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Chapter 1 

 
Introduction 
 

1.0. ABSTRACT 

One of the biggest scientific challenges of our times is to achieve direct conversion of 

solar energy into electricity or solar fuel, efficiently and cost effectively. This will be 

needed in the near future in order to avoid not only more serious consequences due 

to pollution induced climate change, but also to be able to satisfy an ever growing 

energy demand. 

Biological systems are able to perform solar energy conversion through the process 

of photosynthesis, during which light energy is stored in highly energetic sugar 

bonds. Inspired by this process, the ideal solution to the energy problem would be to 

produce fuels through artificial photosynthesis. That is, use water and CO2 as 

feedstock to produce high-energy chemical compounds exploiting sun light as power 

source.  

The design of systems able to undertake this task still represents a phenomenal 

challenge due to the complexity and the interdependence of the mechanisms 

involved. 

This dissertation is concerned with addressing fundamental questions regarding 

photoinduced charge transfer processes in artificial photosynthesis devices, in order 

to identify the key features for their design optimization. Through the analysis of 

donor-acceptor models for artificial photosynthesis, we investigate the photoinduced 

processes of charge separation, electron injection and water oxidation.  

It is shown how molecular structural modifications can be used to control the 

directionality of the photoinduced charge transfer, achieve a stable charge separated 

state, and prevent charge recombination. It is also found that electron transfer 

processes are driven by coherent vibronic coupling effects that can be exploited for 

the design of more efficient devices. Finally, we show how proton-coupled electron 

transfer plays a central role in driving the process of photoinduced water oxidation in 

a prototypical photoanode for solar water splitting. 
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1.1. BEYOND FOSSIL FUEL 

Throughout history, mankind has developed the ability to exploit the available 

natural resources to produce work and wealth in an increasingly more efficient and 

sophisticated way. As a result, its life expectancy and life quality have increased 

dramatically. 

In the pre-industrial world, despite the use of wind and hydropower, technologies 

relied primarily on human and animal power, to produce work. They were therefore 

burdened by huge economic and social costs and able to provide well-being just for 

a small portion of the society.  

In the mid-eighteen century, however, the industrial revolution began. Fossil fuel 

became the primary energy source for work production. Machineries equipped with 

internal combustion engines changed the transportation and manufacturing methods 

around the world. Goods production became soon cheaper and achievable on a mass 

scale, increasing their accessibility also for the socially less advantaged classes. The 

widespread electrification and the technologies that came with it, continued the 

revolution and marked a further step towards modern society. 

The improved living conditions dictated a stunning increase in the world 

population. Modern society accounts in fact for about 7 billion people, while at the 

beginning of the industrial revolution it was only 700 million, and it is expected to 

rise up to approximately 10 billion in less than a century1.  

However, modernization has come at a price. Burning massive amounts of fossil 

fuels to meet the world’s energy demand, releases a large amount of greenhouse 

gases in the atmosphere, particularly carbon dioxide. Over time, the atmospheric 

pollution has risen to the point of creating serious climate change which can 

endanger our way of living. Moreover, the competition between countries for the 

control over the reserves of fossil fuels represents already a delicate geo-political 

issue, destined to exacerbate as those reserves will be depleted. 

In this context, the research for renewable and environmentally sustainable 

primary energy carriers that can replace fossil fuel, is of primary importance.  

Sustainable, or “green”, technologies already exist, such as solar panels, or hydro- 

and wind-power plants. However, these fossil fuel alternatives generate power in the 

form of electricity, which is complicated to store and distribute on demand. 

Moreover, the availability of wind and hydropower sources is strongly bound to 

specific geographical regions, and the output they can generate may significantly 

vary on a seasonal base. 

The only source of energy virtually inexhaustible, able to fulfil the world’s power 

demand, and globally distributed, although unevenly, is sunlight2–6.  

The direct conversion of solar power into electrical energy is at present achieved 
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through photovoltaic cells7–9. Unfortunately, the daily intermittency of sunlight, also 

subject to seasonal changes, is a major drawback of this technology, and ultimately 

affects the ability of photovoltaics to provide a stable and constant energy flux. 

A solution to this problem can be represented by converting sunlight energy into 

simple chemical bonds10 while using water as feedstock. The result is the production 

of oxygen,11 on one end, and highly energetic and storable chemicals that can be 

transported and used at convenience, on the other side. 

This process, already employed by nature, is called photosynthesis. A schematic 

representation of the entire photosynthetic mechanism is presented in Figure 1.1. 

Plants absorb sunlight through their chloroplasts. Once the photonic energy 

reaches the photosystem II (PSII) inside the chloroplast, specific vibrational modes 

are enhanced in the protein so that charge separation between a photoexcited 

electron and an oxidative hole is induced11. The oxidative hole created upon charge 

separation, activates a Mn4CaOx cluster known as oxygen evolving center (OEC). The 

OEC binds two water molecules, and it is able to store four positive charges or holes. 

These oxidizing equivalents are used by OEC to oxidize the water molecules to 

molecular oxygen, four protons and four electrons as 

 

 2H O → O 4H 4e  (1.1)  

 

While the molecular oxygen is released, the electrons and protons are moved, 

through a complex mechanism named electron transport chain, to two different 

reaction centers NAPD+ reductase and the ATP synthase, where they are ultimately 

used to reduce NADP+ and ADP to NAPDH and ATP respectively (see Figure 1.1b). 

With the incorporation of equation 1.1, the total equation for the photo-activated 

mechanism is 

 

 2H O 2NADP 3ADP 3Pi O 2H 2NADPH 3ATP (1.2)  

 

Ultimately, the newly generated NADPH and ATP are used in the light independent 

Calvin cycle to fix atmospheric CO2 into carbohydrates (see Figure 1.1a). 
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(a) 

 

(b) 

Figure 1.1. (a) Schematic representation of the photosynthetic processes leading to the 

production of molecular oxygen and sugar from water and CO2. These processes also produce 

the side products NADP+, ADP, ATP and NADPH, necessary for the sustainability of the cycle. 

(b) Description of the light-dependent reduction mechanism of ADP and NADP+ to ATP and 

NADPH, supported by the concomitant photolysis of water. 
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The consumption of the carbohydrates in the presence of O2 releases again CO2, 

making this a perfectly cycle process for fuel production and consumption. 

It is therefore not surprising that the development of both photovoltaic and 

artificial photosynthesis technologies have been inspired by the natural 

photosynthesis machinery, particularly by PSII12–17.  

A photon is used to excite the device’s antenna and induce a bound electron and 

hole in the form of an excitonic state. This can then decay into a stable charge 

separated state (CS), upon mixing of a charge transfer state into the exciton state 

and transfer of an electron to an electron acceptor subunit, usually a semiconductor 

material. After reduction of the acceptor/semiconductor, the electron can be either 

extracted to generate electricity through an external circuit or transferred to a 

catalytic half-cell for solar fuel production. The first type of device takes the name of 

photovoltaic cell2,6,12,18,19, the second that of solar fuel cell3,10,20–23. 

In a photovoltaic system, the oxidized chromophore is ultimately reduced by a 

sacrificial reductant agent, which is then regenerated electrochemically at the 

cathode side of the cell. In artificial photosynthesis instead, the reduction of the light 

absorber is achieved by the oxidation of the water oxidation catalyst (WOC). The 

activated WOC can then catalyze the oxidation of water (equation 1.1), assuming 

the same role the OEC has in natural photosynthesis. 
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1.2. PHOTOVOLTAIC CELLS 

A photovoltaic cell is a device that generate an electrical output through the 

conversion of sunlight. In such a device, a photon is used to excite a semiconductor 

and promote one electron from the valence to the conduction band (CB) of the 

material. By doing so, a hole is created in the valence band (VB) forming, together 

with the excited electron in CB, the electron-hole pair. The hole and the electron are 

subsequently driven apart and separately used to power an external circuit. 

The first photovoltaic cell was made commercially available over 40 years ago, and 

was based on a crystalline silicon semiconductor. Silicon based solar cells, are at the 

moment, still the reference standard for the photovoltaic industry. The efficiency of 

this type of cells have been greatly improved since the first prototype (<1%) to a 

current ~25% for a single junction cell, or even ~40% for some state-of-the-art 

multi-junction cells24,25. 

Beside their efficiency, the great success of silicon-based solar cells is due to their 

robustness, which allows for their usage for more than 20 years, and their relatively 

low maintenance and operating costs. However, this technology suffers from some 

major drawbacks correlated with the need of pure silicon, which is not encountered 

as such in nature. In fact, pure silicon crystals must be obtained from the 

purification of silicates through an expensive and strongly endothermic process, 

which presents additional difficulties related to the necessity of avoiding any 

unwanted contamination of the final product.  

Although the manufacturing costs have been decreased during the years, and new 

types of Si-based cells have been developed to overcome some of the previously 

mentioned problems, a variety of new lines of research, aiming at developing 

cheaper alternatives for solar cells applications, have been emerging in the past 

decades. Among them, the dye-sensitized solar cells (DSSC) attract a lot of 

attention, becoming the subject of a vast research effort, due to low production 

costs and high power conversion efficiency, which has recently reached >20% for 

perovskite based devices26–29. However, this technology is far from being mature and 

further investigation is required to improve cell performances. Particularly important 

is here the study of mechanisms that control the intricate interplay of factors driving 

the electron transfer processes between components in DSSC. In this field of 

research, computational chemistry proved to be able to bring a significant 

contribution, not only through the interpretation of experimental results, but also by 

proactively provide answers to more fundamental questions, observe processes 

otherwise experimentally inaccessible, and by inspiring the design of new materials 

for systematic optimization by molecular engineering7,19,30–39. 
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1.2.1. Dye-sensitized solar cells 

The concept of dye-sensitized solar cells was first introduced by O’Regan and 

Grätzel in 199113. In the original DSSC design, the photoanode was composed of a 

film of titanium dioxide (TiO2) nanoparticles (Figure 1.2a, blue spheres), coated 

with a light-harvesting ruthenium-based dye (Figure 1.2a, red spheres). The anode 

was immersed in a iodide/triiodide electrolyte solution (Figure 1.2a, orange 

spheres), and contacted with a photocathode for the regeneration of the electrolyte. 

Since that first publication, various modifications of the O’Regan and Grätzel 

original idea have been proposed, where one or more of the original device’s 

components are replaced12,40–42. However, the general design of the DSSC has 

undergone very little modifications, and Figure 1.2a can very well represent any 

modern DSSC device. 

 

 

(a) (b) 

 
Figure 1.2 (a) schematic representation of a dye-sensitized solar cell in which the 

photoanode, constituted by semiconductor nanoparticles (blue spheres) functionalized with a 

molecular chromophore (red spheres), is immersed in an electrolyte solution containing a 

redox mediator (I-/I3
-, orange spheres). The anode is connected to a counter electrode for the 

regeneration of the redox mediator through an external circuit (black straight arrows). The 

zigzag line represents a resistance (or work performed) along the external circuit. (b) energy 

diagram of the electron transfer processes (black arrows) occurring upon photoexcitation of 

the molecular chromophore (green arrow), and of the possible recombination paths (wiggly 

lines) of the excited state to the initial ground state. CB and VB are the abbreviation for 

conduction and valence band, respectively. 
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A photovoltaic Grätzel cell ideally cycles through four concatenated steps: 

 

1. A photon of the incoming sunlight is initially absorbed by a dye molecule. 

The absorption promotes the chromophore into an excited state (Dye*) via 

an intramolecular electronic transition from an occupied to an unoccupied 

molecular orbital (Figure 1.2b, green arrow 1). 

2. The photogenerated exciton is dissociated upon injection of the excited 

electron into the semiconductor CB (Figure 1.2b, black arrow 2)43,44. The 

electron can diffuse into the bulk of the semiconductor, and be extracted to 

perform work at the resistance. 

3. At the same time, the oxidized dye molecule (Dye+) is reduced to its 

natural charge by a sacrificial reductant present in the electrolyte solution 

(I-/I3
- redox couple). After regeneration, the chromophore can undergo 

another photoexcitation cycle. 

4. From the external circuit, after performing work, the photogenerated 

electrons are reintroduced into the cell through the photocathode to reduce 

the oxidized reductant agent to its original form and complete the cycle. 

 

Unfortunately, along the cycle, the photoexcited electron can also undergo 

alternative quenching paths, which can affect the efficiency of the cell:  

 

a) If the injection is not sufficiently fast, the electron may relax into a 

chromophore state energetically lower than the semiconductor CB edge, 

thus making the electron injection impossible, or ultimately to the ground 

state; 

b) it can also recombine with the positive charges carried by the electrolyte if 

the injection into the semiconductor is delayed, or if, after injection, it 

remains trapped in the semiconductor defects states; 

c) if trapped, it can also recombine with the oxidized chromophore to 

reconstitute the ground state configuration. 

 

The efficiency of a dye-sensitized solar cell is therefore dictated by the balance 

between the desired electronic cycle, and the occurrence of one, or more, of the 

possible quenching paths. The optimization of the cell performances can therefore be 

achieved by trying to increase the efficiency of the processes 1, 2, 3, and 4, while 

decreasing the incidence of the quenching paths (a, b, and c) described above (see 

Figure 1.2b). This is a complicated task since all these processes are strongly 

correlated, and may be very differently affected by any modification to the cell. This 
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difficulty in finding the “perfect mix” of cell components has led to a heuristic 

approach based on a vast production of devices, in which numerous combinations of 

different chromophore40,45–49, electrolytes38,42,50, anchoring groups51–53 and 

semiconductors54–57 are explored.  

In this scenario, the theoretical and computational study of the fundamental 

mechanisms underlying the DSSC processes can have a primary role in predicting 

the effects of modifications for achieving an optimal balance between the devices’ 

components. In chapter 3 it is discussed how the electronic properties of a molecular 

charge separator for solar energy conversion can be optimized to achieve 

unidirectional electron transfer and to prevent charge recombination. 

 

1.3. SOLAR FUEL CELLS 

As previously explained, a solar fuel cell has the purpose of converting solar 

energy into storable chemical fuel by oxidizing water and, at the same time, 

reducing protons. 

This type of cell can be divided into two separated half-cells, where the water 

oxidation and the proton reduction half-reactions can take place separately from 

each other. The separation, necessary to efficiently collect the produced molecular 

oxygen and hydrogen, or other fuel, is obtained by interposing a proton exchange 

membrane (PEM) between the two half-cells. In the complete system, the anode and 

the cathode are connected through an external circuit, which allows for the electrons 

to flow between them. 

Depending on the cell design, at least one of the electrodes acts as light absorber. 

The visible light absorption occurs either directly through the semiconductor if it 

possesses the correct band gap, or, as in DSSC devices, through a dye molecule 

functionalizing the surface of the semiconductor based electrode, which therefore 

acts as primary acceptor for the photoexcited electron. 

In a solar fuel cell, the water oxidation and the proton reduction reactions occur 

respectively at the anode and at the cathode electrodes. The integration of the 

catalytic properties onto the electrodes can be achieved in various ways. 

In some devices, the electrode is fabricated directly with catalytic material, often 

metal oxide or semiconductor nanoparticles, and acts as both photoabsorber and 

catalyst. Several designs based on UV- and visible-light absorbing materials have 

been proposed58–63. To increase the number of reactive points, thus accelerating the 

catalytic reaction and increasing the cell efficiency, the photoelectrodes are often 

coupled to co-catalysts, which can be either dissolved in the homogeneous phase in. 
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contact with the electrode, or directly functionalized onto the electrode surface64–67. 

Other systems, employing tandem cell configurations68–71, Z-scheme72,73 structures, 

or multi-junction devices14,74,75 to connect water oxidation and proton reduction 

catalytic sites, have also been suggested.  

Inspired by dye-sensitized solar cell devices, a different approach to photo-driven 

solar fuel production has recently attracted interest in the scientific community. It is 

based on the use of dye-sensitized semiconductor nanoparticles, coupled to oxygen, 

or hydrogen, evolving catalysts. These systems take the name of dye-sensitized 

photoelectrochemical cells (DS-PECs)15. 

In Figure 1.3 a schematic energy diagram of the thermodynamics involved in a 

dye sensitized photoelectrochemical cell is presented. 

 
Figure 1.3. Structure of a prototypical device for solar fuel production. The photoanode (left) 

is functionalized with a chromophore and a water oxidation catalyst (WOC). The photocathode 

(right) is functionalized by a different chromophore and a hydrogen evolving catalyst (HEC). 

The two electrodes are separated by a proton exchange membrane (PEM) preventing the 

mixing of molecular hydrogen and oxygen.  

As in DSSC devices, the photoexcitation of the dye functionalizing the n-type 

anodic semiconductor, creates an initial electron-hole pair, which is subsequently 

dissociated when the excited electron is injected into the semiconductor conduction 

band. While the injected electron is collected and transferred to the counter 

electrode, a WOC is activated by reducing the dye to its original form and can 

undergo the first catalytic step of water oxidation. This removes the need for an 

electrolyte. 

At the cathode, the chromophore is absorbed onto a p-type semiconductor and 



SOLAR FUEL CELLS 

11 

 

contacted with a HEC. Upon photoexcitation, the dye is oxidized by the HEC, acting 

as electron acceptor, and regenerated to its ground state upon electron transfer 

from the semiconductor. Using the protons and the electrons derived from the 

photo-oxidation of water, hydrogen is evolved at the HEC, and the cathodic 

semiconductor is regenerated.  

Since water splitting is a multi-electrons redox reaction (equation 1.1), these 

processes have to be repeated iteratively several times before molecular hydrogen 

and oxygen can be released. Multiple charges, or redox equivalents, are therefore 

accumulated on the WOC and HEC along the cycle. The critical hurdle is to prevent 

that at each step the previously accumulated redox equivalents quench the excited 

state of the light absorber. 

Examples of DS-PEC integrating both photoactive anode and cathode like in 

Figure 1.3 are still very rare76, while it remains common practice to optimize the 

two half-cells separately. 

Although significant progress has been recently achieved in the optimization of the 

cathodic half-cell77–81, the four-electron water oxidation reaction at the photoanode, 

still represents a major design challenge.  

The photoanode should integrate both the photoabsorption and the catalytic 

functions. The difficulties arise from the fact that the chromophore not only must be 

able to absorb in a wide range of the visible light spectrum and perform fast electron 

injection into the semiconductor like in the DSSC, but it must be also able to 

recursively oxidize the WOC and thus drive the water oxidation catalysis.  

Different strategies have been proposed to couple both the chromophore and the 

catalyst units. In the co-absorption strategy, both the chromophore and the catalyst 

units are bound directly onto the semiconductor surface. In this configuration, upon 

photoinduced electron injection from the dye into the electrode conduction band, an 

electron is transferred from the catalyst to the oxidized chromophore nearby. Thus, 

the activated catalyst can initiate the process of water oxidation. The advantage of 

this technique is that it allows to use different types of dye to absorb in a wider 

spectrum of the incident light, and also to increase the chromophore/dye ratio in 

favor of the latter. This provides a higher number of oxidized dye molecules 

surrounding the catalyst, thus favoring the completion of the four-step water 

oxidation process. However, it has been observed that co-absorption may lead to the 

inhibition of electron injection, probably due to aggregation or interferences between 

chromophores.  

Another strategy, instead, consists in covalently binding the dye and the WOC in a 

dyad-like structure, where the dye acts as molecular bridge between the 

semiconductor and the catalyst. This configuration should promote fast through bond 
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electron transfer between the catalyst and the chromophore, and facilitate the 

control of the directionality of the process. Additionally, the interposition of the dye 

in between the oxidized WOC and the reduced semiconductor, enhances the effect of 

screening of the two charges, therefore stabilizing the charge separated state and 

reducing the probability of charge recombination.  

The investigation of such a system is presented in chapter 5. The study shows 

how, upon photoinduced electron injection from the dye into the semiconductor, the 

process of water oxidation is driven by a proton-coupled electron transfer (PCET) 

mechanism. 

Recently, it has become evident that coherent nuclear-electron dynamics has a 

prominent role in driving intramolecular charge transfer processes19,82–84. Therefore, 

understanding the fundamental mechanisms behind the coherent motion of nuclei 

and electrons can provide a completely new strategy for the design and optimization 

of solar fuel cells. The effect of this coherent motion on the electron injection process 

from a prototypical dye functionalizing a TiO2 semiconductor surface, is presented in 

chapter 4 of this thesis.  

1.4. ELECTRON TRANSFER  

The term electron transfer (ET), in its simplest definition, describes the transition 

of one electron between a donor (D) and an acceptor (A) species. When it is 

triggered by the absorption of a photon from an external light source such as the 

sun, bringing either D or A in an excited state, this process is referred to as 

photoinduced electron transfer. 

The latter is one of the most pivotal events occurring in natural and artificial 

photosynthesis, and consequently, a main subject in this thesis. 

It can be schematically represented as  

 

 ∗  (1.3)  

 

where the reactant state ( ∗ ), obtained through photoexcitation of the donor, 

evolves into the charge separated product state ( ), in concomitance with 

electron transfer between the two species. 

A major contribution in the development of ET theories was brought by the Nobel 

prize winner Rudolph A. Marcus, who proposed, in 1956, the famous Marcus theory 

of electron transfer85. This is still one of the most important and commonly used 

tools for the study of electron transfer. 

In this section the fundamentals of this theory are presented, together with a brief 

discussion on its limitations. 
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1.4.1. Marcus Theory 

In Marcus theory, electron transfer is described as a sudden event from a donor to 

an acceptor, with consequent transition from reactant to product state, in response 

to the creation, due to thermal fluctuations, of favorable conditions along a collective 

reaction coordinate Q (see Figure 1.4). This collective coordinate accounts for the 

coordinates of the D-A solute complex, as well as of the solvent molecules 

surrounding it.  

 

 
Figure 1.4. Representation of the free energy curves of the diabatic reactant and product 
states along the collective coordinate Q. ∆G* is the free energy barrier for charge separation, 
∆G0 is the overall Gibbs free energy change between reactant and product, and λ is the total 
reorganization energy of the electron transfer process. 

 

As shown in Figure 1.4, the free energy curves of the reactant and product states 

are approximated by two parabolas crossing each other at the transition state Q*, 

and with minima respectively at QR and QP. It is worth noticing that the reactant and 

product, in this formalism, are diabatic states, since their nature do not vary with 

changes in the reaction coordinates. 

During the electronic jump, the system comprising the donor, the acceptor, and 

the solvent is assumed stationary, following the Franck-Condon principle, and the 

energy is conserved. Therefore, the electron tunneling can occur only at the 

transition state geometry Q*, which is communal to both reactant and product state. 

In other words, every time the system reaches the transition state it exist a 

possibility for the electron to tunnel from the reactant to the donor state. 
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This implies that the rate constant for the ET reaction depends on two factors: the 

probability for the reactant to reach Q*, and, once in Q*, the probability for the 

tunneling to occur. The first variable is controlled by the temperature and associated 

reorganization of the system, while the second one involves the electronic coupling 

elements between the two diabatic states. 

In the adiabatic limit, the electron transfer rate can be expressed by the Arrhenius 

equation 

 

 exp
Δ ∗

, (1.4)  

 

where  is the electronic transmission coefficient,  is the average nuclear 

frequency factor, and Δ ∗ is the activation energy, which is the energy needed to 

reach the transition state from the minimum of the reactant state free energy 

surface86. 

On the basis of the approximation that the reactant and product free energy 

curves are parabolic, it is possible to define Δ ∗ through the quadratic expression  

 

 Δ ∗ Δ
4

 (1.5)  

 

where Δ  is the free energy difference between reactant and product states in 

their respective equilibrium configurations, and  is the reorganization energy. The 

latter is defined as the energy needed to bring the reactant state into the equilibrium 

configuration of the product state, before the electron transfer occurs. 

 in equation 1.4, depends on the electronic coupling between the reactant and 

product states, and is correlated with the probability of electron transfer to occur at 

the crossing point between the two potential energy surfaces. 

If the two diabatic states are electronically strongly coupled then we can assume 

1. This means that, under these conditions, every time the system is brought 

by its fluctuations to the crossing point between the reactant and the product states, 

the probability for the electron tunneling to occur is also ≈1. Thus, the electron 

transfer reaction becomes an adiabatic process, which can be described by a motion 

along a unique adiabatic energy surface with a barrier between the two minima QR 

and QP
87, and where the electrons of the solute system respond immediately to 

changes in the solvent polarization. Within this so called Marcus adiabatic limit, the 

electron transfer rate constant is simply determined by the Arrhenius probability of 
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overcoming the activation free energy barrier through thermal fluctuations (equation 

1.4). 

