Tµ ≤ 0.60
0.08 ≤ Tτ ≤ 0.88 2× 10−4 (7× 10−5) ≤ Tτ ≤ 0.62

The ranges are based on 2σ bounds
Normal hierarchy Inverted hierarchy

Te ≤ 0.17 0.02 ≤ Te ≤ 0.98
0.07 ≤ Tµ ≤ 0.92 0 ≤ Tµ ≤ 0.63
0.06 ≤ Tτ ≤ 0.90 0 ≤ Tτ ≤ 0.65
The ranges are based on 3σ bounds

Table 2.2: The ratio of the sterile neutrino mixing with a given flavour α to the
sum of the three mixings, Tα (defined by (2.17)). Left table shows the upper
and lower values of Tα when parameters of neutrino oscillations are allowed to
vary within their 2σ boundaries (taken from [123]). The right table shows the
results when the parameters of active neutrino oscillations are varied within their
3σ limits (see Table 2.1). For the explanation of the numbers in parentheses, see
Footnote 6.

for 0 ≤ ξ < 2π. In this case ϑ2
µ or ϑ2

τ can become very suppressed, as we will
show soon.

The mixing angles are

ϑ2
α =

|z|2
4Ms

∣∣∣√m1Vα1 − iei(ξ−ζ)
√
m2Vα2

∣∣∣2+
1

4Ms|z|2
∣∣∣√m1Vα1 + iei(ξ−ζ)

√
m2Vα2

∣∣∣2 .
(2.21)

For |z| � 1 they can become close to zero only if
√
m1|Vα1| =

√
m2|Vα2|. For

α = µ this condition translates into

| tan θ12 + sin θ13 tan θ23e
−iφ| =

√
m2

m1
|1− sin θ13 tan θ12 tan θ23e

−iφ|. (2.22)

For the parameter set close to the best fit, left-hand side is less than the right-
hand side, because then sin θ13 ≈ 0, while tan θ12 < 1 and m1 ≈ m2. To attain
the equality one has to push left-hand side up and the right-hand side down.
φ = 0 makes phases of both complex terms inside |...| on the left-hand side equal,
thereby the absolute value of their sum becomes maximal. Simultaneously the
right-hand side becomes minimal. For this specific choice of the Dirac angle the
equality (2.22) turns into√

m2
m1
− tan θ12√

m2
m1

tan θ12 + 1
= sin θ13 tan θ23. (2.23)
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The 3σ bounds for inverted hierarchy in general are the same as for the normal
one (see Table 2.1) with the exception of the “atmospheric” mass difference, that
slightly differs. Using these values we find

0.14 <

√
m2
m1
− tan θ12√

m2
m1

tan θ12 + 1
< 0.24, 0.08 (0.09) < sin θ13 tan θ23 < 0.26. (2.24)

We see that two regions overlap, therefore the relation (2.22) can be satisfied
and ϑ2

µ can be zero in a wide region of values of the parameters of the neutrino
oscillation matrix. See, however, Sec. 2.3.5 below.

Similarly, the condition ϑτ = 0 (for φ = π) translates into√
m2
m1
− tan θ12√

m2
m1

tan θ12 + 1
= sin θ13 cot θ23, (2.25)

and can be satisfied, because the quantity on the right hand side varies from
0.07 (0.09) to 0.24 (0.25), well within the range of (2.24).7

On the other hand, ϑe can be zero only if

cot θ12 =
√
m2

m1
(2.26)

can be realized. The left hand side is always larger than the right hand side (within
the 3σ region), therefore no ϑe suppression can occur. However it is important
to know what minimal value this mixing angle can reach. According to Eq.(2.21)
electron mixing angle is given by

ϑ2
e =

|z|2
4Ms

cos2 θ13

(
m1 cos2 θ12 +m2 sin2 θ12 + sin(ξ − ζ) sin 2θ12

√
m1m2

)
.

(2.27)

For ξ − ζ = −π/2 this quantity is minimal

ϑ2
e,min =

|z|2
4M2

s

cos2 θ13 (
√
m1 cos θ12 −

√
m2 sin θ12)2

. (2.28)

To compare it with the other mixing angles, we note that the relation∑
α

ϑ2
α ≈

|z|2
4Ms

(m1 +m2) (2.29)

7It was pointed out in [112] that both ϑµ and ϑτ can be suppress in inverted hierarchy, for
θ13 = 0. For this to happen the relation

√
m2
m1

= tan θ12 should hold, as one can also see from

Eqs. (2.23) and (2.25). The corresponding value of θ12 is however well outside the 3σ interval.
The general case θ13 6= 0 has not been analyzed in [112].
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Figure 2.2: The minimal ratios of mixing angles Tα = ϑ2
α/
∑
ϑ2
β . The upper fig-

ure depicts normal hierarchy, two lower ones – IH. In all figures, the lower curve
corresponds to the choice of the mixing angles and mass splittings that minimizes
the ratio within the 3σ range, upper – that maximizes it, middle employs the
best-fit parameters (for details of the choices, see Secs. 2.3.2, 2.3.3). CP-phases
are ξ = −π/2 for the Te-plot, φ = 0, ξ−ζ = π/2 for Tµ, and φ = π, ξ−ζ = −π/2
for Tτ . The bands Daya Bay and RENO correspond to the 3σ ranges of θ13,
indicated by the corresponding experiments [10, 9].

holds (similar to Eq.(2.16) in the case of normal hierarchy). Therefore

ϑ2
e,min∑
α
ϑ2
α

=
cos2 θ13

1 + m2
m1

(
cos θ12 −

√
m2

m1
sin θ12

)2

. (2.30)

The results of the analysis are listed in Table 2.2 and Fig. 2.2. From the upper
bound on Tα we derive the bound

Tµ + Tτ ≥ 0.02 . (2.31)

We see that in this mass hierarchy it is possible for the overall coupling of the
sterile neutrino to both µ and τ flavours to become tiny compared to the electron
flavour coupling.

The analysis for the inverted hierarchy was made for |z| � 1. See the Sec. 2.3.4
below for the case |z| ∼ 1.
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2.3 Solution of the see-saw equations

2.3.4 Ratio of sterile neutrino mixing angles for |z| ∼ 1

As the expressions (2.13) and (2.21) show, the mixing angles have two terms: one
is proportional to |z|2 and another to |z|−2 (recall that |z| ≥ 1). It was shown
in Sec. 2.3.3 that for inverted hierarchy the |z|2-term can be zero for ϑ2

µ and ϑ2
τ ,

while the |z|−2 term in general stays finite.
For a given value of |z|, the |z|−2-term is bounded from above. According to

(2.13) and (2.21), its maximum is realized simultaneously with the maximal value
of

LNHα = |Vα3 + ieiξ
√
m2

m3
Vα2|2 (2.32)

in the normal hierarchy, and

LIHα = |Vα1 + iei(ξ−ζ)
√
m2

m1
Vα2|2 (2.33)

in the inverted hierarchy.
Analysis, similar to that of the Sections 2.3.2–2.3.3 shows that

LNHe ≤ 0.2, LNHµ ≤ 1.1, LNHτ ≤ 1.1, LIHe ≤ 1.96, LIHµ ≤ 1.3, LIHτ ≤ 1.3 .
(2.34)

These bounds allow to estimate the contribution of the |z|−2-terms to the whole
sum of the squared mixing angles∑

α

ϑ2
α =

m1 +m2 +m3

4Ms

(
|z|2 +

1
|z|2

)
. (2.35)

The ratio of (2.32)–(2.33) to (2.35) gives

RNHα =
LNHα

(1 + m2
m3

)
1

|z|4 + 1
, RIHα =

LIHα
(1 + m2

m1
)

1
|z|4 + 1

. (2.36)

For z ∼ 1 it can become of order unity. However, we restrict ourselves to the suf-
ficiently large values z & 10, that are consistent with the upper bound, indicated
by the experiments (see Fig.2.9)

RNHe . 2× 10−5, RNHµ,τ . 10−4, RIHe . 10−4, RIHµ,τ . 5× 10−5 . (2.37)

Comparison these results with the lower bounds (Table 2.2) we see that z−1

terms are unimportant for the for all mixing angles in NH and ϑe in IH. What
concerns the remaining angles ϑµ and ϑτ in IH, they can be substantially modified
by account of z−1-terms, but anyway each of them can become small enough,
compared to the other angles, as explained in next section. As a corollary, analysis
and results of Secs. 2.3.2,2.3.3 do not change significantly for large enough values
of z.

56



Experimental bounds on sterile neutrino mixing angles

2.3.5 Minimal mixing angles in the νMSM
Finally, we find the minimal values of the sterile neutrino mixing angles in the
νMSM , compatible with the neutrino oscillation data. These angles will turn
out to be much smaller than the experimental upper bounds in all regions of
masses, probed by the experiments. A general solution of the see-saw equations
(2.13), (2.21) gives ϑ as a function of |z|:

ϑ2
α = Aα|z|2 +

Bα
|z|2 (2.38)

with coefficients Aα and Bα independent of |z|. The minimum of this expression
is reached for |z|2α =

√
Bα/Aα ≥ 1 and is given by

(ϑ2
α)min = 2

√
AαBα. (2.39)

To find the absolute lower bound on the mixing angle for a given sterile neutrino
mass, we vary this expression over the parameters of neutrino oscillations. The
resulting mixing angles and the corresponding values of |z| are listed in Table 2.3.8
One can see that the values presented therein do not depend significantly on the
3σ upper bound on θ13 that we choose. The only exception is the minimum of
the ϑe angle. In this case the exact value of the upper bound on θ13 defines how
close Aα, and hence (ϑ2

α)min, can come to zero.
For the mixing angles ϑ2

µ,τ in the case of inverted hierarchy Aα = 0, Bα 6= 0
and formally for infinitely large |z| they would become zero. The value of |z|,
however, is bounded from above, |z| < zmax, by the requirement that none of
three mixing angles exceeds its upper bound (for quantitative estimates of zmax,
look at Fig. 2.9). Therefore the couplings to µ and τ neutrinos remain finite.
Estimates of mixing angles can be provided for Bα given by LIHα (2.33,2.34),
along with Aµ,τ = 0, z = zmax

ϑ2
µ,τ & 2× 10−8 MeV

Msz2
max

, (IH) (2.40)

8Notice, that the ratio of the mixing angles ϑ2
α/ϑ

2
β does not reach its minimum when (2.39)

is satisfied. The values of |z| for which the bounds on the lifetime are relaxed the most are those
when some of the mixing angles reach their upper experimentally allowed value.
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Flavour α (ϑ2
α)min @ 1 MeV |z|

e 7× 10−10 2.2 (2.4)
µ, τ 10−8 1.5

(a) NH, best-fit

Flavour α (ϑ2
α)min @ 1 MeV |z|

e 10−10 (4× 10−11) 6.2 (9.8)
µ 8× 10−10 (6× 10−10) 5.4 (6.3)
τ 1.2× 10−9 (1.0× 10−10) 4.6 (5.1)

(b) NH, 3σ

Flavour α (ϑ2
α)min @ 1 MeV |z|

e 10−8 2.3
µ, τ 2× 10−9 3.5

(c) IH, best-fit

Flavour α (ϑ2
α)min @ 1 MeV |z|

e 6× 10−9 2.7
µ, τ see text

(d) IH, 3σ

Table 2.3: Minimal values of the active-sterile mixing angles ϑ2
α, obtained using

the best-fit values of neutrino oscillation parameters or by varying the neutrino
oscillation data within their 3σ intervals, listed in Table 2.1. The values for
(ϑ2
α)min are provided for sterile neutrinos with the mass Ms = 1 MeV. For other

masses one should multiply them by ( MeV/Ms). Columns “ |z|” show the values
of |z| for which the minimum in (2.38) is reached. For the explanation of numbers
in brackets, see Footnote 6.

2.4 Experimental bounds on sterile neutrino mix-
ings

The direct experimental searches for neutral leptons had been performed by a
number of collaborations [125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137] (see e.g. [108, 107] for review of various constraints). The negative results
of the searches are converted into the upper bound on ϑαϑβ for different flavours.
If neutrino oscillations are mediated by these sterile neutrinos, these bounds can
be translated into the upper bounds on parameter |z| and lower bounds on sterile
neutrino lifetime.

Below, we take a closer look at two main types of experiments (“peak searches”
and “fixed target experiments”)9 and describe reinterpretation of these bounds in

9The neutrinoless double-beta decay (0νββ) does not provide significant restrictions on the
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Experimental bounds on sterile neutrino mixing angles

the case, when sterile neutrinos with MeV–GeV masses are also responsible for
neutrino oscillations.

2.4.1 Peak searches

In “peak search” experiments [140, 141, 142, 143], one considers the two-body
decay of charged π or K mesons to charged lepton (e± or µ±) and neutrino
(see e.g. [107] for discussion). In case of the pion decay the limit on ϑ2

e for
masses in the range 60 MeV ≤Ms ≤ 130 MeV is provided by the searches for the
secondary positron peak in the decay π+ → e+N to the massive sterile neutrino
N as compared to the primary peak coming from the π+ → e+νe decay. Recent
analysis of [136] puts this limit at ϑ2

e < 10−8 in the mass range 60− 129 MeV, for
earlier results see [127, 128]. In the smaller mass region (4 MeV . Ms . 60 MeV)
Refs. [127, 128] provided the bound based on the change of the number of events
in the primary positron peak located at energies Mπ/2 . Similar bounds were
obtained for the same mixing angle in studies of kaon decays [131] and for the ϑ2

µ

in the decays of both pions [133, 134, 135] and kaons [131, 132].
The lower bound on the sterile neutrino lifetime τs in the model (2.4), based on

the peak search data and neutrino oscillations is shown in Fig. 2.3 by dot-dashed
green lines. The parameters of neutrino mixing matrix are allowed to vary within
their 3σ limits (to minimize τs, while still keeping the values of all mixing angles
compatible with the bounds from direct experimental searches).

2.4.2 Fixed target experiments and neutral currents con-
tribution

The second kind of experiments (“fixed target experiments”) [126, 129, 130] aims
to create sterile neutrinos in decays of mesons and then searches for their decays
into pairs of charged particles. Notice, that the expected signal in this second
case is proportional to ϑ4

α or ϑ2
αϑ

2
β (and not to ϑ2

α as in the case of peak searches,
discussed in the Section 2.4.1). We will demonstrate below that in the models
like (2.4) (and in particular in the νMSM ) the results of some fixed target exper-
iments should be reinterpreted and will provide stronger bounds than discussed
in previous works [108, 107, 112] (see also [144]).

2.4.3 Reinterpretation of the PS191 and CHARM experi-
ments

The experiment PS191 at CERN was a “fixed target” type of experiment de-
scribed above [125, 126]. In searches for sterile neutrinos lighter than the pion

parameters of the sterile neutrinos in the type-I see-saw models (contrary to the case discussed
in e.g. [107]), see discussion in [112, 138]. In particular, this is the case in the νMSM [139].
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Figure 2.3: The lower bounds on the lifetime of sterile neutrinos, responsible for
the mixings between active neutrinos of different flavours in the see-saw mod-
els (2.4). The bounds are based on the combination of negative results of direct
experimental searches [125, 126, 128, 136, 131, 132, 133, 134, 135] with the neu-
trino oscillation data [123]. The neutrino oscillation parameters are allowed to
vary within their 3σ confidence intervals to minimize the lifetime. The solid black
curve is based on our reinterpretation of PS191 data only, that takes into account
charged and neutral current contributions (see Sec. 2.4.3). The interpretation of
the PS191 experiment, taking into account only CC interactions (used e.g. in the
previous works [108, 112]) is shown in magenta dashed line. The bound from peak
searches experiments only [128, 136, 131, 132, 133, 134, 135] is plotted in green
dot-dashed line.

Ms < Mπ, the pair of charged particles that were searched for in the neutrino
decay comprised mostly of electron and positron:

π+/K+ → e+ + N
↪→ e+ e−να ,

(2.41)

where N is a sterile neutrino with the mass Ms. The first reaction in the chain
is solely due to the charged-current (CC) interaction, and its rate is proportional
to the ϑ2

e.
If sterile neutrinos interact through both charged and neutral currents (CC+NC)

as it is the case in the models with the see-saw Lagrangian (2.4), any of three
active-neutrino flavours may appear in the decay of N in (2.41). The decay widths
are [140]:

Γ(N → e+e−να) = cαϑ
2
α

G2
FM

5
s

96π3
, (2.42)

with the following definition10

ce =
1 + 4 sin2 θW + 8 sin4 θW

4
, cµ = cτ =

1− 4 sin2 θW + 8 sin4 θW
4

, (2.43)

10Note that in the Ref. [145] there is a typo in the expression for cτ (Eq. (2)).
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Figure 2.4: Comparison with the previous bounds on sterile neutrino lifetime in
the νMSM [112]. The solid purple curves represent the results of the present
analysis, obtained by the combination of peak searches experiments [128, 136,
131, 132, 133, 134, 135] together with the reanalysis of PS191, that takes into
account neutral currents (a union of black and green bounds from Fig. 2.3). The
red dashed curve is based on the combination of the same peak searches with
the original interpretation of PS191 (i.e., with charged current interactions only).
The blue dot-dashed line is taken from [112]. Notice, that the results of [112] were
multiplied by a factor 2 to account for the Majorana nature of the particles (see
discussion in Sec. 2.4.4), that was missing therein. The difference between the red
and blue lines in the case of normal hierarchy is explained by wider 3σ intervals
for neutrino oscillation data, used in [112], compared to our analysis.

and θW is the Weinberg’s angle so that sin2 θW ≈ 0.231 and ce ≈ 0.59, cµ(τ) ≈
0.13. Therefore, the total number of events inside the detector that registers
electron-positron pairs would be proportional to the combination of mixing angles
ϑ2
e × (

∑
cαϑ

2
α).

However, the model employed in the interpretation of the PS191 experiment [125,
126] was different, as has already been pointed in [144]. In the original analysis
it was assumed that sterile neutrino interacts only via charged currents, but not
through neutral currents. In our language it means that ce = 1, cµ(τ) = 0 was
used instead of the values (2.43)11. As was noticed above, the probability of me-
son decay into sterile neutrino does not alter if we exclude the neutral-current
interaction, and therefore the total number of events with the electron-positron
pair would be proportional to ϑ2

e × ϑ2
e.

Therefore if we denote the bounds listed in [125, 126] as ϑ4
e ≤ ϑ4

e(exp), then

11Model described in [125, 126] contains only one Dirac neutrino, while in the νMSM we have
two Majorana fermions. Therefore actually ce = 1/2 in the original model. For details see
Sec. 2.4.4
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Figure 2.5: Comparison of the bounds on sterile neutrino lifetime (in the model
(2.4)) based on the results of the CHARM experiments [130] solely (combined
with the neutrino oscillation data). The orange (upper) curves correspond to
the model with charged and neutral current interactions of sterile neutrinos, the
brown (lower) – to the model with charged current interactions only. For details,
see Sec. 2.4.3.

the bound for the νMSM takes form

ϑ2
e

 ∑
α={e,µ,τ}

cα ϑ
2
α

 ≤ ϑ4
e(exp) . (2.44)

Similar bounds can be extracted from the reanalysis of meson decays into muon
and sterile neutrino, that leads to replacement e → µ in (2.44). As a result,
the reinterpretation of the results of the PS191 experiment in combination with
neutrino oscillation data produces up to an order of magnitude stronger bounds
on lifetime than in the previous works (see Figs. 2.3 and 2.4).

Similarly, the CHARM experiment [130] provided bounds on the mixing angles
of sterile neutrinos in the mass range 0.5 GeV . Ms . 2 GeV. In the original
analysis NC contributions were neglected. Therefore, to apply the results of this
experiment to the case of the νMSM , we reanalyzed the data as described above.
In Fig. 2.5 we compare lifetime bounds coming from the CHARM experiment
solely for CC and CC+NC interactions of sterile neutrinos. The difference in this
case is about a factor of 2.12

12In the case of the PS191 experiment, when using CC only for masses below the mass of
pion suppression of the ϑ2

e mixing angle due to neutrino oscillations meant that instead of ϑ2
e

bounds the lifetime is defined by the (much weaker) ϑ2
µ bounds. That led to the significant

relaxation of the lower bound on the lifetime. If NC were taken into account, this was not
possible anymore and therefore the lower bound on sterile neutrino lifetime became stronger by
as much as the order on magnitude (black vs. magenta curve on the left panel in Fig. 2.3. In
case of the CHARM experiment, both ϑ2

e and ϑ2
µ are strongly constrained and switching from

one constraint to another makes (numerically) much smaller difference.
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Figure 2.6: Direct accelerator bounds on the combination of active-sterile neutrino
mixing angles, resulting from the reanalysis of the PS191 experiment [125, 126],
taking into account decays of sterile neutrino through both charged and neutral
currents and their Majorana nature. The shaded region is excluded. The case,
analyzed in the original works [125, 126] (decay of sterile neutrino through the
charged current only) corresponds to the choice ce = 1, cµ = cτ = 0, for details,
see Sec. 2.4.3. We plot the bounds for two Majorana neutrinos (as in Fig. 2.7)
while in the original works [125, 126] a single Dirac neutrino was analyzed.

