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Abstract

Alcohol dependence (AD) is characterized by corticostriatal impairments in individual brain areas 

such as the striatum. As yet however, complex brain network topology in AD and its association 

with disease progression are unknown. We applied graph theory to resting-state functional 

magnetic resonance imaging (RS-fMRI) to examine weighted global efficiency and local 

(clustering coefficient, degree and eigenvector centrality) network topology and the functional role 

of the striatum in 24 AD patients compared with 20 matched healthy controls (HCs), and their 

association with dependence characteristics. Graph analyses were performed based on Pearson’s 

correlations between RS-fMRI time series, while correcting for age, gender and head motion. We 

found no significant group differences between AD patients and HCs in network topology. 

Notably, within the patient group, but not in HCs, the whole-brain network showed reduced 

average cluster coefficient with more severe alcohol use, whereas longer AD duration within the 

patient group was associated with a global decrease in efficiency, degree and clustering coefficient. 

Additionally, within four a-priori chosen bilateral striatal nodes, alcohol use severity was 

associated with lower clustering coefficient in the left caudate. Longer AD duration was associated 

with reduced clustering coefficient in caudate and putamen, and reduced degree in bilateral 

caudate, but with increased eigenvector centrality in left posterior putamen. Especially changes in 

global network topology and clustering coefficient in anterior striatum remained strikingly robust 

after exploratory variations in network weight. Our results show adverse effects of AD on overall 
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network integration and possibly on striatal efficiency, putatively contributing to the increasing 

behavioral impairments seen in chronically addicted patients.

Keywords

Alcohol dependence; brain network; functional connectivity; graph theory; resting-state fMRI; 
striatum

INTRODUCTION

Alcohol dependence (AD) is a psychiatric disorder, characterized by a maladaptive pattern 

of alcohol use despite adverse consequences (American Psychiatric Association 2013). AD 

and other substance use disorders are regarded as disorders of the brain, and knowledge on 

the underlying neurobiology has increased tremendously over the past decades (for reviews 

see e.g. Everitt et al. 2008; Koob & Volkow 2010). In this process, functional neuro-imaging 

techniques have been widely used to show cue-specific or task-specific changes in local 

brain activity (Goldstein et al. 2009; Tomasi & Volkow 2013; Jupp & Dalley 2014). These 

studies have shown a central role of the striatum in addiction, as it is highly involved in 

reward-related behaviors (Daw, Niv & Dayan 2005; Schultz 2015) as well as habit formation 

(Tricomi, Balleine & O’Doherty 2009), constructs that are pivotal in addictive behaviors 

(Barker & Taylor 2014; O’Tousa & Grahame 2014; Volkow & Morales 2015). A change in 

striatal involvement over the course of the disorder is also shown, such as increased 

involvement of posterior putamen during cue-reactivity and instrumental learning in more 

chronic and more compulsive alcohol dependent subjects (Vollstädt-Klein et al. 2010; 

Sjoerds et al. 2013, 2014). Still, focusing solely on local functional alterations under task-

specific circumstances hampers insights into integrated global brain functioning in non-task 

related circumstances, which contributes to behavioral variability. Moreover, it remains 

unclear how integration between striatal brain areas into a broader functional network in the 

brain is related to the duration and severity characteristics of AD.

Recently, in the study of substance use disorders, integration between brain areas has been 

studied by examining functional connectivity with techniques such as independent or 

principal component analysis (Beckmann et al. 2005), dynamic causal modeling (Friston, 

Harrison & Penny 2003) or a priori defined seed-based connectivity (Calhoun 2013; 

Schmaal et al. 2013; Müller-Oehring et al. 2015). With these approaches, particular 

behaviors have been associated with specific brain regions or specialized sub-networks of 

the brain. However, the brain is increasingly considered a connectome (Sporns, Tononi & 

Kötter 2005), representing a complex network of highly intercommunicating neural 

components. Knowledge about the connectome in patients with a substance use disorder is 

scarce and to our knowledge absent in patients with AD. Considering the high prevalence of 

AD (Ormel et al. 2015) and the known neurotoxic effects of alcohol, it is essential to further 

unravel complex brain network abnormalities in AD patients.