In the opposite scenario, where the electronic coupling between reactant and 

product states is small ( ≪ 1), the system needs to explore Q* several time 

before the tunneling takes place. The ET rate constant is therefore strongly 

dependent on the electronic interaction between initial and final states at the 

transition state Q*, and the process becomes nonadiabatic.  

In this nonadiabatic limit, the electron transfer rate constant is given by the 

Fermi’s golden rule88 expression 

 

 
2

Ψ ∗ Ψ FC  (1.6)  

 

where FCel is the thermally averaged nuclear Franck-Condon factor, which contains 

the overlap integrals between isoenergetic nuclear vibrational wavefunctions 

belonging to the reactant (Ψ ∗ ) and product (Ψ ) states, and account for the 

energetic effects imposed by the nuclear changes following the electron transfer. In 

the high temperature limit ( T), this term assumes the form: 

 FC 	
1

4 T
exp

Δ
4 T

 (1.7)  

 

where  contains the reorganizational energy terms for both the inner and outer 

sphere nuclear terms.  

The Marcus equation for ET obtained by combining equation 1.6 and 1.7 shows 

that the electron transfer rate does not behave linearly with respect to the variation 

of the reaction free energy Δ 0. Two separate ET regimes can be identified. 

In the normal regime, in which Δ 0  (Figure 1.5a, normal region), the 

electron transfer rate ( ) increases as the driving force increases, until a 

maximum rate is reached for Δ 0 . If this condition is met, the system is in the 

Marcus optimal point, since the electron transfer becomes a barrierless process. 

If the reaction free energy change is further increased beyond the optimal point 

( Δ 0 , Figure 1.5a, inverted region), a counterintuitive observation is made: 

for increasingly larger driving forces  begins to progressively decrease. This is 

known as Marcus inverted regime of electron transfer (Figure 1.5b, solid line). 

The prediction of an inverted regime of electron transfer is one of the most 

important aspects of Marcus theory, which was observed experimentally, years later, 
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by Miller and Closs89,90. This behavior can be understood by comparing the energy of 

the crossing point between the reactant and product states in the inverted region, 

against the optimal point. 

 

 

 
Figure 1.5 (a) Representation of the different Marcus theory regions, together with the Gibbs 
free energy difference, and the reorganization energy. (b) Representation of electron transfer 
rate coefficient dependence on the Gibb’s free energy variation predicted by Marcus (solid 
line), and of its deviation due to electron tunneling effects (black dashed line). 

As shown in Figure 15a, increasing the value of Δ  beyond the optimal 

conditions, results in shifting Q* from the minimum of the reactant state curve, to an 

energetically higher point. This means that additional energy is required to reach the 

curves crossing point, which in turn decreases the reaction rate.  

However, another observation to be made is that, although the classical Marcus 

expression for ET is extremely powerful in describing processes in the normal and 

optimal region, it underestimates the values of  for reactions following the 
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inverted regime. This deviation (Figure 1.5b, dashed line) from the classical Marcus 

picture (solid line) is due to the fact that Marcus considers only classical vibrational 

modes as available channels for barrier crossing, while ignoring quantum tunneling 

effects that, in the inverted regime, allow the electron to “see” a thinner barrier, and 

proceed faster than expected.  

The classical Marcus equation can therefore be extended to include intramolecular 

high frequency quantum modes for the solute, leading to the so called semi-classical 

Marcus expression91,92, in which electron transfer is treated as the sum of vibronic 

transitions from quantum levels of the reactant, to those of the product state93,94. 
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1.5. OUTLINE OF THIS THESIS 

The Marcus theory of electron transfer is very powerful in predicting the behavior 

of organic redox materials. Thus, it has become one of the fundamental tools for the 

analysis of materials for solar cell applications. 

In chapter 3 of this thesis, Marcus theory is used as theoretical basis to judge the 

quality of the design of different molecular rectifiers, with respect to the predicted 

electron transfer rate constants. The influence of different structural modifications on 

the Marcus parabolic term variables, G and , and on the electronic coupling 

between donor and acceptor, is used to find an optimized design able to achieve fast 

and unidirectional charge transfer. 

Marcus theory is however an equilibrium theory. That is, it was initially developed 

to describe outer sphere electron transfer events, driven by the slow reorganization 

of the solvent, between a reactant and a product state at the equilibrium 

configurations. However, photoinduced electron transfer is usually not an equilibrium 

process, and occurs on time scales much shorter than those of solvent 

rearrangement. This implies that, although Marcus theory may give an accurate rate 

value for the overall electron transfer process on long time scales, it can give very 

little information on how the transfer dynamically proceeds.  

Recently, it has been shown that the photoinduced electron transfer in natural and 

artificial systems is controlled by quantum coherence effects between nuclei and 

electrons. Therefore, the ability of identifying the vibrational modes coupled to the 

electron transfer dynamics can represent an important advantage for the design and 

the optimization of molecular systems for solar cell applications. 

In chapter 4 it is shown how specific vibrational modes of a molecular 

chromophore designed to achieve unidirectional electron transfer, can drive the 

photoinduced electron injection into TiO2, thereby suggesting how to modify the 

system to improve its performance. 

Another example of coupled electron-nuclear motion is given in chapter 5, where 

the oxidation of water, occurring at a dye-sensitized photoanode, is shown to 

proceed through a proton-coupled electron transfer mechanism initiated by 

photoinduced electron injection into a semiconductor. 
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Chapter 2 

 
 
Theory and Computational Methodology 
 
 

2.0. ABSTRACT 

This chapter is meant to provide the reader with a general overview of the 

computational methodology applied throughout this thesis and explain their 

theoretical basis. 

The chapter is structured as follows. At first, a general description of the Born-

Oppenheimer approximation is presented (section 2.1). Then, an introduction to the 

theoretical basis of the density functional theory (DFT) method (section 2.2) and a 

brief discussion on the most commonly used type of approximations for the 

exchange-correlation functional (section 2.3) are given. 

The Car-Parrinello Molecular Dynamics method, which unifies DFT and classical MD, is 

described in section 2.4, while section 2.5 is dedicated to the description of the 

theoretical basis of Time-dependent DFT (TD-DFT) and linear-response TD-DFT. 

Finally, in the last two sections of this chapter (2.6 and 2.7), the constrained DFT 

method, employed in chapter 3 for the electron coupling calculations, and the 

semiempirical Hückel and Extended Hückel theories are explained. The latter, 

together with the Car-Parrinello MD method, is central to the work presented in 

chapter 4 and chapter 5. 
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2.1. THE BORN-OPPENHEIMER APPROXIMATION 

In its most general form, the time-dependent Schrödinger equation can be written 

as  

 

 Ψ Ψ , (2.1)  

 

where Ψ is the total wavefunction,  is the imaginary unit,  represents the time,  

is the reduced Planck constant, and  is the total Hamiltonian of the system under 

investigation. The latter contains both the nuclear and electronic kinetic-energy 

operators, and the potential-energy operators describing particles interactions: 

 

 	 , , ,  (2.2)  

 

In a more explicit form, for a system with  nuclei and  electrons, the nuclear 

(  and electronic ( ) kinetic-energy operators can be written as 

 
2

 (2.3)  

 

 
2

 (2.4)  

The potential-energy operators, describing in order the nucleus-nucleus, electron-

electron, and nucleus-electron Coulomb interactions, can be expressed as 

  

 
,

1
4

 (2.5)  

 

 ,
1

4
 (2.6)  

 

 
,

1
4 | |

 (2.7)  

 

In this notation the capital indexes refer to the nuclei, while the small ones point 

to the electrons.  and –  are the atomic number of the  nucleus, and the 

electron charge, while  and  represent the coordinates of the  nucleus and  
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electron. Finally,  is the vacuum permittivity and the masses of nuclei and 

electrons are respectively referred to as  and . 

The Schrödinger equation (equation 2.1), combined with the expression of the 

total Hamiltonian  (equation 2.2), implies a direct dependency of the total 

wavefunction Ψ on the entire set of nuclear and electronic coordinates as well as on 

time, Ψ , , .  
Unfortunately, an analytical solution of equation 2.1 cannot be found in general.  A 

first simplification of this problem can be achieved by factorizing the wavefunction 

into terms depending on different variables. In this way it is possible to separate 

equation 2.1 into simpler equations. 

Due to the large mass difference between nuclei and electrons >> , the 

electrons generally move much faster than the nuclei and can therefore 

instantaneously respond to changes in the nuclear configuration.  

This regime is known as the Born-Oppenheimer (BO) approximation1 and allows to 

consider nuclear and electronic motions separately. The total wavefunction can be 

written as a product between electronic ;  and nuclear ,  wavefunctions, 

according to 

 Ψ , , ; , . (2.8)  

 

The electronic wavefunctions are parametrically dependent on the nuclear 

coordinates that define the “external” potential energy field ,  experienced by the 

electrons. This implies that, if we assume the nuclei to be fixed in a specific nuclear 

configuration , we can solve the electronic Schrödinger equation 

 

 ; , ;  (2.9)  

 

and calculate the electronic eigenfunctions and eigenvalues that uniquely 

correspond to that specific geometrical configuration. The electronic Hamiltonian is 

then defined as , or 

 

 	 , , , . (2.10)  
 

The combination of equation 2.1 and 2.9, solved for a specific electronic 

wavefunction  gives the equation 
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 , 	 , , ,  (2.11)  

 

where 

 	 	 	 ∗ ;
1
2

; ;  (2.12)  

 

Here, and throughout the whole thesis, the integration over the spatial coordinates 

 runs over the entire space Ω . 

Due to the large difference between nuclear and electronic masses, in the Born-

Oppenheimer approximation the  coefficients can be considered negligible and this 

leads to the effective Schrödinger equation  

 

 , , , . (2.13)  

 

This equation shows clearly that the nuclei move on a potential energy surface 

(PES) given by the  expectation value , . 

The Born-Oppenheimer approximation is generally sufficient. However, when two 

electronic states are close in energy or cross each other, the approximation 

introduced in equation 2.12 is not applicable and the  coefficients have to be, at 

least in part, calculated.  

One way to improve the BO approximation is through the so called adiabatic 

correction2. It consists in the introduction of a first order correction to the BO 

electronic energy to account for nuclear motion. This is done by including only the  

coefficients of equation 2.12 for which . These terms are rather easy to 

calculate, but they usually introduce very small corrections. 

More important are the  terms for which , also called nonadiabatic coupling 

terms. The inclusion of these terms is essential to study nuclear dynamics in regions 

where near-degeneracy between different adiabatic states occurs. This is the case 

for many photochemical reactions. Nonadiabatic crossings are also involved during 

the photoinduced charge transfer processes which are subject of this thesis. 

The most commonly employed methodologies for the description of nonadiabatic 

dynamics of a system are the Ehrenfest dynamics and the surface hopping 
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algorithm3–5. In Ehrenfest dynamics the nuclei move according to the mean force 

induced by the time-evolution of the electronic wavefunction. Instead, in surface 

hopping the electronic wavefunction follows the motion of the nuclei on a specific 

PES. The transition between two adiabatic states occurs, based on their nonadiabatic 

coupling, according to a stochastic algorithm. 

First principles implementations of these methodologies are currently available. 

However, their applicability is hampered by high computational costs, which can limit 

the size of the studied system and the time scale of the simulations. 

In this thesis a different strategy is adopted in which a unitary transformation is 

used to move from an adiabatic to a diabatic description of the system at each time 

step. The quantum evolution of the electronic wavefunction is performed in the 

molecular orbital adiabatic base for a fixed set of nuclear coordinates, while the 

nuclear positions are evolved in the atomic orbital diabatic base.  

Together with a semiempirical description of the electronic structure, this method 

allows for quantum-classical study of heterogeneous electron transfer processes on a 

time scale of picoseconds. 
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2.2. DENSITY FUNCTIONAL THEORY  

Every wavefunction method dedicated to electronic structure calculations is based 

on the same principles: an initial ansatz for the total wavefunction is proposed, 

which is progressively optimized through the variational principle to minimize the 

energy expectation value. The energy is therefore a functional of the electronic 

wavefunction. 

The total wavefunction is, however, a very complicated object, which depends on 

3  electronic coordinates, where  is the number of interacting electrons, and whose 

complexity increases with the dimension of the system. This implies that the 

application of such methods becomes computationally infeasible for chemical 

systems with large . 

The limited applicability of wavefunction-based methodologies is the main 

motivation for the success that density functional theory (DFT) is experiencing in the 

last decades.  

Based on a completely different theoretical approach, DFT does not aim for the 

optimal approximation to the total wavefunction, but rather describes a many-

electron system based on its ground state density , which is a function only of 3 

spatial coordinates: 

 	 … |Ψ … | …
↑↓

 (2.14)

 

where  and .indicate the electron coordinates and the spin variables. The 

integration runs over 1 spatial coordinates and all spin variables. 

The foundations of this theory were first laid down by Hohenberg and Kohn in 

19646 through two theorems.  

The first theorem states that if the ground state electron density of the system 

under investigation is known, it is possible to construct the Hamiltonian, determine 

the wavefunction, and consequently extract any observable of the system. It can be 

in fact demonstrated that a bijective mapping exists between the nuclear-electron 

interaction or external potential, , the ground state electronic wavefunction Ψ, 

and the electron density  

 ↔ Ψ ↔  (2.15)  

 

such that to a particular external potential corresponds a unique electron density, 

and vice versa. 
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This relation implies that every observable of the system is a functional of the 

electron density, including the ground state energy  

 

 

Ψ , Ψ

, 
(2.16)  

 

where  

 

 ,  (2.17)  

 

is a universal density functional independent of the external potential, named 

Hohenberg-Kohn (HK) functional. It has to be noted that the employed Hamiltonian 

(equation 2.16) differs from equation 2.2 in the following: i) the kinetic operator 

involves only the kinetics of the electrons since the nuclei are assumed to be fixed; 

ii) the nucleus-nucleus term is not included since it is a constant term that can be 

added to the total electronic energy at a later stage; iii) the electron-nuclear term is 

described as , an external potential that could in principle include other 

contributions than the electrostatic field from the nuclei. 

The second HK theorem states that for a given density the corresponding energy 

functional will have an absolute minimum at the ground state energy . The exact 

ground state density  is the one associated with the lowest energy, and can be 

found through the minimization of  according to equation 2.16.  

Unfortunately, these theorems do not provide an explicit form for the universal 

functional , but merely prove that such a functional exists and, once known, 

can yield the ground state density  and the system properties. 

To address this problem, Kohn and Sham postulated in 19657 that for every 

system with n interacting electrons moving in an external potential , a local 

external potential  exists that acts on an hypothetical reference system of n non-

interacting fermions, in such a way that the density of the non–interacting and 

interacting systems match, i.e. . 

Since the particles of this reference system do not interact, the exact ground state 

wavefunction can be described as a single Slater determinant, whose orbitals  are 

obtained by solving the equations 
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 	 , (2.18)  

 

where only the kinetic energy and the one-body local external potential terms 

	appear. In equation 2.18, and for the remaining of this chapter, we use atomic 

units to simplify the notation. The total density of the non-interacting system is 

therefore obtained as  

 | |  (2.19)  

As previously said, an exact form of the energy functional for the interacting 

system cannot be written since an expression for the electronic kinetic energy and 

the electron-electron repulsion terms of equation 2.17 are unknown. 

However, it is possible to approximate the term for the electron-electron repulsion 

energy ,  as a sum between a classical Coulomb interaction term  and a 

non-classical part  
 

 

, 	

1
2

 (2.20)  

 

Using the same approach, it is also possible to approximate the kinetic energy 

functional as the sum between the kinetic energy of the non-interacting system 

 and the kinetic correlation energy term  

 

 
2

 (2.21)  

 

The functional for the total energy can therefore be rewritten as  

 

 ,  (2.22)  

 

where  is the exchange-correlation (xc) functional. In 

equation 2.22 we have now included also the nucleus-nucleus energy term , . 

Since the form of  is unknown, so are the electron densities , 

and consequently the orbitals of the non-interacting system 	. 
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Under the constraint that the density is normalized to the number of electrons , 

the minimization of the energy from equation 2.22 with respect to the density leads 

to the expression of the Kohn-Sham equations  

 

 
2 | |

 (2.23)  

 

where the potential  depends on the approximation chosen for the functional 

 (see section 2.3). 

The self-consistent solution of equations 2.23 leads to a set of one-electron 

orbitals  that generate the electron density for the interacting system 

 

 | |  (2.24)  
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2.3. EXCHANGE-CORRELATION FUNCTIONALS 

The exact form of  in the Kohn-Sham formalism is unknown and has to be 

approximated. Therefore, the quality of the DFT results depends on how accurately 

this functional is approximated.  

The Local Density Approximation (LDA) is an approximation for the exchange-

correlation term in which it is assumed that the system behaves locally as a uniform 

electron gas: 

 

 . (2.25)  

 

Here,  is the exchange-correlation energy per particle of the uniform 

electron gas of charge density . This function is most commonly parametrized 

based on the very accurate results obtained from Quantum Monte Carlo calculations 

on homogeneous electron gases at different densities8–12. 

The LDA is most suited for the treatment of systems with slow-varying densities, 

such as metals and semiconductors. However, it has been proved to perform poorly 

for molecular systems where the electron density is strongly inhomogeneous. 

To account for the non-homogeneity of the electron density, a first approximation 

of the xc-functional  beyond LDA must include not only the information about 

the local density  at a particular position , but also about the gradient of the 

density at that position: . This approximation takes the name of Generalized 

Gradient Approximation (GGA) 

 

 , , 	  (2.26)  

 

Here 	 ,  is the factor which depends on the approach adopted in 

writing the xc-functional. In fact, several different GGA functionals have been 

developed to address specific requirements. Among the most popular GGA xc-

functionals we can mention: BP (exchange functional from Becke13,14, and 

correlations according to Perdew15), PBE16 (both exchange and correlation parts 

developed by Perdew, Burke and Ernzerhof) and BLYP (exchange functional 

according to Becke13, and the Lee-Yang-Parr correlation functional17).  

Another class of approximation to  for DFT are the so called hybrid 
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functionals, in which a fraction of exact Hartree-Fock (HF) exchange energy is added 

to the exchange and correlation from pure DFT functionals. 

The exact HF exchange is calculated in terms of the Kohn-Sham orbitals as 

 

 
1
2
	 ∗ ∗ 1

,

 (2.27)

 

and their general form is  

 

 1  (2.28)  

 

where  is the coefficient that determines the extent by which the HF and the DFT 

exchange are mixed. A variety of hybrid functionals have been developed where the 

amount of HF exchange energy included varies. 

A remarkably popular hybrid functional is the xc-functional B3LYP (Becke13, 3 

parameters, Lee-Yang-Parr17), which is defined as 

 

1 1  (2.29)  
 

where 0.20, 0.72, 0.81. These parameters control the ratio between 

the Becke 88 (B88)13 and Slater (S)18 exchange functionals, the Lee-Yang-Parr 

(LYP)17 and Vosko-Wilk-Nusair (VWN)9 correlation functionals, and the Hartree-Fock 

(HF) integral.  

GGA and hybrid functionals are very effective in describing properties depending 

on short-range effects of the exchange and correlation energy terms. However, they 

are unsuccessful in describing properties where the long-range behavior of the xc-

potential is important, such as the description of charge transfer excitations or the 

polarizability of extended conjugated systems. The reason behind this failure can be 

found in the local character of their xc-potentials, which induces a qualitatively 

wrong asymptotic behavior of the exchange potential19–22. 

To overcome this problem, the class of the long-range corrected (LC) functionals 

has been developed. The basic idea of these functionals is to achieve a correct 

asymptotic behavior by partitioning the electron repulsion operator into short and 

long-range terms. At short range, the GGA exchange is maintained while the exact 

HF exchange is asymptotically introduced via a range-separated Coulomb 

attenuation method which ensures a smooth transition between the two different 
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ranges19–22. 

A particular LC-functional which has been widely used to study charge-transfer 

excitations is CAM-B3LYP19. In chapter 3 of this thesis, we make use of this 

functional to compute charge-transfer excitations and optimize excited state 

geometries, within the framework of time-dependent DFT (TD-DFT, see section 2.5). 

 

2.4. CAR-PARRINELLO MOLECULAR DYNAMICS 

The Car-Parrinello Molecular Dynamics23 (CPMD) method was proposed in 1985 to 

unify classical MD simulations with DFT methods.  

In this approach the nuclei move, according to classical mechanics, in an electron-

induced effective potential, which is computed by solving the electronic time-

evolving problem “on the fly”. 

In the Car-Parrinello MD, the electronic degrees of freedom are treated as fictitious 

dynamical variables. Their evolution is carried on in parallel with the ionic dynamics, 

avoiding however energy exchange between the two subsystems.  

The energy of the electronic subsystem can be considered a functional of the one-

particle orbitals set . Therefore, given an appropriate Lagrangian24, the derivative 

of the electronic energy with respect to the orbitals yields the forces acting on the 

orbitals and the electrons can be evolved as classical particles.  

The Lagrangian postulated by Car and Parrinello takes the form 

 

 
	

1
2

1
2

,

,

 

(2.30)  

 

The first and the second terms of equation 2.30 are the classical kinetic energy of 

the nuclei and the fictitious kinetic energy of the KS electronic orbitals, respectively. 

,  is the Kohn-Sham energy density functional, while the last term in 

the Lagrangian is the constraint needed to impose the orthonormality of the KS 

orbitals. 

Like in classical mechanics, the Car-Parrinello equations of motion are obtained 

from the Euler-Lagrange equations 

 

 ,  (2.31)  
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 ,
∗ ∗

,

 (2.32)  

 

In this notation, each dot on  and  indicates a time derivative of the function. 

Here  is a fictitious mass assigned to the electrons. The value of  is chosen small 

enough to maintain adiabaticity; that is, to avoid significant energy transfer between 

nuclei and electrons.  

According to the Car-Parrinello equations of motion, the nuclei evolve in time at a 

physical temperature proportional to their kinetic energy ∑ . At the same 

time, to ensure that during time evolution they remain close to the Born-

Oppenheimer surface, the electrons are maintained at a fictitious temperature which 

is low compared to the physical nuclear temperature, and proportional to their 

kinetic energy ∑ 	 . Therefore, if the electronic wavefunction has been 

optimized for an initial nuclear configuration, the electronic subsystem will remain 

close to its energy minimum along the MD trajectory. 

In order for the electrons to remain at low temperature while following the motion 

of the nuclei along the dynamics, no energy transfer has to occur between the 

electronic and the nuclear subsystems. This adiabatic separation can be achieved if 

the lowest electronic frequency  is much higher than the highest nuclear 

frequency ; that is, if there is no substantial overlap in the frequency domain of 

the two subsystems.  

The electronic frequency spectrum is inversely proportional to the square root of 

the fictitious mass :			 ∝ /
/

, where  is the electronic energy 

difference between the lowest unoccupied and the highest occupied orbital. 

Since the  and  values are inherently correlated to the properties of the 

system,  is the only parameter that can be decreased to increase , and 

consequently the  separation. However, increasing  implies also 

decreasing the maximum time step applicable in a simulation since Δ ∝ / . 

Therefore, the value of  has to be chosen in order to provide the largest possible 

time step, while conserving adiabaticity. A  value of 400 a.u. is used for all the 

CPMD simulations presented in this thesis. 

2.4.1. Periodic boundary conditions and plane wave basis set 

In MD the simulation box is repeated in space using periodic boundary conditions 

(PBC) to mimic macroscopic systems and minimize surface effects. PBC can also be 
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used when simulating an isolated molecule, provided that the dimension of the box 

is large enough to avoid spurious interactions between periodic images. 

Within the context of chapter 4 of this thesis, PBC are used to simulate an infinite 

slab of TiO2 functionalized with a molecular chromophore. Due to the presence of the 

chromophore, the unit cell of the crystal cannot be taken as the simulation box. 

Instead, a supercell has to be used. Its dimension must be large enough to, on one 

side, avoid spurious interactions between the chromophore images, while also 

accurately describe the density of states of the TiO2 surface. In chapter 5, PBC are 

used to simulate a molecular complex in an explicit water environment.  

