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General introduction and background. 

 

1. Drug-induced liver injury: a major problem in drug development. 

1.1. The liver. 

The liver is the main metabolizing organ and the first organ encountered by nutrient rich blood 

delivered by the hepatic vein which originates from the gastrointestinal tract. The liver consists of 

millions of functional subunits: individual hexagon lobules made up of the parenchym surrounded 

by portal triads (Fig. 1). The portal triads consist of bile ducts, hepatic arteries and portal veins. 

The liver consists of the parenchyme and non-parenchyme cell types. More than 70% of the liver is 

composed of the parenchyme: the hepatocytes. Hepatocytes are responsible for most of the liver 

metabolizing capacity and contain the drug metabolizing enzymes and transporters responsible for 

xenobiotic transformation. Non parenchymal cells are cholangiocytes (bile duct epithelial cells), 

sinusoidal cells (which form triad walls) and several immune related cells such as the stellate cells, 

Kupfer cells and pit cells. Because hepatocytes are by far the most abundant cell type and 

responsible for the liver metabolizing capacity and detoxification/xenobiotic metabolism these 

cells are typically used for in vitro toxicity testing. 

1.1. Drug-induced liver injury.  

Drug-induced liver injury (DILI) constitutes liver injury as the result of drug treatments with  

potentially fatal adverse events. DILI can be classified into a hepatic, cholestatic or mixed 

phenotype. Hepatic DILI involves damage and cell death of the parenchyme which are the 

hepatocytes. Cholestasis involves perturbations due to altered bile acid metabolism and transport 

culminating in accumulation of bile in the liver or damaged bile canaliculi. Additional DILI 

pathophysiological phenotypes include: steatosis,  the accumulation of fat droplet in the liver due 

to fatty acid metabolism; phospholipidosis, the accumulation of phospholipids in the liver; 

inflammation, the infiltration of leucocytes in the liver; and fibrosis, the increase of scarred fibrotic 

tissue in the liver.  

1.2. Societal impact of DILI. 

The market for pharmaceutical compounds in the EU is estimated at a yearly turnover of 205 

billion Euro (Eurostat data 2015) with an estimated average of  0.6 % (1.2 billion) spent on drug 

safety (European Commission pharmacovigilance report, 2008). However the social financial 

impact of preventable adverse drug reactions (ADR’s) in the same report is estimated at 24 billion 

annually for the European population. This estimated cost is based on a 5 % incidence of ADR’s 

during hospitalization [1], a 5% ADR related hospital admission [2] and drug-related morbidity and 

mortality other than hospital admission or prolonged hospitalization [3]. Moreover, the public  
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health importance of ADR’s is 

estimated at 200,000 deaths 

annually in the EU alone [1]. In 

addition ADR’s lead to 

preclinical discontinuation and 

post market withdrawals. 

 

 

 

 

Figure 1: Cell types within a liver 

and structure of a liver lobule. The 

smallest functional unit of a liver is 

the lobule which each has a set of 

interlobular -veins, -arteries and -

bile ducts attributed to it and a 

single central vein. The liver is built 

up of parenchymal and several 

non-parenchymal cell types. 

 

Hepatic and cardiac toxicity has contributed disproportionately to drug withdrawals: of 47 

drugs withdrawn during the period 1975 - 2007, 21 were related to cardiotoxicity and 15 involved 

hepatic toxicity [4]. DILI is responsible for 30% of drug withdrawals from the market [5] and non-

approvals by regulatory authorities.  

Often no changes in hepatocellular toxicity parameters such as alanine or aspartate 

aminotransferase (ALT/AST) levels or increased total bilirubin are found in pre-clinical settings and 

drugs are marketed until more than 1 in 10,000 drug users demonstrate signs of liver failure [6]. 

Severe DILI in the clinical setting is most typically caused by a so called idiosyncratic reaction 

which by definition means dose independent and rare (<1:10,000) and thus highly unpredictable. 

Preclinical studies often miss these rare idiosyncratic reactions due to limitation on the feasible 

number of test animals and species specific differences. In addition to idiosyncratic reactions also 

'normal' DILI found in preclinical animal studies or during human trials is difficult to predict and as 

such causes many compounds to be terminated and thus imposes significant costs for the 

pharmaceutical industry [7]. For these reasons major efforts are being made by industry and 

academia to obtain better biomarkers to better understand and predict DILI pre-clinically. 

2. In vitro toxicity testing methods. 

2.1. Safety assessment and the Adverse Outcome Pathway (AOP) paradigm. 

The current preclinical testing paradigm has improved drug safety over the last 30 years; it is 

estimated that 70% of human toxicity is predicted pre-clinically [8]. Typically animal experiments 

are performed pre-clinically to rule out as much toxic compounds as possible. For the liver these 

animal studies are used to determine histopathological endpoints after acute or repeated dosing 

of the drug. Pathologists then determine if the liver toxicity shows signs of acute, cholestatic, 

steatotic, necrotic or fibrotic phenotypes. However such endpoints unfortunately do not provide 
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much information on the mechanism of the observed drug-induced liver toxicity. In addition to 

this scientific shortcoming, public pressure against animal testing, exemplified by the ban on 

animal testing for cosmetics in Europe, and increasing societal momentum to implement more 

modern scientific methods for pre-clinical testing is apparent. Several multimillion funded 

consortia have worked on human relevant alternatives such as SEURAT-1 and MIP-DILI in Europe 

and ToxCast and Tox21 in the U.S. to work on these issues. Thus there is a strong incentive for 

consortia to focus on implementing modern scientific methodologies which are focused on 

human-relevant concepts. These methodologies are founded on developing a mechanistic 

understanding of adverse drug reactions in in vitro based models for evidence and read across-

based approaches for risk assessment. One such methodology developed by the OECD in 2012 

being the initiation and population of the Adverse Outcome Pathway (AOP) framework. The AOPs 

framework is described as a “sequential chain of causally linked key events at different levels of 

biological organization that together culminate in an adverse health outcome or ecotoxicological 

effect”. While several AOPs have been established, a next important step is to translate AOP-

related mechanistic understanding in advanced, preferably quantitative, high throughput assays 

that reflect pathways essential in target organ toxicity. Such an AOP framework is highly suited as 

an evidence-gathering-based approach in which affected (adaptive stress) pathways can be 

included as a fundamental cellular response following biochemical perturbation due to chemical 

exposure, also branded as the molecular initiating events (see Fig. 2). 

2.2. Overall in vitro methods for safety assessment. 

What is the diversity of in vitro methods that are available? Firstly, several in vitro and in silico 

methods currently exist that can predict the pharmacokinetic properties and clearance of 

compounds [9]. Compounds that are metabolized or affect liver metabolic enzymes can be 

identified by in vitro methods. Secondly, cytotoxic endpoint assays have been developed to 

determine in vitro EC50-values for apoptosis and necrosis using colorimetric assays. 

Figure 2: The AOP framework. An evidence gathering based approach starting from the source to the final 

adverse effects. Figure adapted from  K. Crofton 2010, OECD AOP Meeting Definitions 

  

Thirdly, more mechanism-based in vitro methods exist that can give insight into the type of 

toxicity in cells such as  the MTT assay which reflects NAD(P)H dependent metabolic activity of 

cells, MitoSOX-red which is a mitochondrial superoxide indicator [10], lipid dyes which visualize 

phospholipid accumulation e.g. Bodipy 493/503, and the fluorescent phospholipid probe NBD-PE 

[11] or Fluo-4 AM  to detect cytoplasm free-calcium levels [12]. In addition certain dyes are 
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capable of selectively binding to certain organelles or substructures such as the mitochondria, 

golgi, chromosomal DNA or cell membranes and perturbation of these structures after chemical 

exposure can be detected in this manner. Antibodies are often used in in vitro toxicity assays to 

detect perturbations of protein levels or to visualize organelles and cellular structures such as 

actin to detect cell-cell junctions or bile canaliculi. Polymerase chain reaction (PCR) or luciferase 

assays are used to monitor changes in transcript levels of certain key transcripts such as the 

nuclear receptors [13], anti-oxidant response element transcripts or phase I, II and III drug 

metabolism enzymes. Fourthly, most in vitro assays using the above approaches are based on 

monolayer cultures that do not fully mimic the in vivo context. More complex in vitro testing 

strategies are in development which try to mimic the 3D structure [14], multiple cell type 

interactions and mechanical flow and shear stress based on microfluidic reactors [15, 16].  

Development of all these functional assays, largely based on an improved understanding of 

the cellular pathways involved on chemical induced toxicity, is increasingly based on mechanistic 

concepts. Within the development of these assays one of two broad routes can be defined: on the 

one hand the more physiological relevant liver models and on the other hand the more detailed 

mechanism-based predictive models. The physiological mimicking of the liver has obtained 

increased interest in recent years, and models such as liver slices [17], 3D models [18], pluripotent 

stem cell-derived differentiated cell lines [19] and liver bioreactors [16] are being developed in 

many investigations and some are already utilized in safety testing strategies. Mechanism-based 

toxicological readouts and throughput from these models are often more limited due to several 

technical limitations such as the inability to perform high resolution high content imaging or single 

cell type quantification of proteins or metabolites. Often general macro-phenotypic profiling, 

measurements in culture supernatant of metabolites or secretion and leakage of specific proteins 

from these models is performed. The more detailed mechanism-based models under development 

focus more on detailed mechanistic insight of molecular networks and the molecular initiating 

events as well as key events that eventually lead to cellular adversity (see the AOP framework 

earlier). More robust models that can be cultured easily and are highly reproducible are used, 

including the cancer-derived cell lines HepG2 and HepaRG. These models also enable functional 

genomics assessment of molecular mechanisms using e.g. small interfering RNA knock down 

approaches and the generation of genetically modified (often knock-out or tagged) cell lines; this 

is not possible with primary human hepatocytes. It is the combination of these two different 

approaches that will take science to the next level of understanding chemical-induced toxicity. 

This thesis focuses on the second approach: application of genetically modified hepatoma cell 

lines to unravel mechanism of action in the context of DILI. 

3. From molecular mechanisms to DILI prediction. 

3.1. Mechanisms of DILI. 

For only several drugs the underlying mechanisms leading to DILI is by and large elucidated. The 

best known example is acetaminophen, which induces acute liver injury after overdosing. The 

cytochrome-P450 enzyme system metabolizes acetaminophen into more hydrophilic and reactive 

metabolites including N-acetyl-p-benzoquinone imine (NAPQI) [20]. At lower concentrations 

NAPQI does not accumulate because antioxidant molecules such as glutathione act as a redox 

buffer clearing the reactive NAPQI before it can bind and damage macromolecules and elicit 
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further significant cellular damage. However after an overdose acetaminophen, glutathione 

becomes depleted and cellular damage caused by NAPQI leads to acute liver damage. The ultimate 

cell death involves many cellular perturbations, including mitochondrial injury, increased reactive 

oxygen formation, activation of cellular stress pathways, that all individually contribute to the 

onset of cell death [21, 22].  

A second well-known example is the dose-dependent toxicity of valproic acid. Valproic acid 

is a simple fatty acid and therefore a substrate of the β-oxidation pathway. Valproic acid and its 

metabolites can cause interference with e.g. mitochondrial β-oxidation, oxidative 

phosphorylation, and depletion of CoA culminating in the accumulation of fatty acids in liver cells 

eventually resulting in microvesicular steatosis [23-25].  

Unfortunately for most compounds that induce severe DILI the exact molecular mechanisms 

are not fully understood and various plausible mechanisms for individual drugs have been 

proposed that could contribute to DILI. Below various molecular mechanisms that contribute to 

DILI are discussed in more detail with a focus on several key adaptive stress response programs. 

3.2. Mitochondria injury, oxidative stress & apoptosis: an intricate interplay.  

Mitochondrial dysfunction is considered a key component to the overall mechanism of many DILI 

related drugs [26]. In the literature many examples can be found involving drug-induced 

impairment of mitochondrial fatty acid oxidation (see above the example of valproic acid), 

electron transfer within the respiratory chain, oxidative phosphorylation and mitochondrial DNA 

damage [27]. The mitochondria are central to cellular metabolism as the reduction of oxygen to 

water fueled by organic catabolic processes provides the necessary energy in the form of ATP. 

With limited ATP supply the overall cell function will be severely affected as most cellular 

metabolic processes require energy; eventually cells will die. Importantly, mitochondrial function 

is linked to the cellular redox state of the cell as the mitochondrial respiratory chain is critical in 

the NAD(P)+/NAD(P)H ratio. Therefore, mitochondrial dysfunction will inherently lead to oxidative 

stress and overproduction of reactive oxygen species and lipid peroxidation [28]. 

In addition, mitochondria function as a central hub in programmed cell death. Cell death 

signals, such as mediated by the mitochondrial translocation of the pro-apoptotic Bcl2 family 

member Bax, leads to the formation and opening of mitochondrial permeability transition (MPT) 

which leads to the release of mitochondrial calcium and loss of mitochondrial membrane potential 

and therefore ATP production [29] as well as release of cytochrome c. A second mechanism 

related to mitochondrial control of programmed cell death is the formation of mitochondrial outer 

membrane pores (MOMP) that do contain BAX/BAK dimers. These pores mediate the release of 

mitochondrial proteins such as cytochrome c and other pro-apoptotic factors such as apoptosis 

inducing factor (AIF), and Smac/Diablo [30]. The release of the pro-apoptotic proteins defines the 

formation of the apoptosome, containing cytochrome c, APAF1 and pro-caspase-9 as well as dATP, 

resulting in activation of caspase-9 followed by downstream activation of caspase-3. Since ATP is 

required for apoptosis, severe impairment of cellular metabolism caused by chemical-induced 

mitochondrial damage will inhibit the onset of programmed cell death. In this more severe and 

uncontrolled manner cell death will occur by necrosis. Following necrosis so-called damage 

activation molecular patterns (DAMPs) are released from cells into the extracellular space 

resulting in attraction and activation of innate immune cells which in turn will release cytokines 
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such as TNFα. These cytokines in turn act as a signal to recruit additional immune cells. 

Additionally, TNFα will activate intracellular NF-κB signalling in a paracrine manner on the 

hepatocytes, which may also affect overall cell survival. 

In contrast to mitochondrial impairment that may indirectly cause oxidative stress, direct 

chemically-induced oxidative stress either in the form of pro-oxidants, alkylating agents or reactive 

metabolites, can directly affect the antioxidant status in cells by reducing the free (non)-protein 

thiol status and initiating oxidative stress. The decreased cellular antioxidant status, as mentioned 

earlier, can impair the mitochondrial oxidative phosphorylation; reactive oxygen species (ROS) can 

also damage mitochondrial DNA. ROS in general is an often cited mechanism for drug-induced 

liver injury [31]. ROS causes DNA damage, protein oxidation and lipid peroxidation which impairs 

normal cellular function and cell death. Given the fact that control of oxidative stress is of 

paramount importance for overall cell maintenance and cell survival, the KEAP1/Nrf2-mediated 

antioxidant adaptive stress program has evolved as a universal mechanism across cell types and 

species to control ROS-levels. It is for this reason that we established several BAC-GFP reporter cell 

lines to quantitatively monitor the Nrf2-mediated oxidative stress response at the single cell level 

using automated live cell imaging (see Chapter 2 and 3 for further details).  

3.3. The unfolded protein response in the endoplasmic reticulum. 

In the context of molecular toxicology the endoplasmic reticulum (ER) is most well-known for the 

xenobiotic enzymes located in the membrane folds such as P450 enzymes, UDP-

glucuronosyltransferases (UGTs) and glutathione S-transferases and for its ability to store large 

amounts of intracellular calcium. Therefore the ER is a source of xenobiotic transformation and 

resultant reactive intermediates. Moreover, upon impairment of the ER membranes large 

amounts of calcium are released into the cytosol resulting in activation of pro-apoptotic signalling 

via the previously mentioned mitochondrial perturbations [32].  

The main cell physiological role of the ER is protein folding and post translational protein 

modification. Compounds that interfere with these processes cause the activation of the so-called 

Unfolded Protein Response (UPR). The UPR consists of three major branches regulated via three 

transmembrane transducer proteins: activating transcription factor 6 (ATF6), protein kinase R-like 

ER kinase (PERK) and inositol-requiring enzyme 1-alpha (IRE-1α.) [33]. The activation level of these 

three distinct routes determines the balance of the resultant unfolded protein response. Thus, 

ATF6 and IRE-1 α activation lead to a more pro-survival physiologic response such as increased 

chaperone production; in contrast PERK activation leads to translation inhibition and with 

prolonged activation of downstream target Chop (DDIT3) and can sensitize cells to pro-apoptotic 

signalling [34]. Further details regarding on the ER-stress/ unfolded protein response are 

presented in chapter 2.  

3.4. Inflammatory signalling and DILI. 

The involvement of the immune system in DILI has been suggested for several drugs such as 

diclofenac, carbamazepine and methimazole [35] and are often known as hypersensitivity 

reactions. Several hypothesis have been suggested such as the hapten hypothesis, genetic 

disposition of HLA alleles or direct binding of the (parent) compound to T-cell receptors [36]. 

Recent work has demonstrated the importance of drug reactive metabolite-mediated adaptive 
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stress response signalling and cytokine-induced pro-apoptotic signalling in DILI [37, 38]. Following 

liver damage immune cells infiltrate the liver and secrete pro-inflammatory cytokines which can 

further exacerbate inflammation and liver damage.  

Tumor necrosis factor-α (TNFα) is the main pro-inflammatory cytokine excreted by liver 

resident macrophages known as Kupffer cells. TNFα has been shown to increase liver damage 

caused by various drugs [39]. TNFα activates the tumor necrosis factor receptor (TNF receptor) 

which in turn activates pro-apoptotic signalling via its death domain and also activates NF-κB 

signalling. Upon activation NF-κB transiently translocates to the nucleus to activate downstream 

target genes mainly involved in cytoprotective (anti-apoptotic proteins) and inflammatory 

(cytokines) mechanisms (Liu et al. 1996). Reactive metabolites from DILI-related drugs typically 

provoke a cellular oxidative stress environment thereby initiating the stabilization and activation 

of the transcription factor Nrf2 (Li et al. 2005). Downstream antioxidant genes contribute to 

adaptation and protection of cells against the reactive metabolite induced oxidative stress. Several 

studies indicate that Nrf2 activation can act to suppress NF-κB-based immune signalling responses 

(Chen et al. 2006) which would indicate Nrf2 could be involved in NF-κB dysregulation in DILI. This 

is also part of our own investigations described in Chapter 5. 

3.5. Toxicogenomics legacy data: TG-GATES 

The above adaptive stress response pathways are not the only cellular responses to toxic insults. 

In the past decade major progress within the toxicology field has been made to unravel a 

multitude of cellular responses that are initiated by xenobiotic exposure using omics technologies 

with the focus on transcriptomics and to lesser extent metabolomics and proteomics. More 

recently the attention has shifted to epigenomics and regulation by the microbiome [40] as well as 

the more recently developed transcriptomic technology RNA-sequencing [41]. Many gene-set 

based biomarkers have been reported in literature originating from omics-research [42, 43]; here 

optimized gene-, metabolic- or protein  fingerprints/profiles were developed based on training 

compound sets. Several examples indicate that such profiles can add to hazard identification early 

in the drug development process [44]. The major benefit that emerged from these omics efforts is 

more likely to be the increased understanding of the biological pathways involved in the cellular, 

organ and organism adversity [45]. Omics-based technologies provide novel insights into the type 

of cellular processes initiated following chemical exposure. These insights are then followed up by 

more detailed mechanistic investigations. Thanks to the increased understanding of xenobiotic-

induced toxicity it has become possible to create evidence-based frameworks (e.g. the AOP 

framework, see above) based on mechanistic understanding that can be implemented in safety 

testing strategies.  

Throughout this thesis we used the legacy toxicogenomics dataset TG-GATES [46]. The TG-

GATES dataset is available in the public domain in the form of Affymetrix .CEL files 

(http://toxico.nibio.go.jp/). The TG-GATES dataset originates from the Japanese Toxicogenomics 

Project which ran from 2004 to 2014 as a joint government-private sector project organized by  

the National Institute of Biomedical Innovation (NIBIO), the National Institute of Health Sciences 

(NIHS) and 18 pharmaceutical companies [46]. The main bulk of the data consists of Affymetrix 

microarray obtained transcript profiles from liver rat in vivo (acute and repeated dosing), primary 

rat hepatocytes (PRH) and primary human hepatocytes (PHH) at several time points and 
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concentrations. In total over 170 compounds were tested of which the majority are DILI-related 

drugs but also some kidney injury-related drugs and negative controls were included. In addition 

to the liver models a subset of the data consists of in vivo rat kidney repeat and acute dosing 

samples. The TG-GATES dataset is one of two examples of DILI-relevant and rich (encompassing 

large compound sets with various mechanisms of toxicity) datasets that are publicly available; 

DrugMatrix [47] being the second, and most large pharmaceutical companies maintain their own 

private rat (microarray) databases. Thus, the whole-genome transcriptomic profile of the majority 

of DILI related drugs is already known. Since time and dose-response relationship transcriptomic 

profiles are generally unavailable, due to the cost of performing microarray experiments, the TG-

GATES data has paved the way to understanding general and specific responses of cells to DILI-

related drugs. In addition, these transcriptomic datasets can be utilized for biomarker discovery as 

well as be the starting point for more functional and mechanistic understanding of DILI. In this 

thesis the TG-GATES dataset has extensively been used for several purposes: 1) the comparison of 

the HCI derived HepG2 reporter-protein levels with the transcript level in primary human 

hepatocytes; 2) data mining the TG-GATES data for suitable candidate BAC-reporter genes; 3) 

mapping of the transcriptomic profiles to more biological interpretable pathways to better 

understand the role of adaptive stress response pathways and inflammatory signalling to subsets 

of DILI-related compounds. In essence, the utilization of a previously established dataset and 

integration with HCI-derived data is a systems toxicology approach to efficiently combine diverse 

sets of models and datatypes to better understand cellular biology underlying DILI. 

4. From mechanisms of toxicity to fluorescent reporters for high content imaging. 

4.1. The BAC-GFP reporter platform. 

To better assess the underlying mechanisms of chemical-induced liver toxicity we established a 

large set of reporter cell lines that quantitatively define the mode-of-action of chemicals. For this 

we have used the Bacterial Artificial Chromosome (BAC) cloning technology [48]. A BAC is a large 

plasmid containing double-strands genomic DNA and therefor includes regulatory sequences such 

as endogenous promoters and endogenous splicing mechanisms due to the inclusion of intron 

sequences. A BAC is selected based on the target gene of interest, and an additional requirement 

that on both sides of the outer exons of the gene of interest at least 10,000 base pairs must be 

situated to include regulatory elements. With homologous recombination a fluorescent tag, 

typically GFP, and resistance marker are cloned in the BAC plasmid, usually in frame at c-terminal 

side of the last intron of the gene of interest, resulting in the generation of a fusion of the gene-

product of interest and GFP. The modified BAC can be introduced in cell lines. For this purpose we 

use the HepG2 cells, a hepatocellular carcinoma cell line with some human hepatocyte 

characteristics that is often used for early pre-clinical assessment of cytotoxicity liabilities. The 

introduction of the BAC-GFP constructs into HepG2 by transfection is followed by selection of 

monoclonal modified HepG2 cells which can be further selected based on suitability for imaging 

and homogeneity of the fluorescence level of the individual cells. HepG2 cells were selected based 

on several considerations. Firstly the HepG2 cell has several properties similar to that of 

hepatocytes. Secondly HepG2 cells are easy to culture and remain viable up to 30 passages and 

proliferate fast enough (doubling time of around 1 day) to allow selection after genetic 

modification. The application of this BAC-GFP technology in mechanistic toxicology is further 
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introduced in chapter 2, while throughout the thesis BAC-GFP reporter cell lines have been applied 

for interrogation of pathway of toxicity activation.  

4.2. High content imaging of key adaptive stress networks. 

As discussed briefly above the primary repair and defense mechanism of cells following chemical 

exposure are the adaptive stress response programs (Fig. 3). The key rationale to monitor in 

particular these adaptive stress response pathways follows from the paradigm that the molecular 

initiating events result in an altered (intracellular) biochemical environment that, as a first step, 

provokes activation of the various adaptive stress response pathways. Which pathways are 

activated depends on the mode-of-action as well as the concentration of individual compounds. 

The cell senses these environmental changes via upstream biochemical sensors (e.g. Keap1 

for the Nrf2-activated oxidative stress response) and responds via signalling networks called 

adaptive stress response pathways. These pathways are physiological pathways and as such 

activation does by itself not correspond to or imply toxicity. We anticipate that it is essential to 

monitor the magnitude of the response of all individual adaptive stress response pathways and to 

understand at which point a threshold, or breaking point, is reached when the cell can no longer 

cope with the chemically-imposed stress. At this stage cells would die by either apoptosis, 

necrosis, necroptosis or in milder cases where only organelles are damaged autophagy. By 

monitoring the concentration and time relationships of chemical-induced stress responses, it is 

possible to separate the initial (causative) adaptive stress type from secondary adaptive stress-

types. To illustrate this, imagine the following: some compound affect proper folding of proteins in 

the endoplasmic reticulum resulting in the activation of the unfolded protein response (UPR), 

translation initiation inhibition and selective protein translation of chaperones. At a certain 

concentration the UPR is unable to re-establish homeostasis in the endoplasmic reticulum and 

proper protein folding and transport is impaired as well as release of Ca2+ from the lumen of the 

ER. Due to this impairment, secondary effects, such as oxidative stress, are expected to occur. 

Only by obtaining detailed maps of the concentration and time course relationships of the 

activation of the various adaptive stress response networks can such time resolved primary and 

secondary mechanistic insights be uncovered.  

During the live cell imaging-based assessment of pathway activation one can simultaneously 

monitor the fate of the cells, the onset of necrosis or apoptosis, cell proliferation, and cell 

migratory behaviour. This allows the evaluation the relationship between mode and magnitude of 

toxicity pathway activation and cell fate caused by xenobiotic exposure. These relationships 

inform us on the mechanism of toxicity. Such combinations of biological readouts can be 

interpreted as a dynamic biological ‘fingerprint’. Importantly, such fingerprints allow unsupervised 

clustering methods to define sets of compounds with similar mode of action and cell fate. Such 

strategies can aid in prediction of toxic liabilities. 

5. High content imaging. 

High content imaging (HCI) has evolved greatly in the past two decades due to the technological 

advancement of microscopy technology. Automated microscopes can be fitted with incubation 

systems enabling live cell imaging. Robotic arms for multi-well imaging plate loading in 

combination with robotic liquid handlers lead to high throughput imaging-based experimentation.  
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Figure 3: Primary adaptive stress response programs. Left) The oxidative stress response program which is 

activated by the translocation of Nrf2 to the nucleus where it binds to the antioxidant response element 

(ARE). Middle) The three arms of the unfolded protein response activated by misfolding (m.p.) or overload 

of proteins in the ER. Right) The DNA damage response which involves a sensory and repair machinery and 

main regulator p53. Each adaptive stress response pathway consists of sensor proteins, transcription 

factors and down stream targets. 

Confocal microscopes allow a high level of detail of in practice up to four different fluorescence 

emission wavelengths. In addition, most confocal microscopes allow simultaneous image 

acquisition of transmitted light, phase contrast or other non-fluorescence based image modalities. 

Because of the high throughput applications and enormous amount of imaging data, proper and 

efficient file storage systems are essential. Moreover, all images contain massive amount of 

information regarding the level and localization of fluorescence at the single cell level. The analysis 

of these data in an efficient manner requires specific informatics-based automated strategies. The 

development of an image analysis pipeline to enable current efforts in high throughput HCI is 

described in chapter 2 and chapter 7. 

6. Tool development for datamining in HCI. 

As indicated, HCI efforts results in enormous amounts of quantitative data. Due to technological 

development and automation of HCI hardware data output can be staggering which requires 

software in the form of data base management systems (DBMS) and application interfaces and 

computational hardware in the form of a storage file system and sufficient computational power. 

To enable datamining of large datasets one must consider two important physical aspects of a 

“dataset”; the size and the computational load the desired operations on the data require. A 

database engine based on structure query language (SQL) such as MySQL allows unlimited storage 

of data in relational tables. The organization of HCI data in a relational database is quite intuitive 

as each object will have a primary index as well as secondary indexes linking the parent-child 

relationships which allows the join-operations to be performed on multiple table to, for example, 
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query all measurements for a certain cell containing multiple objects such as the nucleus, 

organelles, cytoplasm over several frames in time. CellProfiler utility allows the output data 

derived from the image analysis to be stored in such databases [49]. This is often the 

recommended approach for handling large and complex datasets resulting from image analysis 

pipelines of single cell data and screens. Yet, this also requires informatics expertise to maintain a 

server-side database, or keep track of lots of small local databases. CellProfiler also allows run-

time data dumps to the HDF5 file storage system [50]. Several applications (e.g. HDFView) allow 

easy browsing through this file system making it more intuitive.  Memory wise it is possible to load 

subsets of data from the HDF5 file to analyze determined by the amount of memory available on 

the local system. After the user selected data is loaded into R-memory, speed is a non-issue as no 

more read/writing operations to hard drives have to be performed. By using a binary- ordered 

indexed table structure provided by the R-package ’data.table’ all further data analysis operations 

are near-instant. Calculations on millions of data entries involving very small subsets of large 

datasets can still require a lot of time on a single CPU. R provides parallel computation with for 

example ‘doSNOW’ and ‘parallel’ packages without data duplication resulting in trivial additional 

memory usage. As many modern desktops prove 8-24 cpu-threads, this speeds up computations 

considerably.  

The work presented in this thesis involves HCI data representing high throughput 

experiments for various reporters exposed to >170 compounds at the different concentrations 

with up to 50 time points per condition. Each condition would capture information of 100-200 

individual cells. This type of data is no longer suited for detailed analysis using spreadsheet 

software tools as a single overnight experiment can easily lead to several GB of numeric data. The 

memory of spreadsheet tools is insufficient and the computational load too severe for even a 

single over-night HCI dataset. Often such data types will be analyzed by 

computational/informatics-oriented staff which will perform the analysis based on the requests of 

the biologist. The output from the analysis is then interpreted by the biologist who will then 

usually return to the (bio)-informatician who will optimize the analysis. Meanwhile more data will 

be produced.  This leads to a cycle which is very time consuming and leads to communication 

problems as biologists and informaticians have to understand the jargon and science from two 

different worlds.  

For the above reason a user-friendly R-package was developed (H5CellProfiler) that allows 

biologists to analyze their own large datasets such as perform aggregations, statistics, plate-

normalizations and basic table manipulations such as selection, filtering, division and counting. In 

addition, live-cell tracking specific operations can be performed on the single cell data such as 

making the data suitable for single cell tracking by creating unique track labels for each time-lapse 

movie and also reconnecting “broke” tracks based on user defined thresholds. After appropriate 

data summarization H5CellProfiler allows interactive plotting of selected treatments to create 

time course or dose response graphs or the user can plot all data in a single graphic using the 

faceting utility provided by the R-package ‘ggplot2’. The described utilities are provided in the 

form of a browser based menu; a graphical user interface which sends commands to the (local) R-

server. A detailed description of H5CellProfiler architecture is provided in chapter 7.  
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7. Overall aim and objectives of this thesis. 

Our long term vision is to establish an imaging-based platform that can quantitatively assess the 

activation of individual key events relevant to AOPs. The initial focus in this thesis is on adaptive 

stress response pathways, that are typically part of AOPs and related to adverse drug reactions. In 

this thesis, we have established and characterized various reporter cell lines. We have established 

the infrastructure for automated imaging and image analysis of these reporters cell lines. We have 

integrated these reporter cell lines in mechanistic understanding of DILI. We have used these 

reporter cell lines to improve the prediction of DILI. These topics are described in the following 

chapters: 

Chapter 2 provides an overview of the background of adaptive stress responses, the 

development of reporter cell lines to monitor these pathways, and examples of the application of 

these reporters. 

Chapter 3 details the generation and characterization of pathway reporters that reflect the 

KEAP1/Nrf2 pathways, the unfolded protein response and the DNA damage response. 

Chapter 4 describes the interaction between the Nrf2 pathway and the NF-κB pathway in 

relation to DILI. I present how DILI compounds with strong Nrf2 activation affects the NF-κB 

signalling pathway and susceptibility to DILI. 

Chapter 5 deals with the role of oxidative stress and the unfolded protein response in the 

control of DILI compound-mediated cytotoxicity. I present how the activation of these pathways 

by DILI compounds affect the susceptibility to TNFα-induced cell death. Here we applied different 

BAC-GFP reporters to monitor the UPR. 

Chapter 6 involves the application of adaptive stress response reporters in the prediction of 

DILI. Here we used >170 different compounds, that largely cover most DILI types, and demonstrate 

the applicability of the reporter systems in DILI prediction. 

Chapter 7 describes the HDF5CellProfiler pipeline for the datamining of high content imaging 

data. 

Chapter 8 provides an overall summary of the work and discussion on future perspectives 

and further challenges on the application of the reporter cell lines in DILI safety assessment. 
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1. Abstract 

Over the past decade major leaps forward have been made on the mechanistic understanding and 

identification of adaptive stress response landscapes underlying toxic insult using transcriptomics 

approaches. However for predictive purposes of adverse outcome several major limitations in 

these approaches exist. Firstly the limited number of samples that can be analyzed reduces the in 

depth analysis of concentration-time course relationships for toxic stress responses. Secondly 

these transcriptomics analysis have been based on the whole cell population, thereby inevitably 

preventing single cell analysis. And thirdly, transcriptomics is based on the transcript level - totally 

ignoring (post)translational regulation. We believe these limitations are circumvented with the 

application of high content analysis of relevant toxicant-induced adaptive stress signalling 

pathways using bacterial artificial chromosome (BAC) green fluorescent protein (GFP) reporter 

cell-based assays. The goal is to establish a platform that incorporates all adaptive stress pathways 

that are relevant for toxicity, with a focus on drug-induced liver injury. In addition, cellular stress 

responses typically follow cell perturbations at the subcellular organelle level. Therefore we 

complement our reporter line panel with reporters for specific organelle morphometry and 

function. Here we review the approaches of high content imaging of cellular adaptive stress 

responses to chemicals and the application in the mechanistic understanding and prediction of 

chemical toxicity at a systems toxicology level.  

2. Introduction  

The mode of action of a chemical entity encompasses its on-target but also off-target effects and 

both of these effects can lead to adverse outcomes such as drug induced liver injury,[51],[52] renal 

failure,[53] skin allergies,[54] adverse respiratory arrhythmia,[55] neurotoxicity[56],[57] or in the 

case of constitutively activated mitogenic signalling or mutagenic or inflammatory properties of 

the chemical entity ultimately leading to cancer.[58],[59] Chemicals react or interact with cellular 

components leading to a perturbation of signal transduction networks as the cell tries to 

reestablish homeostasis. In case these perturbations are detrimental to cells adaptive stress 

responses are activated. However, if cellular stress is too severe these adaptive stress responses 

are unable to reestablish homeostasis; a threshold will be reached where the cell activates cell 

death responses to avoid cell community-level detrimental effects. Understanding these cellular 

adaptive stress responses to chemicals in detail is key for better drug development and safety 

assessment.[60],[61] However, these adaptive stress responses are composed of a multitude of 

biochemical reactions and molecular events and are always in a dynamic flux to maintain cellular 

homeostasis in an ever changing environment. In addition, these responses exist at the intra- and 

inter-cellular level and must be fine-tuned and coordinated for cells to be able to perform their 

role in reestablishing tissue homeostasis. Such responses have been also named ‘toxicity pathways 

[62] or fully cover or are part of ‘adverse outcome pathways (AOPs)’.[63] We prefer the term 

‘adaptive stress response pathways’, since this relates to the evolutionary defined genetic 

programs that are meant to adapt to new harmful environments. Ideally one would want to 

capture the central network hubs underlying these stress responses. We propose that high 

content imaging of key events that are pivotal in the development of specific toxicities will be 

essential. In this review we will address the different key adaptive stress response pathways in the 

context of chemically-induced liver injury and how components of these stress response pathways 
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can be used in high content imaging approaches. Moreover we will discuss how such tools can 

then be incorporated in further studies to assess the molecular mechanisms of toxicity as well as 

in more advanced high content analysis and modeling studies.   

3. Drug-induced liver injury: concepts of adaptation and adversity of pathways of toxicity.  

A research focus in our laboratory is on drug-induced liver injury (DILI). Liver toxicity is an 

important reason for drug attrition and a major cause of hospital admissions due to adverse drug 

reactions. Improved preclinical prediction of drug toxicities is essential for effective development 

of new and safer drugs. Classically, histopathology data and data on alanine aminotransferase 

(ALT) and total bilirubin increase obtained from animal models is the golden standard for 

identification of DILI, but will tell little about the molecular mechanisms involved in the 

pathogenesis after chemical exposure. Using these animal models for pre-clinical toxicity testing 

has led to poor predictions: hepatotoxicity is most often cited as the cause of withdrawal of a drug 

from the market.[8] Several reasons for the low predictivity of animal models for hepatic toxicities 

are thought to exist including the low occurrence of human toxicity (idiosyncratic DILI), the 

involvement of the immune system, differences in the metabolic capacities between animals and 

humans, genetic sensitivities and disease mediation.[64] At the cellular level indications for the 

type of injury can be resolved, i.e. phospholipidosis, steatosis, apoptosis or necrosis, but this does 

not lead to better mechanistic understanding of the initial cause of adverse outcomes. 

Biochemical analysis has allowed insight into major metabolic programs including cellular redox 

status, citric acid cycle metabolism and energy generation. Major developments in metabolomics 

now allow the detailed analysis of chemical-induced perturbations of the metabolome in close 

detail.[65] Such changes are likely rather reflections of earlier cellular perturbations that will then 

define and/or characterize the cellular status, e.g. steatosis or mitochondrial dysfunction than that 

they constitute the prime initiating event (Fig. 1). The initial cell state changes that are closest to 

the molecular initiating events are probably best described by the assessment of either key (cell-

specific) biochemical or cell biological programs. This may include the measurement of enzyme 

activities in key programs or the evaluation of activation of cellular stress response pathways that 

will allow the cells to adjust to a new stressful situation. When these cell state changes cannot be 

met with a new rheostat, key breaking points in the cellular response programs may trigger the 

onset of adverse outcome and determine the fate of individual cells and eventually overall liver 

function. Only when exceeding certain concentrations adaptation cannot be met with cellular 

adaptive stress response programs and cell death or senescence will be initiated. In such a 

conceptual thinking, the monitoring of the activated adaptive stress response pathways after 

toxicant exposure would be an improved strategy to assess the underlying molecular mechanisms 

that link the initial molecular initiation events to toxic outcome. Preferably one would then follow 

individual markers of the activation status of such key adaptive programs including key-nodes of 

signalling events that are initiated once the threshold of the adaptive stress response has been 

met.  
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Figure 1: A model for integrated understanding of chemical-induced liver injury. Cellular adaptive stress 

response pathways sense and respond to environmental changes induced by the molecular initiating events 

of chemical induced toxicity. If the adaptive stress response programs cannot maintain a healthy 

homeostasis (breakpoint threshold is exceeded) cells will commit to e.g. apoptosis resulting in adverse 

outcome phenotypes such as phospholipidosis, massive hepatocellular necrosis and/or apoptosis leading to 

organ damage. 

4. From toxicogenomics to predictive classifiers of toxicity.  

Toxicogenomics forms an excellent tool to identify key stress response pathways.[45] Over the 

past decade an overwhelming number of toxicogenomics studies have been performed both in 

industrial settings as well as within the academic environment in the U.S., Europe and Japan 

(reviewed in).[66] While initially the promises and expectations of toxicogenomics were high and 

suggested to establish predictive tools for diverse types of organ toxicities, so far only limited 

success stories have been reported.[66-69] Regardless of the overall application of toxicogenomics 

in the industry and academia, in its current state it has been difficult to tie the gap between 

transcriptomics to the actual biological understanding. The reason for this has in particular been 

the cost factor and thereby the limitations for in depth concentration time course experiments for 

a wide range of target organ toxicities to establish direct cause-effect relationships between target 

gene expression and toxic outcome. An exception has been the detailed TG-GATES and DrugMatrix 

data for establishing in particular DILI toxicogenomics datasets.[70] These datasets have so far 

allowed the establishment of classifiers for specific types of DILI,[71-73] however the relationship 

between these classifiers and the molecular mechanisms of the phenotypes is still largely unclear. 

Moreover, there remains a wealth of information in these datasets that allows for hypothesis 

generation.[66] This should eventually lead to the identification of (additional) predictive 

classifiers that have more direct biological relevance to the mode of action of toxicity. We 

anticipate that some of such candidate genes could be excellent for establishing reporter cell 

systems, for which we propose to use GFP-based technology (see below). In particular the TG-

GATES data is suited for this, as this dataset will allow the extraction of gene sets and/or biological 

(toxicity) pathways that are associated with DILI outcome. Genes that are part of these pathways 
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and expressed at low levels under control situation, but clearly upregulated after chemical 

treatment could serve as excellent markers to establish reporter models. Alternatively already 

available or future novel small molecular fluorescent probes could be applied in simple high 

content imaging approaches. Yet for further identification of transcriptomics-based reporters 

more detailed concentration-time resolved toxicogenomic studies are required, in particular 

where possible targeting specific cell types in relevant organs of toxicity, using human donors or if 

necessary alternatively in conjunction or replaced by  improved in vitro models that recapitulate 

the human target organs. Clearly this should involve the latest next generation sequencing 

technology and should preferably be tightly integrated with direct assessment of additional critical 

markers of cellular function at the biochemical or phenotype level as well as toxicological 

outcome, including assessment of intracellular parent compound and metabolite concentration 

analysis to allow for future in vitro to in vivo extrapolations. Moreover, it will be essential to 

determine whether the eventual candidate markers of toxicity are an integral part in the 

regulation of adaptive stress response pathways using RNA interference-based functional 

genomics approaches.[74]  

In the past years also alternative omics approaches have been used to better understand the 

initial mode of action of chemicals. In particular advanced SILAC-based proteomics (stable isotope 

labeling by amino acids in cell culture) has now uncovered a plethora of early post-translational 

signalling events through protein kinase-mediated phosphorylation which contributed to an 

improved molecular understanding of e.g. the DNA damage response.[75, 76] While such 

proteomics approaches are tedious and costly, they may lead to the identification of novel 

phosphorylation events in signalling networks that are key in the target organ specific toxicities. 

This would allow the generation of phospho-state specific antibodies as an extra type of event that 

could be integrated in high content imaging approaches and may facilitate bridging of the gap 

between the in vitro and in vivo (human) situation. 

Besides toxicogenomics several additional efforts have been made on monitoring the 

underlying signalling pathways based on for example qRT PCR.[77] The primers for these high 

throughput assays are designed for profiling the expression of sets of genes that are proven or 

expected classifiers for the mode of action of chemicals, typically derived from toxicogenomics 

studies. Another approach to detect specific signalling events is the use of phosphorylation state-

specific antibodies e.g. with phospho-specific flow cytometry.[78] The number of alternative non-

animal testing methodologies have increased substantially, many improving on a number of 

substantial issues regarding in vitro toxicity screening like metabolic capacity and tissue-context 

structural attributes This review focuses on cellular stress response signalling based readouts for 

chemical safety evaluation; for an in depth review on recent developments on alternative testing 

methods see for example reviews by Hengstler et al.[16] and LeCluyse et al.[79] 

5. High content imaging of adaptive stress response pathways.  

Today’s state of the art high content imaging systems combine (semi) high throughput (High 

Throughput Screening – HTS) with a high level of detail (High Content Screening/Imaging – 

HCS/HCI) which allows capturing the phenotypic cellular responses to many environmental 

conditions  at the subcellular (organelle) and protein signalling level. This technology should 

overcome the past classical biochemical cell toxicity readouts that so far have captured different 
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types of cell dysfunction but usually give little information on causality, i.e. the mode of action of 

the chemical entity and the underlying chemical-pathway interactions and resultant cellular 

signalling events. The most well-known classical biochemical cell toxicity readouts include reduced 

activity of mitochondrial respiration (MTT and MTS assays),[80],[81] cellular ATP content depletion 

(e.g. ATPlite assay),[82] leakage of the enzyme lactate dehydrogenase (LDH) upon cell death[83] 

and quantitation of the fraction of surviving cells with or without intercalating DNA-staining dyes 

such as DAPI or Hoechst 33342 for living cells and propidium iodide [PI] for necrotic cells.  