In the current study, we fulfill this aim by considering the brain of alcohol dependent 

patients as a mathematical graph (Bassett & Bullmore 2009), with nodes as individual units, 

such as individual brain areas based on an anatomical atlas, and links or edges representing 
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the connections between them. Graph theory is an elegantly simple but wellvetted branch of 

science for the analysis of complex systems (Boccaletti et al. 2006) and is valuable for 

application to the brain network. It offers tools for the study of the complexity of the brain 

by uncovering system-level characteristics, and provides information on both global 

integration and local specialization in strongly connected brain areas.

Graph theory analysis is typically applied to the brain network at rest, for example as 

measured by resting-state functional magnetic resonance imaging (RS-fMRI), which does 

not merely involve specific task-related functions, but provides a comprehensive view of 

brain functioning by identifying a major whole-brain network that contributes to behavioral 

variability (Laird et al. 2011). In general, RS-fMRI is a reliable and valid technique that 

shows proficient testretest reliability (Shehzad et al. 2009), meaningfully correlates with the 

(neuronal) EEG-signal (Mantini et al. 2007), and is associated with cognitive functioning 

both in health and disease (van den Heuvel et al. 2009; Douw et al. 2011; Anticevic et al. 
2012). The application of graph theory on RS-fMRI has been used in numerous neurological 

disorders to demonstrate an altered resting-state brain network with reduced integrity and 

reduced efficiency of disease-related networks (e.g. Supekar et al. 2008; Derks, Reijneveld 

& Douw 2014; Douw et al. 2015). The graph theoretical approach is fairly new within the 

field of psychiatry, but it rapidly gains attention (Hulshoff Pol & Bullmore 2013). With 

regard to addictive disorders, network disruptions such as reduced efficiency were reported 

in e.g. poly-substance users (Wang et al. 2015), gambling, and internet gaming disorder 

(Tschernegg et al. 2013; Wee et al. 2014). However, to our knowledge graph theoretical 

approaches for intrinsic functional network analysis (RS-fMRI data) have hitherto not been 

applied in humans with AD.

Therefore, we examined the resting-state complex network in AD patients compared with 

healthy controls (HCs) and associated with illness duration and severity. In addition to 

studying the global brain network, we specifically considered striatal foci of a priori interest 

to examine putative network-related abnormalities in these addiction hubs. We hypothesize 

distinct brain network topology in AD compared with HCs. More importantly, we 

hypothesize resting-state topological properties to be impaired as a function of AD duration 

and severity. We expect to see a shift in the role of striatal areas within the whole-brain 

resting-state network, specifically, a decrease in involvement of striatal areas implicated in 

goal-directed behavior (e.g. caudate nucleus), and an increase in the prominence of brain 

areas implicated in habitual drug use (posterior putamen) with longer lasting and/or more 

severe AD.

MATERIALS AND METHODS

Participants

A total of 43 patients with a current (<6 months) DSM-IV-TR diagnosis of AD were 

recruited from addiction treatment centers in Amsterdam and from the observational multi-

center Netherlands Study of Depression and Anxiety (NESDA) (Penninx et al. 2008). 

NESDA is a large Dutch cohort-study, providing a variety of clinical and demographic 

information on participants from the general population, primary care and community 

mental health services, thus allowing for the selection of participants with a current AD 
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diagnosis from a large sample. In addition, 29 age, gender and education matched HCs 

without any lifetime psychiatric diagnoses (DSM-IV, axis I) were selected from the NESDA 

cohort and underwent a similar scanning protocol as the AD patients.

All participants were asked to abstain from alcohol at least 24 hours prior to the 

assessments. At the day of scanning, a urine test was performed to check for unreported use 

of benzodiazepines and drugs of abuse, and all participants had a confirmed breath alcohol 

level of 0.00% (Alcoscan Daisy-AL7000). Mean alcohol abstinence duration in AD patients 

was 2 weeks (Table 1), with a minimum of 24 hours. All AD patients were withdrawal-free. 

For further details on clinical screening and assessment, see Supporting Information.

Valid and complete resting state as well as structural MRI data were available for 31 AD 

patients and 21 HC participants. Of this sample, data of eight participants (seven AD and 

one HC) were excluded from analysis for the following reasons: one HC due to previously 

unreported concussion and coma during early adulthood; one AD patient due to motion 

greater than 3 mm during scanning; and six AD patients due to positive urine testing for 

benzodiazepines on the scanning day. As a result, 24 AD patients and 20 HCs were included 

in the final analyses. The included and excluded groups did not differ in demographic and 

clinical characteristics, suggesting the absence of selection bias due to the exclusion criteria.