PBC are used within the CPMD program, allowing the expansion of the orbitals as 

linear combinations of plane wave (PW) basis functions: 

 

 
1

Ω
. (2.33)  

 

Here, the plane wave basis function 

 

   (2.34)  

 

is expressed in terms of the reciprocal lattice vectors . Ω , which is included in 

the normalization factor 1 Ω⁄ , represents the volume of the supercell. It has to 

be noted that equation 2.34 does not show any dependency on the nuclear positions 

, since the plane waves are originless functions delocalized over the entire 

space. This allows to control the accuracy of the calculations with an energy cutoff, 

 (in a.u.), which determines the number of plane waves used. 

Increasing this parameter, increases the largest reciprocal lattice vector included in 

the finite expansion of equation 2.33. 

Fast Fourier transform algorithms can be used to move from the real to the 

reciprocal space, and vice versa. Consequently, the different terms in the energy 

functional can be more easily evaluated in one or the other space, depending on the 

efficiency of the calculation. 

Additionally, since the PW functions are originless, the Pulay forces are zero, which 

greatly facilitates the calculation of nuclear forces. 

A disadvantage of using PW functions is that to describe the electrons at a 

decreasingly small distance from the nucleus, requires a large increase in the PW 

basis set, making therefore their use unpractical. To solve this problem, a distinction 
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between core and valence electrons is made when using PW functions. It is assumed 

that the core electrons are practically inert. This allows to take the core electrons out 

of the explicit calculation, by replacing them with smooth and nodeless potentials 

called pseudopotentials25–28. 

 

2.5. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY (TD-DFT) 

Crucial for the study of photochemical processes is the description of the excited 

electronic states. In 1984  Runge and Gross generalized the density functional 

formalism for time-dependent systems29, thus paving the way for efficient 

calculations of excited state properties for large molecular systems. 

The Runge-Gross theorem considers an arbitrary system which evolves under the 

influence of a time dependent external potential 	 , . As in the first HK theorem, 

they proved that a bijective map exists between the time-dependent external 

potential ,  and the time-dependent electron density , , as well as the time-

dependent total wavefunction: , ↔ Ψ ↔ , .  

It follows that every observable of the system is a unique functional of the density 

at time : 

 

 Ψ Ψ  (2.35)  

 

Again, the time-dependent density of the interacting system ,  can be 

calculated as the density of a non-interacting system ,  under the influence of 

the local potential ,  

 

 , , | , |  (2.36)  

 

where ,  are the non-interacting single particle KS orbitals obtained by 

solving the time-dependent Kohn-Sham equations of the non-interacting system 

 

 ,
2

, ,  (2.37)  

 

The time-dependent single particle KS potential is again written as 
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 , ,
,

| |
,  (2.38)  

 

where the first and the second term on the right hand side of the equation are, 

respectively, the external time-dependent field and the Hartree potential, while 

,  is the exchange-correlation potential. The latter has to be approximated 

since its exact form is unknown.  

TD-DFT describes the interaction of an arbitrary system, e.g. a molecule, with a 

time-dependent external field. If the effect of the external field on the system is 

sufficiently small in the sense that it does not disrupt completely the ground state 

system’s structure, then the system response can be more efficiently described with 

a perturbative method, rather than explicitly solving iteratively the TDKS equations. 

This is the case for the determination of properties like excitation energies and 

polarizabilities, which are obtained through the linear response of the ground state 

density while avoiding the explicit evaluation of the excited states. 

2.5.1. Linear response TD-DFT 

A time-dependent external potential ,  acting on a system, such as an 

electromagnetic field, induces a time-dependent change in the electron density of 

the system. 

We assume that the external potential acting on the system has the form 

 

  ,
0 1 , ; 0

0 ; 0 (2.39)  

 

This means that at 	 	  the system is subject solely to the potential imposed by 

the nuclei  in its ground state, and that its electron density is . At 	 	 , 

the perturbation ,  is switched on, leading to a total external potential 

; , . The variation in the total external potential will induce 

a variation in the electron density of the system. 

Using perturbation theory, the effect of a variation in the external field  on any 

system’s observable, and thus also on , , can be represented as a Taylor series  

 

 , , . (2.40)  
 

In linear response only the first order term in the density perturbation ,  is 
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considered30. It can be defined as 

 

 , ′ , ′ , ′ (2.41)  

where 

 

 , ′
,
, ′

 (2.42)  

 

 

takes the name of linear response function. 

In TD-DFT, the density of a system of interacting electrons can be obtained from a 

KS system for which the electrons do not interact. Consequently, the linear electron 

density change ,  induced by the perturbation acting on the interacting system 

can be calculated as the response of the non-interacting KS system: 

 

 , , , , ′ (2.43)  

 

Here ,  is the linear response function of the non-interacting system 

evaluated at the unperturbed density, while , ,  is the effective time-

dependent potential evaluated as the first order perturbation of the external 

potential acting on the KS system. 

Moving to a non-interacting framework makes possible to write  in terms of the 

unperturbed stationary KS orbitals as 
 

 , ; lim
→

∗ ∗ ′ ′

,

 (2.44)  

 

where  is the occupation number of the ground-state KS orbital ,  its energy, 

 is a positive infinitesimal, and  is the frequency of the external perturbation field. 

The summation of equation 2.44 runs over all the K occupied and unoccupied 

orbitals of the system. It has to be noted that for convenience, in equation 2.44 the 

KS density response function has been written in the Lehmann representation by 
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Fourier transformation into the frequency domain. 

To solve equation 2.43, an expression for the first order variation of the time-

dependent KS potential has to be given. 

The exchange-correlation kernel is defined as the functional derivative of the xc-

potential with respect to the ground state density . It is defined as: 

 

 , ′
,

,
 (2.45)  

 

Therefore, for any given  it is possible to write the expression for the time-

dependent KS potential as 

 

 , ,
,

| |
, , . (2.46)  

 

Again, the exact form of equation 2.45 is unknown and has to be approximated. The 

simplest approximation for this kernel is the Adiabatic LDA (ALDA). The term 

adiabatic derives from the assumption that the electron density of the system 

readjusts instantaneously to a variation in the external field, thus reducing the 

kernel dependency only to local density and time: , . 

By applying equation 2.46 and 2.44 into equation 2.43, it is obtained an exact 

representation of the linear response of the interacting system density to the 

effective time-dependent perturbation. 

TD-DFT has proven to provide accurate excitation energies as long as low-energy 

transitions involving valence states are investigated. 

TD-DFT has become a standard tool for the characterization of molecular systems, 

particularly if designed for optical applications. 

With the development of more and more sophisticated exchange-correlation 

functionals that can account for long-range correction (see section 2.3), TD-DFT is 

assuming an ever growing role in studying photoinduced charge transfer processes. 
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2.6. CONSTRAINED DENSITY FUNCTIONAL THEORY 

The process of electron transfer (ET) from a donor (D) to and acceptor (A) state is 

a nonadiabatic process whose description has been proven computationally 

challenging31,32.  

In this context, given a donor-acceptor (D-A) system, the objective is to calculate 

the rate of electron transfer between them (i.e. ). 

In 1956, R.A. Marcus proposed a theory33 (see section 1.4 of this thesis) to 

estimate the rate of such a process through the expression 

 

 
2

〈| | 〉 4 ⁄ Δ
4

		, (2.47)  

 

where  is the coupling between the donor and the acceptor states (  and , 

respectively), Δ  is the driving force of the process, and  is the reorganization 

free energy. Among these three parameters, essential for  calculations,  is 

the one proven more challenging to accurately estimate since it requires the use of 

expensive wavefunction based ab initio methods34. In principle, DFT-based methods 

could also be used as less computationally intensive alternatives for such tasks. 

However, their results are often biased by the electron delocalization error of 

commonly used exchange-correlation approximations35,36. 

Inspired by previous works37–39 on DFT-based methods in which the energy is 

minimized under certain density constraints, Van Voorhis and collaborators have 

recently proposed a new approach for calculating , Δ  and  from charge-

localized diabatic states. Due to their localized nature, the use of these states 

strongly reduces the electron delocalization error previously mentioned. 

Constrained DFT (CDFT) methods allow the construction of the two diabatic states 

 and  and thus the computation of the parameters in equation 2.47. This 

is done by minimizing the KS energy functional  under the constraint that the 

charge difference between D and A is equal to a certain value . The purpose is to 

find that particular external potential associated to a ground-state corresponding to 

the constrained state40. 

The minimization is carried out by using a Lagrange multiplier as 

 

 , 	, (2.48)  
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where ,  is the energy functional for the constrained state,  is the KS 

energy functional and  is the Lagrange multiplier used to enforce the constraint  

 

 . (2.49)  

 

Here,  is the weight function that defines the partition of the electron density 

between donor and acceptor. 

Making equation 2.48 stationary for normalized orbitals yields 

 

 2 | |

, 

(2.50)  

 

which is the same as equation 2.23, except for the last term in the effective 

Hamiltonian, which represents the constraint potential. 

For every  then exists a unique set of orbitals  that can be used to calculate 

the system’s electron density associated with that specific constraint potential. This 

implies that  is itself a function of . It can be shown40 that  is a concave 

function, which has only one stationary point of maximum. Therefore, it can be 

optimized with respect to , to find the potential value that produces the 

constrained ground state density. 

The optimization procedure involves a double loop which proceeds as follows: i) an 

initial set of orbitals is used to construct the KS Hamiltonian; ii) an initial value is 

assigned to the constraint potential to build the total effective Hamiltonian and solve 

equation 2.50; iii) the first and second derivative of  with respect to  are 

calculated to optimize the potential. Since to every new potential corresponds a new 

electron density, the process is restarted from point (i) and is iterated until it 

converges self consistently. Self-consistency is considered reached when the total 

deviation of the constraint with respect to  is lower than 10-5. 

Once  is found for both diabatic states, then the calculation of Δ ,  and  can 

be done assuming the validity of Marcus theory. A detailed mathematical description 

of the procedures leading to these parameters can be found in the literature34,40,41. 
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2.7. SEMI-EMPIRICAL METHODS: Hückel and Extended Hückel Method 

One of the first semi-empirical methods to be proposed was the Hückel Molecular 

Orbital (MO) theory in 1930. Introduced by Erich Hückel, this method is intended for 

studying planar conjugated hydrocarbon systems.  

In the Hückel MO method one of the central assumptions is that the general 

properties of a conjugated hydrocarbon molecule are determined by its -electron 

MOs. This allows to disregard all the -electrons in a molecule, and simply treat -

bonds as the backbone on which -electrons delocalize. This approximation is made 

possible by the planarity of a conjugated molecule. In a planar molecule, in fact,  

and  molecular orbitals are respectively symmetric and anti-symmetric with respect 

to reflection in the molecular plane. Consequently, the  and orbitals are 

orthogonal and can be treated independently from each other. Despite its simplicity, 

this method is able to predict the effects of delocalization on orbital stability and 

identify whether a specific structure will or will not be aromatic. However, due to the 

strong approximations introduced, its applicability is limited solely to planar systems.  

To overcome the limitations presented by the Hückel MO theory, in 196342 Roald 

Hoffmann developed the Extended Hückel theory (EHT). Differently from Hückel MO 

theory, in the EHT method not only the  but all the valence electrons are 

considered. This enlargement of basis set allows the determination of molecular 

energies and structures, transition states and energy barriers. 

In the EHT formalism, the total electronic wavefunction for a system with  

valence electrons is described as a product of one-electron wavefunctions  

 

 Ψ 	 . . . . . (2.51)  
 

In turn, these one-electron molecular orbitals can be written as linear 

combinations of normalized valence atomic orbitals		  
 

  (2.52)  

  

In the EHT, the basis set is formed by Slater-type orbitals (STOs) chosen to 

represent the valence orbitals of the atoms in the molecule. Once the molecular 

orbitals are constructed, it is possible to calculate the total energy of the system as 

the sum of the one-electron energies , which can be evaluated by applying the 

effective one-electron Hamiltonian  to the one-electron molecular orbital   
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  (2.53)  

 

The  describes the interaction of an electron with the rest of the molecule. 

However, the exact expression of this Hamiltonian is not needed in EHT. 

The crucial step in obtaining the eigenfunctions for an effective Hamiltonian is the 

construction of the secular determinant  

 

 

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

0 (2.54)  

 

To solve this equation it is necessary to calculate a series of overlap ( ) and 

resonance integrals ( ). The solution to the first problem is rather simple. Since 

we know the form and the position of the atomic orbitals, their overlap can be 

readily evaluated as a function of interatomic distances. The diagonal resonance 

integral  is called Coulomb integral and represents the kinetic and potential 

energy of an electron in a specific atomic orbital .	 Its value is parametrized 

against a specific reference value, which is usually taken as the negative of the 

orbital ionization potential. On the contrary, the off diagonal resonance integral  

describes the energy of an electron in the region where the orbitals  and  

overlap. This term can be approximated as 

 

 	
1
2

 (2.55)  

  

Equation 2.55 indicates that  is proportional to the energy of the atomic 

orbitals involved, and to the extent of their overlap. The term  is an empirical 

factor usually assumed equal to 1.75, which takes the name of Wolfsberg-Helmholtz 

constant. 

Through the application of these conventions it is possible to solve the secular 

equation and obtain qualitatively correct energy values and wavefunctions for the 

molecular orbitals of the investigated system. However, since EHT is not a self-

consistent method, it is not able to generate potential energy surfaces accurately. 

Therefore, it is best applied in combination with structures or trajectories obtained 



SEMI-EMPIRICAL METHODS: Hückel and Extended Hückel Method 
 

 

47 

 

from higher levels of theory. This is the strategy adopted in chapter 4 and 5 of this 

thesis. 



Chapter 2. Theory and Computational Methodology 
 

48 

 

2.8. REFERENCES 

(1)  Born, M.; Oppenheimer, R. Zur Quantentheorie Der Molekeln. Ann. Phys. 
1927, 389 (20), 457–484. 

(2)  Handy, N. C.; Yamaguchi, Y.; Iii, H. F. S. The Diagonal Correction to the Born–
Oppenheimer Approximation: Its Effect on the Singlet–triplet Splitting of CH2 
and Other Molecular Effects. J. Chem. Phys. 1986, 84 (8), 4481–4484. 

(3)  Ehrenfest, P. Bemerkung Über Die Angenäherte Gültigkeit Der Klassischen 
Mechanik Innerhalb Der Quantenmechanik. Z. Für Phys. 1927, 45, 455–457. 

(4)  Fischer, S. A.; Chapman, C. T.; Li, X. Surface Hopping with Ehrenfest Excited 
Potential. J. Chem. Phys. 2011, 135 (14), 144102. 

(5)  Tully, J. C.; Preston, R. K. Trajectory Surface Hopping Approach to 
Nonadiabatic Molecular Collisions: The Reaction of H+ with D2. J. Chem. Phys. 
1971, 55 (2), 562–572. 

(6)  Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 
(3B), B864–B871. 

(7)  Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and 
Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133–A1138. 

(8)  Ceperley, D. M.; Alder, B. J. Ground State of the Electron Gas by a Stochastic 
Method. Phys. Rev. Lett. 1980, 45 (7), 566–569. 

(9)  Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid 
Correlation Energies for Local Spin Density Calculations: A Critical Analysis. 
Can. J. Phys. 1980, 58 (8), 1200–1211. 

(10)  Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the 
Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45 (23), 13244–13249. 

(11)  Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional 
Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23 (10), 
5048–5079. 

(12)  Cole, L. A.; Perdew, J. P. Calculated Electron Affinities of the Elements. Phys. 
Rev. A 1982, 25 (3), 1265–1271. 

(13)  Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct 
Asymptotic Behavior. Phys. Rev. A 1988, 38 (6), 3098–3100. 

(14)  Becke, A. D. Density‐functional Thermochemistry. III. The Role of Exact 
Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 

(15)  Perdew, J. P. Density-Functional Approximation for the Correlation Energy of 
the Inhomogeneous Electron Gas. Phys. Rev. B Condens. Matter 1986, 33 
(12), 8822–8824. 

(16)  Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation 
Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 

(17)  Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-
Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 
37 (2), 785–789. 

(18)  Slater, J. C. A Simplification of the Hartree-Fock Method. Phys. Rev. 1951, 81 
(3), 385–390. 

(19)  Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange–correlation 
Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. 
Lett. 2004, 393 (1–3), 51–57. 

(20)  Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. A Long-Range-Corrected 
Density Functional That Performs Well for Both Ground-State Properties and 
Time-Dependent Density Functional Theory Excitation Energies, Including 
Charge-Transfer Excited States. J. Chem. Phys. 2009, 130 (5), 054112. 

(21)  Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-
Corrected Time-Dependent Density Functional Theory. J. Chem. Phys. 2004, 
120 (18), 8425–8433. 



REFERENCES 
 

 

49 

 

(22)  Kobayashi, R.; Amos, R. D. The Application of CAM-B3LYP to the Charge-
Transfer Band Problem of the Zincbacteriochlorin–bacteriochlorin Complex. 
Chem. Phys. Lett. 2006, 420 (1–3), 106–109. 

(23)  Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-
Functional Theory. Phys. Rev. Lett. 1985, 55 (22), 2471–2474. 

(24)  Sprik, M.; Ciccotti, G. Free Energy from Constrained Molecular Dynamics. J. 
Chem. Phys. 1998, 109 (18), 7737–7744. 

(25)  Phillips, J. C. Energy-Band Interpolation Scheme Based on a Pseudopotential. 
Phys. Rev. 1958, 112 (3), 685–695. 

(26)  Phillips, J. C.; Kleinman, L. New Method for Calculating Wave Functions in 
Crystals and Molecules. Phys. Rev. 1959, 116 (2), 287–294. 

(27)  Hellmann, H. A New Approximation Method in the Problem of Many Electrons. 
J. Chem. Phys. 1935, 3 (1), 61–61. 

(28)  Hellmann, H.; Kassatotschkin, W. Metallic Binding According to the Combined 
Approximation Procedure. J. Chem. Phys. 1936, 4 (5), 324–325. 

(29)  Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent 
Systems. Phys. Rev. Lett. 1984, 52 (12), 997–1000. 

(30)  Gross, E. K.; Maitra, N. T. Introduction to TDDFT. In Fundamentals of Time-
Dependent Density Functional Theory; Springer, 2012; pp 53–99. 

(31)  Duncan, W. R.; Prezhdo, O. V. Theoretical Studies of Photoinduced Electron 
Transfer in Dye-Sensitized TiO2. Annu. Rev. Phys. Chem. 2007, 58, 143–184. 

(32)  Eshuis, H.; Voorhis, T. van. The Influence of Initial Conditions on Charge 
Transfer Dynamics. Phys. Chem. Chem. Phys. 2009, 11 (44), 10293–10298. 

(33)  Marcus, R. A. On the Theory of Oxidation‐Reduction Reactions Involving 
Electron Transfer. I. J. Chem. Phys. 1956, 24 (5), 966–978. 

(34)  Oberhofer, H.; Blumberger, J. Electronic Coupling Matrix Elements from Charge 
Constrained Density Functional Theory Calculations Using a Plane Wave Basis 
Set. J. Chem. Phys. 2010, 133 (24), 244105–244105 – 10. 

(35)  Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Insights into Current Limitations of 
Density Functional Theory. Science 2008, 321 (5890), 792–794. 

(36)  Zhang, Y.; Yang, W. A Challenge for Density Functionals: Self-Interaction Error 
Increases for Systems with a Noninteger Number of Electrons. J. Chem. Phys. 
1998, 109 (7), 2604–2608. 

(37)  Akai, H.; Blügel, S.; Zeller, R.; Dederichs, P. H. Isomer Shifts and Their 
Relation to Charge Transfer in Dilute Fe Alloys. Phys. Rev. Lett. 1986, 56 (22), 
2407–2410. 

(38)  Dederichs, P. H.; Blügel, S.; Zeller, R.; Akai, H. Ground States of Constrained 
Systems: Application to Cerium Impurities. Phys. Rev. Lett. 1984, 53 (26), 
2512–2515. 

(39)  Prezhdo, O. V.; Kindt, J. T.; Tully, J. C. Perturbed Ground State Method for 
Electron Transfer. J. Chem. Phys. 1999, 111 (17), 7818–7827. 

(40)  Wu, Q.; Van Voorhis, T. Direct Optimization Method to Study Constrained 
Systems within Density-Functional Theory. Phys. Rev. A 2005, 72 (2), 
024502. 

(41)  Wu, Q.; Voorhis, T. V. Extracting Electron Transfer Coupling Elements from 
Constrained Density Functional Theory. J. Chem. Phys. 2006, 125 (16), 
164105. 

(42)  Hoffmann, R. An Extended Hückel Theory. I. Hydrocarbons. J. Chem. Phys. 
1963, 39 (6), 1397–1412. 



 

50 

 

 

 

 

 

 



This chapter is based on the publication: 

Monti, A.; de Groot, H.J.M.; Buda, F. In-Silico Design of a Donor–Antenna–Acceptor Supramolecular 
Complex for Photoinduced Charge Separation. J. Phys. Chem. C 2014, 118, 15600-15609. 

 

Chapter 3 

 
 
Engineering a Donor-Antenna-Acceptor 
Triad for Photoinduced Charge Separation 
 
 

3.0. ABSTRACT 

In this chapter a series of donor-antenna-acceptor molecular rectifiers designed as 

modules for solar energy conversion devices are investigated via Density Functional 

Theory. We consider triad modules containing phenothiazine (PTZ) as electron donor 

and different derivatives of naphthalene diimide (NDI) as antenna and secondary 

electron acceptor. The choice of the molecular components in the triad is guided by 

the redox and optical properties of each subunit. Using time-dependent DFT in 

combination with the long-range corrected xc-functional CAM-B3LYP we investigate 

how photoinduced charge transfer states are affected by systematic modifications of 

the triad molecular structure. In particular, we show how by controlling the length of 

the molecular bridges connecting the different charge separator subunits it is possible 

to control the driving force for the evolution of the excitonic reactant state into the 

charge separated product state. Based on these findings we propose a 

supramolecular triad consisting of inexpensive and readily available molecular 

components that can find its implementation in artificial devices for solar energy 

transduction. 
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3.1. INTRODUCTION 

Progress in the design and synthesis of nanodevices for photovoltaics and artificial 

photosynthesis can be strongly supported by computational modeling methods able 

to predict optimal target properties for light energy conversion in the computer prior 

to the realization in chemical laboratories1,22,3,4,5. 

In the past decades, the efficiency of photovoltaic and photochemical systems has 

been significantly improved. A clear example is represented by the power conversion 

efficiency of dye-sensitized solar cells, which has been increasing from the 7% of the 

first cell proposed by O’ Regan and Grätzel, to the current value of 20% of 

perovskite based systems6,7. Despite these results, optimization of these devices for 

solar energy conversion is far from being achieved.  

As explain in chapter 1, these systems are often composed of a molecular or solid-

state chromophore coupled to a wide band-gap semiconductor. The chromophore 

photoabsorption induces the formation of an exciton reactant state. This is then 

dissociated as the excited electron is injected into the semiconductor conduction 

band, to form the charge separated product state. The collected electron can then be 

used to perform work or generating solar fuel. The positive hole left on the oxidized 

chromophore is quenched by means of a sacrificial reducing agent, or through water 

oxidation catalysis. The solar energy stored by photoexciting the chromophore may 

be lost if the system recombines to its ground state before the product state can be 

stabilized by driving the hole and the electron apart. 

This undesired process, which can severely hamper the energy conversion 

efficiency of a devices, takes the name of charge recombination or back electron 

transfer. Recombination to the ground state can occur directly from the excitonic 

state or, if an electron is trapped at the semiconductor surface, even after the 

electron injection has occurred. 

In natural systems, back electron transfer is prevented by quickly spatially 

separating the electron and the hole generated upon photoexcitation. This is 

achieved through a series of redox reactions between consecutive compounds with 

increasingly lower redox-potentials. It is observed that the charge recombination 

rate decays exponentially with the distance between the electron donor and acceptor 

units8,9.  

Through the electron transport chain depicted in Scheme 3.1a, the excited 

electron is transferred from the electron donor pigment P680* in PSII to the pigment 

P700 in PSI. The P680+. is then reduced by a tyrosine residue (Tyr) in PSII, which is 

later reduced by the water oxidation catalyst.  

In PSI, the photoexcitation of P700 initiates a secondary electron transfer cascade 

culminating in NADPH production (see Scheme 3.1a).  
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The transfer of the photoexcited electron from P680* to the quinone QA occurs on a 

sub-nanosecond time scale preventing the slower exciton recombination to the 

ground state. Additionally, once the excited electron reaches QA, its distance from 

P680+. becomes too large to allow the recombination of the charges.  