Now for the first time investigators are able to visualize the central signalling hubs 

controlling the adaptive cellular stress responses in a systematic manner, which allows its 

integration in toxicity screening strategies.[84-86] The true power of HCS using automated 

imagers lies in its ability to capture when and where specific molecular signalling events are taking 

place, enabling characterization of cellular responses to many different changes in the 

environment in a high time and spatial resolution, relatively high throughput (depending on exact 

setup) and on a single cell basis enabling detection of heterogeneity within populations.  

Automated imaging systems can be roughly divided into four groups of increasing 

complexity: wide-field imagers for fixed cell samples, (spinning disk) confocal imagers to scale up 

the detail of the fixed images, imagers equipped with temperature and CO2
 control and confocal 

systems adapted for HCS and equipped with an environment chamber, reviewed in.[87] The latter 

two systems can be combined with a robotic plate exchange system to enable imaging of multiple 

multi-well plates containing living cells in parallel thus vastly increasing the throughput of high 

content live single-cell based imaging.  

When current efforts of high content imaging in the context of the adverse outcome 

pathway concept[63] is viewed in relation to establish assays for adaptive stress response 

pathways, it becomes apparent that most assays are based on the final outcome of an adverse 

effect within a cell: the observed phenotype is the end result or downstream observable effect of 

the mode of action and adverse outcome molecular initiating event in the chemical- biological 

space. For example in a high content imaging assay utilizing cell viability stains like propidium 

iodide and annexin V-FITC[88] the readout is in effect based on dead cells only discriminating 

between the type of cell death, necrotic or apoptotic.  Already a more detailed view of the type of 

cellular toxicity leading to cell death is obtained using for example mitochondrial membrane 

potential assays (e.g. TMRM, Rhodamine123 or JC-1), mitochondria superoxide detection 

(MitoSOX), reagents allowing mitochondrial permeability transition detection (calcein-

acetoxymethyl ester (AM)) or detection of intracellular calcium levels (calcium binding probes), 

excess lipid droplet formation (nile red and BODIPY 493/503)[89] or an accumulation of 

phospholipids in the lysosomes during drug-induced phospholipidosis (i.e. LipidTOX Red or NBD-

PE).[89, 90] One example of an implementation of such a HCI effort has been performed using 

several dyes and markers (calcium (Fluo-4 AM), mitochondrial membrane potential (TMRM), DNA 

content (Hoechst 33342) and plasma membrane permeability (TOTO-3)) on HepG2 cells to predict 

DILI.[91] This study mentions a sensitivity of 93% and specificity of 98% using 243 drugs, in 

comparison with 7 more conventional in vitro toxicity assays with a sensitivity of 25% and 

specificity of 90% for 611 compounds. However the underlying signalling events culminating in 

these adverse phenotypes are still not part of HCI. A step forward is the use of reporter cell lines. 

These can be on the genetic level (luciferase reporters) or on the protein level (fluorophore 
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coupled proteins) and even on interactome,[92] phosphor-proteomic[93] and metabolic level,[94] 

using fluorescence resonance emission transfer indicators (FRET). In toxicology luciferase 

reporters and fluorophore coupled protein reporters have been used and several are commercially 

available. A good example comes from the efforts within the Tox21 and ToxCast consortia where a 

set of 2870 compounds was screened using a β-lactamase reporter gene assay with reporter cell 

lines from GeneBLAzer®. These cell lines constitutively co-express a fusion protein comprised of 

the ligand-binding domains (LBD) of related human nuclear receptors coupled to the DNA-binding 

domain of the yeast transcription factor GAL4.[95] In addition more simple luciferase and GFP 

reporters are used in these large collaborative efforts. A drawback of these different reporter-

based systems is that several critical endogenous regulation mechanisms are lacking including the 

entire promoter region as well as introns. This can often lead to less specific and or less sensitive 

readouts. In addition for many genes the promoter sequence is not entirely known, therefore 

fusion constructs are often based on CMV driven promoters leading to several factors of 

overexpression of the protein of interest which can lead to perturbed homeostasis in the reporter 

cell line. With the introduction of bacterial artificial chromosome (BAC) transgene-based cell lines 

these short comings are circumvented. By application of BAC transgenomics a large panel of BAC-

reporter cell lines can be generated with relatively little effort.[48] The basic principle is based on 

the use of BACs that contain a genomic copy of a particular human gene including all exons and 

introns and at least 10 kB flanking DNA on each end of the gene which most likely encompasses 

the entire promoter region and other regulatory elements ensuring its normal physiological 

regulation of expression. A fluorescent or luciferase reporter construct can be introduced into the 

BAC by homologous recombination making use of homology arms on each end of the reporter 

construct. So far we showed that a small panel of BAC transgenic engineered mouse embryonic 

stem cells in combination with flow cytometry analysis could distinguish oxidative stress inducing 

chemicals from DNA damage inducing chemicals using the Srxn1 and Bscl2 genes.[13] This 

demonstrates how key nodes of stress response signalling networks can reveal mechanistic 

information on the mode of action of chemicals. 

The next step is to utilize state of the art high content automated imaging coupled to 

automated image analysis with panels of reporter cell lines, enabling high throughput 

identification of specific key signal transduction nodes being perturbed by chemicals. We envision 

that high content automated imaging combined with a panel of endogenously regulated reporter 

cell lines will prove to be a powerful tool in early chemical safety assessment and will improve 

mechanistic understanding of chemicals in an early stage.  

6. Key adaptive stress response pathways in chemical toxicity as BAC reporter systems.  

Stress responses and the cellular signalling network in general cannot be regarded as an 

independent set of linear signal transduction routes. Therefore a panel of reporter cell lines to 

monitor multiple key nodes of adaptive stress response pathways is key. The major stress 

signalling routes activated in response to adverse chemical reactions that can be discerned from 

toxicogenomics studies include the antioxidant response element activation, heat shock response, 

unfolded protein response, metal stress response, the DNA damage response and CYP and other 

phase I, II and II enzyme/transporter induction by nuclear receptors. Time lapse analysis of these 

responses programs, where possible at a single cell level, would give valuable information on the 
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mode of action of novel chemical entities. Typically these programs would involve the activation of 

sensors that recognize the cell injury or stress followed by activation of single or networks of 

specific downstream transcription factors that modulate the expression of specific gene sets 

thereby affecting the outcome of the cellular stress response at the cell biological level (see Fig. 2 

for examples). Below we will address the selection steps for reporters of the most relevant stress 

response pathways by describing in more detail their molecular activation as well as their 

involvement in liver injury. This then allows the identification of ‘sensors’, ‘effectors’ and 

downstream ‘targets’ that may be appropriate for DILI.   

Figure 2: Key stress reporter pathways for chemical safety assessment. Key players in major adaptive 

stress response pathways that could be chosen for BAC reporter cloning – the early signalling ‘sensors’, 

‘effectors’ transcription factors and downstream ‘targets’. 

6.1. KEAP1/Nrf2 signalling pathway. 

Cellular redox homeostasis can be disrupted by internal metabolism, xenobiotic exposure, 

environmental factors and host immune cell defense mechanisms.[96-98] Although drug-

metabolizing enzymes metabolize and detoxify electrophiles and oxidants,[99] metabolism of 

xenobiotics by e.g. P450 CYP enzymes can also lead to bio activation resulting in the formation of 

electrophiles. The most well-known example being acetaminophen overdose toxicity, which 

depletes cellular anti-oxidant glutathione levels and increases the levels of reactive oxygen species 

(ROS) in cells.[100] ROS are controlled by various constitutively expressed detoxifying enzymes 

such as glutathione-S-transferases, NADP(H):quinone oxidoreductase, glutathione peroxidases, 

catalase, superoxide dismutases, epoxide hydrolases, heme-oxygenase, UDP-glucuronosyl 

transferases, gamma-glutamylcysteine synthase and sulfiredoxin-1.[101-104] These ROS 

detoxifying genes are controlled by anti-oxidant response elements (ARE) in their promoter 

regions which are activated by so called xenobiotic-activated receptors (XARs) or by the nuclear 

factor erythroid 2-related factor 2 (NFE2L2 or Nrf2), which in turn are activated in response to 

specific chemicals or other environmental perturbations involving redox biology. Nrf2 is the key 

transcription factor required for ARE dependent drug metabolizing enzymes.[105] Many chemicals 

and substances induce ARE-dependent genes. Nrf2 mRNA is readily detectable in a wide range of 

cells, implying that transcription of Nrf2 is not a major mechanism by which Nrf2 is regulated.[106] 

The main mechanism of activation of the anti-oxidant response occurs by modification of specific 

cysteine thiol groups on Kelch-like erythroid cell-derived protein with CNC homology-associated 

protein (Keap1)[107] and Nrf2 – the cysteine groups function as electrophile and oxidant 

sensors.[108],[109] Under non oxidizing conditions Nrf2 is bound by homo-dimerized Keap1 acting 

as an adaptor protein for the Cul3-dependent ubiquitin ligase (E3) complex.[110] Cul3 is a scaffold 

protein for the binding with RING box protein 1 (Rbx1) which in turn recruits ubiquitin-conjugating 
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enzyme (E2) for polyubiquitination and degradation by 26S-proteasomes. Upon alkylation or 

oxidation of specific cysteine thiol groups on Keap1[111] Nrf2 translocates to the nucleus where it 

binds to promoter enhancer regions containing the ARE consensus sequences.[112] The Nrf2 

signalling as adaptive stress response pathway has emerged as a vital signalling node. Nrf2-null 

mice are more sensitive to a wide range of chemicals, including butylated hydroxytoluene (BHT). 

Nrf2 protects against liver injury produced by numerous hepatotoxicants including acetaminophen 

in vivo and in vitro.[113-115] While constitutive Nrf2 activation can be detrimental in particular in 

cancer progression and drug resistance.[116],[117] We anticipate monitoring the anti-oxidant 

response using BAC transgene reporters combined with high content imaging will reveal important 

early clues to unexpected off-target effects and possible toxicity by e.g. reactive metabolites for 

early toxicity screening of chemicals and drugs. The magnitude and time dynamics of the Nrf2 

pathway in relation to other adaptive stress response pathways is likely a relevant marker for early 

toxicity evaluation in pre-clinical compound screens. We have generated a set of oxidative stress 

BAC-GFP reporters (Fig. 3A) in a strategic manner to be able to monitor the oxidative stress 

‘sensor’ Keap1, the transcription factor Nrf2 acting as the ‘effector’ and downstream ‘target’ anti-

oxidant enzyme sulfiredoxin-1 (Srxn1). The latter is specifically controlled by Nrf2 and highly 

responsive to a wide range of DILI compounds in primary human hepatocyte transcriptomic 

analysis (unpublished results). After exposure to iodoacetamide the Keap1 accumulation in foci 

identified as autophagosomes is followed by the translocation of Nrf2 to the nucleus.  Several 

hours later this is followed by a strong increase in the levels of Srxn1 (see Fig. 3A and supporting 

information 1). 
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Figure 3: Examples of BAC reporter cell lines of toxicity pathways in HCI. A) Oxidative stress signalling: 

Keap1 as sensor; treatment with 10 μM iodoacetamide (an electrophile for covalent modification of 

nucleophilic residues on proteins, e.g. cysteines) leads to formation of Keap1 foci – these foci correspond to 

autophagosomes where the Keap1 proteins are degraded. Nrf2 as transcription factor: Endogenous Nrf2 

levels are extremely low but the nuclear translocation after treatment is still quantifiable. Srxn1 as 

downstream target: Following Keap1 degradation and Nrf2 nuclear translocation downstream target Srxn1 

protein levels are increased. B) ER-stress signalling: The apoptosis related ER-stress signalling arm of 

transcription factor ATF4 and downstream target CHOP v.s. the acute protective arm consisting of 

transcription factor XBP1and downstream target BiP. Both signalling arms are activated after 8 hours of 10 

μM tunicamycin treatment. C) Inflammation signalling: The maximum and minimum of the first peak of the 

oscillatory NF-ĸB response after a 10 ng/ml TNFα treatment is shown. At 30 minutes the level of NF-ĸB 

inhibitor IĸBα is decreased – followed by NF-ĸB translocation to the nucleus. The first peak has disappeared 

after 60 minutes. As a consequence downstream target ICAM1 levels steadily increase. D) DNA damage 

response: cisplatin-induced bulky lesions lead to formation of DNA-repair protein foci (e.g. 53BP1) which 

act as sensors for further DNA-damage repair signalling. This is followed by the nuclear translocation of 

transcription factor p53 leading to an increase in the level of non-apoptotic senescence downstream target 

p21. 
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6.2. Unfolded protein response (UPR) and endoplasmic reticulum (ER) damage. 

The endoplasmic reticulum (ER) is the major cellular organelle involved in protein synthesis, 

modification, folding and sorting.[118] Cells have evolved an adaptive protective mechanism to 

cope with perturbations in the protein processing capacity of the ER called the unfolded protein 

response (UPR). The UPR is separated in three branches: the inositol requiring enzyme 1α (IRE1α) 

branch, the activating transcription factor 6 (ATF6) branch and the protein kinase RNA-like ER 

kinase (PERK) branch.[119] They all have one sensing molecule in common: the ER-resident 

chaperone BiP. Under normal conditions, BiP binds to the transmembrane transducers IRE1α, 

ATF6 and PERK on the ER luminal membrane. BiP has a relatively strong binding affinity with 

unfolded proteins, when unfolded proteins start to accumulate in the ER lumen the transducers 

are thought to go through a conformational change because of the resultant free BiP binding sites. 

Dissociation of BiP triggers PERK to homodimerize and autophosphorylate.[33, 120] Activated 

PERK phosphorylates eukaryotic translation initiator factor 2α (eIF2α). This leads to an attenuation 

of general translation, however also leads to increased translation of a specific mRNA species that 

encodes the transcription factor ATF4. ATF4 in turn activates genes involved in amino acid 

metabolism, redox balance, protein folding and autophagy.[121, 122] IRE1α is also activated via 

homodimerization and autophosphorylation triggered by BiP dissociation. The activated 

ribonuclease domain of IRE1α catalysis the excision of a 26 nucleotide intron from ubiquitously 

expressed XBP-1 mRNA which causes a frame shift in the XBP-1 coding sequence resulting in its 

translation.  X-box binding protein 1 (XBP1) then translocates to the nucleus and induces 

transcription of ER-associated degradation (ERAD), phospholipidosis to promote ER-membrane 

expansion, and protein folding by expression of chaparones like p58, ERdj4 and BiP.[123] In 

addition activated IRE1α activates programs including regulated IRE1 dependent decay (RIDD; 

selective degradation of mRNA of proteins located in the ER), macroautophagy and inhibition of 

translocation of proteins into the ER-lumen.[124-126]  Following BiP dissociation ATF6 

translocates to the golgi apparatus where it is cleaved into the transcriptionally active form 

(ATF6f).[127] ATF6f subsequently activates genes involved in ERAD (endoplasmic reticulum 

associated degradation) and protein folding.[128] Thus, all three UPR axes (PERK, IRE1α and ATF6) 

initially contribute to the adaptation of the cell to overcome the overload of unfolded proteins. 

However, when the amount of unfolded proteins keeps accumulating during sustained stress 

conditions, the UPR switches to pro-apoptotic mechanisms. A key transcription factor in this 

switch is C/EBP-homologous protein (CHOP, also known as GADD153). CHOP is mainly activated 

via the PERK-ATF4 axis,[129] however, there is also evidence for a non-specific activation via (one 

of) the other two branches.[130, 131] CHOP regulates transcription of a variety of pro-apoptotic 

genes including Death Receptor TRAIL receptor 2 (DR5)[132] and Bcl-2 family member Bim,[133] 

thereby sensitizing cells to apoptosis. In addition CHOP also de-attenuates the general translation 

program by inducing expression of GADD34 which dephosphorylates eIF2α. This can result in an 

accumulation of premature proteins in the ER, which is shown to induce accumulation of reactive 

oxygen species (ROS) and subsequent mitochondrial damage and apoptosis.[134] Recent 

publications demonstrate a crucial role for ER-stress in hepatosteatosis, cholestasis and 

hepatotoxicity. Elevated levels of ATF4 and spliced XBP1 were observed in fatty liver samples 

compared to normal and steatotic liver samples.[135] Also in vivo evidence for a role of UPR in 

cholestasis was recently observed where CHOP-null mutants developed much less liver fibrosis 
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compared to wild type livers.[135] In addition, CHOP knock-out mice are less susceptible to 

acetaminophen-induced liver injury.[136] Altogether there is clear evidence for different UPR/ER 

stress programs in liver injury responses. Concurrently it is critical to establish reporters for the 

different anti-apoptosis and pro-apoptosis UPR/ER stress signalling pathways. We have 

established BAC-GFP reporters for ATF4 and CHOP on the one hand, and XBP1 and BiP/HSPA5 on 

the other hand (Fig. 2 and Fig. 3B) which are highly responsive for prototypical UPR inducers, such 

as tunicamycin. These individual reporters would be valid to be incorporated in advanced high 

throughput microscopy approaches to assess chemically-induced UPR onset.    

6.3. Inflammatory signalling through the cytokine-NF-kB pathway. 

The liver contains around 20-40% non-parenchymal cells including resident immune cells from 

both the adaptive and innate immune system (Kupffer cells (KC), Natural Killer (NK) cells and 

dendritic cells (DCs)) and as such has a unique immunological environment. Paradigmatically, this 

ensures both the tolerogenic nature of the liver and defense against bacterial or viral 

infections.[137-139] Pro-inflammatory cytokines like TNFα and IL1 are produced mainly by 

immune cells and facilitate intercellular communication within the liver to mediate (immune) cell 

activation, migration and recruitment. TNFα is produced by Kupffer cells upon pathogen challenge 

and danger-associated molecular pattern (DAMP) exposure  and has been convincingly shown in 

vivo to be a key-component in the development of DILI, for instance in trovafloxacin and sulindac 

liver injury.[140, 141] Stimulation with TNFα activates the TNF receptor and induces the formation 

of a receptor complex activating kinase TAK1 and the IKK kinase complex. Phosphorylation of IĸBα 

followed by its ubiquitination and subsequent proteasomal degradation[142] leads to NF-ĸB 

nuclear translocation. Nuclear NF-ĸB can activate gene transcription of early, middle and late 

target genes, including IkBα and A20 establishing a strong negative feedback loop.[143] Similarly, 

IL1β stimulation induces NF-ĸB translocation by activating TAK1 and the IKK complex. However, 

signalling upstream of TAK1 differs and ultimately NF-ĸB translocation by IL1β signalling leads to 

transcription of a different set of target genes. In both cases NF-ĸB nuclear translocation is a 

dynamic process which involves an oscillatory response where the duration of the overall nuclear 

localization time is one of the factors determining the transcriptional activity and downstream 

effects. Either drug exposure itself or drug exposure combined with pathogen challenge can lead 

to liver inflammation and pro-inflammatory cytokine production.[144-146] Current research 

suggests that drug-mediated perturbations in cytokine or DAMP signalling pathways cause 

synergistic drug/cytokine-induced cell death.[38, 147] Therefore, unraveling cytokine signalling in 

DILI will form one of the corner stones in the understanding of DILI. We have approached this by 

measuring drug-induced effects on NF-ĸB translocation using high content live cell microscopy 

using BAC-GFP reporter cell lines of a signal ‘sensor’ IkBα, an ‘effector’ protein RelA and several 

‘target’ genes including ICAM1. Such experiments provide information in a time-resolved, 

quantitative and single cell fashion on NF-ĸB activation.  

6.4. The DNA damage response. 

Cells in our body are exposed to exogenous and endogenous sources of DNA damage inducing 

agents, e.g. UV light, genotoxic substances and metabolic processes causing single or double 

strand breaks, base modification or intra or inter-strand crosslinks.[148] A set of highly conserved 
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cell cycle check point and DNA damage repair systems has evolved that allows cells first to repair 

inflicted DNA damage before replication commences with the risk of mutation induction.[149] The 

signalling involved in sensing the types of DNA damage, halting cell division at the cell-cycle check 

point and repairing the damaged DNA is fitted to the various types of lesions. DNA damage is 

detected by specific damage sensing mechanisms and by enzymes involved in DNA replication and 

transcription.[150] Crucial early regulators in the DNA damage response are the PI3-K-related 

protein kinases ataxia-telangiectasia mutated (ATM), ATM and RAD3 related (ATR) and DNA-

dependent protein kinase (DNA-PK).[151] From these proteins the DNA damage signal is thought 

to be transmitted via CHK and CHK2 (check point kinase 1 and 2, respectively), aided by scaffold 

proteins such as MDC1 (mediator of DNA-damage checkpoint 1), 53BP1 (p53-binding protein 1) 

and BRCA1 (breast cancer 1 early-onset).[152-154] Among others ATM and ATR can activate p53 

by phosphorylation of p53 or its inhibitor - the E3 ubiquitin ligase Mdm2.[155, 156]  

p53 is mainly known as a tumor suppressor, but numerous additional roles have been 

reported. At least 129 direct transcriptional targets of p53 exist.[157] Under conditions of severe 

stress, p53 tumor suppression activity leads to irreversible apoptosis programs by activating 

extrinsic and intrinsic apoptosis targets including BAX, FAS, NOXA and PUMA.[158] The best-

studied pro-apoptotic protein required for apoptosis induction by p53 is PUMA, a p53 target gene 

that is required to release cytoplasmic p53 from the antiapoptotic protein Bcl-XL, followed by 

mitochondria outer membrane permeabilization.[159] Alternatively, under conditions of low-level 

stress, p53 mediates its tumor suppression function via cellular growth arrest by activating the 

expression of cyclin-dependent kinase inhibitor p21, giving individual cells the possibility to repair 

DNA damage.[160] The most well described downstream targets of p53 have been reviewed by 

e.g.[161, 162] It is important to note that p53 also mediates numerous roles under non-stressed 

conditions which involves diverse cellular process including cellular migration, metabolism, cellular 

redox state, autophagy, angiogenesis inhibition, innate immunity and differentiation.[160] This is 

likely related to sub-lethal stress conditions that can also activate p53. Thus stress severity and 

type leads to different functional roles of p53. Functionality of p53 is modulated by its 

concentration, conformation and translocation into the nucleus. p53 contains nuclear localization- 

(NLS) and nuclear export signals (NES) that are located adjacent to and within the oligomerization 

domain of p53, respectively, leading to the possibility that p53 oligomerization is an important 

mediator of nucleo-cytoplasmic transport.[163] Nucleo-cytoplasmic shuttling is controlled by 

Mdm2, which interacts with p53 in the nucleus targeting it for nuclear export and 

degradation.[163], [164] Moreover, phosphorylation of p53 by kinases such as ATM, ATR, DNA-PK, 

and casein 1-like kinase (CK1) regulates p53 nuclear import or export.[155, 165-168] To monitor 

the DD response in individual cells using fluorescent reporter imaging several candidate genes can 

be proposed. In the case of double strand breaks or stalled replication forks the ATR, ATM and 

DNA-PK kinases are activated followed by recruitment of a large variety of DNA repair proteins 

that localize to the damaged sites forming distinct DD loci.[169] Well known markers of these foci 

are phosphorylated histone variant H2AX and p53 binding protein 1 (53BP1).[152, 170] 53BP1 

undergoes nuclear relocalization to focal structures of unknown architecture at double strand 

breaks or large adduct loci, presumably to facilitate the checkpoint and repair functions.[152] 

53BP1 based foci formation are a useful high content imaging readout to identify candidate genes 

that modulate the DD response and allowed the identification of NUP153 as a novel factor 
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specifically required for 53BP1 nuclear import.[171] Therefore 53BP1 can perform a role as early 

DD response ‘sensor’. Next, the nucleo-cytoplasmic translocation and concentration of p53 as one 

of the most relevant ‘effectors’ in the DD response. Finally, well known downstream ‘targets’ of 

p53 could be monitored, including Mdm2 which functions as a feedback loop inhibitor of p53 

activity[172], [173] or p21 which is known to be very sensitive to small increases in p53 levels.[160] 

6.5. Additional stress response pathways. 

There are additional known stress response pathways in drug-induced liver injury that we will only 

briefly touch. These include hyperthermia (heat shock response), heavy metal insult, hypoxia and 

nuclear hormone receptors. The heat shock protein family (HSP) is currently recognized for their 

role in reaction to a broad variety of physical and chemical insults, including drug-induced liver 

injury inducers.[174] 

Physical and chemical insults may cause an accumulation of unfolded and denatured cellular 

proteins. This triggers heat shock factors (HSF-1 or HSF-2) to trimerize and translocate to the 

nucleus.[175] HSFs induce expression of five different heat shock protein families: the HSP70 

family, HSP90 family, HSP110 family, HSP40 family and the small HSP family.[176] The heat shock 

proteins function as chaperones and bind proteins to prevent denaturation and to refold 

denaturized proteins.[177] 

Cells are also able to adapt to heavy metal stress. Heavy metals, like zinc, copper and 

cadmium, are sensed by MTF-1. A conserved cysteine cluster is responsible for the 

homodimerization of MTF-1 after activation with heavy metals.[178] MTF-1 translocates to the 

nucleus where it induces transcription of metallothioneins. Metallothioneins are responsible for 

the detoxification of heavy metals.[179] MTF-1 is shown to be essential for adult liver 

detoxification in mice.[180] This indicates an important role for the heavy metal stress pathway in 

drug-induced liver injury.  

Reduced oxygen tension (hypoxia) in cells can induce cell perturbations and cell death. 

Therefore, the intracellular oxygen tension is constantly monitored by prolyl hydroxylases, which 

catalyze the hydroxylation of proline residues of transcription factor hypoxia-inducible factor 1α 

(HIF1-α). The hydroxylation of HIF-1α enables the Von Hippel-Lindua (VHL) protein to bind to HIF-

1α. This complex translocates to the autophagosomes where it is degraded under conditions of 

normal oxygen tension. Under hypoxic conditions, hydroxylation of HIF-1α proline residues ceases, 

enabling HIF-1α to translocate to the nucleus and activating downstream targets.[181] One such 

target is HIF-1α-inducible protein (HUMMR) which alters mitochondrial distribution and 

transport.[182] HIF-1α is been shown to play a role in DILI; HIF-1α deficient mice exposed to an 

acetaminophen overdose showed significantly less hepatotoxicity in the early stages after 

administration.[183] 

Finally, another protein family which is essential in hepatotoxicity is the nuclear hormone 

receptor family.[184] The members of this family are highly expressed in the liver and include PXR, 

RXR, CAR, AHR and HXR. They can bind a broad spectrum of ligands, including various xenobiotics. 

When bound, the nuclear receptors are released from their co-repressors and bound by their co-

activators. Together, these complexes activate gene transcription of cytochrome P450 enzymes, 

and other phase I, II and III enzymes responsible for bile salt and fat metabolism and which are 

very well known for their drug metabolizing capabilities.[16] We consider the components of the 
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above pathways, including HSFs, Hsp family members, MTF-1, metallothioneins, HIF1α and 

xenobiotic nuclear hormone receptors and some of their downstream target genes, also likely 

candidates for BAC-GFP reporter constructs. These can then contribute to monitor stress response 

pathways related to toxicity, in particular DILI.  

6.6. Markers for critical cellular organelles and cell function. 

Transcriptomics analysis has revealed the detailed 

cellular adaptive stress response landscapes and the 

diversities of organelles that are likely involved. 

Indeed, various organelles undergo cellular 

perturbations and/or remodelling upon injury such as 

the mitochondria (fission/fusion),[185] endoplasmic 

reticulum (ER)[186, 187] and the actin 

cytoskeleton[188], which are critical in the onset of 

cytotoxicity. We found that such phenotypic 

alterations occur well before the typical ultimate 

outcome of cell stress: cell death by apoptosis.[189] 

It seems essential to classify the cellular 

perturbations also on the basis of imaging-based 

analysis of disruption of cell organelle morphology 

and function. Similar as for the stress response 

reporters, specific target genes used for BAC tagging 

enable visualization of these organelles and their 

perturbations as response to diverse cellular stress 

conditions and can serve as markers for sub-cellular 

compartments and cell organelle function. Such 

reporters should preferably be selectively localized in 

these organelles and remain associated with the 

organelle membrane or lumen even under stress 

conditions. Several relevant markers are indicated in 

figure 4.  

Figure 4: Examples of morphology markers and cell 

death markers. Panel 1 to 5 (top to bottom): 1) 

endoplasmic reticulum folds disperse after a 8 hour 

treatment with 1 μM thapsigargin, a endoplasmic 

reticulum Ca2+ ATPase inhibitor; 2) Mitochondria swelling 

and network disintegration after 8 hour treatment with 5 

μM Antimycin A, Cytochrome reductase inhibitor; 3) golgi 

polarization is dispersed after a 8 hour treatment with 1 

μM thapsigargin; 4)  formation of stress fibers after a 4 

hour treatment with 5 μM nocodazole (microtubili 

polymerization inhibitor); and 5) autophagosome increase 

after 8 hours of glucose starvation. 
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7. From microscope images to quantitative data. 

How can one derive the relevant quantitative data that describes all the relevant toxicological 

features from high throughput microscopy experiments to assess chemical safety? The 

simultaneous imaging capabilities of several high content live cell imagers in a screening 

laboratory easily leads to 100 GB of images (20,000-30,000 images) overnight. Therefore 

automated high content image acquisition must be coupled to an integrated automated 

multiparameter-image analysis tool for fast and accurate quantification of the acquired images, 

for a review on popular tools see.[145] As an example of how to handle such large data streams 

and computational overhead we describe our own customized automated image analysis pipeline 

based on an integration of custom made ImageJ[190] plugins, CellProfiler,[191] HDF5[192] and 

quantitative data processing R-scripts (Fig. 5). Image loading, image metadata definitions, 

intensity- and most morphological feature measurements, and the initial tracking of single cells is 

performed by standard CellProfiler modules. The segmentations are performed by a custom made 

ImageJ plugin based on the Watershed Masked Clustering Algorithm,[193] in addition some 

morphological (e.g. skeleton measurements) are also performed by ImageJ plugins. These plugins 

have been integrated in the CellProfiler environment by making use of the python-javabridge 

utility provided by CellProfiler. The latest version of CellProfiler includes the option to store 

quantitative data output in a hierarchical data format: HDF5.[192] An often overlooked aspect is 

data format standardization for accessibility and inter laboratory data exchange, for a promising 

implementation for the high content imaging community see cellH5.[194] CellH5 is based on the 

HDF format – a hierarchical file based system to store (biological) data.[195] Together with a plate 

layout text file the quantitative data is analyzed and graphically displayed in an automated fashion 

using R-scripts, which will become available as a R-package in the near future. The automated 

analysis includes reorganization and modification of the tracked objects and linkage of cellular 

features/phenotypes to cell mobility on the single cell level. In addition a database for storage and 

accessibility of imaging data and preferably a pipeline to streamline the workflow is needed. 

Several tools exist for this purpose the most well-known open source variations are the database, 

analysis and management package OMERO[196] and for analysis pipeline and software tool 

integration KNIME.[197] However quicker and easier to implement database-management 

systems originate from commercial vendors. 

8. Examples of the application of cellular stress response fluorescent reporter systems. 

The BAC GFP cellular stress response reporter cell lines can be applied in various settings. Firstly, 

this may involve large compound screens using end-point measurements to simply monitor overall 

activation a cellular stress response pathway after chemical exposure. Secondly, it can include the 

live cell imaging of dynamic signalling responses of for example transcription factor activation and 

the consequences of chemicals on such a response. Thirdly, for those signalling routes that are of 

high relevance in toxicology large scale RNA interference approaches may address the underlying 

signalling networks that control the respective cellular stress responses and thereby the cellular 

outcome, e.g. enhanced activation of adaptive programs with limited cytotoxicity, or suppression 

of adaption with increased susceptibility for cell killing. Below we will describe in more detail these 

applications. 
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Figure 5: Pipeline of high content imaging of BAC-GFP reporter cell lines. Image acquisition by laser 

scanning confocal microscopes is followed by storage in a central data storage utility including a database 

management system. Image analysis is performed using CellProfiler and integrated ImageJ plugins. Raw 

images are loaded and metadata (i.e. well locations) is defined.  After image processing (e.g. noise filtering) 

the nuclei are segmented using the nuclei-stained channel followed by single nuclei identification to enable 

analysis of population distributions. These identified nuclei are used as seeds to detect the cell-boundaries 

using the GFP channel. Further image objects can be defined (e.g. foci, cytoplasm, and organelles). Single-

cell tracking is usually included to enable single-cell based analysis over time. Image analysis output (i.e. 

quantitative data) is stored in HDF5 files. R is used to interact with the data in HDF5 in an automated 

manner; several summary statistical output text files are generated and in addition a collection of plots to 

investigate the quantitative data are generated. Legend: Nuclei tracking: for quality control purposes of the 

tracking performance, the x & y-axis represent the x and y coordinates in the original images; single cell 

feature corr.: single cells are followed in time(x-axis) for two selected measurements(y-axis), the two 

selected measurements are for example cell speed and cytosolic intensity of the reporter cell lines; time 

responses: the selected percentile of all the single-cell measurements(y-axis) in each well in the multi-well 

plate are plotted over time(x-axis). Population feature corr.: two selected measurements(x & y-axis) can be 

compared on a single cell basis on the entire plate – for identifying dependencies (e.g. cell density and 

cytosolic intensity measurement); feature corr. x-y plots: linear regression analysis for two selected 

measurements for each condition in the multi-well plate to identify correlations; dose response barplots: 

area under the time-curve summary statistic of a selected measurement(y-axis) for each condition(x-axis) in 

the multi-well plate with increasing concentration(sub parts x-axis). 

8.1. Compound screening to assess chemically-induced cellular stress response 

activation. 

The application of the above described and proposed reporter systems can be positioned in 

mechanistic toxicology, early pre-clinical drug discovery for compound classification or compound 

ranking. Alternatively they can be applied in more large compound screening campaigns to build 

reference databases for future compound classification or as part of for example large consortia 

such as ToxCast[198] to complement the current set of HT assays. Such large compound screens 

could then be integrated with QSAR analysis. We have so far evaluated the feasibility of such an 

approach by testing the effect of the Spectrum Collection compound library including 2,350 FDA 
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approved drugs and active natural product compounds on the modulation of the Srxn1-GFP 

reporter in HepG2 cells. HepG2-Srxn1-GFP cells were exposed to individual drugs at 10 µM and 

then treated with a specific activator of the Keap1/Nrf2 route, CDDO-Me,[199] and then fixed 

after 7 hr or left untreated and then fixed after 24 hr. We quantified the effect of all compounds 

Srxn1-GFP activation and determined the Z-scores to rank all compounds compared to control 

conditions. We observed compounds that strongly enhance the Nrf2/Srxn1 response induced by 

CDDO-Me, which interestingly contained colchicine, vincristine and vinblastine that all effect 

microtubule polymerization as a common pharmacological effect (Fig. 6). In addition, we observed 

compounds that inhibit the CDDO-Me-mediated GFP-Srxn1 upregulation, which also included 

compounds from the same pharmacological class that inhibit Na+/K+-ATPase ion channels. Such 

reference compound data allow the identification of off-target effect related to modulation of 

adaptive stress response pathways. Also QSAR analysis of such a dataset may allow the 

identification of toxicophores that affect the Nrf2/Srxn1 response.  

Figure 6: Compound screen for Nrf2-mediated Srxn1 induction. To monitor NRF2 activity upon drug 

exposure, BAC Srxn1-GFP HepG2 cells were used. Imaging was performed three days after cell seeding in 

96-well µ-clear imaging plates, Spectrum library compounds were transferred by automated pipetting to a 

final concentration of 10 µM in 6 replicate plates. A) Three plates were incubated for 24hr, fixed and 

imaged by automated confocal microscopy. B) Three other plates were co-exposed to 30 nM CDDO-Me, a 

potent Nrf2 activator, and fixed after 7h incubation; this set of plates allowed us to identify compounds 

that inhibit or enhance the Nrf2 response. The average cellular Srxn1-GFP intensity was determined by 

ImageJ-based image analysis. The Z-score was calculated based on the population average. Per well, on 

average 5000 cells were quantified. If this number was less than 500, a compound was marked as severe 

toxic and excluded from the analysis. For a detailed description of the screen see supporting information 2. 

8.2. Effects of chemical exposure on the dynamics of cellular signalling. 

A good example of a highly dynamic adaptive signalling response is the nuclear translocation the 

transcription of factor NF-κB after inflammatory cytokine signalling. This is highly relevant in DILI 

as already described above and therefore monitoring the effect of chemicals on this oscillatory 

response is highly relevant. We have previously demonstrated such an effect for the drug 

diclofenac, a widely used non-steroidal anti-inflammatory drug, which causes hospitalization upon 
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liver failure in 23/100000 users according to a prospective study among arthritis patients.[200] 

Diclofenac is hepatotoxic in animal models at very high doses,[201] yet a combination of very low  

Figure 7: Multiparametric analysis of BAC RelA-GFP HepG2 cells for nuclear translocation. A) 

Characterization of nuclear oscillation features. Per single cell the time of the peaks, the duration of the 

peaks, the delay time between peaks, the time between peaks, the peak amplitude and the slopes of 

nuclear entry and exit kinetics. B) Single cell nuclear oscillation plots of cells with 4 nuclear translocation 

events. C) Nuclear translocation dynamics of RelA-GFP under a concentration range of TNFα and IL1β. D i) 

Normalized RelA-GFP nuclear translocation upon 10ng/mL TNFα stimulation. Cells were pre-incubated 

under 2% DMSO control or 500 µM diclofenac (DCF) conditions. ii) Population distribution of the number of 

peaks under 2% DMSO control or 500 µM diclofenac (DCF) conditions. iii) Nuclear oscillation features of 

cells under 2% DMSO control or 500 µM diclofenac (DCF) conditions. Duration of peak 2, the delay time 

between peak 1 and 2 and the amplitude of peak 2 are displayed. E) Schematic overview of NF-ĸB signalling 

pathway including feedback loops. For a detailed description of the experiment see supporting information 

3. 

 

doses of diclofenac and LPS exposure in rats leads to the exposure of DAMPs and pro-

inflammatory cytokines IL1β, TNFα, and CINC1.[147] Furthermore, in vitro assays showed that in 

HepG2 cells TNFα stimulation and in primary human hepatocytes a mixture of TNFα, IL1α, IL6 and 

LPS leads to synergistically induced apoptosis or cell death, respectively.[38, 146] To assess this  

interaction further we established a high content analysis assay in HepG2 cells to measure the 

activation status of NF-κB induced by TNFα. For this we generated BAC-GFP-RelA HepG2 cells. 

TNFα exposure results in a concentration dependent nuclear translocation of the NF-κB complex 
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containing the GFP-RelA subunit (Fig. 7). NF-κB transcriptional activity leads to IkBα expression and 

subsequent shuttling of NF-κB back into the cytoplasm. Continuous TNFα stimulation however 

stimulates NF-κB to a second nuclear translocation, characterized by the typical nuclear oscillation 

pattern.  Importantly, diclofenac inhibits the oscillatory response. Multiparametric analysis of NF-

κB oscillation at single cell level allows the identification of different parameters, accurately 

describing the cell- population distributions of the nuclear translocation responses and the effect 

of diclofenac (Fig. 7). Our current data fit the mathematical models of feedback mechanisms that 

control NF-κB activity.[202] High throughput microscopy will now allow us to integrate this 

quantitative single cell NF-κB oscillation data in mathematical models to predict the mechanism by 

which chemicals interfere with the NF-κB signalling pathways and thereby suppress overall survival 

signalling. Indeed, depletion of NF-κB in HepG2 cells sensitizes cells towards diclofenac-induced 

cell death [38].  

8.3. RNA interference to unravel signalling networks that control cellular stress 

responses.   

Above we described the regulatory mechanisms by which various physiological adaptive stress 

response pathways are controlled. This is based on the current scientific knowledge and may not 

per se establish how chemicals affect these pathways. Chemical cell injury is associated with 

extensive activation of various protein kinases and ubiquitinases that mediate post-translational 

modification of various proteins and thereby affect their activity. This may impinge as well on the 

modulation of these adaptation programs. Hence understanding the entire complexity of the 

signalling networks that drive adverse drug reactions requires functional genomics RNA 

interference-based approaches as well. The integration of RNA interference with HCI of the GFP-

reporters is a powerful approach. We first addressed this concept to assess the role of alternative 

mechanisms by which the Keap1/Nrf2 pathway is controlled. Indeed alternative mechanisms of 

Nrf2 regulation have been reported: e.g. binding of selective substrate for autophagy p62 to the 

KIR motif on Keap1 leads to activation of Nrf2 [203] or a Keap1 independent degradation of Nrf2 

possibly by phosphorylation of specific Nrf2 serine sites, e.g. by glycogen synthase kinase 3 (GSK-3) 

and protein kinase C (PKC).[204],[205] We sought to identify novel candidate signalling molecules 

that control the activation of Srxn1-GFP expression by a specific activator of Keap1, CDDO-Me. As 

a first step we evaluated the role of epigenetic modifiers (~150 target genes) and performed 

knockdown of individual genes by Dharmacon siRNA smartpool mixes followed by CDDO-Me 

treatment for 7 hr. Nrf2 knock down as a positive control blocked CDDO-Me-induced Srxn1 

expression as expected, while Keap1 knockdown enhanced the response. Interestingly, SMARCA2 

was found to almost fully block the adaptive stress response program, while LRCH4 enhanced the 

response (Fig. 8). These results exemplify that RNAi screens can further contribute our 

understanding which signalling networks control pathways of toxicity. Genetic polymorphism in 

candidate regulators may determine the amplitude of cellular adaptive stress response programs 

and thereby the susceptibility to particular adverse drug reactions. Much work will be required in 

this area.  
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Figure 8: siRNA screen for Nrf2-mediated Srxn1 induction. To monitor the epigenetic modifiers that 

modulate Nrf2 activity we performed a siRNA screen of in total ~150 candidate genes in BAC Srxn1-GFP 

HepG2 cells. Cells were transfected with siRNA for 72 hr followed by exposure to CDDO-Me for 7 hr. Then 

cells were fixed and imaged on a Nikon confocal microscope and image analysis of Srxn1-GFP expression in 

individual cells using Image-J. Z-score was determined for the effect of individual genes. Note that 

SMARCA2 knock down inhibits Srxn1 expression while LRCH4 is enhanced Srxn1 expression. NFE2L2 (Nrf2) 

and Keap1 were used as controls. For a detailed description of the experiment see supporting information 

4. 

9. Future perspectives.  

In this review we described the approaches and advantages to apply high content imaging to 

monitor the dynamics of adaptive stress response pathways that are critical in toxicity in relation 

to compound screening, mechanistic RNAi studies and dynamic modeling of such responses. So far 

these studies are based on the analysis of 2D cell culture of HepG2 cells. While such systems are 

likely fit for purpose for various applications, these cells contain limited reminiscence with human 

hepatocytes in the in vivo situation and have for example limited xenobiotic metabolism 

capacity.[206, 207] Nevertheless, there are improved methods to culture HepG2 cells in 3D 

cultures which will improve their differentiation and increase their metabolic capacity.[208] When 

such 3D cultures, in combination with other relevant liver cells, are applied to the HepG2 reporter 

cell lines, we may well get better prediction of liver toxicity. Automated live cell imaging of 3D 

cultures requires fast confocal imaging approaches and is rather in its infancy.  