The VU University Medical Center Ethical Review Board approved this study, and written 

informed consent according to the Declaration of Helsinki was obtained from all participants 

prior to the study.

Assessment of alcohol dependence characteristics

Alcohol use disorder severity was assessed using the sum score of the alcohol use disorder 

identification test (AUDIT) (Babor, Kranzler & Lauerman 1989) in both AD patients and 

HC. The AUDIT consists of 10 items assessing hazardous and harmful alcohol use and 

dependence symptoms. Every item can be scored from 0 (no problems) to 4 (regular / large 

problems), resulting in a total score between 0 and 40. A score below 8 indicates no alcohol 

use problems, a score above 22 indicates risk for dependence. Disease duration in AD 

patients was calculated as the difference in years between age of AD onset and the last time 

that alcohol use disorder symptoms contributed to a DSM-IV diagnosis (in the past half year, 

thus current age), both obtained by the CIDI interview (Robins et al. 1988).

RS-fMRI data acquisition

Magnetic resonance imaging scanning was performed at the Academic Medical Centre in 

Amsterdam using a 3 T Philips Intera full-Normal MR-system (Philips Medical Systems, 

Best, the Netherlands) with a phased array SENSE RF 8-channel head coil for radio 

frequency transmission and reception. Three HCs were scanned under exactly the same 

circumstances at the Leiden University Medical Center. RS-fMRI was acquired for 8 

minutes, while participants were instructed to keep their eyes closed and not fall asleep. 

Functional blood oxygen level-dependent (BOLD) signals were acquired with a T2*-

weighted gradient-echo planar imaging (EPI) sequence and a time-course series of 200 

volumes (TR = 2300 ms; TE = 30 ms; matrix size = 96 × 95; voxel size = 2.29 × 2.29 × 3 

mm; 35 transverse slices, positioned at an angle of 30° from the anterior-posterior 
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commissure line). Additionally, structural images of the whole brain were acquired using a 

three-dimensional gradient-echo T1-weighted sequence for anatomical reference with the 

EPI data (TR = 9 ms; TE = 3.6 ms; matrix size = 256 × 231; voxel size = 1 × 1 × 1 mm; 

slices = 170).

RS-fMRI data preprocessing

After quality check and reorientation to the anterior– posterior commissure line in Statistical 

Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm), preprocessing of the RS-

fMRI data was carried out by using the MATLAB-based toolbox data processing assistant 

for resting-state fMRI (DPARSF) V2.3 (Chao-Gan & Yu-Feng 2010), based on SPM8 and 

the resting-state fMRI data analysis toolkit (http://www.restfmri.net). The first four volumes 

of every dataset were removed to eliminate non-equilibrium effects of magnetization. The 

following procedures were applied to the remaining 196 time points: slice timing correction, 

to compensate for systematic slice-dependent time shifts; realignment towards the first frame 

to compensate for movement artifacts; co-registration of the EPI scans to the skull-stripped 

T1-weighted structural scan; segmentation into grey matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF). Eight nuisance signals (WM, CSF signal and six rigid-Normal 

motion parameters), and the global signal were regressed out to produce a residual BOLD 

signal. Data were registered into Montreal Neurologic Institute (MNI) standard space and 

smoothed with a 6 mm full-width at half-maximum (FWHM) kernel. Low band-pass 

temporal filtering of less than 0.08 Hz was applied. For calculation of head-motion 

parameters, see Supporting Information.

Anatomical parcellation

Parcellation of the GM maps was performed to define separate brain regions as nodes for 

connectivity analysis. This was achieved using the Harvard–Oxford brain atlas based on 

prior anatomical information (Desikan et al. 2006). In this atlas, a total of 48 cortical and 

eight subcortical bilateral structural areas are defined, adding up to 112 nodes. Although 

global brain network topology composed our main focus, specialized areas in the striatum 

were of additional a-priori interest. Because the anterior and posterior putamen are assumed 

to play a distinguishable role (Tanaka, Balleine & O’Doherty 2008; Tricomi et al. 2009), 

especially in the framework of instrumental conditioning, we subdivided the bilateral 

putamen in an anterior and posterior part. For this, we used MRIcron & ImCalc 

implemented in SPM8 to split the putamen in a pre-commissural (anterior, y ≥ 0) and a post-

commissural (posterior, y < 0) part (Al-Hakim et al. 2007). This resulted in 114 areas for 

final parcellation. Regional mean time series were extracted by averaging the fMRI time 

series of all voxels in each of these 114 regions.