The number of subunits employed by the natural photosynthetic system to achieve 

the electron/hole charge separation, is however too large to be efficiently 

reproduced in an artificial device. A different design strategy is needed that requires 

a smaller number of subunits while still avoiding charge recombination events. 

 

 
Scheme 3.1. (a) Schematic energy diagram of the natural photosynthesis mechanisms driven 

by the photoabsorption of the chromophore pigments P680 and P700, leading to electron 

flowing between the water oxidation catalyst (WOC) and the ferredoxin-NADP+ reductase 

(FNR). This representation, readapted from references 10,11, takes the name of Z-scheme. (b) 

Schematic energy diagram of a donor-antenna-acceptor triad applied as photosensitizer at the 

anode of a photovoltaic or photochemical cell. 

 

Recent publications suggest that the recurrence of charge recombination in 

photochemical and photovoltaic devices can be reduced through systems composed 

of three or more subunits arranged in a Donor-Antenna-Acceptor (D-An-A) like 

design, presenting an optimized energy gradient and electronic coupling12,13,14,15. In 

this type of structures, upon photoexcitation of the antenna module, the charge 
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separation is achieved by transferring the electron and the hole in opposite 

directions. As shown in Scheme 3.1b, upon its formation, the exciton localized on 

the antenna is dissociated through two charge transfer processes: (i) transfer of the 

excited electron from the chromophore to the acceptor; (ii) reduction of the antenna 

through hole transfer onto the donor water oxidation catalyst (WOC), which becomes 

the oxidized species. The presence of the antenna complex between the donor and 

the acceptor should induce a considerable tunneling barrier for charge recombination 

and consequently reduce the electronic coupling between the charge separated and 

ground states of the triad. Like in the natural system, this will result in delaying the 

electronic recombination to the state of minimal energy and increase the lifetime of 

the charge separation for a time sufficient for redox reactions to occur at the donor 

and acceptor sites. In fact, within a photoanode for solar cell devices, these type of 

triads are bound directly to the surface of a suitable semiconductor through the 

acceptor unit. After formation of the charge separated state, electron injection can 

occur from the acceptor into the semiconductor, while the oxidized donor can be 

reduced to its neutral form by a sacrificial reductant, or through water oxidation 

(Scheme 3.1b). The regenerated triad can thus absorb another photon and 

reinitiate the cycle. If an electron is trapped at the semiconductor surface, it may 

quench the excitonic state induced by the second photon. The presence of the 

electron acceptor between the antenna and the semiconductor is meant to prevent 

this recombination by introducing a barrier for the back electron transfer. 

In this chapter we show how Density Functional Theory (DFT) based methods can 

be used to optimize the optical and electronic properties of a molecular system 

designed for photovoltaics and photoelectrochemical applications prior to its 

experimental realization. The aim is to design a photosensitive triad-like charge 

separator which shows ultrafast unidirectional electron transfer leading to the 

formation of a charge separated state (CS) sufficiently stable to kinetically allow 

redox reactions at the donor (D) and the acceptor (A) moieties16. We choose the 

triad components on the basis of their ground and excited state redox potentials in 

order to obtain negative potential energy gradients between the donor-antenna and 

the antenna-acceptor subunits. Furthermore, the donor and the acceptor are chosen 

considering the potential boundaries necessary to couple the proposed triad within a 

device employing a silicon electrode and a commonly used electrolyte, such as 

iodide/triiodide.17  

Through systematic changes in the linkage between the donor, the antenna and 

the acceptor, it is highlighted how structural modifications can be used to control the 

relative energies and electronic couplings between different excited states. In this 

way we are able to design a molecular triad for which the photoexcitation of the 
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antenna will trigger redox processes resulting into the formation of a final D+-An-A− 

charge separated state. The molecular components used in this study as donor, 

antenna, and acceptor are respectively the 10,10a-dihydro-4aH-phenothiazine 

(PTZ), the 2,6-diethoxy-1,4,5,8-diimidenaphthalene (NDI1), and the 2,6-

dicarbonitrile -1,4,5,8-diimidenaphthalene (NDI2). A schematic representation of the 

single components and of the different complexes analyzed is reported in Figure 

3.1. 
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Figure 3.1. Molecular structures of the studied compounds. PTZ acts as electron donor (D), 

NDI1 as antenna (An) and NDI2 as electron acceptor (A). The number of phenyl units between 

D and An is indicated with n.  Two different bridges (a and b) between An and A are 

considered. Linear and Perpendicular refer to the relative arrangements of PTZ and the phenyl 

bridge. 

 

Individually, PTZ, NDI1 and NDI2 have already been discussed in the literature and 

are well known for their robustness and ease of synthesis. They have been chosen 

based on the perfect match between their well-characterized optical and electronic 

properties and the device requirements. The members of the naphthalene diimide 

family form an important class of chromophores which has been extensively 

analyzed in recent years and applied in a wide range of devices, such as 
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supramolecular switches, chemosensors, n-type semiconductor in organic 

transistors, light-harvesting chromophores in dye-sensitized solar cell (DSSC), and 

as electron acceptor in photoactivated artificial charge separators18–20,21,22. The 

versatility of these compounds is due to their peculiar electronic properties that can 

be easily tuned through a selective functionalization of the naphthalene core23. By 

choosing the appropriate functional groups it is possible to adjust the HOMOs and 

LUMOs orbital energies and their relative gaps. This allows to control the molecular 

absorption range and to adapt the molecular redox properties with respect to the 

environment requirements. 

As shown by Sakai et al23 due to their different functionalization NDI1 and NDI2 

present absorptions in two different regions of the incoming photon spectrum. While 

the first is photoactive also into the visible, the second shows activity only in the UV-

region. This ensures NDI1 to be the only active chromophore for applications with 

visible light in solar energy conversion. On the other hand, NDI2 is chosen not only 

for its absorption properties but also for its characteristic ability to form stable 

anionic radicals.24 Especially in a context where several molecules are bound 

together through  stacking, NDI2 has been shown to behave as a n-type 

semiconductor material.25 This characteristic makes it a very good candidate as 

electron acceptor able to increase the electron-hole distance through electron 

delocalization, thus decreasing the probability of its recombination into the ground 

state. Additionally, the LUMO energy of NDI2 aligns well with the valence band of 

silicon, opening the possibility of establishing a p-n junction between the electron 

rectifier and a silicon-based electrode. 

Finally, phenothiazine is a strong reducing agent photoactive only in the UV-region 

that is already widely employed as pesticide and in pharmaceutical or optical 

applications24,26,27. Thanks to the strong interaction between the 2pz electrons of the 

nitrogen atom of the central heterocyclic ring with the peripheral benzenes, PTZ can 

easily form cation-radical species and stabilize them through resonance 

delocalization of the positive charge into those electron-rich moieties26. PTZ is 

therefore an optimal electron donor able to quench the hole created into the antenna 

upon photoexcitation. 

Herein we compare a series of molecular triads designed for photoinduced 

unidirectional charge separation. The Donor-Antenna distance proves to be a key 

parameter to control the relative energies of different excited states potential energy

surfaces (PES). It is shown that it is possible to induce the concerted hole/electron 

transfer mechanism as dominant path for the formation of the charge separated 

state D+-An-A−, while avoiding the unwanted partially separated intermediate state 

D+-An—-A (see scheme 3.2). Geometrical and structural modifications are applied to 



METHODS AND COMPUTATIONAL DETAILS 
 

57 

 

the bridge units to find an optimal balance between thermodynamics and electronic 

coupling requirements for a fast unidirectional charge transfer. The results lead to 

the design of the triad 1-b_Linear (Figure 3.1, third panel from top), for which 

ultrafast charge separation is predicted. 

 

 
Scheme 3.2. Schematic energy diagram of the frontier molecular orbitals involved in the 

charge transfer processes leading to the formation of the charge separated (D+-An-A−, left) 

and intermediate state (D+-An—-A, right). The yellow arrow represents the photoexcitation of 

the antenna, while the curved arrows show the direction of the electron (e-) and hole (+) 

transfer. 

3.2.  METHODS AND COMPUTATIONAL DETAILS 

3.2.1. Ground State calculations 

To optimize the ground state geometries of each monomer, dyad and triad 

presented in this work we make use of the ADF software package28–30. The 

geometries are optimized at the B3LYP53/TZP level of theory in a dichloromethane 

(DCM) environment described by the continuum solvent model COSMO31. Van der 

Waals dispersion interactions are included using the Grimme3-BJDAMP correction.32 

3.2.2. Time-Dependent DFT 

Time-Dependent DFT (TD-DFT) is used to calculate the absorption spectra of the 

investigated systems and to check how the optical properties of the singular 

components are affected by the assembling into the triad complexes. Several 

exchange-correlation functionals available in the ADF computational package have 
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been used to check the accuracy of our results against available experimental data 

(see results and discussion section 3.3.1). 

3.2.3. Ground and excited state redox potentials 

ADF is used for the calculation of the ground and excited state oxidation potentials 

of the donor, antenna and acceptor monomers. Following the procedure described by 

De Angelis et al33, the ground state oxidation potential is estimated as 

 

  (3.1)  
 

Both 	and  are obtained by adding the solvent effect to the energies of the 

molecules optimized in vacuum. The solvent contribution is estimated as the energy 

difference between the system in solution and in vacuum, calculated at the 

geometry optimized in solution. 

The excited state oxidation potential  is obtained by subtracting from  the 

adiabatic lowest transition energy ( ):  

 

  (3.2)  
	

where  is the energy difference between the excited and the ground states at 

their corresponding optimized geometries. Results were validated also by calculating 

the ground state oxidation potentials using the SCF and Born-Haber cycle 

methods34. All methods can reproduce the experimental redox values with an error 

<0.1 eV. 

3.2.4. Excited state geometry optimizations 

To investigate the possible electronic relaxations that can occur after 

photoabsorption, we optimize, for each charge separator, the (i) excitonic state, 

denoted throughout this chapter as S0, in which both hole and electron are localized 

on the antenna; (ii) the full charge separated state S1 in which the hole is on the 

donor and the electron on the acceptor; and (iii) the intermediate CS state S2 in 

which only the hole moves on the donor and the electron stays on the antenna. 

Other excited states have been investigated but they all turned out to be much 

higher in energy, indicating that their formation is strongly unlikely upon visible light 

absorption. For each complex, starting from their ground state optimized geometry, 

we initially induce a specific optical transition from the ground state to the diabatic 

state of interest and subsequently we optimize the geometry of such an excited 

state. In order to overcome the systematic underestimation of the excitation 
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energies associated with strong molecular charge transfer character shown by most 

xc-functional35, we make use of the long-range corrected functional CAM-B3LYP36, 

which has been shown to be quite accurate in describing electronic excitations with 

strong charge transfer character37,38. At the same time this functional is reasonably 

accurate in estimating the energy of excitation with strong excitonic character. 

These calculations are performed using the Gaussian 09 program package39 using 

the cc-pVDZ basis set and the Polarizable Continuum Model to simulate the DCM 

solvation40. 

3.2.5. Electronic coupling calculations 

To avoid confusion with the use of the terms donor and acceptor recurring in other 

sections, we need to specify that when describing hole-transfer processes, with the 

term donor we refer to the phenothiazine subunit, while with acceptor to the 

antenna NDI1. On the other hand, for the electron transfer calculations the terms 

donor and acceptor have to be intended as the subunits NDI1 and NDI2, respectively.  

The coupling strength between the orbitals involved in the hole/electron transfer 

processes are estimated using both the charge transfer integrals (CTI) method 

implemented in ADF41–43, and the Constrained DFT (CDFT) computational scheme44–46 

implemented in the software package CPMD47. 

3.2.5.1. Charge transfer integral (CTI) method 

This formalism computes the CTI through the equation: 

 

 1
2

 (3.3)  

 

Here,  represents the off-diagonal elements of the Fock matrix constructed 

using the HOMOs (for hole transfer calculations) or the LUMOs (for electron transfer) 

of the molecular subunits used as donor (D) or acceptor (A).  is the overlap 

integral between the molecular orbitals of the two states considered, while 	and  

are the energies of the system bearing the electron/hole on the donor or the 

acceptor. These calculations are performed at the B3LYP/TZP level in 

dichloromethane simulated through the continuum solvation model COSMO. 

3.2.5.2. Constrained DFT (CDFT) 

This methodology is based on the idea of minimizing the Kohn-Sham energy 

functional under the constraint that the charge difference between two defined 

regions of space is equal to a specific value of interest (see section 2.6 of this 

thesis). Within the CPMD implementation, we can define these two regions of space 
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as the sum of the atoms constituting respectively the donor and the acceptor. For 

the process of hole-transfer, we consider the sub-system PTZ-phenyl-NDI1 in its 

linear configuration. Here, PTZ and the phenyl bridge (Ph) form the donor, while 

NDI1 is the acceptor. The electronic coupling is calculated between the two states 

donor+-acceptor and donor-acceptor+. Similarly, the electron coupling between NDI1 

and NDI2 is estimated as the coupling between the two states NDI1
—-bridge-NDI2 and 

NDI1-bridge-NDI2
—. For the bridge unit we consider either a phenyl ring, or an 

ethyne group; in this case the bridge is not included neither in the definition of donor 

nor in that of the acceptor. The CDFT calculations are performed in vacuum using 

the pseudopotentials of ref. 48 with a plane wave cut-off of 70 Rydberg. 

3.2.6. Bridge-mediated electron transfer 

Depending on the structure of the triad considered, the process of hole-transfer 

can take place directly between donor and acceptor, or can proceed via bridge-

mediated tunneling mechanism. In contrast, the electronic relaxation from NDI1 to 

NDI2 occurs as bridge-mediated electron tunneling for every system investigated. 

For those cases in which the charge transfer occurs through bridge-mediated 

tunneling, and the donor and acceptor are separated by  identical bridge units, the 

overall donor-acceptor electronic coupling is calculated following the McConnel’s 

formalism49: 

 
∆ ∆

 (3.4)  

 

In equation 3.4, ,  and  represent the coupling between a bridge unit 

and respectively the donor, the acceptor and another bridge unit (if present). These 

terms are calculated using both the CTI or the CDFT methods. 

The other parameter, ∆ , represents either the hole, or the electron tunneling 

energy gap imposed by the bridge (Scheme 3.3). The height of the hole tunneling 

barrier (Δ ) is calculated as the difference between the HOMO energy values of 

the antenna and the bridge1 interposed between donor and antenna. 
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Scheme 3.3. Energy diagram of the Donor-Antenna-Acceptor orbitals used to calculate the 

energy barriers for the hole and electron tunneling, to be used in equation 3.4. 

 

In contrast, for the electron tunneling, Δ  is calculated as the energy 

difference between the LUMOs of the antenna and of bridge2, interposed between 

the antenna and the acceptor. It has been verified that this method provides values 

of Δ  very similar to those calculated with the computationally more expensive CDFT 

method by constraining the charge over the bridge. 

Equation 3.4 is the generalized form of the McConnel’s formalism, where M>0. 

Since in this chapter the electronic coupling is calculated only for systems in which 

M=1, the second term on the right hand side of equation 3.4 becomes equal to 1. 

This formalism is applied only to the calculation of the coupling between states which 

are not delocalized over bridge units. 

  

3.3. RESULTS AND DISCUSSION 

We initially present in section 3.3.1 the results of the TD-DFT analysis performed 

on a series of molecules used as benchmark to assess the quality of the results 

given by different GGA and hybrid xc-functionals, in reproducing the experimental 

absorption spectra published by Matile et al23,50. This analysis is useful to understand 

the level of theory required to accurately describe the optical response of the 

investigated triads to their initial photoexcitation.  

An accurate calculation of the ground and excited state oxidation potentials of the 

chosen molecular subunits is essential to verify that the donor, antenna and acceptor 

moieties do indeed create the redox gradient required for the unidirectional charge 

transfer. In section 3.3.2 we compare the computed redox values obtained using the 

method described in section 3.2.3, with the experimental cyclic voltammetry data19. 
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In section 3.3.3 and 3.3.4 we extend the TD-DFT study of molecular optical 

properties to a set of triads on which we apply specific structural changes. We study 

how these modifications affect the energetics of each excited state by TD-DFT 

geometry optimization. Starting from the systems showing the most promising 

thermodynamics we further modify the molecular structure in order to optimize also 

the electron-coupling between donor, antenna and acceptor. Finally, for the 

optimized molecular rectifier we estimate the charge separation rate constant. 

3.3.1. xc-functional benchmarking for TD-DFT absorption spectra 

TD-DFT studies are performed on the benchmark compounds NDI1, NDI2 and 

NDI0
16,22,23 making use of the exchange-correlation (xc) functionals OPBE51, 

SAOP52,53, OPBE054, B3LYP55 and M0656,57. 

In Table 3.1 we compare the calculated and the experimental values of the first 

characteristic absorption peak of each molecule investigated. 

Table 3.1. Excitation energies analysis of the reference compounds NDI0, NDI1, NDI2 

performed with TD-DFT and various xc-functionals. The experimental value is also reported for 

comparison. 

  aHFx
 btransition cf dabs(nm) eEg(eV) 

NDI0       

N

N

CH3

CH3

O O

OO

 

OPBE 0% H → L (98%) 0.46 433 2.86 
SAOP 0% H → L (98%) 0.47 443 2.80 
B3LYP 20% H → L (99%) 0.59 409 3.04 
OPBE0 25% H → L (99%) 0.61 391 3.17 
M06 25% H → L (98%) 0.61 390 3.17 
Exp.    380 3.26 

NDI1       

N

N

CH3

CH3

O O

OO

OEt

EtO

 

OPBE 0% H → L (97%) 0.31 561 2.21 
SAOP 0% H → L (98%) 0.30 539 2.30 
B3LYP 20% H → L (99%) 0.42 482 2.54 
OPBE0 25% H → L (98%) 0.43 466 2.66 
M06 25% H → L (99%) 0.43 474 2.62 
Exp.    470 2.63 

NDI2       

N

N

CH3

CH3

O O

OO

CN

NC

 

B3LYP 20% H → L (97%) 0.47 424 2.92 
OPBE0 25% H → L (99%) 0.49 406 3.05 
M06 25% H → L (99%) 0.48 411 3.01 

Exp.    380 3.26 

a Amount of exact HF-exchange for each functional. b Main molecular orbital transition (relative 
percentage) associated to electronic excitation Eg. c Oscillator strength. d Maximum absorption 
wavelength corresponding to the computed electronic excitation energy. e Electronic excitation 
energy computed in methanol. Experimental values in methanol are adapted from references 
[22] and [23]. 
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These results clearly indicate that hybrid and meta-hybrid functionals (B3LYP, 

OPBE0, and M06) are able to predict the lowest excitation energies of the benchmark 

molecules with much higher accuracy compared to the GGA functional OPBE51 and 

the model potential SAOP52,53, which considerably underestimate the experimental 

values.  

3.3.2. Redox potential calculations 

To verify the presence of a potential gradient between the donor, the antenna and 

the acceptor suitable to induce charge separation, we compute the ground and 

excited state redox potentials of each subunit following the procedure described in 

section 3.2.3. As shown in Table 3.2, the redox values calculated at the B3LYP/DCM 

(COSMO) level compare well with the experimental cyclic voltammetry onset 

values22,23,26. These results overall confirm the validity of the applied method and 

computational set up. Considering also the positive results obtained with TD-DFT 

(B3LYP reproduces the NDI1 excitation energy within 0.1 eV from the experiment), 

the choice of the hybrid B3LYP functional appears to be appropriate for studying the 

electronic and optical properties of molecular complexes employing these functional 

subunits. 

 

Table 3.2. Ground (Gox) and excited state (Gox
ES) molecular redox potentials estimated for 

each molecular component of the triad. 

Molecule Redox Pot. aEexp(eV) bEcalc(eV) 

NDI1
 Gox -6.1622 -6.21 

 Gox
ES -3.8222 -3.68  

NDI2
 Gox -7.5023 -7.53 

 Gox
ES -4.5023 -4.60  

PTZ Gox -4.7726 -4.86  
a Experimental onset redox potentials (measured in dichloromethane). b Redox potential values 
computed using B3LYP xc-functional in DCM (COSMO) model. All data are reported vs. 
vacuum. 
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3.3.3. Optical excitations and excited state geometrical optimizations  

The electronic structure of system 0 (see Figure 3.1) is obtained at the ground 

state geometry after optimization in dichloromethane, for consistency with the redox 

potentials calculations. The frontier orbitals are depicted in Figure 3.2.  

 

Figure 3.2. Frontier molecular orbitals of triad 0 obtained at the B3LYP/TZP level of theory in 

DCM solvent. 

 

As expected from the ground and excited state oxidation potential calculations, the 

HOMO and the LUMO are highly localized on the donor and the acceptor respectively, 

while the HOMO-1 and the LUMO+1 reside on the antenna. Each of these four 

orbitals possesses the same symmetry of those involved in the main excitation of 

the subunits calculated separately. The absorption spectrum calculated for system 0 

(Figure 3.3, black line) shows a dominant peak around 500 nm, corresponding to 

the photoinitiated HOMO-1 to LUMO+1 transition. Figure 3.3 shows for comparison 

also the spectra computed for the monomers NDI1 and NDI2, respectively in blue and 

red dotted lines. The most noticeable difference between these spectra is 

represented by a 18 nm (0.04 eV) red shift of the first absorption peak of triad 0 

with respect to that of the isolated NDI1. Similar shifts are observed for the 

absorption spectra estimated using the xc-functionals OPBE0 (0.08 eV) and OPBE 

(0.07 eV). This red-shift reveals the influence of the substituents coupled to the 

imide groups on the transition energy of the antenna. 
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Figure 3.3. Optical absorption spectra computed with TD-DFT/B3LYP for NDI1 (blue dashes), 

NDI2 (red dots), and for the whole triad system 0 (black curve). The black solid lines represent 

the calculated excitations contributing to the absorption spectra of system 0. TD-DFT 

calculations are performed in DCM (COSMO) using the TZP basis set, within ADF. 

 

 

The differences between the excited states oxidation potentials of NDI1 and NDI2, 

as well as between the ground states potentials of PTZ and NDI1 (Table 3.2), imply 

the presence of driving forces across the linking motifs that represent tunneling 

barriers separating the components of the triad. Consequently, photoexcitation of 

the antenna creates the conditions for the exothermic formation of a full charge 

separated state where the photogenerated positive hole and the excited electron are 

localized respectively on the donor and the acceptor.  

To investigate how structural changes can influence the probability of formation of 

different excited states after photoabsorption, we performed TD-DFT geometry 

optimizations in the electronic states S0, S1 and S2, for each of the aforementioned 

systems. The geometrical parameters of the systems optimized for different excited 

states are summarized in Table A3.1 in the appendix. For all the investigated cases 

we observe that in its neutral state, the phenothiazine is bent around the N-S axis 

with an angle of ~146.8o while, after oxidation (excited states S1 and S2), the 

molecule assumes a fully planar configuration. This indicates that this particular 

degree of freedom can be associated with the process of charge transfer between 

donor and antenna. Moreover, we observe that the dihedral angle between the PTZ 

and the directly bound phenyl bridge assumes different values depending on the 
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configuration of PTZ. When the PTZ is in a perpendicular configuration (see Figure 

3.1) this angle is close to 90°, while for PTZ in the linear configuration it is found to 

be ~36o, which is consistent with previously studied systems containing phenyl 

bridges58. The variation of this torsional angle has an important effect on the 

conjugation of donor and bridge units, and thus on the relative stability of different 

excited states.  

We also observe that optimization in S0 does not lead to any major geometrical 

change compared to the ground state, independently of the rectifier considered. The 

maximum energy difference evaluated at the ground state PES between the 

geometries optimized in the ground and the excitonic states is ~0.01 eV. This is at 

least one order of magnitude smaller than the difference calculated for the 

geometries optimized in any other excited state. The energy minimum of S0 is used 

as reference point to appreciate how the energies of S1 and S2 are affected by 

structural modifications. 

In the context of the Marcus theory of electron transfer, the excitonic state S0, 

populated upon photoexcitation, is considered as the reactant state and the fully 

charge separated state S1 as the product state. In contrast, the intermediate state 

S2 represents an unwanted product state and its formation has to be avoided (see 

Scheme 3.2). Within this framework, the energy difference between the minima of 

the reactant and each of the product states (E), is considered the driving force for 

the corresponding electron transfer reactions.  