Alternatively, for improved modeling of the stress responses in relation to toxic outcome, 

the above reporter assays could be combined with alternative fluorescent probes that detect 

various biochemical parameters such as mitochondrial membrane potential, ROS or cell death. 
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This will then allow to more closely dissect the relationship between levels of stress activation and 

ultimate onset of cytotoxic events and help to assess the safety window of stress response 

activation. 

An ultimate goal for an efficient monitoring of stress response signalling would be to 

integrate different reporters in one cell system, by labeling the different reporters with different 

fluorescent proteins. This would then allow the evaluation of the relationship between activation 

of different stress responses at the cellular level, and again to determine the maximal levels of 

stress responses in relation to toxic outcome. Alternatively, different cell reporters that contain 

different colors could be mixed into a ‘rainbow’ cell stress reporter platform that would capture 

the different stress response in one well, yet not in the same cells. 

Certainly HepG2 may on the long run not be the optimal cell model and stem cell technology 

seems to be the future. While current differentiation protocols are at the most feasible to 

generate hepatocyte-like cells from either human pluripotent stem cells or induced-pluripotent 

stem cells,[209] it will be of high relevance to generate iPS cells with critical stress response 

markers. These can then be differentiated in hepatocyte-like cells and used in high content 

imaging approaches.  

How can we eventually integrate these models in compound screening? As mentioned, 

these HepG2 reporter systems could be a highly valuable tool in large screening efforts including 

the ToxCast and Tox21[210] efforts. In particular the single cell analysis of stress responses as well 

as the evaluation of dynamic responses using live cell imaging will be a major asset to better 

dissect the principal mode of action of chemicals. Since these reporter systems allow fixation, 

large compound screens are feasible. On a more limited scale these reporter systems can be used 

in a pre-clinical drug development program to classify smaller compound library for lead 

prioritization: i.e. compounds that in a concentration escalation response provide minimal 

activation of various stress responses are likely to have also the least interference with the normal 

cellular physiological homeostasis and hence a reduced liability for adverse drug reactions. 
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Supporting information 1 

[Movies of several BAC-reporter cell lines have been uploaded. The DNA-damage response BAC-

reporters 53BP1-GFP, p53-GFP & p21-GFP were exposed to 25μM Etoposide. The UPR BAC-

reporters ATF4-GFP, XBP1-GFP, BiP-GFP and Chop-GFP were exposed to 10 μM tunicamycin. The 

oxidative stress BAC-reporters Nrf2-GFP, Keap1-GFP and Srxn1-GFP were exposed to 10μM 

iodoacetamide. The inflammatory BAC-reporters RELA-GFP, ICAM1-GFP and IKBalpha-GFP  were 

exposed to 10 ng/ml TNFα. All movies are over a time course of 24 hours with equidistant time 

intervals between consecutives frames]. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

Supporting information 2 

[Figure 6: Human hepatoma HepG2 cells were obtained from American Type Culture Collection 

(clone HB-8065, ATCC, Wesel, Germany). HepG2 cells stably expressing Srxn1-GFP were created by 

500ug/mL G418 selection upon transfection of GFP tagged Srxn1 cloned into bacterial artificial 

chromosome (BAC) construct, using LipofectamineTM 2000 (Invitrogen, Breda, Netherlands). For 

all experiments the cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum, 25 U/mL penicillin and 25 µg/mL streptomycin 

between passages 5 and 20. The screening was performed on μClear Greiner 96 well plates on a 

Nikon TI eclipse A1 MP confocal microscope. Spectrum library compounds were transferred by 

automated pipetting to a final concentration of 10 µM in 6 replicate plates. Three of these plates 

were incubated for 24hr, fixed and imaged by automated confocal microscopy. The three 

remaining plates were co-exposed to 30 nM CDDO-Me, a potent Nrf2 activator, and fixed after 7h 

incubation. The spectrum library 2320 was obtained from Microsource Discovery Systems, 

Gaylordsville. This collection consists of 2320 compounds of which 60% drug components, 25% 

natural products and 15% other bioactive components. The compounds are dissolved in DMSO at 

10 mM and diluted to 10 μM final concentration (0.1% DMSO)]. This material is available free of 

charge via the Internet at http://pubs.acs.org. 

Supporting information 3 

[Figure 7: Human hepatoma HepG2 cells were obtained from American Type Culture Collection 

(clone HB-8065, ATCC, Wesel, Germany). HepG2 cells stably expressing RelA-GFP were created by 

500ug/mL G418 selection upon transfection of GFP tagged RelA cloned into bacterial artificial 

chromosome (BAC) construct, using LipofectamineTM 2000 (Invitrogen, Breda, Netherlands). For 

all experiments the cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum, 25 U/mL penicillin and 25 µg/mL streptomycin 

between passages 5 and 20. 



Chapter 2 
 

36 
 

Prior to imaging, nuclei were stained with 100ng/mL Hoechst 33342 in complete DMEM for 

45 minutes. Next, cells were exposed to 500µM Diclofenac (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) or 0.2% DMSO for 8 hours. Then, the cells were stimulated with the indicated 

amount of human TNFα (R&D Systems, Abingdon, UK). Nuclear translocation was followed for 6 

hours by automated confocal imaging every 6 minutes (Nikon TiE2000, Nikon, Amstelveen, 

Netherlands). Quantification of the nuclear/cytoplasmic ratio of GFP-RelA intensity in individual 

cells was performed using an algorithm for imageJ]. This material is available free of charge via the 

Internet at http://pubs.acs.org. 

Supporting information 4 

[Figure 8: Human hepatoma HepG2 cells were obtained from American Type Culture Collection 

(clone HB-8065, ATCC, Wesel, Germany). HepG2 cells stably expressing Srxn1-GFP were created by 

500ug/mL G418 selection upon transfection of GFP tagged Srxn1 cloned into bacterial artificial 

chromosome (BAC) construct, using LipofectamineTM 2000 (Invitrogen, Breda, Netherlands). For 

all experiments the cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum, 25 U/mL penicillin and 25 µg/mL streptomycin 

between passages 5 and 20. Knock down of a certain gene was done by performing reverse 

transfection. For the transfection mix, pooled siRNAs (50nM) where mixed with INTERFERin (0.3% 

end dilution, Polyplus, Leusden, Netherlands) and serum free medium. The used siRNAs were 

siNFE2L2, siKEAP1 and the libraries kinases, ubiquitinases, deubiquitinases, epigenetic modulators, 

transcription factors and toll-like receptors which were all derived from Dharmacon (Lafayette 

Colorado, USA). As control, Mock was used in which no siRNA was added to the transfection mix. 

Medium was refreshed 24 hours after transfection or 100 μL medium was additionally added 7 

hours after reverse transfection]. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

 

  



 

37 
 

 

High Content Imaging-based BAC-GFP Toxicity Pathway 

Reporters to Assess Chemical Adversity Liabilities 

 

 

This chapter has been submitted to Archives of Toxicology as: 

Steven Wink*‡, Steven Hiemstra*‡, Suzanna Huppelschoten*, Bram Herpers*, Bob van de Water*§ 

 

‡Both authors contributed equally 

*Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The 

Netherlands 

 

High Content Imaging-based BAC-GFP Toxicity Pathway Reporters to Assess Chemical Adversity 

Liabilities 

 

 

 

 

  

 Chapter 3 



Chapter 3 

38 
 

1. Abstract 

Adaptive cellular stress responses are paramount in the healthy control of cell and tissue 

homeostasis and generally activated during toxicity in a chemical-specific manner based on the 

mode-of-action. Here we established a platform containing a panel of distinct adaptive stress 

response reporter cell lines based on BAC-transgenomics GFP tagging in HepG2 cells. Our current 

panel of ten BAC-GFP HepG2 reporters together contain i) upstream sensors, ii) downstream 

transcription factors, and iii) their respective target genes, representing the oxidative stress 

response pathway (KEAP1/Nrf2/Srxn1), the unfolded protein response in the endoplasmic 

reticulum (XBP1/ATF4/HSPA5/DDIT3), and the DNA damage response (53BP1/p53/p21). Using 

automated confocal imaging and quantitative single cell image analysis we established that all 

reporters allowed the time-resolved, sensitive and mode-of-action specific activation of the 

individual BAC-GFP reporter cell lines as defined by a panel of pathway specific training 

compounds. Implementing the temporal pathway activity information increased the 

discrimination of training compounds. For a set of >30 hepatotoxicants the induction of Srxn1, 

HSPA5, DDIT3 and p21 BAC-GFP reporters correlated strongly with the transcriptional responses 

observed in cryopreserved primary human hepatocytes. Together our data indicate that a 

phenotypic adaptive stress response profiling platform will allow a high throughput and time-

resolved classification of chemical-induced stress responses, thus assisting in the future 

mechanism-based safety assessment of chemicals. 

 

2. Introduction 

In the past decades hepatic toxicity has contributed disproportionately to drug withdrawals [4]. 

Nowadays drug-induced liver injury (DILI) is still notoriously difficult to predict in as well preclinical 

and clinical trial settings because of the often idiosyncratic nature. There is a strong incentive to 

integrate human-relevant mechanistic understanding of adverse drug reactions in in vitro based 

data for evidence and read across based approaches for risk assessment. Transcriptomics has 

contributed much to our mechanistic understanding and has helped to initiate and populate the 

adverse outcome pathway (AOP) framework [63, 211]. AOPs are described as a sequential chain of 

causally linked events at different levels of biological organization that together culminate in the 

adverse health outcome. While some AOPs have so far been established, a next important step is 

to translate AOP-related mechanistic understanding in advanced preferably quantitative high 

throughput assays that reflect pathways essential in target organ toxicity. Our vision is to establish 

an imaging-based platform that can quantitatively assess the activation of individual key events 

relevant to AOPs. Our initial focus is on adaptive stress response pathways, that are typically part 

of AOPs and related to adverse drug reactions.  

Chemicals may interact with cellular components leading to an altered cell biochemical 

status. Cells sense these biochemical changes and activate specific adaptive stress response 

pathways. These pathways are activated to combat detrimental conditions under which cells 

cannot function normally. Classical adaptive stress response pathways are the anti-oxidant 

pathways (OSR) mediated by activation of the Nrf2 transcriptional program [212], the endoplasmic 

reticulum (ER) unfolded protein response (UPR) mediated by XBP1, ATF4 and ATF6 transcription 

factor activation [213], and the DNA damage repair (DDR) pathway typically related to activation of 

the p53 transcriptional program [214, 215]. We propose that the quantitative dynamic monitoring 
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of the activation of these adaptive stress response pathways at the single cell level in high 

throughput systems will significantly contribute on the hand to chemical safety assessment.  

All above mentioned adaptive stress response pathways can roughly be conceived as three 

consecutive steps: i) ‘sensing’ of the biochemical perturbations; ii) downstream transcription factor 

activation through either stabilization and/or nuclear translocation; and iii) downstream target 

gene activation. For the OSR this involves: i) KEAP1 modulation, ii) Nrf2 stabilization and nuclear 

translocation, followed by iii) target gene expression including Srxn1 [216, 217]. The UPR involves i) 

sensing of unfolded proteins in the lumen of the ER by IRE1, PERK and ATF6, followed by ii) 

downstream transcription factor stabilization and nuclear translocation of ATF4, ATF6 and XBP1 

and iii) subsequent activation of the expression of the chaperone BiP/Grp78/HSP5A and the 

transcription factor CHOP/DDIT3 [218]. Finally the DDR involves i) recognition of DNA damage sites 

and DNA damage foci formation with accumulation of e.g. 53BP1 in these foci, subsequent ii) 

stabilization of p53 through phosphorylation by kinases activated after DNA damage, and iii) 

expression key p53 target genes upon translocation of p53 to the nucleus including p21 and BTG2 

[219, 220] (see Figure 1A). We anticipate that the integration of all these different sensors, 

transcription factors and downstream targets in fluorescent protein reporters would facilitate the 

evaluation of the dynamic activation of adaptive stress responses at the single cell level using high 

content imaging approaches. Therefore the aim of the current work was to establish and 

systematically evaluate the application of GFP-reporters using HepG2 cell lines for these three 

pivotal adaptive stress response pathways using bacterial artificial chromosome (BAC) cloning 

technology [48] targeting individual “sensor” proteins, transcription factors as well as downstream 

target proteins. Since DILI prediction remains a major problem, we focused on the integration of 

these reporters in the liver hepatoma cell line HepG2, which is routinely used for high throughput 

first tier liver toxicity liability assessment [221-223]. 

Here, we established, characterized and evaluated in total 10 BAC-GFP HepG2 reporter cell 

lines reflecting three adaptive stress response pathways for the application in live cell high content 

imaging in relation to a set of DILI reference compounds. Our data indicate that these reporter cell 

lines consistently selective monitor the dynamic activation of the OSR, UPR and DDR at the single 

cell level for pathway specific compounds. Moreover, we demonstrate that these HepG2 BAC-GFP 

reporter cell lines can identify the activation of these stress response pathways that are typically 

seen by DILI drugs in primary human hepatocytes. Interestingly, the live cell acquisition data allow 

the improved classification of DILI compounds based on dynamic stress pathway activation.  
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3. Material and Methods 

3.1. Generation of GFP-tagged cell lines 

Human KEAP1, NFE2L2 (Nrf2), CDKN1A (p21), TP53 (p53), BTG2, TP53BP1, XBP1, DDIT3 (CHOP), 

ATF4, HSPA5 (BiP) and mouse Srxn1 BAC clones were selected and GFP tagged as described 

previously [48] and stably introduced into HepG2 cells by transfection and 500μg/ml G-418 

selection. At least 20 of the monoclonal BAC transfected HepG2 colonies were separately grown 

out and GFP positive clones suitable for imaging were selected to complement the BAC-GFP stress 

response reporter platform. 

3.2. RNA interference 

siRNAs against human NFE2L2 (NRF2), TP53 (P53), ATF4, ATF6 and EIF2AK3 (PERK)  were acquired 

from Dharmacon (ThermoFisher Scientific) as siGENOME SMARTpool reagents, as well as in the 

form of four individual siRNAs. HepG2 cells were transiently transfected with the siRNAs (50nM) 

using INTERFERin (Polyplus) as described previously [38] 

3.3. Western blotting 

Samples were collected by direct cell lysis (including pelleted apoptotic cells) in 1x sample buffer 

supplemented with 5% v/v β-mercaptoethanol and heat-denatured at 95°C for 10 minutes. The 

separated proteins were blotted onto PVDF membranes before antibody incubation in 1% BSA in 

TBS-Tween20. Antibodies: mouse-anti-GFP (Roche) and mouse-anti-tubulin (Sigma) and mouse-

anti-GAPDH (Santa Cruz). Horseradish Peroxidase detection was performed by Pierce® ECL 

(ThermoScientific) using the ImageQuant LAS4000 (GE HealthCare). Cy5 was detected by the 

ImageQuant LAS4000(GE HealthCare). 

3.4. Microscopy 

Accumulation of target protein-GFP levels, localization or foci formation and propidium iodide 

staining was monitored using a Nikon TiE2000 confocal laser microscope (lasers: 647nm, 488nm 

and 408nm), equipped with an automated stage and perfect focus system. Prior to imaging at 20x 

magnification and either 1X, 2X or 4X zoom, HepG2 cells were loaded for 45 minutes with 

100ng/mL Hoechst33342 to visualize the nuclei, upon which the Hoechst-containing medium was 

washed away to avoid Hoechst phototoxicity [224]. The time interval was dependent on the 

required resolution for the corresponding reporter cell line and on the number of reporter types 

plated simultaneously on the imaging plates. Cell death was determined by monitoring the 

accumulation of PI stained cells after a 24 hour time period.  

3.5. Quantitative image analysis 

Image quantification was performed with CellProfiler version 2.1.1 [49] with an in house 

developed module implementing the watershed masked algorithm for segmentation [193]. The 

watershed separates an image in regions with single cells followed by pixel classification for each 

region as fore- or background and this method performs well detecting the Hoechst33342 stained 

nuclei of the closely packed HepG2 cells. The binary mask containing the segmented nuclei was fed 

to the identify-primary-objects module, overlap-based-tracking module and intensity-nuclei-size-

shape-measurement modules of CellProfiler. For the cytosol location of the Srxn1-GFP, Btg2-GFP 

and BiP-GFG reporters the nuclear objects were used as seeds for the identify-secondary-objects 
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module set to a propagation method with the MCT algorithm on adaptive (window size 

approximately 20 pixels) segmentation. The Keap1 and TP53BP1 reporters are based on foci 

detection. The nuclei are segmented and used as seeds for the cytosol identification using the 

cytosolic GFP signal for the KEAP1-GFP cell line. The foci detection is performed with the 

fociPicker3D plugin [225] in ImageJ and each individual foci is assigned to either the nuclei (for 

P53BP1) or cytosol (KEAP1) using the CellProfiler assign parent-child relationship module. The p21, 

p53, Nrf2, Xbp1, Atf4 and CHOP reporters are based on quantifying the GFP signal in the nuclei. 

The nuclei signal is segmented and these regions are directly used to quantify the GFP intensity. 

Segmentation results were stored as png files for quality control purposes and CellProfiler 

pipelines were stored for reproducibility. Image analysis results were stored on the local machine 

as HDF5 files.  

3.6. Data analysis 

Data analysis, quality control and graphics was performed using the in house developed R package 

H5CellProfiler (Wink et al., 2015, manuscript in preparation). 

The features of interest were extracted from the HDF5 files and further analyzed using the 

graphical user interface of the H5CellProfiler package. The mean of the features for each 

compound, concentration, cell line and replicate combination was calculated. To account for PI 

background staining and noise the segmented PI segmentations were masked by a 2 pixel dilated 

nuclei. The area of these nuclei and the PI were divided to obtain the cell death stain to cell area 

ratio. These ratios were filtered to be at least 10% of the cell size and following this procedure 

each cell was either flagged as alive or dead in the final time point of the 24 live imaging session. 

In this manner the fraction of dead cells could be accurately determined. All resultant summarized 

data was stored as tab delimited text files and further processed for normalization and graphical 

presentation using R.  

Due to automated confocal imaging over a one year period, the time course data required 

intensity variation plate normalization as well as modeling of the time course-data. The mean and 

integrated intensity features and the foci were first transformed to fold change with respect to the 

plate- specific DMSO controls at time point 1. Afterwards these value were scaled between 0 and 

1 over the entire dataset with the formula (x-xmin_screen)/(xmax_screen –xmin_screen) for the purpose of 

proper heatmap display. Prior validation of negative and positive control responses preceded this 

scaling procedure. After the normalization steps the response specific features were fit separately 

per replicate with the b-splines method with a degree of freedom of 10 and 3rd degree 

polynomials using the base-r lm function and bs function of the splines package. This allowed 

resampling the data with equidistant time points for replicate statistics and higher density time 

point sampling (200 points) for smooth heatmap display. All b-spline fits were stored for 

verification purposes.  

3.7. Data representation  

All HCI data representations were generated or modified with Illustrator CS6, Fiji, ggplot2 [226], 

the aheatmap function of the NMF package [227]. For response data clustering the equidistant 

sample time profile features from the b-spline model were used to calculate a distance matrix for 

each feature separately using Euclidean distance. A mean distances matrix was calculated and 

subjected to clustering with the ward.D  method of the hclust function. 
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3.8. Reagents 

All compound drugs were acquired from Sigma-Aldrich, except for Cisplatin (Ebewe), CDDO-me 

(kind gift from Dr. Ian Copple, University of Liverpool), Bendazac (kind gift from Dr. Anita Dankers, 

Janssen Pharmaceutics), Metformin (MIP DILI consortium), Propylthiouracil, Captopril, Tacrine, 

Thioridazine, Azathioprine and Sulindac (all a kind gift from Dr. Weida Tong, NCTR-FDA).  All 

compounds were freshly dissolved in DMSO, except for Metformin, Venlafaxine, Methapyrilene, 

Fluphenazine, Buthionine Sulfoxamine, Bromoethlyamine, Lomustine (all PBS), Acetaminophen, 

2,4-dinitrophenol and Phenobarbital (all DMEM).    

3.9. Cell culture 

Human hepatoma HepG2 cells were acquired from ATCC (clone HB8065) and maintained and 

exposed to drugs in DMEM high glucose supplemented with 10% (v/v) FBS, 25U/mL penicillin and 

25μg/mL streptomycin. The cells were used between passage 5 and 20. For live cell imaging, the 

cells were seeded in Greiner black μ-clear 384 wells plates, at 20,000 cells per well. 

3.10. Gene expression analysis. 

CEL files were downloaded from the Open TG-GATEs database: “Toxicogenomics Project and 

Toxicogenomics Informatics Project under CC Attribution-Share Alike 2.1 Japan” 

http://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html. Probe annotation was performed 

using the hthgu133pluspmhsentrezg.db package version 17.1.0 and Probe mapping was 

performed with hthgu133pluspmhsentrezgcdf downloaded from NuGO (http://nmg-

r.bioinformatics.nl/NuGO_R.html). Probe-wise background correction (Robust Multi-Array Average 

expression measure), between-array normalization within each treatment group (quantile 

normalization) and probe set summaries (median polish algorithm) were calculated with the rma 

function of the Affy package (Affy package, version 1.38.1 [228]. The normalized data were 

statistically analyzed for differential gene expression using a linear model with coefficients for 

each experimental group within a treatment group. A contrast analysis was applied to compare 

each exposure with the corresponding vehicle control. For hypothesis testing the empirical bayes 

statistics for differential expression was used followed by an implementation of the multiple 

testing correction of Benjamini and Hochberg using the LIMMA package.  
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4. Results 

4.1. GFP-tagged stress-reporter proteins respond to corresponding chemically induced 

stress. 

To enable live cell imaging of the chemically induced dynamics of cellular adaptive stress response 

programs a panel of reporter cell lines was created using BAC cloning technology [48]. For each 

adaptive stress response pathway an upstream ‘sensor’, a transcription factor and a downstream 

target was chosen (Fig. 1A). For the oxidative stress response program (OSR) kelch-like ECH-

associated protein 1 (KEAP1) was selected as upstream sensor, nuclear factor, erythroid 2-like 2 

(Nrf2/NFE2L2) as transcription factor and Srxn1 as downstream target [217, 229]. For the UPR heat 

shock 70kDa protein 5 (BiP/HSPA5) regulates the endoplasmic reticulum (ER)-stress/unfolded 

protein response (UPR) pathway through binding to accumulated unfolded proteins and 

consequently dissociating from the transmembrane transducers ATF6, PERK and IRE-1 [230]; as 

such BiP acts as a sensor of the UPR. However, BiP is also induced strongly after ER stress [231] and 

also reflects UPR activation. We labeled two arms of the UPR: for the pro-survival route we labeled 

the transcription factor XBP1 and downstream target chaperone BiP; and for the translation 

inhibition and pro-apoptotic arm we labeled the activating transcription factor 4 (ATF4) and DNA-

damage-inducible transcript 3 (CHOP/DDIT3). For the DNA damage response program (DDR) the 

upstream sensor tumor protein p53 binding protein 1 (TP53BP1) was chosen based on its ability to 

sense double strand breaks [232] and activate the Ataxia Telangiectasia Mutated Protein pathway 

(ATM). As transcription factor for the DDR tumor protein p53 (p53/TP53) was chosen as the pivotal 

transcription factor in the DDR; two p53 downstream targets selected were cyclin-dependent 

kinase inhibitor 1 (p21/CDKN1A) and  BTG family member 2 (BTG2). To ensure near-endogenous 

protein-fusion levels and normal regulation of these adaptive stress response programs eGFP and 

selection markers were cloned in bacterial artificial chromosome (BAC) vectors which consist of 

genomic DNA which still contain the endogenous promotor, enhancers and introns. BACs were 

selected that contained at least 10k bp on either side of the exon domains.  

The BAC-GFP construct was used to transfect HepG2 cells using electroporation together 

with pRED/ET recombinase enzyme as described previously [13]. Viable HepG2 colonies were 

passaged separately to obtain monoclonal BAC-GFP cell lines. For each target gene a single 

monoclonal BAC-GFP cell line was selected based on fluorescent intensity and protein size (Figure 

1B). All selected reporter lines were evaluated on fusion-protein size, responsiveness to selective 

pathway activators and targeted knock down by RNAi (Fig. 1C and 1D). The GFP-tagged protein 

sizes for all targets were in line with reported values (http://www.genecards.org/). While KEAP1-

GFP levels were not induced by the pro-oxidant DEM, as expected, the levels of NRF2-GFP and 

SRXN1-GFP were clearly induced by DEM. The ER-stress reporters ATF4-GFP, CHOP-GFP, XBP1-GFP 

and BiP-GFP clearly responded to the ER-stress inducer thapsigargin. The DDR reporters p53-GFP, 

p21-GFP and Btg2-GFP are clearly induced after 24 hr exposure of the topoisomerase inhibitor 

etoposide; the large size of TP53BP1-GFP (241 kDa) prohibited qualitative assessment by Western 

blotting. Cellular localization of GFP-fusion products for all reporters was evaluated by confocal 

microscopy for control and 5 hr (Nrf2) or 24 hr (all others) compound treatment (Figure 2). 

A clear increase in levels of all   downstream targets GFP-Srxn1, GFP-Btg2 and GFP-BiP in the 

cytosol was seen. For the transcription factors GFP-Nrf2, GFP-Xbp1, GFP-CHOP and GFP-p53 as 

well as GFP-p21 an increase in nuclear intensity was observed. 
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Figure 1: Selection and characterization of adaptive stress response pathway markers for OSR, UPR and 

DDR. A) Selection of the individual reporters for the respective pathways representing ‘sensor’, 

transcription factor and target genes. B) Insertion of GFP into BAC plasmid is followed by transfection and 

selection of the (monoclonal) HepG2 reporter. The selection process involves 1) imaging of 10-24 

transfected HepG2 clones to determine suitability (fluorescence intensity and cell-cell variability) as a 

reporter cell line, with or without exposure to a stress-inducing compound depending on the reporter type, 

2) determining the size of the target protein GFP fusion and induction level after stress-inducing exposure 

by western blot.  C) Western blot analysis of reporter expression under control conditions and treatment 

conditions. Reporters for oxidative stress (Keap1, Nrf2 & Srxn1), ER-stress (Atf4, Xbp1, CHOP & BiP), DNA 

damage (p53, p21 & Btg2). The size and responsiveness to chemical stress of the GFP-fusion protein 

product was evaluated. Cells were treated with 100 μM DEM (oxidative stress), 25 μM etoposide (DDR) and 

1 μM thapsigargin (UPR) for the either 5 hr (Nrf2-GFP) or 24 hours (all others) followed by WB analysis. D) 

Responsiveness of target genes was assessed by knock down for Nrf2 (Srxn1 activation), p53 (p21 and BTG2 

activation) and UPR transcription factors Xbp1, ATF4 or ATF6 (BiP and CHOP activation).  

An increase in the number of nuclear DNA damage foci for GFP-TP53BP1 and cytosolic 

autophagosome-related foci for GFP-Keap1 is also evident. Little increase in Atf4-GFP was visible, 

yet image analysis revealed a clear and selective increase (see later Figure 4).  
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Next for all individual BAC-GFP reporters an 

automated multi-parameter imaging analysis pipeline 

was established using CellProfiler [49] software and 

ImageJ plug-ins (Figure 3). Depending on the BAC-GFP 

reporter type the different imaging readouts were 

determined using automated image analysis. For 53BP1-

GFP and KEAP1-GFP we quantified foci formation in the 

cytosolic (KEAP1-GFP translocation with 

autophagosomes) and nuclear compartment (53BP1-

GFP localization in DNA damage foci), respectively. For 

Srxn1, BiP and BTG2 we quantified the integrated GFP 

intensity in the cytosol. For Nrf2, Xbp1, ATF4, CHOP, p53 

and p21 we determined the mean GFP-intensity in the 

nucleus. The different quantitative measurements 

reflect the altered expression and localization of our 

stress reporters. 

Altogether we have established a functional panel 

of adaptive stress response reporters that allows us to 

quantitatively assess the dynamic activation of 

individual pathway components in living cells at the 

single cell level population level. 

 

 

 

 

 

 

 

Figure 2: Representative confocal images of BAC-GFP 

adaptive stress response reporters. Representative confocal 

images are shown for OSR: Keap1, Nrf2 and Srxn1 (panel A); 

UPR: BiP, Xbp1, Atf4 and CHOP (panel B), and DDR: TP53BP1, 

p53, p21 and Btg2 (panel C).  Left column reflects vehicle 

treatment for 24 hours or 5 hours for Nrf2; the two right 

panels reflect model compound treatment for 24 hr or 5 hr 

for Nrf2 (middle column overall image; right column zoomed 

image): OSR, 100 μM DEM; UPR, 1 μM thapsigargin; DDR, 25 

μM etoposide. Images of most reporters are captured at 20 

or 40 times magnification on 512X512 pixels, however the 

reporters Keap1 and TP53BP1 require a higher resolution to 

be able to count the number of foci per cell and as such these 

were captured at 40X magnification on 1024X1024 pixels. 

Hoechst channel is omitted for low intensity level reporters in 

the right column (zoom) panel. 
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Figure 3:  Automated image analysis of BAC-GFP reporter cell lines. Automated imaged analysis was 

performed using CellProfiler and ImageJ-based algorithms as described in material and methods section. A) 

The Keap1 and P53BP1 reporters were based on foci detection. Left panel: A 1024X1024 pixel 40 times 

magnified image of KEAP1-GFP reporter after 24 hours exposure to 100 μM DEM. Blue staining corresponds 

to the nuclei (i) and green corresponds to the KEAP1-GFP fusion protein (iii). The nuclei are segmented (ii) 

and used as seeds for the cytosol identification using the GFP signal (iv), the outlines of the nuclei and 

cytosols are displayed as yellow lines. Next, the GFP-signal foci corresponding to KEAP1-GFP being degraded 

in autophagosomes are segmented (v) and assigned to individual cells. B) The Btg2, Srxn1 and BiP reporters 

are based on quantifying the GFP signal in the cytosolic region of cells. First the nuclei signal (i) is 

segmented (ii) and used as seeds for the cytosol identification (iii & iv). C) The p21, p53, Nrf2, Xbp1, Atf4 

and CHOP reporters are based on quantifying the GFP signal in the nuclei. The nuclei signal (i) is segmented 

(ii)  and these regions (iv) are directly used to quantify the GFP intensity (iii). 

  



HCI-based BAC-GFP Toxicity Pathway Reporters to Assess Chemical Adversity Liabilities 

47 
 

4.2. Adaptive stress response BAC-GFP reporters respond in sensitive and selective 

manner to reference compounds 

As a next step we set out to test the responsiveness and selectivity of the panel of stress-reporter 

cell lines to: i) oxidative stress inducing agents hydrogen peroxide (H2O2), DEM, CDDO-Met (a 

pharmacological inducer of Nrf2 activity, [233]) and iodoacetamide (IAA); ii) DNA damage inducing 

agents toposide and cisplatin; and iii) UPR-inducing agents brefeldin A (BFA), tunicamycin (Tc) and 

thapsigargin (Tg). To monitor signalling programs well before any significant cytotoxicity occurs and 

thereby deduce causative relationships for the onset of cytotoxicity, compound concentrations 

were chosen that would not lead to significant cell death after 24 hours as well as two additional 

concentrations that were 2- and 4-fold lower to assess the overall sensitivity of the reporter panel. 

Reporter cell lines were imaged for a period of 24 hours using live cell confocal imaging and 

evaluated for onset of cytotoxicity by propidium iodide (PI) exclusion (Supplemental Figure 1). 

Little cell death was observed and no major differences between cell lines were discernable.  

We set out to obtain mechanistic information on the mode of activation of our different 

reporters and anticipated a selective activation by our reference compounds. We first evaluated 

whether as a simplified method only the final time point of the live imaging dataset would be 

sufficient to determine reporter activation. The endpoints from the different quantitative features 

of each reporter (see Figure 3) were collected for each reference compound concentration range 

and subjected to an unsupervised hierarchical clustering and displayed as a heatmap (Figure 4). 

The heatmap showed a clear clustering of the reporter cell lines and reference compound 

groups within the corresponding adaptive stress response pathway. This was reflected by a 

significant activation of the GFP-reporters. Intriguingly, at this 24 hr time point GFP-Nrf2 did not 

show enhanced nuclear localization and for any of the reference compounds, possibly related to an 

earlier activation. The DNA damage and UPR reporters were all activated by their corresponding 

reference compound sets. Interestingly, the UPR reference compound thapsigargin also strongly 

activated the oxidative stress reporters Keap1 and Srxn1, in accordance with observations in 

neuronal cells [234]; yet, brefeldin A and tunicamycin selectively induced the UPR response. 

Brefeldin A slightly activated the GFP-TP53BP1 reporter, while the GFP-p53, GFP-Btg2 and GFP-

p21, were not activated. This underscores the possibility to identify compound specific responses. 

4.3. Live cell imaging of HepG2 reporters define temporal ranked adaptive stress 

response profile.  

We obtained detailed live cell imaging data over a 24 hr time course for the entire reference data 

set. Next we investigated whether live imaging adds value in quantifying adaptive stress response 

programs. For most reference compounds reporter activation occurred within the first hours after 

treatment, dependent on the reporter (Figure 5). Also the dynamics of the response differed per 

reference compound and reporter. Thus, the live cell data demonstrate a rapid accumulation of 

GFP-Nrf2 starting around 2 hours and returning to close to baseline levels after 15 hr for CDDO-

Me, DEM as well as IAA (Figure 5). IAA exposure caused early activation of several adaptive stress 

response programs: the OSR reporters Keap1, Nrf2 and Srxn1 but also UPR reporter XBP1 and DDR 

reporter TP53BP1. Interestingly, while thapsigargin showed strong activation of all UPR reporters 

as well as the Keap1 and Srxn1 reporter, no clear stabilization of GFP-Nrf2 was observed. Next the 
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entire set of quantitative time course data of the reference compounds for all reporters was 

subjected to cubic hierarchical clustering, thus taking into consideration the time dynamics of each 

 

Figure 4. Effect of reference compounds on adaptive stress GFP-reporter response. Heatmap displays the 

individual GFP-reporter and compound measurements of the various reference compounds in all reporter 

cell lines. Shown are the 24 hr end-point measurements as the average of three independent experiments. 

Color intensity corresponds to plate-cell line-normalized feature values, these values are also displayed in 

the boxes. Data shown were subjected to unsupervised hierarchical clustering. Side bars correspond to 

stress pathway reporter type (top bar) and reference compound treatment class (side bar).  

reporter-treatment combination. The reporter- and treatment stress-types again cluster fully 

together (Figure 6). However by inclusion of the time dynamics into the clustering algorithm 

compounds with similar time dynamics cluster together within the reference and model 

compound blocks and thus reveals distinct response-type sub-clusters. This is most evident as the 

different compounds induce responses with distinct time dynamics and, therefore, the 

concentration ranges for each compound (except IAA 10 μM) cluster together, in contrast to the 

end-point clustering of figure 4. Altogether this supports the notion that the entire time course 

dynamics of compound responses on reporter cell lines provides added value for classification of 

compounds. 
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Figure 5: Dynamic GFP-reporter activation for different adaptive stress response pathways. A) 

Representative images of the dynamic activation of the various stress response pathway reporter cell lines 

by different reference model compounds: OSR, DEM; UPR, Tg; DDR, Etop). B) Time dynamics of all reference 

compounds on the different stress response reporters. Data shown are the normalized values for individual 

reporters. Different colors indicate low (red), medium (green) and high (blue) concentrations. 
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Figure 6: Cubic hierarchical clustering of the time courses of the reporter panel and reference 

compounds. Time dynamics of all reference compounds on the different stress response reporters was used 

for cubic hierarchical clustering as described in Material and Methods. Data shown are the normalized 

values for individual reporters of >3 independent experiments. 

4.4. DILI compounds mainly activate OSR and UPR reporter genes in primary human 

hepatocytes (PHH). 

As a next step we set out to test the reporter platform in a more DILI-relevant setting. First we 

calculated the log2 fold changes for all DILI compounds from the PHH data from the TG-GATES 

dataset for all our 11 reporter genes. We next subjected this data to hierarchical clustering (Figure 

7A). The oxidative stress transcript levels were increased by a set of 39 compounds with NFE2L2, 

KEAP1 and SRXN1 correlation over all treatments being high (pearson correlation KEAP1-NFE2L2 

0.64, KEAP1-SRXN1 0.58, NFE2L2-SRXN1 0.45). The transcript level responses of the UPR genes was 

diverse; 53 compounds activated the DDIT3/CHOP of which 33 (62%) negatively regulated 

HSPA5/BiP. ATF4 seemed to slightly correlate with oxidative stress (pearson correlation SRXN1-
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ATF4 0.4). Hardly any changes in transcript levels of XBP1 were seen likely due to its mechanism of 

post-transcriptional regulation [235]. 

Figure 7: Primary human hepatocyte data from TG-GATES. A) Unsupervised hierarchical clustering of log2 

fold change values of primary human hepatocyte transcripts in PHH. B) Rank ordered transcript fold 

changes for each reporter gene. Top 10 upregulated compounds per reporter gene were selected for HCI 

and are displayed on the right. 

A very small number of DILI compounds affected TP53, TP53BP1, CDKN1A or BTG2 transcript 

levels in PHH; this reflects the thorough screening for DNA damage effects of pharmaceuticals. A 

small cluster of compounds activated the CDKN1A and BTG2 expression but not TP53 and 

TP53BP1.  

To assess the correlation between adaptive stress pathway activation in PHH and that 

observed in our BAC-GFP reporters we decided to focus on four downstream targets that showed 
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the most prominent responses in PHH: OSR, Srxn1; UPR, CHOP/DDIT3 and BiP/HSPA5; DDR, p21. To 

select a set of DILI compounds that selectively affect individual reporters we rank ordered the PHH 

fold change transcript level data for each reporter gene and the top 10 were selected as DILI-

compound test set (Figure 7B), in total resulting in 29 different DILI compounds that partly had 

overlap between downstream targets.  

4.5. HepG2 reporters define temporal ranked adaptive stress response profiles of DILI 

relevant compounds. 

Next we tested the 29 DILI compounds in the GFP-Srxn1, GFP-CHOP, GFP-BiP and GFP-p21 cell line. 

For comparative purposes the same concentrations were used as in the PHH TG-GATES high-dose 

data. All four reporter cell lines were imaged live for 24 hr (Supplemental Figure 2). The resultant 

reporter-response time courses were subjected to the same cubic hierarchical clustering which 

lead to several distinct clusters of response-types (Figure 8). Different response-types were defined 

based on the intensity of the response, the response type, and the order of the response types. 

Based on the Srxn1-intensity level clusters of no-induction (S-0), weak-induction (S-1), middle-

induction (S-2) and strong induction (S-3) can be defined. The S-0 group of compounds includes a 

set of 4 treatments which are negative among all 4 reporters. The remaining S-0 treatments 

showed a weak p21 activation. The S-1 cluster of slightly increased Srxn1 levels are preceded by 

p21 activation and in the case of cyclosporin A GFP-BiP levels increased markedly in time preceding 

GFP-Srxn1 activation. Within the strong Srxn1 activation cluster (S-3) a subset of treatments 

oxidative stress co-occurred with p21 as well, most notably etoposide and colchicine. A distinct 

adaptive stress response profile was related to strong GFP-CHOP induction by tacrine, omeprazole 

and thioridazine treatments which cluster together with the positive controls thapsigargin and 

tunicamycin. However no increase of GFP-BiP chaperone is evident, in contrast to azathioprine and 

sulindac which have a low to no GFP-CHOP activation but a strong GFP-BiP activation. 

Finally we assessed the positive co-occurrence of reporter gene activation between reporter 

transcript levels in PHH and GFP-reporter levels in the four reporter cell lines. The correlation was 

10/10 for GFP-SRXN1, 8/10 for GFP-p21 and 5/10 for GFP-CHOP and 4/10 for GFP-BiP.  
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Figure 8: Effect of selected DILI test compounds on stress response activation. DILI compound selection 

origin is labeled black (left legend), 24 hour time course corresponds to the 4 individual columns, each 

column representing a time course for 1 of 4 reporter cell lines. Response magnitude is labeled as orange 

intensity and according to the legend (top right). Compounds and concentrations are displayed as rows and 

labeled on the right. The time course profiles were subjected to cubic clustering as described in the 

materials and methods section. 
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5. Discussion 

In the current study we established a panel of fluorescent protein reporter HepG2 cell lines using 

BAC cloning technology to follow the dynamics of several adaptive stress response pathways 

essential in chemical-induced cytotoxicity. We focused on target genes that are central in the 

regulation of three key adaptive stress response programs; for each pathway we successfully 

established reporters for the sensory machinery, downstream transcription factor and one of the 

transcription factors downstream target. Our results show that the adaptive stress response 

reporters are selective and sensitive to their corresponding reference training compounds. 

Moreover, live cell imaging enabled us to define the temporal order of activation of the adaptive 

stress response programs initiated after chemical exposure. Furthermore, DILI-related compounds 

that are strong inducers of our selected adaptive stress response pathways in PHH were positively 

identified in the HepG2 reporter cell models with Srxn1, CHOP and p21.  

Monitoring of adaptive stress response pathways as a predictive tool for chemical safety 

prediction has gained considerable attention in systems toxicology [45, 236]. So far the approaches 

have largely used transcriptomics-based strategies [45, 237]. Transcriptomics provides a 

comprehensive analysis to monitor cellular stress responses to chemicals at a single time point and 

average population level. The application of our GFP-based reporter cell lines as presented here, in 

conjunction with high content live cell imaging provides various advancements in chemical safety 

assessment that are not feasible with and/or complementary to transcriptomics. Firstly, here we 

can quantitatively assess the regulation of the entire adaptive stress response pathway irrespective 

of transcriptional regulation. Thus, we can monitor the modulation of upstream regulators such as 

KEAP1 and 53BP1, that are constitutively expressed and translocate to the autophagosomes and 

DNA damage foci, respectively, upon activation. Moreover, we can observe post-translational 

regulation of reporter expression of in particular transcription factors due to protein stabilization, 

e.g. Nrf2, or p53, or alternative processing of mRNA  (e.g. Xbp1). Secondly, our GFP-based 

reporters allow a more mechanistic evaluation of the relationship between stress pathway 

activation and cytotoxicity since we can follow the onset of stress responses at the real protein 

expression level, the cell physiology relevant molecules in cells, in single cells with the subsequent 

assessment of cell viability (e.g. onset of necrosis or apoptosis). Thirdly, it is more cost- and 

technically feasible to monitor the response in a high time resolution to determine temporal 

orders of stress pathway activation. It is of critical importance to define the detailed oscillatory 

dynamics from e.g. NF-κB [238] that are generally controlled by genetically defined negative 

feedback loops. Fourthly, the GFP-reporters allow the possibility to assess the overall cell and cell 

organelle morphological perturbations as well as foci formation from e.g. autophagosomes or DDR 

repair foci [236].  