2.4.4 A note on Majorana vs Dirac neutrinos
For completeness we briefly discuss the difference in interpreting experimental
results for Majorana vs. Dirac sterile neutrinos. Similar discussion can be found
e.g. in [108]. When interpreting the experimental results one should take into ac-
count that in present analysis we consider two Majorana sterile neutrinos, while
the experimental papers often phrase their bounds in terms of the mixing with a
single Dirac neutrino, that we will denote U2

α. In the νMSM twice more sterile
neutrinos are produced per single reaction (because there are two sterile species
– N2 and N3), and, owing to their Majorana nature, each sterile neutrino de-
cays twice faster (additional charge-conjugated decay modes are present). No-
tice, that the mass splitting between between two sterile states N2, N3 is small
|M2−M3| � 1

2 (M2 +M3) = Ms and once born, the states oscillate fast into each
other. Averaging over many oscillations can be accounted for by an extra factor 1

2
in the number of N2 and N3 species. Therefore, for fixed target experiments one
gets the same number of the detector events involving one Dirac sterile neutrino
as one gets in the νMSM if (ϑ2

α2 + ϑ2
α3)2 = U4

α. That is, one should identify 2ϑ2
α

with the measured U2
α (recall (2.12) that ϑ2

α = 1
2 (ϑ2

α2 +ϑ2
α3)). In the case of peak

searches, the bound U2
α should be interpreted in the νMSM as ϑ2

α,2 + ϑ2
α,3 ≤ U2

α,
as production of any state N2 or N3 contributes to the number of events in the
secondary peak, i.e. again 2ϑ2

α should be identified with U2
α. Notice, that this

factor 2 is missing in [112].

63



2.5 Results

10 20 50 100 200 500 1000 2000
10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

M s @MeVD

Θ
e

2

I

II

III

IV

V

10 20 50 100 200 500 1000 2000
10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

M s @MeVD

Θ
Μ
2

I

II
III

IV

V

Figure 2.7: Direct accelerator bounds on the mixing angles. Left panel: ϑ2
e

bounds, taken from [128] (region I), [136] (region II), [131] (region III), [126,
146] (region IV) and [130] (region V). Right panel: ϑ2

µ bounds, taken from
[133, 134, 135] (region I), [131](region II), [132] (region III), [126](region IV) and
[129] (region V). The shaded regions are ruled out by the experimental findings.
Dashed curves indicate mixing angle bounds given by original interpretation of
PS191 experiment, but we do not use them to derive our final results, as explained
in Sec. 2.4.3. The bounds are shown for the Majorana neutrino and are therefore
two times stronger (see Section 2.4.4), while in the original works [125, 126] a
single Dirac neutrino has been considered.

2.5 Results

In this Section we summarize our results: the upper bound on the (combination
of) mixing angles of sterile and active neutrinos in the see-saw models (2.1) in the
range 10 MeV – 2 GeV and the lower bound on sterile neutrino lifetime, obtained
in combination of these bounds with constraints, coming from neutrino oscillation
data.

2.5.1 Bounds on the mixing angles of sterile neutrinos

For the models (2.4) (two Majorana sterile neutrinos, interacting through both
charged and neutral interactions), the compilation of constraints on various com-
binations of active-sterile mixing angles (ϑ2

e, ϑ2
µ, ϑe

√∑
cαϑ2

α, ϑµ
√∑

cαϑ2
α) that

we used in this study are plotted in Figs. 2.6 and 2.7.13

2.5.2 The lower bound on the lifetime of sterile neutrinos

The result of the Sections 2.3.2–2.3.3, combined with these experimental bounds
can be translated into the lower limits on the lifetime of sterile neutrinos. These

13Notice that in the published results of the PS191 experiment [126] bounds are given up to
Ms = 400 MeV. We extend these bounds up to 450 MeV, using the PhD Thesis of J.-M. Levy
[146].
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(a) Normal hierarchy, mass range 10 MeV −
2 GeV
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(b) Normal hierarchy, zoom at the mass range
10 MeV − 140 MeV
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(c) Inverted hierarchy, mass range 10MeV−2GeV
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(d) Inverted hierarchy, zoom at the mass range
10 MeV − 140 MeV

Figure 2.8: The resulting lower bounds on sterile neutrino lifetime τs as a func-
tion of their mass, obtained by requiring that two Majorana sterile neutrinos are
responsible for neutrino oscillations and their parameters do not contradict the
negative results of direct experimental searches. In all figures the upper curve
comes from using of the best fit neutrino oscillation parameters, the middle one
– from their variation within the 3σ limits, and the lower one does not take into
account neutrino oscillation data and puts all three mixing angles equal to their
direct experimental bounds. The dashed line for NH corresponds to the best-fit
values of PMNS parameters with θ13 = 0 and shows how much the bounds on the
lifetime relax for non-zero value of θ13 (see text, Section 2.5 for discussion).
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results are presented in Figs. 2.8 on the preceding page. Additionally, we plot
the lifetime bounds for the best-fit values of the PMNS parameters yet with
θ13 = 0 (as used e.g. in [108, 147]). For normal hierarchy we see that our bounds
with θ13 6= 0 are relaxed by as much as the order of magnitude at some masses,
compared to θ13 = 0 case. The difference for IH is not so pronounced. Notice,
that the bounds of [108, 147, 112] were different from what we show as dashed
line in Fig. 2.8 because of ignoring the neutral current contributions to the results
of PS191 experiment (for details see discussion in Section 2.4 and Figs. 2.3, 2.4).

2.6 Discussion
In this Chapter, we have investigated experimental restrictions on the parameters
of the see-saw Lagrangian in the case when two sterile neutrinos with the masses
between ∼ 10 MeV and 2 GeV are responsible for neutrino oscillations. Combined
with the results of the direct experimental searches, the neutrino oscillation data
provide stringent lower bounds on their lifetime, τs and allows to determine both
maximum and minimum values of the mixing angles ϑ2

α.
We have reinterpreted the results of the PS191 experiment [125, 126], following

[144], by taking into account not only charged, but also neutral-current interac-
tions (as both of these are present in the Type I see-saw Lagrangian). Our results
demonstrated that below the mass of the pion the fixed target experiments (ϑ4

experiments) provide stronger restrictions than the peak search experiments (ϑ2

experiments) in case of normal hierarchy. In inverted hierarchy the reanalysis of
the PS191 experiment turns out to be very important as well. In the original
analysis of the CHARM experiment [129] neutral-current contributions were ne-
glected as well and we have reinterpreted these results in a similar way to PS191.
The final results are presented in Figs. 2.8.

Future experiments (for example, the SHiP experiment at CERN [100, 101,
102], see Sec. 1.3.9) have a great potential of discovering light neutral leptons of the
νMSM or significantly improving the bounds on their parameters (see discussion
in [148] and [149]). Due to the strong suppression of the mixing angles ϑ2

e in the
case of NH and ϑ2

µ in the case of IH, the peak searches in the kaon decays (such
as e.g. [150]) may miss the sterile neutrino (cf. [112]).14

As we have discussed in Sec. 1.3.3, the out-of-equilibrium behaviour of sterile
neutrinos may lead as well to the successful baryogenesis scenario [153, 119, 147];
the generation of large lepton asymmetry at temperatures below the sphaleron
freeze-out [109]. In Fig. 2.9 we superimpose the bounds on |z|, coming from the
direct experimental searches on the region of parameters (|z|, Ms) in which the
successful baryogenesis is possible (the region inside the black contours marked
“BAU” based on the Ref. [147]).

14 GeV-scale sterile neutrinos in the models with extended Higgs sector [151] can be searched
at the LHC [152].
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Figure 2.9: The region of successful baryogenesis in the νMSM compared with
the experimental upper bounds on the parameter |z|. The vales of Ms and |z|,
lying inside the black solid lines lead to the production of the observable baryon
asymmetry (from [147]). The magenta dashed line marks is the lower bound
on |z|−2 (parameter, called ε in [109, 147]) such that for smaller values at least
one of the mixing angles ϑ2

α is in contradiction with direct experimental searches
(for the best-fit values of the PMNS mixing angles and masses). The value of
|z| corresponding to the bound is what we refer to as zmax in Sec. 2.3.5. The
region to the left of Ms = 140 MeV is ruled out from comparison with primordial
nucleosynthesis bounds (Fig. 3.13).
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Chapter 3

Influence of sterile neutrinos
on primordial nucleosynthesis

3.1 Introduction: Particle physics processes in the
expanding Universe

The characteristic feature of the physical processes in the early Universe is a
peculiar interplay of gravity and microscopic physics. Gravity introduces the
Hubble time parameter τH = H−1 (H is the Hubble expansion rate, see Eq. (3.2)
for the definition) that indicates the timescale on which the global properties
of the Universe (geometry, temperature, etc.) change significantly. The Hubble
time is determined solely by the energy density of the matter filling the space.
The microscopic matter constituents, particles, are involved in the interaction
processes, that are believed to be described fundamentally by three known forces
— electromagnetic, weak and strong. According to our discussion in Sec. 1.3.1, as
long as the timescale τ of any given microscopic physical process is much smaller
than τH , the expansion can be neglected on that timescale. If time τ is enough
to establish thermal equilibrium between the particles, then the equilibrium it
maintained in the course of the Universe expansion, while τ � τH holds. When
this inequality ceases to hold, the state of equilibrium is lost. The main reason
for that is that interparticle distances become larger, hence interactions are less
likely to occur.

3.1.1 Big Bang Nucleosynthesis
In this Chapter we are considering the formation of light nuclei in the primordial
environment – Big Bang Nucleosynthesis (BBN). All three fundamental inter-
actions are important for this phenomenon, all playing different roles. Charged
particles together with photons are subject to electromagnetic forces and the equi-
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3.1 Introduction: Particle physics processes in the expanding Universe

libration timescale of corresponding processes is tiny with respect to the expansion
time. Therefore these particles are kept in thermal equilibrium at the common
temperature T . Due to expansion the temperature is decreasing with time, the
Universe cools down. The equilibration time of the weak interactions changes
abruptly so that at T & few MeV weakly interacting neutral particles (neutrinos
and neutrons) stay in equilibrium, while at lower temperatures they fall out of it
(freeze out).

At high temperatures processes like n + νe → p + e− maintain the so-called
chemical equilibrium, that is the neutron-to-proton conversion exhibits the same
finite intensity as the opposite process. Chemical and thermal equilibria are inter-
connected, so they are lost simultaneously, when neutron-to-proton ratio freezes
out. Finally, the strong interactions are responsible for the production of nu-
clei comprising more than one nucleon. The most important fusion reaction for
the formation of the first nucleus, deuteron, n + p → D, releases energy of at
least the binding energy of deuteron ED ≈ 2.2 MeV, and proceeds effectively in
dense primordial medium. At temperatures of the order of ED, however, energetic
photons collide with deuteron and lead to its destruction (this process is called
photodissociation). As baryon density is much lower than the density of pho-
tons (see Eq. (1.2)), there are many photons with energies much higher than ED
that collide with deuterons and hence postpone the production of the significant
deuteron density until the temperature when the photodissociation is not effec-
tive anymore, T ' 80 keV, which is much lower than the binding energy. The net
abundance of deuterium is, however, non-zero at all times till this moment and
is given by the equilibrium Boltzmann distribution. Deuterium that is created
at lower temperatures, serves as a fuel for the formation of 3He, 4He and other
nuclides.

Although the times of elements’ production and the moment of the departure
from the chemical p − n equilibrium are well-separated, the former process is
very sensitive to the latter. Firstly, the details of the freeze-out set the ratio
of the neutron to proton densities, and secondly, the time elapsed between the
two moments determines the fraction of neutrons that have decayed since then
(recalling that neutron is an unstable particle).

The seminal ideas of the primordial synthesis of light elements were first out-
lined in the so-called αβγ paper, [154], published in the late 1940s. Since then
the theory of the Big Bang Nucleosynthesis has evolved and its main predictions
were confirmed, making it a well-developed model from both theoretical and ob-
servational points of view. A lot of reviews of the standard BBN scenario and its
implication for particle physics models exist (see e.g. [155, 53, 54]).

3.1.2 Influence of decaying particles on primordial nucle-
osynthesis

In this Chapter we investigate the influence of sterile neutrinos on primordial
nucleosynthesis. Massive sterile neutrinos can decay, but due to their feeble in-
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Influence of sterile neutrinos on primordial nucleosynthesis

teraction strength their lifetime can be of order seconds. The decay products of
the sterile neutrinos are injected into the primordial environment, increasing its
temperature and shifting the p-n equilibrium.

Several works had previously considered the influence of MeV-scale particles on
primordial nucleosynthesis. Compared to the Refs. [156, 157], the present study
accounts for the neutrino flavour oscillations in the plasma and employs more
accurate strategy of solving Boltzmann equations, which results in the revision of
the bounds of [156, 157] (see Section 3.5 for detailed comparison). The authors
of [158] developed a new code that can perform treatment of active and sterile
neutrinos with arbitrary distribution functions, non-zero lepton asymmetry, etc.
However, as of time of writing this code has not been made publicly available
and the Ref. [158] did not derive bounds on sterile neutrino parameters. A num-
ber of other works ([159, 160, 161, 162, 163]) analyzed the influence of decaying
MeV particles on BBN. We compare with them in the corresponding parts of the
Chapter.

The structure of this Chapter

We explain the modifications of the standard BBN computations due to the pres-
ence of sterile neutrinos in the plasma and describe our numerical procedure in
Sec. 3.2. In Sec. 3.3 we describe tests of this numerical procedure. The results
are summarized in Sec. 3.4. We conclude in Sec. 3.5.

3.2 Primordial nucleosynthesis with sterile neutri-
nos

The section below summarizes our setup for the BBN analysis with decaying
particles. The notations and conventions closely follow the series of works [157,
164, 165].

We will be interested only in the tree-level interactions of sterile neutrinos
with the primordial plasma. In this case the interaction is fully determined by
the squares of their mixing angles. We will consider two Majorana particles each
having 2 degrees of freedom, corresponding to two possible helicity states and
three active-sterile mixing angles ϑ2

α.
We consider in this Chapter only sterile neutrinos with the masses in the range

1MeV < Ms < Mπ ≈ 140MeV. For heavier particles, two-particle decay channels
appear (e.g. N → π0να, π

±e∓) and our procedure of solving Boltzmann equations
(described below) should be significantly modified. The lower bound was chosen
to be around 1MeV by the following considerations. In this mass range, the sterile
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3.2 Primordial nucleosynthesis with sterile neutrinos

neutrino lifetime τs (Eq. (2.1)) becomes explicitly [108]

τ−1
s = Γs =

G2
FM

5
s

96π3

[
(1 + g̃2

L + g2
R)(ϑ2

µ + ϑ2
τ ) + (1 + g2

L + g2
R)ϑ2

e

]
≈ 6.9 sec−1

(
Ms

10 MeV

)5[
1.6ϑ2

e + 1.13(ϑ2
µ + ϑ2

τ )
] (3.1)

where θW is the Weinberg’s angle and gR = sin2 θW ≈ 0.23 , gL = 1
2 + sin2 θW ,

g̃L = − 1
2 + sin2 θW .1 From this expression one sees that sterile neutrinos lighter

than about 2 MeV have lifetime of at least several hundred seconds even for very
large mixing angles ϑ ∼ 1. Therefore, such particles survive till the onset of the
BBN, and freeze-out at temperatures T ∼ 2− 3 MeV. They would be relativistic
at that time, i.e. their average momentum would be of the order of temperature,
〈p〉 ∼ T , and their contribution to the number of relativistic neutrino species
would be significant, ∆Neff ' 2. In the course of the Universe expansion 〈p〉
would scale as temperature due to the gravitational redshift, and at some point
would become smaller than the mass of sterile neutrino. At that moment the
energy density of sterile neutrinos would start to change with expansion as a−3

rather than a−4 (where a is a scale-factor) so that the contribution of these massive
particles to the energy density would quickly become dominant, making Neff � 1
before the production of light elements starts. It contradicts the current bound
that puts Neff = 3.74+0.8

−0.7 ± 0.06(syst) at 2σ [166].2
Additionally, in the νMSM the successful baryogenesis is possible only for the

masses of sterile neutrinos above few MeV [119, 147]. Therefore we restrict the
analysis to the region of masses higher than 1 MeV.

3.2.1 Expanding Universe and distributions of particles
We consider expansion of the homogeneous and isotropic Universe with the flat
Friedmann–Robertson–Walker metric in the form ds2 = dt2 − a2d~x2, where a =
a(t) is a time-dependent scale factor, whose evolution is described by the Fried-
mann equation

H ≡ ȧ

a
=

√
8πGN

3
ρ , (3.2)

where H is the Hubble expansion rate. The total energy density ρ is the sum of all
the energy densities present in the medium, andGN is the Newton’s constant. The
energy density together with the total pressure p satisfy the “energy conservation”
law

a
dρ

da
+ 3(p+ ρ) = 0, (3.3)

1The expression (3.1) is for Majorana particle. For Dirac particle the lifetime would be twice
larger.

2Here the systematic error is due to the different values of neutron lifetime between the
average value from Particle Data group, [167] and the recent measurement of [168].
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Influence of sterile neutrinos on primordial nucleosynthesis

which is actually the second Friedmann equation. At the temperatures of interest
the dominant components of the plasma are photons γ, electrons and positrons
e±, three flavours of active neutrinos (νe, νµ, ντ ) and sterile neutrinos.3 Working
with the particle kinematics in the expanding Universe it is convenient to use
conformal momentum y instead of the usual physical momentum p. The two are
related through y = pa. The quantitative description of the plasma population
is provided by the distribution functions fα, that are the numbers of particles α
per “unit cell” of the phase space d3p d3x = (2π)3. At keV–MeV temperatures the
medium is homogeneous and the distribution functions are independent of spatial
coordinates of particles, and due to isotropy fα do not depend on the direction
of the particle momentum. That simplifies the description of their evolution and
therefore

df

dt
≡
(
∂f

∂t
−Hp∂f

∂p

)
=
∂f(t, y)
∂t

(3.4)

holds. The goal is to find the time evolution of the distribution functions of all
relevant particles and to use them to compute the energy density and pressure as
a function of time and scale-factor, closing the system of Eqs. (3.2)–(3.3) via

ρ =
∑
i

gi
2π2

∫
fiEip

2dp ; p =
∑
i

gi
6π2

∫
fi
p4

Ei
dp (3.5)

Here the summation goes over all plasma particles, gi,mi is the number of degrees
of freedom and mass of i-th particle respectively, Ei =

√
p2 +m2

i .
If interaction rate of the particles is much faster than the Hubble expansion

rate, their distribution functions are given by either the Bose-Einstein, or the
Fermi-Dirac distributions. This is the case for photons, electrons and positrons
— that are kept in equilibrium due to intensive electromagnetic interactions

fγ =
1

eE/T − 1
, fe =

1
eE/T + 1

. (3.6)

The contribution of these particles to the energy and pressure in Eqs. (3.2), (3.3)
is hence determined by the single parameter – temperature. However, to describe
the contributions of the other particles one has to solve kinetic equations involving
them (see Secs. 3.2.3–3.2.5 below).

3.2.2 Baryonic matter

The contribution of the baryonic matter to the evolution of the hot plasma of
relativistic species is proportional to the baryon-to-photon ratio ηB (Eq. (1.2)).
Since this value is very small, baryons are present in negligible amount before and

3Muons may appear in plasma from the decays of the sterile neutrinos with Ms > 106 MeV.
See Sec. 3.2.5 for details.
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3.2 Primordial nucleosynthesis with sterile neutrinos

during the BBN, and do not influence the dynamics of the remaining medium.
This allows to analyze our problem in two steps. At step i we omit baryonic
species and study how the temperature of the plasma, the expansion factor and
neutrino distributions evolve in time from temperatures of the order of 100 MeV,
when sterile neutrinos typically start to go out of equilibrium,4 down to TFin '
10 keV when nuclear fusion reactions have ended. At step ii we use these results
to determine the outcome of the nuclear reaction network against the background
of evolving electromagnetic plasma (Sec. 3.2.6).