To calculate the exact thermodynamic driving force, the energies of the system 

optimized in S0, S1 and S2, should be corrected for the entropic term. An explicit 

calculation of this term, however, becomes computationally too demanding for such 

extended systems. 

For large molecular triads similar to the ones investigated here, it has been argued 

that the entropic term TS represents a minor correction to the free energy 

difference, compared to E between optimized excited states33,59. Thus, in the 

following analysis the entropic contributions are neglected, leading to the 

approximation Δ Δ . Hence, the term Δ  is used to indicate the energy 

difference (or driving force) between the minima of the optimized excited states. 

Figure 3.4 and Table 3.3 show the comparison between the PESs obtained 

through excited states geometry optimizations of the different charge separators. 
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Figure 3.4. Potential energy surfaces for the antenna-localized exciton state S0 (black), the 
fully charge separated state S1 (red), and the intermediate charge separated state S2, 
representing the hole displacement from An to D (blue). The energies are obtained with TD-
DFT geometry optimizations at the CAM-B3LYP/cc-pVDZ level and reported relative to the 
minimal energy of the ground state along a nuclear collective coordinate R. R0, R1 and R2 
represent the geometries optimized for each excited state (Table A3.1 in the appendix). The 
symbols along the curves represent the energy values used to construct the parabolas and 
calculate the reorganization energies and the energy differences between the excited states 
S0, S1 and S2 reported in Table 3.3.
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Table 3.3. Minimal energy differences G between excited state PES and reorganization 

energies calculated for the investigated systems. 

 S1–S0 S2-S0 S1-S2 

 
G (eV)  (eV) G (eV)  (eV) G (eV)  (eV) 

System 0 -0.21 0.65 -0.22 0.80 0.014 0.41 
System 1 Linear -0.22 0.76 0.13 0.57 -0.35 0.40 
System 1 Perpendicular -0.19 0.75 0.08 0.58 -0.27 0.38 
System 2 Linear -0.031 0.79 0.46 0.55 -0.49 0.39 
System 2 Perpendicular -0.13 0.76 0.38 0.59 -0.51 0.50 

G values are calculated as the energy difference between the minima of the different excited 
state PESs (Sn-Sm) obtained through TD-DFT geometry optimization at the CAM-B3LYP/cc-
pVDZ level of theory.  is the reorganization energy calculated along the potential energy 
surfaces. 


The first thing to notice in Table 3.3 and Figure 3.4 is that for system 0 the 

reactant state S0 is energetically higher than the two nearly degenerate product 

states S1 and S2. This implies that both states can be energetically accessed from 

S0, and that the driving forces are equal for the formation of either one of them.  

The insertion of a phenyl bridge between PTZ and NDI1 has a destabilizing effect 

for the intermediate state S2, both in the linear and perpendicular triads (system 

1_Linear and system 1_Perperpendicular in Figure 3.4). This effect is further 

enhanced by adding a second phenyl bridge (see system 2_Linear and system 

2_Perperpendicular in Figure 3.4). The results summarized in Table 3.3 show a 

linear dependence of Δ  (S2-S0) on the donor-antenna distance (RD‐An). In 

particular, it is found that the destabilization of S2 is linearly dependent on the 

number of bridge units introduced, with each ring corresponding to RD‐An increasing 

by ≈4.3 Å. The destabilization per ring is equivalent to 0.35 eV for the linear 

systems, and to 0.30 eV for the perpendicular ones. This observation is relevant to 

design a system in which the formation of the unwanted product state S2 can be 

avoided in favor of S1. 

The energy of the S1 minimum does not significantly change for systems with 

different bridge lengths (Figure 3.4). However, Table 3.3 shows that the insertion 

of a first phenyl ring between donor and antenna only marginally affects Δ  (S1-

S0), while the insertion of a second ring significantly reduces the thermodynamic 

force with respect to the excitonic state, especially for the linear case. This effect 

appears to be induced mostly by a shift of the energy minimum of S0. 

Overall, these results indicate system 1 as the best design choice for the 

optimization of the driving force towards the full charge separated state. The use of 

a phenyl bridge to seprate the antenna from both the donor and the acceptor, favors 

the transition between the reactant state S0 to the product state S1. At the same 

time, it destabilizes the intermediate state S2 with respect to S0, in such a way that 
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a spontaneous transition between them is impossible. 

Thus, the S1 state is expected to be formed by a concerted transfer of an hole 

from the antenna to the donor and an electron from the antenna towards the 

acceptor (see Scheme 3.2). In the following section 3.3.4 the reasons for a 

preference between the perpendicular or the linear geometry for system 1 are 

discussed. 

 

3.3.4. Charge transfer integrals and charge separation rates 

So far our analysis has been focused on the effects that structural changes have 

on the energy gradients between different excited states. However, in order to 

assess the charge separation efficiency of a particular triad we cannot limit our 

analysis solely to the system’s thermodynamics. Indeed, although Marcus60 theory 

(see section 1.4) defines the electron-transfer rate constant ( , equation 3.5) 

between two electronic states as directly dependent on their energy difference (Δ ) 

and the reorganization energy (), 

 

 
2 2

4
| | exp

Δ
4

 (3.5)  

 

the probability of this process to occur is strictly correlated also to the electron 

coupling term ( ), which relates to the degree of mixing between those two 

electronic states. 

As it will be shown in chapter 4, coherent electron-nuclear motion can have crucial 

effects on electron tunneling processes since it can drive the system towards the 

crossing point of the initial and final states, where the electron transfer takes place. 

Table 3.4 summarizes the electronic coupling between the different subunits 

calculated for both the linear and perpendicular system 1 using both the CTI and 

CDFT methods. 

The orbital analysis of system 1 in its linear and perpendicular geometries show 

highly localized frontier molecular orbitals that strongly resemble those already 

discussed for system 0. The only difference is represented by the HOMO of system 

1_Linear, which appears to be delocalized over both the PTZ and the phenyl bridge. 

This indicates that the bridge does no longer constitute a barrier in the process of 

hole-transfer between the antenna and the electron donor, but instead it is a part of 

the donor group. 

This delocalization is no longer observed in system 1_perpendicular, where the 

phenyl bridge acts as barrier for the transfer. The energy difference between the 
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HOMO of the antenna and the first occupied orbital localized on the bridge, is much 

smaller than the energy difference between the HOMO of the donor and LUMO of the 

bridge. The charge transfer between donor and antenna is therefore expected to 

occur primarily as a hole rather than as an electron transfer process, since the 

tunneling barrier imposed by the bridge is considerably smaller for the first 

process61. 

The delocalization of the LUMO or the LUMO+1 over the bridge in between the  

antenna and the acceptor is never observed for any of the investigated systems. The 

electron transfer between antenna and acceptor thus proceeds via electron tunneling 

through the bridge. 

To calculate the coupling between the electronic states involved in the formation of 

the charge separated state S1, the donor-bridge-antenna and antenna-bridge-

acceptor subsystems, listed in Table 3.4 (first column), are studied separately. The 

analysis of the first group of systems gives the coupling for the hole transfer process 

between antenna and donor, while the second group of compounds allows for the 

estimation of the coupling values associated to the electron transfer between 

antenna and acceptor. NDI1-C≡C-NDI2 is added to the list to decrease the electron 

tunneling energy barrier height imposed by the phenyl bridge and allow for rotation 

between the two naphthalene diimides. 

To clarify Table 3.4, it is worth pointing out the following:  

 

(i) HDA values reported (CTI or CDFT) represent the coupling between the 

electron or the hole donor and acceptor units, depending on the 

investigated system. 

 

(ii) In system PTZ-Ph-NDI1 (L) the HOMO is delocalized over both the PTZ and 

the phenyl unit. Thus, the latter does no longer constitute a barrier and the 

McConnel equation can no longer be applied. The  value is therefore 

obtained by applying the CTI method, defining PTZ-Ph as the hole acceptor 

unit, and NDI1 as the hole donor. 

 

(iii) For all the other cases, no delocalization is observed over the bridge units, 

that therefore do constitute energy barriers for either hole or electron 

transfer. The  values reported in the table are thus obtained by solving 

equation 3.4 for the  values reported in the table, and the donor-bridge 

and acceptor-bridge coupling values calculated with the CTI method (not 

shown). 
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The CTI and CDFT formalisms give comparable results, despite a different level of 

theory and environmental constraints applied. Hence the procedure to estimate the 

tunneling barrier is relatively robust. 

 

Table 3.4. Comparison between the coupling values for hole- and electron-transfer, estimated 

via CTI and Constrained DFT methods. 

 (meV) hl (meV)  (meV) 

Hole transfer Antenna  Donor 
PTZ-Ph-NDI1 (L) 8 - 3 
PTZ-Ph-NDI1 (P) 0.3 1000 - 

 (meV) el (meV)  (meV) 

Electron Transfer Antenna  Acceptor 
NDI1-Ph-NDI2 0.04 2400 0. 05 
NDI1-C≡C-NDI2 23 820 43.5 

Electron/hole coupling values  and tunneling barriers hl/el calculated for the subsystems 
listed in the first column. (L) and (P) indicate the linear or perpendicular configuration of 
phenothiazine with respect to the phenyl bridge (Ph). CTI Calculations are performed with ADF 
at the B3LYP/TZP level of theory in DCM (COSMO). The same computational set-up is used to 
calculate the tunneling-energy gap62, hl/el.  values represent the electron coupling 
between donor-antenna or antenna-acceptor. The McConnel formalism has been used to 
calculated the coupling only of those systems for which hl/el values are reported. Similar 
hole/electron transfer energy barrier values are obtained using the CDFT approach (not 
shown).	 : coupling values obtained employing the Constrained DFT method implemented 
in the CPMD package; the CDFT calculations are performed in vacuum, using the BLYP 
functional and a plane wave cut-off of 70 Ry. 

 
The results shown in Table 3.4 highlight the large effect of having PTZ linked to 

the phenyl-bridge in a linear or a perpendicular configuration. The electronic 

coupling between the hole donor (NDI1) and the acceptor (PTZ) is reduced by more 

than one order of magnitude for the perpendicular system.  

Binding the PTZ to the phenyl bridge through the amine group of the electron 

donor, results in loss of conjugation between the two groups. This prevents a strong 

mixing of the electronic states of the two groups, reduces the electronic coupling and 

promotes the separation of their energy levels. This results in the bridge imposing a 

large barrier (1 eV) for the hole-transfering process. On the contrary, conjugation 

between the PTZ and the bridge is achieved by binding the two in a linear 

configuration. This allows for strong overlap between the orbitals of the two 

subunits, resulting into the delocalization, and stabilization, of the supramolecular 

complex HOMO over both the PTZ and the bridge. Thus, Ph does no longer constitute 

a barrier for hole transfer; instead it becomes a part of the electron donor. The 

distance between the hole donor and acceptor is thus reduced, while their electronic 

coupling is increased. 

The use of Ph as bridge unit between NDI1 and NDI2 induces a large electron 
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tunneling barrier (2.4 eV), and reduces the electronic coupling between the two 

practically to zero. The substitution of the Ph bridge with an acetylene group leads to 

an increase of the antenna-acceptor electron coupling of four orders of magnitude 

(Table 3.4). This can be explained in terms of the reduced electron donor-acceptor 

distance imposed by the new bridge, and with the fact that the LUMO of the 

acetylene is energetically much lower compared to the LUMO of Ph. 

By applying this latter change to the structure of system 1_Linear, we obtain 

system 1-b_Linear shown in Figure 3.5. 

 

 

Figure 3.5. Schematic representation of the molecular rectifier 1-b_Linear optimized for 

ultrafast formation of the charge separated state S1



The driving force computed for this triad between S0 and S1, gives Δ 0.26	 

eV, with a reorganization energy  = 0.7 eV. Instead, the formation of S2 is found to 

be energetically unfavorable with Δ 0.1 eV, and  = 0.9 eV. 

Since the formation of the product state S1 takes place as a concerted hole and 

electron displacement (see Scheme 3.2, left panel), we can reasonably assume that 

the kinetic bottleneck for this process is represented by the hole transfer from the 

antenna to the donor. In fact, the electronic coupling calculated between the donor 

and the antenna in the linear configuration (8 meV, in Table 3.4) is weaker than the 

one between the antenna and the acceptor when connected through an ethyne linker 

(NDI1-C≡C-NDI2, 23 meV in Table 3.4). Under this assumption, we can employ 

equation 3.5 to estimate the rate of formation for S1. By using the values  = 

0.008 eV, Δ  = -0.26 eV and  = 0.7 eV, a rate constant = 1.24*1012 s-1 is 

obtained, which is similar to the rate of 5*1012 s-1 experimentally observed for the 

process of hole transfer between a perylene and a phenothiazine linked through a p-

phenylene oligomer. 
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3.4. CONCLUSIONS 

With the goal of engineering a molecular triad able to induce a stable charge 

separated state upon visible light absorption, we design several complexes 

employing PTZ, NDI1, and NDI2 respectively as electron donor, antenna and electron 

acceptor, using different linkages between these subunits. The investigation of the 

optical properties performed for each triad reveals a predominant * excitation 

around 500 nm associated with the antenna-localized excited state S0. The relative 

energetic stability of this initial excited state with respect to the excited states with 

charge transfer character is found to be dependent on the donor-antenna distance. 

The separation of these two moieties by means of one phenyl ring appears to be the 

optimal compromise to ensure a strong driving force for the formation of the fully 

charge separated state S1 starting from S0 and prevent the occurrence of competing 

quenching paths for the excitonic state. 

It is found that a strong coupling between the donor and antenna is achieved when 

the PTZ is linked to the phenyl bridge through one of its peripheral aromatic rings. 

At the same time the ethyne group is shown to provide a strong electronic coupling 

between the antenna and the acceptor moieties. 

Based on these findings, we propose the molecular rectifier PTZ-Ph-NDI1-C≡C-

NDI2, as a promising triad for photoinduced direct ultrafast charge separation. 

Recombination of the photoinduced CS state to the ground state is expected to be 

strongly delayed due to the long distance and large energy barrier between donor 

and acceptor imposed by the other molecular components. Additionally, in an 

ensemble where multiple rectifiers are stacked through  interactions, the n-type 

semiconductor behavior of NDI2 will have two major advantages: it will further delay 

charge recombination by delocalizing the electron in the bulk and allow the creation 

of a p-n junction with a suitable electrode such as silicon. The next steps currently 

under investigation are a more comprehensive description of the dynamics 

associated with the ET process and the substitution of the electron donor with a 

water oxidation catalyst to develop a genuine artificial photosynthesis device58. 
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3.6. APPENDIX 

Table A3.1. Geometrical parameters of the studied systems optimized in the ground state 

(B3LYP) and for the excited states of interest (CAM-B3LYP). For system 0 we compare the 

B3LYP and CAM-B3LYP results for the excited state S0. The geometrical parameters and the 

atomic labeling used in the table are explained in the schematic representation of the model 

systems. 
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System 0  B3LYP   B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

   (optimized GS)   (optimized S0) (optimized S0) (optimized S1)   (optimized S2)

(degrees) 149.0  148.3 149.7 150.1  150.7

(degrees) 179.2  179.4 179.6 179.2  178.6

(degrees) ‐92.1  ‐90.4 ‐97.9 ‐114.3  ‐127.0

(degrees) 149.0  146.8 146.8 180.0  180.0

21‐23 (Angstrom) 1.47  1.45 1.44 1.43  1.42

' 23‐26 (Angstrom) 14.19  14.19 14.13 14.12  14.06

1‐5  1.48  1.47 1.46 1.48  1.46

3‐7  1.48  1.48 1.48 1.48  1.46

4‐15  1.42  1.40 1.40 1.42  1.38

8‐9  1.42  1.40 1.40 1.42  1.39

15‐20  1.48  1.48 1.47 1.47  1.45

18‐22  1.49  1.47 1.46 1.48  1.45

SUM (A)  8.77  8.70 8.68 8.75  8.58

AVERAGE (A)  1.46  1.45 1.45 1.46  1.43
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System 0  B3LYP   B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

   (optimized GS) (optimized S0) (optimized S0) (optimized S1)   (optimized S2)

4‐5  1.38  1.40 1.39 1.37  1.40

4‐15  1.42  1.40 1.40 1.42  1.38

6‐7  1.43  1.41 1.40 1.42  1.43

6‐17  1.43  1.45 1.45 1.41  1.43

16‐17  1.42  1.41 1.40 1.42  1.43

8‐19  1.42  1.40 1.40 1.42  1.39

18‐19  1.38  1.40 1.39 1.37  1.41

SUM (A)  9.87  9.87 9.82 9.83  9.87

AVERAGE (A)  1.41  1.41 1.40 1.40  1.41
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System 1 LINEAR  B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

    (optimized GS) (optimized S0) (optimized S1)   (optimized S2)

(degrees) ‐89.6 ‐88.6 ‐91.5  ‐98.4

' (degrees) 34.0 36.4 32.5  26.7

(degrees) 148.9 146.8 177.5  180.0

21‐27 (Angstrom) 5.73 5.73 5.71  5.70

' 26‐27 (Angstrom) 18.35 18.42 18.40  18.33

System 1 PERPENDICULAR  B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

    (optimized GS) (optimized S0) (optimized S1)   (optimized S2)

(degrees) ‐90.4 ‐90.1 ‐89.0  ‐90.5

' (degrees) 97.8 99.1 89.8  89.8

(degrees) 151.1 149.7 174.0  174.2

21‐27 (Angstrom) 5.68 5.65 5.64  5.63

' 26‐27 (Angstrom) 18.42 18.34 18.33  18.27
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System 2 LINEAR  B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

    (optimized GS) (optimized S0) (optimized S1)   (optimized S2)

(degrees) ‐96.2 ‐90.9 ‐89.9 ‐89.1

' (degrees) 35.0 36.7 37.0 36.1

" (degrees) 32.1 37.0 33.4 31.5

(degrees) 154.0 148.1 177.6 177.6

21‐27 (Angstrom) 10.05 10.05 10.04 10.03

' 26‐27 (Angstrom) 22.30 22.74 22.73 22.67

System 2 PERPENDICULAR  B3LYP CAM‐B3LYP CAM‐B3LYP  CAM‐B3LYP

    (optimized GS) (optimized S0) (optimized S1)   (optimized S2)

(degrees) ‐76.8 ‐94.5 ‐92.7 ‐101.3

' (degrees) 45.9 37.6 39.6 40.5

" (degrees) ‐92.0 ‐98.5 ‐90.2 ‐90.5

(degrees) 149.4 149.0 174.0 174.1

21‐27 (Angstrom) 9.98 9.98 9.96 9.96

' 26‐27 (Angstrom) 22.32 22.66 22.65 22.60
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Chapter 4 

 
 
Crucial Role of Nuclear Dynamics in 
Heterogeneous Electron Transfer 
 
 

4.0. ABSTRACT 

This chapter investigates the process of electron injection from a terrylene-based 

chromophore to a TiO2 semiconductor bridged by a recently proposed phenyl-amide-

phenyl molecular rectifier. The mechanism of electron transfer is studied by means of 

quantum electron dynamics simulations using an extended Hückel Hamiltonian. Prior 

to the quantum dynamics simulations, nuclear dynamics trajectories are calculated 

separately through ab initio Molecular Dynamics. It is found that the inclusion of the 

nuclear motion, in a coupled quantum-classical framework, opens a channel for 

coherent long range directional photoinduced electron transfer. This nonadiabatic 

process occurs between near-degenerate donor and acceptor states. In particular, 

the fluctuations of the dihedral angle between the terrylene and the phenyl ring 

modulate the localization and thus the electronic coupling between the donor and 

acceptor states. The electron propagation shows characteristic oscillatory features 

that correlate with interatomic distance fluctuations in the bridge. Hence the system 

acts as a “phonon antenna” to specific vibrational modes obtained in the ab initio 

molecular dynamics beforehand to drive the process. The understanding of coherent 

effects is important for the design of functional dyes with low-loss injection and 

rectification properties. 
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4.1. INTRODUCTION 

Environmentally friendly and cost-effective dye-sensitized solar cells (DSSCs) are a 

potential alternative to silicon-based photovoltaics for solar energy conversion, can 

be equipped with molecular catalysts for direct conversion and storage of solar 

energy into fuel, and have been the subject of extensive research1–5. In DSSC 

devices a semiconductor electrode is functionalized with a (molecular) chromophore 

absorbing visible light. The photoexcitation induces heterogeneous electron transfer 

(ET) from the dye into the semiconductor conduction band (CB), while an electrolyte 

shuttles electrons from the counter electrode to regenerate the oxidized dye. 

 Despite considerable improvement achieved in recent years, DSSCs performances 

have not reached energy conversion yields and efficiency levels that are necessary 

to render them competitive with silicon-based solar cells. Higher efficiencies can be 

attained by increasing the light harvesting properties of the solar cell, by decreasing 

internal energy losses or by optimizing conditions for fast electron injection.  

A major obstacle hampering the performance of DSSC devices is represented by 

the internal losses from recombination between the electron injected into the 

semiconductor and the hole on the oxidized dye6. In a converging approach to 

design more efficient devices, several groups have investigated the effect of specific 

cell parameters for enhancing electron injection and reducing recombination losses, 

such as length and nature of the bridges7–10, the chemical structure of the anchor 

groups11 and the redox potential of the electrolyte12. In addition, detailed 

investigations of the molecular mechanisms at the dye/semiconductor interface13–18 

have revealed the importance of nonadiabatic dynamics for charge separation and 

recombination19–21. 

Recently, Batista and coworkers proposed the use of a molecular rectifier22 

composed of two phenyl rings coupled through an amide bond to prevent back 

electron transfer (see AM molecule in Scheme 4.1a). This molecule acts as a 

rectifier when used as a molecular wire or as a linker-chromophore in a solar cell 

device23,24. In these previous works it has been shown that the rectifying properties 

of AM can be rationalized in terms of the asymmetric charge distribution of the 

frontier molecular orbitals. Used as a molecular bridge between a dye and a 

semiconductor, a rectifying AM linker could increase the DSSC efficiency by 

decreasing the electron-hole recombination rate.  

To investigate the role of AM in the electron injection process, we use it to bridge 

an amine-functionalized terrylene antenna (T) and a titanium dioxide (TiO2) anatase 

surface (T-AM-TiO2, Scheme 4.1b). Terrylene is a well characterized molecule that 

absorbs within the visible spectrum (~580 nm) and has an excited state lifetime on 
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the ns time scale25,26. Recently this molecule has been also used as electron donor 

for TiO2 based DSSC27. TiO2, in turn, is a semiconductor material widely used as an 

electron collector in DSSC. This oxide is known for its stability, its high surface area 

for dye loading, and its high electron collection efficiency; additionally, its bands 

allow efficient electron transfer from most of the commercially available dyes6. The 

anchoring of the dye onto TiO2 is achieved through a carboxylic acid group in a 

bidentate bridging mode (Scheme 4.1b). 

 
Scheme 4.1. Chemical structure of the molecular rectifier AM (a), and of the T-AM dye (b). 

The anchoring of the chromophore to the TiO2 semiconductor through a carboxylic acid group 

(anchor group), leads to the formation of the T-AM-TiO2 system. 

 

To provide insight for the design of more efficient charge separators, I have 

investigated the quantum dynamics of electron injection coupled to thermal nuclear 

motion in a coupled quantum-classical framework where the nonadiabatic connection 

between successive molecular conformations is carried out through the diabatic 

atomic orbitals base. The semi-classical simulations show that the system is able to 

selectively couple to specific modes from a nuclear dynamics trajectory to open a 

rectifying electron injection channel in the T-AM-TiO2 system by a coherent 

superposition of states. This mechanism is fundamentally different from a 

semiconductor junction, since the unidirectional conversion of the initial excited state 

on the chromophore is due to coherent mixing with a charge transfer state between 

the chromophore and the TiO2, which does not rely only on an energy gradient, but 

requires in addition strong electronic coupling from nearly degenerate exciton and 

charge transfer states. The vibronic coupling to normal modes localized at the 

interface between the antenna and the semiconductor drives the process. These 

results support recent findings on the importance of coherent vibronic coupling 

during photo-induced charge separation processes for both natural and artificial 

light-harvesting systems16,28–34. 
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4.2. METHODS AND COMPUTATIONAL DETAILS 

The electronic properties of the systems are quantum mechanically described by 

means of a tight-binding Hamiltonian based on the extended Hückel (EH) theory35,36 

(see also chapter 2 of this thesis). 