In comparison to previous high content imaging studies, to our knowledge we developed the 

first high content imaging assay able to monitor the response of cells to chemical exposure on a 

signalling level. Previous high content imaging studies were based on either cytotoxic parameters 

such as cell death, ROS, mitochondrial potential and Ca2+ based dyes which measure toxic outcome 

measures and not the cellular responses that combat these adversities, or on morphological 

features which capture morphological changes of cells or organelles and correlate these indirectly 

to mechanisms or classify morphology based perturbations due to chemical exposure with the use 

of training data [239-241].  
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Our data indicate that our BAC-GFP-based reporter approach can clearly reveal subtle 

differences in the mode-of-action of compounds. Our UPR reference compounds thapsigargin and 

tunicamycin both induced the onset of two key UPR reporters, e.g. CHOP-GFP and BiP-GFP, to a 

similar extent and with a similar temporal profile (see Fig. 5). Yet, while thapsigargin also induced a 

strong induction of the Srxn1 reporter, tunicamycin did not. Thapsigargin causes ER-stress due to 

its inhibition of the SARC/ER Ca2+ ATPase thereby lowering Ca2+ levels in the lumen of the ER. 

Tunicamycin blocks protein glycosylation in the ER. While both conditions initiate the UPR 

response, ER calcium perturbations also induce an oxidative stress response. Yet, the latter 

response is different from compounds that directly target protein thiols, including iodoacetamide 

and DEM; although thapsigargin caused KEAP1-GFP foci formation, this was not associated with a 

strong accumulation of Nrf2-GFP, which is observed with iodoacetamide and DEM. These results 

clearly illustrate the strength of the temporal single cell live cell analysis of adaptive stress 

responses for mode-of-action clarification. Likewise, such reporter systems may also contribute to 

the adverse outcome pathway (AOP) toolbox and as such quantify the activation of individual key 

events that reflect and are critical in toxicological relevant AOPs [63].  

An important asset of our reporter systems is the temporal information on the activation of 

cellular defense programs after toxicological insult. This allows the definition of a detailed stress-

response fingerprint for individual compounds. Since our methods also marks the onset of cell 

death, this would include the identification of a point-of-no-return or tipping point, reflecting both 

the concentration as well as time point after which a certain fraction of cells dies because the 

defensive programs cannot cope with the level of stress induced by the toxicant. Together, the 

activation of certain adaptive stress response programs, the order of activation of these programs, 

the concentration or time after which the tipping point is reached will be of great benefit for risk 

assessment early in the toxicity testing pipeline and for realization of more mechanistically defined 

AOPs. 

An important feature of our reporter cell systems is that we can detect DILI compound stress 

responses that are observed in primary human hepatocytes. For a proof-of-concept, we 

concentrated on four downstream target genes for oxidative stress (Srxn1), UPR (HSPA5/BiP, 

DDIT3/CHOP) and DDR (p21). We observed a strong concordance for in particular Srxn1-GFP and 

p21-GFP reporters, and a reduced concordance for the HSPA5-GFP and CHOP-GFP reporters. This 

suggest that our HepG2 reporter models translate very well to responses in PHH. This is in 

particular of interest since the PHH responses were based on transcriptomics and not protein 

expression. Our finding would be in agreement with recent observations that the onset of 

cytotoxicity caused by a broad set of DILI compounds is comparable between HepG2 and PHH 

(Park and Goldring, personal communication). Discrepancies between PHH and HepG2 reporters 

could be due to this difference, since it is established that the correlation between transcriptomics 

and proteomics in the same model does not correlate well. Alternatively, ADME and/or cell 

physiological differences between HepG2 reporters and PHH could explain the differences. The 

Srxn1-GFP reporter showed the highest concordance with PHH, also suggesting a conservation of 

the KEAP1/Nrf2/Srxn1 pathway activation in HepG2 cells compared to PHH. 

We have established our reporters in HepG2 cells. The adaptive stress response pathways 

that we have incorporated in these cells are not specific to liver cells, and involved in the 

regulation of toxicity in most if not all cells in the body, albeit most likely with different set points. 
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As such our HepG2 reporters could be representative for general toxicity. Induced pluripotent stem 

cell technology in combination with genetic recombineering strategies will allow the integration of 

the GFP-reporters in iPSC followed by the differentiation in any cell type. This would open the way 

for the assessment of the adaptive stress pathway activation in any differentiated cell type as well 

as the precise quantitative understanding of the differences in control and activation between the 

various cell types in a same genetic background.     

In conclusion, we established a robust high throughput imaging-based platform for the single 

cell assessment of adaptive stress response pathway activation in a temporal fashion. This platform 

can contribute to a mechanism-based chemical safety assessment in both an industry and 

regulatory setting.  

 

 Supplemental figures 

Supplemental Figure 1: Cytotoxicity measurements after exposure to reference compounds. The 

percentage of dead cells was determined by analysis of the overall Hoechst 33452 positive nuclei in an 

image that was positive for propidium iodide (PI). The fraction of PI-positive cells for all compounds dose 

combinations for each individual reporter cell line is shown. (Bars indicate concentrations: lowest = red; 

middle = green; highest = blue). The number of cells after the overnight imaging session was determined by 

cell counting Hoechst 333452 positive cells, as the average per image for that compound dose 

combinations.  
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Supplemental Figure 2: Time course responses of 

OSR reporter SRXN1, UPR reporters DDIT3 & HSPA5 

and DDR reporter CDKN1A of top 10 selected TG-

GATES PHH compounds. Compounds (rows) and 

reporters (columns) are ordered alphabetically. 

Reported responses are average of three replicates. 
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1. Abstract 

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics 

approach to in detail investigate the hypothesis that critical drug-induced toxicity pathways act in 

synergy with the pro-inflammatory cytokine tumor necrosis factor  (TNF) to cause cell death of 

liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two 

hepatotoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) 

stress/translational initiation signalling and nuclear factor-erythroid 2 (NF-E2)-related factor 2 

(Nrf2) antioxidant signalling as two major affected pathways, which was similar to that observed 

for the majority of ~80 DILI compounds in primary human hepatocytes. Compounds displaying 

weak or no TNFα synergism, namely ketoconazole, nefazodone and methotrexate, failed to 

synchronously induce both pathways. The ER stress induced was primarily related to protein 

kinase R-like ER kinase (PERK) and activating transcription factor 4 (ATF4) activation and 

subsequent expression of C/EBP homologous protein (CHOP), which was all independent of TNFα 

signalling. Identical ATF4 dependent transcriptional programs were observed in primary human 

hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies 

revealed that while ER stress signalling through inositol-requiring enzyme 1 (IRE1α) and 

activating transcription factor 6 (ATF6) acted cytoprotective, activation of the ER stress protein 

kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced 

apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced 

the drug/TNFα cytotoxicity, Nrf2 signalling did not affect CHOP expression. Both hepatotoxic drugs 

enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP 

expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced 

drug-induced translation initiates PERK-mediated CHOP signalling in an EIF4A1 dependent manner, 

thereby sensitizing towards caspase-8-dependent TNF-induced apoptosis. 

 

Keywords: drug-induced liver injury; transcriptomics; RNA interference, high content microscopy 
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2. Introduction 

Drug-induced liver injuries (DILIs) constitute an important problem both in the clinic as well as 

during drug development. The underlying cellular mechanisms that determine the susceptibility 

towards developing DILI are incompletely understood. Recent data indicate that the crosstalk 

between drug reactive metabolite-mediated intracellular stress responses and cytokine-mediated 

pro-apoptotic signalling are important components in the pathophysiology of DILI [38, 242]. 

Tumor necrosis factor-α (TNFα) severely enhances liver damage caused by various xenobiotics [38, 

243-245] and it is the major cytokine to be excreted by the liver stationary macrophages (Kupffer 

cells) upon exposure to bacterial endotoxins such as LPS or as a response to hepatocyte damage 

[39]. In addition, reactive drug metabolites covalently modify cellular macromolecules leading to 

intracellular biochemical perturbations and the induction of various intracellular stress signalling 

or toxicity pathways, which have been termed the overall human toxome. These toxicity pathways 

set in motion, and a decreased adaptive response for cell damage recovery and protection, will 

predispose cells to cell death. Furthermore, it is likely that the onset of diverse sets of stress 

signalling pathways is causal for the sensitization of the crosstalk with the cytokine signalling. 

Cosgrove et al. previously identified that the Akt, p70 S6 kinase, MEK-ERK, and p38-HSP27 

signalling pathways play a role in drug-cytokine synergistic cytotoxicity [246]. Yet, systematic 

transcriptomics of hepatocytes of both human and rodent origin both in vitro and in vivo have 

revealed a diversity of toxicity pathways that are activated by hepatotoxic drugs [242, 247]. The 

exact functional contribution of these pathways to DILI has only limitedly been studied and so far 

it remains unclear which drug-induced toxicity pathways modulate the pro-apoptotic activity of 

TNFα signalling in drug-induced liver cell injury. Here, based on our own transcriptomics, we have 

focused on the Kelch-like ECH-associated protein 1 (Keap1)/ nuclear factor-erythroid 2 (NF-E2)-

related factor 2 (Nrf2) antioxidant response pathway and the endoplasmic reticulum (ER) stress-

mediated unfolded protein response (UPR). 

The Keap1/Nrf2 pathway is important in the recognition of reactive metabolites and/or 

cellular oxidative stress [248]. Under normal conditions Nrf2 is maintained in the cytoplasm and 

guided towards proteasomal degradation by Keap1 [249]. Nucleophilic reactions with the redox-

sensitive cysteine residues of Keap1 releases Nrf2 followed by its nuclear entry and transcriptional 

activation of antioxidant genes [248]. Nrf2 signalling is critical in the cytoprotective response 

against reactive metabolites both in vitro and in vivo [115, 250], but its role in regulating TNFα pro-

apoptotic signalling in relation to DILI is unclear.    

The ER stress-mediated UPR is an adaptive stress response to ER protein overload due to 

enhanced translation and/or perturbed protein folding [118]. It involves expression of molecular 

chaperones such as the heat shock family member HSPA5 (also known as BiP or Grp78) [118]. 

When adaptation fails, a pro-apoptotic program to eliminate the injured cell is initiated [251]. The 

ER stress response contains three signalling arms: the protein kinase R-like ER kinase (PERK), the 

activating transcription factor 6 (ATF6) and the inositol-requiring enzyme 1 (IRE1) [118]. 

Activation of IRE1 and ATF6 initiates protective responses, while activation of PERK leads to 

attenuation of global protein synthesis and favored translation of activating transcription factor 4 

(ATF4) by phosphorylation of eukaryotic initiation factor 2 α (eIF2), resulting in expression of the 

ATF4 downstream target gene DDIT3 encoding the C/EBP homologous protein (CHOP) [121]. CHOP 

initiates a pro-apoptotic program by modulation of Bcl2-family proteins [118, 251]. Although ER 
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stress has previously been implicated in DILI [252], the role and mechanism of individual ER stress 

signalling components in controlling DILI in relation to TNF-induced apoptosis remains 

undefined.   

Here we demonstrate that two different hepatotoxic drugs, diclofenac and carbamazepine, 

show a synergistic apoptotic response with the pro-inflammatory cytokine TNF. Genome-wide 

transcriptomics revealed an activation of the Nrf2-related oxidative stress response and 

translation initiation signalling pathway in conjunction with ER stress responses as the most 

important cell toxicity pathways, which were activated independent of, and preceding TNF-

mediated cell killing. A systematic short interfering RNA (siRNA) mediated knockdown approach of 

genes related to these stress-induced pathways allowed a detailed functional evaluation of the 

mechanism by which oxidative stress, ER stress and translational regulation are interrelated in the 

sensitization towards pro-apoptotic TNFα signalling during DILI.  

3. Materials and methods 

3.1. Reagents and antibodies 

Diclofenac sodium (DCF), carbamazepine (CBZ), nefazodone (NFZ) and ketoconazole (KTZ) were 

obtained from Sigma (Zwijndrecht, the Netherlands). Methotrexate (MTX) was from Acros 

Organics (Geel, Belgium). Human recombinant tumor necrosis factor α (TNFα) was acquired from 

R&D Systems (Abingdon, United Kingdom). AnnexinV-Alexa633 was made as previously described 

(Puigvert et al., 2010). The antibody against caspase-8, cleaved poly ADP-ribose polymerase 

(PARP), C/EBP homologous protein (CHOP), and translation initiation factor EIF4A1 were from Cell 

Signalling (Bioké, Leiden, Netherlands). The antibody against tubulin was from Sigma and the 

antibody against phosphorylated protein kinase R-like ER kinase (PERK; Thr 981) was from Santa 

Cruz (Tebu-Bio, Heerhugowaard, the Netherlands). The antibody against nuclear factor-erythroid 2 

(NF-E2)-related factor 2 (Nrf2) was a kind gift from Dr. Goldring (Liverpool University, United 

Kingdom). 

3.2. Liver cells and slices 

Human hepatoma HepG2 cells were obtained from American Type Culture Collection (ATCC, 

Wesel, Germany), cultured in Dulbeccos’s modified Eagle medium (DMEM) supplemented with 

10% (v/v) fetal bovine serum (FBS), 25 U/ml penicillin and 25 µg/ml streptomycin and used for 

experiments between passage 5 and 20. Primary mouse hepatocytes were isolated from 8-10 

weeks old male C57BL/6J mice by a modified two-step collagenase perfusion technique 

(collagenase type IV, Sigma-Aldrich, Zwijndrecht, The Netherlands) and treated as described 

previously [253]. The source of human liver tissue and the preparation and incubation of human 

precision-cut liver slices were described previously [17]. In brief, liver slices (diameter 4 mm, 

thickness 250 µm) were pre-incubated at 37°C for 1 hour individually in a well containing 1.3 ml 

Williams’ medium E with glutamax-1 (Gibco, Paisley, UK), supplemented with 25 mM D-glucose 

and 50 µg/ml gentamicin (Gibco, Paisley, UK) (WEGG medium) in a 12-well plate with shaking (90 

times/minute) under saturated carbogen atmosphere.  

3.3. Gene expression profiling 
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For HepG2 cells drug (500 μM DCF, 500 μM CBZ, 75μM KTZ, 30 μM NFZ and 50 μM MTX) or vehicle 

(DMSO) exposure was performed for 8 hours followed by the addition of 10 ng/ml TNFα or solvent 

and incubation for another 6 hours. For primary mouse hepatocytes, 46 hours after isolation, cells 

were exposed to either 300 µM DCF or the solvent DMSO for 24 hours. For human liver slices, the 

slices were treated with 400 µM DCF or the solvent DMSO and incubated for 24 hours. RNA was 

isolated using the RNeasy® Plus Mini Kit (Qiagen, Venlo, the Netherlands) and RNA integrity and 

quality was assessed using the Agilent bioanalyser (Agilent Technologies, Palo Alto, CA, USA). The 

Affymetrix Human Genome U133 plus PM arrays and Affymetrix Mouse Genome 430 2.0 

GeneChip arrays were used for microarray analysis of human and mouse liver cell samples, 

respectively, and all performed at ServiceXS B.V. (Leiden, The Netherlands). BRB Array Tools 

software was used to normalize the CEL data using the Robust Multichip Average (RMA) method. 

Significantly differentially expressed genes (p-value < 0.001) between the various experimental 

conditions were identified with an ANOVA test followed by calculation according to Benjamini and 

Hochberg [254]. Classification of the selected genes according to their biological and toxicological 

functions was performed using the Ingenuity Pathway Analysis (IPA®) software (Ingenuity® 

Systems, Redwood, CA, USA). Heatmap representations and hierarchical clustering (using Pearson 

correlation) were performed using the MultiExperiment Viewer software [255]. The data discussed 

in this publication have been deposited in NCBI's Gene Expression Omnibus [256] and are 

accessible through GEO Series accession number GSE54257 

(http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE54257). 

3.4. Gene expression analysis from primary human hepatocytes using the TG-GATEs 

data set.  

CEL files were downloaded from the Open TG-GATEs database: "Toxicogenomics Project and 

Toxicogenomics Informatics Project under CC Attribution-Share Alike 2.1 Japan" 

http://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html. Probe annotation and probe 

mapping was performed using the hgu133plus2.db and .cdf packages version 2.9.0 available from 

the Bioconductor project (http://www.bioconductor.org) for the R statistical language 

(http://cran.r-project.org). Probe-wise background correction and between-array normalization 

was performed using the vsn2 algorithm (VSN package version 3.28.0) [257]. Probe set summaries 

were calculated with the median polish algorithm of RMA (robust multi-array average) (LIMMA 

package, version 1.22.0) [228]. The normalized data were statistically analyzed for differential 

gene expression using a linear model with coefficients for each experimental group (fixed) [258, 

259]. A contrast analysis was applied to compare each exposure with the corresponding vehicle 

control. For hypothesis testing the moderated t-statistics by empirical Bayes moderation was used 

followed by an implementation of the multiple testing correction of Benjamini and Hochberg using 

the LIMMA package [260]. 

3.5. RNA interference 

Transient knockdowns (72 hours) of individual target genes were achieved in HepG2 cells before 

CBZ/TNFα (500 μM/10 ng/ml) and DCF (500 μM/10 ng/ml) exposure, using siGENOME SMARTpool 

siRNA reagents and siGENOME single siRNA sequences (50 nM; Dharmacon Thermo Fisher 

Scientific, Landsmeer, the Netherlands) with INTERFERin™ siRNA transfection reagent (Polyplus 
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transfection, Leusden, the Netherlands). The negative controls were siGFP or mock transfection. 

The single siRNA sequences were used to exclude any off target effects of the SMARTpools 

resulting in a significant biological effect. The experiments were performed in fourfold and 

SMARTpool was considered on target when 2 or more of the 4 singles showed a similar significant 

effect. All siRNA-targeted genes can be found in Supplementary Table S1. 

3.6. Cell death assays in HepG2 cells 

Induction of apoptosis in real time was quantified using a live cell apoptosis assay essentially the 

same as previously described [261].  

3.7. Western blot analysis  

Western blot analysis was essentially performed as previously described [262] using above-

mentioned antibodies. Images were processed in Adobe Photoshop CS5 (Adobe, Amsterdam, the 

Netherlands).  

3.8. Live cell imaging of GFP-tagged proteins in HepG2 cells 

Reporter HepG2 cells for Nrf2 activity (Srxn1 [mouse]) and endoplasmic reticulum (ER)-stress 

(ATF4 and CHOP/DDIT3 [human]) were generated by bacterial artificial chromosome (BAC) 

recombineering [13, 48]. Upon validation of correct C-terminal integration of the GFP-cassette by 

PCR, the BAC-GFP constructs were transfected using LipofectamineTM 2000 (Invitrogen, Breda, the 

Netherlands). Stable HepG2 BAC-GFP reporters were obtained by 500 µg/ml G418 selection. Prior 

to imaging, nuclei were stained with 100 ng/ml Hoechst33342 in complete DMEM. The induction of 

Srxn1-GFP, ATF4-GFP and CHOP-GFP expression was followed for a period of 24 hours, by 

automated confocal imaging (Nikon TiE2000, Nikon, Amstelveen, the Netherlands). Quantification 

of the GFP intensity in individual cells was performed using Image ProTM. 

3.9. Statistical analysis 

All numerical results are expressed as the mean  standard error of the mean (S.E.M.) and 

represent data from three independent experiments. Calculations were made using GraphPad 

Prism 5.00 (GraphPad software, La Jolla, USA). Significance levels were calculated using 2-way 

ANOVA, * = P < .05, ** = P < .01, *** = P < .001. 
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4. Results 

4.1. Hepatotoxic drug synergy with TNF is preceded by oxidative stress, ER stress and 

death receptor signalling gene expression networks. 

First we treated HepG2 cells for 8 hours with different compounds associated with unpredictable 

idiosyncratic drug-induced liver injury (DILI) in humans, carbamazepine (CBZ), diclofenac (DCF), 

ketoconazole (KTZ), nefazodone (NFZ) and methotrexate (MTX), at concentrations around 

100*Cmax for each drug [91, 263], followed by an additional incubation with or without tumor 

necrosis factor α (TNF;10 ng/ml) for 16 hours. CBZ, DCF and KTZ showed a significant enhanced 

apoptosis when combined with TNF (Fig. 1A). A slight trend towards synergy was observed for 

NFZ, while hardly any toxicity was observed for MTX with or without TNFα (Fig. 1A).  

To find the mechanism behind TNFα synergy we next we performed a gene expression 

analysis on HepG2 cells exposed to DCF (500 µM), CBZ (500 µM), KTZ (75 µM), NFZ (30 µM) and 

MTX (50 µM) for 8 hours to investigate which intracellular signalling pathways were perturbed by 

the drugs prior to TNFα addition (Fig. 1B). The concentrations were chosen based on minimal 

drug-induced toxicity with, if any, maximal TNFα apoptotic synergism (Fig. 1A, in bold). While MTX 

only mildly affected the gene expression (503 differentially expressed genes [DEGs] at 8 hours), 

which was related to the very limited cytotoxicity (Fig. 1A), KTZ caused the strongest gene 

expression changes (4,678 DEGs at 8 hours; Fig. 2A) in association with greater onset of cell death 

(Fig. 1A). Not many additional changes in DEGs were observed after treatment for an additional 6 

hours, a time-point where synergism with TNFα is apparent (data not shown), with the 

compounds either in presence or absence of TNFα (Fig. 1C and D). To identify likely candidate 

genes that contribute to this synergy we determined the overlap in DEGs for all synergizing drugs 

(DCF, CBZ and KTZ; see Venn-diagrams in Fig. 1B-D). Since the most significant TNFα synergy was 

observed for CBZ (Fig. 1A) we considered this a relevant model compound for further 

comparisons. DCF showed the highest overlap with CBZ in DEGs when taking into account that the 

direction of regulation (up or down) should be the same between the two compounds (Fig. 1B-D), 

and therefore these two drugs were chosen for further detailed analysis.  

Next we employed Ingenuity Pathway Analysis (IPA®) software to identify the toxicity-

related signalling pathways that were affected by both CBZ and DCF as early as 8 hours after 

treatment (Fig. 2A). Three prominent toxicity pathways were found: “EIF2-signalling/Endoplasmic 

reticulum stress pathway”, “NRF2-mediated oxidative stress response”, and “Apoptosis/Death 

receptor signalling”. We have previously reported the involvement of death receptor signalling 

under DCF/TNFα conditions [38] and we have observed the same effect for CBZ/TNFα (data 

partially reported in Supplementary Table S1).  

Subsequently we obtained all the individual genes from IPA® that determine the significant 

pathways described in Figure 2A. Unsupervised hierarchical clustering of all these selected genes 

allowed identification of three main gene clusters that were up-regulated after 8 hours CBZ and/or 

DCF but not MTX treatment (Supplementary Fig. S2). Interestingly, these contained almost 

exclusively genes representing the three prominent toxicity pathways (compare Figs 2A and 

Supplementary Fig. S1). For further gene selection we used a threshold of 1.5-fold change for any 

CBZ or DCF treatment time point (Fig. 2B).  
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Figure 1.  Apoptosis and gene expression profiling of hepatotoxic drugs and TNFα in HepG2 cells. (A) The 

apoptosis after drug exposure was followed in real time from 8 to 24 hours using automated imaging and 

AnnexinV (AnxV)-Alexa633 binding to apoptotic cells.  The end-points (24h) are presented as relative AnxV-

Alexa633 intensities and the concentrations used for gene expression analysis are marked in bold. The data 

shown are means of three independent experiments +/- SEM. ***P < 0.001, *P < 0.05. The gene expression 

after 8 (B), 14 (C) and 14 hours including 6 hours of TNF  (10 ng/ml; D) exposure to diclofenac (DCF), 

carbamazepine (CBZ), ketoconazole (KTZ), nefazodone (NFZ) and methotrexate (MTX) is presented as 

number of genes differentially up- (black) or down-regulated (white) compared to control. The total 

number of genes overlapping among the TNF-synergizing drugs is show in the corresponding Venn-

diagrams with the overlap between DCF and CBZ in bold. 

We wanted to ensure that the genes that were significantly regulated in HepG2 cells as 

presented in Fig. 2B after CBZ and DCF exposure were also significantly regulated in primary 

human hepatocytes after exposure to ~80 drugs, including a large diversity of hepatotoxicants 

[264]. In Figure 3, the expression of these genes after drug exposure in the primary human 
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hepatocytes is presented. We also included classical downstream target genes known to be 

essential in the ER-stress and oxidative stress: XBP1, CHOP/DDIT3, BiP/HSPA5 and SRXN1. The 

target genes reflecting EIF2-signalling/endoplasmic reticulum (ER) stress/unfolded protein 

response (UPR) pathway and Nrf2-mediated oxidative stress pathway were mostly affected by the 

DILI compounds, unlike the death signalling genes, with Bim being the exception. Importantly, 

carbamazepine, diclofenac as well as ketoconazole strongly affected the set of these 34 genes in 

primary human hepatocytes (see Figure 3 and Supplementary Fig. S1). Moreover, unsupervised 

clustering of altered expression levels of these 34 genes for all DILI compounds revealed a single 

cluster with our synergizing compounds with an important addition of sulindac which has 

previously been reported to synergize with TNFα in another in vitro model of idiosyncratic liver 

injury [265]. Thus, we confirmed the regulation by CBZ and DCF of a large proportion of the target 

genes that are central in the EIF2-signalling/ER UPR response and nuclear factor-erythroid 2 (NF-

E2)-related factor 2 (Nrf2)-mediated oxidative stress response in primary human hepatocytes. 

4.2. Oxidative stress sensitizes to diclofenac and carbamazepine mediated apoptosis. 

Nrf2-mediated oxidative stress response was significantly affected by CBZ and DCF (see Fig. 2). 

Stabilization of Nrf2 after oxidative stress allows its nuclear translocation and transcriptional 

activation of antioxidant genes [248]. DCF caused a stabilization of Nrf2 in HepG2 cells (Fig. 4A), 

which was less clear for CBZ; TNFα addition did not affect the stabilization of Nrf2 (Fig. 4A). 

Sulfiredoxin (Srxn1) is a direct target of Nrf2 [266] and we monitored the activity of Nrf2 using live 

cell imaging of a BAC-Srnx1-GFP HepG2 reporter cell line. In line with the microarray data and the 

Nrf2 stabilization, Srxn1-GFP expression was strongly induced following both DCF and CBZ 

treatment (Fig. 4B). We validated that the siRNA-mediated knockdown of Nrf2 (Supplementary 

Fig. S2A) completely inhibited the GFP-Srnx1 expression, while Kelch-like ECH-associated protein 1 

(Keap1) knockdown enhanced the Srxn1-GFP response, supporting the functionality of the 

Keap1/Nrf2 pathway in these cells  (Supplementary Fig. S2B). The Nrf2 pathway was also critically 

involved in the protection against drug/TNFα-mediated cell killing. Knockdown of Keap1 led to 

enhanced protein levels of Nrf2 (Supplementary Fig. S2A), which was associated with a protection 

against CBZ/TNFα- and DCF/TNFα-induced cytotoxicity and inhibition of caspase-8 activation (Fig. 

4C and 4D and Supplementary Fig. S2C). Importantly, knockdown of Nrf2 itself led to 

enhancement of the apoptosis (Fig. 4C and Supplementary Fig. S2C).  

These data collectively illustrate the importance of oxidative stress in CBZ/TNFα- and 

DCF/TNFα-induced cytotoxicity 
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Figure  2. Identification of CBZ and DCF specific stress responses. (A) Using IPA® the canonical pathways 

being significantly affected following exposure to diclofenac (DCF; 500 µM), carbamazepine (CBZ; 500 µM), 

ketoconazole (KTZ; 75 µM), nefazodone (NFZ; 30 µM) and methotrexate (MTX; 50 µM) for 8 hours were 

determined. The pathways are ranked by the criteria of being significantly regulated after DCF and CBZ, but 

not after MTX treatment. The most prominent toxicity pathways are highlighted as follows: EIF2 

Signalling/Endoplasmic Reticulum Stress Pathways in yellow, Nrf2-mediated Oxidative Stress response in 

green and Apoptosis/Death Receptor Signalling in blue.  (B) After hierarchical clustering using Pearson 

correlation and average linkage of the genes representing the pathways in A, the three clusters showing 

most genes up-regulated under DCF and CBZ conditions but not MTX after 8 and 14h exposure are shown 

and further clustered using the same method. The colors indicate which pathways they belong to according 

to the highlighting in A. 
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Figure 3. Induction of carbamazepine and diclofenac specific stress responses by ~80 DILI compounds in 

primary human hepatocytes. The expression of the genes presented in Fig. 2B with an addition of typical 

endoplasmic reticulum (ER)-stress related as well as oxidative stress related genes was investigated in the 

genes set from TG-GATEs. Hierachial cluster using Pearson Correlation and average linkage resulted in a 

cluster containing drugs synergizing with TNFα (red). 

4.3. PERK activation determines ER stress-mediated hepatotoxicant/TNFα synergistic 

cell death.  

Next we explored the role of the ER stress/UPR pathway in the apoptosis induction after 

CBZ/TNFα and DCF/TNFα exposure. Pre-treatment of the cells with an ER stressor, tunicamycin, to 

induce a protective adaptive ER stress response, protected against CBZ/TNFα and DCF/TNFα cell 

death (Fig. 5A and Supplementary Fig. S3A respectively). Thereafter we systematically analyzed 

the role of critical upstream signalling components of the ER stress/UPR, inositol-requiring enzyme 

1 (IRE1α), activating transcription factor 6 (ATF6) and PERK [118]. Knockdown of IRE1α and ATF6 

led to an enhanced apoptotic response following CBZ/TNFα (Fig. 5B) and DCF/TNFα 

(Supplementary Fig. S3B) exposure while knockdown of PERK had a protective effect (Fig. 5B [CBZ] 

and Supplementary Fig. S3B [DCF]). This indicates an exclusive role of the PERK-induced signalling 

pathway in the onset of apoptosis. In contrast, IRE1α and ATF6 both have a protective role, most 

likely related to the control of the cytoprotective heat shock protein family member BiP/HSPA5 

[118]. Importantly, activation of PERK could also be observed, which starts as soon as 2 hours after 

exposure to both CBZ and DCF, independent of TNFα (Fig. 5C). 

Next we determined the overall activation of the different ER stress programs after drug 

exposure, and focused on the PERK/ATF4, IRE1α/XBP1 and ATF6 pathway activities. For this we 
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Figure 4.  Carbamazepine and diclofenac induce an Nrf2-response affecting the drug/TNF-induced 

apoptosis.  (A) Nrf2 protein levels were investigated by western blot analysis following carbamazepine 

(CBZ; 500 µM) and diclofenac (DCF; 500 µM) exposure +/- TNFα addition. “C”, controls exposed to vehicle 

(DMSO) for 12 hours. (B) Nrf2-responsive Srxn1-GFP levels were followed using automated confocal 

microscopy. Shown are representative images of GFP-Srxn1 (green) HepG2 cells exposed to DMSO, DCF or 

CBZ for 0, 8, 16 and 24 h. Nuclei are stained by Hoechst (blue). (C) The effect on CBZ/TNFα (10 ng/ml) 

induced apoptosis after Nrf2 and Keap1 knockdown (SMARTpool) was investigated using live cell imaging of 

apoptosis. The data are presented as means of three independent experiments +/- SEM or representative 

of three independent experiments. 

evaluated the differential expression of downstream target genes of the transcription factors 

ATF4, XBP1 and ATF6 after CBZ and DCF exposure. ATF4 showed the strongest up-regulation of 

downstream targets supporting the hypothesis of a more important role for PERK/ATF4 signalling 

in the drug-induced toxicity compared to ATF6 and IRE1α/XBP1 (Fig. 6A). To certify that this main 

activation of ATF4 after drug exposure was not selective for HepG2 cells, we determined for CBZ 

and DCF the differential expression of UPR target genes under control of ATF4, XBP1 and ATF6 also 

three different primary hepatocyte models: precision-cut human liver slices (HLS), primary human 

hepatocytes (PHM) and primary mouse hepatocytes (PMH). Importantly also in these primary cell 

systems, the ATF4 transcriptional activity appeared superior to the one of ATF6 and XBP1 after 

exposure to CBZ or DCF (Fig. 6B, for gene labels see Supplementary Fig. S4).  

Finally, we determined whether the PERK/ATF4 pathway was functional in the HepG2 cells. For 

this we generated a HepG2 bacterial artificial chromosome (BAC)-ATF4-GFP reporter cell line and 

applied automated live cell confocal microscopy to determine the up-regulation and nuclear 

translocation of ATF4. ATF4 expression was induced by both DCF and CBZ in time and primarily 

localized in the nuclear compartment (Fig. 5D) supporting the activation of PERK-mediated UPR 

signalling pathway and ability to modulate ATF4 target genes. 
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Figure 5. Carbamazepine and diclofenac induce an ER stress-response affecting the drug/TNF-induced 

apoptosis. (A). HepG2 cells were pre-treated with ER-stressor tunicamycin (Tm; 10 μg/ml; A) for 16 hours 

before treatment with 500 M carbamazepine (CBZ). TNF (10 ng/ml) was added 8 hours after drug 

exposure. (B) Apoptosis induced by CBZ/TNFα after knockdown (SMARTpool) of the UPR mediators IRE-1α, 

ATF6, and PERK, was followed in time by automated imaging of AnxV-Alexa633 staining (C) PERK activation 

following CBZ and diclofenac (DCF; 500 µM) exposure was followed in time by western blotting for 

phosphorylated PERK (P-PERK). “C”, control exposed to vehicle for 12 hours. (D) HepG2 cells expressing 

BAC-ATF4-GFP were followed in time after exposure to DCF, CBZ (500 M) or vehicle (DMSO) using 

automated confocal microscopy. Representative images of Hoechst at 0 and ATF4-GFP (inverted) at 0, 8, 16 

and 24 hours after drug exposure are shown as well as the quantification of the increase in ATF4-GFP 

intensity in time after DCF and CBZ exposure. Values are presented as fold changes (FC) of time-point 0 and 

the data is presented as means of 3 independent experiments +/- S.E.M. 
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Figure 6. Diclofenac and carbamazepine exposure mainly induces ATF4 transcription. (A) Using the IPA® 

software the genes up- or down-regulated by the transcription factors downstream of the three distinct 

unfolded protein response pathways, PERK (ATF4), IRE-1 (XBP1) and ATF6 were determined after 8 hours 

carbamazepine (CBZ) or diclofenac (DCF) exposure. Red coloring of the shapes indicate up-regulation of the 

target genes, while green indicate down-regulation. The intensity reflects the fold-change gene expression 

compared to vehicle-exposed cells. (B) Expression of the genes induced by DCF and CBZ in HepG2 cells was 

determined by gene array analysis of primary human (PHH), human liver slices (HLS) and primary mouse 

hepatocytes (PMH) at 8 and/or 24 hours of CBZ and DCF exposure followed by hierarchical clustering of the 

in vitro systems using Pearson correlation and average linkage. Grey color indicates genes that are not 

regulated at this significance level. A complete figure containing gene names is represented in 

Supplementary Fig. S4. 
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4.4. Carbamazepine and diclofenac induce expression of pro-apoptotic CHOP. 

A major target of PERK-mediated ATF4 activation is the pro-apoptotic transcription factor C/EBP 

homologous protein (CHOP)/DDIT3 [121]. We observed a DCF- and CBZ-induced activation of ATF4 

(Figs. 5D and 6) and subsequent increased expression of CHOP/DDIT3 to both compounds both in 

HepG2 cells (Fig. 6A) and in primary cell systems including liver slices (Supplementary Fig. S4). We 

established a HepG2 BAC-GFP-CHOP reporter cell line and used automated live cell confocal 

microscopy to monitor the induction of GFP-CHOP. While GFP-CHOP was absent under control 

conditions, both CBZ and DCF induced the expression of GFP-CHOP in time (Fig. 7A), which was 

reproduced in parental HepG2 cells by western blotting (Fig. 7B). This CHOP induction was critical 

for the onset of cell death since siRNA-mediated knockdown of CHOP protected against the 

apoptosis induced by CBZ/TNFα and DCF/TNFα (Fig. 7C and Supplementary Fig. S3C). These data 

strongly support the role for the PERK/ATF4/CHOP program in the cell death induced by DCF/TNFα 

and CBZ/TNFα. 

 
Figure  7. Carbamazepine- and diclofenac-induced CHOP expression is critical for the apoptosis induction. 

(A) HepG2 cells expressing BAC-CHOP-GFP were followed in time after exposure to diclofenac (DCF; 500 

M), carbamazepine (CBZ; 500 M) or vehicle (DMSO) using automated confocal microscopy. 

Representative images of Hoechst at 0 and CHOP-GFP at 0, 8, 16 and 24 hours after drug exposure 

(inverted) are shown. The quantification of the increase in CHOP-GFP intensity in time after DCF and CBZ 

exposure are presented as fold changes (FC) of time-point 0. (B) CHOP induction after carbamazepine and 

diclofenac exposure was followed in time by western blotting. “C”, control exposed to vehicle for 12 hours. 

Tubulin was used as loading control. (C) Apoptosis induced by CBZ/TNFα after knockdown of CHOP 

(SMARTpool) was followed in time by automated imaging of AnxV-Alexa633 staining. Data is presented as 

means of 3 independent experiments +/- S.E.M. 
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4.5. Carbamazepine and diclofenac induced Nrf2 activation is independent of ER 

stress. 

Since ER stress can activate the Nrf2 pathway [267] we wanted to determine the link between ER 

stress and oxidative stress. While PERK and CHOP knockdown protected against cell death (Fig. 5C 

and 7C), neither PERK nor CHOP knockdown inhibited the expression of the Nrf2 target gene Srxn1 

in the GFP-Srxn1 HepG2 reporter cells (Fig. 8A). Vice versa, knockdown of Keap1, which stabilized 

Nrf2, in association with strong Srxn1 expression and cytoprotection against CBZ/TNFα and 

DCF/TNFα (see above), did not block the activation of PERK and the expression of CHOP after CBZ 

exposure (Fig. 8B). Although both important for the DCF/TNFα and CBZ/TNFα-induced cell injury, 

the role of the oxidative stress response appears to be unrelated to the PERK-initiated ER-stress 

response. 

 
Figure 8. Carbamazepine and diclofenac induced Nrf2 activation is independent of ER stress. (A) The 

effect of PERK and CHOP knockdown on GFP-Srxn1 induction after carbamazepine (CBZ) exposure was 

investigated using automated confocal microscopy. GFP intensities were normalized to the area occupied 

by nuclei as determined by Hoechst staining. (B) ER-stress activation, as measured by protein expression of 

phosphorylated PERK and CHOP using western blot, was investigated after Keap1 knockdown and a time 

series of CBZ exposure +/- TNF addition. Cleavage of caspase-8 is shown for assessment of extrinsic 

apoptosis induction.  Tubulin serves as loading control and “C” is control exposed to vehicle for 12 hours. 

The data are presented as means of three independent experiments +/- SEM or representative of three 

independent experiments. 

4.6. EIF4A1 controls CHOP expression and thereby apoptosis onset. 

Eucaryotic initiation factor (EIF2) signalling in relation to translation initiation was the major 

pathway affected by CBZ and DCF (see Fig. 2). Salubrinal, an inhibitor of the dephosphorylation of 

translation initiation factor eIF2α, which is protective against ER stress induced toxicity [268], 

inhibited the CBZ and DCF synergy with TNFα (Fig. 9A and Supplementary Fig. S3D) supporting a 

central role for the translational program in the onset of drug/TNFα-induced apoptosis. To further 

test this hypothesis we performed a knockdown of the RNA helicase EIF4A1, the translation 

initiation factor that was found most up-regulated after DCF and CBZ exposure. Depletion of 

EIF4A1 provided an almost complete protection against both CBZ/TNFα- and DCF/TNFα-induced 

apoptosis (Fig. 9B and Supplementary Fig. S3E). 

 Inhibition of global translation is one of the responses for the cell to try to cope with 

enhanced ER stress [118]. Intriguingly, siEIF4A1 did not affect the PERK activation following CBZ 



Oxidative-, ER- and translation stress in idiosyncratic DILI 

75 
 

exposure, yet it almost completely inhibited the induction of CHOP (Fig. 9C). Together these data 

are indicative for a crucial role for translation in the induction of drug/TNFα-induced apoptosis, 

which is for a major part related to EIF4A1-mediated translation of ER-stress protein CHOP. 

 
Figure 9. Translation initiation regulated by EIF4A1 is crucial for carbamazepine/TNFα-apoptosis 

induction and CHOP expression. (A) HepG2 cells were pre-treated with an eIF2 phosphatase inhibitor, 

salubrinal (Sal; 50 M) for 16 hours before treatment with 500 M carbamazepine (CBZ). TNF (10 ng/ml) 

was added 8 hours after drug exposure. (B) Apoptosis induced by CBZ (500 µM) and TNFα (10 ng/ml) after 

EIF4A1 knockdown (SMARTpool) was followed in time using live cell imaging of apoptosis. (C) The effect of 

EIF4A1 knockdown on the induction of ER-stress proteins P-PERK and CHOP by western blot. The induction 

caspase-8 cleavage was used as a marker of death receptor induced apoptosis activation. Tubulin served as 

loading control. All data are presented as means of three independent experiments +/- SEM or 

representative for three independent experiments when applicable. (D) Model of the molecular 

mechanisms of DCF- and CBZ-induced sensitization toward TNFα-induced apoptosis.  

5. Discussion 

Here we studied in detail the underlying molecular mechanisms of the synergistic apoptotic 

response between hepatotoxic drugs and the pro-inflammatory cytokine tumor necrosis factor α 

(TNF) using a unique integration of transcriptomics and RNA interference-based functional 
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genomics. Gene expression analysis of HepG2 cells and primary human and mouse hepatocytes as 

well as human precision cut liver slices demonstrated the specific activation of the endoplasmic 

reticulum (ER)-stress/unfolded protein response (UPR) signalling route through the activating 

transcription factor 4 (ATF4) transcriptional activity by diclofenac (DCF) and carbamazepine (CBZ). 

Further functional analysis of the role of critical determinants of this pathway identified protein 

kinase R-like ER kinase (PERK) and C/EBP homologous protein (CHOP) as pivotal players in the 

onset of drug/TNFα-mediated cytotoxicity in HepG2 cells. Importantly, while oxidative stress 

modulated the onset of cell death it did not affect the ER-stress/UPR program. On the contrary, 

the translational machinery of which translation initiation factor EIF4A1 is a critical marker, was 

manifested as a major determinant of CHOP expression and, thereby, onset of drug/TNFα-

mediated toxicity.  

Our data demonstrate a clear enhancement of apoptosis with the addition of TNF to DCF 

and CBZ treated HepG2 cells, whereby we chose to focus on the toxicity pathways induced by 

these two compounds. In contrast, in cells pre-exposed to other known idiosyncratic 

hepatotoxicants the synergism with TNFα was not so clear in the case of ketoconazole (KTZ) and 

absent in nefazodone (NFZ) and methotrexate (MTX) pre-exposed cells. A synergy in the regulation 

of the expression of genes directly involved in the apoptosis seems unlikely, since all five 

compounds synergized in the expression of various candidate genes (Supplementary Fig. S5), 

although we cannot exclude the role of some individual genes in the DCF/TNF and CBZ/TNF 

synergistic cytotoxicity. The discrepancy between synergizing and non-synergizing drugs may be 

explained by the fact that DCF-induced liver injury has been linked to the involvement of an 

activated immune system [269], and the idiosyncratic nature of CBZ-induced liver injury has been 

linked to hypersensitivity reactions [270]. However, KTZ, NFZ and MTX, although reported inducers 

of hepatotoxicity [271-273], have not, to our knowledge, been linked to immune system 

activation. In addition, supporting our results, absence of TNFα synergism with NFZ and MTX was 

previously reported in a larger screen of compounds in primary human hepatocytes with and 

without the addition of pro-inflammatory cytokines including TNFα [146].  Moreover, the current 

manuscript illustrates the fact that whether or not a compound would synergize with TNFα may lie 

in the types of stress pathways induced by the drugs alone, where DCF and CBZ affect ER-

stress/translation initiation signalling as well as oxidative stress, while NFZ and KTZ are stronger 

inducers of oxidative stress alone. 