3.2.3 Active neutrinos at MeV temperatures
Weak interactions are not able to maintain the thermal equilibrium of active
neutrinos with the plasma during all the expansion period we consider. A sim-
ple comparison of the weak collision rate G2

FT
5 and H(T ) tells that neutrino

maintain their equilibrium with the rest of the plasma down to temperatures
Tdec ∼ few MeV. The process of neutrinos going out of equilibrium is usually
referred to as neutrino decoupling. Throughout this Chapter we assume that
no lepton asymmetry is present so that the number of neutrinos is equal to the
number of antineutrinos.5 At temperatures higher than Tdec the distribution is
therefore given by the Fermi-Dirac one, while at lower temperatures we have to
solve the set of three Boltzmann equations

dfνα
dt

= Iα, α = e, µ, τ (3.7)

The details of the interactions, such as particle collisions, are encoded in the
so-called collision terms Iα. The terms are explicitly [173]

Iα =
1

2Eα

∑
in,out

∫
S|M|2F [f ](2π)4δ4(pin − pout)

Q∏
i=2

d3pi
(2π)32Ei

(3.8)

The sum runs over all the possible initial states “in” involving να (represented
by a particle set να, 2, 3, . . . , K) and the final states “out” (K + 1, . . . , Q).
Matrix element M corresponds to the probability of the transition “in”–“out” to
occur and the delta-function ensures the conservation of 4-momentum pin = pout.
Symmetrization factor S is equal to 1, except of the transitions involving identical
particles either in initial or in a final state. Relevant matrix elements together
with the symmetrization factors are listed in Table 3.1. The interaction rates are
dependent on the population of the medium, and the functional F [f ] describes
this. In case when all the incoming and outgoing particles are fermions,

F [f ] = (1−fνα) . . . (1−fK)fK+1 . . . fQ−fνα . . . fK(1−fK+1) . . . (1−fQ). (3.9)
4The exact “freeze-out” temperature depends on the mixing angle.
5For the previous studies of the BBN outcomes with the lepton asymmetry present see

e.g. [169, 170, 171, 158, 172].

74



Influence of sterile neutrinos on primordial nucleosynthesis

Process (1 + 2→ 3 + 4) S SG−2
F |M|

2

να + νβ → να + νβ 1 32(p1 · p2)(p3 · p4)
να + ν̄β → να + ν̄β 1 32(p1 · p4)(p2 · p3)
να + να → να + να 1/2 64(p1 · p2)(p3 · p4)
να + ν̄α → να + ν̄α 1 128(p1 · p4)(p2 · p3)
να + ν̄α → νβ + ν̄β 1 32(p1 · p4)(p2 · p3)
νe + ν̄e → e+ + e− 1 128[g2

L(p1 · p4)(p2 · p3)+
g2
R(p1 · p3)(p2 · p4) + gLgRm

2
e(p1 · p2)]

νe + e− → νe + e− 1 128[g2
L(p1 · p2)(p3 · p4)+

g2
R(p1 · p4)(p2 · p3)− gLgRm2

e(p1 · p3)]
νe + e+ → νe + e+ 1 128[g2

L(p1 · p4)(p2 · p3)+
g2
R(p1 · p2)(p3 · p4)− gLgRm2

e(p1 · p3)]
νµ(τ) + ν̄µ(τ) → e+ + e− 1 128[g̃2

L(p1 · p4)(p2 · p3)+
g2
R(p1 · p3)(p2 · p4) + g̃LgRm

2
e(p1 · p2)]

νµ(τ) + e− → νµ(τ) + e− 1 128[g̃2
L(p1 · p2)(p3 · p4)+

g2
R(p1 · p4)(p2 · p3)− g̃LgRm2

e(p1 · p3)]
νµ(τ) + e+ → νµ(τ) + e+ 1 128[g̃2

L(p1 · p4)(p2 · p3)+
g2
R(p1 · p2)(p3 · p4)− g̃LgRm2

e(p1 · p3)]

Table 3.1: Squared matrix elements for weak processes involving active species
only. S is the symmetrization factor; α, β = e, µ, τ . In all processes we take
α 6= β. The results coincide with those of Ref. [165].

When some of particles are bosons, one has to replace (1 − fR) by (1 + fR) for
every bosonic particle R.

However, in the next Section (3.2.4)), we argue that the phenomenon of neu-
trino oscillations should be taken into account in the present picture, and discuss
the modification of the Boltzmann equations.

3.2.4 Inclusion of neutrino oscillations

The active neutrinos of different flavours νe, νµ, ντ are related to the mass eigen-
state basis ν1, ν2, ν3 via a non-diagonal Pontecorvo-Maki-Nakagava-Sakata (PMNS)
matrix V , |να〉 =

∑
Vαi|νi〉 (see Eq. (2.6)). Exact treatment of active neutrino

oscillation in the early Universe is a difficult task (see e.g. [174, 175, 176]) Char-
acteristic timescale of oscillation between i and j mass eigen-states for a neutrino
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with energy E is [177]

τij =
4πE

|m2
i −m2

j |
≈ 8.3× 10−6s

E

MeV
10−3 eV2

|m2
i −m2

j |
(3.10)

Average energy of relativistic Fermi particles in equilibrium is 〈E〉 = 3.15T [173].
Applying this relation to active neutrinos and using their measured mass differ-
ences [123] m2

2 −m2
1 ≈ 7.6 × 10−5 eV2, |m2

3 −m2
1| ≈ 2.5 × 10−3 eV2, we obtain

τ12 ≈ 1.0× 10−3 sec
T

3 MeV
, τ13 ≈ 3.1× 10−5 sec

T

3 MeV
, (3.11)

provided that influence of the surrounding environment on neutrino propagation
is neglected. One sees therefore that around the moment when active neutrino
decouples, T ' 3 MeV, typical oscillation timescales are much smaller than the
Hubble expansion time given by Eq. (3.2)

τH =
√

15
4π3g∗GNT 4

' 0.16 sec
(

3 MeV
T

)2

. (3.12)

Here we have plugged g∗ ≈ 11 (at T ∼ MeV) [173] is the so-called number of rel-
ativistic species that enters energy-temperature relation ρ = π2g∗T

4

30 . Therefore,
active neutrinos oscillate many times between the subsequent reactions involving
them. In quantitative terms it means that probabilities Pαβ to transform from
flavour α to flavour β are oscillating functions of time. In realistic situation neu-
trinos do not have a definite momentum but are created in wave packets that are
superpositions of states which have definite momentum. Since oscillation periods
are momentum-dependent according to Eq. (3.10), each state in the superposi-
tion will have his own period. Therefore after sufficiently many periods the initial
phases characterizing superposition will change, and there is no reason for the
phase changes to be correlated with each other anymore. So the decoherence of
states is what happens. This phenomenon can be described effectively by av-
eraging transition probabilities Pαβ over time. Resulting expressions are [177]
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Pee = 1− 1
2

(sin2 2θ13 + cos4 θ13 sin2 2θ12) (3.13a)

Peµ = Pµe =
1
2

cos2 θ13 sin2 2θ12 (3.13b)

Peτ = Pτe = sin2 θ13 cos2 θ13

(
2− 1

2
sin2 2θ12

)
(3.13c)

Pµµ = 1− 1
2

sin2 2θ12 (3.13d)

Pµτ = Pτµ =
1
2

sin2 θ13 sin2 2θ12 (3.13e)

Pττ = 1− sin2 θ13

(
2 cos2 θ13 +

1
2

sin2 θ13 sin2 2θ12

)
(3.13f)

To understand what happens with a neutrino, consider example of the electron
neutrino created in electron-positron annihilation. At the production time this
particle has probability 1 to oscillate into νe and zero for other final state. After
long enough time for many oscillations to happen and before the time when a
collision with other particle becomes quite probable, the decoherence comes into
play. So now we may find the νe with probability Pee, νµ with probability Peµ
and ντ with Peτ . The production rate of the initial specimen per unit time is pro-
portional to collision integral Ie, according to the Boltzmann equation (3.7). But
the actual number of produced electron neutrinos is reduced by factor Pee. And
even if we imagine hypothetical situation when muon neutrino does not interact
with plasma, this particle will be anyway produced effectively in oscillations, at
rate PeµIe. Generalization to other neutrino flavours leads us to conclusion that
the Boltzmann equation (3.7) becomes modified,

dfα
dt

=
∑

PαβIβ . (3.14)

For the actual computations we use the following experimental best-fit values:
sin2 θ12 = 0.31, sin2 θ23 = 0.52 from [123], and sin2 2θ13 = 0.09 from the Daya
Bay [10]. The latter number is close to the result sin2 2θ13 = 0.11 measured in
another recent experiment, RENO [9].

However, in dense medium oscillations proceed differently due to considerable
effects of the plasma on properties of a single particle. The oscillations of active
neutrinos into active neutrinos can be described similarly to what was done for
active-sterile oscillations in Sec. 1.3.1. Namely, the effective Hamiltonian of the
system of three neutrinos is described by the addition of medium potential ∆HM

to the Hamiltonian HV of the system in vacuum [178]

HM = HV + ∆HM , HV =
1

2E
V ∗diag(m2

1,m
2
2,m

2
3)V † , (3.15)
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where E is the neutrino energy. Diagonalization of the total propagation Hamil-
tonian HM gives effective active neutrino masses and mixings.

The medium potential comprises effects of neutrino interactions. Since neutri-
nos take part only in charged- and neutral-current interactions, matter potential
has two terms ∆HCC and ∆HNC , respectively. All neutrinos couple to neutral
currents identically, so ∆HNC is proportional to unit matrix. Therefore this term
just shifts the energy of all neutrinos by the same amount, and does not affect
oscillations. In contrast, the charged-current term is present only for νe. The
reason is that due to high concentration of electrons in plasma, νe couples effec-
tively to charged currents, while at temperatures below the muon’s mass there
is no significant contribution of muons and tau-leptons to realize charged-current
coupling of other neutrino flavours.

Explicitly the matter potential is [177]

∆HCC = −14
√

2GF
45M2

W

E T 4 diag(1, 0, 0) (3.16)

in the flavour neutrino basis (νe, νµ, ντ ). MW is the mass of the W-boson.

3.2.5 The impact of sterile neutrinos
As already mentioned, sterile neutrinos interact much more feebly than active
neutrinos do. Nevertheless, at some high temperature sterile neutrinos may enter
thermal equilibrium. As we have discussed in Sec. 1.3, in the νMSM model,
sterile neutrinos come into equilibrium at temperature T+ (typically T+ = 10 ÷
100 GeV) and freeze-out at temperatures T− ∼ 0.5 − 5 GeV [109]. Afterwards,
sterile neutrinos decay into active neutrinos and other particles. The energies
of the decay products may be very different from the typical energies of plasma
particles. For particles that equilibrate quickly (such as electrons or photons), this
“injection” results in the fast redistribution of the energy between all particles in
equilibrium and effectively the process looks like a temperature increase (more
precisely, it just slows down the cooling of the Universe). But for particles that
either are not in equilibrium or are about to fall out of it, such as active neutrinos
at few MeV, the “injection” modifies the form of their spectra. The other mass-
induced effect is that sterile neutrinos may switch from the relativistic regime
(when their average momentum is larger than mass) that is established at large
temperatures, to the non-relativistic one, due to the gravitational redshift.

For the quantitative description of sterile neutrino dynamics we utilize the
Boltzmann equation similar to (3.7), replacing active neutrino everywhere therein
by sterile neutrino

dfS
dt

= IS (3.17)

Reactions contributing to the right-hand side together with their probabilities are
listed in Tables 3.2– 3.3 on page 80. In these Tables, averaging over helicities of
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incoming particles and summation over those of outgoing products is assumed.
The reactions are considered for two cases. In the first one sterile neutrino is a
right-chiral Majorana neutrino that has 2 helicity degrees of freedom. That is
actually the case in our problem, where we have two neutrinos of this kind. The
other case corresponds to sterile neutrino of Dirac nature. Dirac fermions have
both right- and left-chiral components, hence yielding 4 degrees of freedom in
total. Expressions listed in Tables 3.2, 3.3 are applicable for both cases of the
neutrino nature. Moreover, to complete the list of possible tree-level reactions,
one has to consider charge-conjugated channels and take into account that Dirac
particle is distinct from its antiparticle, while Majorana neutrino is not. The
resulting expressions coincide with [165, 156].

Process (1 + 2→ 3 + 4) S SG−2
F |M|

2

N + νβ → να + νβ 1 32ϑ2
α(p1 · p2)(p3 · p4)

N + ν̄β → να + ν̄β 1 32ϑ2
α(p1 · p4)(p2 · p3)

N + να → να + να 1/2 64ϑ2
α(p1 · p2)(p3 · p4)

N + ν̄α → να + ν̄α 1 128ϑ2
α(p1 · p4)(p2 · p3)

N + ν̄α → νβ + ν̄β 1 32ϑ2
α(p1 · p4)(p2 · p3)

N + ν̄e → e+ + e− 1 128ϑ2
e[g

2
L(p1 · p4)(p2 · p3)+

g2
R(p1 · p3)(p2 · p4) + gLgRm

2
e(p1 · p2)]

N + e− → νe + e− 1 128ϑ2
e[g

2
L(p1 · p2)(p3 · p4)+

g2
R(p1 · p4)(p2 · p3)− gLgRm2

e(p1 · p3)]
N + e+ → νe + e+ 1 128ϑ2

e[g
2
L(p1 · p4)(p2 · p3)+

g2
R(p1 · p2)(p3 · p4)− gLgRm2

e(p1 · p3)]
N + ν̄µ(τ) → e+ + e− 1 128ϑ2

µ(τ)[g̃
2
L(p1 · p4)(p2 · p3)+

g2
R(p1 · p3)(p2 · p4) + g̃LgRm

2
e(p1 · p2)]

N + e− → νµ(τ) + e− 1 128ϑ2
µ(τ)[g̃

2
L(p1 · p2)(p3 · p4)+

g2
R(p1 · p4)(p2 · p3)− g̃LgRm2

e(p1 · p3)]
N + e+ → νµ(τ) + e+ 1 128ϑ2

µ(τ)[g̃
2
L(p1 · p4)(p2 · p3)+

g2
R(p1 · p2)(p3 · p4)− g̃LgRm2

e(p1 · p3)]

Table 3.2: Squared matrix elements for scatterings of sterile neutrinos νS . Here
S is the symmetrization factor; α, β = e, µ, τ ; α 6= β. ϑα is the mixing angle of
sterile neutrino with να. The results are applicable for one right-chiral Majorana
neutrino as well as for one Dirac neutrino, for details see text.

Note that we neglect the processes involving baryonic particles. However,
they become important for temperatures near the QCD crossover temperature
TQCD ' 200 MeV, when the density of these particles is not negligible anymore.
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3.2 Primordial nucleosynthesis with sterile neutrinos

Process (1→ 2 + 3 + 4) S SG−2
F |M|

2

νS → να + νβ + ν̄β 1 32 ϑ2
α(p1 · p4)(p2 · p3)

νS → να + να + ν̄α 1/2 64 ϑ2
α(p1 · p4)(p2 · p3)

νS → νe + e+ + e− 1 128 ϑ2
e[g

2
L(p1 · p3)(p2 · p4)+

g2
R(p1 · p4)(p2 · p3) + gLgRm

2
e(p1 · p2)]

νS → νµ(τ) + e+ + e− 1 128 ϑ2
µ(τ)[g̃

2
L(p1 · p3)(p2 · p4)+

g2
R(p1 · p4)(p2 · p3) + g̃LgRm

2
e(p1 · p2)]

Table 3.3: Squared matrix elements for decays of sterile neutrinos νS . Here S
is the symmetrization factor; α, β = e, µ, τ ; α 6= β. ϑα is the mixing angle of
sterile neutrino with να. The results are both for Majorana and Dirac neutrinos,
for details see text.

More scattering channels of sterile neutrino would appear and their proper account
is involved. However it seems to be reasonable to assert that the only modification
the account will bring is to lower the decoupling temperature of sterile neutrinos.

Oscillations between active and sterile neutrinos do not change significantly
with respect to vacuum, therefore the Boltzmann equation in its original form
(3.17) is still valid, contrary to what we have found out for active neutrinos.
Indeed, using the approach of Sec. 1.3.1, one finds that their effective mixing
angles in medium θ differ from that in vacuum θ0 as

θ − θ0

θ0
∼ GFT

5

M2
WM

2
S

∼ 10−11 ×
(

T

100 MeV

)6 (
10 MeV
MS

)2

(3.18)

for the small mixing angles θ0 which we consider here. Therefore the active-sterile
mixing angle is not altered.

When sterile neutrino is heavier than muon, the former particle can appear
in the decay N → µ− + e+ + ν̄e. However, the branching fraction of this decay
mode does not even reach a percent for masses of sterile neutrino we consider (see
e.g. [108]). Therefore we can neglect influence of both muons and other particles,
appearing in the decay.

As a result we have six equations (3.2), (3.3), (3.14), and (3.17) describing
primordial plasma at temperatures of interest. These equations contain six un-
knowns – scale factor a(t), temperature T (t) and four neutrino distribution func-
tions, fνα and fS . The system of equations is therefore closed and we have solved
it numerically at the step i.

3.2.6 Course of nuclear reactions
Outcome of the nuclear reaction chains is found numerically. For the Standard
BBN model one of the earlier attempts was made with the code written by L.
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Kawano [179, 180]. However, the program in its original form is inappropriate
for the account of the BSM physics, and we modified it for the present analysis.
Two technical remarks are in order here. First, we used the 1992 version of the
program [180] as a starting point, and not the 1988 one, [179]. Therefore, the
integration time steps were taken small enough, so that the integration procedure
did not introduce an error that was compensated as a shift in the resulting value
of the Yp,6 the so-called “Kernan correction” [181]. Second, the code did not
take into account the Coulomb and the nucleon finite-mass corrections to weak
interaction rates, as well as radiative and finite-temperature effects.7 We do not
calculate directly these effects, but assume their net result to be in the form
of the additive correction, which we took to be ∆Yp = −0.0003 [185]. The tests
described in Sec. 3.3.1 demonstrate an agreement of thus modified “Kawano code”
with the results of the other code, PArthENoPE [186], that takes a proper account
of these effects.

Presence of sterile neutrinos alters the standard dynamics of the temperature
and the expansion rate as well as the rates of weak interactions involving neutrons
and protons. These quantities are known from the step i, so we have implemented
the import of these data. Together with the change of ∆Yp indicated above, it
has lead to the code, that became an essential tool of step ii in our approach.
The computations of nuclide evolution start from temperatures of several MeV,
when the chemical equilibrium ceases to hold, up to temperatures TFin.

3.2.7 Adopted values of abundances of the light nuclei

The observables of the BBN are concentrations, or abundances, of light nuclides
dispersed in the cosmos. The most relevant abundance in our problem is that
of 4He, as it is sensitive to the expansion rate of the Universe at MeV temper-
atures and neutrino distribution functions. The presence of sterile neutrinos in
plasma typically increases the concentration of 4He, described by Yp. Accurate
calculations carried out in the Standard Model [186] predict the values

Y sbbn
p = 0.2480 (τn = 885.7 sec) (3.19)

Y sbbn
p = 0.2465 (τn = 878.5 sec) (3.20)

depending on the lifetime of neutron, τn, see below.
There are two main methods of experimental determination of primordial He-

lium abundance. The first one is related to the studies of low-metallicity astro-
physical environments and extrapolating them to zero metallicity case. The Yp
measurements are known to be dominated by systematic uncertainties. Therefore
we adopt the Yp values from the two most recent studies, Refs. [166, 187] that

6We denote by Yp the mass fraction of the 4He, that is a fraction of the total baryon mass
stored in the form of Helium-4.

7For the accurate account of these corrections, see e.g. [155, 182, 183, 184].
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3.2 Primordial nucleosynthesis with sterile neutrinos

have slightly different implications. For recent discussion of various systematic
uncertainties in 4He determination, see [188].

In Ref. [166] the value Yp = 0.2565±0.0010(stat.)±0.0050(syst.) was obtained.
Therefore, the 2σ intervals that we adopt in our studies are8

Yp = 0.2495− 0.2635 (Ref. [166], 2σ interval) (3.21)

One notices that this result is more than 2σ away from the Standard Model BBN
predicted value of Yp, Eq. (3.19).

Using a subsample of the same data of [166], a different group had inde-
pendently determined Yp [187]. From their studies we adopt9 Yp = 0.2574 ±
0.0036(stat.)± 0.0050(syst.). As a result,

Yp = 0.2452− 0.2696 (Ref. [187], 2σ interval) (3.22)

(this values of Yp coincide with the Standard BBN one, (3.19), at about 1σ level).10
Second method of determination of Helium abundance is based on the CMB

measurements. This method is believed to determine truly pristine value of Yp,
not prone to the systematics of astrophysical methods. However currently its
uncertainties are still much larger than of the first method. The present measure-
ments put it at

Yp = 0.22− 0.40, Neff = 3 (Refs. [190, 106], 2σ interval) (3.23)

again consistent with the Standard Model BBN at 1.5σ. Here Neff is the so-called
effective number of neutrino species

Neff =
120
7π2

ρνe + ρνµ + ρντ
T 4

, (3.24)

proportional to the ratio of the total energy, deposited into the active neutrino
species to that of photons. Notice, that the bound (3.23) is based on assumption
that before the onset of the recombination epoch the effective number of neutrino
species is close to its SM value Neff ≈ 3. As we will see later, sterile neutrinos
can significantly distort Neff. For the values of Neff strongly deviating from 3 the
CMB bounds on Yp gets modified. For example, the analysis carried out in [190]
reveals that

Yp = 0.10− 0.33, Neff = 6 (Ref. [190], 2σ interval). (3.25)

The similar conclusion is reached if one employs the data of [191].
8We add the systematic errors linearly
9We use the average value over metallicities, 〈Yp〉 (Eq. (8.2) of [187]) and leave the systematic

error from [166].
10 A study of [189], based on the independent dataset, provides the value Yp = 0.2477±0.0029.