The EH method implementation used here, employs as basis set of  

nonorthogonal Slater-type orbitals (STO) centered at the position of the respective 

atom in the system. A set of adiabatic molecular orbitals (MO) is constructed as 

linear combinations of the STO atomic orbitals (AO) according to 	 ∑ . It 

follows that the coefficients  are obtained by solving the generalized eigenvalue 

equations ∑ 0, ∀ 1, .		Here  and  are respectively 

the electronic Hamiltonian and the overlap matrix elements in the AO basis 

representation, while  is the corresponding eigenvalue. The diagonal elements  

are called Coulomb integrals. The value of each of them is assigned through 

parametrization and represents approximately the valence state oxidation potential 

of the atomic orbitals . The off-diagonal elements 	  (or 

bond integrals) represent the energy of the electron in the region where the two 

atomic orbitals  and  overlap ( ).  are the modified empirical Wolfsberg-

Helmholz parameters36,37. The matrix elements of the tight-binding EH Hamiltonian 

are therefore dependent on three semiempirical parameters: , 	and the 

effective charge of the nucleus () embedded in the definition of the STOs.  

In standard EH methods, these parameters are subject to the following 

approximations: i) the Coulomb integrals are approximated with the oxidation 

potential of the valence-shell atomic orbital; ii) no distinction based on the atom 

chemical environment is made for the parametrization of the AOs; iii)   is 

assumed equal to 1.75. These approximations can strongly affect the outcome of the 

calculations, depending on the systems under investigation. To overcome these 

problems, for our investigation we use parameters previously optimized against 

experimental and DFT results. Additionally, the molecular environment is also 

considered during optimization through the enlargement of the AOs basis set. The 

optimization procedure is described in the next section 4.2.1.  

 

4.2.1. Optimization of the Extended Hückel parameters 

Initially, the density of states (DOS) for the (110) surface of anatase is obtained 

with the standard EH parameters38 imposing periodic boundary conditions along the 



METHODS AND COMPUTATIONAL DETAILS 

85 

 

[101] and the [010] directions. For the calculation of the isolated TiO2 surface, as 

well as for the functionalized one, an orthorhombic supercell with lattice parameters 

a=10.239 Å, b=15.137 Å and c=40 Å is used. The standard EH calculation estimates 

the lower edge of the TiO2 conduction band (CB) at -10 eV.  

At the same time, the T-AM chromophore geometry is optimized in its ground 

state at the DFT level, using the exchange correlation functional B3LYP39 coupled 

with the Gaussian type basis set cc-pVDZ. The DFT calculations are performed with 

the Gaussian09 software package40. This computational set-up has already been 

proved accurate in describing the electronic properties of a similar terrylene/TiO2 

based DSSC device27. 

Although it is experimentally difficult to obtain an accurate estimate for this 

parameter, -4.0 eV (vs. vacuum) is commonly accepted as an appropriate value for 

the edge of the TiO2 CB27,41. Consequently, in order to obtain the energy gradient 

with respect to the semiconductor CB calculated with the EH method (-10 eV), the 

DFT frontier molecular orbital (FMO) energy values are down shifted by 6 eV. These 

corrected energies are used as target values for the optimization of the EH 

parameters. The optimization is performed by minimizing the cost function  of the 

form 

 

 	 , , , ,  (4.1)  

 

where , ,  is the system’s property of interest,  the target value 

for that property and j the relative weight of the jth constraint. As shown in 

equation 4.1, the cost function  and the property  depend on the semiempirical 

parameters sets , , . For each optimization run, it is possible to selectively 

optimize one or more of these parameters, for each atom in the molecule.  

For the purpose of this work, the constraints are applied only to the energy values 

of the highest occupied molecular orbital (HOMO), the lowest and the second lowest 

unoccupied molecular orbital (LUMO and LUMO+1) of T-AM. The shifted DFT 

energies are used as target values. To evaluate the quality of the optimized EH 

parameters, the DFT/B3LYP and the EH orbitals are compared both in terms of their 

energy and their localization.  

The optimization of the atomic parameters for amide and carboxylic groups is 

treated separately from the remaining C, N and O atoms in the molecule. In this 

way, specific sets of parameters are generated for those atoms, to account for 
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differences in chemical environments. Although this enlarges the basis set used for 

the calculations, it increases the accuracy of the results. 

4.2.2. Quantum-classical dynamics of hole/electron wavepackets 

In this chapter, the coherent mixing of the charge transfer state into the excitonic 

state is studied by combining quantum dynamics for the electrons, and classical 

molecular dynamics for the nuclei42–44.  

The time evolution of the electronic wavepacket, under the influence of the 

underlying nuclear dynamics, is carried out through the combined AO/MO time-

propagation method45. This propagation method is outlined in Scheme 4.2, and 

proceeds as follows. 

The position dependent AOs used to write the initial wavepacket Ψ , for 0 

 

 Ψ 0 0 | 0  (4.2)  

 

yield the Hückel Hamiltonian matrix elements 0 . The Hamiltonian changes 

between consecutive nuclear configurations through the overlap matrix, due to the 

position-dependent nature of the atomic orbital basis. 

Diagonalization of this Hamiltonian matrix by means of the transformation operator 

 

 | |
,

 (4.3)  

 

produces the adiabatic basis of delocalized molecular orbitals 0  at 0 (see 

Scheme 4.2 , blue arrow 0 ).  
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The wavepacket is then expressed in the orthonormal MO basis set according to  

 

 Ψ 0 0 | 0 . (4.4)  

 

The advantage of using the molecular orbital representation is given by the simple 

form of the time-propagation equations, within a time slice . 

In this basis, the time-propagation of the wavepacket is performed by solving the 

time-dependent Schrödinger equation  

 

 |Ψ |Ψ . (4.5)  

 

Within the time slice , since the nuclear geometry is treated as static, the 

molecular orbitals are time-independent 0 . It follows that the solution of 

equation 4.5, within a time slice , leads to the time evolution of the MO 

coefficients as 

 

 	 0 exp ⁄ .  (4.6)  

 

In the MO basis the Hamiltonian is diagonal and  are its eigenvalues. From 

equation 4.6 it is clear that within the time slice, the time evolution is contained only 

in the phase factor. This time-propagation step is indicated in Scheme 4.2 by the 

green arrow. 

Once |Ψ  has been obtained, the wavepacket is transformed back to the AO 

basis by using the transformation operator  

 

 | |
,

, (4.7)  

 

as indicated with the blue arrows 0  in Scheme 4.2. 

This transformation is done since it is easier to transfer the wavepacket 

coefficients between time slices within the AO basis.  
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If  is sufficiently small, we can reasonably assume that 

 

 | 0 | , (4.8)  

 

which allows the transfer of  to the next nuclear configuration, as indicated 

by the red arrow bridging step 0 and step 1 in Scheme 4.2. However, as an effect 

of the nuclear motion, the center of the AO basis will change between consecutive 

MD steps yielding 0 . 

The procedure explained for MD step 0, is reiterated along the whole trajectory. 

In this investigation, to simulate the initial excitonic state induced in the terrylene 

dye by photo excitation (t=0), the wavepackets for the hole and the electron are set 

to the HOMO and the LUMO of the adsorbate molecule, respectively. Consequently, 

Ψ 0  is the exciton reactant state localized on the donor. However, along the 

dynamics, the wavepacket evolves into the charge transfer product state by 

delocalizing between the donor and the acceptor.  

The nuclear trajectory for the isolated molecule, used for the time-evolution of the 

wavepackets, is calculated beforehand through ab initio Molecular Dynamics using 

the Car-Parrinello MD (CPMD) code46 (see section 2.4 of this thesis). The DFT/B3LYP 

optimized geometry is used as the starting point for the MD simulation, which is 

carried out in vacuum using the pseudopotentials of reference47 with a plane wave 

cut-off of 70 Rydberg and the BLYP48,49 exchange correlation functional. Applying the 

Nosé-Hoover thermostat, the T-AM molecule is brought to a temperature of 300 K 

and allowed to equilibrate for 2 ps using a time step of 0.1	fs. During the whole 

simulation, the atoms of the carboxylic acid anchoring group are constrained in their 

initial positions. At the end of the simulation the carboxylic acid is replaced with the 

previously optimized TiO2 slab already functionalized with the anchoring unit.  

Once the nuclear trajectory is obtained for the chromophore, the hole and the 

electron wavepackets are propagated along this trajectory following the combined 

AO/MO time-propagation method44,16 described above, using the same time step of 

the MD simulation. 

This methodology allows to treat the nonadiabatic transfer from an exciton 

reactant state to a charge transfer product state in the adiabatic MO representation 

through periodic projections onto the diabatic AO basis immediately followed by back 

transformation to the MO basis where the quantum electron dynamics is most 

conveniently performed. It has been already applied successfully for the description 

of heterogeneous electron transfer processes42,50,45. 
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4.2.3. Normal mode analysis  

The normal mode analysis for the isolated AM bridge unit is performed making use 

of the ADF software package51–53. The structure of the Phenyl-Amide-Phenyl 

molecule, initially optimized in vacuum at the DFT/B3LYP level, is subsequently used 

to numerically calculate the vibrational frequencies using the same computational 

set up. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1.  The optimized EH parameters  

Following the procedure described in section 4.2.1, the DFT/B3LYP optimized 

structure and orbital energies of T-AM are used to carry on the optimization of the 

EH parameters. The results of the calculations performed with the semiempirical and 

the ab initio methods are compared in Table 4.1.  

 

 
DFT/B3LYP 

(eV) 
Target values

(eV) 
Optimized EH 

(eV) 
HOMO -4. 7 -10.7 -10.7 

 
 

 
 

LUMO -2.6 -8.6 -8.6 

  
 

LUMO+1 -2.4 -8.4 -8.3 

  
 

Table 4.1. Comparison between the frontier molecular orbital (FMO) energies obtained with 

the DFT/B3LYP method, the target values for the EH parameters optimizations, and the FMO 

energies calculated with the optimized EH parameters. The target values are estimated by 

applying a rigid 6 eV down shift to the DFT/B3LYP energy values. The images of the FMOs 

obtained for T-AM with DFT/B3LYP and the  optimized EH parameters are shown for 

comparison. 

 

The results clearly show that the generated set of optimized EH parameters are 

able to accurately reproduce the shape and the energy of the T-AM frontier 

molecular orbitals computed at the DFT/B3LYP level. This validates the use of this 

newly optimized basis set for the description of T-AM electronic properties and for 

studying the electron quantum dynamics processes. 
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4.3.2. Electron quantum dynamics simulations  

The optimized EH parameters are used to perform a single point calculation of the 

entire chromophore/semiconductor system. 

In Figure 4.1a the total density of the unoccupied states of T-AM-TiO2 projected 

on the chromophore (Dye, in blue) and on the semiconductor (TiO2, in grey) are 

compared. 

 

 
Figure 4.1. (a) Comparison between the density of the chromophore unoccupied states (Dye, 

in blue) and of the TiO2 conduction band (TiO2, in grey). On the right hand side, the electron 

donor and acceptor states contributing to the peak around -8.7 eV are represented. (b) 

Electron and hole time-dependent SP profiles of system T-AM-TiO2 in the absence of nuclear 

motion (blue and green line, respectively). The time step of the simulation is fs. Both 

calculations are performed for the entire T-AM-TiO2 system on the fixed set of ground-state 

optimized molecular coordinates using the optimized EH parameters. 

 

To prepare the system, the T-AM structure employed for the parametrization of 

the EH Hamiltonian is used. The projected density of states for T-AM (Figure 4.1a, 

Dye) presents a peak at -8.7 eV. This peak is associated with the two almost 

degenerate    ( = -0.05 eV) unoccupied system orbitals shown in Figure 4.1a. 

These two orbitals, labeled Electron Donor (ED) and Electron Acceptor (EA) states, 
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correspond respectively to the LUMO and LUMO+1 of the isolated dye molecule 

(Table 4.1). 

An electron quantum dynamics simulation (EQD) is performed for the T-AM-TiO2 

system over the same set of nuclear coordinates used for the DOS calculation, 

keeping the nuclear positions fixed. Since the photoexcitation of the dye populates 

the molecular orbital localized on the terrylene (ED), the photoexcited electron has 

to travel across the bridge through the EA state to reach the TiO2 surface. Despite 

the proximity between the electron donor and acceptor states and the presence of a 

thermodynamic driving force, no ET from T-AM to TiO2 is observed within the 2 ps 

EQD simulation in absence of nuclear motion (see Figure 4.1b). 

To investigate the effect of the nuclear motion on the electron dynamics the 

hole/electron quantum dynamics calculations are repeated by evolving the 

wavepackets over a classical MD trajectory obtained beforehand (see section 

4.2.2)54,55. Since we use a nuclear trajectory obtained in the ground state, the effect 

of the thermal relaxation of the photogenerated hot exciton is not included. 

However, since this effect is fast and highly localized on the antenna, it is not 

expected to significantly affect the dynamics of the ET on a longer time scale6 (see 

section 4.6.1 in the Appendix). The results of the electron quantum dynamics 

performed along the MD trajectory are reported in Figure 4.2 showing the survival 

probability (SP) of the electron wavepacket. The SP is defined as the time-dependent 

population of the wavepacket within the dye42. When the wavepacket is fully 

localized within the sensitizer SP=1, while SP=0 when it is fully transferred to TiO2. 
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Figure 4.2. Electron quantum dynamics simulation of the T-AM-TiO2 system (SP, blue) along a 

classic MD trajectory obtained with CPMD. The electron and nuclear dynamics both employ a 

time step tfs. A schematic representation of the analyzed complex is presented on the 

left hand side of the figure, together with the identification of the dihedral angle  (in red). 

The black line () represents the variation of this angle along the dynamics. The range of 

values identified as crucial for electron injection is delimited by the red dashed lines. The 

regions highlighted in pink correspond to time intervals in which the dihedral angle 

fallswithin this range. 

The survival probability profile (Figure 4.2, SP) shows that the introduction of 

nuclear dynamics induces significant ET within the first few hundreds fs, in contrast 

to the results for T-AM-TiO2 without nuclear dynamics (Figure 4.1b). This 

demonstrates the importance of the coupling between the electron dynamics and 

thermal motions in the description of ET processes.  

Additionally, the SP profile is characterized by the presence of plateaus emerging 

periodically every ~250 fs indicating that the electron injection is temporarily 

quenched. At the same time the SP evolution shows that back charge transfer from 

the semiconductor on the terrylene antenna does not occur, well in line with the 

rectifier property of the AM bridge (see section 4.6.2 in the Appendix). The analysis 

of the molecular dynamics trajectory reveals a correlation between the recurrence of 

these plateaus and the fluctuation of the dihedral angle  (Figure 4.2, black line), 

defined between the terrylene and the phenyl ring Ph1 (see Figure 4.2, left). The 

electron injection occurs only when 70º or 110º (red dashed lines in Figure 

4.2). On the contrary, if 70º110º the transfer is hindered (areas highlighted in 
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pink, Figure 4.2). The variation of the dihedral angle influences the delocalization 

of the electron donor state over the Ph1 ring, as shown in Figure 4.3. 

 
Figure 4.3. Localization of the Electron Donor and Electron Acceptor states along the T-AM-

TiO2 MD trajectory. On the right hand side are reported the MD time frames and the value of 

the dihedral angle corresponding to the two electronic states shown



 When 70º110º the ED state is confined on the antenna (T) and is separated 

from the electron acceptor orbital by the Ph1 ring (red circles in Figure 4.3). 

However, when  is outside the aforementioned range the planarity and 

consequently the conjugation between Ph1 and the terrylene is increased. This 

induces the delocalization of the ED state over Ph1 (blue circles in Figure 4.3) and 

thus transiently enhances the coupling between the donor and acceptor states.  

It is worth pointing out that performing the electron quantum dynamics while 

keeping the nuclei fixed, does not show electron injection on a timescale of a few ps, 

even when geometries with values outside the 70°-110° range extracted from the 

previous trajectory are used (as already shown in Figure 4.1b for the initial 

geometry, ≈50º). This indicates that ET is not solely promoted by a proper value of 

 but instead requires the coupling with other specific vibrational modes56. To 

identify those we use the same nuclear trajectory to perform an EQD starting from 

the molecular configuration at 890 fs with  =123º (Figure 4.2, just before the 

second shaded region). The results are presented in Figure 4.4b. 
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Figure 4.4. (a) Comparison between the survival probability (SP, blue line) oscillations and 

the amide bond (C-N) distance (, red line) along the EQD. (b) Comparison between the 

electron injection profile (SP, blue line) and the variation of the dihedral angle (black line) 

along the EQD simulation for the T-AM-TiO2 system. The red dotted lines correlate the starting 

of the electron injection with the decrease of  below 70°. (c) Energy values of the Electron 

Donor and the Electron Acceptor states along a portion of the EQD simulation. (d) Snapshots 

extracted along the EQD trajectory representing the electron wavepacket traveling through the 

bridge. 

 

Initially, while >110º, a limited injection (5%) is observed within the first ~50 fs. 

This transient is followed by a plateau up to about 230 fs, corresponding to the 

period during which 70º<<110º. Then ET towards the TiO2 is resumed by the 

decrease of  below the 70° threshold (red dotted lines in Figure 4.4b) and is 

characterized by electron density fluctuations with a period of ~30 fs (Figure 4.4b, 

black rectangle). The Fourier analysis of these rapid fluctuations gives a broad peak 

centered at ~1250 cm-1 (see Table 4.2a).  

In Figure 4.4a it is shown that the oscillations characteristic of the electron 

injection (SP, blue line) are highly correlated with the variation of the amide bond 

distance N-C (, red line). A normal mode analysis of the AM bridge shows that the 

N-C bond length is modulated by the normal modes 1 (1090 cm-1) and 2 (1226 
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cm-1) reported in Table 4.2a. In fact, as described in Table 4.2b, these modes 

involve mostly the variation of the ,  and  bonds localized at the interface 

between the ED and EA orbitals (Table 4.2). 

 

Table 4.2. (a) Frequencies of relevant normal modes of the AM bridge (and .) compared 

with the frequency obtained from the Fourier analysis of the electron injection oscillations 

along the EQD trajectory. ,  and  are the three bonds showing a major contribution to the 

normal modes and . (b) Graphic representation of the . ,  and  bond distance 

variations associated to the normal modes and . 

 

The energy fluctuations of these two orbitals are represented in Figure 4.4c for a 

segment of the MD trajectory (0.1-0.4 ps), characteristic of the whole simulation. 

The energies of EA and ED MO states constantly cross each other, which confirms 

the nonadiabatic character of the electron transfer process. The crossing also shows 

that the primary ET step and the rectification do not require a strong energy 

gradient to take place. The ED and EA states oscillate with distinctive frequencies of 

1100 cm-1 and 1235 cm-1, respectively. The remarkable similarity between these two 

values and the frequencies of the normal modes 1 (1090 cm-1) and 2 (1226 cm-1) 

strongly indicates the influence of these particular vibrations on the energies of the 

electron donor and acceptor states. Overall these results underline the importance of 

these specific nuclear vibrations in driving the electron injection. Similar evidence of 

vibronic coupling effects have been recently reported for different organic 

supramolecular complexes28,30,57. 

Quantum coherent conversion from an excitonic state to a charge transfer state 

requires that the two states partially occupy the same volume, and that their energy 
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levels are close enough to be coherently coupled by vibrational modes31–33,58–60. In 

the system discussed here, the two states involved in the electron transfer are 

associated with orbitals that initially are sufficiently close in energy but spatially 

separated. Thermal motion brings a conformational change (variation of ) that 

makes them partially occupy the same molecular region. Under this condition the 

two states can be coherently coupled by the fast vibrational modes localized at their 

interface, thus allowing the propagation of the electronic wavepacket by a 

convergence of electronic and nuclear dynamics. 

A visual representation of the electron wavepacket propagating across the system 

is reported in Figure 4.4d. These snapshots clearly show how the wavepacket 

propagates through a channel which is opened as a result of the Ph1 rotation. The 

snapshot at t=0.35 ps shows clearly that the wavepacket can be described as a 

superposition of the corresponding ED and EA states shown in Figure 4.3. This 

demonstrates that the electron transfer is proceeding gradually from the ED state to 

the EA state, rather than through an instantaneous hopping. The MD trajectory is 

calculated separately and cannot change in response to the QED to produce 

electron-nuclear resonance57. Nevertheless, quantum dynamics always selects the 

fastest channel to the product making the electronic system acting as a phonon 

antenna. That is, it selects the vibrational mode that is “just right” to facilitate 

coherent transfer60. This validates the coupled quantum classical approach of 

treating the nonadiabatic transfer between two states through periodic 

instantaneous rearrangement of nuclear positions in the diabatic AO base, while 

performing the propagation in the adiabatic MO base. 
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4.4. CONCLUSIONS 

In summary, efficient ET in T-AM-TiO2 is driven by a strong coupling between the 

electron dynamics and specific nuclear vibrational modes. It has been shown that a 

slow rotation of the bridge with respect to the antenna opens a preferential channel 

for ET by changing the localization of the donor and acceptor states. When the 

channel is open, the charge can move across the bridge from the electron donor to 

the acceptor state driven by the bridge vibrational modes that induce periodic 

crossing of energy levels and nonadiabatic coupling of these two states. 

These results underline the importance of including the nuclear dynamics for a 

proper description of the electron injection. In addition, I have verified the 

rectification properties of the AM bridge as part of a chromophore for a DSSC. The 

vibrational modes identified through the analysis of the correlation between nuclear 

and electron dynamics provide possible strategies for accelerating the electron 

injection process for high efficiency by e.g. structural modifications of the AM bridge 

to constrain rotations of the Ph1 ring. 
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4.6. APPENDIX 

4.6.1. Test on geometrical relaxation in the excited state 

An additional test has been performed to check the effects of the photo-excitation 

on the T-AM chromophore. Using the Gaussian 09 software package40, together with 

the CAM-B3LYP exchange-correlation functional and the cc-pVDZ basis set, we have 

optimized the geometry of the T-AM dye in the first excited state, which has 

predominant HOMO-LUMO character. The optimized geometry in the excited state 

shows only small changes in the C-C bond lengths of the terrylene antenna with 

maximum displacements of ~0.03 Å. Given that the LUMO is highly localized on the 

terrylene, it is not surprising that these geometrical changes are only observed in 

the terrylene molecule and do not propagate on the AM bridge whose geometry is 

essentially not modified by the excitation. These results strongly suggest that the 

dynamics of the AM bridge will be hardly affected by the excitation localized on the 

terrylene antenna, giving further justification to the use of a ground state dynamics 

for the study of the electron injection.  

4.6.2. Test on T-Stilbene-TiO2 

The survival probability reported in Figure 4.2 and Figure 4.4 shows a constant 

decrease of the electron wavepacket localized on T-AM. This indicates the absence of 

large charge fluctuations from the semiconductor back onto the donor state of the 

dye. To verify that this is due to the AM bridge rectification properties, following the 

same computational procedure used for T-AM–TiO2, we perform an EQD simulation 

for a system in which we substitute the AM bridge with the fully conjugated (E)-

stilbene molecule (Figure A4.1a). Due to its conjugation this system is not 

expected to show rectification23.  