Our data indicate that ER stress signalling through the PERK/CHOP pathway is a critical 

determinant for the hepatotoxicant/TNFα synergy response towards hepatocyte apoptosis. ER 

stress and the UPR have been implicated in several different liver diseases including durg-induced 

liver injury (DILI) [252]. Here we present a more selective activation of the PERK-arm of the ER 

stress/UPR following DCF and CBZ exposure (Figs. 5 and 6), which was directly related to 

expression of CHOP (Fig. 7), a downstream target of ATF4. Importantly, the up-regulation of ATF4 

and CHOP were not only found in our HepG2 cell system after exposure of DCF and CBZ but also in 

primary human hepatocytes after exposure to a panel of hepatotoxic drugs (Fig. 3) as well as in 

other primary cell systems after DCF and CBZ exposure (Fig. 6B and Supplementary Fig. S4). 

Moreover, in primary human hepatocytes we found that many DILI compounds affected the 

expression of ATF4 and CHOP, while XBP1 and BiP/HSPA5 were less affected. Interestingly, this up-

regulation of CHOP and ATF4 was more prominent with drugs related to severe DILI (Fig. 3). Given 
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our observed critical role of CHOP in the onset of apoptosis, these combined observations suggest 

that CHOP is a critical player in liver toxicity, in particular in the sensitization for TNF receptor-

mediated apoptosis.   

The current study highlights the importance of perturbations in the translation initiation 

program in the hepatotoxicant-induced stress response and onset of cytotoxicity. Firstly, several 

translation initiation factors, which included EIF4A1, EIF4A2 and EIF4G3 were specifically strongly 

affected by CBZ and DCF but not the other hepatoxicants (Fig. 2B and Supplementary Fig. S1A). 

Secondly, an inhibitor of eIF2 dephosphorylation, salubrinal, inhibited the drug/TNF-induced 

apoptosis (Fig. 9A and Supplementary Fig. S3D). Thirdly, also knockdown of EIF4A1 almost 

completely abrogated the TNFα synergy with both CBZ and DCF (Fig. 9B and Supplementary Fig. 

S3E). EIF4A1 and EIF4G3 together with cap-binding protein EIF4E are part of the EIF4F complex 

that unwinds secondary structures of the 5’ untranslated region (UTR) of mRNA to allow ribosomal 

binding, scanning and thereby translation [274]. The 5’ UTR of mRNA can be more or less 

structured, determining its translation efficiency [275]. EIF4A and EIF4G have also been implicated 

with cap-independent translation [275]. Interestingly, the translation of several anti- and pro-

apoptotic genes such as XIAP, and APAF1 can occur via cap-independent mechanisms [276, 277] 

and given the drastic effect on drug/TNFα-induced apoptosis we show (Fig. 9B and Supplementary 

Fig. S3E), EIF4A1 is most likely involved in the expression of other apoptosis-regulating proteins. 

Here we present that EIF4A1 is a crucial regulator of pro-apoptotic CHOP expression since 

depletion of EIF4A1 reduced the expression of this protein (Fig. 9C), CHOP protein expression is 

likely regulated by EIF4A1 cap-independent translation in our model. Of note is that also in the 

primary human hepatocytes various DILI compounds affected the expression of EIF4A1, EIF4A2 

and/or EIF4G3 (Fig. 3). While our combined results emphasize a role of translational control in 

xenobiotic toxicity further research to uncover the entire (cap-independent) translation-based 

proteome will provide overall insight in the diversity of molecular networks that underlie the 

drug/TNFα synergy. 

The hepatotoxicant/TNF synergy was for an important part sensitized by the pro-oxidant 

properties of both CBZ and DCF (Fig. 4C and Supplementary Fig. S2C). Indeed, our gene expression 

profiling showed strong up-regulation of nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) 

target genes by both DCF and CBZ, which correlated with strong Nrf2-dependent induction of 

Srxn1 (Fig. 4B). Such an up-regulation of Srxn1 was also observed for human and mouse primary 

hepatocytes as well as human liver slices (data not shown) which fits with observations for the in 

vivo DCF treated rat liver [269] as well as DCF treated mouse liver [278]. Importantly, knockdown 

of the endogenous Nrf2-inhibitor Kelch-like ECH-associated protein 1 (Keap1) led to protection 

against DCF/TNF and CBZ/TNF-induced apoptosis (Fig. 4C and Supplementary Fig. 2C). In 

addition, hepatocyte cell death induced by DCF and CBZ alone are oxidative stress dependent 

[279, 280]. Despite the fact that Keap1 knockdown was strongly protective against drug/TNFα 

synergy, it did not affect PERK activation and CHOP expression. This suggests that the drug-

induced ER stress/UPR is uncoupled from oxidative stress, and that both stress programs each 

independently modulate the susceptibility towards TNFα-mediated synergistic drug induced cell 

killing. 

It is of crucial importance to elucidate the connection between ER stress/UPR and the onset 

of apoptosis by the drug/TNFα combinations. TNFα itself or in combination with CBZ or DCF did 
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not enhance CHOP protein levels (Fig. 7B), therefore enhancement of CHOP expression is not the 

sole mechanism behind the enhanced apoptosis observed upon TNFα addition to CBZ and DCF 

pre-exposed cells. Rather, it seems as if drug-induced CHOP expression leads to sensitization of 

the HepG2 cells to TNFα-induced apoptosis and since CHOP is a transcription factor, it is likely that 

downstream target genes is what affects cell susceptibility. Up-regulation of CHOP may lead to 

apoptosis via up-regulation of pro-apoptotic Bcl-2 family members, including Bim [133]. In our 

system Bim (BCL2L11) was up-regulated after DCF and CBZ exposure and Bim is induced by 

different DILI compounds in primary hepatocytes in close association with CHOP expression (Fig. 2 

and 3) further emphasizing their close connection. Moreover, siRNA mediated knockdown of Bim 

rescued both the CBZ/TNF and DCF/TNF-induced cytotoxicity (Supplementary Table S1 and 

reference [38]). In addition to the role of Bim, our current data demonstrate that the CBZ/TNFα-

induced apoptosis was inhibited by knockdown of caspase-8, Bid, APAF1, caspase-9 and caspase-3 

(Supplementary Table S1). Together these data suggest that drug-induced Bim expression 

sensitizes the mitochondria to caspase-8-mediated Bid cleavage and activity, causing the 

synergistic apoptosis-induction with TNFα. We are currently investigating the role of other 

proteins in this synergistic apoptotic response using an unbiased siRNA screening approach. 

In summary, we show that DCF and CBZ, drugs linked to idiosyncratic DILI with activation of 

the inflammatory system, sensitize liver cells to TNF-induced apoptosis. We propose an overall 

working model (Fig. 9D) where CBZ and DCF induce oxidative and ER stress/UPR, which 

independently sensitize towards apoptosis. The PERK/ATF4/CHOP-dependent ER stress/UPR 

program enhances the activation of the apoptotic signalling downstream of the TNF receptor in 

close control by the translation initiation program including EIF4A1. Subsequent expression and/or 

activation of caspase-8, Bid and Bim drive the activation of the intrinsic apoptotic program 

controlled by APAF1 and caspase-9 to activate the onset of caspase-3. Our work sheds new light 

on the mechanism behind the, so far, unpredictable idiosyncratic DILI. Possibly genetic variants in 

the functionally critical determinants of the cytotoxic response are candidate susceptibility genes 

that predispose for individual humans to idiosyncratic DILI. 
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 Supplementary Figures 

 

Supplementary figure S1. Clustering of diclofenac and carbamazepine regulated genes in HepG2 cells 

confirms specific stress responses which can be induced by  ~80 DILI compounds in primary human 

hepatocytes. (A) The genes were clustered using Pearson correlation and average linkage in the 

MultiExperiment Viewer software. Expression values, here presented as fold change of control, from all 

time points, 8 and 14 hours +/- TNFα (10 ng/ml), and exposure conditions, diclofenac (DCF; 500 µM), 

carbamazepine (CBZ; 500 µM), ketoconazole (KTZ; 75 µM), nefazodone (NFZ; 30 µM) and methotrexate, 

(MTX; 50 µM) were used. The clusters identified as interesting (1-3) contained genes up-regulated after 8 

hours DCF and CBZ exposure but down- or non-regulated after MTX treatment. The genes that represent 

the interesting IPA®-defined canonical pathways presented in Figure 2 were labelled according to their 

respective pathways; yellow highlight = EIF2-signalling/Endoplasmic Reticulum Stress Pathway; green 

highlight = NRF2-mediated Oxidative Stress Response; blue highlight = Apoptosis Signalling/Death receptor 

Signalling. (B) The expression of the genes presented in Fig. 2B with an addition of typical ER-stress related 
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as well as oxidative stress related genes was investigated in the genes set from TG-GATEs. Hierachial cluster 

using Pearson Correlation and average linkage resulted in a cluster containing drugs 

(highlighted). 

 

Supplementary figure S2. Knockdown of Nrf2 and Keap1 affect expression of Nrf2 target gene Srxn1 as 

well as apoptosis induced by diclofenac/TNFα exposure. (A) Knockdown (SMARTpool) of Nrf2 and Keap1 

in HepG2 cells leads to down- and up-regulation of Nrf2 protein respectively as measured by western 

blotting. Tubulin served as loading control. (B) Knockdown of Nrf2 and Keap1 leads to down- and up-

regulation of Srxn1-GFP respectively in the BAC-Srxn1-GFP HepG2 cell line also after exposure to diclofenac 

(DCF; 500 µM) and carbamazepine (CBZ; 500 µM) for 24 hours. (C) Knockdown of Nrf2 and Keap1 leads to 

enhancement and reduction of DCF/TNFα-induced apoptosis respectively compared to control knockdown 

cells. Data presented are means of three independent experiments +/- S.E.M or representative of 3 

experiments accordingly. 
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Supplementary figure S3.  Inhibition of endoplasmic reticulum stress and translation reduces 

diclofenac/TNF-induced apoptosis. (A) HepG2 cells were pre-treated with 5 g/ml tunicamycin (Tm) 

before replacing the medium with 500 M DCF. After 8 hours of DCF exposure, TNF (10 ng/ml) was 

added.  (B) The effect of knockdown (SMARTpool) of the main ER-stress related proteins on DCF/TNFα-

induced apoptosis was determined. The apoptosis was measured in time using live cell imaging of 

apoptosis. (C) The effect of knockdown of CHOP/DDIT3 on DCF/TNFα-induced apoptosis was determined by 

liver cell imaging of apoptosis. (D) HepG2 cells were pre-treated 50 M salubrinal (Sal) before replacing the 

medium with 500 M DCF. Salubrinal was kept in the medium during the exposure and after 8 hours of DCF 

treatment, TNF (10 ng/ml) was added.   (E) HepG2 cells were transfected with control or EIF4A1 siRNA and 

the apoptosis induced by diclofenac (DCF; 500 µM) and TNFα (10 ng/ml) was investigated using live cell 

imaging of apoptosis. Data presented are means of three independent experiments +/- S.E.M. 
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Supplementary figure S4. Diclofenac and carbamazepine exposure induced mainly ATF4 transcription. 

The genes that were identified as regulated by ATF6, ATF4 and XBP1 in HepG2 cells after 8-hour exposure 

to diclofenac (DCF) and carbamazepine (CBZ) (Fig. 5) were investigated for their expression in primary 

human (PHH), human liver slices (HLS) and primary mouse hepatocytes (PMH) at 8 and/or 24h followed by 

hierarchical clustering of the in vitro systems using Pearson correlation and average linkage. In this figure 

also the gene names have been included. 
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Supplementary figure S5. Synergy between DILI drugs and TNFα to induce the enhanced expression or 

suppression of target genes. For the combined treatment/synergistic-effect analysis of carbamazepine 

(CBZ), diclofenac (DCF), ketoconazole (KTZ), nefazodone (NFZ) and methotrexate (MTX) with TNFα 

treatment we used a linear modeling approach: yi=β1xiA+ β2xiAB+ β3xiB+ β4xiC+εi, i=1…16 and a contrast 

matrix was set up to test the null-hypothesis; Ho: β2+ β4= β1 +β3. (A is the compound treatment, B the 

TNFα treatment, C the DMSO control and AB is the combined treatment of compound+TNFα, xi is the 
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model matrix, βi are the corresponding model-coefficients and εi is the random error term). Differentially 

synergistic up- or down-regulated genes were determined for all five compounds (adjusted p-value < 0.05). 

Shown is the row-scaled log2 fold change expression of individual synergistic genes for all five compounds 

in combination with TNFα. 

 

Supporting table S1. siRNAs used in this study, with the significance of the effect knockdown had after 

exposure to carbamazepine (CBZ and diclofenac (DCF) respectively and how many of the single siRNAs 

showed a significant effect by deconvolution. 

 siRNA CBZ (p-value) DCF (p-value) Validation (CBZ) 

Apoptosis CASP8 < 0.001 Fredriksson et al. 4/4 

CASP3 < 0.001 Fredriksson et al. 4/4 

CASP9 < 0.001 Fredriksson et al. 2/4 

BCL2L11/Bim < 0.001 Fredriksson et al. 2/4 

APAF1 < 0.001 Fredriksson et al. 3/4 

CASP10 < 0.001 Fredriksson et al. 1/4 

BID < 0.001 Fredriksson et al. 2/4 

ER stress DDIT3/CHOP < 0.001 < 0.05 2/4 

EIF4A1 < 0.001 < 0.001 4/4 

EIF2AK3/PERK < 0.01 < 0.05 4/4 

 < 0.001 < 0.001 2/4 

ATF6 < 0.001 < 0.001 2/4 

Oxidative 

stress 

KEAP1 < 0.001 < 0.001 2/4 

NRF2 < 0.001 < 0.001 3/4 
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1. Abstract 

Drug-induced liver injury (DILI) is an important problem both in the clinic as well as in the 

development of new safer medicines. Two pivotal adaptation and survival responses to adverse 

drug reactions are oxidative stress and cytokine signalling based on activation of the transcription 

factors Nrf2 and NF-κB, respectively. Here we systematically investigated Nrf2 and NF-κB signalling 

upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary 

human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of 

endogenous NF-κB activity. These responses were translated into quantitative high content live 

cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear 

translocation dynamics of a subunit of NF-kB, GFP-tagged p65, upon TNFR signalling induced by 

TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically 

correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by 

TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, 

including diclofenac, carbamazepine and ketoconazole, sensitized towards TNFα-mediated 

cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 

enhanced this cytotoxic synergy with TNFα, while KEAP1 down regulation was cytoprotective. 

These data indicate that both Nrf2 and NF-κB signalling may be pivotal in the regulation of DILI. 

We propose that the NF-κB inhibiting effects that coincide with a strong Nrf2 stress response likely 

sensitize liver cells to pro-apoptotic signalling cascades induced by intrinsic cytotoxic pro-

inflammatory cytokines. 

 

Keywords: Drug-induced liver injury; live-cell imaging; Nrf2 activation; oxidative stress; NF-κB 

signalling 

2. Introduction 

Drug safety issues that lead to drug-induced liver injury (DILI) are the major reason for drug-

related hospitalizations and drug withdrawals. Often with no overt changes in hepatocellular 

toxicity parameters (e.g. rise in alanine or aspartate aminotransferase (ALT/AST) levels or 

increased total bilirubin) found in pre-clinical settings, drugs are (unknowingly) safely marketed 

until more than 1 in 10,000 drug users demonstrate signs of liver failure [6]. Novel, predictive 

systems for DILI based on mechanistic understanding will be essential to pave the way forward for 

improved drug safety assessment.  

The common notion around DILI is that drugs affect the intracellular biochemistry of liver 

cells, either elicited by the parent drug, its metabolites or the metabolic shift the drug conveys 

upon uptake [6, 281]. Although often idiosyncratic there is a need to understand the key events 

that are critical mechanistic determinants of human DILI. Perturbations of immune mediated 

signalling seems an important event in DILI [282]. In particular, TNFα-mediated signalling seems an 

important contributor to sensitize liver cells to drug-induced hepatocyte toxicity both in vitro [244] 

as well as in vivo [283].  TNFα mediates intracellular signalling through activation of NF-κB 

transcription factor [284]. NF-κB transiently translocates to the nucleus to activate downstream 

(cytoprotective) target genes including chemokines, inhibitor of apoptosis proteins family 

members (IAPs) and anti-apoptotic Bcl2 family members [285]. We demonstrated that for 

diclofenac the synergy with TNFα to kill hepatocytes is directly related to inhibition of NF-κB 
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nuclear translocation and activation, and that inhibition of NF-κB signalling sensitizes towards 

cytotoxicity caused by diclofenac [38].  

Bioactivation of drugs contributes to the formation of reactive metabolites which is shown 

to be a risk factor in DILI [286]. These reactive metabolites typically provoke a cellular oxidative 

stress environment thereby initiating the stabilization and activation of the transcription factor 

Nrf2 [287]. Subsequent downstream target gene activation by Nrf2 contributes to adaptation and 

protection of cells against oxidative stress. Likewise Nrf2 deletion in the liver severely increases 

the sensitivity towards drug-induced liver failure [113, 288]. In some studies it has been shown 

that Nrf2 activation can act to suppress NF-κB-based immune signalling responses [289] which is 

interesting as this would suggest Nrf2 could be involved in NF-κB suppression in certain situations 

including DILI.  So far there is no systematic evaluation on the relationship between Nrf2 and NF-

κB activation in DILI.  

Here we investigated whether drugs with known risk of DILI invoke specific cellular stress 

and defense pathways (NF-κB and Nrf2) that predict the degree of drug toxicity and whether 

associations between these pathways exist. We investigated the transcriptional response to 90 

DILI-associated drugs as well as several cytokines/growth factors in primary human hepatocytes 

(PHH) at multiple concentrations and time-points, based on publicly available data [70]. To 

translate these findings to high throughput approaches we established novel GFP-based reporter 

cell lines to quantitatively assess Nrf2 and NF-kB activation on a cell-to-cell basis and amenable for 

high content high throughput live-cell imaging. Our combined data indicate that the degree of 

oxidative stress in liver cells negatively correlates with NF-κB activity and that the inability to 

adequately respond to inflammatory responses upon drug exposure predisposes liver cells 

towards cell death. We propose that our integration of live cell high content imaging models to 

determine Nrf2 and NF-kB activation as well as cytotoxicity is likely to contribute to improve the 

discrimination of novel drug entities that are intrinsically at risk for DILI.  

3. Materials and Methods 

3.1. Reagents 

All drugs were acquired from Sigma-Aldrich and freshly dissolved in DMSO, except for menadione 

and naproxen (in PBS). Human TNFα was purchased from R&D systems and stored as 10 μg/mL in 

0.1% BSA in PBS aliquots. 

3.2. Cell culture 

Human hepatoma HepG2 cells were acquired from ATCC (clone HB8065) and maintained and 

exposed to drugs in DMEM high glucose supplemented with 10% (v/v) FBS, 25U/mL penicillin and 

25μg/mL streptomycin. The cells were used between passage 5 and 20. For live cell imaging, the 

cells were seeded in Greiner black μ-clear 96 wells plates, at 20,000 cells per well. 

3.3. Gene expression analysis. 

CEL files were downloaded from the Open TG-GATEs database for all DILI-related compounds (see 

Supplementary Table 1): “Toxicogenomics Project and Toxicogenomics Informatics Project under 

CC Attribution-Share Alike 2.1 Japan” http://dbarchive.biosciencedbc.jp/en/open-

tggates/desc.html. Probe annotation was performed using the hthgu133pluspmhsentrezg.db 

package version 17.1.0 and Probe mapping was performed with hthgu133pluspmhsentrezgcdf 
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downloaded from NuGO (http://nmg-r.bioinformatics.nl/NuGO_R.html). Probe-wise background 

correction (Robust Multi-Array Average expression measure), between-array normalization within 

each treatment group (quantile normalization) and probe set summaries (median polish 

algorithm) were calculated with the rma function of the Affy package (Affy package, version 

1.38.1). [228] The normalized data were statistically analyzed for differential gene expression 

using a linear model with coefficients for each experimental group within a treatment group. [258] 

A contrast analysis was applied to compare each exposure with the corresponding vehicle 

control. For hypothesis testing the empirical bayes statistics for differential expression  was used 

followed by an implementation of the multiple testing correction of Benjamini and 

Hochberg[254]  using the LIMMA package [259]. 

3.4. Cluster analysis of oxidative stress and inflammation regulated gene sets. 

A gene set for oxidative stress and a gene set for inflammatory signalling was generated using 

several databases (see Supplementary Fig 1). From Ingenuity Pathway Analysis (version 18841524) 

the genes present in the following pathways were extracted: NRF2-mediated Oxidative Stress 

Response, Death Receptor Signalling, NF-κB Signalling, TNFR1 Signalling, TNFR2 Signalling and Toll-

like Receptor Signalling. From the Gene Ontology project [290], genes associated with the 

following terms were obtained using AmiGO 2 version: 2.2.0 [291]. For oxidative stress: "response 

to oxidative stress" GO:0006979 and for inflammatory signalling: "regulation of inflammatory 

response" GO:0050727, both queries with filters evidence type closure: “experimental evidence” 

and taxon closure label: “Homo sapiens”. 

From the Molecular Signatures Database (MSigDB) [292] the following genesets from 

BioCarta “BIOCARTA NRF2 PATHWAY” for oxidative stress and “BIOCARTA NFKB PATHWAY”, 

“BIOCARTA DEATH PATHWAY”, “BIOCARTA TNFR1 PATHWAY", “BIOCARTA TNFR2 PATHWAY” and  

“BIOCARTA TOLL PATHWAY” for inflammatory signalling. 

From Kyoto Encyclopedia of Genes and Genomes (KEGG Release 71.0, July 1, 2014): [293].  

“NF-kappa B signalling pathway”, “TNF signalling pathway” and “Toll-like receptor signalling 

pathway” for inflammatory signalling. No entry for Nrf2 or oxidative stress was found. From 

Reactome (Version 48) [294] “innate immune system” and “detoxification of reactive oxygen 

species” for the inflammatory and oxidative stress signalling, respectively. From “TRANSFAC® 

(www.biobase-international.com/transcription-factor-binding-sites) from BIOBASE  

Corporation” [295] the genes bound by factor NFE2L2 and RELA. From all databases a total 

of 490 and 175 unique genes were obtained for inflammatory and oxidative stress signalling, 

respectively. As a next step to determine if the selected genes are actively transcribed in Primary 

Human Hepatocytes (PHH) of the TG-GATES dataset another selection step was performed using 

the oxidative stress model compounds diethyl maleate and butylated hydroxyanisole and 

inflammatory model treatments TNFα, LPS and interleukin 1β; both for the high dose 8 hours and 

24 hours data. The oxidative stress gene-set was filtered based on a multiple testing corrected p-

value of 0.05, minimum average expression of 5 (log2) and a minimum absolute log2 fold change 

of 1.5 within the oxidative stress model compound subset resulting in 55 genes. The inflammatory 

signalling gene-set was filtered based on a multiple testing corrected p-value of 0.05, minimum 

average expression of 5 (log2) and a minimum absolute log2 fold change of 2 within the 

inflammatory signalling model treatment subset resulting in 82 genes. The log2 fold change values 
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for all DILI treatments and controls were gathered followed by manhattan distance measure and 

ward clustering using the NMF package (version 0.20.5) [227].  Different log2 fold change 

threshold values were used to obtain similar gene-set sizes. 

The DILI-Score annotation was adapted from a manual literature survey performed by 

Astrazeneca [241]. The DILI concern and SeverityScore was largely based on a text mining study of 

FDA-labels [264] 

3.5. Ingenuity Pathway Analysis  

Differentially expressed genes for all DILI compounds in the TG-GATEs dataset were selected 

based on a minimal log2 fold change of 1.3 (fold change of 2.5 X with respect to matched control), 

a maximum multiple testing corrected p-value of 0.05 and a minimum average log2 expression of 

7 within the treatment groups (Supplementary Fig 1) Classification of the selected genes according 

to their biological and toxicological functions were generated through the use of QIAGEN’s 

Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity)” which 

finds associated canonical pathways based on the selected gene sets. P-values are calculated using 

right-tailed Fisher Exact Test and represented as –log10 (p-values). The p-values were extracted 

for the “Nrf2-mediated oxidative stress response” pathway representing oxidative stress and as 

representation for “inflammatory signalling” the average of the p-values of pathways “Toll-like 

receptor signalling", "death receptor signalling", "TNFR1 signalling", "TNFR2 signalling" and "NF-kB 

signalling" was calculated. For each treatment the average magnitude of the log2 fold change 

values of the genes responsible for the significance of the oxidative stress and inflammatory 

pathways was calculated and displayed as an arrow vector above the –log10 p-value bars of the 

bargraph. The number of genes responsible for the significance of the individual pathways is color 

coded from blue (low number of genes) to pink (high number of genes). 

3.6. Generation of GFP-tagged cell lines 

HepG2 cells stably expressing human GFP-p65 as described in [38]. Mouse sulfiredoxin (Srxn1) was 

tagged with GFP at the C-terminus using BAC recombineering [13] and stably introduced into 

HepG2 cells by transfection and 500 μg/ml G-418 selection.  

3.7. RNA interference 

siRNAs against human NFE2L2 (Nrf2) and KEAP1 were acquired from Dharmacon (ThermoFisher 

Scientific) as siGENOME SMARTpool reagents, as well as in the form of four individual siRNAs. 

HepG2 cells were transiently transfected with the siRNAs (50nM) using INTERFERin (Polyplus) as 

described previously [38].  

3.8. Western blotting 

Samples were collected by direct cell lysis (including pelleted apoptotic cells) in 1x sample buffer 

supplemented with 5% v/v β-mercaptoethanol and heat-denatured at 95°C for 10 minutes. The 

separated proteins were blotted onto PVDF membranes before antibody incubation in 1% BSA in 

TBS-Tween20. Antibodies: mouse-anti-GFP (Roche); rabbit-anti-IκBα (Cell Signalling); rabbit-anti-

Nrf2 (H300, Santa-Cruz); mouse-anti-Cleaved Caspase-8 (Cell Signalling); rabbit-anti-PARP (Cell 

Signalling); mouse-anti-Tubulin (Sigma); mouse-anti-actin (Santa-Cruz). 
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3.9. Microscopy 

Real-time cell death induction was determined by monitoring the accumulation of Annexin-V-

Alexa633 labeled cells over a 24 hour time period [261]. For this, transmission and Alexa633 

images of the same area with cells were taken automatically every 30 minutes using a BD 

Pathway™ 855 bioimager with CCD camera and a 10x objective with an image resolution of 

608X456 (binning 2). 

Accumulation of Srxn1-GFP or nuclear oscillation of GFP-p65 was monitored using a Nikon 

Eclipse Ti confocal microscope (lasers: 488nm and 408nm), equipped with an automated stage, 

Nikon 20x Dry PlanApo VC NA 0.75 objective and perfect focus system. Images were acquired at 

512X512 pixels. Prior to imaging at >20x magnification, HepG2 cells were loaded for 45 minutes 

with 100ng/mL Hoechst33342 to visualize the nuclei, upon which the Hoechst-containing medium 

was washed away to avoid Hoechst phototoxicity [224]. Srxn1-GFP cells were imaged every 30 

minutes across a 24 hour time span, GFP-p65 cells every 6 minutes for 6 hours. 

3.10. Image quantification 

To quantify the total pixel area occupied by cells or the number of cells per field imaged, 

transmission images and Hoechst images respectively were analyzed using ImagePro 7.0 (Media 

Cybernetics). The accumulation of dead cells or the appearance of Srxn1-GFP positive cells was 

quantified as the total number of pixels above background. The Annexin-V-positive pixel total was 

normalized for the total cell area. The number of adjacent fluorescent Srxn1-GFP pixels above 

background (with a minimum size of 45 pixels, which is about 1/4th of average cell size) was 

multiplied by the average density of those pixels as a measure for the GFP signal-intensity increase 

and normalized for the amount of nuclei.  

To quantify the nuclear translocation of GFP-p65, nuclei (Hoechst) masks are segmented and 

tracked in ImageJ to define the GFP-p65 nuclear intensity, followed by cytoplasm segmentation. 

The normalized nuclear / cytoplasmic intensity ratio for each cell is recorded and further analyzed 

for different oscillation features, also using ImageJ, including the number of translocations, time 

period of each individual peak, intensity of the peaks, delay between peaks, and nuclear entry and 

exit rates [296]. 

3.11. Statistics 

All experiments are performed at least in triplicate. Error bars indicate Standard Error. Statistical 

comparisons were done in a one-way ANOVA. P-value indications: P<0.05 (*); P<0.01 (**); P<0.001 

(***). 
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4. Results 

4.1. Enhanced Nrf2 activation is associated with suppression of endogenous NF-κB 

activity in PHH. 

The Japanese Toxicogenomics Project has generated the Open TG-GATEs data repository of gene 

expression profiles in primary human hepatocytes (PHH) upon exposure to 157 compounds of 

which many are DILI-related, at 1-3 different concentrations and 1-3 time points (2, 8 and 24 hr), 

including a few pro-inflammatory cytokines, TNFα, IL1β and LPS [70]. We focused on the NF-κB 

and Nrf2 signalling related gene sets extracted from several key databases as described in detail 

the material and methods section. Ingenuity Pathway Analysis (IPA) for oxidative stress and 

inflammatory signalling was determined for all DILI compounds in the dataset. Typically a 

significant modulation of these pathways was observed. A major modulation of the “Nrf2-

mediated oxidative stress response” overall related to upregulation of genes linked to this 

pathway. Interestingly, DILI compounds that showed a strong oxidative stress response also 

showed a modulation of “inflammatory signalling” related to NF-κB activity (26 compounds, 

p<0.05) although this was typically associated with down regulation of genes (Fig.1A). This effect 

was strongest after 24 hour treatment, although a similar association was already observed at 8 

hour treatment (Supplementary Fig. 2A).  

The above observation indicated an opposite direction of Nrf2-mediated signalling versus 

NF-kB-related inflammatory signalling by DILI compounds in PHH. Indeed, Nrf2 can negatively 

affect NF-κB activity [297, 298]. Therefore we next performed a more detailed hierarchical 

clustering analysis of the altered gene expression induced by all DILI compounds associated with 

both signalling pathways. As a first step based on different annotation databases we 

systematically selected a set of Nrf2 signalling-related genes as well as a set of inflammatory 

signalling related genes. To determine which genes are responsive to oxidative stress and 

inflammatory stimuli in PHH we included a stringent filtering procedure based on the exposures of 

PHH in the TG-GATEs data to diethyl maleate and butylated hydroxyanisole for Nrf2 signalling, and 

TNFα, IL-1β and LPS for inflammatory signalling. We then extracted the differential expression 

levels for all DILI compounds for the selected 55 and 82 genes related to Nrf2 signalling and 

inflammatory signalling, respectively. Using an unsupervised hierarchical clustering for all genes 

and DILI compounds at 24 hour we could clearly distinguish Nrf2 clusters (A’, B’, C’ and E’) and NF-

κB gene clusters (D’, F’ and G’) (Fig. 1B). Moreover, cytokines and LPS (cluster A) clearly induced a 

different response compared to all DILI compounds (clusters B-E). DILI compound cluster C gave 

the strongest overall response both at the level of Nrf2 target gene activation as well as 

inflammation signalling target gene down regulation; this cluster was slightly enriched in 

compounds that demonstrate ‘fatal hepatotoxicity’. These effects were not as prominent at 8 hour 

treatment conditions (Supplementary Fig. 2B).  

Within the hierarchical cluster analysis two strong gene clusters were prominent in their 

response to DILI compounds: a first cluster (cluster B’) with Nrf2 target genes that were mostly 

upregulated by DILI compounds but hardly affected by cytokines, including Maff, Srxn1, Txnrd1, 

GCLM, SQSTM1, G6PD, FOS, MMP1 and HMOX1, mostly prototypical Nrf2 target genes (see Fig. 2 

for examples); and a second cluster (clusters F’ and G’) with inflammatory genes that were 

strongly upregulated by the cytokines and LPS, but were strongly downregulated by the same DILI 

compounds that caused upregulation of Nrf2 targets, and included CXCL1, CCL2, BCL2A1, CXCL11, 
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CXCL2; (see Fig. 2 for examples). To determine the correlation with the DILI severity, we 

performed a similar cluster analysis for only severe DILI compounds and non-severe DILI 

compounds based on the FDA drug labeling classification [264] (Supplementary Figs. 3 and 4). 

Severe DILI compounds mostly mimicked the overall DILI hierarchical cluster analysis showing the 

strongest inverse relationship between Nrf2 activity and NF-κB suppression and included 

diclofenac, sulindac, ketoconazole and acetaminophen.  

Altogether these findings indicate a strong correlation between the ability of DILI 

compounds to induce an adaptive Nrf2 response and the suppression of NF-κB activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Gene expression analysis of 24 hours highest concentration primary human hepatocyte subset 

of the TG-GATES dataset. (A) Differentially expressed genes were analyzed with ingenuity pathway analysis 

as described in detail in the material and methods section. In the top panel the –log10 p-values for the 

corresponding pathways are displayed for the Nrf2-mediated oxidative stress response. The top panel 

displays the mean of the p-values for the inflammatory related pathways. Compounds are ordered 

according to highest significance of the Nrf2-mediated oxidative stress response. The compound labels in 

red are the compounds chosen in this study. The color of the bars correspond to DILI-severity type or to the 

oxidative stress/ inflammatory model-compounds (model-compound type). The length of the arrows 

correspond to the mean fold change of the genes which are responsible for the significance of the 

corresponding pathways. The direction of the arrow corresponds to either mean up- or down-regulation of 

these genes. The color of the arrows corresponds to the number of these genes ranging from 10 to 60 

genes. (B) Unsupervised hierarchical clustering of all DILI compounds and a selected gene set as described 

in detail in the material and methods section. Blue corresponds to down- regulated genes and orange to 

up-regulated genes, the brightness corresponds to the magnitude of the fold changes. The top color-coded 

bar corresponds to the DILI-Concern or model-compound type. The second top color-coded bar 

corresponds to the Severity Class or model-compound type. The left color-coded bar corresponds to the 

gene type- either inflammatory genes, oxidative genes or both. Important clusters on gene-level are 

represented from A` to H`, and important compound-level clusters with A-E for easy reference from the 

text. Compounds used in this study are color-coded in red. 
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Figure 2: Fold changes of example genes from the two prominent clusters from the unsupervised 

hierarchical cluster analysis. Oxidative stress genes HMOX, SRXN1, GCLM (blue) from cluster B’ from Fig. 1B 

and inflammatory genes CXCL1, CCL2, BCL2A1 (purple) from clusters F’& G’. Color codes are as in Fig. 1. 

4.2. A BAC-Srxn1-GFP HepG2 cell line reports xenobiotic-mediated Nrf2 activation. 

The most prominent differences between NF-κB and Nrf2 responses in the PHH dataset were 

observed at high concentrations and at 24 hours of drug exposure. Like all signalling events, the 

transcriptional activity of Nrf2 and NF-κB are dynamic in nature and may show differential activity 

over time. Therefore we sought to monitor the activity of these two transcription factors in living 

cells using GFP-tagging technology allowing their dynamic analysis. As PHH dedifferentiate within 

24h in vitro when grown in 2D cultures [299] and are not amenable for stable expression of GFP 

reporter constructs, we chose the liver model cell line HepG2 to generate stable fluorescent 

reporters for both NF-κB and Nrf2 signalling. As a first step, to enable reliable quantitative 

measurements of the dynamic effect of drug exposure on Nrf2 activity using live cell imaging, we 

generated a HepG2 reporter cell line based on bacterial artificial chromosome (BAC) 

recombineering [48] of the Nrf2 target gene sulfiredoxin (Srxn1) [13] which was part of the 

predictive DILI cluster. We tagged the Srxn1 gene with GFP at its C-terminus and established a 

stably expressing HepG2 Srxn1-GFP cell line under control of its own entire promoter region. To 

monitor for its functionality as an Nrf2 reporter, we exposed the HepG2 cells to menadione (20 

μM, MEN) and di-ethyl maleate (100 μM, DEM) as proto-typical model activators of Nrf2, as well 

as diclofenac and ketoconazole, of which the PHH data revealed their capacity to strongly activate 

an Nrf2 response. DEM, MEN, DCF and KTZ all stabilized Nrf2 levels in our cells (Fig. 3B & C). Live-

cell imaging by confocal microscopy followed by automated image quantification showed that the 

Srxn1-GFP reporter is activated with different kinetics by different compounds with MEN and DEM  
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Figure 3: Srxn1-GFP BAC HepG2 reporter cell line is dependent on Nrf2/KEAP1 signalling. (A) Cell injury 

assay using Annexin-V-Alexa-633 staining after  24 hour exposure to our compound set. (B) Western blot of 

Nrf2 expression in HepG2 cells exposed for 8 or 16 hours to menadione (MEN), diethyl-maleate (DEM), 

diclofenac (DCF) or ketoconazole (KTZ). Density quantification is relative to Actin levels, normalized to 

DMSO. (C) Western blot of GFP expression in HepG2 Srxn1-GFP cells as in (B). Density quantification below 

is relative to tubulin levels. (D) Stills of time-lapse imaging of HepG2 Srxn1-GFP cells exposed to Nrf2 

inducers. (E) Quantification of the Srxn1-GFP reporter response kinetics. (F) siRNA-mediated knockdown of 

Nrf2 (+ siNrf2) or KEAP1 (siKEAP1) or mock treatment (-) in HepG2 Srxn1-GFP cells exposed to DMSO, MEN, 

DEM, DCF or KTZ for 24h. 

being fast inducers, likely related to their direct mode-of-action, and diclofenac and ketoconazole 

showing a delayed response, possibly related to bioactivation (Fig.3B-E); this effect was directly 
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related to the expression of the GFP-Srxn1 fusion product. Finally, to confirm that our Srxn1-GFP 

reporter is under direct control of the KEAP1/Nrf2 pathway, we transiently transfected the HepG2 

Srxn1-GFP cells with siRNA oligos targeting Nrf2 or KEAP1. siRNA targeting Nrf2 prevented the 

stabilization of Nrf2 and consequently inhibited the Srxn1-GFP induction for all compounds. In 

contrast, as expected KEAP1 knock down itself stimulated Srxn1-GFP expression (Fig. 3F). These 

data show that the Srxn1-GFP signal intensity depends on the functional KEAP1/Nrf2 pathway. 

4.3. Drug-induced cell death of human HepG2 cells. 

Next we selected a set of DILI compounds for further characterization. Since the opposite 

regulation of Nrf2 versus NF-κB by DILI compounds was largely seen for severe DILI compounds 

that often require bioactivation, we selected a small panel of compounds that was contained 

within the TG-GATEs dataset (acetaminophen (APAP), carbamazepine (CBZ), clozapine (CLZ), 

diclofenac (DCF), ketoconazole (KTZ), nitrofurantoin (NTF) and nefazadone (NFZ)) as well as some 

DILI compounds that do not require bioactivation and do not activate the Nrf2 pathway much in 

PHH (amiodarone (AMI), naproxen (NPX) and simvastatin (SN)); we further complemented our 

compound set with a few additional drugs that fit in these categories but were not included in the 

TG-GATEs (ofloxacin (OFX), isoniazid (INH), methotrexate (MTX), 3'-hydroxyacetanilide (AMAP) 

and troglitazone (TGZ)) (Supplementary Table 2). We first tested whether these compounds 

induced sufficient cell injury that resulted in cell death at similar concentrations as used for the 

PHH dataset (Fig. 3A). Based on automated live cell imaging of Annexin-V positive cells we 

identified concentration-dependent HepG2 cell death for AMI, APAP, AMAP, CBZ, CLZ, DCF, KTZ, 

NFZ, NTF and SN. Little cell death was observed for INH, MTX, NPX, OFX and TGZ. For further 

experiments we continued with a mildly cytotoxic concentration (<10 % apoptosis onset) for each 

compound (indicated in Supplementary Fig. 5) to establish the effect on Nrf2 activation, NF-κB 

signalling and the cytotoxic interaction between DILI compounds and the pro-inflammatory 

cytokine TNFα. 

4.4. DILI compounds activate the Nrf2 stress response independent of TNFR 

activation. 

The PHH dataset predicted that APAP, CBZ, CLZ, DCF, KTZ and NTF potently activate the Nrf2 

response; that INH, NFZ and NPX mildly induce Nrf2 and that AMI and SN weakly activate it 

(Supplementary Fig. 6). Using live-cell imaging we tested whether these same drugs activated the 

Srxn1-GFP response in HepG2 cells (Fig. 4A-B). We observed that APAP induced the oxidative 

stress reporter as soon as 4 hours after compound exposure, which is remarkable considering the 

low CYP2E1 levels in HepG2 cells however this does indicate that the HepG2 is sensitive to 

oxidative stress-adaptation signalling. Possibly APAP induces oxidative stress through other means 

than CYP2E1-mediated bioactivation, possibly involving direct modulation of the mitochondrial 

respiratory chain. NTF, DCF, KTZ, CLZ, CBZ and NFZ strongly induced the Srxn1-GFP reporter as 

early as 8 hours after compound exposure. AMI, MTX and NPX showed weak Srxn1-GFP induction 

with delayed kinetics, around 16 hours after compound exposure. INH, OFX, SN and TGZ did not 

lead to oxidative stress induction within the 24 hour imaging period in our cell system. These  
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Figure. 4: Drug exposure induces dynamically divergent Nrf2 responses. (A) Stills of confocal live-cell 

imaging in HepG2 Srxn1-GFP cells upon drug exposure (shown are 4, 14 and 24 hours). (B) Quantification of 

the Srxn1-GFP signal appearing upon exposure to increasing drug doses (averages shown of 4 independent 

replicates). (C) Western-blots for Nrf2 and GFP expression after 24 hour drug exposure in HepG2 Srxn1-GFP 

cells, either with or without co-exposure to 10ng/ml TNFα. (D) Quantification of the Nrf2 and Srxn1-GFP 

protein levels, 24h after drug +/- TNFα exposure (averages of 3 replicates). 

findings indicate that the PHH results on the Nrf2 pathway activation correlate well with the 

HepG2 Srxn1-GFP reporter cell observations.  
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TNFα promotes NF-κB target gene activation through binding to TNFRSF1A. TNFα binding to 

its receptor has been suggested to promote Nrf2 activation [300], while the PHH dataset predicted 

no effect of TNFα on Nrf2 responses. To confirm this we tested whether drug exposure in 

combination with 10 ng/mL TNFα influenced the drug-induced Nrf2 response (Fig. 4C and D). We 

observed neither a significant rise nor a decrease in Nrf2 stabilization or Srxn1-GFP expression at 

24h when the HepG2 Srxn1-GFP cells were exposed to TNFα alone or in combination with an 8 

hour drug pre-exposure. This suggests that TNFα-mediated NF-κB signalling does not influence 

Nrf2 target gene activation caused by deleterious DILI compounds.  

4.5. DILI compounds cause a perturbation of NF-κB signalling. 

To test whether Nrf2 activation by DILI compounds is associated with modulation of  NF-κB 

signalling, we made use of a previously established HepG2 cell line expressing GFP-tagged 

p65/RelA, a subunit of the dimeric transcription factor NF-κB [38]. As reported [38], an 8 hour DCF 

pre-exposure delays the second translocation event (peaking 26 minutes later than vehicle pre-

incubated cells) (Fig. 5A). Also NTF (+29 minutes), KTZ (+26 minutes), AMI (+22 minutes), NFZ (+22 

minutes) and CBZ (+20 minutes) delayed the oscillation to a similar extent as DCF. Pretreatment 

with CLZ and MTX only weakly perturbed the appearance of the second translocation response 

with a delay of 12 and 9 minutes, respectively. Neither AMAP, APAP, INH, OFX, SN nor TGZ 

significantly influenced the translocation maximum of the second nuclear translocation event. 