Its upper bound becomes very close to that of (3.22) if one employs an additional systematic
uncertainty at the level ∆Ysyst = 0.010 (twice the value of systematic uncertainty of [166]).
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Code Yp for τn from PDG [167] Yp for τn from [168]
(Modified) Kawano code [180] 0.2472 0.2457
PArthENoPE code [186] 0.2480 0.2465
Difference -0.0008 -0.0008

Table 3.4: Values of Helium abundance Yp in the Standard Model BBN (SBBN)
and their dependence on the neutron lifetime, τn.

The other element produced during the BBN is the Deuterium, and recent
observations determine its abundance to be

D/H = (2.2− 3.5)× 10−5 (Ref. [155], 3σ interval). (3.26)

This value is sensitive both to the baryon-to-photon ratio and to Neff. In our
analysis we adjust the value of baryon-to-photon ratio η at the beginning of the
computation so that by TFin ∼ 10 keV it is equal to the value given by cosmic
microwave background measurements [106].

Finally, we mention another important uncertainty originating from the parti-
cle physics. There are two different measurements of neutron lifetime τn that are
at tension with each other. Particle Data Group [167] provides τn = 885.7±0.8sec,
while measurements performed by Serebrov et al. [168] result in τn = 878.5 ±
0.8 sec. We employ both results and explore the differences they lead to in what
follows.

3.3 Tests of the numerical approach

The Section below summarizes the comparison of the present analysis with the
previous ones that analyzed the influence of the MeV particles on primordial
nucleosynthesis. Throughout this Section, we normalize scale factor by imposing
condition aT = 1 at the initial moment. Conformal momentum is y = pa with
the same normalization of the scale factor. In the figures that contain both the
solid and the dashed curves, the former correspond to the results obtained with
our code, and the latter – to the original results of the other papers.

3.3.1 Standard Model BBN

First we considered the nucleosynthesis in Universe filled with the Standard Model
particles only. We compute the actual non-equilibrium form of the active neutrino
spectra during their decoupling. The results of the present study are compared
with those of [165, 164, 192]. In [165, 164] neutrino oscillations were neglected,
while in [192] the effect was taken into account. Fig. 3.1 shows the evolution of the
quantity aT as a function of temperature. It is identical to the Fig. 1 in Ref. [165].
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Figure 3.1: T/Tν as a function of inverse temperature T−1. The solid line is
produced by the code of the present study, the dashed – the result of [165].

Figures 3.2,3.3 show how distorted neutrino spectra fνα are, compared to the
thermal distribution feq = (ey + 1)−1. One can see good agreement between the
results. We believe that the difference, that is present nevertheless, arises solely
due to our one-step time integration method of the stiff kinetic equations, that is
not as accurate as the method employed in Refs. [164, 192].

We turned off flavour oscillations and compared asymptotic values of ratio aT
at low temperatures together with the effective number of neutrino species, Neff .
For the former quantity, Refs. [164, 192] present values 1.3991 and 1.3990, respec-
tively. On the other hand, we derived 1.3996. For the number of neutrino species
in absence of neutrino oscillations, the same Refs. [164, 192] provide numbers
3.034 and 3.035, respectively, while we get 3.028.11

The resulting Yp is summarized in Table 3.4 for different values of neutron
lifetime τn. We also provide a comparison of the modified version of the Kawano
code [180] that we adopted for computing nuclear reactions with a newer code,
PArthENoPE [186]. By comparing the results of PArthENoPE and the modified
KAWANO code, we find the former to be larger by 0.0008 than the latter. We
use the shift ∆Yp = −0.0008 as a correction in our subsequent results.

3.3.2 Test of energy conservation

If all weak reactions involving electrons and positrons are turned off, neutrinos
decouple from the rest of plasma. Then the energy conservation law (3.3) holds
separately for the neutrino component and for the remaining particles. In approx-

11 Ref. [192] takes into account both the effects of neutrino oscillations and QED corrections,
the latter changes the result significantly. As a result we could not compare the effect of neutrino
oscillations only.
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Figure 3.2: Relative distortions of neutrino spectra before the onset of BBN. Left:
neutrino flavour oscillations are neglected, right: the oscillations are taken into
account, with the parameter choice θ13 = 0, sin2 θ23 = 0.5, sin2 θ12 = 0.3 used
in [192]. In both panels, the pair of upper curves shows the distortion of the
electron neutrino, the lower – of νµ. In each pair, the solid curve is the result of
the present study, and the dashed is from Fig. 2 of [192].
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Figure 3.3: Left: Relative distortion of νe spectra δfνe/feq for conformal mo-
menta y = 3, 5, 7 (from bottom to up). Right: The same, but for muon neutrino.
In each pair of curves the solid one corresponds to the present study and the
dashed one is from [165].
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imation of zero mass of electron we obtain

d(aT )
dt

= 0 (3.27)

similar to Eq. (3.29). As a corollary, product aT is conserved. On the other hand,
our code solves the equation (3.3) involving all medium components simultane-
ously. And it turns out that the relation (3.27) is not a trivial consequence of the
numerical computation. Therefore the check of the conservation serves as a test
of the code. We considered separately scattering and decay processes involving
neutrinos and observed conservation of aT with precision of order 0.2%.

3.3.3 Heavy sterile Dirac neutrino
Next we have tested model with one sterile Dirac neutrino N with mass Ms =
33.9 MeV, mixed with ντ [156]. This neutrino was assumed to be in thermal
equilibrium with plasma at T & 50 MeV. To simplify the problem, the authors
of [156] used the Boltzmann equilibrium statistics for active species in collision
integral for a sterile neutrino.

Being in equilibrium the sterile neutrino spectrum becomes more and more
non-relativistic with time due to the redshift. Therefore the ratio ρs/Msns of
the energy density ρs to the mass times number density ns should approach 1
at lower temperatures. We have recomputed the evolution of the system using
our code, without the Boltzmann approximation. Fig. 3.4 shows the comparison
of the results with those of [156] for sterile neutrino lifetime τs = 0.3 sec. Both
results coincide till T ≈ 5 MeV and after that moment ratio ρs/Msns of [156] stops
decreasing, while the numerical result we obtained shows the expected behaviour
— the ratio continues to decrease, approaching 1.

3.3.4 Massive ντ
Next we considered a model with the massive tau neutrino [159, 161]. Fig. 3.5
presents relative deviation of the energy densities of massless neutrinos δρν/ρeq

produced by our code and plotted in [159]. ρeq = 7π2T 4

120 is the equilibrium energy
density of one neutrino specie, and δρν = ρν−ρeqν . In Fig. 3.5 distortion of electron
neutrino spectrum y2δfνe/feq is depicted. Here one observes good agreement
between the results.

3.3.5 Late reheating model
To test the treatment of MeV decaying particles, we considered the low-reheating
models with the reheating temperature of several MeV [162, 163]. In [162] heavy
non-relativistic particles were considered, that dominated the energy density of the
Universe once and then decayed into electrons, positrons or photons (so that decay
products are quickly thermalized). The most important output is the effective
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Figure 3.4: Ratio ρs/nsMs as a function of scale factor for Ms = 33.9 MeV sterile
neutrino. The upper curve is the result of Ref. [156], the lower curve is the present
analysis.
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Figure 3.5: Left: Relative deviation from its equilibrium value of νe energy den-
sity δρνe/ρeq in a model where tau neutrino is massive. Right: Spectrum dis-
tortion y2δfνe/feq for the same model. In both panels Mντ = 0, 3, 7, 20 MeV
from bottom to top, the solid curves depict the numerical results of the present
analysis, and the dashed – the results of [159].
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Figure 3.6: Effective number of neutrino species Neff depending on decay width
of heavy non-relativistic particles. Comparison of the results of the present study
and Refs. [162, 163].

number of active neutrino species Neff (defined in Eq. (3.24)). Dependence of
this quantity on decay width of heavy particle is presented in Fig. 3.6. We have
noticed some difference between the results of cited papers and those of our code.
We believe that this is due to the different approximations made. For example, in
both works [162, 163] the scattering processes involving only neutrinos were not
taken into account, approximation of Boltzmann statistics was used throughout
and electron mass was neglected. We checked that the account of finite electron
mass gives a gain of 5% to the Neff for τ = 0.1s, while the account of scatterings
involving only neutrinos gives rise of 1%.

3.3.6 Instant thermalization of decay products
Next we considered a model with two heavy Majorana sterile neutrinos, similar
to the νMSM . However, we assumed that for any mass of sterile neutrino it
can decay only via channels listed in Table 3.3. It is not a natural assumption,
because usually sterile neutrinos heavier than pion decay dominantly into states
containing mesons [108]. Also we approximated sterile neutrino spectrum as a
non-relativistic one, while all the other particles are relativistic and in equilibrium
all the time. In this case the system may be adequately described by the kinetic
equation

dρs
dt

+ 3
ȧ

a
ρs = −Γsρs (3.28)

together with the Friedmann equations (3.2–3.3). The latter of these equations
can be rewritten as

d(aT )
dt

=
30aΓsρs
43π2T 3

(3.29)
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Figure 3.7: Left: Evolution of aT for the model of Sec. 3.3.6. Right: ρs/ρSM .
We consider three parameter sets: sterile neutrino mass Ms = 580 MeV with
lifetime τ = 1sec; Ms = 1030 MeV with τ = 0.1sec; Ms = 100MeV, τ = 0.5sec.
The solid line depicts the numerical result of the present analysis, dashed – the
semianalytical calculation.

Γs is the decay width of sterile neutrino, ρs is the energy density of sterile neu-
trinos, and we have used expression for the energy and pressure densities of rela-
tivistic species ρrel = 3prel = 43π2T 4/120.

In Figs. 3.7 the evolution of quantities aT and ρs/ρrel is compared between
the results of our code and the semi-analytic integration of Eqs. (3.28)–(3.29) for
three different sets of masses and lifetimes. One can see very good agreement
between these results, maximum relative deviation is 1%.

3.4 Results

In this Section we present the main results of this Chapter: the bounds on sterile
neutrino lifetime as a function of their masses and mixing patterns, as well as the
bounds on the mixing angles. As discussed above, there are several systematic
uncertainties in the determination of the 4He abundance and therefore the results
will depend on the adopted values of Yp (together with the neutron lifetime, τn).
We summarize these systematic effects below.

We start with comparing the upper bounds on sterile neutrino lifetime for
different values of Yp (see Section 3.2.7). The Fig. 3.8a shows that the bounds
from the two recent works [166, 187] are quite similar (the difference is of the
order of 30%). The bound, based on [189] would give a result, similar to [187] as
discussed above.

For the CMB bound in Fig. 3.8a, we present only the results for masses Ms >
40MeV where Neff does not deviate significantly from 3. Fig. 3.9 indicates that for
smaller masses the number of effective neutrino species increases significantly. It
in turn affects the CMB helium bounds (c.f. Eqs. (3.23) and (3.24)). The accurate
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(a) 2σ upper bounds on sterile neutrino
lifetime, based on different measurements
of Yp: Ref. [166] (“Izotov & Thuan”);
Ref. [187] (“Aver et al.”); Refs. [190, 106]
(“CMB bound”)
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trino lifetime, based on the measurements
of [166]. The upper curve is the same as the
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Figure 3.8: Bounds (at 2σ level) on sterile neutrino lifetime as a function of their
mass for various measurements of Yp (summarized in Section 3.2.7). All results
are for mixing of sterile neutrino with electron flavour only (the dependence on
the particular mixing pattern is very weak, see below). For the CMB bound, we
present only the result for masses Ms > 40 MeV where Neff ≈ 3. For smaller
masses we plot instead bounds based on 3σ Deuterium upper bound (3.26). For
details, see Sec. 3.4 and Fig. 3.9.

account of this effect goes beyond the scope of the present analysis and we choose
instead to plot stronger deuterium-based bounds (those of Fig. 3.9) in Fig. 3.8a
for Ms . 40 MeV.

The lower bound on Yp from the recent work of [166] is above the Standard
BBN value (3.19) at ∼ 2σ level (see however [188]). The presence of sterile
neutrinos in plasma of course relaxes this tension and therefore at 2σ the adopted
values of Yp (Eq. 3.21) provide both upper and lower bounds on sterile neutrino
lifetime. This is shown in Fig. 3.8, right panel. At 3σ level the measurements
of [166] are consistent with Standard BBN and the lower bound disappears.

Fig. 3.9 shows the changes in Deuterium abundance and in the effective number
of neutrino species, caused by sterile neutrinos (with parameters corresponding
to the upper bound based on [166]). For these values of parameters the abun-
dance lies within the 3σ boundaries (3.26). And for the highest effective number
of neutrinos reached, Neff = 6, D/H is close to the 3σ upper bound. Notice that
the same relation between Neff and D/H is observed in the model without new
particles but with the effective number of neutrinos different from 3. The effective
number of neutrino species does not define the Helium abundance though. Oth-
erwise the same Yp bound [166] would predict only one particular value of Neff,
which is not case, as the inspection of Fig. 3.9 shows.

The influence of another systematic uncertainty (the lifetime of neutron, τn) is
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Figure 3.9: Left: Deuterium abundance, with the shaded region corresponding
to the allowed 3σ range, based on [155]. Right: Effective number of neutrino
species (the ratio of the effective neutrino temperature to the photon temperature
at T ∼ fewkeV) as a result of decay of sterile neutrino. The horizontal “SM” lines
indicate Neff that corresponds to the boundary of the 3σ range [155], in the SM
with the number of relativistic species deviating from Neff ≈ 3. In both panels,
parameters of sterile neutrinos correspond to the upper bound on Yp from [166]
(see Eq. (3.21)), except of the “CMB” line that corresponds to the upper bound
from [190, 106] (see Eq. (3.23)).

negligible. Indeed, the relative difference between sterile neutrino lifetimes were
found to be of the order of 5% for two choices of τn – from [168] and from [167]
(taking the same Yp bound from [187]).

Next we investigate the dependence of the resulting bounds on the mixing pat-
terns of sterile neutrinos. Naively, one would expect that sterile neutrinos mixing
“only with νe” and “only with νµ” should have different effect of Yp. However, it
is the energy “injection” rate (i.e. the overall decay rate of sterile neutrinos) that
is more important for the dynamics of plasma before the onset of nucleosynthesis.
This quantity depends on the lifetime τs and the mass Ms of the neutrino. Mix-
ing patterns affect mostly the concentration of particular decay products, but not
the injection rate. In addition, the neutrino oscillations (fast at the BBN epoch)
make the difference between flavours less pronounced (see Sec. 3.2.4). As a result,
mixing patterns give essentially the same results with the difference at the level
of tens of per cent (see Figs. 3.10, 3.11).
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Figure 3.10: Upper bound for sterile neutrino lifetime for different mixing pat-
terns: mixing with νe-only (red dashed line), νµ-only (green dashed-dotted line)
and equal mixing with νe and νµ flavours (black solid line). All bounds are de-
rived for the lifetime of neutron τn adopted from [167]. The effect of different
mixing patterns is at the level ∼ 10−50% and can only be seen in the right panel
because of the different y axis. In the right panel, only the masses Ms > 40 MeV
are presented. For details, see Sec. 3.4 and Fig. 3.9.
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Figure 3.11: Lower bound on mixing angles of sterile neutrinos for different mixing
patterns: mixing with νe-only (red dashed line), νµ-only (green dashed-dotted
line) and equal mixing with νe and νµ flavours (black solid line). Both types of
bounds are derived by assuming lifetime of the neutron τn from [167]. In the right
panel, only the masses Ms > 40 MeV are presented. For details, see Sec. 3.4 and
Fig. 3.9.

3.5 Discussion

In this Chapter we have considered the influence of decaying particles with the
masses few MeV –140 MeV on the primordial abundance of light elements (D
and 4He). Such particles appear in many cosmological scenarios [109, 147, 193,

92



Influence of sterile neutrinos on primordial nucleosynthesis

20 40 60 80 100 120 140

0.1

0.2

0.5

1.0

2.0

5.0

10.0

Mass M s @MeVD

L
if
e
ti
m
e
Τ
s
@
se
c
D

Mixing with Νe

EXCLUDED REGION

Presen t resu lt

Dolgov et al .

20 40 60 80 100 120 140

0.1

0.2

0.5

1.0

2.0

5.0

10.0

Mass M s @MeVD

L
if
e
ti
m
e
Τ
s
@
se
c
D

Mixing with ΝΜ

EXCLUDED REGION

Presen t resu lt

Dolgov et al .

Figure 3.12: Comparison with the previous results of [156, 157]

159, 160, 161, 162, 163, 194, 195, 196]. Particularly, we concentrated on the
properties of sterile neutrinos and derived constraints on their lifetime imposed
by the present measurements of primordial Helium and Deuterium abundances.

We analyzed the case of two Majorana sterile neutrinos with 4 degrees of
freedom in total (if sterile neutrinos were kept in thermal equilibrium it would
be equivalent to two addtional falvours of active neutrinos). Since the plasma
evolution is mostly affected by the overall decay rate of sterile neutrinos, the
lifetime bounds that we obtained are essentially independent of the particular
mixing patterns, as Figs. 3.10,3.11 demonstrate.

In the paper [157] a similar model was considered with one Dirac sterile neu-
trino. Dirac sterile neutrino has the same 4 degrees of freedom and influences
primordial plasma in the same way (if it has the same spectrum, lifetime and
mixing pattern). However, in [157] effect of active-neutrino oscillations was not
taken into account, and some simplifying approximations like Boltzmann statis-
tics were employed. To provide the corresponding analysis we wrote a code that
solves more accurate set of Boltzmann equations describing kinetics of neutrino,
than what were used in [157]. We compare the results of our analysis with the
previous bounds [156, 157] in Fig. 3.12. We see that our results are broadly con-
sistent with the previous works. The differences for a given mixing pattern of
sterile neutrinos can be as large as a factor of 2.5 for some masses.

The presence of sterile neutrinos in the plasma affects the effective number of
neutrino degrees of freedom, Neff. Right panel of Fig. 3.9 shows that Neff between
2.7 and 6 are possible for different mixing angles and masses, which could explain
a larger than 3 values of Neff , reported recently in several CMB observations (see
e.g. [190, 197, 191], but also [198]).

Decaying sterile neutrinos with the masses 100− 500 MeV and lifetimes from
seconds to minutes and their influence on Neff and entropy production have been
recently considered in [193] (see also [199]) where it was demonstrated that they
can lead to Neff 6= 3 and can therefore be probed with the CMB measurements.
The results of the present analysis demonstrate that in the region 100− 140 MeV
where we overlap with the parameter space, studied in [193], the primordial nu-
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Figure 3.13: Experimental 3σ lower bounds on the lifetime of sterile neutrinos
[200] (solid line), combined with the upper bounds from the present analysis
(dashed line), corresponding to the weakest bound in Fig. 3.8a. The accelera-
tor bounds are for two Majorana sterile neutrinos solely responsible for neutrino
oscillations. Left: normal hierarchy, right: inverted hierarchy. Combination of
BBN bounds with direct experimental searches demonstrates that sterile neutrinos
with the masses in 1-140 MeV range, solely responsible for neutrino oscillations
are ruled out. See Secs. 3.4,3.5 for details.

cleosynthesis restricts the lifetime of sterile neutrinos to be well below 1 sec (see
Fig. 3.8, left panel).

Finally, it is interesting to compare the upper bound on sterile neutrino life-
time, derived in this Chapter with the lower bounds that come from direct exper-
imental searches for two Majorana sterile neutrinos, which are solely responsible
for the observed pattern of neutrino oscillations via the see-saw mechanism (see
Chap. 2). The appropriate comparison is presented in Fig. 3.13.
If two Majorana sterile neutrinos describe neutrino oscillations, no allowed values
of sterile neutrino lifetimes for 1 MeV . Ms < 140 MeV exist, which satisfy the
BBN bounds, for either type of neutrino mass hierarchy.

(i.e. the upper bound is smaller than the lower bound, see the purple double-
shaded region in Fig. 3.13).