Graph construction

The pre-processed and parcellated RS-fMRI data were analyzed using graph theory 

according to algorithms implemented in the brain connectivity toolbox (Rubinov & Sporns 

2010) (http://www.brain-connectivity-toolbox.net) using MATLAB 2012a (The Mathworks 

Inc., Natick, Massachusetts, USA). A graph is a topological representation of a network 

consisting of nodes i, connected by links or edges a between two nodes i and j. A weighted 

undirected graph G was constructed by correlating the connections between all 114 nodes 
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using Pearson’s correlation coefficients, resulting in a network N of 114 nodes and 114 × 

113 edges. Edges aij between nodes had a connection weight w that was normalized, such 

that 0 ≤w≤ 1 for all edges aij. The 40% highest weights were retained for calculation of 

network characteristics in order to remove negative correlations while keeping the graph 

fully connected. Negative correlations were discarded, because their underlying 

neurophysiological mechanism is still insufficiently understood (for a review see Hillman 

2014). To explore consistency of our results, we additionally performed analyses on graphs 

based on connection matrices with 30% and 20% highest weights, as well as unweighted 

graphs, by binarizing the edge weights between nodes after applying an absolute threshold 

of 0.25. These results are reported in the Supporting Information (Tables S2 and S3).

Graph topological parameters

We studied both properties of the global complex network as well as graph features of four 

bilateral striatal nodes (caudate nucleus, nucleus accumbens, posterior-putamen and anterior 

putamen) within the whole-brain network. We defined several network parameters of interest 

to describe the main topological characteristics of the entire graph network as well as its 

striatal nodes. These topographical parameters were derived from the connectivity toolbox 

as discussed by Rubinov and Sporns (2010). For completeness, the equations used to 

calculate the global and local network topology are given in the Supporting Information 

methods belonging to this manuscript.

We used global efficiency (GE) as a global measure of integration. GE measures how 

efficient the network exchanges information at the global level and can be defined as the 

average inverse shortest path length. Disconnected nodes, defined to have infinite path 

length, have zero efficiency. The following local network characteristics were investigated 

for each individual striatal node i, as well as averaged over all 114 nodes to obtain global 

measures of the network N: clustering coefficient (CC), degree (D) and eigenvector 

centrality (EC). CC is a measure of segregation, defined as the fraction of triangles (3-node 

connections) around a node (Rubinov & Sporns 2010). This is equivalent to the fraction of a 

node’s neighbors that are also each other’s neighbors. The CC per node (CCi) was averaged 

over the entire network, to obtain the global CC (CCN). D and EC are measures of centrality. 

D depicts the number of links connected to a node. The weighted D, also called the strength, 

is defined as the sum of all neighboring link weights (Rubinov & Sporns 2010). The mean D 

of network N (DN) was calculated by averaging the nodal D (Di) and indicates the density or 

total wiring cost of the entire network. The EC (Bonacich 2007) is a measure of the 

influence of a node in a network. Basically, a node with a high EC has connections with 

nodes that themselves have a strong connection with many other nodes that are central 

within the network. It takes into account the entire pattern of the network and is therefore an 

important addition to the degree centrality. EC is thought to be a more adequate 

measurement of local centrality than the often used betweenness centrality parameter 

(Lohmann et al. 2010). Global EC (ECN) was again the global average of nodal EC (ECi), 

calculated the same way as global CCN and DN.
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Statistical analyses

Demographic and clinical characteristics were analyzed using IBM SPSS Statistics 20 (IBM, 

New York, NY, USA) using independent samples t-test and non-parametric Kruskal–Wallis 

for continuous variables, and χ2 tests for categorical variables. Within the AD group, 

associations were examined using bivariate correlation analyses.

All network characteristics were normally distributed, and thus, parametric tests were used 

to test for between group differences and within group associations. All individual network 

characteristics (GE, CC, D and EC), obtained from the correlation matrix, were compared 

between the AD patients and HCs, and associated with AD duration (in years) and severity 

(total AUDIT score) within the AD group using multiple linear regressions, and considered 

significant at P < 0.05 two-sided. Alcohol use was also assessed in HCs using the AUDIT 

questionnaire, albeit showing significantly lower scores and less variance (i.e. a bottom 

effect). We additionally examined whether an association between alcohol use (AUDIT 

score) and network topology as seen in the AD group was specific for the patient sample, or 

could be generalized to a non-alcoholic population.