The results for T-Stilbene-TiO2 are reported in Figure A4.1b. Due to the fully 

conjugated nature of (E)-stilbene, the initial wavepacket is localized not only on the 

terrylene but on the entire dye. In this case the electron injection is extremely fast, 

due to the strong coupling with the semiconductor conduction band states (see 

Figure A4.1b, first 20 fs). However, along the dynamics the survival probability for 

T-Stilbene-TiO2 shows strong fluctuations associated with electron density fluctuation 

between the antenna and the semiconductor (see insets in Figure A4.1b). This is a 

strong indication that the T-Stilbene-TiO2 system does not show rectification 

capability in contrast to the results shown for T-AM-TiO2. 
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(a) 

 

(b) 

 

Figure A4.1. (a) Schematic representation of the T-Stilbene dye. (b) SP profile of the EQD 

simulation of T-Stilbene-TiO2 along an MD trajectory. The insets show the wavepacket 

localization at different snapshots along the EQD. 
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Fully Atomistic Simulation of Solvent 
Mediated Proton-Coupled Electron 
Transfer Assisting Photodriven Catalytic 
Water Oxidation 
 
 

5.0. ABSTRACT 

Solar-driven water splitting is a key reaction step in a photoelectrochemical cell for 

solar to fuel conversion. By means of quantum-classical dynamics simulations, we 

investigate a photoanode consisting of a TiO2 substrate functionalized with a 

supramolecular complex combining the visible light absorption and catalytic 

functions. This complex consists of a fully organic naphthalene-diimide (NDI) 

derivative chromophore covalently bound to a mononuclear Ru-based water oxidation 

catalyst. Photo-excitation induces electron injection from the NDI to the 

semiconductor substrate in a sub-picosecond time scale. Following the electron 

injection, proton-coupled electron transfer is observed to lead to the formation of the 

first catalytic intermediate in the water oxidation cycle. The analysis of the free-

energy profile shows that this process is thermodynamically favorable and has a very 

small activation barrier. The inclusion of an explicit water environment in the 

simulations is crucial to provide the hydrogen bond network for the proton transfer as 

well as the necessary thermal fluctuations that stabilize the final state.  
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5.1. INTRODUCTION 

Direct conversion of solar energy into storable chemical fuel is a promising 

strategy in the path towards sustainable energy sources1,2. As explained in chapter 

1, natural systems perform this task by converting water molecules into O2 and 

high-energy-density molecular compounds. They apply molecular machineries, which 

are complex, but without redundancy in the biological context of the membrane and 

the cell. The design of artificial solar energy conversion devices therefore aims at 

applying essential fundamental principles governing natural photosynthesis, while 

aiming for dedicated solar to fuel conversions, which allows using a much simpler 

structure. 

A prototypical artificial photosynthesis device combines the functions of light 

harvesting, charge separation and catalysis, and it is able to produce high-energy-

density fuel using sunlight and water as power source and feedstock. 

Its structure comprises subunits dedicated to each function. Light harvesting is 

achieved through one or more chromophores able to absorb light within the visible 

range. Charge separation is induced by donor and acceptor molecules coupled to the 

dye. Catalytic water oxidation and hydrogen evolution are performed respectively at 

the anode and cathode by the specialized WOC and HEC.  

These units should be combined in such a way that, upon photoexcitation of the 

chromophore, a stable charge separated state is obtained by transferring the 

photoinduced hole and the excited electron to the WOC and the HEC respectively, 

thereby driving the two catalysts. This spatial separation is essential to reduce the 

recombination rate between the two charges, which allows the catalysis to take 

place at the two electrodes.  

The overall efficiency of the cell depends on the balance between the kinetics and 

the thermodynamics of these processes. Therefore, acquiring a fundamental 

understanding of the individual electron transfer processes ultimately driving the 

activation of the catalytic centers is essential for the design and the optimization of 

solar fuel cells. 

In chapter 3 and chapter 4 of this thesis it has been investigated how to control 

through design principles the processes of photoinduced charge separation and 

electron injection, while avoiding charge recombination. 

In this chapter we intend to investigate the cooperation between the formation of 

a photoinduced charge separated state and the process of catalytic water oxidation, 

which takes place at the photoanode of a solar fuel cell. 

The first example of a photoanode for water oxidation was presented by Mallouk 

and coworkers who functionalized a TiO2 semiconductor with catalytic IrO2 

nanoparticle through a Ru-based dye3. After this work, several systems have been 
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proposed employing metal oxide nanoparticles as water oxidation catalysts. Less 

common are paradigms of photoanodes functionalized with molecular catalysts4. 

Two main strategies exist for coupling the WOC, the chromophore and the electron 

accepting semiconductor into a photoanode1,2,4–6. The first is the so called co-

absorption strategy, in which both the catalyst and the chromophore functionalize 

the surface of the semiconductor7–9. This method allows to change the chromophore 

to catalyst ratio and broaden the absorption range by employing different molecular 

dyes. However, it has been suggested that this strategy may be affected by low 

electron injection yield due to interferences between the catalyst and the 

sensitizer5,10. 

The second approach11–13, which is followed also in this chapter, is to covalently 

bind the chromophore to both a semiconductor surface acting as electron acceptor 

on one side, and to a WOC acting as electron donor on the other. The advantage of 

this type of design is that it increases the control over the directionality of the 

charge transfer. In addition, a chromophore bridge between the WOC and the 

semiconductor should reduce the probability of charge recombination upon formation 

of the charge separated state by increasing the distance between positive and 

negative charges. 

The structure of the photoanode 1 investigated here is presented in Scheme 5.1.  

TiO2 is by far the most common choice for the semiconductor to be used in a 

photosynthesis device, due to its excellent stability in combination with a high 

density of states of its conduction band, which allows for rapid electron injection 

rates14. Therefore, it appears a valid choice for the electron acceptor unit in system 

1. 

The WOC considered in this system is the mono Ru-complex [(cy)RuIIbpy(H2O)]2+. 

This catalyst has been already theoretically and experimentally investigated in the 

literature, and its catalytic cycle has been suggested to proceed through four 

consecutive proton-coupled electron transfer (PCET) steps15,16. 

The chromophore molecule NDI1 is used to bridge the catalyst and the 

semiconductor. This is the same chromophore already applied as antenna module in 

the systems proposed in chapter 3. 
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Scheme 5.1. Schematic representation of the proposed photoanode (1) including the 

acceptor-semiconductor (TiO2), the molecular chromophore NDI1, and the Ru-based water 

oxidation catalyst; (1a) chromophore-semiconductor subsystem employed for the 

photoinduced electron injection simulation; (1b) chromophore-catalyst subsystem used in the 

simulation of the first water oxidation catalytic step. 

This choice is based on several considerations regarding system 1: 

 As explained in chapter 3, this antenna strongly absorbs within the visible 

light range at ~500 nm promoting a unique HOMOLUMO transition well 

localized on the molecule naphthalene core. 

 The LUMO energy level reported for this molecule is ~3.8 eV17 (vs. 

vacuum). This feature allows for the formation of a charge separated state 

through the electron injection into the TiO2 conduction band (~4 eV vs. 

vacuum), with marginal energy losses due to thermal relaxation. 

 The experimental value of the ground state oxidation potential for NDI1
17 is 

comparable to that reported for the [(cy)RuIIbpy(H2O)]2+ water oxidation 

catalyst of ~6.2 eV (vs. vacuum)16. 

 

Due to the characteristics of the semiconductor, the antenna, and the catalyst 

complex combined in the design of photoanode 1, the photoexcitation of the 

chromophore is expected to promote the formation of a charge separated state able 

to initiate the catalytic oxidation of water at the WOC.  

These processes are studied by combining quantum-classical dynamics and ab 
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initio molecular dynamics (MD) simulations. Quantum-classical dynamic simulations 

of model system 1a show ultrafast electron injection from the chromophore into the 

semiconductor, thus demonstrating that NDI1 is a viable chromophore choice in the 

design of a dye-sensitized solar fuel cell. 

Ab initio constrained MD simulations of the oxidized model 1b surrounded by 

explicit water solvent, reveal that a PCET mechanism is responsible for the first 

catalytic water oxidation step triggered by the photoinduced electron injection. 

These simulations highlight how the oxidation of water and the reduction of NDI1 

occur in a concerted process. The progressive diffusion of one proton from the 

coordinated water molecule (see Scheme 5.1, 1b) to the solvent bulk, induces a 

simultaneous electron transfer from the catalyst to the antenna in a cooperative 

PCET mechanism. The low free energy barrier evaluated along this reaction path 

corresponds with an estimated rate constant on the sub-nanosecond scale. 

5.2.  METHODS AND COMPUTATIONAL DETAILS 

5.2.1. System 1a: preparation and electron quantum dynamics 

simulation 

The chromophore is prepared by functionalizing the NDI1 with a carboxylic acid 

group on one of the amide functionalities. This group is used to anchor the dye onto 

the TiO2 surface to form model 1a shown in scheme 5.1. 

The ground state geometry of the functionalized NDI1 is optimized separately from 

the TiO2 slab. The calculation is performed in vacuum with the ADF software 

package18,19. The optimization is done at the density functional theory (DFT) level 

employing the exchange-correlation functional BLYP20,21 and the TZP Slater type 

basis set.  

The optimized geometry is employed as the starting point for a ground state ab initio 

MD simulation using the CPMD code22. The system is brought to 300 K by applying 

the Nosé-Hoover thermostat and is evolved for 300 fs using a time step 0.1	fs, 

while constraining the atoms of the anchoring group in their initial positions for the 

whole simulation. This CPMD simulation is performed in vacuum using the 

pseudopotentials of reference23 with a plane wave cut-off of 70 Rydberg and the 

BLYP21,24 exchange correlation functional. This predetermined ground state MD 

trajectory is then used to study the electron quantum dynamics in system 1a 

presenting a (TiO2)32 slab. During the EQD simulation, the atomic positions of the 

semiconductor slab are kept fixed. 

The photoinduced electron injection from the chromophore to the semiconductor is 

quantum mechanically described by using a tight-binding Hamiltonian based on the 

extended Hückel (EH) theory25,26. This method employs a basis set of atom-centered 
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Slater-type orbitals with atomic effective charges . The effective Hamiltonian matrix 

is parameterized in terms of the atomic Coulomb integrals  and the Wolfsberg-

Helmholtz parameters25,27 	. More details on the method and the 

parameterization procedure are discussed in section 2.7 and 4.2 of this thesis. For 

the parameterization of the atoms of NDI1, the experimental ground-state (-6.16 eV 

vs. vacuum) and excited state (-3.82 eV vs. vacuum) redox potentials reported by 

Sakai et al.17
 for this chromophore are taken as target values for the HOMO and 

LUMO energies. A 6 eV downshift is applied to account for the extended Hückel 

results for the semiconductor surface (see section 4.2.1). 

To model the TiO2 surface, an orthorhombic supercell with lattice parameters 

a=10.239 Å, b=15.137 Å and c=40 Å is used. The cell contains a two layers anatase 

slab (TiO2)32 functionalized with the NDI1 chromophore, and it is repeated along the 

[101] and the [010] directions by applying periodic boundary conditions. For the 

atoms of the semiconductor, standard EH parameters28 are employed without any 

further modification.  

The electron quantum dynamics simulation is performed by evolving the electronic 

wavepacket, initialized as the LUMO of the NDI1 chromophore, under the influence of 

the classical nuclear Car-Parrinello dynamics obtained beforehand. The evolution of 

the initial reactant excitonic state into the final charge transfer product state is 

carried on following the AO/MO time propagation method29 described in section 

4.2.2.  

5.2.2. System 1b: preparation, characterization and constrained ab 

initio MD 

Using the ADF software package, the ground state geometry of system 1b is 

initially optimized at the DFT level making use of the exchange-correlation functional 

OPBE30 and the TZP basis set. The optimization is performed in an aqueous 

environment simulated with the continuous solvation model (COSMO31,32) 

implemented in ADF.  

The choice of the OPBE functional is dictated by the presence of the Ruthenium 

atom in system 1b. In fact, the OPBE exchange-correlation functional has been 

shown to provide accurate descriptions of several complexes bearing transition 

metals33–35, among which the [(cy)RuIIbpy(H2O)]2+ catalyst15 used in system 1b. 

Moreover the same computational setting closely reproduces the experimental 

ground state oxidation potential for NDI1 within the 1b complex, calculated using the 

SCF approach. In fact, the ground-state oxidation potential calculated for the dyad 

1b is -6.05 eV vs. vacuum. As it will be reported in section 5.3.3, the removal of one 

electron from 1b results in oxidizing the NDI1 subunit. 
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To verify that NDI1 acts as the only visible light antenna unit in system 1b, the 

dyad absorption spectrum is computed with the TD-DFT method. The TD-DFT 

calculations are performed using the ADF software package at the B3LYP36/TZP level 

of theory, in an aqueous solution simulated with the COSMO model. The choice of 

the exchange correlation functional is justified by the results presented in section 

3.3.1, where B3LYP has been shown to accurately reproduce the experimental 

optical properties of the NDI1 molecule. 

To investigate whether the photoinduced oxidation of the dyad can initiate the 

catalytic process of water oxidation, ab initio MD simulations are performed for the 

singly oxidized form of the catalyst-antenna complex with the CPMD program. The 

structure of the dyad optimized with the ADF software at the OPBE/TZP level is used 

as starting point for the ab initio MD. To obtain a realistic description of the PCET 

reaction, the solvent is explicitly introduced in the calculation. An orthorhombic box 

of dimensions 25x17.6x14.5 Å3 is used, containing the 1b solute and 162 water 

molecules. Both the solvent and the solute molecules are treated at the same 

quantum-mechanical level employing the OPBE exchange correlation functional and 

the dispersion-corrected atom-centered pseudopotential of reference28. Periodic 

boundary conditions are applied together with a plane wave cut off of 70 Rydbergs. 

Using a time step 0.1	fs, the system is equilibrated for ~3 ps at room 

temperature by applying the Nosé-Hoover thermostat. 

Maintaining the same computational set up, constrained MD37,38 simulations are 

performed to obtain an estimate for the free-energy variation along the PCET 

occurring during the first step of catalytic water oxidation. The distance between one 

of the protons of the water molecule coordinated to the Ru atom, and the oxygen of 

one of the adjacent solvating water molecules is chosen as the constrained reaction 

coordinate. Five points within the range 1.4-0.98 Å are considered for this 

coordinate. For each constraint value, the system is evolved until the associated 

average Lagrange multiplier, corresponding to the gradient of the free energy 

associated to the reaction coordinate, is equilibrated. The free energy variation of 

the whole process is then obtained via thermodynamic integration.  
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5.3. RESULTS AND DISCUSSION 

In this section the results are organized as follows: in section 5.3.1 the optical 

properties of the [(cy)RuIIbpy(H2O)]2+-NDI1 dyad (1b) are presented, showing that 

the only excitation observed in the visible light range involves molecular orbitals 

localized solely on the chromophore unit. This result justifies the choice of the model 

1a for the study of the electron injection presented in section 5.3.2. The tight-

binding nonadiabatic dynamics shows that the excited electron is injected in the 

semiconductor within a few hundred fs. Thus, in section 5.3.3 the first water 

oxidation step is studied under the assumption that model 1b has been oxidized 

through the photoinduced electron injection in TiO2.  

5.3.1. TDDFT characterization of the electronic excitations of the dye-

catalyst complex and Molecular Orbitals localization 

In order to evaluate to what extent the optical properties of the NDI1 antenna may 

be altered by the covalent coupling to the water oxidation catalyst 

[(cy)RuIIbpy(H2O)]2+, a time-dependent DFT calculation is performed for the dyad 

1b in a water environment, simulated through a continuous solvent model. 

 

 
Figure 5.1. Optical absorption spectrum of system 1b, computed at the B3LYP/TZP level of 
theory. The water solvent is included through the continuum solvation model (COSMO). The 
inset shows the localization of the HOMO (H) and LUMO (L), which are the only orbitals 
involved in the optical transition at 2.64 eV.  

The results in Figure 5.1 show the presence of a single dominant peak within the 

visible light range at ~470 nm. The analysis of this electronic excitation reveals that 

it is associated to the HOMO to LUMO transition, localized on the chromophore dyad 
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subunit (see inset Figure 5.1). 

The computed optical absorption energy compares well to the experimental results 

for the monomer chromophore NDI1 already discussed in chapter 339 This result 

provides enough evidence that the formation of the dyad does not significantly alter 

the optical properties of the chromophore.  

As a consequence of the nature and localization of the HOMO and the LUMO, the 

Ru-based catalyst is not expected to play a significant role in the formation of the 

sensitizer excitonic state. Consequently, in the next section we investigate the 

process of photoinduced electron injection into the semiconductor without explicitly 

including the catalyst in the definition of the electron donor (see model 1a). 

5.3.2. Photoinduced electron injection dynamics in the dye-TiO2 model 

The photoinduced electron injection dynamics is performed using the same tight-

binding extended Hückel approach described in chapter 4. The optimization of the 

extended Hückel parameters is performed by taking the experimental oxidation 

potentials for the NDI1 (Table 3.2) as target values for the HOMO and LUMO 

energies of the dye.  

As already explained in section 4.2.1, the conduction band edge obtained with the 

unmodified extended Huckel parameters is shifted down by about 6 eV with respect 

to experimental value (~-4 eV)40,11,41,42. Therefore, for consistency, the target values 

for the chromophore orbital energies have to be as well downshifted by the same 

amount. The density of states (DOS) has been computed for the entire system 1a. 

Figure 5.2 shows only the region of the DOS corresponding to the semiconductor 

conduction band. 

 
Figure 5.2. Density of the unoccupied states of system 1a projected onto the TiO2 conduction 
band (in grey) and on the NDI1 chromophore (in red). To account for the extended Hückel 
results for the semiconductor surface, the zero of the energy scale has been shifted 
downwards by 6 eV (see section 4.2.1). 
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It appears clearly that the chromophore presents a LUMO energy very close to the 

conduction band edge of TiO2. This confirms that the NDI1 is an appropriate choice 

as sensitizer, since it is able to inject into the TiO2 conduction band, while limiting to 

a minimum the loss of the potential induced by the photexcitation in the form of 

heat. 

The initial wavepacket for the quantum electron dynamics is initialized as the 

LUMO of the chromophore. This is done to simulate the instantaneous 

photoexcitation of NDI1. This initial wavepacket state is reported in Figure 5.3 

(inset (a)). 

 
Figure 5.3. Electron injection profile obtained through the time-dependent population analysis 

of the wavepacket projected only over the NDI1 antenna (blue line). The insets show the 

distribution of the total wavepacket after initialization (a), and along the dynamics trajectory 

(b and c). 

 

The results of the electron quantum dynamics coupled to the motion of the nuclei 

treated classically show a fast electron injection that is almost completed after only 

200 fs.  

Inset (c) in Figure 5.3, shows that after 300 fs the wavepacket is almost 

completely localized onto the TiO2 surface. Overall these results provide evidences 

that system 1 can undergo ultrafast electron injection, upon photoexcitation of its 

NDI1  antenna unit. 

The analysis of the nuclear trajectory shows interesting correlations between the 

electron injection dynamics and specific nuclear motions at the interface between the 
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dye and the TiO2 surface. In particular, as reported in Figure A5.1 in the appendix, 

it emerges that the electron injection is driven by a large distortion of the planarity 

of the ring defined by the naphthalene core and the amide group at the 

semiconductor interface (see Figure A5.1, top panel). Additionally, the shortening 

of the distance between that amide and the anchoring group (see C-N in Figure 

A5.1, lower panel) correlates with the electron injection profile. This suggests that 

this motion plays a role in enhancing the electron coupling between the electron 

donor state on the NDI1 and the acceptor state on the semiconductor. 

In general, water oxidation catalysis is known to occur over time scales orders of 

magnitude larger than the sub-picosecond electron injection process observed here 

for system 1a. Therefore, it is reasonable to assume that, upon photoexcitation, the 

electron injection will occur before the catalytic water oxidation can take place, 

leaving the antenna-catalyst dyad in an oxidized state.  

In the next section, it is investigated whether this oxidized state of the antenna-

catalyst dyad (1b) is able to drive the first catalytic step of water oxidation. 

5.3.3. First PCET catalytic water oxidation step  

Ab initio molecular dynamics simulations are performed for the oxidized dyad 

model 1b in an explicit water solvent treated at the same DFT quantum-mechanical 

level. Since we are interested in describing the proton-coupled electron transfer 

step, it is essential to provide an appropriate quantum description of the water 

molecules in the system. It is indeed well known that proton diffusion in liquid water 

is a complex process that involves covalent bond breaking and formation within the 

hydrogen bonding network. This process is often referred to as the Grotthuss 

mechanism (see Scheme 5.2). Here a water chain is depicted with a proton lattice 

that is incommensurate with the underlying H2O molecular chain due to the presence 

of an 'excess' proton. Such a defect diffuses through the hydrogen bond network of 

water molecules by barrier-less motion, involving switching of hydrogen bonds by 

formation and cleavage of covalent bonds 43–46. It is named after Theodor Grotthuss 

who in 1806 first proposed this mechanism in its theory for water conductivity47. 

 

 
Scheme 5.2. Schematic representation of the Grotthuss proton transfer mechanism in water.  
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After equilibration of the dyad in its initial stable intermediate at near-neutral pH 

[(cy)RuIIbpy(H2O)]2+-NDI1, the instantaneous photoexcitation and ultrafast electron 

injection are mimicked by removing an electron from the simulation box. The 

removal of one electron induces a change in the multiplicity of the system from a 

singlet to a doublet state. Therefore, we can monitor the localization of the 

photoinduced hole by tracing the total spin density of the system along the ab initio 

MD trajectory. 

The oxidized system is then equilibrated at room temperature for about 3 ps. At 

the beginning of this trajectory we clearly see the hole being localized on the NDI1. 

The analysis of this MD trajectory shows that the water molecule w1, coordinated to 

the Ru center (see Figure 5.4), forms strong hydrogen bonds with nearby solvent 

molecules. In Figure 5.4, the H(w1)O(w1) and the H(w1)⋯O(w2) distances along 

the MD trajectory are reported. It is possible to observe spontaneous attempts of 

proton transfer from w1 to the neighbor water molecule w2 after about 1.6 ps and 

1.9 ps, when these two distances become almost equal. During these attempts the 

H(w1)⋯O(w2) distance is reduced from an average value of ~1.7 Å to ~1.2 Å, while 

the H(w1)O(w1) distance increases from ~0.96 Å to the same value of ~1.2 Å. 

When the two distances are almost equivalent, the H(w1) proton can be considered 

as part of both w1 and w2 (see inset in Figure 5.4). 

 

Figure 5.4. Time evolution of the geometrical parameters H(w1)⋯O(w2) (blue line) and 

H(w1)O(w1) (black line) along the unconstrained ab initio MD for the explicitly solvated 

[(cy)RuIIbpy(H2O)]2+-NDI1
+ complex. The inset schematically shows the dyad structure 

together with a few water molecules along the hydrogen bonding network.  
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These events may be indicative of the initial attempts of the system to undergo 

the first PCET step in the water oxidation catalytic cycle of [(cy)RuIIbpy(H2O)]2+. 

This first expected PCET step corresponds to the transition 

 

cy Ru bpy H O NDI 	2H O	 → cy Ru bpy HO NDI H O 		, 
 

where an electron has been transferred from the Ru-catalyst to the NDI1 antenna, 

and at the same time a proton has been released into the solvent. In the reaction 

above the water solvent has been arbitrarily represented by only two water 

molecules for convenience. 

This PCET process may in fact occur on a time scale longer than the few ps 

investigated in our ab initio MD simulations. The solvent has in fact to reorganize in 

response to changes in both the electron and the proton localization to stabilize the 

final product, and this may occur within a longer time frame48,49. 

Therefore a rare event simulation technique is more appropriate to describe this 

process. A constrained MD approach is then considered using the H(w1)⋯O(w2) 

distance as the reaction coordinate driving the transition between the reactant and 

the product state. The results of the different constrained MD trajectories are 

collected in Figure 5.5, together with the unconstrained MD of the product state 

obtained at the end of the constrained simulations. 
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Figure 5.5. Percentage of the hole density (red line) visualized by integrating the spin density 

in the region of the simulation box occupied by the catalyst on the left hand side of the dashed 

black line in the inset. The blue dotted line indicates the value of the corresponding 

constrained H(w1)⋯O(w2) reaction coordinate. The results reported after 1800 fs correspond 

to an unconstrained simulation of the final product in which the average H(w1)O(w2) distance 

is 0.96 Å. The inset shows a snapshot from the beginning of the trajectory corresponding to a 

constraint value of 1.4 Å, where the spin density is almost completely localized over the NDI1. 

During these trajectories, the total spin density of the system is used to visualize 

the localization of the unpaired electron. To obtain a quantitative estimate of the 

spin density repartition between catalyst and antenna units, the total spin density is 

integrated over the volume of the half of the simulation box that contains the 

catalyst subunit. This corresponds to the left hand side of the inset in Figure 5.5.  

This analysis provides information on how the electron transfer process between 

NDI1
+

 and [(cy)RuIIbpy(H2O)]2+ is coupled to variations in the reaction coordinate 

H(w1)⋯O(w2).  

For constrained distances between 1.4-1.28 Å, the hole density localized on the 

catalyst fluctuates around an average value of ~35%. This behaviour is observed 

also during the unconstrained MD performed before applying the constraints and can 

be rationalized based on the similar oxidation potentials for NDI1 and the Ru-

catalyst.  
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Instead, the shortening of the H(w1)⋯O(w2) distance to 1.1 Å induces a stronger 

localization of ~80% of the spin density on the catalyst. 