Notice, that if the astrophysical bounds on Helium [166, 187] were used for
Ms & 40 MeV in Fig. 3.13, instead of the CMB bound, the resulting lifetime
bounds would become stronger (by as much as a factor of 4) in this mass range.
We stress that for this conclusion it is essential that MeV sterile neutrinos are re-
sponsible for neutrino oscillations. For example, a model in which sterile neutrinos
couple to ντ only (and therefore do not contribute to the mixing between active
neutrino flavours), is allowed even if one confronts the strongest BBN bounds
(based on the astrophysical Helium measurements) with the direct accelerator
bounds, see Fig. 3.14 for details.
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Figure 3.14: Comparison of direct accelerator constraints and BBN bounds, based
on the Helium-4 measurements of [166] in the model where sterile neutrinos mix
with ντ only. Unlike the case, presented in Fig. 3.13 there is an allowed region of
parameter space for most of the masses below 140 MeV.
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Chapter 4

Sterile neutrinos between
baryogenesis and
nucleosynthesis

4.1 Leptogenesis and chiral magnetic effect
Let us consider first the production of lepton asymmetry by sterile neutrinos at
T & 100 GeV, when sphalerons still operate, so that the lepton asymmetry is
transformed partially into the baryon asymmetry. Then, we deal with “restored”
(or “unbroken”) electroweak phase, where the ground state of the plasma is in-
variant under the electroweak SUL(2)× UY (1) group, and massive gauge bosons
W± and Z become massless, like photon.1

From the form of the Yukawa interaction (1.3), we see that sterile neutrinos
interact directly only with left particles. Therefore, during the leptogenesis, lepton
asymmetry is produced first in the sector of left particles. Afterwards, in reactions
with the gauge bosons, the number of left- and right-chiral particles is conserved,
since the interaction of fermions with gauge bosons

∆Lgauge = L̄γµ(gWVµ + gLBµ)L+ gRR̄γ
µBµR (4.1)

does not mix different chiralities. Here L and R are the left-handed fermion
doublets and right handed singlets, respectively, gW is the weak coupling constant,
gL and gR are the hypercharge couplings of left- and right-chiral particles, which
are different, gL 6= gR. Vµ is the SUL(2) gauge field, Bµ is the UY (1) field.
(Since SUL(2) transformations are characterized by three parameters, Vµ actually
includes three independent fields.) At lower temperatures, when the electroweak

1Actually, all the SM particles become massless in this phase. Only sterile neutrinos remain
massive.
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symmetry is broken (in the “broken” phase), the interaction ∆Lgauge becomes

∆Lgauge =
gW√

2
WµēLγ

µνL+Zµ(gν ν̄LγµνL+geLēLγµeL+geRēRγµeR)−eAµ(ēLγµeL+ēRγµeR),

(4.2)

where Wµ, Zµ and Aµ are the fields of W -, Z-bosons and photon, respectively.
(These fields are linear combinations of the fields Vµ and Bµ above.) This inter-
action does not mix chiralities, as well as in the unbroken phase. However, since
sterile neutrinos interact with both W and Z, and Z-bosons couple to both types
of chiralities, the leptogenesis in the broken phase produces both left and right
particles. But it is important that due to parity violation, the numbers of these
particles are different even in the broken phase (chiral asymmetry is generated).

According to what was said above, one may expect that once we produce
chiral asymmetry, it remains conserved. However, as we have pointed out in
Sec. 1.3.5, there exist scattering processes, which change chirality (the chirality-
flipping processes). Indeed, in the SM, there exists Yukawa interaction

∆LYukawa = yf L̄HR (4.3)

which becomes

∆LYukawa = mēLeR + yf ēLeRh, (4.4)

after the spontaneous breaking of electroweak symmetry, and the first term on
the right-hand side is the Dirac mass term. (This generation of Dirac mass is
similar to case of neutrinos, see Sec. 1.2.1). Here yf is the Yukawa constant,
which is proportional to the fermion mass m, h is the field of the Higgs boson.
Presence of the Yukawa interaction in the unbroken phase indicates that left
fermion can transform into right fermion by emitting (or absorbing) the Higgs
particle. However, for the lightest massive electrically charged fermion (electron),
the Yukawa constant is relatively small, so the chirality-flipping processes with
right-chiral fermions have rates Γf ∼ y2

fT , which are much smaller than the rate
of (chirality-conserving) interactions of fermions with gauge bosons, ΓSM ∼ g2

WT .
In the broken phase, there are two mechanisms of chirality flip. First mech-

anism is similar to the restored phase, where the Higgs particle can be emit-
ted/absorbed by a left-chiral electron, and the electron will become right-chiral.
However, this mechanism requires high enough density of the Higgs bosons, which
is exponentially suppressed for small temperatures, since the Higgs boson becomes
massive and quite heavy in the broken phase (recall that the Higgs boson mass
in vacuum is mh ≈ 125 GeV). The second mechanism is related to appearence of
fermion mass: massive electrons do not have a definite chirality. The rate of the
chirality-flipping processes in this case is Γf ∼ e2m2/T .

Using the estimates for the chirality-flipping rates given above, one concludes
Γf � H(T ) (H(T ) is the Hubble rate) at T < 80TeV [95] in both broken and un-
broken phases, so during the leptogenesis, chirality-flipping processes are kept in
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thermal equilibrium. However, if sterile neutrinos inject significant chiral asymme-
try very fast, on the timescale smaller than Γ−1

f , then before the chirality-flipping
processes start to operate, the Chiral Magnetic Effect becomes important (see
Sec. 1.3.8).2 As we have noticed in Sec. 1.3.5, magnetic fields start to grow expo-
nentially with time (system becomes unstable against creation of magnetic fields),
so apart from the equations describing non-equilibrium dynamics of fermions, one
has to consider Maxwell equations. According to Eq. (1.48), although only the
magnetic fields with large coherence scale start to grow, this scale is finite, and
as a result, plasma becomes inhomogeneous. It means that the chiral asymmetry,
which is coupled to magnetic fields, becomes inhomogeneous as well. Another
feature is that the scale of inhomogeneities is much smaller than the cosmological
horizon 1/H(T ), so the magnetic fields are sub-horizon.

Electric currents flowing in presence of magnetic fields lead to the Lorentz
force, which acts on plasma. As a result, macroscopic motions are excited, and
one expects that the system is described by some kind of magnetohydrodynamics.
And we know, that such hydrodynamical effect as turbulence, appears, and it
should be consistently taken into account in the analysis of the νMSM model.
However, before one carries out such a study, all of its individual ingridients must
be understood well. In particular, one may notice, that in the derivation of the
Chiral Magnetic Current in Sec. 1.3.5, fermion mass m was neglected. How does
the picture change if we take into account m? Answering this question turns out
to be non-trivial and it will be the main subject of this Chapter.

4.2 Chiral Magnetic Effect and non-zero fermion
mass

The Chiral Magnetic Current

j = − e2

4π2
(µL − µR)B (4.5)

was discovered some 35 years ago in [201], although the importance of this work
has not been immediately recognized. The paper [201] had zero citations for
the first 18 years, while in the last 5 years it accumulated 100+ citations. The
result (4.5) has been independently rediscovered by a number of authors [202,
203, 204, 93, 94, 205, 206, 207], for a recent review and historical introduction,
see [208].

Our everyday intuition considers an electric current as a non-equilibrium pro-
cess, that requires energy to be pumped into a system and whose flow generates

2However, as we have noticed in Sec. 1.3.3, above the temperature of the sphaleron freeze-out,
lepton asymmetry in the νMSM is of order of baryon asymmetry, therefore the chiral asymmetry
is small and is not expected to give rise to significant Chiral Magnetic Effect. When the Universe
cools down below T ' 100 GeV, the sterile neutrinos generate much larger lepton asymmetry,
until they come into equilibrium at T = T+ (see Sec. 1.3.3).
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entropy. However, as we saw in the derivation in Sec. 1.3.6, the chiral magnetic
current flows in the system in the state of thermal equilibrium and is dissipa-
tionless – it does not generate entropy [206, 209] (unlike for example the Ohmic
current, j = σE), and the system with this current flowing has time-reversal
symmetry [209]. The presence of the current (4.5) in the Maxwell equations has
important consequences in the heavy ion collisions [210, 211], in the early Uni-
verse [212, 213], in the astrophysical systems [214, 215, 216, 217] and magnetohy-
drodynamics of relativistic plasmas [218, 219, 220], Weyl semi-metals [221, 222],
see [208, 223] for review.

The quantum-mechanical derivation of the chiral magnetic current, which was
presented in Sec. 1.3.6 (following the work [90]), is applicable only to the case of
static and homogeneous magnetic field (although the strength of this field formally
can be arbitrarily large). In order to find the current for the magnetic field with
arbitrary time and spatial dependence, one may use the field-theoretical methods
instead, and look for the parity-odd part of the effective action of the gauge
field (1.35). The field-theoretical approach was applied in the same paper [90],
and the result for the electric current was the same as in the quantum-mechanical
method, in the limit of static and homogeneous magnetic field.

As it was noted in [202], the parity-odd polarization operator (1.36), which
enters the effective action of the gauge field (Fig. 4.1a) reduces to the triangular
graph of Fig. 4.1b with ∆µ = µL − µR.

The original derivation of the Chiral Magnetic Current [90] was obtained for
massless fermions. By turning on non-zero fermion mass m, we see that sending
m→ 0 while keeping the wave-number |q| finite means that we are interested in
the short-ranged gauge fields, i.e. that we are considering a gradient expansion
of the parity-odd polarization tensor Π2(q) in powers of |q|/m � 1. While this
expansion is possible, it is difficult to imagine physically relevant situations when
on the one handm� |q|, and on the other hand, we are still in the infrared region
|q| � e2(µL − µR) (recall (1.49)), where the Chiral Magnetic Effect dominates
the dynamics of the magnetic field.
In this Chapter we are exploring the question: does the expression (4.5) hold for
the electrodynamics of long-range magnetic fields (i.e. for |q| � m) or, alterna-
tively, can the long-wavelength Chern-Simons term appear in the effective action
for the electromagnetic fields in the electron-positron plasmas.

In order to produce the chiral magnetic effect, one has to create chiral asym-
metry in the plasma. There are two distinct ways to do this in the system of
charged massive particles:

(I) One could consider a plasma with different populations of left- and right-
helical states.

(II) One can introduce a parity-odd part to the dispersion relation of the
charged particles.

As we have noted above, for the case (I) the chirality flipping processes due to
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Figure 4.1: Parity-odd part of the polarization operator of the gauge fields in
plasma (a) is related to the triangular anomaly with 1 axial and two vector (or 1
vector and two axial) vertices (b).

the finite fermion mass drive the chiral imbalance (µL−µR) to 0. Thus the chiral
asymmetry can exist only for the finite time and the whole system should be
treated as a non-equilibrium one (see e.g. [213, 218]) and one cannot use methods
of equilibrium quantum field theory, like the imaginary-time (Matsubara) tech-
nique. Indeed, these methods operate with chemical potentials, that are defined
for conserved quantum numbers. We discuss the case (I) in the Section 4.3.

In the case (II) chiral imbalance is due to dispersion relations of the fermions
modified by an axial self-energy, ΣA = b0γ

0γ5. Indeed, in absence of fermion
mass, the effect of self-energy is very similar to the effect of chemical potentials
µL = b0, µR = −b0. The key difference is that the self-energy actually modifies the
energy spectrum of individual fermions, while chemical potentials define the initial
state of the system. Therefore, equilibrium description can be used in the case
(II). When masses of the fermions are taken into account, the similarity between
the two cases gets destroyed, even if the temperature of the system is high. The
modification of dispersion relation can originate from the medium effects (e.g.
as a result of weak interactions in the hot dense plasma with non-zero lepton or
baryon number (see [178, 98]) or have “fundamental” origin, like in CPT-violating
theories considered in [224].

The model with axial self-energy at finite temperatures is studied in Sec. 4.4,
and we argue that the current similar to (4.5) may not appear actually, although
a naive calculation indicates the opposite.

In the νMSM , both scenarios (I) and(II) are expected to be realized, since
leptogenesis populates plasma with different numbers of left and right leptons,
and presence of lepton asymmetry itself produces parity-violating self-energy of
fermions (b0 6= 0) [51, 98] (see below and Chap. 5).
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4.3 Asymmetric population of left/right helical states

We start by considering the non-equilibrium case (I) – massive electrically charged
fermions – and show explicitly that Eq. (4.5) remains true in the leading (m/T )2

order, if there exists asymmetry between the number of relativistic particles with
left and right helicities. The resulting polarization operator is given by the ex-
pression (4.10) below. We will discuss the properties and origin of this result that
will allow us to analyse a more intricate case (II) below (Section 4.4).

In case of free massless fermions, the state of definite chirality would also have
definite helicity – projection of the spin of the particle on the direction of its
momentum, p. However, unlike the chirality operator, γ5, the helicity operator,

h ≡ −p · γ|p| γ
0γ5 , (4.6)

also commutes with the massive Dirac Hamiltonian:

HDirac = γ0(γ · p+m) (4.7)

Therefore, in presence of mass, states with definite energy are not characterized
by definite chirality, but can be characterized by definite helicity instead.

Although during the leptogenesis, fermions are produced with definite chiral-
ity, afterwards, due to oscillations between different chiralities, and due to the
scattering processes like e−γ → e−γ and e−e+ → γγ, these states will transform
into the eigenstates of the massive Dirac Hamiltonian: the states with definite
helicity.

Below, we consider two different approaches to find the chiral magnetic current,
which give however the same answer. The first approach is described in Sec. 4.3.1,
and there we study (quasi-)equilibrium distribution of fermions, whose energy
levels are modified in presence of constant homogeneous magnetic field. The result
is non-perturbative in magnetic field (i.e. it can be applicable to strong magnetic
fields). In the second approach, which is described in Sec. 4.4.2, we consider (time-
dependent and inhomogeneous) electromagnetic field as a perturbation, and find
the linear response of the system to this perturbation.

4.3.1 Plasma in homogeneous magnetic field

First, we extend the approach of Section 1.3.6, which was used for calculation
of the Chiral Magnetic Current for the massless fermions in the static and ho-
mogeneous magnetic field, by considering non-zero mass m. Instead of repeating
the derivation, we point out the essential differences between cases of massive
and massless fermions. Presence of mass leads to mixing of left and right chiral-
ities even in absence of magnetic field, hence there will be no separate left and
right Landau levels. In particular, the zeroth Landau levels (n = 0) of left and
right chirality will combine into one, and the momentum pz along the magnetic
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field will not be bounded by (1.32) anymore, instead it will run in the full range
−∞ < pz <∞. At the same time, all the particles at this level will remain polar-
ized opposite to the direction of the magnetic field, therefore the sign of pz will
describe the fermion helicity : if pz > 0, then the spin is opposite to momentum,
the fermion is left-helical; if pz < 0, the fermion is right-helical. The dispersion
relation (1.29) is replaced by

εn(pz) =
√

(pz)2 + 2|eB|n+m2, (4.8)

In the massive case, the equilibrium Fermi distributions (1.27) correspond to
left- and right-helical particles, respectively (in order to distinguish the massive
and massless cases, in the massive case we replace µL by µ↓, and µR by µ↑). µ↓ 6=
µ↑ implies that in this state, left and right helicities are populated asymmetrically.
As we have discussed above, this state is quasi -equilibrium.

Using the statistical formula (1.33), we find once again that the contribu-
tions to the electric current from the n 6= 0 Landau levels are cancelled, and the
remaining contribution

j = − e2

4π2
(µ↓ − µ↑)B

(
1 +O

(
m2

T 2

))
(4.9)

comes from the zeroth levels. This expression coincides with Eq. (4.5) for mass-
less particles, after the identification µL ↔ µ↓, µR ↔ µ↑, up to the corrections
suppressed by fermion mass. Therefore, the Chern-Simons coefficient is

Πcs =
e2

4π2
(µ↓ − µ↑)

(
1 +O

(
m2

T 2

))
. (4.10)

We note once again, that the described quantum-mechanical method with
Landau levels is applicable only to the static and homogeneous magnetic field.
Below, we consider an alternative approach, which can be extended to time-
dependent and inhomogeneous fields.

4.3.2 Plasma in inhomogeneous magnetic field
Let us turn off the magnetic field for a moment. The density matrix, which
describes the state with asymmetry of left and right helicities can be written as
a product of electrons’ and positrons’ density matrices

% = %el ⊗ %pos (4.11)

where

%el =
∏
p

[(
1− nf(Ep − µ↓)

)
|0↓〉 〈0↓|+ nf(Ep − µ↓)

∣∣∣e−↓ 〉〈e−↓ ∣∣∣
]

⊗
[(

1− nf(Ep − µ↑)
)
|0↑〉 〈0↑|+ nf(Ep − µ↑)

∣∣∣e−↑ 〉〈e−↑ ∣∣∣
]
.

(4.12)
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Here Ep =
√
p2 +m2 is the energy of the states |e−〉 with definite helicity (4.6):3

h
∣∣∣e−↓ 〉 = −

∣∣∣e−↓ 〉 ; h
∣∣∣e−↑ 〉 = +

∣∣∣e−↑ 〉 (4.13)

The positron density matrix %pos has a similar form, but µ↓, µ↑ are replaced by
−µ↑,−µ↓ respectively. Here the function nf(x) is the Fermi-Dirac distribution,
so that

nf(Ep − µ↓) =
1

exp
(√

p2+m2−µ↓
T

)
+ 1

(4.14)

Clearly the distribution (4.14) looks like a chiral distribution function under the
identification µL ↔ µ↓ and µR ↔ µ↑. Since the helicity operator commutes with
the Hamiltonian (4.7), the state (4.11) is an equilibrium state in the absence of
particle interactions. Indeed, neither spin, nor momentum of a fermion can change
if no interactions are present in the Hamiltonian.

Let us now perturb the system by turning on electromagnetic field:

H = HDirac + ∆HA , (4.15)

where

∆HA = e

∫
d3xAµ(t,x)̂µ(x), ̂µ(x) =: ψ̄(x)γµψ(x) : . (4.16)

We use here the normal-ordered current, which is denoted by : . . . :.
It can be demonstrated, that in the first order in perturbation ∆HA the ex-

ternal gauge potential Aj(q) causes the current

〈ji〉µ↓,µ↑ = i

∫
d3r

(2π)3

[
nf(e↓)Mij(e↓)+nf(e↑)Mij(e↑)+(e↔ e+)

]
Aj(q) (4.17)

where Mµν(e−↓ ) is the matrix element of the Compton scattering of negative-
helicity electrons, e−↓ γ → e−↓ γ (see Fig. 4.2, right panel)4

Mij(e↓) = +ie2ū↓(r)[γiS(r + q)γj + γjS(r − q)γi]u↓(r), (4.18)

Here u↓(r) are the Dirac spinors, ( /r−m)u↓(r) = 0, which characterize the electron
state with negative helicity, h(r)u↓(r) = −u↓(r); S(p) = i( /p − m)−1 is the
Dirac propagator. It should be stressed that the expression (4.17) is exact in

3If we think about the momentum of electron pointing up then the symbols ↑ and ↓ denote
the states with positive (negative) projection of spins on momentum.

4The scattering is in the forward regime here, i.e. the helicities and momenta of incoming
and outgoing particles are equal.
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Figure 4.2: Left: The 1-loop contribution to the polarization tensor of electro-
magnetic field. Right: The Compton scattering amplitude at tree level, which
leads to the 1-loop contribution after statistical averaging (the other amplitude
should be taken into account as well, which results from the exchange of photon
lines). In both digrams, wavy lines correspond to photons, solid lines correspond
to charged fermions.

the first order in e2. In Eq. (4.17) the helicity-flipping parts of the Compton
scattering amplitude does not appear. Computing the expression (4.17) leads to
the following current, proportional to the difference of µ↓ − µ↑:

〈j〉µ↓,µ↑ = − e
2

4π
(µ↓ − µ↑)B

(
1 +O

(
m2

T 2

)
+O

(
q2

T 2

))
. (4.19)

This answer is identical to Eq. (4.9).

4.4 Axial self-energy of the fermions
The previous Section discusses the situation when the parity-even system (elec-
trons coupled to electromagnetic field) is placed into the parity-odd thermal state.
Here we consider the case (II). Namely, we modify the dispersion relation for left-
and right-chiral particles so that the system has fundamental violation of parity.
The system is put in a state of thermal equilibrium at finite temperature T (and
no chemical potentials). Namely, the Lagrangian of the system is

LA = ψ̄(i/∂ −m− ΣA)ψ, (4.20)

ΣA = b0γ
0γ5. (4.21)

Such a system can appear if one considers fermions propagating in the hot plasma
with non-zero lepton (baryon) number. In that case the self-energy part of the
fermions acquires a parity odd self-energy ΣA due to the one-loop weak corrections
(see e.g. [178, 98]). A system with Lagrangian (4.20) at zero temperatures/den-
sities has been also considered in [224, 225] (see also [226]), where the parameter
b0 was treated as a fundamental CPT-violating term, and the phenomenological
consequences of its presence in the Lagrangian were discussed. In this Section we
will not concentrate on the origin of b0 and will perform the analysis of the sys-
tem (4.20)–(4.21). The difference between “fundamental” and “plasma-induced”
parity-odd self-energy (4.21) will be discussed in the Section 4.4.3 below.
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The corresponding Hamiltonian of the system is given by

HA = γ0
(
γ · p+m

)
+ b0γ

5 (4.22)

The dispersion relation of the fermions with the Lagrangian (4.20) is given by
(see Appendix 4.A for details):

Ep,± =
√

(|p| ± b0)2 +m2 (particles) (4.23)

(and for anti-particles, the minus sign appears in front of the square root). It turns
out that the operator of helicity (4.6) commutes with the Hamiltonian (4.22) and
therefore each particle with the energy Ep,± has definite helicity :5

h |Ep,±〉 = ± |Ep,±〉 , Ep,± > 0 (4.24)

The state of thermal equilibrium is described by nf(Ep,±). In the limit m�
|p| and |p| � b0, the Fermi-Dirac distribution of fermions (4.23) reduces to

nf(Ep,±) ≈ 1

exp
(
|p|±b0
T

)
+ 1

, (4.25)

which looks like a Fermi-Dirac distribution for massless particles with chiral chem-
ical potentials µL = b0 and µR = −b0. Clearly, one arrives to the same conclusion
when putting m = 0 in the Hamiltonian (4.20) and considering the term (4.21)
as the axial chemical potential term. Therefore, we expect that the model (4.20)
at finite temperature emulates the chiral imbalance.