Our live cell imaging approach allowed detailed cell population-based quantitative analysis 

of the translocation response to extract various relevant parameters that describe the NF-κB 

oscillation pattern invoked by TNFα at the single cell as well as the cell population level [296]. This 

analysis revealed that pre-treatment with AMI, CBZ, DCF, KTZ, NFZ or NTF significantly delayed the 

time between the first and second NF-κB nuclear translocation maxima that normally occur at 30 

minutes and 150 minutes after TNFα exposure, respectively (Fig. 5B). This effect limits the average 

number of translocation events observed within the 6 hour imaging window (Fig. 5C). Importantly, 

by evaluating on average ~1,000 cells per condition, we identified that AMI, CBZ, DCF, KTZ, NFZ 

and NTF induced a sharp decrease in the percentage of cells that undergo three or more NF-κB 

nuclear translocation events (Fig. 5D). Together, the results indicate that various DILI compounds 

affect the TNFα-induced NF-κB activation response by modulating its nuclear translocation 

dynamics.  For the compounds with this delayed translocation event the NF-κB target genes are 

down regulated (Fig. 1A) and all compounds except amiodarone fall within inhibited NF-κB/ 

activated Nrf2 signalling clusters (clusters B-C, and CBZ cluster D, Fig. 1B) suggesting that the 

delayed translocation could be indicative for lower NF-κB target gene expression.  
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Figure. 5: DILI compounds affect the TNFα-mediated nuclear translocation response of NF-κB. (A) Time-

lapse images of one cell that illustrates NF-κB oscillation upon 10ng/ml TNFα stimulation after an 8 hour 

drug pre-incubation period. Arrowheads point at the local nuclear translocation maxima ("peaks"). 

Quantified average of the GFP-p65 nuclear/cytoplasmic intensity ratio (average of 3 experiments, totaling 

800-1200 cells), normalized between 0 and 1 to focus on the appearance of the nuclear translocation 

maxima. (B) Analysis of the NF-κB response: time between peaks 1 and 2. (C) Analysis of the NF-κB 

response: assessment of the number of peaks. (D) Distribution of the TNFα-stimulated, drug pre-exposed 

cell population, classified for showing 0 to 5 peaks within the 6 hour imaging period. 
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4.6. The inhibitory effect of Nrf2 activity on NF-κB signalling promotes the pro-

apoptotic role of TNFα in drug-exposed HepG2 cells.  

TNFα-mediated signalling seems important in DILI [244, 282]. While TNFα-receptor mediated NF-

κB signalling may provide survival signalling through the upregulation of anti-apoptosis genes such 

as the anti-apoptotic Bcl-2 family member A1 (BCL2A1), activation of the TNFR may in parallel 

initiate activation of caspase-8 and thereby switch on apoptosis[301]. Since DILI compounds did 

affect the NF-kB signalling, and therefore possibly suppressed survival signalling, we next 

investigated whether DILI compounds would also predispose to the onset of TNFα-mediated 

apoptosis. To address this issue we monitored the rate of HepG2 cell apoptosis by live-cell imaging 

with Annexin-V-Alexa633 after 8 hour drug pre-exposure and tested whether TNFα co-exposure 

enhanced the apoptotic response at 24 hours. TNFα enhanced the apoptosis induction upon CBZ 

and DCF exposure by 18.6% and 9.7% respectively. A smaller increase of 3 to 4% in cell death upon 

TNFα co-stimulation was found for KTZ, AMI, NFZ and CLZ (Fig. 6A and 6B). Since TNFα-mediated 

death signalling acts through caspase-8 activation, we anticipated that the synergy for the onset of 

apoptosis would also be associated with enhanced caspase-8 cleavage.  Caspase-8 was markedly 

increased by TNFα combined with CBZ and DCF, yet for other DILI compounds tested such a 

caspase-8 activation was not observed, as was expected based on the limited onset of apoptosis 

(Fig. 6C and 6D). The enhanced caspase-8 cleavage was associated with cleavage of PARP, a well-

established caspase substrate which serves as a pivotal marker of onset of apoptosis. This 

indicates that primarily under CBZ and DCF pretreatment conditions co-treatment with TNFα turns 

on apoptosis.  

Table 1: Summary of DILI compound modulation of Nrf2 and NF-kB signalling and onset of DILI 

compound/TNFα cytotoxic synergy. Full names, abbreviations and function of the drugs chosen for this 

study. The DILI classification was derived from Chen et al. 2011. The overall results from the current study 

are summarized as fold induction of the Srxn1-GFP intensity compared to control (Nrf2 response), timing of 

the GFP-p65 assay, focusing on the delay in the second nuclear translocation event upon TNFα exposure 

(NF-κB response) and percentage of dead cells as observed by the Annexin-V live assay (including TNFα-

enhanced cell death). 
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Figure 6: Adverse DILI compound and TNFα synergy for the onset of cell death. (A) Still images of time-

lapse movies of HepG2 cells exposed to the drugs in co-presence of Annexin-V-Alexa-633, taken at 8 hours 

(before 10ng/ml TNFα addition) and at 24 hours (16 hours TNFα). (B) Quantification of the percentage dead 

cells appearing upon drug only exposure, or in combination with TNFα. Average of 3 to 6 experiments. (C) 

Western-blot for cleaved caspase-8 and the caspase substrate PARP, induced by 24 hour drug alone or 

drug-TNFα co-treatment. (D) Comparison of the quantified percentage of dead cells 24 hours after drug 

(+TNFα) exposure: the appearance of dead cells in live-cell imaging as area under the curve (AUC) (as in B) 

and quantification of cleaved caspase-8 protein levels (relative density as in C, average of 3 experiments) 
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5. Discussion 

Here we focused on the interplay of two pivotal cellular stress response signalling pathways in 

drug-induced liver injury: TNFα-mediated NF-κB signalling and chemical stress-induced Nrf2 

activation. Extensive transcriptomics data from primary human hepatocyte revealed that the Nrf2 

transcriptional program is activated by a majority of different DILI compounds in particular those 

that are associated with severe DILI. This strong Nrf2 activation correlates with a major 

downregulation of genes that are under the direct control of NF-κB. We successfully transferred 

this inverse relationship between Nrf2 activation and NF-κB signalling into a panel of GFP-reporter 

based high content imaging assays, which now allows the high throughput assessment of their 

dynamic activation [236]. Using live-cell imaging we established the time-profiles of the activation 

of these transcription factors and established that various DILI compounds activate Nrf2 activity as 

well as negatively modulate the NF-κB nuclear oscillation response induced by TNFα. Although no 

cause and effect relationship between these two signalling pathways has been proven in our 

study, our data do support an overall working model whereby DILI compounds that strongly affect 

the Nrf2 response as well as modulate the NF-κB oscillatory response (either directly or indirectly) 

act in synergy with TNFα to cause a cytotoxic response. An integrated automated high throughput 

microscopy-based platform that simultaneously measures drug-induced Nrf2 activation, TNFα-

induced NF-κB activation and cytotoxicity, will likely contribute to the exclusion or de-prioritization 

of novel drug entities for further development. 

Our data indicate a differential regulation of Nrf2 and NF-κB signalling pathways in primary 

human hepatocytes (PHH). From the Japanese Toxicogenomics Project a total of 90 DILI 

compounds have been evaluated. While several DILI compounds caused a strong modulation of 

most Nrf2 and NF-κB target genes, e.g. nitrofurantoin, diclofenac and ketoconazole, the effect of 

amiodarone was only modest. Despite the fact that HepG2 cells are notorious for their low level 

expression of CYP enzymes [207], an enhanced formation of reactive intermediates during drug 

metabolism may be causative for the activation of the Nrf2 response. However, we cannot exclude 

the role of other stress response pathways that are intricately linked to the modulation of the Nrf2 

response and by themselves are activated by chemical-induced cell injury, including the 

perturbation of the mitochondria, the endoplasmic reticulum (ER) and the autophagosomes which 

may result in a secondary source of reactive oxygen species that may initiate an adaptive Nrf2 

response [302]. Although the role of these other programs will require further mechanistic 

investigations, our previous investigations demonstrate that suppression of the Nrf2 adaptive 

stress response strongly sensitizes cells towards a synergistic toxicity with TNFα, indicating that 

enhanced oxidative stress predisposes for TNFα sensitization [238]. 

The PHH transcriptomics data indicated that many DILI compounds themselves suppress the 

activity of NF-κB target genes. In addition, our imaging data indicate that various DILI compounds 

suppress the NF-κB oscillatory response. Together this suggests that also under control situations 

the overall nuclear localization of NF-κB may be limited, thereby precluding the activation of NF-κB 

target genes. Alternatively a limited activation of NF-κB by DILI compounds possibly influences the 

expression of modulators that act as feedback suppressors of NF-κB activity, such as IkBα/NFKBIA 

or A20/TNFAIP3 [303]. Indeed, NF-κB signals through an auto-regulatory negative feedback 

mechanism that essentially desensitizes a cell for a limited time period against re-activation of the 

response by an active NF-κB inducing kinase complex (IKK) [304]. Although drug exposure alone 
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may elicit NF-κB oscillations, this does not limit the primary nuclear translocation event upon TNFα 

exposure, only the subsequent nuclear translocation events. The later oscillations are less intense 

and less synchronized due to induction of a second negative feedback regulator, A20. 

Interestingly, several, but not all, DILI compounds affect the expression of IkBα and A20 in PHH, 

which often occur in parallel, supporting a similar mechanism of activation (see Supplementary 

Fig. 7). We therefore turned to our GFP-p65 reporter and tested whether the test drugs can induce 

NF-κB oscillations on their own. In line with this we found that DCF, CBZ, NFZ, CLZ and KTZ induced 

a limited NF-κB transition in 2-6% of a given cell population within the first two hours after 

exposure which was not apparently different from control conditions (Supplementary Fig. 8). This 

suggests that drug pre-exposure does not directly change the initial balance of NF-κB and its 

cytoplasmic inhibitor, IκBα, but rather may influence the transcriptional and translational 

responses required for normal execution of the timing of the NF-κB response after the first nuclear 

translocation event. 

The rationale for the choice of drugs was to investigate whether our live-cell imaging 

systems were able to discriminate between drugs that are often linked to DILI (TGZ, AMI, INH, KTZ, 

NFZ, MTX, NTF, CBZ and DCF) and relatively safe drugs (NPX, SN, OFX and CLZ). We have focused 

on NF-κB signalling, Nrf2 activation and cell death  induction and a summary of the different 

responses is provided in Table 1. As APAP and AMAP induce hepatocellular death through necrosis 

at high levels of drug concentrations (an EC50 in PHH of ~25mM), and not apoptosis, these are 

considered as relatively safe drugs [305]. Based on our results, NPX, SN and OFX are safe (no 

massive cell death induction, no gross effect on Nrf2 or NF-κB signalling), but clozapine should be 

re-evaluated: its profile of strong Srxn1-GFP induction, NF-κB delay and slightly higher cell death 

induced by TNFα co-exposure shows more resemblance to drugs that are more often associated to 

DILI, such as DCF, CBZ, KTZ, NFZ and NTF.  

Our assays have not been able to pick up any mechanistic signs for toxicity for INH and TGZ, 

two typical idiosyncratic DILI-related drugs (Table 1). The hepatotoxic effect of these two drugs, 

however, could partly depend on their inhibitory effect on bile acid transport [306, 307], which 

might only emerge from advanced (3D) hepatocyte culture models [308]. Moreover, lack of strong 

bioactivation capacity in HepG2 cells could also be a reason why we could not observe any effect 

for these compounds. 

In conclusion, we demonstrate an association between Nrf2 signalling and NF-κB responses 

in two distinct liver models: PHH and HepG2. Using the live cell imaging of our GFP-based reporter 

models for Nrf2 and NF-kB signalling we established the inverse relationship between these 

signalling pathways in relation to DILI compound and TNFα mediated synergistic toxicity. This was 

only feasible by assessing the quantitative dynamics of the NF-κB responses, underscoring the 

integration of live cell imaging of stress response pathways in mechanistic studies in relation to 

DILI assessment.  
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Supplementary Materials 

Supplementary table 1: TG-GATES compounds and DILI annotations. 

 

 

 



Nrf2 activation and suppression of NF-κB by DILI-drugs sensitizes towards TNFα-induced cytotoxicity 

105 

1: steatosis, 2: cholestasis, 3: liver aminotransferases increase, 4: hyperbilirubinemia, 5: Jaundice, 6: liver 

necrosis, 7: acute liver failure, 8: fatal hepatoxicity   
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Supplementary table 2: Drugs used in this study and their reported adverse effects on the liver. 

Drug name Abbrevi

ation 

T

ype 

Function Metaboliz

ing enzymes 

Adverse drug 

reactions in the liver 

References 

amiodarone AMI 
Positive 
control 

antiarrhythmic agent CYP3A4; 1A2 

ALT/AST elevations; 
cirrhosis; jaundice; 
hepatomegaly; hepatitis; 
phospholipidosis; 
steatohepatitis; 
cholestasis 

(Lu et al., 2012;  
Pollak and Shafer, 
2004) 

3'-
hydroxyacetanilide 

AMAP 
Negative 
control 

regionisomer of 
paracetamol 

CYP2E1 
Does not cause liver 
failure in mice 

(Halmes et al., 1998;  
Stamper et al., 2010) 

paracetamol / 
acetaminophen 

APAP 
Positive 
control 

analgesic and 
antipyretic 

CYP2E1; 1A2; 2D6; 
3A4 

Acute liver failure; 
necrosis 

(Jaeschke et al., 2012;  
Manyike et al., 2000;  
Pirmohamed et al., 
1996) 

     carbamazepine CBZ 
Positive 
control 

antiepileptic drug 
CYP3A4; 2C9; 
induces CYP3A4 

Drug hypersensitivity; 
acute hepatitis; ALT/AST 
elevations; chronic 
hepatitis 

(Bjornsson, 2008;  
Daly, 2012;  Phillips 
and Mallal, 2011;  Syn 
et al., 2005) 

clozapine CLZ 
Positive 
control 

antipsychotic drug CYP3A4; 1A2; 2D6 
ALT/AST elevations; 
hepatitis; jaundice; 
necrosis 

(Damsten et al., 
2008;  Dragovic et al., 
2010;  Hummer et al., 
1997;  McKnight et 
al., 2011;  Valevski et 
al., 1998) 

diclofenac DCF 
Positive 
control 

NSAID 
CYP3A4; 2C9 ; 2C8; 
UGT2B7 

Acute hepatitis; necrosis; 
autoimmune chronic liver 
injury 

(Boelsterli, 2003;  
Deng et al., 2009;  
Fredriksson et al., 
2011) 

isoniazid INH 
Positive 
control 

anti-tuberculosis 
drug 

CYP2E1; inhibits 
CYP2C9 and 3A4 

ALT/AST elevation; acute 
hepatitis; chronic 
hepatitis; necrosis 

(Daly and Day, 2012;  
Srivastava et al., 
2010;  Zand et al., 
1993) 

ketoconazole KTZ 
Positive 
control 

antifungal antibiotic 
CYP3A4; inhibits 
CYP3A4 and 
UGT2B7 

acute hepatitis; 
cholestasis; necrosis 

(Bernuau et al., 1997;  
Kim et al., 2003;  Lin 
et al., 2008) 

methotrexate MTX 
Negative 
control 

chemotherapeutic 
agent 

aldehyde oxidase; 
CYP2E1 

ALT/AST elevations; 
fibrosis; cirrhosis; chronic 
hepatitis 

(Aithal, 2011;  West, 
1997) 

nefazodone NFZ 
Positive 
control 

antidepressant 
CYP3A4; inhibits 
CYP3A4 

liver failure; jaundice; 
hepatitis; hepatocellular 
necrosis 

(Stewart, 2002;  Xu et 
al., 2008) 

naproxen NPX 
Negative 
control 

NSAID CYP2C9 
ALT/AST elevations; 
cholestasis; acute 
hepatitis 

(Ali et al., 2011) 

nitrofurantoin NTF 
Positive 
control 

antibiotic against 
urinary tract 
infections 

CYP1A 
autoimmune hepatitis; 
chronic active hepatitis; 
necrosis 

(Boelsterli et al., 
2006;  Czaja, 2011) 

ofloxacin OFX 
Negative 
control 

antibiotic CYP1A2; 2C19 
hepatocellular necrosis; 
jaundice; hepatitis 

(Blum, 1991) 

simvastatin SN 
Positive 
control 

statin CYP3A4 
ALT/AST elevations; 
jaundice; hepatitis 

(Bjornsson et al., 
2012;  Law and 
Rudnicka, 2006) 

troglitazone TGZ 
Positive 
control 

antidiabetic 
CYP1A1; 2C8; 
2C19; 3A4 

fulminant hepatitis; acute 
liver failure 

(Jaeschke, 2007;  
Kaplowitz, 2005) 
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Supplementary figure 1: Flow diagram of TG-GATEs informatics analysis. 
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Supplementary figure 2: Gene expression analysis of 8 hours highest concentration primary human 

hepatocyte subset of the TG-GATES dataset. (A) Differentially expressed genes were analyzed with 
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Ingenuity Pathway Analysis as described in detail in the material and methods section. In the top panel the 

–log10 p-values for the corresponding pathways are displayed for the Nrf2-mediated oxidative stress 

response. The top panel displays the mean of the p-values for the inflammatory related pathways. 

Compounds are ordered according to highest significance of the Nrf2-mediated oxidative stress response. 

The compound labels in red are the compounds chosen in this study. The color of the bars correspond to 

DILI-severity type or to the oxidative stress/ inflammatory model-compounds (model-compound type). The 

length of the arrows correspond to the mean fold change of the genes which are responsible for the 

significance of the corresponding pathways. The direction of the arrow corresponds to either mean up- or 

down-regulation of these genes. The color of the arrows corresponds to the number of these genes ranging 

from 10 to 50 genes. (B) Unsupervised hierarchical clustering of all DILI compounds and a selected gene set 

as described in detail in the material and methods section. Blue corresponds to down- regulated genes and 

orange to up-regulated genes, the brightness corresponds to the magnitude of the fold changes. The top 

color-coded bar corresponds to the DILI-Concern or model-compound type. The second top color-coded 

bar corresponds to the Severity Class or model-compound type. The left color-coded bar corresponds to 

the gene type- either inflammatory genes, oxidative genes or both. Compounds used in this study are color-

coded in red. 
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Supplementary figure 3: Gene expression analysis of Most DILI-concern 24 hours highest concentration 

primary human hepatocyte subset of the TG-GATES dataset. Unsupervised hierarchical clustering of most 

DILI-concern compounds and a selected gene set as described in detail in the material and methods 

section.  Blue corresponds to down- regulated genes and orange to up-regulated genes, the brightness 

corresponds to the magnitude of the fold changes. The top color-coded bar corresponds to the DILI-

Concern or model-compound type. The left color-coded bar corresponds to the gene type- either 

inflammatory genes, oxidative genes or both.  

Supplementary figure 4: Gene expression analysis of Less DILI-concern 24 hours highest concentration 

primary human hepatocyte subset of the TG-GATES dataset.  Unsupervised hierarchical clustering of less 

DILI-concern compounds and a selected gene set as described in detail in the material and methods 

section.  Blue corresponds to down- regulated genes and orange to up-regulated genes, the brightness 

corresponds to the magnitude of the fold changes. The top color-coded bar corresponds to the DILI-

Concern or model-compound type. The left color-coded bar corresponds to the gene type- either 

inflammatory genes, oxidative genes or both.  
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Supplementary figure 5: Drug-induced cell death of HepG2 cells. Percentage of dead HepG2 cells at 24 

hours after exposure to fifteen different drugs. Concentrations are indicated in μM, except for AMAP, APAP 

and isoniazid (INH): in mM. “0”: 0.2% (v/v) DMSO. Shaded bars: concentration used in subsequent assays. 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 6: Time course 

fold change of SRXN1 for PHH highest 

concentration (TG-GATES). Time 

course SRXN1 transcript level in PHH 

cells from the TG-GATES dataset. Fold 

change is expressed as log2(FC) as 

compared to matched vehicle controls. 

The different concentrations are color 

coded as low (blue), green (Middle) 

and red (High). 
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Supplementary figure 7:  Fold change values  for IκBα and A20 for PHH highest concentration (TG-GATES). 

Fold change is expressed as log2(FC) as compared to matched controls. Compounds are color coded 

according to DILI concern: inflammatory model compound (purple), oxidative stress model compound 

(blue), less-DILI-concern (light orange), most-DILI-concern (dark orange). Compounds are sorted according 

to log2(FC) of A20 from low to high. 

 

 

 

 

 

 

 

 

Supplementary figure 8: Drug-induced 

GFP-p65 oscillation in HepG2 cells. 

Quantified average of the GFP-p65 

nuclear/cytoplasmic intensity ratio, 

normalized between 0 and 1 to focus on 

the appearance of the nuclear 

translocation maxima after exposure to 

0.2% (v/v) DMSO (solvent control), 

50µM CLZ, 500µM DCF, 500µM CBZ, 

75µM KTZ and 40µM NFZ. Black line: 

average population response; Green 

line: average response of cells that show 

NF-κB nuclear translocation within the 

first 2 hours of compound addition. 
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1. Abstract 

Drug-induced liver injury remains a major concern in the clinic and during drug development. 

There is an urgent need for improved prediction of DILI liabilities. Many DILI compounds activate 

cellular adaptive stress response pathways. We have evaluated the application of three BAC-GFP 

HepG2 reporter cell lines representing oxidative stress (Srxn1-GFP), endoplasmic reticulum stress 

(CHOP-GFP) and p53-related signalling (p21-GFP) for DILI assessment. More than 170 DILI 

compounds and reference control compounds (0, 1, 5, 10, 50 and 100 Cmax concentrations) were 

screened for reporter activation using automated high throughput high content live cell confocal 

imaging. Quantitative data analysis at the single level revealed activation of the Srxn1-GFP > 

CHOP-GFP > p21-GFP, with some compounds preferably activating individual reporters. 

Hierarchical clustering of time course dynamics of all individual reporter responses for all 

compounds and concentrations, allowed the refinement of primary mode-of-action. Combined 

integration of concentration responses for both reporters and cell death features resulted in a 

clustering of 53% of compounds with a most-DILI concern label. The most-DILI concern 

compounds activated both Srxn1-GFP and the CHOP-GFP. A strong association between HepG2 

BAC-GFP reporter activation and primary human hepatocyte mRNA transcript induction was 

observed. We anticipate that the integration of imaging-based high throughput assays for adaptive 

stress pathway activation will contribute to DILI assessment and likely chemical safety assessment 

in general.  

2. Introduction 

Drug-induced liver injury (DILI) is an important problem during drug development, in the clinic and 

during post-marketing [309]. Various chemical, genetic and life style  factors contribute to DILI 

making it a multi-facetted challenge to predict DILI. This includes compound-specific mode-of-

action causing oxidative stress through mitochondrial perturbation, cholestasis due to bile acid 

transporter inhibition, or steatohepatitis due to altered fat metabolism. Different polymorphisms 

in cytochrome P450 enzymes or HLA molecules affect drug metabolism and immune responses 

[310]. While hepatitis or diabetes may affect the susceptibility to DILI onset [311]. The multitude 

of mechanism contributing to DILI forces a more mechanistic approach in the pre-clinical 

prediction of DILI liability.  

Gene expression analysis has contributed significantly to improve our understanding of DILI  

[91, 240, 241, 312]. This has led to the identification of various signalling pathways that are 

activated during DILI and possibly predictive for chemical-induced liver injury. Some of these 

mechanistic insights have been integrated in high throughput assays, including phospholipidosis 

[313], cholestasis [314], cytokine induced synergistic apoptosis [38], mitochondrial damage [315], 

and oxidative stress [84]. However, so far a high throughput approach that more directly 

integrates the transcriptome-based mode-of-action is missing.  

To integrate the mode-of-action in high throughput approaches we propose a more practical 

approach which focuses on a general biological theme evolved in evolution: the cellular adaptive 

stress response pathways [45]. Several key adaptive stress response pathways that are essential in 

the maintenance of cellular homeostasis are the oxidative stress response, the endoplasmic 

reticulum stress response (ER-stress) / unfolded protein response (UPR) and the DNA damage 

response (DDR). The TG-GATES transcriptomics dataset indicates that these pathways are often 
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affected during liver toxicity (Wink et al., manuscript submitted), while mechanistic studies 

indicate the contribution of these pathways in the pathophysiology of chemical-induced liver 

failure [238, 316, 317]. Oxidative stress is caused by the oxidation/reduction reactions or 

alkylation from reactive intermediates or indirect oxidative stress induction by e.g. disruption of 

endogenous mitochondrial function [318]. Overall, this leads to the modification of KEAP1 

followed by the stabilization of the transcription factor Nrf2 which activates the oxidative stress 

defense gene network including the expression of NQO1 and Srxn1 [217]. Protein alkylation, 

disruption of protein trafficking or calcium homeostasis in the ER disrupt normal protein folding in 

the ER and leads to activation of the unfolded protein response [319]. This involves the activation 

of the kinases IRE1α and PERK and the proteolytic activation of the transcription factor ATF6; the 

transcription factors Xbp1 and ATF4 are activated downstream of both kinases [320]. The UPR 

transcriptional response involves the expression of the chaperone BiP that rescues unfolded 

proteins in the ER lumen as well as the expression of CHOP/DDIT3, a transcription factor that 

promotes the expression of pro-apoptotic genes [321]. DNA damage is caused by genotoxic 

compounds, which are usually electrophiles that directly interact with DNA and form covalent 

bonds. This involves the activation of p53 followed by activation of downstream target genes 

including p21 and Btg2. We have previously integrated all the downstream target genes for these 

three main adaptive stress response pathways in bacterial artificial chromosome (BAC) GFP-based 

HepG2 reporter cell lines. We showed that these BAC reporters are sensitive and selective for 

mode-of-action evaluation and can be applied in high throughput – high content live cell imaging 

to capture the dynamic adaptive stress response activation at the single cell level (Wink et. al, 

manuscript in preparation). 

Here we assessed the application of three BAC GFP HepG2 reporter cell lines that represent 

three major adaptive stress response pathways to predict DILI liability: i.e. Srxn1 (KEAP1/Nrf2), 

CHOP/DDIT3 (UPR) and p21 (DNA damage response). These three BAC reporters were exposed to 

more than 170 chemicals at different concentrations covering human exposure levels, and the 

dynamic stress pathway activation as well as onset of cytotoxicity was followed for 24 hr using 

automated live cell confocal imaging. All quantitative dynamic GFP reporter data as well as 

cytotoxicity measurements were integrated to assess DILI liability.  
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3. Materials and methods 

3.1. Cell culture 

Human hepatoma HepG2 cells were acquired from ATCC (clone HB8065). HepG2 Srxn1, DDIT3 

(CHOP) and CDKN1A (p21) BAC GFP reporter were generated according to [48] and have been 

carefully characterized previously (Wink et al, manuscript submitted). HepG2 BAC GFP reporters 

were maintained and exposed to drugs in DMEM high glucose supplemented with 10% (v/v) FBS, 

25U/mL penicillin and 25μg/mL streptomycin. The cell lines were used between passage 5 and 20. 

For live cell imaging, the cells were seeded in Greiner black μ-clear 384 wells plates, at 8,000 cells 

per well. 

3.2. Reagents 

All reference compound chemicals were acquired from Sigma-Aldrich and freshly dissolved in 

DMSO; except for metformin, fluphenazine, buthionine sulfoxamine, bromoethlyamine (all PBS), 

acetaminophen and phenobarbital (all DMEM). DILI compounds were a kind gift from the Dr. 

Weida Tong, NCTR-FDA [264]. All compounds were maintained as 500-fold stock such that final 

treatments did not exceed 0.2 % v/v DMSO. 

3.3. Microscopy 

Accumulation of BAC GFP-fusion levels, priopodium iodide (PI) and Annexin-V-Alexa633 (AV) 

staining was monitored using a Nikon TiE2000 confocal laser microscope (lasers: 647nm, 540nm, 

488nm and 408nm), equipped with an automated stage and perfect focus system and at 37 

degrees C and humidified atmosphere and 5% CO2/air mixture. Prior to imaging at 20x 

magnification and either 1X, or 2X  zoom, HepG2 cells were loaded for 45 minutes with 100 ng/mL 

Hoechst33342 to visualize the nuclei, upon which the Hoechst-containing medium was washed away 

to avoid Hoechst phototoxicity [224] and replaced with medium containing PI and AV to monitor 

cell death. Each imaged 384-well plate containing one reporter cell line all the compounds used in 

the screen at one certain concentration (1, 5, 10, 50 or 100 Cmax); for each concentration 2-3 

replicates were imaged per reporter cell line.  

3.4. Reporter response quantification 

Quantitative image analysis was performed with CellProfiler version 2.1.1 [49] with an in house 

developed module implementing the watershed masked algorithm for segmentation [193]. The 

watershed separates an image in regions with single cells followed by pixel classification for each 

region as fore- or background and this method performs well detecting the Hoechst33342 stained 

nuclei of the closely packed HepG2 cells. The binary mask containing the segmented nuclei was 

fed to the identify-primary-objects module, overlap-based-tracking module and intensity-nuclei-

size-shape-measurement modules of CellProfler. For the cytosol location of the Srxn1-GFP reporter 

the nuclear objects were used as seeds for the identify-secondary-objects module set to a 

propagation method with the MCT algorithm on adaptive (window size approximately 20 pixels) 

segmentation. Segmentation results were stored as png files for quality control purposes and 

CellProfiler pipelines were stored for reproducibility. Image analysis results were stored on the 

local machine as HDF5 files. Data analysis, quality control and graphics was performed using the in 

house developed R package H5CellProfiler (Wink et al., 2015, manuscript in preparation).  
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For each reporter the mean intensity and integrated intensity levels of the GFP signal were 

measured on the single cell level. The mean intensity is less sensitive to size variations of the 

objects and the integrated intensity is less sensitive for faulty background segmentations within 

the object. In addition, the nuclear Hoechst33342 intensity was measured to observe variations in 

DNA content (e.g. due to apoptosis or necrosis), cell migration speed (which can be affected by 

compound specific effects), nuclear size (which can vary e.g. due to mitosis inhibition, flattening of 

cells or changes in the internal osmotic pressure),  PI and AV staining per single cell (for cell death 

detection) and finally the overall cell count. All features were measured with an average one hour 

intervals; with the exception of the PI and AV which was only measured after completion of the 24 

hour live imaging session. 

3.5. Data analysis  

The features of interest were extracted from the HDF5 files and further analyzed using the 

graphical user interface of the H5CellProfiler package. The mean of the features for each 

compound, concentration, cell line and replicate combination was calculated. In addition for each 

plate the mean and standard deviation of the DMSO treated single cell population was calculated 

to determine background control values: the 2X mean, 3X mean and the mean + 3 standard error 

values for each plate. Thereafter for each treatment the fraction of cells above these control-

values was determined. To account for PI and AV background staining and noise the segmented PI 

and AV segmentations were masked by a 2 pixel dilated nuclei. The area of these nuclei and the PI 

and AV objects were divided to obtain the cell death stain to cell area ratio. These ratios were 

filtered to be at least 10% of the cell size and following this procedure each cells was either 

flagged as alive or dead in the final time point of the 24 live imaging session. In this manner the 

fraction of dead cells could be accurately determined. All resultant summarized data was stored as 

tab delimited text files and further processed for normalization and graphical presentation using R.  

Due to automated confocal imaging over a one year period, the time course data required 

intensity variation plate normalization as well as modeling of the time course-data. The mean and 

integrated intensity features and the nuclei size and Hoechst33342 intensity features were first 

transformed to fold change with respect to the plate- specific DMSO controls at time point 1 and 

the cell count and cell speed features were transformed to fold change with respect to the plate- 

specific DMSO controls average over time (diagram 1). Afterwards these value were scaled 

between 0 and 1 over the entire dataset with the formula (x-xmin_screen)/(xmax_screen –xmin_screen) for 

the purpose of proper heatmap display. Prior validation of negative and positive control responses 

preceded this scaling procedure. After the normalization steps the response specific features 

(integrated and mean intensity and the positive fraction features) were fit separately per replicate 

with the b-splines method with a degree of freedom of 10 and 3rd degree polynomials using the 

base-r lm function and bs function of the splines package. This allowed resampling the data with 

equidistant time points for replicate statistics and higher density time point sampling (200 points) 

for smooth heatmap display. All b-spline fits were stored for verification purposes.  

3.6. Dose response data transformation 

The maximum value of the fold change and normalized, scaled and b-spline modeled mean and 

integrated intensity features and the b-spline modeled positive GFP fraction features per 
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compound and concentration combination were selected for the dose response curves. The time 

course cell numbers, cell speed, Hoechst33342 intensity and nuclear area features were regressed to 

the line ax + b to determine the slope and mean values.   

The fraction of dead cells did not require normalization as these features are inherently a 

plate normalized measure nor did they require transformation as only the final time point was 

measured. The cytotox features, cell count, Hoechst33342 intensity and nuclear area also obtained 

from the final imaging round, were normalized per plate as fold change with respect to DMSO 

controls and scaled between 0 and 1 for the entire dataset.  

3.7. Data representation  

All HCI data representations were generated or modified with Illustrator CS6, Fiji, ggplot2 [226], 

the aheatmap function of the NMF package [227]. For some of the data clustering the equidistant 

sample time profile features from the b-spline model were used to calculate a distance matrix for 

each feature separately using Euclidean distance. A mean distances matrix was calculated and 

subjected to clustering with the ward.D  method of the hclust function. The columns representing 

the different features were not subjected to clustering. The same method was applied to the row-

clustering, only now the dose response vectors were used for the distance matrixes.  

3.8. Gene expression analysis 

CEL files were downloaded from the Open TG-GATEs database: “Toxicogenomics Project and 

Toxicogenomics Informatics Project under CC Attribution-Share Alike 2.1 Japan” 

http://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html. Probe annotation was performed 

using the hthgu133pluspmhsentrezg.db package version 17.1.0 and Probe mapping was 

performed with hthgu133pluspmhsentrezgcdf downloaded from NuGO (http://nmg-

r.bioinformatics.nl/NuGO_R.html). Probe-wise background correction (Robust Multi-Array Average 

expression measure), between-array normalization within each treatment group (quantile 

normalization) and probe set summaries (median polish algorithm) were calculated with the rma 

function of the Affy package (Affy package, version 1.38.1) (Irizarry, R.A. et al.). The normalized 

data were statistically analyzed for differential gene expression using a linear model with 

coefficients for each experimental group within a treatment group[258, 259]. A contrast analysis 

was applied to compare each exposure with the corresponding vehicle control. For hypothesis 

testing the empirical bayes statistics for differential expression was used followed by an 

implementation of the multiple testing correction of [254]using the LIMMA package [259]. 
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4. Results 

4.1. High content adaptive stress response screen with DILI compounds. 

To assess the application of adaptive stress pathway activation measurements for the assessment 

of DILI liability a large high content live cell screen was performed on three BAC reporter cell lines 

(Srxn1, CHOP and p21) that were described previously (Wink et. al, manuscript submitted), with 

176 compounds covering mostly DILI related compounds and various reference control 

compounds. DILI compounds were classified for most-DILI-concern (58), less-DILI-concern (51) or 

no-DILI-concern (37) (see Table 1). The control reference compounds included negative controls 

(i.e. DMSO and medium) and positive controls (i.e. alkylating agents, mitochondrial toxicants, 

inducers of the UPR and DNA damaging agents). All reporters were exposed to five concentrations 

(1, 5, 10 , 50 and 100 Cmax) followed by live cell imaging and automated multi-parametric image 

analysis (Fig. 1 and 2). 

Figure 1: BAC cloning, BAC reporter DILI screen and analysis pipeline. Left panel) BAC cloning technology is 

used to maintain endogenously regulated reporter protein levels and regulation. Monoclonal reporter 

selection from a high number of clones to ensure endogenous response to positive control stimuli and 

suitability of reporter for imaging. Middle panel) High content live cell screen of 176 compound at 1, 5, 10, 

50 and 100 cmax at 2 or 3 replicates. Right panel) Image and data analysis is performed with CellProfiler/Fiji 

and R, respectively. Some in-house tools were developed in CellProfiler and R to assist in the quality and 

analysis of the large data output. 

4.2. Single cell analysis allows fine tuning of sensitivity versus dynamic range. 

For all images single cell analysis was performed to extract a diverse set of quantitative data, 

including GFP reporter activity, cell migration speed, cell number and cytotoxicity (see Figure 2 for 

overview of the dataset). The GFP reporter single cell data was used to derive quantitative fitted 
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data for five different determinants of reporter activity: mean intensity, mean integrated intensity, 

fraction of cells with GFP intensity 2-fold (GFP_pos.2m) or 3-fold (GFP_pos.3m) above average of 

control, population mean plus three times the standard deviation (GFP_pos.m3d). Systematic 

evaluation of these descriptors for the lowest and strongest responding compound for each 

individual reporter, allowed fine tuning of the sensitivity versus the dynamic range (Figure 3). 

Based on the mean GFP intensity over the single cell population hydroxurea would not have been 

defined as a positive in the Srxn1-GFP reporter cell line,  because only in a small proportion of cells 

that contain a higher level of Srxn1-GFP the signal was detected; the GFP_pos.2m was a more 

sensitive descriptor that also allowed evaluation of the time course dynamics. Similar observations 

were made for  nitrofurantoin and clozapine for the GFP-CHOP and GFP-p21 reporters, 

respectively. However for strong inducers of oxidative stress (diethylmaleate; DEM), UPR 

(thapsigargine) and DNA damage (etoposide), GFP mean intensity already allowed the sensitive 

detection of the reporter responses, while GFP_pos.2m caused an early saturation, thereby 

lowering the dynamic range. 

4.3. Temporal order of adaptive stress response activation as indication of primary mode-of-

action.  

For evaluation of the reporter activation for the entire compound screen GFP_pos.2m was 

selected as the most sensitive initial readout. The b-spline fits of the GFP_pos.2m time courses 

were used to calculate the mean of the replicates for Srxn1-GFP, CHOP-GFP and p21-GFP reporter 

responses for all compounds (Figure 4). Some compounds showed a response in all three 

reporters, while others only showed a response in one cell line only. Often a specific order in the 

reporters can be seen in time. For brefeldin A (BFA), CCCP,  FCCP, doxycycline (DX), oligomycin A 

and B (OMA, OMB), thapsigargin (THG) , tunicamycin (TUN) and zimelide (ZMI) CHOP-GFP 

activation was followed by the Srxn1-GFP activation. Yet in other cases Srxn1-GFP did precede 

CHOP-GFP activation (azathioprine (AZA), benzbromarone (BB), bromfenac (BFC),  ethacrynic acid 

(ETA) and sodium-arsenite (SA)). Simultaneous activation of two reporters was also observed. 

Interestingly, for some compounds the stress response activation was transient (iodoacetamide; 

IAA) implicating reversal of the stress response, possibly due to toxicokinetics and/or true cellular 

adaptation. Few compounds showed direct fluorescence increase starting from the first time point 

(e.g. tetracyclin (TET), doxorubicin (DOX) and dantrolene (DAN)), suspecting compound 

autofluorescence. Several compounds showed activation at a lower C-max while a response was 

absent at higher concentrations indicating that an adaptive stress response preceded cell death. 

This was verified with the additional markers captured during the live cell imaging: cell number, 

cell migration speed, nuclear area and DNA content. Although most compounds did not affect 

these markers, several compounds did, typically in a concentration-dependent manner. Cell 

migration speed was the most often affected  parameter as exemplified by the actin cytoskeleton 

disrupting agent cytochalasin (Supplemental Figure S1 and S2). 
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Table 1: Test compound set. Alphabetically sorted list of test compounds screened in this study including 

their c-max values, abbreviations, DILI-concern label and metabolic potential.  



Chapter 6 

122 

Figure 2: Data analysis workflow. The features in red are displayed in the figures of the results section. 
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Figure 3: Dynamics of GFP-Srxn1, GFP-Chop and GFP-p21 reporter activation. Left panel) Time lapse stills 

of the reporters exemplifying the importance of single cell analysis which allows fine tuning sensitivity 

versus dynamic range of BAC-reporter readout.  Right panel) quantification of GFP signal of the 3 reporters 

from a control, a weak reporter-activating compound and a strong reporter-activating compound. The 

single cell population means of integrated or mean intensity values show no effect for the weak-activating 

compounds. By counting and determining the fraction of GFP positive cells above a plate-specific threshold; 

GFP_pos.2m (twice the DMSO population mean), GFP_pos.3m (thrice the DMSO population mean) & 

GFP_pos.m3sd (population mean plus three times the standard deviation) the sensitivity is increased, at the 

cost of dynamic range. 
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Figure 4: Concentration time course responses of all compounds for GFP-Srxn1, GFP-Chop and GFP-p21 

reporter activation. For all compounds the reporter activity for the individual reporters was fitted and 

scaled as described in material and methods section. Shown are the responses for individual concentration 

(C-max 1, 5, 10, 50 and 100) for the different reporter (GFP-Srxn1: blue; GFP-Chop/DDIT3: green; GFP-p21; 

red). 
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4.4. DILI compounds show specific reporter activation with distinct time dynamics and 

magnitude. 

As a next step we performed hierarchical clustering of all the dynamic information of the 176 

concentration-response datasets representing the reporter activities from all BAC-GFP reporter 

cell lines as well as the viability markers. For this the distance between all time-vectors for each 

feature were computed separately followed by calculating the mean distances over all features 

(Figure 5). These mean-distances were used for the ward-clustering. The BAC-GFP reporter 

responses contributed most to the clustering; as expected the viability measures did only 

contribute to a minor extent. The clustering distinguished 6 clearly distinct groups: 1) mild Srxn1 

activation only; 2) mild Srxn1 and CHOP activation, but no p21 activation; 3) mild CHOP activation 

only; 4) predominant strong Srxn1 activation; 5) predominantly strong CHOP activation; and 6) 

strong Srxn1 and CHOP activation. Several compounds also induce p21 strongly (arrows). Since 

these data include all different concentrations of 1 up to 100 times C-max, we would not expect a 

defined clustering of all DILI compound exposures, since the lower concentrations were expected 

not to give a strong response. Regardless, in cluster 4-6 we could see strong responses of 13 of in 

total 51 (25%) less-DILI concern and 26 of in total 58 (45%) most-DILI concern compounds. 8 of 

total 37 (22%) non-DILI-concern compounds were in this group, of which ethacrynic acid, 

mitomycin C,  bisphenol A and entecapone are known to be directly cytotoxic to cells and would 

be defined as reference control compounds. Of relevance, we observed that group 4, i.e. 

predominant fast and strong activation of the Srxn1-GFP reporter, contained reference control 

compounds that directly affect the KEAP1/Nrf2 pathway (CDDO-Me and DEM) and other 

compounds, including DILI compounds, that based on their structure and (in)direct reactivity are 

likely to affect cellular thiol residues and thus may affect the KEAP1/Nrf2 pathway as well (e.g. 

carmustine are disulfiram). This illustrates the direct and specific assessment of mode-of-action. 