A further displacement of the H(w1) proton towards the water molecule w2 

reduces the charge fluctuations, leading to the stabilization of the RuIII-catalyst 

oxidation state. The stability of this state is confirmed by removing the constraint: 

the MD results after 1800 fs, indeed show that the unpaired electron remains 

localized over the RuIII-catalyst and the newly formed H(w1)O(w2) bond oscillates 

around an equilibrium distance of 0.96 Å.  

Figure 5.6 shows how the localization of the spin density gradually changes from 

the NDI1 to the Ru-catalyst along the trajectory, in response to the shortening of the 

H(w1)⋯O(w2) distance. It is worth noticing that in some snapshots the spin density 

is partially localized on a few water molecules. This is attributed to an induced 

polarization effect due to the electron transfer. 

 
Figure 5.6. Spin density localization (in green) along the MD trajectory discussed in Figure 

5.5. The labels refer to the time at which the snapshot has been taken along the collected 

trajectory. 

The analysis of the collected trajectories shows that the response of the solvent 

water molecules to the variation in the H(w1)⋯O(w2) distance does not only 

stabilize the spin density localization on the ruthenium catalyst, but it also creates 

the conditions for the diffusion of one proton from the w1 molecule into the water 

bulk. These results provide strong evidence that the concomitant antenna reduction 

and first catalytic water oxidation step represent a cooperative event and proceed 

via a PCET process. It should be underlined that this process proceeds along an 

adiabatic PES as in the adiabatic limit of Marcus theory of equation 1.4. 

This is clearly visible by comparing Figure 5.6 and Figure 5.7. 
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Figure 5.7. Mechanism of proton diffusion from the w1 molecule into the solvent bulk driven 

by H(w1)O(w2) distance modifications along the collected trajectory.  

 

In Figure 5.7, it is possible to observe how the hydrogen bonding network around 

the proton accepting molecule w2 rearranges in response to the progressive 

formation of the H(w1)O(w2) bond. 

During the constrained dynamics at 1.1 Å it is observed that the H(w1)O(w1) 

distance oscillates around an average value of ~1.5 Å, making H(w1) effectively part 

of w2. As a response to accepting this proton, w2 tends to share another one of its 

protons with one adjacent water molecule (see snapshot at 910 fs and 1100 fs). This 

is the first step in the Grotthuss like proton diffusion mechanism.  

In the last two snapshots at 1600 fs and 2000 fs, shown in Figure 5.7, it is 

observed how the excess proton is now solvated as part of a complex cation such as 

H5O2
+, while the catalyst assumes the [(cy)RuIIIbpy(HO)]2+ coordination form. By 

continuing the unconstrained simulation, it is observed that the proton further 

diffuses throughout the solvent via the same mechanism, generating mixing 

entropy. 

This [(cy)RuIIIbpy(HO)]2+-NDI1 product state reached for system 1b represents the 

first photoinduced catalytic intermediate in the Ru-catalyst water oxidation cycle15. 

The PCET nature of this process is also in agreement with the suggested catalytic 

mechanism15. 

An estimate of the free-energy profile along the reaction coordinate can be 

extracted from the constrained dynamics. The mean force values together with the 

polynomial fit used for this analysis are reported in the appendix (Figure A5.2). The 

free-energy profile obtained is shown in Figure 5.8, which is in line with an 

adiabatic process with a modest energy barrier. 
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Figure 5.8 Free-energy profile along the reaction coordinate H(w1)O(w2) for the first water 

oxidation catalytic step in system 1b. G* represents the height of the reaction energy barrier, 

while G0 is the reaction driving force for the transition between the reactant (left hand side) 

and the product (right hand side) state. 

 

The activation energy barrier G* is estimated to be ~1.7 kcal mol-1, which is 

equivalent to ~3 kBT for T=300 K. The maximum of the free-energy profile 

corresponds to a H(w1)⋯O(w2) distance of 1.28 Å. Interestingly, H(w1)⋯O(w2) 

distances comparable to 1.28 Å are explored by the reactant approximately every 

1.5 ps during the unconstrained MD simulation (see Figure 5.4). 

These results suggest that the PCET step can occur on a time scale of ~20 ps at 

room temperature. This value is calculated using the Arrhenius equation with the 

estimated G* (equation 1.4 in section 1.4.1). The pre-exponential factor is 

associated with the rate of proton transfer attempts between w1 and w2 observed in 

the unconstrained trajectory for the reactant. In addition, from the free energy 

profile we predict that this PCET step is exothermic by ~4 kcal mol-1 (see Figure 

5.8). 
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5.4. CONCLUSIONS 

In this chapter, various computational tools are used to investigate the light-driven 

catalytic properties of the proposed photanode 1 for solar water splitting. 

Quantum-classical simulations based on the Extended Hückel semi-empirical 

Hamiltonian demonstrate that the chosen NDI1 chromophore can achieve sub-

picosecond photoinduced electron injection when covalently coupled to a TiO2 surface 

and photoexcited with visible light of ~470 nm. The photoinduced oxidation of the 

chromophore drives the first water oxidation step at the covalently bound 

[(cy)RuIIbpy(H2O)]2+ catalyst. 

DFT based ab initio MD simulations for the explicitly solvated dyad 1b show that 

the Ru-catalyst is able to reduce the oxidized antenna to its neutral state. Moreover, 

it is observed that the electron transfer towards the antenna unit takes place in 

concomitance with the diffusion of one proton from the metal-coordinated water to 

the solvent bulk. These results confirm the PCET nature of the first catalytic water 

splitting step. These simulations also underline the primary role played by the 

solvent molecules in promoting the process of photoinduced water oxidation through 

the creation of an hydrogen bonding network necessary for the charge stabilization 

and the proton diffusion. A very low activation barrier of ~1.7 kcal mol-1 is 

calculated, suggesting that this first catalytic step can proceed adiabatically at room 

temperature in a sub-nanosecond time scale. 

These results represents one of the few examples of photoanode for water 

oxidation involving a molecular catalyst50 and provide a better understanding of the 

dynamics by which PCET can drive the photoinduced catalytic water oxidation 

process. 
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5.6. APPENDIX 

 
Figure A5.1. Top panel: Electron injection profile (blue line) plotted against the dynamical 

fluctuation of the dihedral angle black line), along the ab-initio MD trajectory. Lower panel: 

the same electron injection profile is compared to the oscillations of the C-N bond (red dashed 

line) along the same MD trajectory. The two geometrical parameters used in the analysis are 

shown in the inset on the right hand side of the picture.  
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Figure A5.2. Average constraint force represented by the Lagrangian multiplier <> (red 

dots) computed for each constrained MD simulation as a function of the reaction coordinate. A 

third order polynomial (black line) is used to fit all the six data points. It can be noted that the 

curve closely follows the data point with a determination coefficient R2=0.96. The point at 

H(w1)O(w2)=0.96 Å corresponds to the equilibrium product state and thus its <> is 

assumed to be 0. The point at H(w1)O(w2)=1.37 Å has been included in the data set to 

improve the polynomial fit around the maximum. 
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Chapter 6 

	
	
Conclusions and Outlook  
	
	

6.1. CONCLUSIONS 

To understand how to engineer molecular complexes able to achieve fast 

photoinduced unidirectional charge separation, static density functional theory 

calculations are performed on a series of molecular rectifiers employing the same 

PTZ donor, NDI1 antenna, and NDI2 acceptor subunits. The Marcus theory of electron 

transfer is used to predict the quality of the rectifiers, based on the calculated 

charge transfer rate constants.  

All the molecular triads analyzed show absorption in the visible light spectrum 

leading to the formation of an excitonic state localized on the antenna. The Marcus 

parabolic terms G and  between the exciton reactant state and product excited 

states with charge separated character are found to be dependent on the donor-

antenna distance. At the same time, it is predicted that the electronic coupling 

between the donor and the acceptor is strongly influenced by the nature of the 

bridge units and by the strategy adopted to bind the bridges and the rectifier 

subunits. Molecular triads for fast charge separation can be then engineered by 

modifying the length and the nature of the bridge. Based on these findings, the 

complex PTZ-Ph-NDI1-C≡C-NDI2 is proposed as a promising molecular rectifier for 

photoinduced direct ultrafast charge separation. 

 

Quantum coherence effects due to the coupling of the electron-nuclear motion are 

observed to play a fundamental role during the process of heterogeneous electron 

transfer from a molecular chromophore, designed for unidirectional electron transfer, 

to a semiconductor surface. Nonadiabatic electron quantum dynamics simulations 

are performed within a quantum-classical framework, allowing the description of the 

electron transfer process on the ps time scale. It is observed that the electron 

transfer is not instantaneous, but rather proceeds gradually through strongly 

nonadiabatically coupled electronic states forming a coherent superposition. The 

energies of these states periodically cross each other due to resonant coupling with 
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specific nuclear vibrations. The photo-induced exciton reactant state localized on the 

chromophore is able to evolve into a product state localized on the semiconductor by 

selecting and coupling to specific nuclear vibrational modes that facilitate the 

electron transfer. Particularly, a rotational mode localized at the interface between 

the chromophore and the anchoring bridge is shown to open a preferential channel 

for the heterogeneous electron injection. When the channel is open, the evolution of 

the electronic wavepacket can proceed by coupling to the fast stretching modes that 

modulate the energy levels and the nonadiabatic coupling between the reactant and 

product states involved in the electron transfer.  

 

Quantum-classical tight-binding nonadiabatic dynamics and density functional 

theory based ab initio MD simulations are used to investigate the first catalytic step 

in a fully solvated photoanode designed for solar water splitting. The photoexcitation 

leads to fast sub-picosecond electron injection from the sensitizing chromophore to 

the semiconductor electrode. The oxidized chromophore is then reduced to its 

neutral form by the water oxidation catalyst to which it is covalently bound. This 

process, leading to the first catalytic water splitting intermediate, occurs 

adiabatically via a proton-coupled electron transfer mechanism and has been 

estimated to take place on a sub-nanosecond time scale.  

The presence of explicit solvent molecules surrounding the solute is found to be 

crucial for the catalysis. The water reorganization induces a stabilization of the 

catalytic intermediate, and provides the hydrogen bonding network necessary to 

accept and solvate a proton from the catalytically oxidized water molecule.  

 

6.2. OUTLOOK 

Photoinduced electron transfer has a pivotal role in converting sunlight into power 

or solar fuel. Understanding the mechanisms that govern this process is thus 

essential to properly engineer devices for solar energy conversion. 

Up until now, the Marcus theory of electron transfer1 has been one of the most 

important theoretical tools for studying electron transfer processes and predict their 

rate constants. The quality of the materials for solar energy conversion is evaluated 

on the basis of the electron transfer rates obtained from Marcus theory. The design 

strategies for this type of materials are focused on optimizing the parameters 

entering the Marcus equation to increase the rate of electron transfer. The theory 

proposed by Marcus is fundamentally an equilibrium theory that considers reactant 

and product states at their equilibrium configurations. Thus, it can provide an 

accurate value for the electron transfer rate constant, but no information on the 
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microscopic mechanisms controlling the process. The major consequence of this 

methodological limitation is that material design and optimization are led by 

chemical intuition and trial and error approaches. This procedure could also be 

automatized by including a library of potentially useful building blocks and use 

genetic algorithms in combination with DFT to derive chromophores with specific 

optimized properties. 

Recently, compelling evidences of quantum coherence effects driving electron 

transfer in artificial and natural systems have been reported2–6. The analysis of such 

processes requires to move from a static Marcus representation of reactant and 

product equilibrium states to the realm of nonadiabatic dynamics. By following the 

evolution of the electronic wavefunction in real time, it is possible to identify the 

vibrational modes driving the electron transfer process and use this information to 

improve the original design of a certain system. In this scenario, it would be 

interesting to perform such an investigation of the molecular charge separator 

proposed in chapter 3 to verify its predicted performances and further improve its 

design by accounting for the effects of coherent exciton-vibrational coupling. 

The results reported in chapter 4 are obtained using a trajectory which is 

evaluated on the ground state potential energy surface. Using this result as a 

reference, it would be interesting to repeat the analysis by applying the Ehrenfest 

nonadiabatic dynamics method7. This comparison should provide information on the 

entity of the effect that the excited electronic wavefunction has on the nuclear 

motion, and thus on the necessity, or not, of using a trajectory evaluated on an 

excited state potential energy surface. 

Finally, the results reported in chapter 5 for the photoanode for catalytic water 

splitting represent a very interesting starting point for the analysis of the entire 

catalytic cycle. The investigation of this complex should also be expanded to include 

structural modifications of the catalyst, the antenna and the anchoring unit aiming 

for rapid kinetics and optimal driving force for the catalytic and electron injection 

processes.  

A risk associated with the current design of photoanode 1 is related to the 

possibility of exciton quenching by the electrons trapped at the TiO2 surface along 

the catalytic cycle. This may be prevented by incorporating a molecular rectifier as 

separator between the antenna and the semiconductor. An obvious continuation of 

this work would be to integrate into the photoanode design the AM molecular 

rectifier, or one of its derivatives engineered to avoid charge recombination. The 

insertion of a molecular rectifier should elongate the lifetime of the charge separated 

state on a time scale sufficient to allow the different catalytic steps to take place.  

Nonadiabatic simulations of the proton coupled electron transfer process will be 
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crucial to suggest structural modifications able to control the electron injection 

through the molecular rectifier and enhance the photodriven catalytic mechanism. 

Due to the required time scale of the simulation, the tight-binding semi-empirical 

method based on the Extended Hückel Hamiltonian used in chapter 4 and 5 would be 

extremely useful for such calculations. 
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Summary  
 
 

In 1912, the Italian biochemist Giacomo Ciamician expressed the hope for a future 

society in which coal would be substituted with solar energy. He wrote: 

 

“On the arid lands there will spring up industrial colonies without smoke and 

without smokestacks; forests of glass tubes will extend over the plains and glass 

buildings will rise everywhere; inside of these will take place the photochemical 

processes that hitherto have been the guarded secret of the plants, but that will 

have been mastered by human industry which will know how to make them bear 

even more abundant fruit than nature, for nature is not in a hurry and mankind is. 

And if in a distant future the supply of coal becomes completely exhausted, 

civilization will not be checked by that, for life and civilization will continue as long as 

the sun shines!1”. 

 

More than a century later, we know a lot more about the guarded secret of the 

plants that is photosynthesis. However, there are still many open questions 

regarding how to translate this knowledge into the design of devices able to convert 

sunlight into power and fuel. Sunlight consists of discrete packets of energy called 

photons. In a similar way, matter can also be described in terms of quantum states 

possessing discrete energies. If one photon is equal to the energy difference 

between two quantum states of an object, energy can be exchanged between the 

sunlight and the object. In this case, it is said that the photon is absorbed and the 

object, or chromophore, is excited. The absorbed energy promotes the formation of 

an higher energy state of the chromophore called exciton state, in which an excited 

electron and a hole are strongly attracted to each other and remain localized in the 

same portion of space. This is the first step towards the conversion of sunlight into 

fuel and it is called light-harvesting process. 

The exciton state cannot be used to generate fuel. To do so, the hole and the 

electron should be transferred in opposite directions towards respectively the water 

oxidation and the fuel evolving catalysts. A different quantum state has to be 

populated, in which the two charges are no longer bound. This state takes the name 

of charge separated state. An introduction to how charge separation is achieved in 
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natural systems and in artificial devices for sunlight conversion into electricity and 

solar fuel is presented in chapter 1. 

Understanding the mechanisms that control the transition between the exciton and 

the charge separated state leading to solar fuel production is a fundamental 

question. The answer to this question can help to master the photochemical process. 

This thesis is dedicated to the investigation of these mechanisms and to the 

identification of engineering principles that can be used to design materials able to 

control the process of photoinduced charge separation.  

In chapter 3, the basic principles to follow when designing a molecular system for 

controlled charge separation are described. It is shown how the molecular elements 

to be included in the design can be chosen based on specific physical and chemical 

requirements, and how it is possible to systematically optimize the initial design by 

analyzing the effects of specific structural changes on the properties affecting the 

transition between exciton and charge separated state. This strategy, however, is 

based on a trial and error approach and strongly relies on personal chemical intuition 

regarding the structural modifications to introduce.  

In chapter 4, the photoinduced electron injection from a chromophore to a 

semiconductor, which is one of the pivotal processes in solar energy conversion, is 

investigated. This analysis is extended beyond static calculations. Accounting for the 

motion of the nuclei is indeed crucial to gain insight into the mechanisms governing 

these processes in any material. 

It is shown that the transition from the exciton to the charge separated quantum 

state proceeds through the propagating coherent superposition of the two states, 

and that this superposition is in resonance with specific nuclear vibrational motions. 

The quantum-classical simulations reveal that the electron injection proceeds 

coherently with selected vibrational motions at the interface between the reactant 

and the product quantum state. This investigation technique allows to draw 

conclusions on targeted structural modifications necessary to improve device 

performances. This dynamical analysis is therefore complementary to the design 

strategy described in chapter 3 and allows a less biased optimization of the 

materials. 

Finally, in chapter 5, a photoanode for solar water splitting comprising the 

functions of light-harvesting, charge separation and catalysis is investigated. The 

system is designed by following the same principles used for the optimization of the 

triads. The components are selected to achieve both catalytic oxidation of water and 

fast charge separation from the chromophore to the semiconductor electrode. It is 

again observed that considering the system dynamics is necessary to understand the 

fundamental proton-coupled electron transfer mechanism driving the catalysis. 
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Additionally, it has been underlined the crucial role played by the solvent in creating 

the conditions for the catalytic reaction to occur. 

 

In summary, it is shown that control over the photoinduced process of charge 

separation can be gained from careful materials design. Understanding the dynamics 

of these processes helps targeting structural modifications to improve the 

performances. Furthermore, it became clear that the explicit inclusion of the 

environment is fundamental for the description of photocatalytic processes. 
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Samenvatting  
 
 

In 1921, sprak de Italiaanse biochemist Giacomo Ciamician de hoop uit op een 

toekomstige samenleving waarin steenkool zou worden vervangen door zonne-

energie. Hij schreef het volgende: 

 

‘‘In dorre landen zullen industriële koloniën ontstaan zonder rook; Bossen  van 

glazen buizen zullen zich strekken over de velden en glazen huizen zullen overal 

opduiken; daarin zal het fotochemische proces beginnen dat tot nu toe een bewaard 

geheim van planten is, maar dan nu ook door de mensheid zal worden beheerst. Wij 

zullen er meer profijt uit halen dan de natuur, omdat de natuur geen haast heeft 

maar men wel. En als er in de verre toekomst de voorraad steenkool volledig 

uitgeput zal zijn, zal de mensheid hier geen nadeel aan beleven, aangezien leven en 

beschaving zal voortbestaan, zolang de zon schijnt!1’’. 

 

Meer dan een eeuw later weten we veel meer over dit bewaarde geheim van de 

planten dat fotosynthese is. Desalniettemin zijn er nog veel open vragen over het 

vertalen van deze kennis naar het ontwerpen van apparaten die het zonlicht kunnen 

omzetten naar energie en brandstof. Zonlicht bestaat uit kleine pakketjes energie 

genaamd fotonen. Op dezelfde manier kan materie ook omschreven worden in 

termen van kwantumtoestanden die uit discrete energieën bestaan. Als de energie 

van een foton gelijk is aan het energie verschil tussen twee kwantumtoestanden van 

een object, kan er uitwisseling van energie ontstaan tussen het zonlicht en het 

object. In dit geval wordt de foton geabsorbeerd en het object, de chromofoor, 

geëxciteerd. De geabsorbeerde energieën zorgen voor het ontstaan van een hoger 

energieniveau van de chromofoor, de aangeslagen toestand. Hierin zijn het elektron 

en het elektronengat sterk aangetrokken tot elkaar en blijven ze gelokaliseerd in het 

zelfde deel van de ruimte. Dit is de eerste stap richting het omzetten van zonlicht 

naar energie, we noemen dit het ‘‘light-harvesting process’’. 

 

De excitatie toestand kan niet gebruikt worden om energie op te wekken. Om dit 

wel te bereiken moet het elektronengat en het elektron verplaatst worden in 
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tegengestelde richtingen naar een respectievelijke water oxidatie en brandstof 

katalysator. Een andere kwantumtoestand moet worden opgevuld, waarin de twee 

geladen deeltjes niet meer verbonden zijn. Deze toestand wordt de 

ladingsgescheiden toestand genoemd. Een introductie hoe deze ladingsscheiding 

wordt gedaan in natuurlijke systemen en kunstmatig fotosynthese systemen om 

zonlicht om te zetten in elektriciteit en zonne-energie wordt gepresenteerd in 

hoofdstuk 1. 

 

Het begrijpen van de verschillende mechanismes die controle hebben over de 

transitie tussen de aangeslagen toestand en de ladingsgescheiden toestand die kan 

leiden tot zonne-energie productie is een fundamentele kwestie.  

Het antwoord op deze vraag kan helpen bijdragen tot het beter begrijpen van het 

fotochemische proces.  

Dit proefschrift is toegewijd aan het onderzoek van deze mechanismes en het 

identificeren van de uitgangspunten die gebruikt kunnen worden om materialen te 

ontwerpen die het proces van foto-geïnduceerde ladingsscheiding kunnen 

controleren.  

 

In hoofdstuk 3, zijn de basisprincipes beschreven die nodig zijn voor het 

ontwerpen van een moleculair system om ladingsscheiding te controleren. Er wordt 

omschreven hoe de moleculaire elementen in het ontwerp kunnen worden 

inbegrepen gebaseerd op hun specifieke fysieke en chemische eisen. Ook is er 

gekeken naar hoe het mogelijk is om het uiteindelijke ontwerp systematisch te 

optimaliseren door de effecten van structurele veranderingen tussen de excitatie 

toestand en de aangeslagen toestand te analyseren. Deze strategie is echter 

gebaseerd op een trial-and-error aanpak berust op persoonlijke chemische intuïtie 

met betrekking tot de structurele wijziging.  

 

In hoofstuk 4 wordt het injecteren van een elektron van de chromofoor naar een 

semiconductor onderzocht, een van de meest belangrijke processen in de zonne-

energie omzetting. Deze analyse gaat verder dan alleen de statische berekeningen. 

Rekening houden met de bewegingen van de nucleus is van cruciaal belang om 

inzicht te krijgen in het mechanisme om het toe te kunnen passen in andere 

materialen. 

 

Het is bekend dat de transitie vanaf excitatie naar aangeslagen toestand gaat door 

het stimuleren van een coherente superpositie, en dat deze superpositie in 

resonantie is met de specifieke nucleaire vibratie. De kwantum-klassieke simulaties 
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laten zien dat de elektron injecties coherent zijn met de geselecteerde vibraties aan 

het oppervlakte tussen de reagent en de kwantumtoestand van het product. Deze 

onderzoekstechniek maakt het mogelijk om conclusies te trekken over gerichte 

structurele aanpassingen die nodig zijn om de systemen te verbeteren. Deze 

dynamische analyse is dus een aanvulling op de design strategie beschreven in 

hoofdstuk 3 en zorgt voor een minder bevooroordeeld optimalisatie van het 

materiaal. 

 

Als laatste in hoofdstuk 5, wordt en een anode van een foto-elektrische cel voor het 

ontleden van water geanalyseerd. Deze anode heeft de functie van licht opvangen, 

katalyseren en lading scheiding. Het systeem is ontworpen met dezelfde principes 

die worden toegepast voor het optimaliseren van verschillende trio’s van moleculen. 

De componenten zijn geselecteerd om zowel de katalytische oxidatie van water als 

de snelle lading scheiding van de chromofoor naar de semi-conductor elektrode te 

bereiken. Het is nogmaals geconstateerd dat de dynamiek van het systeem van 

belang is om het mechanisme van proton-gekoppeld elektronen transport van de 

katalysator te begrijpen. Daarnaast blijkt dat het oplosmiddel een onmisbare rol 

speelt in het creëren van de ideale condities voor een katalytische reactie.  

 

Kort samengevat, er is aangetoond dat de controle van foto-geïnduceerde 

ladingsscheiding kan worden behaald door het zorgvuldig design van materialen. Het 

begrijpen van de dynamiek van dit proces helpt om gerichter structurele modificaties 

te maken om de systemen te verbeteren. Bovendien is het duidelijk geworden dat 

het meenemen van de omgeving van fundamenteel belang is voor het beschrijven 

van het foto-katalytische proces. 
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