4.4.1 Homogeneous magnetic field
We have calculated the chiral magnetic current using the quantum-mechanical
approach of [90], for massless particles with chiral asymmetry in Sec. 1.3.6, and
for the asymmetrically populated state of massive fermions in Sec. 4.3. Here we
want to extend this approach to the case of massive fermions with axial self-energy.

Lowest Landau level

In presence of electromagnetic field Aµ, the Dirac equation corresponding to the
Lagrangian (4.20)–(4.21) is given by

(i /∂ −m− e /A − b0γ0γ
5)ψ = 0 (4.26)

We will solve this equation for the static and homogeneous magnetic field, aligned
in the z-direction, B = (0, 0, B) (we choose eB < 0, as before), and we choose

5Note the difference with the Dirac fermions, where a wave-function with a definite momen-
tum r has fixed energy

√
r2 +m2, but can have both helicities.
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the Landau gauge, Aµ = (0, 0, xB, 0). Let us choose the ansatz ψ = exp(ipzz +
ipyy)χF (x), where χ is a 4-component spinor, which does not depend on coor-
dinates, and F (x) is a scalar function of x only. The Dirac equation becomes

(ωγ0 − pzγz − b0γ0γ
5 −m)Fχ+ (−i∂xγx + pyγy − exBγy)Fχ = 0 (4.27)

To find the solution of the Eq. (4.27) we take the function F (x) to be

F (x) = exp
[
−|eB|

2

(
x− py

eB

)2]
(4.28)

so that

(−i∂xγx + pyγy − exBγy)Fχ = 0 (4.29)

where a spinor χ has a form χ = (0, ξ1, 0, ξ2). The solution of Eq. (4.27) is then
reduces to(

−m ω + pz − b0
ω − pz + b0 −m

)(
ξ1

ξ2

)
= 0. (4.30)

As a result, we find the dispersion relation for the lowest Landau level

ω = ±
√

(pz − b0)2 +m2 (4.31)

as well as the normalized via χ†χ = 1 solution:

ξ1 =

√
ω + pz − b0

2ω
, ξ2 =

m√
2ω(ω + pz − b0)

, (4.32)

In all of these expressions, the limit b0 → 0 corresponds to the case of usual Dirac
fermions (with no axial self-energy).

Expectation value of the electric current

We now find the quantum mechanical expectation value of the operator of the
electric current jz = ê̄ψγzψ̂ in thermal equilibrium:6

〈jz〉thermal = e×|eB|
2π

∞∫
−∞

dpz

2π
nf(ω)χ̄γzχ + anti-particles, ω =

√
(pz − b0)2 +m2 > 0

(4.33)
6Below we consider only the contribution from the lowest Landau level, n = 0. The contri-

butions of the n 6= 0 levels cancel each other, in the same manner as it happens in Sec. 4.3.1.
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The prefactor |eB|/2π is the transversal density of states, which is the number of
localized Landau orbits per unit area in the x0y plane, exactly as in the standard
Landau levels’ picture (cf. Sec. (1.3.6)). Since we have chosen eB < 0, |eB| =
−eB. Observing that

χ̄γzχ =
pz − b0√

(pz − b0)2 +m2
(4.34)

we find that the expectation value of the current vanishes,

〈jz〉thermal = 0 (4.35)

Indeed, after the shift pz − b0 → pz
′
the integral (4.33) becomes an integral of an

odd function of pz
′
in the symmetric limits.

Let us now take into account the contribution of the filled Dirac sea, which is
present even at zero temperature (in vacuum). Formally:

〈jz〉vac = e×
(
−eB

2π

) ∞∫
−∞

dpz

2π
pz − b0√

(pz − b0)2 +m2
, (4.36)

which involves integral over all states with negative energy, ω < 0 (the filled Dirac
sea). The expression (4.36) is divergent at pz → ±∞. To make it finite, we notice
that we are actually interested in the change of 〈jz〉 that results from turning on
the b0 from b0 = 0 at t = −∞ to b0 6= 0. The resulting variation of the matrix
element is

δ(χ̄γzχ)
δb0

∣∣∣∣
ω<0

=
m2

|ω|3 (4.37)

This variation is finite and therefore leads to

δ〈jz〉vac
δb0

= − e2

2π2
B (4.38)

which is the current that one could obtain from variation of the Chern-Simons
term (1.37) with respect to Az. Noting that in the massless case, µL = b0 and
µR = −b0, we find that after the integration over b0, the current 〈jz〉vac coincides
with the expression for the massless fermions, Eq. 4.5.

4.4.2 Inhomogeneous magnetic field

In this Section, we apply the imaginary-time (Matsubara) formalism to consider
the theory (4.20)– (4.21) at finite temperature T . We compute the parity-odd
part of the polarization tensor Πij

2 (iωn = 0, q) at zero Matsubara frequency and
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check whether Πcs 6= 0. The relevant diagram is the left diagram in Fig. 4.2. The
polarization tensor is given by the formula

Πµν(q) = ie2T

∫
d3p

(2π)3

∑
p0=iωn

Tr [γµSA(p)γνSA(p− q)], (4.39)

where iωn = iπ(2n+ 1)T are fermionic imaginary frequencies (n is an integer),

SA(p) =
i

/p −m− ΣA
= −i

(
ω2
n + p 2 +m2 + b20 + 2b0γ0γ

5(γ · p)
)(

/p +m− b0γ0γ
5
)

(
ω2
n + p 2 +m2 + b20

)2 − 4b20p 2

(4.40)

is the fermion propagator, which explicitly takes into account the axial self-
energy (4.21) and /p = iωnγ0 − γ · p so that p2 = −(ω2

n + p2). In the second
equality (4.40) we identified explicitly the poles in the propagator. One can easily
see that the poles of the denominator of (4.40) for ωn = iE are precisely in the
positions (4.23). For m = 0 the expression (4.40) splits into

SA

∣∣∣∣
m=0

= iPL
1

(iωn + b0)γ0 − γ · p + iPR
1

(iωn − b0)γ0 − γ · p (4.41)

— sum of two propagators of chiral fermions with chiral chemical potentials µL =
b0 and µR = −b0.

In order to evaluate the expression, it is important to specify the order of in-
tegration over 3-momentum p and summation over frequencies p0, as will become
clear below.

We will be interested in the spatial, parity odd part of the expression (4.39)
in the limit

m� T ; b0 � T ; |q| � T (4.42)

and we keep arbitrary the ratios m/b0 and |q|/m.
Let us expand the expression (4.39) in powers of b0/T . The zeroth-order term

does not give parity-violating terms, since in absence of ΣA there is no source
of the violation of P -symmetry in (4.20). Therefore, we extract the first order
in b0 (see Fig. 4.3). Each of the terms is potentially ultraviolet-divergent (the
naive counting of degree of divergence indicates linear divergence). The well-
known ambiguity in defining linearly divergent integrals (see e.g. [227], Section on
π0 → γγ decay) lead the authors of [226] to argue that the parity-odd contribution
to the polarization operator (4.39) is zero in this case. However, the parity-odd
part of the integral in (4.39) is always convergent (cf. the discussion in [224, 225],
and the discussion below) if one takes into account that the integrand of the
polarization tensor involves two fermion propagators, the expansion produces two
different terms (Fig. 4.3). We do the computation of the sum of two triangular
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diagrams, keeping the original momentum routing in both terms, and do not make
any shifts of the integration variable therein. The linear expansion of the result
in q produces

Πij
2 = 4e2b0qkε

ijkT

∫
d3p

(2π)3

∑
p0=iωn

3p2
0 + p2 − 3m2

(p2 −m2)3
(4.43)

Computation of the Chern-Simons coefficient in Matsubara formalism

A number of important technical issues arises when one computes the integral (4.43)
and we comment on them below. The integral in (4.43) has explicit splitting into
one-dimensional and three-dimensional integrations (due to the breaking of the
Lorentz invariance by the presence of plasma). Superficially this integral is loga-
rithmically divergent (in the sum of two triangular graphs of Fig. 4.3, the linearly
divergent terms are cancelled).

The sum over frequencies ωn can be done explicitly and the resulting inte-
gral over d3p is convergent and non-vanishing. If one starts however with the
integration over momentum p, one can easily see that∫

4πp2dp

(2π)3

−3ω2
n + p2 − 3m2

(−ω2
n − p2 −m2)3

= 0 ∀ ωn,m (4.44)

Although both answers are convergent, we understand that the reason for it is the
manipulation with the order of summation and integration for superficially diver-
gent integrals. This is a rare example, when every regularization gives convergent
answer, but the answers are different (see the discussion in [224, 225]).

How should we choose the correct regularization prescription? Fortunately,
we know the answer in the massless case. Repeating the computations of the
Section 4.4.2 for the propagator (4.41) we find that the integral (4.44) would also
be zero in a purely massless case. Using the summation before the integration,
on the other hand recovers the known result (4.5) (with the identification b0 =
(µL − µR)/2.

Finally, performing first the summation over the Matsubara frequencies:

T
∑
n

−3ω2
n + p2 − 3m2

(−ω2
n − p2 −m2)3

(4.45)

and then the integration over d3p we arrive to the following expression for the
polarization operator in the system with axial self-energy (4.20)(4.21)

Πij
2 = −i e

2

2π2
b0ε

ijkqk (|q| � m, m� T ). (4.46)

This expression, again, looks like Eq. (4.5) under the identification b0 ↔ (µL −
µR)/2 and it is valid for the finite fermion mass (with the relative corrections due
to the mass of the order (m/T )2).

We discuss the result (4.46) in the next Section.
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=∂
∂µ

p + k

p

p + k

p p

p

p + kp + k

~k ~k

Figure 4.3: Differentiating Π2 with respect to µ and putting µ = 0 gives the fol-
lowing prescription of the loop momentum routing in triangular graphs as shown
schematically on the Figure. Here the double line is the full propagator (4.40),
while the propagators in the triangular graphs are free massive propagators with-
out chemical potential. Please, note that this prescription for routing coincides
with that of [225, 224].

4.4.3 Thermal and vacuum contributions to the parity-odd
terms

The Matsubara formalism of the previous Section is technically simple, but makes
the result (4.46) obscure. Why this expression is not suppressed by the mass and
what is the difference with the previous example (Section 4.3.2) – we will clarify
this in the current Section.

By definition, the thermal average 〈O〉T is defined as a trace over the full
system of states, including the vacuum state:

〈j〉T = 〈0| j |0〉+
∑

n,En 6=0

〈n| j |n〉 e−En/T (4.47)

where the system {|0〉 , |n〉} is a basis in the Hilbert space.
The Matsubara formalism computes the left hand side of the Eq. (4.47) for

the current j. The computation of the previous Section does not show what
contributions are due to |0〉 or {|n〉} states. The separation into the vacuum
part 〈0| O |0〉 and thermal contribution (the sum over En 6= 0) in Eq. (4.47) can
be done, using the following formal representation of the

∑
n over Matsubara

frequencies (see [228]):

T
∑
n

f(ωn) =
1
2

∮
C

dω

2πi
f(ω) tan(

ω

2T
) (4.48)

where the contour C is shown as a solid line in Fig. 4.4. We can rewrite the r.h.s.
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ω = +iE(~p, µ)

ω = −iE(~p, µ)

ω

Figure 4.4: Choice of contours that allows to reduce the sum over Matsubara
frequencies to the sum over filled states. The contour C in the integral (4.48)
(red solid line) gets deformed into the dashed contour that feels only poles in the
dispersion relation.

of (4.48) as a sum over the residues. The residues are computed in the “physical
poles” – poles of the propagator (4.40).

Let us perform this computation in the simplest case of (4.45). The function
f(ω) is in this case

f(ω) =
−3ω2 + p2 − 3m2

(−ω2 − p2 −m2)3
(4.49)

The poles of this function are in ω = ±
√
p2 +m2 and the residues of the expres-

sion (4.48) can be computed:

T
∑
n

f(ωn) =
3m2

4E5
p

+
(p2E2

p − 3m2T 2 − 3m2EpT )nf(Ep)
2E5

pT
2

+(. . . )n2
f(Ep)+(. . . )n3

f(Ep)

(4.50)

The sum (4.50) contains several terms independent of temperature and a se-
ries of terms with the powers of Fermi-Dirac distribution functions, nf(Ep). This
result is generic: any Matsubara sum splits into the “vacuum” part that does
not depend on temperature and is equivalent to the vacuum QFT expression,
integrated over ω and into sum over thermal states (weighted by the Fermi-
Dirac distributions). In our case there is the only first term in (4.50), that is
temperature-independent.7 The integration of the r.h.s. of Eq. (4.50) over d3p
reveals that the integral of all terms, containing nf(Ep) is zero, while the integral

7If we did not expand the original expression in b0/T , the thermal contributions would include
Fermi-Dirac distributions evaluated for both Ep,± given by (4.23).
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over the first term is non-zero and leads to

Πcs =
e2b0
2π2

(Fermions with axial self-energy, zero-temperature contribution)

(4.51)

Thus, even at zero temperature, the parity-odd part of the polarization tensor, Π2,
or, equivalently, the current (4.5) with µL−µR ↔ 2b0 exists in the system (4.20)–
(4.21) for arbitrarily small |q| (i.e. in the limit |q| � m).

What we have discovered here is actually a known result [224]. The photon
polarization tensor in the model with axial self-energy was previously studied in
Ref. [224] that considered the CPT-violating fermion self-energy at a fundamental
level. There it was shown that indeed the Chern-Simons term (1.37) is generated
in such an electrodynamics in the absence of medium. In the subsequent dis-
cussion [226, 225] authors argued that the resulting expression depends on the
regularization prescription.

Pure massless case

It is instructive to repeat the previous computation in the model (4.20)–(4.21)
but with m = 0. Performing the sum as in (4.50), we will find an expression

T
∑
n

fm=0(ωn) =
1

2pT 2

(
2n3

f(p)− 3n2
f(p) + nf(p)

)
(4.52)

Notice that all terms in the r.h.s. of Eq. (4.52) are temperature-dependent, and
there is no analog of the first term from the sum (4.50). However, it does not
mean that the vacuum contribution to Πcs vanishes! Indeed, integrating the
expression (4.52) over d3p we get the same answer as (4.51): Πcs = e2b0

2π2 , which
is temperature-independent! The reason is that no matter how small T is, the
dominant part of the integral comes from the region p . T , where nf ∼ 1,
and we deal with the integral ∼

∫ T
0
p2dp/pT 2 ∼ 1, which does not vanish in

the limit T → 0. Therefore, the answer Πcs = e2b0
2π2 comes from vacuum, and

does not receive finite-temperature corrections, like in the previous calculation
with m 6= 0! The difference with the case m 6= 0 comes from the fact that the
energies of massive fermions are bounded by m from below, therefore the Fermi
distribution for any momentum p is suppressed at least as exp(−m/T ) in the limit
T � m. On the other hand, massless fermions do not receive such a suppression,
and there exists range of low momenta (p . T ) where the distribution function is
unsuppressed.

Πcs =
e2b0
2π2

, (vacuum contribution), (4.53)

Πcs = 0, (thermal contribution) (4.54)
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Why this happens can be understood from another perspective. For massless
fermions, one can find Πcs without expansion in b0, by recalling that in this case
the fermionic propagator splits into the sum of left- and right-chiral propaga-
tors (4.41). Therefore, the polarization tensor splits into sum of two integrals,
and the expansion in linear order in q together with the frequency summation
will give

Πcs ∝
∞∫

0

dp(nf(p− b0)− nf(p+ b0)) ∼ b0. (4.55)

Although the integrand is proportional to the Fermi distribution, it does not
vanish in absence of medium. Indeed, the absence of medium corresponds to the
limit T → 0 while keeping b0 fixed (since b0 is a vacuum property of fermion,
which remains non-zero after the removal of medium). In this limit, nf(p± b0)→
θ(−(p ± b0)), where θ(x) is the Heaviside step function, which gives non-zero
Πcs. Once we add the medium back by turning on temperature, we see that the
coefficient Πcs does not change.

Short wave-length regime

Finally, let us analyse the same system in the limit m� |q| � T . One can expect
that this limit is similar to the case of massless fermions.

Note that the result (4.46) is applicable only in linear order in q/m. As an
additional step, we have evaluated the polarization tensor without expansion in
external momentum. In the limit |q| � m the numerical evaluation of the parity-
odd part of (4.39) gives

Πcs = O
(
m2

q

)
(m� |q| � T, medium contribution). (4.56)

Πcs =
e2

2π2
b0 (m� |q| � T, vacuum contribution), (4.57)

This result coincides with the massless case, which is considered above, as it
was expected. Note, that Eqs. (4.46) and (4.57) have identical form, although
the relation between photon wavenumber and electron mass are different, and
in both cases the dominant contribution comes from vacuum, while the medium
corrections are suppressed.

4.5 Gauge invariance and Chern-Simons term
Medium corrections to the effective action of electromagnetic field are caused
by the interactions of the probe electromagnetic field (photon) with plasma. In
particular, we have seen that in the case (I), the effective action is expressed
through the forward scattering amplitudeMµν of photon by electron, Eq. (4.17).
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Using the expansion (4.70) of the fermion propagator with axial self-energy (4.40)
in terms of the eigenfunctions χ of the Hamiltonian (4.22), and evaluating the sum
over frequencies according to Eq. (4.48), one can see that the thermal part of the
polarization tensor (4.39) for the case (II) takes the form

Πµν(q) =
∫
d3r

∑
s=±

[nf(Ers)Mµν
A + anti-particles] , (4.58)

where

Mµν
A = ie2χ̄s(r)[γµSA(r + q)γν + γνSA(r − q)γµ]χ̄s(r) (4.59)

is the forward scattering amplitude of fermions dressed with axial self-energy.
The polarization tensor (4.58) is expressed via the scattering amplitude in the
way that is very similar to the case (I) (Eq. (4.17)).

Although in both cases (I) and (II) only the forward amplitude is involved in
the expression for the polarization tensor (or electric current), one can consider
the scattering amplitude in a more general kinematic regime, when the initial
photon with momentum q scatters into a state with a different momentum q′. As
a consequence of the gauge invariance this amplitude is transversal:

qµMµν(q, q′) = 0, q′νMµν(q, q′) = 0. (4.60)

From these two independent relations, one may argue that the amplitude is at
least second-order in photon momenta, M(q, q′) ∝ O

(
q2, (q′)2, (q · q′)

)
(the ar-

gument essentially repeats that of [229]) and therefore, after thermal averaging
in Eq. (4.17) it is not expected to give O(q) term. However, the amplitude is
explicitly non-analytic in q and q′. Indeed, in the case q = q′ = 0 the expres-
sion (4.17) is actually singular, since the intermediate electrons become on-shell.
Therefore, the transversality of the amplitude does not imply absence of Πcs. The
important relation between the analyticity, gauge invariance and presence of the
Chern-Simons term will be actively used in Chapter 5.

4.6 Discussion
In this Chapter, we have considered the Chiral Magnetic Current for massive
fermions, for two different scenarios, which are both realized in the νMSM . In
the first scenario, the left- and right-helical fermions are populated asymmetrically
in plasma, and the timescales that we consider are large enough for each sort of
the helical particles to come into quasi-thermal equilibrium individually. At the
same time, we choose this timescale to be small enough so that the disbalance
in populations does not relax to zero due to chirality-flipping reactions. For this
setup, we conclude that there exists electric current proportional to magnetic field
in the limit q � m of wavenumbers q that are much smaller than the fermion
mass m. The current (4.19) has the same form as in the case of massless particles.
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The result (4.19) is valid to the order O(e2) and exact in T . Higher-order
corrections O(e2+n) will lead in particular to the helicity-flipping contributions
that will drive the asymmetry in populations to zero. These processes determine
the timescale of helicity-flipping and thus the timescale on which Eq. (4.19) is
valid. In the context of the νMSM , one has to compare the rate of helicity-flipping
reactions with the rate of the development of instability against the growth of
large-scale magnetic fields.

In the second scenario, we do not introduce chemical potentials, but modify
instead the dispersion relation of Dirac fermions, by adding the axial self-energy.
This modification breaks down the parity symmetry, and in the state of exact
thermal equilibrium, the distribution functions of relativistic particles coincide
with the Fermi distribution of massless fermions with chiral chemical potential.
Although one would expect that the electric current is the same as in the scenario
with asymmetric population, the relation between the two cases turns out to be
more subtle. We employ the standard and straightforward method for systems
in thermal equilibrium – the Matsubara (imaginary-time) formalism. Although
in the long-wavelength limit q � m this method gives the same Chiral Magnetic
Current, as in the case of asymmetric population, we point out that the domi-
nant contribution to the current is temperature-independent, while the medium
correction to this contribution is suppressed. The temperature-independent part
is present in vacuum, and evaluation by standard zero-temperature methods re-
veals that the contribution is ultraviolet divergent (with logarithmic degree of
divergence). Thus, the current in second scenario depends on regularization, and
becomes ambiguous. Matsubara formalism only provides a particular regulariza-
tion prescription, which is no better than the other prescriptions.