Additionally, we observed that several compounds that directly affect mitochondrial function 

through different mechanisms (oligomycin A and B, FCCP and CCCP) clustered together and 

strongly affected both the Srxn1-GFP and CHOP-GFP. The p21-GFP was only mildly affected in this 

screen: only (in)direct DNA damaging agents (etoposide, doxorubicin, mitomycin C, menadione).  
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Figure 5: Hierarchial clustering of concentration time course adaptive stress responses of 173 compound 

treatments. (A) Time course heatmap of the three response features of the 3 BAC_GFP adaptive stress 

response reporters [Srxn1 (blue), Chop (light green) and p21 (brown)] and the four viability markers 

[nuclear area (dark purple),  cell count (black), DNA content (light purple) and cell count (dark  green)]. Each 

of the 7 columns represents a time course of 24 hours. Each line is a separate treatment 

[compound/concentration]. The red intensity-level represents the magnitude of the feature. All treatments 

are annotated with the vertical bar on the left as reference control compound (pink), no-DILI (white), less-

DILI  (light orange) and most-DILI (dark orange). (B) A detail of the clusters 4, 5 and 6 is shown. 

 

4.5. Dose response curves and multiple feature clustering increases mechanistic insight 

of compound induced cytotoxicity.  

As a next step the time profiles of all relevant features were transformed (see also Figure 2). 

Several features were independent of time (such as cell death fraction at the end of the live 

imaging session); others required transformation to the maximum in time (to include early 

response profiles); and for yet other features such as cell speed or cell count the averages and the 

slopes were determined to get an indication of these features with respect to treatments (with the 

average) and in time (with the slope). These data transformations allowed visualization of dose 

response relationships for all compounds and the three BAC-GFP reporters (Figure 6). Half of the 

compounds induce SRXN1-GFP, about one-third induce CHOP-GFP; much fewer compounds 

activate p21-GFP. Most responses follow a typical increase concentration level dynamic. Yet, 

several compounds lead to a decrease in response at higher concentrations; this is likely caused by 

cytotoxicity and cell death caused by the compounds at the higher concentrations (e.g. ethacrynic 

acid, nitrofurantoin and iodoacetamide; see also cluster 1 in Figure 7). Interestingly, several 

compounds at lower concentrations initiate oxidative stress and only at higher concentration the 

‘secondary’ UPR  is activated (e.g. dilitiazem, ethacrynic acid, iodoacetamide and simvastatin). 

Reversely, several compounds activate the UPR CHOP-GFP reporter at lower C-max values 

followed by ‘secondary’ SRXN1-GFP induction (e.g. brefeldin A, bromfenac, CCP, FCCP, rifampicin, 

thapsigargin and tunicamycin). 

4.6. Clustering of compound reporter fingerprints allows mode-of-action discrimination.   

Next we used the concentration response data from all reporters as well as the biological  relevant 

reporter-independent features for multiple feature-based unsupervised hierarchical clustering of 

all the DILI compounds together with reference control compounds with known mode-of-action. 

For the reporter responses we included: 2X mean of DMSO, 3X mean of DMSO, mean + 3X 

standard deviation of DMSO, mean and integrated intensity; for the reporter-independent 

responses we included information on: nuclear area, Hoechst intensity, cell speed, number of cells 

and the PI (necrotic) and AV (apoptosis) positive fraction of cells (Figure 7A and B). Clustering 

showed two groups with strong reporter activation (see group 1 and 2 in Figure 7A); of 

importance: cytotoxicity responses are in particular observed in cluster 1.  

 Group 1 contains 12 DILI compounds (6 less-DILI & 6 most-DILI), 2 non-DILI compounds 

(ethacrynic acid and mitomycin C) and 10 control compounds. Ethacrynic acid is labeled as non-

DILI although this compound is well known to deplete glutathione [322] and rather reflects a 

reference control compound. Also mitomycin is an alkylating agent causing genotoxicity [323]. The 

compounds in group 1 showed overt toxicity at higher C-max values and high Srxn1 and CHOP 
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Figure 6: Dose response curves for all individual compounds and reporters. Dose response is based on 

max-in-time of fraction of cells above 2X mean DMSO level for the adaptive stress response proteins Srxn1 

(blue), Chop (green) and p21 (red). The compounds are ordered alphabetically, compound abbreviations 

can be found in Table 1.   
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responses at lower C-max values. Strikingly both structure-related (e.g. oligomycine A and B, CCCP 

and FCCP) as well as mode-of-cation-related compounds (brefeldin A, tunicamycin and 

thapsigargin) clustered together in this group (Figure 7B). Since the reference control compounds 

in this group are quite reactive and cytotoxic (e.g. iodoacetamide, ethacrynic acid, carmustine, 

sodium arsenite, rotenone, oligomycin, CCCP, and menadione),  we anticipate that the DILI 

compounds that fall within this cluster are likely to be equally reactive and/or disrupt vital 

metabolic processes in the cell leading to oxidative stress and UPR activation. 

Within group 2 little cytotoxicity was observed within the entire concentration range, indicating 

that the adaptive stress responses well precede cytotoxic dose ranges. The group 2 compounds 

are highly enriched with most-DILI concern compounds (31 (53%) of all most-DILI compounds). 

Several key groups can be identified: i) compounds that predominately induce the SRXN1-GFP 

reporter, ii) compounds that predominately induce CHOP-GFP reporter activity; and iii) 

compounds that activate both pathways at closely similar C-max values. 

4.7. Multiple adaptive stress response pathway activation and higher C-max values 

indicate higher risk for DILI. 

We further investigated the relationship between concentration and reporter activity. We 

therefore defined for each compound the actual concentration at which a compound caused at 

least 25% or 50% induction of GFP-positive cells for individual reporters. Most compounds passed 

the criteria for the Srxn1-GFP reporter; in particular reference control compounds caused 

activation of this reporter at sub-µM range, whereas most DILI compounds (either less or most 

concern) caused the activation in the range of 10-100 µM; also some non-DILI compounds fell in 

this range (Figure 8A). Similar observations were made for CHOP-GFP and p21-GFP reporters. 

Further enrichment of most-DILI compounds occurred for minimally 2 reporter responses with 

both >25% GFP positive cells, with fewer non-DILI compounds remaining (Figure 8B). Further 

increasing the stringency (50% GFP-positive cells) overall decreased the number of compounds, 

and in particular remained Srxn1-GFP and CHOP-GFP, responses (Figure 8C). Interestingly, dual 

activation under these stringent conditions further reduced the number of compounds, as well as  

 

 

Figure 7: Hierarchical clustering of compounds based on concentration responses for all reporter and cell 

viability features. A) Clustering results of all features were transformed to single values as described in 

material and methods. Fingerprint-sets Srxn1 (blue), Chop ( light green), p21 (brown), nuclei area (light 

purple), cell count (dark green), DNA content(dark purple), cell speed (grey) and cell death (black) consist of 

different features. For reporters: 1) 2m (fraction of cells above 2 times the mean), 2) 3m (fraction of cells 

above 3 times the mean), 3) m3SD (3 times the mean or mean plus 3 times standard deviation DMSO 

population), 4) mmnFC integrated (normalized fold change with respect to DMSO population integrated), 

5) mmnFC mean (normalized fold change with respect to DMSO population integrated). For non-reporter 

features: 6) mean (mean of linear fits of time course data), 7) slope (slope of linear fits of time course data(, 

8) mean cytotox (population mean of PI and annexin), 9) necrosis positive (fraction of cells stained for PI), 

10) apoptosis positive (fraction of cells stained annexin-V positive). Each feature shows the concentration 

range (shades of blue-green [marked on top]) from left to right: 1, 5, 10, 50 and 100 C-max. On the left the 

compound DILI annotation is indicated as before. B) Zoom of group 1 and group 2 for the different reporter 

features. B) Zoom of boxes 1 and 2 (displayed on next page) 
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Figure 8: Relationship between reporter response and DILI labeling. A) Shown is the lowest concentration 

where at least 25% cells is “GFP positive” as defined by 2X above population mean of DMSO; only 

compounds are included for which this is true. B) Lowest concentration where at least 25% of cells is GFP 

positive in at least two different reporters. C & D) Same as panel A and B, respectively, but now with at 

least 50% of cells GFP positive. F) summary of panels A-E: top shows the mean Point of Departure (PoD) as 

the mean of the lowest concentrations of all treatments that activates the reporters. Bottom shows the 

total number of compounds per DILI category that are activated under these conditions. 
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further increased the overall concentration at which such a double response was observed (Figure 

8D and F). When plotting for all compounds the Srxn1-GFP and CHOP-GFP reporter activities, both 

most informative, we observed that strong activation of Srxn1 and CHOP was primarily observed 

for less and most DILI concern compounds (Figure 8E); only one non-DILI compound belonged to 

this group which was actually ethycrynic acid, a strong soft electrophilic compound directly 

affecting cellular thiols. 

4.8. Concordance between HepG2 BAC-GFP reporters and primary human hepatocytes 

(PHH). 

To assess the concordance between our reporters and PHH we compared our BAC-GFP reporter 

data (maximal % GFP positive cells observed) and the fold transcript data in PHH based on the TG-

GATEs dataset (highest concentration at 24 hr). In general the response of PHH transcript levels is 

highly comparable to the HepG2 BAC reporters, in particular for the Srxn1-GFP and CHOP-GFP 

reporters (Figure 9A). The concordance increased when strong responses were observed in the 

reporter cells. Interestingly BAC reporters seemed more sensitive than transcript analysis in PHH 

(Figure 9B). In addition treatments that activate both the HepG2 BAC reporters as well as increase 

transcript levels are highly enriched in most-DILI  concern compounds. 

5. Discussion 

Here we investigated the integrated application of a panel of three adaptive stress response 

BAC reporters in high content high throughput screening as a method for DILI liability assessment. 

We focused on adaptive stress pathway signalling as these defense programs are a universal 

theme in all life forms, and respond before the onset of overt toxicity. We monitored three 

downstream target genes for oxidative stress (Srnx1), ER-stress/UPR (CHOP) and DNA damage 

(p21); these are selective targets for these pathways. Using CellProfiler and R-package 

H5CellProfiler we quantified all features and performed detailed analysis on the individual 

contribution to DILI classification. We demonstrate how advanced analysis of live-single cell data 

can provide key information on the concentration-time course reporter responses that can be 

applied for DILI liability evaluation. We showed that integration of such mode-of-action 

assessment using different reporter strongly improves the classification of less- and most-DILI 

concern compounds.  

The current data demonstrate the strength in the application of time-resolved live single cell 

reporter data. To date toxicity screening efforts using high content imaging have mostly focused 

on single time point fluorescent dyes or anti-bodies [241] with several real-time based toxicity 

screening efforts [324]. However with the use of our reporter cell lines biological signalling can be 

visualized with a high time resolution to more accurately pin-point the primary mode-of-action. 

The use of dyes and anti-bodies brings additional noise to already very noisy systems as fixation 

and anti-body binding are likely additional sources of variability; this is not an issue using our 

reporter models. Time course signalling data also greatly benefits computational modeling efforts 

as these require detailed time and dose response dynamics, this is only feasible using live cell 

imaging data.  

We have successfully applied a limited set of features for DILI liability assessment. Yet, 
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Figure 9: Concordance between BAC-GFP HepG2 reporter activation and primary human hepatocyte 

transcript levels. A) Compounds are ordered from lowest average over Srxn1, Chop and p21 to the highest 

(top). BAC GFP intensity levels are red-lined, transcript fold changes are green-lined. Bar colors correspond 

to No-DILI-concern (blue), Less-DILI-concern (light orange), Most-DILI-Concern(dark orange) and control 

compounds (pink). Panel B) GFP positive cells (x-axis) vs transcript levels (y-axis). 
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another approach to high content imaging is the use of large amounts (up to 700) of 

measurements/features [325, 326] and use supervised clustering, dimension reduction techniques 

and/or feature selection to obtain a classifier to predict toxicity or specific compound effects. 

However several challenges exist with such an approach. It is often difficult to define a biological 

meaning over certain results beyond co-clustering of compounds of which the toxicity/mechanism 

is presumed to be known (so called guilt by association). A high-dependency of most of these 

features exist and this magnifies certain phenotypes over others likely diluting more subtle and 

possibly important phenotypic changes. We focused on a smaller set of biological interpretable 

features we believe to be of interest in DILI. This small set of  biological interpretable features is a 

‘fingerprint’ as to the cellular state and in the current study includes the activation of: the 

oxidative stress response, i.e. Srxn1-GFP activation; the ER-stress response (UPR), i.e. CHOP 

activation; the DNA-damage response, i.e. p21 activation; nuclear area; number of cells; Hoechst 

intensity; cell speed and cell death (necrosis and apoptosis). This strategy captures together 

several adaptive stress responses as well as general cellular features. We acknowledgde the 

limitation of these measures, since DILI phenotypes that involve innate and adaptive immune 

responses, cholestasis or steatosis are likely not covered in our reporters. This possibly explains 

why the overall sensitivity of the combined assays is not yet sufficient to correctly identify all less- 

and most-DILI concern compounds. Future integration of other GFP-BAC reporters that would 

cover these DILI toxicity programs will still be required. At that stage supervised clustering using 

the pre-defined DILI labels followed by feature selection to establish a most-DILI-concern 

fingerprint should improve our current approach. Since several DILI compounds induce stress 

responses with distinct time and reporter activation dynamics, it would be relevant to include the 

order of reporter activation, the time of the maximum response, the magnitude of the response 

and the C-max value associated to these dynamics in such supervised clustering efforts. This will 

be our future research focus. Regardless, our current strategy already allows a near perfect 

fingerprinting, since oligomycin A and oligomycin B as well as CCCP and FCCP do cluster together. 

Additional reporter will further improve the compound mode-of-actiom fingerprinting. 

Our data indicate a striking overlap between HepG2 BAC-GFP responses and transcript levels 

in primary human hepatocyte. Although HepG2 is metabolically incompetent compared to primary 

hepatocytes, several compounds that involve biotransformation-dependent toxicity do show a 

Srxn1-GFP oxidative stress response (e.g. acetaminophen and sulindac). Possibly the low metabolic 

capacity of the HepG2 model is offset to some extent by the increased sensitivity as it is not 

toxicity that is measured but an adaptive stress responses. Future studies will establish whether 

our HepG2-based reporter platform would further benefit from improved metabolic competence. 

The anti-oxidant response is critical in the protection against oxidative stress and inhibition 

of this pathways propagates DILI for various compounds [327]. In our study the Srxn1-GFP 

reporter was activated by about half of the DILI compounds, which fits with the observation that 

oxidative stress in a major contributor to DILI [328]. Our test compounds may affect this pathway 

through direct interaction with KEAP1, thus unleashing Nrf2, or through modulation of the 

mitochondrial respiratory chain. Indeed various reference control compounds that either affect 

KEAP1 (CDDO, DEM, ethacrynic acid) or the mitochondria (rotenone, CCCP, oligomycin A) do 

induce Srxn1-GFP activation, supporting both direct and indirect mechanisms for Srxn1-GFP 

induction. Most notably oxidative stress following UPR activation was also seen for several ER-
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stress inducing compounds, including thapsigargin, tunicamycin and brefeldin A. Reversely, 

oligomycine and CCCP strongly activated the CHOP-GFP activation. Altogether this underscores the 

connectivity and complexity of adaptive stress response regulation. 

Only several DILI compounds mildly activated the p21 reporter. This is fortunate and 

expected since direct DNA damaging compounds are terminated early in drug development. 

Although p21-GFP is activated by DNA damaging agents in our study (e.g. doxorubicin and 

etoposide), p21 cannot be considered as a sole DNA damage reporter, since its expression is also 

regulated through other stress responses. Regardless, in our setting, the p21-GFP reporter 

contributed to the evaluation of DILI responses, be it to a limited level than Srxn1-GFP and CHOP-

GFP. 

In conclusion, we have shown that BAC-GFP reporter cell lines are a sensitive tool to provide 

detailed mechanistic information regarding the adaptive stress response activation in a broad 

compound screening setting using high-content live single cell imaging. Such detailed insights in 

the perturbations of signalling pathways after chemical exposure provides key information for 

predictive purposes. We anticipate that our BAC-GFP reporter platform will contribute to the early 

pre-clinical screening for DILI liabilities and possibly also other chemical safety assessment 

paradigms.  
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Supplemental figures 

 

Supplemental Fig. S1: Cell viability markers-quality control features. Compound-concentration conditions 

that were flagged for at least 2 features are displayed. These are flagged as either normal (colored green) 

or very low (>20% increase), bit low (<30%), low (<50%) and high (>50%) (high-lighted in orange) as 

determined by visual inspection of figure 7. 

Supplemental Fig. S2: Example images of quality control flagged treatments. A) Diltiazem at higher c-max 

values induces cell death; the cells stop moving, the nuclei decrease in number, shrink and the Hoechst 

intensity increases (top 3 rows). Nuclei shrinkage with migration stop of  iodoacetamide at 100-cmax 

(bottom row).  B) Unusual large number of cells of doxycycline and tetracycline due to auto fluorescence. C) 

low DNA content/ low Hoechst intensity is observed for methyldopa. 

  

Supplemental Fig. S1 Supplemental Fig. S2 
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1. Abstract 

Technological development has led to ever increasing amounts of data in high content screening. 

For utilizing such data in an efficient, thorough and user friendly manner we developed the R-

package H5CellProfiler. H5CellProfiler is based on R-packages data.table, ggvis, ggplot2 and shiny. 

H5CellProfiler launches a browser which allows scientists to analyze large single cell datasets and 

make statistical summaries and graphs on their own local desktop in a fast and memory efficient 

manner. In addition, single cell track-labels are calculated and broken tracks are re-connected 

based on user-defined thresholds resulting in unique sets of annotated tracks. 

2. Introduction 

High-throughput high-content automated imaging (HT-HCI) includes image acquisition, image 

storage, image annotation, image analysis, data analysis and storage of the analysis results. Image 

acquisition is performed by high-end automated microscopes that are equipped with hardware 

and software for stage-movement or objective movement and often with an incubation chamber 

that has temperature and CO2 regulation allowing live cell imaging. These conditions allow the 

acquisition of large imaging datasets from multi-well plates capturing the dynamics of cell 

biological events.  

Image annotation can be divided in two categories: first, technical annotation which is 

automatically generated by the acquisition software and consists of technical acquisition 

parameters. Second, biological annotation consisting of parameters that the scientist needs to add 

himself. Biological annotation  of images is closely related to data storage of images in a file server, 

which is managed by a database management system (DBMS). The DBMS allows annotation, 

organization, querying and often visualization of the acquired images. Well-known image DBM 

systems are OMERO from the Open Microscopy Environment (OME) [329] and its commercialized 

version Columbus.  

Image analysis can be performed with the aid of commercial or open source software which 

differ in the offered functionality and flexibility. Several commercial software systems exist that 

provide easy to use image analysis solutions, sometimes directly combined with image acquisition. 

Well-known software systems include NIS-Elements (NIKON), Metamorph (Molecular Devices), 

AxioVision (Zeiss) and Volocity (Perkin-Elmer). Recently, commercial systems have been developed 

that even combine multiple HT-HCI stages. For example, Columbus from PerkinElmer is able to 

store, annotate and analyze images and analyze the resultant data with several statistical and 

graphical tools due to integration with TIBCO Spotfire.  

A disadvantage of using commercial software for image analysis is that it is difficult or simply 

not possible for researchers to modify or extend it because the source code and even the applied 

image analysis algorithms are hidden in order to secure the commercial product. Commercial 

systems are therefore best suited for standard image analysis pipelines and mostly used by 

industry or by labs with relatively basic and fixed image analysis needs.  

Labs which frequently change equipment or have specialized image analysis requirements 

often prefer open source solutions. The most well-known solution is ImageJ [330], which is an 

important platform for scientific image analysis development. However, it can be challenging to 

build workflows for automated image analysis because it requires some knowledge in the 

available ImageJ plugin libraries, a decent understanding of image analysis algorithms and Java 
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scripting skills. For this reason, some researchers prefer user friendly, GUI-based image analysis 

software tools. A well-known example is CellProfiler [49], which was developed initially by 

Carpenter and colleagues. In CellProfiler, parameter optimization can be performed with the help 

of the GUI and accompanying graphical displays of the 

segmentation results. Subsequently, image analysis 

with appropriate parameters can be performed in an 

automated fashion. 

In parallel with recent technological 

advancements in microscopy, the interest in the 

analysis of single cell behavior has strongly increased. 

Indeed, research of the heterogeneity of cell 

populations [331, 332], of the morphology of 

subcellular structures [326], of transcription factor 

oscillatory dynamics [217] or of cell migration [333] all 

require single cell measurements. As a result, the 

amount of data has strongly increased with 

consequences for the handling of image analysis 

output. A typical overnight live single cell imaging 

session of an in vitro 2D 384-well plate leads to around 

20 GB of raw imaging data (approximately 20,000 

images) and depending on the features of interest up 

to 5 GB of analysis data. Memory limitations require 

data dumps during the analysis by temporary storage 

in relational databases or hierarchical file based 

formats. Hence, labs need to set up a dedicated 

database server which requires maintenance and 

technical expertise, which can be challenging for 

biological oriented labs. 

Recently, CellProfiler included a feature for 

storing measurements during the analysis using the file 

format HDF5 [50], a portable data format without size 

limitations due to the hierarchical structure. A HDF5 

file can be navigated through the use of file paths – 

strings separated by the forward slash ‘/’ to define the 

hierarchical structure of the data, analogue to the Unix 

file system. In addition, the HDF5 format has been 

implemented specifically for cell-based assays in high-content microscopy in the form of CellH5 

which can be used as a format for data exchange. CellH5 and several CellH5 interfaces have been 

developed by Huber and colleagues [194], allowing for visualization of the stored images and 

reading and writing of the quantitative data. However, for CellProfiler HDF5 output user friendly 

solutions do not yet exist. Therefore, we have developed the R-package H5CellProfiler.  

H5CellProfiler requires a metadata file with biological annotations and a HDF5 file with the 

quantitative measurements from CellProfiler. The package loads the data into R-memory and 

Figure 1: User-friendly High Content 

image analysis workflow. The scientist 

interacts with the imaging device, sets 

up the image analysis with GUI-based 

CellProfiler run on the local desktop, 

and finally performs the data analysis 

with a browser based GUI which 

communicates with the  R server 

(usually on the local desktop). 
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organizes user-requested features at the level of single cells. Subsequently, a browser is launched 

and functions as a GUI for the user to manipulate, summarize and display the single cell data. This 

enables biologists to perform their image analysis with CellProfiler followed by the semi-

automated production of single cell data summaries and visualizations that would not be possible 

using spreadsheets. Thus, H5CellProfiler allows to perform all data operations on a single desktop 

without the need to set up database and client software and as such makes the entire image 

analysis workflow user friendly (Fig. 1).  

3. Results and Discussion 

3.1. Description of the H5CellProfiler package. 

3.1.1. H5CellProfiler architecture.  

H5CellProfiler reads the HDF5 data and uses the input arguments (which can be typed in the R-

terminal or provided as a file) and annotation files provided by the user to reformat and 

summarize the data in a flexible, intelligent and computationally efficient manner (Figure 2). It is 

flexible because the user guides the reformatting with help of the GUI and has several options: 

extracting relevant data into a large text file containing a single row per parent object, making a 

summary for each treatment, writing a text file containing rows per tracked object and columns 

corresponding to the time points for each time-lapse or plotting graphical displays of the data The 

size of the data hardly affects the performance as long as it does not exceed  the available 

memory capacity. This is because all data manipulations are very fast due to parallel computing 

and ordered indexing. As a result, up to 100GB of data re easily handled by H5CellProfiler.  

3.1.2. Parallel computing. 

H5CellProfiler offers parallel processing to speed up the analysis of large datasets. This is achieved 

with the parallel computing package ‘foreach’ and parallel back-end registration for windows 

operating systems ‘doSNOW’. The number of parallel sessions that can be initiated for reading and 

data analysis is limited by the user with a maximum of the number of separate HDF5 files.  Parallel 

computing especially speeds up the summary calculations, the data reshaping for plotting and the 

re-labeling of tracking data (the number of cores for re-labeling the tracking data is independent of 

the number of hdf5 files and is set by the user-set argument). Chunks of the data in R memory are 

divided over the available cores without duplication of the data for each core, thus ensuring 

memory-efficient parallel computing. 

3.1.3. Reading HDF5 and formatting data. 

We employed the recently developed R package ‘rhdf5’[194] for reading and writing HDF5 files. An 

advantage of using the HDF5 format to store and read data is its annotated hierarchical hyper-

rectangular structure. Together with the annotation, this enables the selection of data subsets 

without the need to query through the entire dataset. As a consequence, very large datasets do 

not slow down reading significantly. 

3.2. Application of R package H5CellProfiler. 

Basic knowledge of CellProfiler is required to be able to provide the correct arguments for the 

H5CellProfiler function and are therefore briefly described here. A detailed manual of CellProfiler 

can be found on the website www.cellprofiler.org. 
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Figure 2: Architecture of H5CellProfiler. The main function is run by typing the H5CellProfiler (arguments) 

function in the terminal or by providing the arguments in a file. H5CellProfiler then uses the HDF5 file 

containing the image analysis data and the annotation file provided by the user containing the biological 

annotation. The architecture of the H5CellProfiler package is depicted in the lower panel: the order of the 

separate internal processes (underlined) using various R-packages (bold) are depicted by the arrows.  

3.2.1. Regular expressions that enable linkage of biological annotation with 

image data. 

In CellProfiler, variables are captured using a simple collection of regular expressions. For example, 

for an image named ‘xy0013c1t01.tif’ and located in a folder named ‘../C03’ (according to the well 

number in the plate), two sets of regular expressions capture this image annotation. In this case, 

the first regular expression would be (?P<imageNumber>xy[0-9]4)c[1-4] (?P<tp>t[0-9]).tif to 

capture the image number 0013 in the CellProfiler variable ‘imageNumber’ and the time point 01 

in the variable ‘tp’. Note that the characters inside the square brackets are the characters to be 

searched for in the image file names, the numbers inside the curly brackets denote the number of 

such characters, and the construction with ‘(?P<variable_name>…)’ determines in which 

CellProfiler variable the contents will be stored. Similarly, the folder name ‘../C03’ can be captured 

by the regular expression *[\\/](?P<Well>.*)$ or by (?P<Well>[A-Z] [0-9])$ in the CellProfiler 

variable ‘Well’. In the first expression the construction ‘*[\\/]’ is a regular expression that searches 
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for a forward slash, the two backward slashes are escape characters for the forward slash. The 

asterisk ‘*’ is a wildcard for any character(s). The dollar sigh ‘$’ forces the matching to take place 

in reverse order (starting at the end). The first expression is flexible, the second is more specific. 

The key feature in these examples is that images are automatically annotated by CellProfiler 

and that this information is stored together with the image analysis results in the HDF5 file. The 

annotation obtained by the regular expressions are stored in the HDF5 output and the HDF5 file 

path is defined as ‘Metadata_variablename’ Together with a user provided annotation text file, 

this enables H5CellProfiler to link biological annotation to the image measurements (Figure 2). A 

tab delimited text file containing the biological annotation is created by the scientist which 

consists of several columns/headers and a row for each well of all multi-well plates that are 

simultaneously analyzed with H5CellProfiler. The image analysis results of separate plates can be 

stored in a single HDF5 or in multiple HDF5 files, depending on how the images were analyzed. In 

addition to the well (column ‘locationID’) and plate id (column ‘plateID’) several optional columns 

can be entered: the column ‘treatment’ can be used to enter annotation regarding e.g. compound 

or siRNA treatment of the well. Moreover, if the column ‘dose_µM’ is used to annotate the 

applied concentrations, dose response curves can be automatically generated at a later stage 

using the GUI. Furthermore, it is possible to use columns to annotate replicate numbers (‘replID’) 

and time information (‘timeID’) which can be useful for imaging of multiple plates that represent 

different time points. Finally, the column ‘control’ can be used to enter control information, which 

can be useful for plate normalization purposes in the GUI. 

3.2.2. H5CellProfiler arguments. 

The H5CellProfiler package requires several of these metadata HDF5 file paths as arguments to the 

H5CellProfiler function. At least the ‘locationID’ and ‘imageID’ are required, and if multiple plates 

have been stored in a single HDF5 file also the ‘plateID’ variable must be provided as a HDF5 file-

path. In addition, it is possible to provide a ‘timeID’ and ‘replicateID’ if required. The ‘plateID’, 

‘timeID’ and ‘replID’ variables can be defined either as a HDF5 file-path or as a constant for a 

single or for multiple HDF5 files (the latter is only possible if these variables remain the same 

within a single HDF5 file. 

Conversion of the integer values for the time (either by regular expression or manually 

defined per HDF5 file) to real experimental time is performed based on the two arguments 

‘exposureDelay’ and ‘timeBetweenFrames’. These represent the delay of the first image relative to 

the biological perturbation of interest and the time between two consecutive time points, 

respectively.  

The CellProfiler nomenclature consists of objects and measurements on these objects. 

Objects can be cells, parts of cells (e.g. cytoplasm) but also the images themselves. Users will 

segment the objects of interest and define the name of these objects. For each object, several 

measurement categories can be chosen in CellProfiler, e.g., intensity, texture  and morphological 

measurements can be passed on to H5CellProfiler. Up to ten of these object measurements can be 

passed on to H5CellProfiler by giving them as argument for the ‘myFeaturePathsA’ argument. The 

single entries of these arguments should have an identical format as the CellProfiler output 

namely ‘object/MeasurementCategory_measurement’. 
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Objects are often related to other objects. For example, when there are multiple objects for 

each cell, a parent object must be defined to link the secondary objects to. In this manner, every 

object defined by segmentation or object manipulations such as subtraction or shrinking has an 

object number and an associated parent object number. These object relations are provided to 

H5CellProfiler as the arguments ‘parentObject’, ‘childObject1’, ‘childObject2’,…..,’childObject5’ 

and ‘tertiaryObject’, thus defining how the single cell data are organized. The ‘tertiaryObject’ is a 

CellProfiler-defined child object defined by other-object manipulations such as subtraction (often 

the cytosol as defined by cell subtracted by the nucleus).  The image and parent object define the 

primary key of the tables in R-memory and secondary objects are associated to their 

corresponding parent object and thus on the same row in the table. Thus each row in the table 

corresponds to a unique parent-object. If multiple secondary objects exist for single parent objects 

(e.g. multiple organelles belonging to a single parent-nucleus), a summary statistic must be 

calculated. This summary statistic is by default the mean but can be added as an argument in the 

form of an r-function. Recommended statistics include the mean or a particular quantile, and is 

defined as a function, e.g. ‘function(x)  mean(x, na.rm = TRUE) ’ to the argument 

‘multiplePerParentFunction’. 

Finally the number of cpu cores the user wants to assign for all data processing steps can 

also be provided to H5CellProfiler as the argument ‘numberCores’. However this is limited to 

maximally the number of HDF5 files provided, however for the tracking optimization algorithms 

this is only limited by the amount of individual locations that were imaged (number of time-lapses)  

3.2.3. Track re-labeling and optimization. 

CellProfiler also performs tracking in the context of time lapse imaging, which means that objects 

are linked to each other in time. The H5CellProfiler package recognizes tracking parameters 

automatically using regular expressions, so the user does not need to provide additional 

arguments. However, the ‘fixTrackingFunction’ utility from H5CellProfiler offers several options 

like re-labeling and combining ‘broken’ tracks based on user input. During tracking with 

CellProfiler, segmentation errors frequently leads to track interruption for one or several frames. 

These errors are quite common when cells tend to cluster together while migrating, resulting in an 

underestimation of the number of segmented objects. Alternatively, overestimation of segmented 

objects can also cause tracks to break because the tracking label can connect to the spurious cell 

which will disappear in the next few frames. Tracking errors are maintained in time, meaning that 

a small percentage of segmentation errors per time point results in accumulation of errors in track 

labeling. CellProfiler labels a tracked cell based on the object it is estimated to originate from at 

the previous time step and can assign the same label to multiple objects. Thus, a cell division or a 

single frame segmentation error results in the same label being assigned to multiple tracks. The 

‘fixTrackingFunction’ re-labels these to new tracks starting at the last time point of imaging, using 

the track-parent object labels assigned by CellProfiler. Track-parents and track-children 

correspond to objects related in time, thus the same object tracked through time. When track-

child objects lead to an identical track-parent (thus in the previous time point)  the track label will 

be assigned to the closest parent using the x-y coordinates of the parent and child objects. After 

the re-labeling, the algorithm additionally attempts to reconnect broken tracks over 1-3 time 

frames if the argument ‘reconnect_frames’ is set by the user. In addition, the maximum pixel 
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distance to reconnect partial tracks can be set with the arguments ‘max_pixel_reconnect1’,  

‘max_pixel_reconnect2’ and ‘max_pixel_reconnect3’. If multiple tracks are within the distance 

threshold the closest tracks are connected. Finally, the minimal track length can be set with the 

argument ‘minTrackedFrames’ which means that only tracks with at least that length after 

relabeling and reconnection are retained. The tracks can be plotted using the GUI and it is up to 

the user to validate the reconnect-argument settings by comparing the track plots with the time-

lapses. 

3.2.4. Graphical User Interface. 

After the selected data has been read into R-memory and is reorganized with the help of the 

parent-child object relations and the annotation file, a browser is launched (Figure 3). This utility is 

based on the package ‘shiny’, which is an R wrapper for HTML and JavaScript. Shiny requires a 

server.r and UI.r. The UI.r file defines the layout and functionality of the GUI and generates the 

tools required for user input and output. The server.r file functions as the R server that performs 

the operations. 

The web application provides a graphical user interface for frequently used data 

manipulation, summarization and graphical operations. It sends commands to an R-session so  the 

user only indirectly employs R commands. This approach helps to ensure that the data 

manipulations are performed correctly. 

The user can choose a single or multiple variables for summarization, and one or multiple 

factors over which the summarization takes place. The offered summary functions are the mean, 

standard deviation, median, sum, minimum, maximum and several quantiles. As soon as these 

options have been selected the table is calculated using the R-package ‘data.table’ and takes 

fractions of a second for tables up to 1GB. The raw measurement variables can also be normalized 

by z-score, by the plate median or by the min-max method (x-xplate_min) / (xplate_max-xplate_min). These 

normalizations are performed over the summarized results as defined by the ‘by.what’ factors 

because single cell data contain too many extreme outliers. 

Other data manipulations provided by the browser include column division, deletions, 

filtering, counting and selection. Finally, the modified single cell table and summarized table can 

both be downloaded as tab-delimited text files. When the summarized table has been created the 

‘plot’ tab (Figure 3, right panel) provides the option to explore the data graphically in an 

interactive manner (Figure 4). The user can select the treatment to be displayed and the variables 

to be plotted. Moreover, a third dimension in the data can be visualized with color mapping. and 

font size. The minimum and maximum values of the x- and y-axis can be set to ‘fixed’ (i.e. 

employing the minimum and maximum values of the entire dataset), to ‘free’ (i.e. specific ranges 

for each plot), or can be set manually. Finally, the dose values can be set to ‘dose-levels’ instead of 

their own specific dose ranges which are usually different for each treatment (see example in 

Figure 5). Dose level 1 is the lowest value in a dose-range and the highest dose level corresponds 

to the highest concentration employed for each treatment separately. 

The tab ‘myTable preview’ (Figure 3, right panel) of the GUI displays 100 randomly selected 

rows of the single cell data table, which is useful to view the table along with the applied 

modifications. 

The R package ‘ggplot2’ offers faceting of variables which means that multiple graphs can be 
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Figure 3: GUI for HCI data. Left panel shows an example of a GUI data manipulation and summarization 

utility page. Utilities include summarization statistics over the requested variables and factors. Further 

options include choice  of plate normalization methods, column division, column deletion,  filtering, 

selection, counting and downloading the modified single cell data or summarized data. Right panel shows 

an example of a summarized table preview within the browser. 

automatically wrapped in a single figure. This option to plot large numbers of graphs at once is 

offered by the ‘plotAll’ tab (Figure 4, right panel). In figure 5, an example of graph faceting is 

shown, together with the input boxes. With this approach it is possible to plot hundreds of graphs 

in a single figure if the pdf size is sufficient large for the graph annotations to be displayed  
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correctly (with a small font). Options for multi-facetted plotting include the plot type (line plot or 

bar plots), variable collapse (i.e., calculation of the mean) and the choice of x and y variables. 

Moreover, the user can map up to six variables or specific values by employing different color, fill, 

shape and dot-size. Other options include adding lines between the dots and setting the pdf size  

 

  

Figure 4: Interactive 

plotting with help of the 

package ‘ggvis’. A 

treatment, x-and y-axis 

variable and a color 

mapping can be selected 

from a drop down box, 

after which the plot will 

automatically update. 
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4. Conclusions 

High throughput high content image analysis of single cell data leads to large amounts of 

quantitative data. H5CellProfiler is a user-friendly solution  to analyze such data without the 

requirement of a database. The current implementation of H5CellProfiler is based on the HDF5- 

output of the popular HCI image analysis tool CellProfiler. The benefit of such an implementation, 

in contrast to storing the data in a database, is that the entire pipeline can be performed on a 

single desktop without the need to set up a database and client software.  

The current data workflow of CellProfiler is based on exporting the data to a database 

followed by analysis with CellProfiler Analyst [325] which is based on supervised single cell 

machine learning approaches. Additionally, the CellProfiler data can be exported in the form of 

spreadsheets, however this quickly becomes cumbersome in case of large datasets. 

We propose the use of the image analysis and data analysis workflow with the use of 

CellProfiler and R-package CellProfiler for the biologist who prefers to handle their own data 

analysis and graphics. This will save time in the experimental design to final displayed results cycle, 

and avoids communication difficulties between the biologist and computational scientists. For the 

Figure 5: Multi-facetted plotting with 

help of package ggplot2. In the ‘plotAll’ 

tab the specifics of facetted plotting can 

be defined. The options are provided in 

the browser as displayed in the right 

panel. 
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more computational adherent scientists – H5CellProfiler has the additional benefit of being based 

on R which is a highly suited platform for data analysis, statistics and graphics. 

5. Code description 

5.1. mainFunction 

‘mainFunction’ pulls the user-selected data from HDF5 together with the user provided metadata 

file and organizes the data into a data.table object with one row per parent object and all 

associated variables as columns. ‘mainFunction’ output is a outputLIst.Rdata file containing a 1 or 

several list object in the case of multiple HDF5 files. The first list object contains the data.table, 

metadata, user arguments and a default summary data.table. The outputList.Rdata file is used as 

the input for the server.R and ui.R code from the shiny application for the graphical user interface. 

5.2. mainFunction code description 

Argument class, string length, object definitions and relations using regular expressions matching 

to hdf5 paths (of h5ls of ‘$group’, see rhdf5 vignette for details) is checked and error messages 

thrown to inform the user on the type of mistake.  

The time stamp of the CellProfiler HDF5 output is extracted with a regular expression. 

The tracked object and possibly track distance are extracted from the hdf5 paths and in 

addition the following track-related paths are defined: tracking label, track parent object numbers, 

x and y coordinates of tracked object and distance traveled. These track-related hdf5 paths are 

added to the user defined paths of ‘myFeaturesPathsA’.  

The ‘hdf5IndexFun’ pulls data from the hdf5 file and has input ‘hdf5path’, ‘dataname’ and 

‘rowIndName’. ‘Hdf5path’ points towards the location of the data in the hdf5 file, ‘dataname’ and 

‘rowIndName’ represent the name of the data inside the object and the name of the object index 

data of that object, respectively. To understand how the ‘hdf5IndexFun’ operates, it is important 

to understand the high level data organization (how it is seen by e.g. the R-interface api).  

Each object in the hdf5 file has information blocks; the measurements and metadata e.g.  its 

object numbers and if applicable child or parent object numbers (Figure 6). When pulled from the 

hdf5 file by the h5read function of the rhdf5 package into R-memory, each information block of a 

certain object is represented as a list containing a 1 X n_objects data array and an 3 X n_images index 

array with n being the number of unique entries of that particular object. The data array contains 

the measurements and object numbers or relation specific numbers, the index array contains the 

image number (first column) and the range of rows within the data array to which this image 

number belong (2nd and 3rd columns). To find out which object number a particular set of data 

points belongs to one must look at the data entries within the ‘Number_Object_Number’ 

information block. Since a cytoplasm object is a derived secondary object, the parent object 

number of each object must also be determined to link the measurement to the correct parent 

object. Hence, depending on the type of object different information about the object is required 

which explains why the user must provide this information. An alternative solution would be to 

use regular expressions to search for the ‘Parent’ and or ‘Child’ strings to automatically determine 

these relations.  

Note that the order of the measurements and annotation information of the objects within 

an image is constant, so the data of the image-object, parent object and child objects can be 
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gathered per image at a time and then merged using the extracted image numbers, object 

numbers and parent object numbers. The ‘hdf5IndFun’ reformats the data (unstacks) the index 

information (index array has an entry for each image) by unstacking the row ranges (which point 

to the rows in the data array) and these are matched to the row number of the data array. The 

output is then a ‘data.table’ object for a single measurement/annotation from a single object 

containing the data array entries, the image numbers and the row index numbers. The row index 

numbers are not needed after the merge operation of the data and index arrays because the 

data.tables for each measurement of that same object will be identical. In addition, merging of the 

data.tables of the different objects will depend on the extracted data arrays containing the object 

numbers of the parent objects and the parent object numbers of the child-objects. 

 

Figure 6: Example of the data organization in an hdf5 

file. Top panel shows object blocks Cells, Cytoplasm, 

Experiment, Image, Relationship and ‘obj_nc’. Middle 

panel displays a level deeper into the object blocks, i.e., 

the information blocks containing measurement and 

annotation information. Bottom panel shows that 

object numbers or parent object numbers can be linked 

when a different information block is included. 
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5.3. mainFunction arguments 

hdf5FileNameL 

list of hdf5 file names which serve as input for the function 

locationID  

hdf5 path as provided by user in CellProfiler with regular expressions, serves as linker 

column together with plateID to merge hdf5 data with metadata file. The locationID in the 

hdf5 file should be identical to the locaitonID in the metadata file. 

plateID  

list of hdf5 paths or per-hdf5 defined constant, serves as linker column together with 

locationID to merge hdf5 data with metadata file. The plateID in the hdf5 file or the 

manually defined plateIDs should be identical to the plateID in the metadata file. 

timeID  

list of hdf5 paths or a constant per hdf5 file containing the time point information. The 

timeID in the metadata file overrides the provided time argument unless no information in 

the metadata file is provided. 

imageID  

hdf5 path to image identifier as defined with regular expressions in CellProfiler.  

replID 

list of hdf5 paths or a constant per hdf5 file containing the replicate id constant. The replID 

in the metadata file overrides the provided time argument unless no information in the 

metadata file is provided. 

myFeaturePathsA 

List of hdf5 paths that define the measurements the user is interested in. CellProfiler 

measures everything per user-selected object measurement-class so a selection has to be 

made to avoid memory problems. 

plateMDFileName 

File name of the user defined metadata file. A tab delimited text file with headers 

‘locationID’, ‘treatment’, ‘control’, ‘dose_uM’, ‘plateID’, ‘timeID’, ‘replID’. Only the 

‘locationID’ is obligatory, other columns can be left empty or defined as NA values.  

parentObject 

Parent object as defined by the user in CellProfiler. CellProfiler provides an object as parent 

by default in relation to other objects that are defined based on this parent. If this is not the 

case then the user must define the parent-child object using the ‘relateObjects’ module in 

CellProfiler. All objects of which measurements are selected for ‘myFeaturePathsA’, must be 

defined using the ‘parentObject’, ‘childObject´ or ‘tertiaryObject’ arguments. Note that the 

‘parentObject’ defines the way the data is formatted by ‘mainFunction’ as each 

‘parentObject’ is assigned a single row in the data.table. The children of the ‘parentObject’ 

are summarized by the ‘multiplePerParentFunction’ argument, only if multiple children 

exist. This summary function is performed for each parent object even if only a single parent 

object has multiple children assigned. Therefore the user has to carefully consider the 

modules used in CellProfiler when assigning object relations. Using the parent object as 

seed is in general safe, relating multiple parent objects in a parent-child relation could lead 

to unnecessary computational overhead. 
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childObject1-5 

Child of parent object as defined in CellProfiler ‘identifySecondaryObject’ module or 

‘relateObjects’ module. 

tertiaryObject 

Child based on object derived from parent and/or child as defined in CellProfiler 

‘identifyTertiaryObject’ module. 

multiplePerParentFunction 

User defined function that defines how multiple children per parent object are summarized. 