Mean head motion, age and gender were added as covariates to all analyses. The 

significance level for all demographic/clinical and network ANOVA and correlational 

analyses was set to P < 0.05.

We post hoc tested for the influence of smoking and depression symptoms, as groups 

differed on these characteristics, for total gray matter volume obtained from the T1 scan 

after segmentation using Ged Ridgway’s VBM script ‘get_totals.m’ in MATLAB (http://

www0.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m), and for abstinence duration in the 

within patient group analyses.

RESULTS

Sample characteristics

The two groups were matched on age, gender, education and handedness. As expected, the 

AD group had more severe alcohol use problems (total AUDIT score) than the HC group (t 
= 24.221, P < 0.001). The AD group also contained more smokers (χ2 = 12.156, P < 0.001) 

and reported more depressive symptoms (U = 137.5, P = 0.016) than the HC group. Groups 

did not differ regarding mean head motion during scanning and total GM volume. See Table 

1 for sample characteristics.

Alcohol dependence severity and duration were moderately correlated within the AD group 

(R = 0.509, P = 0.011). AD severity and duration were not correlated with smoking behavior 

(number of cigarettes smoked per day) (severity: R = 0.187, P = 0.383; duration: R = 

−0.170, P = 0.427). AD severity showed a moderately high positive correlation with 

abstinence duration (R = 0.571, P = 0.004) and a moderately high inverse correlation with 

total GM volume (R = −0.560, P = 0.004), whereas AD duration did not.
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Complex network analyses

Group comparisons: AD versus HC—Global brain network topology (described by 

GE, CCN, DN and ECN) for the AD and the HC group was not significantly different, as 

illustrated in Fig. 1. There were also no group differences in the local network characteristics 

(CCi, Di, ECi) of the striatal nodes.

Alcohol dependence characteristics

Severity of alcohol use: Higher AD severity was associated with lower CCN (r2 = 0.2992, P 
= 0.0493), and a marginally (0.1 > P > 0.05) lower GE (r2 = 0.2819, P = 0.0646) and DN (r2 

= 0.2722, P = 0.0752), but AD severity was not associated with ECN (r2 = 0.1535, P = 

0.5434) (Fig. 2a). Within the striatum, higher AD severity was associated with reduced CCi 

in the left caudate nucleus (r2 = 0.3477, P = 0.0226) (Fig. 3a), but this effect seemed 

inconsistent when using a variety of thresholded graphs (see Supporting Information Table 

S3). Because total AUDIT score was also available from the HC group (M = 4.00, SD = 

3.03), we additionally examined if within a non-alcohol dependent sample, a similar 

association was detectable between alcohol use disorder characteristics and network 

topology. We, however, did not show an effect of drinking severity on whole-brain network 

topology in HCs (all Ps > 0.5).

Duration of alcohol dependence: Longer AD duration was associated with lower GE (r2 = 

0.4789, Ps = 0.0119), DN (r2 = 0.4864, P = 0.0102), and CCN (r2 = 0.5158, P = 0.0056) in 

the whole-brain network, but AD duration was not associated with ECN (r2 = 0.2745, P = 

0.6592) (Fig. 2b). Within the striatum, longer AD duration was associated with lower CCi 

and Di in the bilateral caudate nucleus (CCi: Left: r2 = 0.4197, P = 0.0374; Right: r2 = 

0.4502, P = 0.0210; Di: Left: r2 = 0.4091, P = 0.0456; Right: r2 = 0.4246, P = 0.0342) and 

with lower CCi in the left putamen and right anterior putamen (anterior, Left: r2 = 0.4061, P 
= 0.0482; Right: r2 = 0.4272, P = 0.0325; posterior, Left: r2 = 0.4077, P = 0.0468). In 

contrast, longer AD duration was associated with higher ECi in the left posterior putamen (r2 

= 0.4577, P = 0.0188). These results are depicted in Fig. 3b. It should be noted that the 

effects in the striatum did not survive any correction for the multiple tests performed on four 

separate bilateral nodes.