As we have noticed before, the parity-violating correction to the Lagrangian
(axial self-energy) appears effectively as a result of weak interactions in plasma.
The mentioned ultraviolet ambiguity for the vacuum term is a feature of models
with local 4-fermion interaction, but in a realistic renormalizable theory (like the
Standard Model) there is an intermediate boson (W -boson or Z-boson), which
makes the 4-fermion interaction non-local, and results in well-defined vacuum
terms. In Chapter 5, we consider the fate of the Chern-Simons term induced by
parity-violating interactions of a renormalizable theory.
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Appendices

4.A Quantum mechanics of fermions with axial
self-energy

Below we provide necessary details about the single-particle quantum mechanics
of fermion with axial self-energy, central for the Sections 4.4 of this work. There
results are fairly straightforward, however, to our knowledge they have not been
worked out in necessary details in monographs and research papers. Therefore,
we present this Appendix for completeness.

Starting from the Hamiltonian (4.22),

HA = γ0γ(−i∇) +mγ0 + b0γ
5 , (4.61)

we search for the plane wave solutions with the 3-dimensional wavevector r, point-
ing along z-axis, p = (0, 0, p), p > 0. Then the eigenstates of the Hamiltonian are

χ− ∝


0
m

0
Ep,− − (p− b0)

 eipz, Hχ− = Er,−χ−, (4.62)

χ+ ∝


m

0
Ep,+ + (p+ b0)

0

 eipz, Hχ+ = Ep,+χ+, (4.63)

ψ− ∝


0

Ep,− − (p− b0)
0
−m

 eipz, Hψ− = −Ep,−ψ−, (4.64)

ψ+ ∝


−m

0
Ep,+ − (p+ b0)

0

 eipz, Hψ+ = −Ep,+ψ+ (4.65)
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Ep,− =
√

(p− b0)2 +m2, Ep,+ =
√

(p+ b0)2 +m2 (4.66)

We have two positive-energy branches of solutions (χ+ and χ−) and two
negative-energy branches (ψ+ and ψ−), which are divided by the energy gap 2m.
In order to make physical sense of this model, let us fill all the negative-energy
levels, and call this state vacuum (so the vacuum is actually the filled Dirac sea).
Then the interpetation of the positive-energy branches remains unchanged: χ−
is an electron with energy Ep,− and momentum p, χ+ is an electron with energy
Ep,+ and momentum p.

The values of helicities for these states can be recovered from the observation
that the spin operator for electrons is the same as for usual Dirac particles,

ŝ =
1
2

(
σ 0
0 σ

)
, (4.67)

so that the helicity operator has the form (4.6). As a result, χ− corresponds
to negative helicity, and χ+ – to positive helicity. That these states can have
definite energy and definite helicity at the same time, can be understood from the
commutation property

[ĤA(p), ĥ(p)] = 0 (4.68)

which is valid for non-zero b0, as well as for the case of Dirac fermions (when
b0 = 0).

The state with an unoccupied negative-energy level in the filled Dirac sea is
a hole, and corresponds to positive-energy and positive-charged particle (all of
the other quantum numbers, like spin projection on z axis, should be flipped).
The spinor of this state is the charge-conjugation of ψ− (ψ+), the energy is Ep,−
(Ep,+) the momentum is −p, and the helicities is negative (positive).

Assuming b0 � m, one can note that for p� m, left-chiral components of ψ1

and ψ4 dominate over their right-chiral components, and vice versa for ψ2 and
ψ3. In this relativistic regime, we can expand the energy in powers of b0/p, and
find that

Ep,− ≈
√
p2 +m2 − b0, Ep,+ ≈

√
p2 +m2 + b0. (p� m) (4.69)

It means that the energies of left-helical electrons and positrons are shifted by b0
downwards, while the energies of right-helical electrons and positrons are shifted
by b0 upwards, with respect to the case of pure Dirac fermions. however, for the
mid- and non-relativistic particles, the expansion (4.69) is not valid.

Finally, we want to notice that the fermionic propagator (4.40) can be ex-
panded in the wavefunctions as

SA(ω,p) =
i

/p −m− ΣA
= i

∑
s=±

(
χs(p)χ̄s(p)
ω − Ep,s

+
ψCs (−p)ψ̄Cs (−p)

ω + Ep,s

)
, (4.70)
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where ψC ≡ iγ2ψ∗ is the charge-conjugated spinor.
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Chapter 5

Chiral Magnetic Effect from
parity-violating interactions

5.1 Chern-Simons term as a result of particle in-
teractions

As we have seen before, the presence of chiral asymmetry in a medium of relativis-
tic particles can have drastic consequences for the dynamics of primordial plasma.
Namely, the medium can become unstable towards the spontaneous generation of
long wavelength magnetic fields [202, 91, 92]. However, all the electrically charged
particles are massive in the Standard Model and therefore the notion of chiral-
ity can be only approximate for them. Any asymmetry in numbers of left- and
right-chiral particles, created in equilibrium will be quickly erased due to the
chirality-flipping reactions, driven by the finite fermion mass m. As we have ar-
gued in Chap. 4, although in the regime m � T , the rate of chirality-flipping
reactions Γf is strongly suppressed with respect to chirality-preserving reactions,
this rate Γf is still extremely high, which means that the chirality gets quickly
erased on the timescale of the lifetime of the Universe, t ∼ H−1, at temperatures
below ∼ 80 TeV [95]. However, if sterile neutrinos inject large chiral asymmetry
very fast, at t � Γ−1

f , then the Chiral Magnetic Current is developed, which is
proportional to this asymmetry. According to Sec. 1.3.5, it means that the parity-
odd term (Chern-Simons term) is produced in the free energy of electromagnetic
field (1.35).

Recently, however, it has been argued, that due to the parity-violating nature
of weak interactions, the chiral asymmetry is produced effectively, in the states
with large lepton asymmetry [98]. Below we discuss this mechanism in more
detail.

In our discussion of the Chiral Magnetic Effect above (case (I) from Chap. 4),
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5.1 Chern-Simons term as a result of particle interactions

we have considered the particles as non-interacting entities. However, for the
case of dense medium, each individual particle becomes dressed by presence of
the background of all the other particles, so that its properties are modified as
compared to vacuum (see similar discussion in Sec. 1.3.1 about neutrinos in the
early Universe). If we consider an electron, for definiteness, and take into account
the dressing due to his dominant interaction, the electromagnetic interaction,
we find that the left and right electrons are dressed in the same way. Indeed,
electromagnetic interactions themselves obey P -symmetry, the state of plasma is
also P -symmetric in absence of chiral asymmetry, so the properties of the two
types of particles, which are related to each other by the transformation under
parity, are identical.

On the other hand, electrons participate as well in weak interactions, which
violate parity. In analogy to neutrinos in the dense medium, electrons in medium
are described by the effective Dirac equation

(i∂µγµ − ΣA −m)e(x) = 0, (5.1)

where ΣA is the medium self-energy correction of electron (similar to Eq. (1.12)
for neutrinos) [51, 230, 98]

ΣA ∼ GFLγ0γ5, (5.2)

where L is the density of lepton number.1
In order to understand Eq. (5.2) better, one can note that on the one hand,

the expression (5.2) violates the combined symmetry CP (which corresponds to
subsequent application of charge C and P transformations). On the other hand,
according to the SM, weak interactions of leptons preserve CP , the state L = 0 is
symmetric under CP , therefore, in absence of lepton asymmetry, ΣA vanishes.2

The modified Dirac equation (5.1) with axial self-energy (5.2) has been already
analyzed in Chap. 4 (it was called case (II), and the parameter b0 therein is b0 ∼
GFL). And we have seen, that left and right electrons with given momentum are
described by different energies in medium, so that their occupation numbers differ
even in the state of thermal equilibrium, when the chirality-flipping processes have
lead to µL − µR → 0. As a result, we have found that indeed, the effective chiral
asymmetry is developed. Our conclusion was that in this setup, the Chern-Simons
term may be induced,

∆Lcs ∼ GFL
∫
d3xA ·B. (5.3)

1Here we write only the parity-odd part of the self-energy induced by weak interaction.
But there exists parity-even part, which renormalizes left and right particles in the same way
(similarly to the case of electrodynamics considered above), and is not relevant for our further
discussion.

2CP violation happens in weak interactions of quarks, which leads to oscillations of K0

mesons into K0, and similar oscillations of B0 mesons into B0. However, according to the
experimental data, the relative magnitude of this violation is very small.
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Chiral Magnetic Effect from parity-violating interactions

At the same time, in the discussion of the case (II) in Chap. 4 we have im-
plicitly assumed that the only way the medium renormalizes the properties of
particles is through appearence of the self-energy (5.2). Another assumption was
that this self-energy does not depend on particle momentum, which is true as
long as 4-fermion Fermi interaction is taken to be local. Below, we take into ac-
count the medium effects systematically, in the framework of a theory with two
Abelian gauge fields (U(1)×U(1) theory). One gauge field (“vector” gauge field)
is massless and couples the same way to left- and right-chiral particles, the other
field (“chiral” gauge field) is heavy, and couples asymmetrically to left and right
chiralities. This model is a simplified version of the Standard Model, which cap-
tures its essential features: presence of massless “electromagnetic” field which does
not distinguish electric charges of different fermion chiralities, and the intrinsic
parity-violation, induced by coupling of fermions to W and Z bosons. At the
same time, the U(1)×U(1) model is simpler, since it does not involve Yang-Mills
interactions of the electroweak bosons, and has only two gauge bosons instead of
four. In the U(1)× U(1) theory, the parity-violating 4-fermion coupling appears
as a result of exchange of the heavy chiral field, and is therefore non-local.

In Sec. 5.2 we describe the U(1)×U(1) in more detail, and classify the medium
contributions to the parity-odd part of the polarization tensor. The two different
classes are studied in Sections 5.3 and 5.4, respectively. We conclude that the
sum of diagrams inside each of the classes vanishes separately, so that no Chern-
Simons term is induced in the state of thermal equilibrium (µL = µR), even in
presence of non-zero lepton asymmetry.

5.2 Theory with U(1)vector × U(1)axial gauge group
We consider a model based on U(1) × U(1) gauge symmetry, where one of the
gauge fields is massless (we will call it γ or “photon”) and has vector-like couplings
ef with fermions, the other gauge field is massive (we will call it Z-boson) and
has different couplings with left and right fermions, gLf and gRf , respectively.
Difference in couplings provides explicit violation of P -symmetry at the level of
particle interactions, and the Lagrangian is3

L =
∑
f

ψ̄ [iγµ (∂µ + ieAµ − i(gLPL + gRPR)Zµ)−m]ψ−1
4
FµνF

µν−1
4
ZµνZ

µν+
1
2
M2
ZZµZ

µ,

(5.4)

where Fµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ are the strength tensors of the
massless and massive gauge fields, respectively. For simplicity of notation, we have

3More general form includes the mixing term ZµνFµν , which leads to appearence of the
Zγ vertex in perturbation theory. However, we choose the value of this vertex to be zero for
momentum q = 0, which enters the vertex. But a non-zero vertex contribution is nevertheless
generated in the effective action for the other momenta, due to loop corrections (for example,
by creation of a virtual fermion-antifermion pair).
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5.2 Theory with U(1)vector × U(1)axial gauge group

dropped the flavour index f in fermionic fields, couplings and masses. Projectors
PL = (1− γ5)/2, PR = (1 + γ5)/2 extract states with definite chiralities. In order
for this theory to be self-consistent, we choose the gauge charges such that all the
gauge anomalies cancel.

Note that the theory (5.4) is not unitary by itself. For example, the tree-level
process f−L Z → f−RZ violates unitarity of the S-matrix at high energies, provided
that the coupling are indeed chiral, gLf 6= gRf . We overcome this difficulty
by introducing an (Abelian) Higgs field, which provides finite mass to Z-boson
after the spontaneous symmetry breaking. The resulting model is renormalizable.
On the other hand, the additional neutral scalar particle h, which appears after
the symmetry breaking, is not relevant to what is discussed below in our work,
therefore we omit this degree of freedom. For convenience, we choose also a
non-unitary gauge, ξ = 1. As a result, intermediate Goldstone bosons appear
in our analysis, however, they do not contribute to the parity-odd part of the
polarization tensor.

We consider fermionic masses mf , which are much smaller than the temper-
ature T , and temperature by itself is much smaller than the mass of Z-boson,
mf � T � MZ (we will call the fermions “leptons”, and the lightest one we
will call “electron”). According to the logic given above, we are interested in the
situation where the difference of chemical potentials for different chiralities has
relaxed to zero, so that left and right fermions share common chemical potential
µ (which can be, nevertheless, different for different flavours f).

What is then the expected order of magnitude of the parity-odd polarization
tensor? On the one hand, Π2 is expected to involve at least two electromag-
netic vertices, ffγ, since we have two electromagnetic fields in the effective ac-
tion (1.35). On the other hand, violation of parity appears due to the exchange of
an intermediate Z-boson, which means, that at least two vertices ffZ are present
as well. As a result Π2 ∝ e2g2, where g is either gL or gR. There are several classes
of contributions, in this order of perturbation theory.

One class is given by two-loop vacuum diagrams with one or two fermion
loops and one intermediate Z-boson. However, this class does not give parity-odd
contributions to the polarization tensor (in the considered O(q) approximation),
since any of such terms would contradict the Lorentz invariance. Therefore, the
relevant contribution may be expected to appear only from presence of medium.
It is worth noting at this point, that the density of real Z-bosons is suppressed by
the Boltzmann factor exp(−MZ/T ), which is negligibly small, according to our
assumption T �MZ . On the other hand, real fermions in plasma are relativistic,
m � T , and do not experience such a dramatic Boltzmann suppression. As a
conclusion, we will consider only virtual Z-bosons, while fermions can be either
virtual, or real.

The class with one initial and one final real fermion can be interpreted as
Compton scattering process, in analogy with quantum electrodynamics. The typ-
ical diagrams are given in Figs. 5.1, 5.2, and each of them involves one (vacuum)
loop integration, the same as one has in absence of medium. Therefore, this class
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Chiral Magnetic Effect from parity-violating interactions

Z

γ

Z Z

Figure 5.1: The first subclass of parity-violating vacuum 1-loop diagrams of the
fγ → fγ scattering. The wavy line corresponds to photon, the line with arrow
corresponds to the fermion f , the dashed line corresponds to the massive boson.
Here one must include also diagrams with permutations of the ffγ and ffZ
vertices.

γ

Figure 5.2: The second subclass of vacuum 1-loop diagrams of the fγ → fγ
scattering in the U(1)× U(1) model.

will be referred to as “vacuum 1-loop corrections”, and is discussed in detail in
Sec. 5.3. The conclusion is that the sum of all these corrections is zero in the first
order in photon momentum, owing to the electromagnetic gauge invariance, the
analyticity of each term in the sum with respect to photon momentum, and the
cancellation of chiral anomalies.

There is another class, with two initial fermions, and two outgoing fermions,
and some of its representatives are given in Fig. 5.3. The diagrams inside this
class, however are singular in the limit of the vanishing photon momentum q, and
require special resummation. Unlike the diagrams from Fig. 5.1, the resulting
resummed diagrams are non-analytic in q, and therefore the argument of gauge
invariance does not imply that they are O(q2), so it is possible that Π2 6= 0.
However, we show that the total contribution of diagrams from Fig. 5.3 gives
Π2 = 0.
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Z

γ

Z

γ

Figure 5.3: Some of the processes of the parity-violating ffγ → ffγ scattering.

5.3 1-loop vacuum corrections to Compton scat-
tering

In this Section, we describe the contributions to Π2 from class of diagrams with
one initial real fermion, and one final real fermion. It is argued that separately
these contributions are non-vanishing, but their total sum is zero.

Some of the considered diagrams are depicted in Figs. 5.1 and 5.2. (One also
has to include the charged-conjugated processes, f̄γ → f̄γ.) For a given diagram,
the partial contribution to polarization tensor is

Πij = +
∫

d3r

(2π)3
nF (εr − µ)

∑
s

iMij , (5.5)

where nF (x) = (exp(βx) + 1)−1 is the Fermi distribution, εr =
√
r2 +m2 is the

fermion energy, µ is the chemical potential, s is one of two possible polarization
states of fermion, Mij is the quantum-mechanical scattering amplitude. More
precisely, Mij is the amputated amplitude, which is derived from the actual
amplitude M by removing the polarization vectors ε of photons, so that M =
Mµνεµεν . Everywhere in what follows, when amplitude is mentioned, we actually
mean this kind of amputated amplitude.

The diagrams in Fig. 5.1 do not split into disconnected parts after cutting the
Z-boson line. It is natural to call the first diagram the “box” diagram, the second
- as the fermion propagator renormalization (or as vacuum self-energy), the third
- as the vertex renormalization. The propagator renormalization can be expressed
in terms of the vacuum self-energy Σvac(p), while the vertex renormalization - in
terms of the vacuum vertex correction Γµ(p, p′). For example, the second and the
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third diagrams from Fig. 5.1 are, respectively,

Mµν
Σ = +ie2ū(p′)γνS(p+ q)Σvac(p+ q)S(p+ q)γµu(p), (5.6)

Mµν
vert = −e ū(p′)γνS(p+ q)Γµ(p+ q, p)u(p). (5.7)

Here we have considered more general kinematic situation of scattering, when the
photon momentum may change, q 6= q′, while for evaluation of Πij

2 we need only
q = q′. Using the explicit expressions for Σvac and Γµ, one finds that each of the
amplitudes is analytic in photon momenta q, q′.

On the other hand, the Ward identities hold

(p− p′)µΓµ(p, p′) = e[Σvac(p′)− Σvac(p)], (5.8)

qµBoxµν(p, p′; q, q′) = e[Γν(p− q′, p)− Γν(p′, p′ + q′)], (5.9)

where Boxµν is the sum of box amplitudes, in which not only the polarization
vectors of photon are removed, but the spinors u(p), u(p′) of the external fermions
are absent as well. (We have checked these identities explicitly.) As a result,
the total amplitude of the box, self-energy and vertex-renormalization channels
satisfies the transversality property4

qµMµν(q, q′) = q′νMµν(q, q′) = 0 (5.10)

These two properties imply, that longitudinal photons are neither emitted, nor
absorbed. Note, however, that each of the amplitudes separately, for example
MΣ, does not satisfy the transversality property. Together with the property
of analyticity, we find as a corollary, that the total amplitude is at least second-
order in photon momentum,Mµν = O(qαqβ), for the forward regime of Compton
scattering, when one puts q = q′. Therefore, these channels do not produce O(q)
term in the polarization tensor (5.5).

At this point, one may ask, if the similar agrument is applicable to the result
Vilenkin et al. Indeed, the expression, which is derived therein, can be obtained
by plugging the tree-level Compton scattering amplitude in (5.5). However, al-
though this tree-level amplitude is gauge-invariant, it is explicitly non-analytic in
photon momentum (actually, the amplitude is singular at vanishing momentum
q). Therefore, the property of gauge invariance does not forbid the presence of
O(q) term in polarization tensor, in that model.

Contrary to the diagrams in Fig. 5.1, each of the diagrams in Fig. 5.2 does
split into two disconnected parts after cutting the Z-boson line. The first diagram
in that Figure involves the vacuum triangle diagram, more precisely the sum of

4In the on-shell renormalization, which we use, there are two distinct box diagrams, two self-
energy diagrams, and four vertex-renormalization diagrams for the scattering fγ → fγ. The
same number of diagrams appears for the charge-conjugated process f̄γ → f̄γ.
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5.4 ffγ → ffγ diagrams

the triangle diagrams with the different possible fermion species, which run in the
loop. As it was mentioned above, we consider the model, where the gauge charges
are chosen in a way to prevent chiral gauge anomalies, therefore the sum of such
triangles vanishes identically.

The second diagram in Fig. 5.2 is not analytic. This diagram comprises the 1-
loop correction Παβ

Zγ to the Zγ kinetic mixing, and this correction does not involve
the parity-odd part, while the parity-even part of this mixing is proportional to
qαqβ − q2gαβ . On the other hand, if remove this vacuum 1-loop bubble from the
diagram and make thermal averaging of the remaining expression, the resulting
parity-odd part will become first order in photon momentum q. (This situation
repeats in Sec. 5.4.2, where it is described in more detail.) If one restores the
removed piece, the resulting polarization tensor will be at least cubic in q, and
hence it does not contribute to Π2.

The third diagram in Fig. 5.2 can be thought of as diagram with self-energy in-
sertion. However, contrary to the diagram with self-energy, which was considered
before, the new diagram vanishes. The reason is that the tadpole contribution to
self-energy is momentum-independent and therefore vanishes after renormaliza-
tion.