Oscillation 

Logical argument that enables analogues parameter calculation of in time oscillations (not 

implemented yet). 

writeSingleCellDataPerWell 

logical argument that enables writing of single cell data per well. Single cell text file data 

often becomes more manageable in spreadsheets when saved in chunks. 

writeAllSingleCellData 

 logical argument that enables writing a single text file of the single cell data. 

h5loop 

numeric, default is the number of hdf5 files. Can be overwritten in case memory issues 

occur. 

timeBetweenFrames 

string that defines experimental time between consecutive frames. Format is ‘hh:mm:ss’ 

(hours, minutes, seconds). Please note that 60 minutes or 60 seconds don’t exist in this 

format, increase the hours (no limit) or minutes by 1 instead. 

exposureDelay 

string that defines the time between the biological perturbation of interest and the first 

captured image. Note that at this time it is not possible to define time delays within a plate. 
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Overall discussion and conclusions. 

 

1. BAC-GFP reporter systems for prediction of DILI. 

In this thesis I have described the application of a diverse set of HepG2 BAC-GFP reporters that 

represent different adaptive stress response pathways that are implicated in toxicity. In Chapter 3 

we first established and characterized the different reporter systems. The rationale to establish 

this panel of HepG2 BAC reporters for the oxidative, endoplasmic and DNA damage stress 

responses was to enable the monitoring of these pathways at the ‘sensor’, ‘transcription factor’ 

and ‘downstream target’ level. The various reporters were all characterized and optimized with a 

set of reference compounds. In doing so the stress specific compounds in combination with the 

different stress specific BAC reporters readouts lead to a perfect co-clustering following 

unsupervised hierarchical clustering.  

The next important step for reporter validation was to test a set of clinically relevant DILI-

drugs. The rationale for their selection was based on their transcription-level responses of the 

actual BAC reporter target genes in primary human hepatocytes which were available through the 

TG-GATES microarray dataset. We successfully established that the primary responses of these 

selected DILI-drugs involve adaptive stress responses that correlate with the transcriptional 

responses observed for PHH: 100 % concordance for the Srxn1-GFP response, 80 % concordance 

for p21-GFP and 50 % for CHOP-GFP and BiP-GFP.  

Encouraged by these initial results a compound library of ~170 DILI related drugs including 

control reference compounds was screened using the Srxn1-GFP, CHOP-GFP and p21-GFP BAC 

reporters at 1, 5, 10, 50 and 100 C-max with live-cell imaging for 24 hours.  

As expected the response levels, the dose-responses and time-dynamics varied within the 

entire DILI compound set. For many compounds the responses were low to moderate and difficult 

to detect. However, with a binary method by determining the percentage of GFP-positive cells 

based on control-level background offsets, the sensitivity of the readout was greatly improved. 

Yet, this alternative analysis affected the overall dynamic range. We then applied unsupervised 

clustering of the primary adaptive stress responses time course profiles together with several 

viability features (see Chapter 7, Figure 4). This allowed the identification of DILI compounds with 

similar adaptive stress response activation as well as similar time dynamic profiles of these 

responses. These profiles can be used to determine the primary stress type for compounds that 

induce multiple stress responses as the corresponding reporter will be activated first. Thus, 

already from such basic observations general insights into the mechanisms of toxicity can be 

inferred based on stress type and co-clustering of reference control compounds with known 

mechanism of action. As all concentration-compound combinations are represented in the 

clustering of multi-variate time responses the point of departure for the different stress responses 

can be determined. In addition because of the inclusion of the viability markers technical and 

Chapter 8 
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biological outliers can easily be detected, either in an automated fashion or by manual inspection 

of clustered results.  

A next step in such multivariate analysis is often reevaluation from a different angle by data 

transformation and/or dimension reduction methods. In the current context removing the time 

dimension was performed by transformation of the time response curves to dose response curves, 

which serves to decrease the complexity but also enables inclusion of additional features and for 

example single time point cell death parameters. Visualizing the same dataset from a dose-

response angle sets the focus on the critical onset of toxicity based on concentrations. Different 

sensitivity and dynamic range measures of the adaptive stress response levels together with 

viability features such as cell count, cell speeds, nuclei area and the cell death features apoptosis-

positive-fraction and necrosis-positive-fractions shows a broad cell biologic response to each 

compound in a dose-response context. Cellular adaptation to stress typically occurs in the form of 

activation of damage specific adaptive stress responses followed by a decrease in several cell 

viability markers and finally results in cell death. The point-of-departure (PoD) can be defined in 

parallel with the point-of-no-return (i.e. cell death). Thus, the compound-specific concentration of 

these events and, importantly, the concentration differences between these two events are key 

compound features which pertain how potent a certain compound induces a certain type of stress 

and how well adaptive programs can combat this stress before cell death occurs, respectively.  

Together, our experiments indicate the application of BAC-GFP reporters in the safety 

assessment of chemicals and their potential for the identification of DILI liabilities.  

2. Application of BAC-GFP reporter in the understanding of mechanisms of DILI.  

A major theme in DILI is the involvement of immune mediated mechanisms including TNF 

induced pro-inflammatory signalling [38]. In Chapter 5 I have studied the role of different stress 

response pathways and their relationship to DILI in the context of TNFα signalling. As a first step, 

transcriptomic profiling of the response of HepG2 cells treated with TNF and co-treated with 

either one of the hepatotoxicants diclofenac or carbamazepine revealed the involvement of two 

adaptive stress response pathways: the endoplasmic reticulum (ER) stress/translational initiation 

signalling and nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) antioxidant signalling. 

Indeed, data mining of the TG-GATES dataset revealed the importance of these adaptive stress 

responses as the majority of DILI classified drugs affected the corresponding transcription levels in 

primary in hepatocytes. Following these findings we set out to investigate if these adaptive stress 

responses have a critical role as drug-induced toxicity pathways that act in synergy with TNF to 

cause cell death of liver HepG2 cells. 

With the established adaptive stress response BAC-GFP reporter platform a more detailed 

mechanistic investigation was performed into the involvement of the Nrf2 antioxidant response 

and ER stress/UPR in TNFα/drug-induced synergy in DILI. Diclofenac and carbamazepine both  

caused the activation of the ER-stress BAC-GFP HepG2 reporters ATF4-GFP and CHOP-GFP. This ER-

stress activation was shown to be independent of TNFα and involved protein kinase R-like ER 

kinase (PERK). The diclofenac and carbamazepine TNFα synergistic cell death was inhibited when 

PERK was downregulated. Also siRNA knock down of CHOP inhibited this synergistic cytotoxic 

onset. Induction of CHOP expression was dependent on the translational initiation factor EIF4A1; 

and knock down of EIF4A1 also inhibited the cytotoxic response. Thus, ER stress caused by these 
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two DILI compounds, directly interacts with the pro-apoptotic pathway downstream of the TNF 

receptor. In contrast to the effect of ER stress, activation of the KEAP1/Nrf2 antioxidant stress 

response pathway, as evidenced by the induction of the Srxn1-GFP reporter by these two DILI 

compounds, acted cytoprotective. Thus, knock down of Nrf2 enhanced the synergistic cell death. 

These data demonstrate the application of the BAC-GFP reporters in mechanistic understanding of 

DILI compound toxicities.  

3. Interaction of Nrf2 signalling and NF-κB signalling in DILI. 

The above results suggests that the interaction with TNF signalling is essential for DILI liabilities. 

Since many DILI compounds also activate the Nrf2 response, we further investigated this 

interaction and the possible predictivity of these two signalling pathways (Chapter 6). First, a 

systematic investigation of the Nrf2-mediated oxidative stress signalling and NF-κB-mediated 

inflammatory signalling pathways in PHH using the TG-GATES microarray dataset revealed a strong 

correlation between these two pathways in relation to DILI. Strong activation of the Nrf2 pathway 

was associated with a downregulation of the inflammatory pathway. Following this observation 

these findings were translated into HCI. Here we combined the HepG2 oxidative stress response 

reporter Srxn1-GFP and a HepG2 reporter for p65-GFP, a subunit of NF-κB on which we published 

before. The latter reporter demonstrates nuclear oscillation behavior upon treatment with TNFα. 

We found that when DILI compounds demonstrate strong activation of the Srxn1-GFP reporter, 

this was associated with suppression of TNFα-induced NF-κB translocation to the nucleus. 

Activation of NF-κB signalling by TNFα did not suppress the oxidative stress response in HepG2 

cells. Of interest, mainly compounds associated with a strong Nrf2-activation sensitized towards 

TNFα-mediated cell death. This may indicate that in particular compounds that have a strong 

cellular stress response are liable for such an interaction. As mentioned above, such an oxidative 

stress response activation was initially a protective adaptive response, since knock down of Nrf2 

enhanced this sensitivity, while on the contrary knock down of the negative regulator of Nrf2, 

Keap1, acted cytoprotective. Thus, we propose the Nrf2-mediated oxidative stress response as 

induced by DILI compounds coincides with NF-κB suppressions and that this results in liver cells 

that are more sensitive to pro-apoptotic signalling induced by immune cell released cytokines such 

as TNFα. We anticipate that by monitoring in early drug development the effect of novel drug 

candidates on oxidative stress activation (Srxn1-GFP reporter), TNFα signalling (p65-GFP reporter 

oscillation) and synergistic cell death, may reduce the number of compounds that will enter the 

clinic with DILI liabilities. 

4. Implications of the BAC-GFP reporters in understanding DILI and assessment of 

chemical safety. 

In Chapter 3 we determined that monitoring only three adaptive stress response pathways using 

endogenously regulated BAC-GFP reporter HepG2 cells together with several cell-viability features 

using HCI, allows the identification of a biological “fingerprint”. This was evidenced by the co-

clustering of highly  structural similar compounds: oligomycin A and oligomycin B, CCCP and FCCP; 

as well as compounds with similar mode-of-action: thapsigargin, tunicamycin and brefeldin A.  

Does this infer that these are the major adaptive stress response pathways in cellular defense and 

that these pathways are key in DILI? Yes and no. Oxidative stress has been shown in numerous 
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studies to be the main source of damage implicated in DILI [328]. ER-stress is emerging as another 

important player in DILI, especially the role of cell death signalling via PERK and CHOP resulting 

from prolonged ER-stress [334, 335]. DNA damage is known in several cases of DILI, but this 

pathway is general not a main player in DILI, as was also indicated by our DILI screen results [336, 

337]. In our DILI screen in Chapter 7 we also observed that a large set of compounds did not 

induce any of the three adaptive stress response reporters; this indicates that it is likely that 

different types of stress and signalling do occur in DILI. Regardless, as a proof-of concept we 

demonstrate that both the time-dynamics and concentration-response profiles that can be 

obtained from HCI of the reporter platform provides detailed information on: 1) the primary 

mode-of-action; 2) the resultant secondary stress responses; 3) the point-of-departure (i.e. lowest 

observed effect level at which an activation of a response occurs); 4) the consequently point-of-

no-return at which maladaptation or cell death occurs. The HCI data is multi-dimensional and 

therefore complex automation in the form of an analysis pipeline which displays such data in 

heatmaps can simplify the analysis and interpretation of such data. At this point adaptive stress 

response fingerprints that are associated with diverse DILI classes would need to be established 

first.  

Although not included in our screening efforts so far, the development of the inflammatory 

signalling BAC-GFP reporters (Chapter 5) now allows inclusion of the highly relevant NF-κB 

signalling pathway in our HCI DILI screening efforts. The NF-κB pathway acts as a pivotal survival 

signalling node but can also contribute to or initiate cell death pathways. In the lab, we have also 

established BAC-GFP reporters for several downstream targets of NF-κB, including A20-GFP and 

ICAM-GFP, respectively early and late target genes. Our HCI BAC-GFP reporter panel is an ideal 

platform to investigate the interaction between multiple pivotal pathways related to DILI (i.e. the 

Nrf2 antioxidant/ oxidative stress response and the NF-κB pathway, in Chapter 6). The possibility 

to quantify the Nrf2 mediated oxidative stress response together with the oscillation patterns of 

NF-κB  in live cells following exposure to DILI-drugs and inflammatory signalling activation by TNFα 

is only possible with the high temporal and spatial resolution that HCI provides. The sensitivity 

required to detect incremental changes in endogenously regulated Srxn1 levels as the result of 

slight increase in Nrf2-mediated oxidative stress signalling and more importantly the detection of 

subtle changes in NF-κB nuclei-cytosol oscillation patterns in single cells is only possible using HCI, 

in particular using state-of-the-art optics and detection which are available on confocal 

microscope systems that we have used in our investigations.  

The complexity and the diversity of responses of biological systems to chemical exposure is 

evident. The involvement and interconnectivity of multiple pathways in DILI has been 

demonstrated in previous work and in this thesis. More importantly, however, is our 

demonstration of how several key regulatory components can be used to determine the primary 

response of cells to chemical exposure. Since adaptive stress responses are upstream in these 

biological regulatory programs, exploring additional adaptive stress responses will prove to be of 

high value to create more BAC-GFP reporters for their integration in HCI.  

5. Improvements to be considered. 

Some key features on the implementation of the current HCI-imaging based reporter platform are 

warranted. At this stage, as a proof-of-concept, we focused on several reporter cell lines that were 
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based on HepG2 cells. This cell line was selected since it is easy to genetically modify, it is robust 

and easy to maintain and transfer to a commercial setting. However, the HepG2 cell line has 

limited biotransformation capacity which is required for reactive metabolite formation. Secondly, 

these cells are grown in two-dimensional conditions; under these conditions the cells divide 

rapidly which is not representative for the  in vivo conditions. The cells lack the other 

differentiated features of normal primary cultured hepatocytes including bile-duct formation. 

Thirdly the culture system lacks the multi-cellularity which is often key in the pathophysiology of 

DILI. Thus, the liver resident macrophages, Kupffer cells, pit cells, stellate cells, sinusoidal cells and 

cholangiocytes all contribute in their own way to DILI. Future work should involve both the 

culturing of our reporter cell lines in 3D and/or in co-cultures with other liver cell types. Indeed, 

we have been successful to culture the various BAC-GFP HepG2 reporters as spheroid cultures in a 

3D matrigel environment. The phenotype of the different reporters in 3D spheroids mimics the 

phenotype as observed for wild type HepG2 3D spheroids.  

Additional we have started to explore the use of human induced pluripotent stem cells. 

Inclusion of reporters in these cells will involve the CRISPR/Cas9 technology. hIPSC will allow the 

differentiation of the ultimate fluorescent reporter cells into multiple cell types including 

hepatocyte-like cells followed by integration in high content imaging.  

An additional shortcoming of our current model is the lack of prolonged repeated dosing 

possibilities for up to several weeks. A repeated dosing scheme would be in particular interesting 

when considering the concepts of sensitization or desensitization after onset of the adaptive stress 

response programs. Will repeated dosing create a new steady state of the stress response, thus 

ensuring true adaptation? Or will repeated drug exposure create a sustained ever increasing stress 

response that is doomed to end with a point of no-return? These are questions that are difficult to 

answer using our 2D culture BAC-GFP reporter approach. The above already mentioned non-

proliferative 3D HepG2 spheroid cultures would be  ideally suited for this purpose [14]. Such 

strategies are currently being explored in our lab and are beyond the scope of this thesis.  

A final current shortcoming worth mentioning are the costs, time and expertise involved in 

setting up the required hardware and software infrastructures. Moreover the complexity of the 

datasets requires rigid image and data analysis protocols to obtain reliable and reproducible end-

of-the-pipeline results so that the risk assessor might actually use such data. 

6. Adaptive stress responses and cell biology: implications for prediction. 

In this thesis I focused on the application of reporters that reflect cellular adaptation programs. In 

view of the adaptation versus the point-of-no-return one can consider cellular systems in a 

continuous dynamic state of acquiring damage and repairing damage with the ultimate goal to  

maintain cellular homeostasis. One step further leads us to a hypothesis where all cellular and 

organ adversity is the inability of biological repair systems to cope with the acquired damage. The 

biological repair mechanisms consist of intrinsic repair such as during DNA transcription coupled 

repair, normal cellular protein turnover through proteosomal degradation, or malfolded proteins 

that are rescued by chaperones already present in cells under normal physiological conditions. An 

adaptive stress response program is then the detection of damage and signalling response of 

biological systems to increase these intrinsic repair mechanism to a specific damage type to a 

higher level. If this is true, how can we use reporter based systems of the adaptive stress response 
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pathways that control these repair mechanisms to better predict DILI? The employed approach of 

Chapter 7 of clustering compounds by similarity of their corresponding biological fingerprints has 

shown promise in the enrichment in most-DILI concern compounds: they caused a strong 

activation of the Nrf2-mediated oxidative stress response and ER-stress/UPR response within a 24 

hour time period. However, other most-DILI concern compounds did not induce one of the 

adaptive stress response programs in this time period. Our current simplified working hypothesis 

is that all DILI is the result of failed adaptation programs due to overwhelming damage. Since this 

is not observed this leads to several explanations. Firstly, the 2D HepG2 cells are immortalized 

dedifferentiated liver cells that lack many physiological and structural properties of a the actual 

liver, and, thus, limiting the coverage of ‘all’ pathophysiological programs involved in DILI. 

Secondly, only three adaptive stress programs have been monitored leading to the possibility that 

certain damage types are overlooked in the current reporter platform. We need to integrate other 

stress programs in our platform as well. Thirdly, the toxicodynamics is likely different than the 

physiological dynamics in the human liver and this will for certain compounds likely be key in the 

compound induced toxicity. Repeated dosing and longer time courses for accumulation of the 

compound or its metabolites have been shown to be key mechanisms [14, 15]. And, fourthly, 

compounds that directly interact with cell death or survival pathways and sensitize cells to stress 

induced cell death could lead to adversity without inducing adaptive stress response pathways to 

higher than significantly detectable levels. 

7. Practical implementation of the technologies. 

We believe the current proof of concept methodology can directly be applied in an industrial 

setting. Several pharmaceutical companies have jointly performed promising pilot studies on DILI 

related compound sets. On one hand the BAC-GFP reporter platform can be used for early 

screening for the purpose of hazard identification for early lead termination. Such a system could 

be simple: e.g. a single/multiple time point(s) and single/multiple concentration(s) on a small set 

of primary adaptive stress response reporters, including oxidative stress and ER-stress reporters. 

Compounds that induce these stress types at the pre-determined concentration can be terminated 

simply by the notion that they induce these pathways at a too low concentration. Such an 

approach might lead to identification of false positives. This may be undesirable because 

compounds may have optimal pharmacodynamics and pharmacokinetic properties or there may 

not be that many compounds to start with. In this case a more detailed screening effort can be 

performed using multiple reporters and time points to gather more information as to what 

constitutes a high-hazard high-risk biological fingerprint. Such a high risk-fingerprint includes the 

point of departure concentration for several key adaptive stress response pathways, the 

concentration where adaptation changes to maladaptation and cell death. To obtain such a 

fingerprint, or multiple fingerprints, two strategies should be considered. Firstly, the expert 

knowledge based method where the data such as activation of (multiple) pathways at certain 

point of departures are interpreted in the context of the compound application for hazard 

identification or even risk assessment. This would however require much experience in the 

understanding and interpretation of such data; without this prior knowledge the reporter 

screening concept is not likely to be incorporated in toxicity screening programs in the first place.  
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The second strategy would be a supervised clustering methodology where a large set of DILI 

compounds versus a large set of non-DILI compounds is used to optimize a fingerprint that 

functions as classifier for these two groups. Such a classifier would evolve as more data becomes 

available, and indeed the foundations for such a biological fingerprint have already been made in 

this thesis. The difficulty does however remain in the ground-truth classification of DILI 

compounds as well as the complexity and variety of the mode-of-action of different DILI 

compounds. With such a complexity we would propose to simplify as much as possible the 

application of the reporter platform. One can envision an initial screen with single time points and 

a small range of concentrations in several HepG2 BAC-GFP reporters where only strong evidence is 

used to terminate sets of compounds flagged as hazardous by their corresponding fingerprints. 

This would be followed by a more elaborate screen with the inclusion of the time dynamics and 

concentration response.  

Will all drug-related DILI be translated to some form of adaptive stress response? This is not 

likely as for example phospholipidosis or cholestasis might initially not lead to any or sufficient 

high perturbation levels to induce one of the adaptive stress responses to increase significantly 

above endogenous levels. This would therefore require the integration of additional reporters that 

need to be developed and/or characterized further in the future. Reporters that have already 

been established as BAC-GFP clones include several additional adaptive stress responses including 

the heat shock response and the metal stress response. In addition, also reporters that represent 

the structure of different organelles have been established and include: 1) a CYC1-GFP reporter 

which visualizes the mitochondria and mitochondrial networks. As compounds that affect the 

oxidative phosphorylation process and likely the metabolism in general are expected to influence 

the size, number and network structure of mitochondria. 2) EEA1-GFP which is a marker of early 

endosomes and LAMP1-GFP which is a marker of the lysosomes; these markers could be of 

interest in monitoring phospholipidosis. 3) LC3-GFP which visualizes the autophagosomes 4) 

LAMIN A-GFP markers of the nuclear envelope, 5) PDIA6-GFP which serves as a morphological 

marker of the endoplasmic reticulum. 6) BSEP-GFP and MRP2-GFP reporters that are involved in 

cholestasis and are located at the bile canaluculis. 7) CYP3A4-GFP that is induced by various 

xenobiotics. 8) cytochrome-c (CYCS-GFP) and Bid-GFP that are relevant to monitor early onset of 

cell death commitment.  

8. Final concluding remarks. 

Our long term vision is to establish an imaging-based platform that can quantitatively assess the 

activation of individual key events relevant to AOPs. The focus of my thesis was on adaptive stress 

response pathways, that are typically part of AOPs and related to adverse drug reactions. In this 

thesis, we have established and characterized various reporter cell lines. We have developed the 

infrastructure for automated imaging and image analysis of the BAC reporters. We have used the 

quantitative output of the HCI from these reporters for the mechanistic understanding and 

improved prediction of DILI. While still further development is required for implementation of the 

technologies as well as broadening the panel of reporters, I anticipate that the HCI-based safety 

testing strategies will find its place in DILI liability assessment and/or the chemical safety 

evaluation in general. 
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List of abbreviations 

ADR: Adverse Drug Reaction 

AMAP: 3’-hydroxyacetanilide 

AMI: amiodarone 

AOP: Adverse Outcome Pathway 

APAP: acetaminophen/ paracetamol  

BAC: Bacterial Artificial Chromosome 

BFA: Brefeldin A 

CBZ: carbamazepine 

CDDO-Me: bardoxolone methyl (methyl-2-cyano 3,12-dioxooleano-1,9-dien-28-oate) 

CLZ: clozapine 

DCF: diclofenac 

DDR: DNA damage response 

DEM: di-ethyl maleate 

DEM: Diethylmaleate 

DILI: Drug-Induced Liver Injury 

ER-stress Endoplasmic Reticulum stress 

IAA: Iodoacetamide 

INH: isoniazid 

H2O2: hydrogen peroxide 

HCI: High Content Imaging 

HTS: High Throughput Screening 

HTI: High Throughput Imaging 

HTM: High Throughput Microscopy  

KTZ: ketoconazole 

MEN: menadione 

MTX: methotrexate 

NFZ: nefazodone 

NPX: naproxen 

NTF: nitrofurantoin 

OFX: ofloxacin 

OSR: Oxidative stress response/ antioxidant pathways 

PHH: primary human hepatocytes 

PI: propidium iodide 

ROS: reactive oxygen species 

SN: simvastatin 

siRNA: small interfering RNA  

Tc: Tunicamycin 

Tg: Thapsigargin 

TGZ: troglitazone  

UPR: Unfolded Protein Response 
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Waarom dit onderzoek 

Veel geneesmiddelen, met name antibiotica-, ontstekingsremmers-, antischimmel-, anti-psychose- 

en antikankergeneesmiddelen en bepaalde alternatieve geneeskruiden kunnen bij sommige 

individuen leiden tot ernstige leverschade. De lever is het orgaan dat het meest beschadigd raakt 

door toxische verbindingen omdat al de opgenomen voedselcomponenten uiteindelijk via de lever 

in de bloedcirculatie komen. Bovendien is de lever verantwoordelijk voor het metaboliseren en 

detoxificeren van schadelijke verbindingen. Soms leidt metabolisme juist tot de vorming van 

reactieve metabolieten afkomstig van een anders onschadelijke verbinding.  

De door medicijn-geïnduceerde leverschade is globaal in zeven verschillende typen te 

onderscheiden: 1) Fibrose: cellen genaamd “hepatische stellaat cellen” maken bindweefsel met als 

doel de lever te repareren maar de vorming hiervan kan verstoord worden door sommige 

geneesmiddelen. 2) Cirrose of leverontsteking: langdurige leverschade of problemen met de 

productie van bindweefsel in de lever kan leiden tot overmatig veel littekenweefsel. Dit wordt 

cirrose genoemd en is meestal het gevolg van een chronische primaire pathologie. 3) Cholestase: 

problemen met galzuur metabolisme of transport in de lever leiden tot stapeling van galzuren in 

de lever en tot schade in de levercellen. 4) Steatose/ steatosis hepatis: als een probleem met 

metabolisme of transport van vetten plaatsvindt waardoor er een ophoping van deze vetten 

(voornamelijk triglyceriden) ontstaat, heet dit steatose. Wanneer er als gevolg hiervan 

ontstekingen in de lever plaatsvinden dan wordt dit  steatosis hepatis genoemd. Het vaakst komt 

deze leveraandoening door alcoholmisbruik maar ook geneesmiddelen kunnen deze pathologie 

induceren. 5) Fosfolipidose: een vorm van steatose met ophoping van fosfolipiden als gevolg van 

problemen met liposomale verwerking van vet. 6) Necrose: celdood van levercellen op een 

ongecontroleerde wijze. Tot slot 7) Apoptose: celdood van levercellen op een door cellen 

gecontroleerde wijze. 

Blootstelling aan sommige geneesmiddelen leidt tot iets mildere vormen van leverschade, 

zoals steatose en cholestase, dat pas op de langere termijn tot cirrose kan leiden. Echter, sommige 

geneesmiddelen die tot massale leverceldood leiden, in de vorm van necrose of apoptose, zorgen 

voor  imminente ernstige complicaties waarbij een snelle levertransplantatie nodig is. 

Met behulp van allerlei methoden, met cellen (in vitro), met bepaalde proefdieren (in vivo) 

en klinisch onderzoek, proberen wetgever en farmaceutische bedrijven te voorkomen dat 

dergelijke leverschade-inducerende geneesmiddelen op de markt komen. Soms gebeurt het dat 

geneesmiddelen op de markt komen die bij sommige individuen (ernstige) leverschade 

veroorzaken. Dit gebeurt bij één op enkele tot vele duizenden patiënten, afhankelijk van het 

geneesmiddel. Een dergelijke zeldzame ongewenste reactie op een geneesmiddel noemt men een 

idiosyncratische reactie. De oorzaak van idiosyncratische reacties is niet helemaal bekend en 

verschilt van individu tot individu (i.e. genetisch). Verschillen in milieuomstandigheden en externe 

factoren, zoals predispositie door activatie van het immuunsysteem, zijn in de literatuur vaak 

genoemde oorzaken. Naast de zogenaamde idiosyncratische reacties zijn er de algemene 
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levertoxische verbindingen. Deze toxiciteit is concentratie-afhankelijk en daarom beter te 

voorspellen als de toxiciteit eenmaal in mensen is geconstateerd. Echter, het ontwikkelen van 

geneesmiddelen is zeer kostbaar (dit kan oplopen tot meer dan een miljard euro en hoe verder in 

de ontwikkeling een medicijn is voordat de toxiciteit ervan duidelijk wordt. hoe hoger de kosten 

zullen zijn. Het is daarom zeer wenselijk voor de farmaceutische industrie, de consumenten en ook 

de gehele gezondheidszorg om nauwkeurig en vroeg in de ontwikkeling van een medicijn (lever) 

toxiciteit te kunnen voorspellen. Bovendien is het zeer gewenst deze vroege voorspellingen met 

behulp van in vitro-methoden te doen. Deze methoden kunnen namelijk vroeg in de ontwikkeling 

van nieuwe kandidaat-geneesmiddelen gebruikt worden wanneer het aantal nog zeer groot is. Dit 

doordat het mogelijk is ‘high-throughput’ te werken, in tegenstelling tot onderzoek met 

dierproeven en klinisch onderzoek. 

Ons idee voor het bijdragen van het voorspellen van leverschade van nieuwe 

geneesmiddelen. 

Nieuwe wetenschappelijke methoden en inzichten hebben geleid tot een beter begrip van hoe de 

verschillende cellen in ons lichaam reageren op bepaalde verbindingen. Met technieken zoals 

‘microarray chips’, ‘proteomics’ en ‘metabolomics’ die respectievelijk genen, eiwitten en 

metabolieten meten zijn de belangrijkste signaalroutes die cellen gebruiken om zichzelf in leven te 

houden of juist celdood initiëren in kaart gebracht. Verschillende essentiële signaaltransductie-

routes die hieruit zijn voortgekomen zijn o.a. de adaptieve stress response signaaltransductie 

cascade; 1) de Nrf2-gemedieerde oxidatieve stress signaaltransductie cascade (Nrf2-cascade), 2) 

de endoplasmatisch reticulum ongevouwen eiwitten signaaltransductie cascade (ER-cascade) en 3) 

de p53-gemedieerde DNA-schade signaaltransductie cascade (DNA-cascade). Naast de adaptieve 

stress responsen is er de NF-κB gemedieerde immuun-signaaltransductie cascade (NF-κB-cascade), 

dat een belangrijke rol bij celoverleving speelt. 

De adaptieve stress response signaaltransductie cascades zijn evolutionair behouden 

celmechanismen die zorgen voor een endogene fysiologisch intracellulair milieu, zodat de cellen 

goed kunnen blijven functioneren als onderdeel van een orgaan. 

Het is  belangrijk dat cellen deze adaptieve mechanismen hebben om stress te neutralizeren 

dat wordt veroorzaakt door geneesmiddelen. Echter, het is van belang te beseffen dat de primaire 

roll van deze adaptieve mechanismen is om fysiologisch geïnduceerde stress te neutralizeren 

veroorzaakt door onder andere beweging, eten of ziekte. Zo zorgt de Nrf2-cascade bij oxidatieve 

stress ervoor dat er antioxidanteiwitten tot expressie komen om o.a. vrije radicalen en alkylerende 

verbindingen op te ruimen en daarmee de beschadiging van macromoleculen, zoals eiwitten en 

DNA, maar ook beschadiging van celmembranen door lipide peroxidatie, tegen te gaan. De ER-

cascade is een cellulair adaptief mechanisme dat bij problemen met het vouwen van 

aminozuurketens tot functionele eiwitten, in het endoplasmatisch reticulum, geactiveerd wordt. 

Deze activatie leidt tot het tot expressie brengen van meer zogenaamde chaperones. Deze 

chaperones helpen bij het op de juiste manier vouwen van de aminozuurketens, zodat het risico 

op de vorming van eiwitaggregaten verkleind wordt. Bovendien wordt bij de activatie van de 

ongevouwen eiwit response translatie gestopt. Bij langdurige activatie wordt de cel aangestuurd 

om in apoptose te gaan. Tot slot zorgt de DNA-cascade ervoor dat er bij schade aan het DNA  
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eiwitten tot expressie worden gebracht die de DNA-schade proberen te repareren.   Daarnaast 

wordt celdeling een halt toegeroepen. Pas als het DNA gerepareerd is zal de cel weer kunnen 

delen. 

Echter in tegenstelling tot cellulaire aanpassing en overleving is het ook belangrijk dat cellen 

de beslissing kunnen nemen om in apoptose te gaan. Dit om de gezondheid van een orgaan als 

geheel niet te belemmeren. Als een cel DNA-schade, eiwit aggregaten of andere beschadigingen 

na celdeling doorgeeft leidt dat tot ernstige problemen voor een orgaan en daarmee de 

gezondheid van het individu. De essentiële  signaaltransductie cascade die bij  de overleving van 

een cel een rol speelt is de NF-κB-cascade. Deze signaal cascade zorgt onder fysiologische 

omstandigheden ervoor dat een individuele cel niet in apoptose gaat.  Echter kan bij bepaalde 

signalen, bijvoorbeeld na langdurige activatie van de ER-cascade of bij een virale of bacteriële 

infectie, dit er voor zorgen dat immuuncellen het paracrien cytokine TNFα signaal uitscheiden. 

Deze TNFα activeert de TNFα-receptor waardoor de NF-κB-cascade verstoord wordt.  

De verschillende signaaltransductie-routes zorgen tezamen dus voor adaptatie en herstel 

nadat het biochemisch evenwicht is verstoord. Mochten de adaptieve stress response cascades 

het evenwicht niet kunnen herstellen, omdat de biochemische perturbatie of schade te groot was, 

dan zorgt o.a. de TNFα-receptor-route ervoor dat de cel in apoptose gaat.  

Onze hypothese is dan ook dat alle soorten cellulaire schade, veroorzaakt door 

geneesmiddelen of andere verbindingen, gedetecteerd worden en leiden tot activatie van 

verschillende repareermechanismen in de cel.  

Wij monitoren  in levende cellen gedurende een bepaalde periode  deze adaptieve stress 

cascades en de NF-κB-cascade gebruikmakend van fluorescerende eiwitten, de zogenaamde 

‘Green fluorescent protein’ (GFP).  Deze eiwitten  zijn gefuseerd met eiwitten die zich op cruciale 

posities in de signaaltransductie cascades bevinden. De gefuseerde eiwitten zijn in een van de 

lever afgeleid celtype gebouwd, de HepG2 cellijn. Deze ‘HepG2 reporter’ cellijnen worden in  

incubatiebakjes gekweekt en blootgesteld aan verbindingen die ingedeeld zijn in de mate die deze 

lever-schade induceren. Met behulp van geautomatiseerde confocale microscopen hebben wij 

vervolgens de cellen gedurende 24 uur gevolgd, met als gevolg heel veel plaatjes in de tijd 

(filmpjes) met daarbij ook de mogelijkheid voor het onderscheiden van allerlei (morfologische) 

fenotypen na blootstelling aan de chemische stoffen. Deze fenotypen zijn bijvoorbeeld; de grootte 

van de kern, de migratiesnelheid, wanneer er bij welke concentratie de genoemde cascades 

worden geactiveerd en wanneer er bij welke concentratie de cellen in apoptose dan wel necrose 

gaan. Deze methode en de beargumentering van onze hypothese staat beschreven in hoofdstuk 2. 

In hoofdstuk 3 worden deze HepG2 reporter cellijnen getest op referentieverbindingen waarvan 

we weten wat voor type cellulaire schade deze induceren. Zo kon de gevoeligheid en selectiviteit 

van verschillende HepG2 reporter cellijnen geverifieerd worden. In hoofdstuk 4 is gedetailleerd 

onderzoek gedaan naar de invloed van de Nrf2-cascade en ER-cascade in de context van de 

immuun-cel cytokine TNFα, om de oxidatieve stress en ER-cascade activatie onder simulatie van 

een (bijvoorbeeld) infectie te simuleren. Hoofdstuk 5 sluit aan op ditzelfde principe en beschrijft 

het onderzoek naar de interactie tussen de NF-κB-cascade en Nrf2-cascade in de context van 

geneesmiddelen die leverschade induceren. Daarnaast is er een groep HepG2 reporter cellijnen 

gebruikt om een set van 180 geneesmiddelen en andere verbindingen te testen. De resultaten van 

dit microscopisch-fenotypisch onderzoek zijn gecorreleerd aan de mate waarin geneesmiddelen 
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leverschade induceren. Tot slot is de ontwikkeling van een gebruikersvriendelijke browser-

gebaseerde interface voor het analyseren van de kwantitatieve data resulterend van de 

geautomatiseerde confocale microscopen beschreven in hoofdstuk 7.  

Resultaten van dit onderzoek 

Hoofdstuk 3: Hoog-gehalte beelden gebaseerde BAC-GFP adaptieve stress responsen voor de 

evaluatie van de toxiciteits-risico van chemicaliën.  

Als eerste zijn de HepG2 reporter cellijnen gekloond door aan eiwitten die op cruciale locaties in 

de adaptieve stress cascades gepositioneerd zijn een fluorescent eiwit te fuseren. Vervolgens is 

het signaal detectie niveau (de gevoeligheid) en selectiviteit, voor ofwel oxidatieve stress, ofwel 

endoplasmatisch reticulum stress, ofwel DNA schade stress getest bij drie verschillende 

concentraties van een set referentie verbindingen waarvan het type toxiciteit bekend is. Het bleek 

dat de HepG2 reporter cellijnen in een concentratie afhankelijke wijze reageerden op de 

referentie verbindingen. Daarnaast bleken ze  gevoelig genoeg om detectie mogelijk te maken en 

selectief aangezet te worden door hun corresponderende stress inducerende verbindingen. 

Bovendien bleek door het gebruik van microscopie-techniek de tijdresolutie hoog genoeg zodat 

nauwkeurig bepaald kon worden in welke volgorde de adaptieve stress response cascades 

geactiveerd worden. Dit maakte het mogelijk de primaire stress type van de hierop volgende 

secundaire stress te scheiden. Tot slot is naar het RNA-niveau gekeken onder vergelijkbare 

condities in een publiek beschikbare micro-array dataset gebaseerd op primair humane 

hepatocyten. Primair humane hepatocyten worden beschouwd als een ‘gouden standaard’ model 

omdat het geïsoleerde levercellen van donoren zijn en daarom meer eigenschappen bezitten van 

een fysiologische lever. Het bleek dat de GFP gefuseerde eiwitten van HepG2 reporter cellijnen op 

een vergelijkbare manier reageerden ten opzichte van het RNA niveau van de primair humane 

hepatocyten. 

Hoofdstuk 4: Geneesmiddelen-geïnduceerde endoplasmatisch reticulum- en oxidatieve stress 

responsen predisponeren naar TNFα geïnduceerde hepatotoxiciteit.  

In dit hoofdstuk zijn de onderliggende mechanismen van de synergistische respons van 

hepatotoxische geneesmiddelen en TNFα onderzocht gebruikmakend van een unieke combinatie 

van geïntegreerde transcriptomics en RNA-interferentie. Genexpressie analyse van HepG2 cellen, 

primaire humane- en muis hepatocyten en dunne menselijke leverplakjes demonstreerden dat 

specifieke activatie van de ER-cascade geschiedde door middel van activatie van de ATF4 

transcriptie factor. Door gebruik te maken van RNA-interferentie, imaging en de HepG2-reporter 

cellijnen bleek een bepaalde arm van de ER-cascade, namelijk PERK-CHOP, cruciaal te zijn voor het 

geneesmiddel-TNFα geïnduceerde synergistische celdood. Oxidatieve stress zorgde voor een 

additionele impuls voor HepG2 celdood. Echter beïnvloedde deze oxidatieve stress niet de mate 

van ER-cascade activatie. De translatie inhibitie marker EIF4A1 bleek wel cruciaal voor de activatie 

van CHOP en daarmee het geobserveerde geneesmiddel/TNFα geïnduceerde celdood.  

Hoofdstuk 5 Activatie van de Nrf2-cascade door intrinsieke hepatotoxische geneesmiddelen 

correleert met suppressie van NF-κB-cascade activatie en predisponeert naar TNFα-geïnduceerde 

cytotoxiciteit.  
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Analyse van een grote transcriptomics dataset van primaire humane hepatocyten leidde tot het 

inzicht dat veel geneesmiddelen die ernstige leverschade kunnen veroorzaken ook een sterke 

Nrf2-cascade response kunnen induceren. Bovendien bleek dat deze Nrf2-cascade activatie 

correleerde met een lagere mate van NF-κB activatie. Dit inzicht is verder uitgewerkt 

gebruikmakend van een set van HepG2 reporters voor deze twee signaaltransductie cascades. 

Inderdaad, aan de hand van de tijdprofielen van activatie van deze twee cascades bleek dat TNFα 

geïnduceerde NF-κB activatie geremd werd door (met name sterk-leverschade inducerende) 

geneesmiddelen die een sterke Nrf2-response activeerden. Omdat NF-κB activatie belangrijk is 

voor cellen om te overleven bij TNFα stimulatie, zou de suppressie van deze signaaltransductie 

cascade een mogelijke verklaring kunnen zijn voor de synergistische celdood geïnduceerd door 

geneesmiddel/TNFα. Dankzij onze imaging-technieken met behulp van de HepG2-reporters was 

het mogelijk het oscillatoire gedrag van NF-κB te kwantificeren. Het bleek dat de remming van de 

NF-κB activatie bestond uit een vertraging van het herhaalde transport van NF-κB naar de kern. 

Daarom stellen wij voor deze vertraging als een bio-marker mee te nemen in toekomstige 

toxiciteit onderzoeken.  

Hoofdstuk 6 Geautomatiseerde ‘live’-cel imaging van adaptieve stress responsen voor de bepaling 

van geneesmiddel- geïnduceerde leverschade. 

Gebruikmakend van drie HepG2-reporter cellijnen, namelijk; Srxn1 voor oxidatieve stress, CHOP 

voor ER-stress geïnduceerde ongevouwen eiwit response-activatie en p21 voor DNA-schade stress, 

is een groot aantal leverschade inducerende geneesmiddelen op stress-response activatie en 

additionele fenotypen die het niveau van toxiciteit laten zien weergegeven. Bijna de helft van alle 

leverschade inducerende geneesmiddelen activeerden een van de drie stress-responsen. Het 

merendeel van de geactiveerde stress-responsen bestond uit de Nrf2-cascade, gevolgd door de 

ER-cascade en een klein deel DNA-cascade activatie. Concentratie- en tijdresponsen van de stress 

response activatie gaf mechanistische informatie over het type stress, primaire/secundaire stress 

en bij welke concentraties dit geschiedde. Een belangrijke observatie, de gehele dataset in 

ogenschouw nemend, is dat onderzoek naar slechts enkele adaptieve stress cascades al een goede 

indicatie geeft over de potentieel tot ernstige leverschade die veroorzaakt kan worden door een 

verbinding. Dit onderbouwt ons concept dat toxiciteit mede veroorzaakt wordt door het 

tekortkomen van repareermechanismen en dat het kwantitatief meten van deze 

repareermechanismen gebruikt kan worden voor de voorspelling van het mogelijk optreden van 

toxiciteit. Aan de andere kant waren er geen repareermechanismen in werking gezet bij ongeveer 

de helft van alle geteste verbindingen en een derde van de leverschade inducerende 

geneesmiddelen. Dit is mogelijk omdat niet alle adaptieve repareermechanismen door ons 

onderzocht zijn in onze screening. Een andere verklaring kan zijn dat ons celmodel niet volledig 

representatief is. Wij zijn dan ook hard bezig met het maken van additionele reporter cellijnen die 

o.a. vet en galzuur metabolisme weergeven. Daarnaast proberen we deze reporters in te bouwen 

in andere celtypen. 

Wij verwachten dat de in dit project ontwikkelde paneel van HepG2-reporters en afgeleide 

kwantitatieve data als  ‘biologische vingerafdruk’ gebruikt kan worden voor het toekomstig ‘high-

throughput’ screenen van verbindingen op hun potentie om levertoxiciteit te veroorzaken bij de 

mens.
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