Confounding variables: The within-group associations between AD characteristics 

(severity and duration) and network topology could have been confounded by clinical 

characteristics, such as the number of cigarettes smoked per day, depression symptoms 

according to the BDI and abstinence duration before the study. Therefore, we performed 

additional within AD-group regression analyses between these potential confounders and the 

general and local network characteristics. Smoking, depression, and abstinence duration 

were not associated (Ps > 0.2) with whole-brain network topology, and abstinence duration 

was also not associated with striatal network topology. However, the number of cigarettes 

per day was associated with higher Di in the left posterior putamen (r2 = 0.2883, P = 

0.0365), whereas a higher depression score was associated with lower Di in the right anterior 

putamen (r2 = 0.2685, P = 0.0306). A higher depression score was associated with higher 

ECi in the right caudate (r2 = 0.4802, P < 0.001) and lower ECi in the left posterior putamen 

(r2 = 0.3185, P = 0.0144). None of these associations of striatal topology with smoking and 
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depression overlapped with the associations that we found between AD characteristics 

(severity and duration) and the topology within the striatum. However, to directly test 

whether the reported associations between striatal topology and AD characteristics (severity 

and duration) were influenced by smoking and/or depression, we subsequently performed 

multiple regression analyses with AD characteristics (duration and severity), smoking, and 

depression as the independent variables and striatal nodal topology parameters (CCi, Di and 

ECi) of the bilateral caudate and anterior putamen and the left posterior putamen as 

dependent variables. This did not influence the changes in network topology in the striatal 

areas as reported above (all Ps < 0.05).

Alcohol dependence is generally known to be associated with decreased GM volumes, either 

as a predisposition or a consequence of the neurotoxic effects of alcohol. Moreover, in this 

study, total GM volume showed an inverse correlation with AD severity (but not duration) 

(R = −0.560, P = 0.004). This may have influenced our results on the relation between AD 

severity with global and local network characteristics. Therefore, we included total GM 

volume as an additional covariate to all between group and within group analyses. GM 

volume correction did not affect the comparison of topology network characteristics between 

the AD and the HC group, which remained non-significant. Within the AD group, the global 

network characteristics were still significantly lower in patients with longer AD duration 

(CCN: P = 0.0072; DN: P = 0.0129; GE: P = 0.0146), whereas the inverse relation between 

AD severity and CCN became trendwise significant (r2 = 0.4867, P = 0.0750). When adding 

total GM volume as a covariate to the striatal analyses most of the original results remained 

significant: higher AD severity was still associated with lower CCi in the left caudate 

nucleus (P = 0.0472), and longer AD duration was still associated with lower CCi in the 

bilateral caudate nucleus (Left: P = 0.0443; Right: P = 0.0251) and left anterior putamen (P 
= 0.0367), with lower Di in the right caudate nucleus (P = 0.0414), and with higher ECi in 

left posterior putamen (P = 0.0174).

DISCUSSION

The brain network topology of AD patients does not significantly differ from that of HCs. 

However, within the group of AD patients, longer AD duration is strongly associated with 

reduced global brain network integrity (global efficiency, degree and clustering coefficient), 

whereas alcohol use severity is moderately associated with reduced clustering coefficient in 

AD patients. Within the striatal nodes, AD duration is associated with lower efficiency 

(clustering coefficient, degree) of the ventromedial and anterior striatum (caudate nucleus, 

anterior putamen); an association that was also visible, but less consistent, with AD severity.

These results indicate that AD chronicity is associated with whole-brain network changes: 

the resting brain functions less efficiently with longer AD duration. Reduced global network 

efficiency adversely affects cognition, including intelligence (van den Heuvel et al. 2009). It 

is therefore conceivable that these network changes in AD are partly responsible for 

cognitive dysfunctions reported in addicted patients (van Holst & Schilt 2011; Schulte et al. 
2014). Interestingly, local topology in the striatum also seemed associated with AD 

characteristics. Reduced efficiency with longer AD duration in anterior striatum (caudate 

nucleus and anterior putamen), thought to be involved in goal-directed behavior, is 
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consistent with prior evidence of reduced anterior putamen activation in alcohol dependent 

patients during goal-directed behavior (Sjoerds et al. 2013). We also see a putative increase 

in network centrality of the posterior putamen with longer AD duration, an area known for 

its involvement in habitual actions (Yin et al. 2005; Tricomi et al. 2009; de Wit et al. 2012). 