5.4 ffγ → ffγ diagrams

In this Section, we consider the contribution to Π2 from diagrams with two initial
and two outgoing real fermions. Some of the diagrams from this class are drawn
in Fig. 5.3. We conclude, that the total contribution from this class vanishes.

In analogy with Sec. 5.3, the contributions to polarization tensor from Fig. 5.3
can be expressed in terms of tree-level scattering amplitudes Mij . But, con-
trary to the previously considered case, now the double thermal averaging of the
amplitude should be performed,5

Πij = +
∫

d3r

(2π)3
nF (εr)

∫
d3p

(2π)3
nF (εp)

∑
s,s′

iMij . (5.11)

Here r, s are the common momentum and polarization of one pair of incoming
and outgoing fermions, and p, s′ are the common momentum and polarization
of the remaining pair. Therefore, in order to find the partial contribution to
the polarization tensor, one has to specify which initial fermions are paired with
which outgoing fermions. For each given diagram, it is possible to do in two
different ways. For the top-left diagram in Fig. 5.3, one of the choices leads to the
factorization of the amplitude in two matrix elements with independent momenta

5Since we consider processes like e−e−γ → e−e−γ, where identical fermions are present in
the initial and final states, one has to be careful with the definition of amplitude Mij , since
it may acquire additional sign, which may be not taken into account in naive application of
Feynman rules.
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Mij
1 = +

e2

M2
Z

[
ū(r)γiS(r + q)γαĝu(r)

] [
ū(p)γαĝS(p+ q)γju(p)

]
, (5.12)

while the other choice does not seem to admit such a factorization6

Mij
2 = − e2

M2
Z

[
ū(p)γiS(p+ q)γαĝu(r)

] [
ū(r)γαĝS(p+ q)γju(p)

]
, (5.13)

at the first sight. (Note that only the leading-order term in momentum was
kept in the propagator of Z-boson.) However, it is possible to do a factorization
for the latter amplitude as well. Indeed, since we are actually interested in the
parity-violating part of the amplitude, the mixed terms, which are proportional
to gLgR, and which come from the chiral coupling ĝ = gLPL + gRPR, will not
contribute. This can be understood from the observation that if one performs the
parity transformation, PL changes into PR and vice versa, so that the sum of the
mixed terms remains unchanged. Only the terms, which involve g2

L or g2
R, are

relevant. For them one may apply the identity

(γαPL)λρ(γαPL)λ′ρ′ = −(γαPL)λρ′(γαPL)λ′ρ, (5.14)

which is commonly used in derivation of the Fierz identities, and a similar identity,
where one replaces the left chiral projectors PL with the right chiral projectors
PR. As a result, the parity-odd part of the amplitude becomes factorized

Mij
2 = +

g2
Le

2

M2
Z

[ū(r)γαPLu(r)]
[
ū(p)γiS(p+ q)γαPLS(p+ q)γju(p)

]
+

+ (gL, PL → gR, PR) (Parity-odd part) (5.15)

Graphically, the application of Eq. (5.14) is equivalent to a repairing of the four
fermion lines, which are attached to the Z-boson line. The same factorization is
applicable to the other diagrams from Fig. 5.3. As a result, all these diagrams be-
come splitted into two subclasses. In the first one, one of the two factors involves
both electromagnetic vertices (that is, it involves both γi and γj), and this sub-
class is described in Sec. 5.4.1. In the second subclass, each of the factors involves
only one electromagnetic vertex, and this subclass is described in Sec. 5.4.2.

It is worth noting that if we consider scattering with change of photon momen-
tum, q 6= q′, the transversality property, qµMµν(q, q′) = q′νMµν(q, q′) = 0, holds
for sum of the amplitudes of both subclasses. However,Mµν is not analytic in q,
q′, since at q → 0, q′ → 0 all the intermediate fermion momenta become on-shell,
therefore the denominators of the corresponding propagators become zero. As a
result, the gauge invariance does not imply the absence of Π2.

6In this amplitude, the additional sign “-” appears, which is related to the issue of identical
fermions, mentioned above.
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5.4.1 Self-energy diagrams
Some of the amplitudes from the first subclass of the eeγ → eeγ scattering are
ill-defined. Indeed, if one considers the top-right diagram from Fig. 5.3, after the
application of the Fierz-like identity (5.14), one receives the term

Mij
3 = +

e2g2
L

M2
Z

[ū(r)γαPLu(r)][ū(p)γαPLS(p)γjS(p−q)γiu(p)]−(gL, PL → gR, PR),

(5.16)

which involves the fermion propagator S(p) at on-shell momentum, p2 = m2. It
makes the whole amplitude singular, and requires more careful treatment, which
is provided below.

Before we proceed, it is convenient to perform one out of the two thermal av-
eragings of the amplitude in (5.11). Namely, we average over possible 3-momenta
of the factor, which does not involve the electromagnetic vertices. As a result,
this factor can be replaced by the expression

iΣmed = bµγ
µγ5, (5.17)

This expression is the medium contribution to the parity-piolating part of the
self-energy of fermion. The spatial components of the vector bµ vanish in the rest
frame of plasma, while the temporal component, b0 ∝ (g2

L− g2
R)∆ne/M2

Z , is finite
and involves asymmetry in numbers of electrons and positrons, ∆ne = µT 2/3.

Note, that there is an infinite class of the diagrams, which also are ill-defined.
In analogy with the discussion above, they all can be effectively reduced to dia-
grams with insertion of more self-energy corrections Σmed in the fermionic lines
(both internal and external). However, explicit resummation of these diagrams is
possible, and is equivalent to the replacement of the “vacuum” Dirac propagators
with SA(p) = i/( /p −m− iΣmed), Dirac wavefunctions u, v by the eigenfunctions
χ± of the modified Hamiltonian, and the modification of the dispersion relation,
which enters the remaining Fermi distribution in (5.11).The net result is described
by

Πij
2 = +

∫
d3r

(2π)3

∑
s

nF (Ers − µ) iMij
eff (5.18)

where

Mij
eff = +ie2

[
χ̄+(r)γiSA(r + q)γjχ+(r) + χ̄+(r)γjSA(r − q)γiχ+(r)

]
(5.19)

is the effective amplitude of process fγ → fγ. One has also to include in (5.18)
the contribution of the charge-conjugated process, f̄γ → f̄γ. Note the similarity
of Eq. (5.18) with Eq. (5.5).

In order to compute (5.18), one can proceed with the straightforward quantum-
mechanical approach, but it seems to be more convenient to make a connection
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with the imaginary-time (Matsubara) formalism. One can check that if one per-
forms first the summation over the imaginary frequencies iωn = iπT (2n + 1) (n
is integer) in the expression

ie2

∫
d3p

(2π)3
T

∑
p0=iωn+µ

Tr [γµSA(p)γνSA(p− q)], (5.20)

and subtracts in the resulting integrand the term, which is the limit of this inte-
grand at T = 0, µ = 0, then the result coincides with (5.18). This expression was
considered in Chap. 4, and we saw that it vanishes.

5.4.2 Zγ mixing diagrams
In this Section, we consider partial contribution to the polarization tensor, which
comes from the subclass of amplitudes that can be written as a product of two
factors, where each of the factors involves one electromagnetic vertex. The con-
clusion is that this contribution gives vanishing Π2.

One example of the amplitude under consideration was given in Eq. (5.12).
Note that each of the two factors therein is proportional to the amplitude of fγ →
fZ scattering. The thermal averaging in (5.11) gives a product of Πµα(Zγ)Παν(Zγ),
where

Παβ(Zγ) = −e
∫

d3r

(2π)3

∑
s

nf(εr −µ)ū(r)γαĝS(r+ q)γβu(r) + (cross terms)

(5.21)

is the medium correction to the Zγ mixing tensor, which comes from exchange
of fermions (The sum is over possible electron helicities s = ±). Application of
the method of Sec. 5.4.1, which was based on connection with the imaginary-time
technique, to calculation of this mixing tensor gives

Παβ(Zγ) ∝ µε0αβγqγ (Parity-odd part) (5.22)

for the parity-odd part. The parity-even expression is basically the same as the
thermal polarization tensor of photon in QED, only the prefactor e2 in the QED
expression must be replaced by eg. In the limit q0 � |q| that we consider, the
polarization tensor in QED is equal to Παβ(QED) = e2T 2δµ0 δ

ν
0/3 +O(q2

0/q
2) (for

a single fermion flavour that runs in the loop) [231]. Therefore, the expansion of
Πij(Zγ) in q starts from the linear term, and the contraction of two mixing tensors
Π(Zγ) does not comprise any O(q) terms, so that Π2 = 0 for the considered
subclass of diagrams.

5.5 Discussion
In this Chapter, we have studied the question whether Chiral Magnetic Effect can
result from particle interactions, for plasma that is initially in the state of thermal
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5.5 Discussion

equilibrium. We have analyzed a particular model with two gauge fields, where
one of the fields is massless and plays a role of electromagnetic field, while the
other is massive and mediates the parity-violating interaction of fermions. Our
results demonstrate that the Chiral Magnetic Effect is absent in such a system.
This situation is non-trivial, and becomes possible due to cancellation of several
types of contributions to the Chiral Magnetic Current. The key ingridients here
are gauge invariance and analyticity of scattering amplitudes.

This model with two gauge fields should be contrasted with the model with
local Fermi interaction of four fermions, where no massive gauge field is present,
and where the value of the Chiral Magnetic Current is ambiguous due to ultra-
violet divergences as it was discussed in Chap. 4. On the other hand, the model
with two gauge fields is renormalizable, therefore all the ultraviolet divergences
can be unambiguously removed, and the physical observables like currents become
well-defined.

Finally, we want to relate the analysis of this Chapter to the realistic case
of the Standard Model, where instead of two gauge fields one deals with four
fields (the electromagnetic field plus fields of the massive gauge bosons Z, W±),
and where the fermion flavours are not conserved in particle reactions, in general.
Although in the case of the Standard Model, there are more different classes of
contributions to the Chiral Magnetic Current, preliminary inspection shows that
they cancel each other in the sum, similarly to how the cancellation happens in
the U(1)× U(1) model. Therefore, we expect that the Chiral Magnetic Effect is
absent in thermal equilibrium, and may appear only for out-of-equilibrium states.
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Samenvatting

Alhoewel het Standaard Model (SM) van elementaire deeltjes het Heelal succesvol
beschrijft tot op de kleinste bekende schalen, weten we dat er een aantal obser-
vationele fenomenen bestaan, die niet beschreven worden binnen het raamwerk
van deze theorie. Hieronder vallen neutrino-oscillaties, donkere materie en de
baryon-asymmetrie van het Heelal.

In dit proefschrift bestuderen we het Neutrino Minimale Standaard Model
(νMSM), een minimalistische extensie van het Standaard Model dat alle drie de
bovenstaande BSM-fenomenen (Beyond the Standard Model) tegelijk kan beschri-
jven, doormiddel van het toevoegen van drie rechtshandige neutrinos N1, N2 en
N3 aan de bekende drie linkshandige neutrinos. Op deze manier wordt de symme-
trie tussen linkshandige en rechtshandige deeltjes, die afwezig is in het Standaard
Model, bereikt. Tegelijkertijd worden de massa’s van de rechtshandige neutrinos
in νMSM gekozen onder de 100 GeV, zodat er geen nieuwe hoge energie schaal
wordt toegevoegd aan het Standaard Model.

Hoewel deze nieuwe deeltjes slechts een zwakke wisselwerking hebben met de
bekende materie, hebben zij wel een significante uitwerking op het huidige Heelal,
voor de volgende reden. Alhoewel de kans dat een enkele steriele neutrino een
interactie heeft met een deeltje uit het Standaard Model zeer klein is (vergeleken
bij de kans op een interactie tussen de Standaard Modeldeeltjes onderling), wordt
de totale kans op een interactie significant op het moment dat we terug gaan
naar de tijd van het hete en dichte vroege heelal, vanwege de vele deeltjes die het
steriele neutrino op zijn wereldlijn tegen komt. Hieruit volgt dat steriele neutrinos
in groten getale geproduceerd kunnen worden en een effect kunnen hebben op de
rest van het Heelal. De twee zwaardere deeltjes van νMSM, N2 en N3, produceren
de baryon- en lepton-asymmetrie van het Heelal en het overgebleven N1 deeltje
speelt de rol van donkere materie en bevat als dusdanig de meeste gravitationele
massa in het huidige Heelal.

Het νMSM heeft een groot potentieel om gemeten te worden, aangezien de
twee zwaardere N2 and N3 deeltjes direct in een deeltjesversneller geproduceerd
kunnen worden. Een dergelijk experiment is gepland in CERN, genaamd SHiP
(Search for Hidden Particles). Bovendien vervalt het donkeremateriedeeltje N1

onder productie van een monochromatische Röntgenlijn in de regionen die door
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donkere materie gedomineerd worden. Dit specifieke signaal kan doormiddel van
sterrenkundige waarnemingen worden gemeten.

In dit proefschrift laten we zien dat de steriele neutrinos N2 en N3 met massa’s
kleiner dan 140 MeV (de massa van het π-meson), welke de neutrino-oscillaties
verklaren via het wipmechanisme, aanwezig zouden kunnen zijn in het vroege
heelal in zulke grote hoeveelheden dat ze de, anders uitstekende, overeenstem-
ming tussen de voorspelling van het Standaard Model voor de productie van
lichte elementen tijdens de oerknal en de sterrenkundige waarnemingen hiervan
teniet kunnen doen. Op deze manier zijn de steriele-neutrino-massa’s van onder
begrenst, hetgeen de potentieel interessante parameterruimte voor toekomstige
deeltjesversnellerexperimenten verkleint.

Alhoewel N2 en N3 de BSM-fenomenen beschrijven die ogenschijnlijk niet
gerelateerd zijn aan donkere materie, worden in νMSM de eigenschappen van
het donkeremateriedeeltje N1 beïnvloed door N2 en N3. Namelijk, om tegelijk
de waargenomen hoeveelheid van donkere materie te produceren en aan de ster-
renkundige voorwaarden te voldoen, moet leptonasymmetrie aanwezig zijn in het
Heelal op relatief lage temperaturen (onder de 1 GeV). De waarde van deze asym-
metrie wordt op hogere temperaturen bepaald door de dynamica van N2 en N3.
Maar, zoals in dit proefschrift wordt beargumenteerd, is deze dynamica in staat
om de productie van magnetische velden op grote schalen in te leiden door het
zogenaamde Chirale Magnetische Effect (CME).

CME manifesteert zichzelf op twee manieren. Ten eerste verschijnt het als
linkshandige en rechtshandige deeltjes asymmetrisch bevolkt zijn. De fermion
massa m is belangrijk voor νMSM, omdat we geïnteresseerd zijn in magnetisch
velden op grote schaal, q � m, waar q een typische golfgetal is van het magnetis-
che veld. In dit proefschrift laten we zien dat CME in dit geval ook aanwezig is,
en het moet worden meegenomen in de beschrijving van de νMSM -dynamica in
het vroege heelal. CME is in wezen een onevenwichteffect, aangezien de toestand
met asymmetrische populatie vervalt naar de symmetrische toestand gedreven
door (langzame) processen die het aantal links- en rechtshandige deeltjes veran-
deren. In deze symmetrische toestand, verwachten we nog steeds dat CME zichzelf
manifesteert, aangenomen dat leptonasymmetrie aanwezig is, aangezien de aan-
tallen links- en rechtshandige deeltjes verschillend zijn vanwege de aanwezigheid
van pariteitsschendende (zwakke) interacties in het Standaard Model. Op deze
manier verwachten we dat de grondtoestand van het plasma verschoven is en dat
het magnetische velden op grote schalen bevat. In dit proefschrift laten we echter
zien dat het systematisch bijhouden van verschillende bijdragen van de zwakke
interacties impliceert dat zij elkaar opheffen en dat de verschuiving van de grond-
toestand in werkelijkheid niet plaatsvindt.

We concluderen dat om de evolutie van leptonasymmetrie op lage tempera-
turen te begrijpen en consistent de hoeveelheid donkere materie te voorspellen
en zodoende de parameterruimte van νMSM te verkleinen, het Chirale Magnetis-
che Effect meegenomen moet worden in de beschrijving van het Heelal, samen
met de Maxwellvergelijkingen voor het electromagnetische veld en de vergelijking

152



voor chirale asymmetrie. Magnetische velden en elektrische stromen leiden tot
de excitatie van macroscopische materiestromen, turbulentie kan ontstaan, en dit
systeem moet beschouwd worden met een set van correcte magnetohydrodynamis-
che vergelijkingen, welke de chirale asymmetrie in rekening nemen. Dit is werk
voor toekomstige studies.
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Summary

Although the Standard Model (SM) of elementary particles successfully describes
the Universe up to the smallest known scales, we know that there exists a number
of observational phenomena, which do not find explanation in the framework of
this theory. Among these problems are Neutrino Oscillations, Dark Matter and
the Baryon Asymmetry of the Universe.

In this thesis, we are studying the Neutrino Minimal Standard Model (νMSM),
a minimalistic extension of the Standard Model, which can explain all the three
above mentioned Beyond the Standard Model (BSM) phenomena simultaneously,
by adding only three right-handed neutrinos N1, N2, and N3, to the known three
left-handed neutrinos. This way the symmetry between left and right particles,
which is absent in the Standard Model, is established. At the same time, the
masses of the right-handed neutrinos in the νMSM are chosen to be below 100
GeV, so that no new high energy scale is added to the Standard Model.

Although these new particles interact very weakly with ordinary matter, they
nevertheless have a significant impact on the Universe today, for the following
reason. Although the probability for an individual sterile neutrino to interact
with any Standard-Model particle is suppressed (with respect to the interactions
of the SM particles among themselves), once we go back in time to the epoch of the
hot and dense early Universe, the total number of the SM particles encountered
on the trajectory of the sterile neutrino is so large that the total probability of a
sterile neutrino to interact becomes significant. As a result, sterile neutrinos can
be produced in large numbers and affect the rest of the Universe. In particular,
the two heavier particles of the νMSM, N2 and N3, produce the Baryon and
Lepton Asymmetry of the Universe, and the remaining particle N1 plays the role
of the Dark Matter particle, and constitutes most of the gravitating matter in the
present Universe.

The νMSM has a great potential for discovery, since the two heavier particles
N2 and N3 can be produced directly in accelerator experiments, like the planned
experiment SHiP (Search for Hidden Particles) at CERN. On the other hand,
the Dark Matter particle N1 decays and produces a monochromatic X-ray line in
the Dark Matter dominated regions, and this specific signal can be discovered in
astrophysical observations.
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In this thesis, we show that sterile neutrinos N2 and N3 with masses below
140 MeV (mass of π-meson), which explain Neutrino Oscillations via the see-saw
mechanism, could have been present in such large amounts in the early Universe
that they spoil the otherwise excellent agreement between the Standard-Model
prediction of light nuclei production during the Big-Bang Nucleosynthesis and the
astrophysical observations. In this way, masses of sterile neutrinos are excluded
from below, which reduces the potentially interesting parameter space for future
accelerator searches.

Although N2 and N3 describe the BSM phenomena, which are apparently
not related to Dark Matter, in the νMSM the properties of the Dark Matter
particle N1 are affected by N2 and N3. Namely, in order to produce the observed
abundance of Dark Matter and simultaneously to satisfy the astrophysical bounds,
lepton asymmetry should be present in the Universe at relatively low temperatures
(below 1 GeV). The value of this asymmetry at higher temperatures is governed by
the dynamics of N2 and N3. However, as it is argued in this thesis, this dynamics
is able to trigger the production of large-scale magnetic fields due to the so-called
Chiral Magnetic Effect (CME).

The CME manifests itself in two ways. First, it appears whenever left- and
right-handed particles are populated asymmetrically. Fermion mass m is impor-
tant for the νMSM, since we are interested in large scales of the magnetic field,
q � m, where q is a typical wavenumber of the magnetic field. In this thesis,
we demonstrate that CME is present in this case as well, therefore it should be
included in the description of the νMSM dynamics in the early Universe. CME is
essentially a non-equilibrium effect, since the state with asymmetric population
relaxes to a symmetric state due to the presence of (slow) processes that change
the number of left- and right-handed particles. In this relaxed state, the CME is
still expected to manifest itself, provided that lepton asymmetry is present, since
the numbers of left- and right-handed particles are different due to the presence
of parity-violating (weak) interactions in the Standard Model. In this way, the
ground state of plasma is expected to be shifted, and populated by large-scale
magnetic fields. In this thesis it is shown, however, that the systematic account
of different contributions of weak interactions implies that they all cancel each
other, and the shift of the ground state actually does not happen.

As a conclusion, in order to understand the evolution of lepton asymmetry
at lower temperatures, and predict the abundance of Dark Matter consistently,
and thus to reduce the parameter space of the νMSM, the Chiral Magnetic Effect
should be included in the description of the Universe, together with the Maxwell
equations for the electromagnetic field and equation for chiral asymmetry. Mag-
netic fields and electric currents lead to the excitation of macroscopic matter flows,
turbulence may appear, and this system should be considered by a set of correct
magnetohydrodynamical equations, which take into account chiral asymmetry.
This is the work for future studies.
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