This finding could match the notion of a negative spiral towards maladaptive habitual drug 

taking in addiction-vulnerable animals (Everitt & Robbins 2005; Volkow et al. 2012) and 

human addiction, such as AD (for reviews, see: Barker & Taylor 2014; O’Tousa & Grahame 

2014). Using task-related functional MRI, we earlier showed increased posterior putamen 

involvement during cuereactivity and instrumental learning with prolonged AD duration 

(Sjoerds et al. 2013, 2014). It should be noted that in the current study, contrary to the 

consistent topology changes in whole-brain network, caudate and anterior putamen, 

topology changes in the striatum associated with AD severity, and changes in the posterior 

putamen with AD duration were inconsistent when exploring a broader range of thresholds 

of the weighted graph (see Table S 3). Moreover, these local effects were not corrected for 

the multiple tests performed in the four bilateral striatal nodes.

Network efficiency reduction with longer AD duration could indicate direct drinking-related 

toxic effects on the complex brain network. However, a study in pathological gambling, a 

non-substance dependence, found comparable reductions in brain network efficiency with 

longer disease duration (Tschernegg et al. 2013). This suggests either a non-toxic influence 

of maladaptive behavior on the brain network, or a predisposition for network inefficiency 

before onset of the disorder. Nonetheless, because of the cross-sectional nature of our study, 

we can only infer that the observed lower efficiency is associated with a longer drinking 

history. Longitudinal studies are desirable to replicate and elaborate on our findings.

We did not find an effect of smoking on the brain network topology. Although it has been 

shown that smoking affects specialized functional brain networks during rest in AD patients 

(Müller-Oehring et al. 2015), our results are in agreement with findings that the complex 

brain network analyzed by using graph theory does not differ between smokers and non-

smokers (Breckel, Thiel & Giessing 2013).

In contrast to our expectations, we did not find differences in global network topology 

between AD patients and HC. Some local network characteristics outside the striatum only 

differed between groups when considered at an uncorrected threshold (see Supporting 

Information Table S1). The lack of group differences is especially surprising considering the 

here shown association between network topology and AD characteristics. The fact that a 

large portion of our AD sample was recruited from a population-based cohort, which did not 

primarily seek help for alcohol-related problems, might contribute to this. This has namely 

led to the inclusion of a heteroge-neous AD sample with some minimally severe AD patients 

producing a weak contrast between the AD and the HC groups. To further explore this, we 

post hoc split the AD group based on median AUDIT score to compare the most severe 

patients with HC, see Supporting Information Text S1. This does indicate a deviation from 

‘healthy’ in more severe AD patients with an AUDIT score above the clinical cut-off 

(AUDIT score: 20) for risk of dependence. However, considering the smaller subsample (n = 

12) of this exploratory analysis, and the weak effects on global topology, this should be 

interpreted with caution. Notably, other studies using graph analysis in behavioral addictions 
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similarly failed to show a difference in global network topology with HCs (Tschernegg et al. 
2013; Wee et al. 2014), while also showing disease-associated effects within the patient 

samples. This demonstrates the prominence of heterogeneity within categorical Psychiatric 

diagnoses and contributes to the popular idea that dimensional neurobiological constructs 

are desirable in Psychiatry as a guideline to define disease-related mechanisms and to 

predict treatment response, rather than the rigid boundaries of symptom-based categories 

(Insel 2014).

Our focus was on the stationary functional brain network. An interesting new direction in 

resting-state research is the exploration of dynamic reconfiguration of connectivity, which 

may yield more insight into the processes that take place within the functional network on a 

finer time scale. This could also give further insights into the dynamic state of the diseased 

brain, such as in several Psychiatric disorders.

Altered topology in the alcoholics’ brain could be targeted for the treatment of chronic AD, 

for example by applying non-invasive techniques including transcranial magnetic 

stimulation, which has been shown to successfully manipulate whole-brain networks (Fox et 
al. 2012). Although more invasive, deep brain stimulation may also rebalance altered 

disease-related brain networks by specifically targeting deeper subcortical hubs (e.g. 

striatum) (Kringelbach, Green & Aziz 2011). The nucleus accumbens, a ventral part of the 

striatum and center to the reward system (Schultz 2015), has already been shown to be a 

promising target of deep brain stimulation to treat addictions (Luigjes et al. 2012).

In conclusion, by using a graph-theoretical approach, this study shows that prolonged 

alcohol dependence is associated with decreased global brain network efficiency and less 

anterior striatal segregation. Decreased global network integration and local segregation 

could be a key candidate for the future treatment of alcohol use disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Group comparisons on whole-brain network characteristics. No significant differences 

between AD group and matched HCs on whole-brain network topology, expressed as 

clustering coefficient (t = 0.4219, P = 0.6754), degree (t = 0.3837, P = 0.7006), eigenvector 

centrality (t = −0.8284, P = 0.4125) and global efficiency (t = −0.0079, P = 0.9937). All 

analyses were corrected for age, gender and head motion. Abbreviations: AD, alcohol 

dependent group; HC, healthy control group
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Figure 2. 
Whole-brain reduction in network topology associated with alcohol dependence 

characteristics. (a) Clustering coefficient shows a whole-brain decrease with more severe 

alcohol use symptoms, as measured with the alcohol use disorder identification test 

(AUDIT). (b) Clustering coefficient, degree and global efficiency are significantly decreased 

with longer AD duration. Eigenvector centrality does not show a significant association with 

AD duration. After removing the two outliers in the upper left corner of the CC, D and GE 

scatterplots, correlations remain significant. All analyses were corrected for age, gender and 

head motion
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Figure 3. 
Network topology in striatum associated with alcohol dependence characteristics. Analyses 

performed in four bilateral striatal nodes of a priori interest: nucleus accumbens, caudate 

nucleus, anterior-putamen and posterior putamen. (a) Local striatal network topology 

associated with alcohol use. The left caudate nucleus shows reduced local clustering 

coefficient with more severe alcohol use disorder symptoms, measured with the alcohol use 

disorder identification test (AUDIT). (b) Local striatal network topology associated with the 

duration of alcohol dependence. Upper panel: bilateral caudate (L: t = −2.2376, P = 0.0374; 

R: t = −2.5174, P = 0.0210), left putamen (anterior: t = −2.1113, P = 0.0482, posterior: t = 

−2.1263, P = 0.0468) and right anterior putamen (t = −2.3070, P = 0.0325) show decreased 

clustering coefficient. Middle panel: bilateral caudate also showed decreased weighted 

degree (L: t = −2.1393, P = 0.0456; R: t = −2.2824, P = 0.0342) with longer disease history. 

Lower panel: the left posterior putamen showed a higher eigenvector centrality with longer 

duration of alcohol dependence (t = 2.5677, P = 0.0188). Significant results reported at P < 

0.05 uncorrected for multiple testing for the four separate bilateral striatal nodes. All 

analyses were corrected for age, gender and head motion. Abbreviations: AD, alcohol 

dependence; CCi, nodal clustering coefficient; Di, nodal degree; ECi, nodal eigenvector 

centrality; x,y,z, MNI-coordinates
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Table 1

Demographic and clinical characteristics.

AD, n = 24 HC, n = 20 Test statistic P

Age, M (SD) 48.54 (7.77) 46.05 (9.17) U=177.500 0.140

Education level (1–10), M (SD) 6.67 (2.10) 6.65 (1.98) U=230.500 0.819

Years of education, M (SD) 14.38 (3.65) 14.25 (3.32) U=246.500 0.876

Male, n (%) 13 (54.2) 8 (40.0) χ2=0.878 0.349

Right handed, n (%) 22 (91.7) 18 (90.0) χ2=0.037 0.848

AUDIT score, M (SD) 20.67 (7.97) 4.00 (3.03) t = 24.221 <0.001

Smokers, n (%) 13 (54.2) 1 (5.0) χ2 = 12.156 <0.001

Depression symptom score (IDS), M (SD) 22.79 (12.55) 13.80 (14.93) U=137.500 0.016

Anxiety symptom score (BAI), M (SD) 11.25 (8.84) 10.65 (10.20) U=219.500 0.628

AD duration (years), M (SD) 15.50 (11.50)

AD onset age (years), M (SD) 33.29 (11.52)

Duration of abstinence (days), M (SD) 15.17 (23.38)

Total grey matter volume (ml), M (SD) 690.05 (72.88) 698.47 (69.82) t =−0.389 0.700

Mean head motion (mm), M (SD) 0.0672 (0.048) 0.0609 (0.0543) U=201 0.358

AD=alcohol dependence; HC=healthy controls;
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