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a b s t r a c t

Background and aims: We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-
myocardial infarction (MI) cardiac injury.
Methods: In Abca1e/e mice, wild type (WT) mice, and WT mice transplanted with Abca1e/e or WT bone
marrow, an MI was induced in vivo. Furthermore, an ex vivo MI was induced in isolated Abca1e/e and WT
hearts.
Results: Twenty-four hours and two weeks after in vivo MI induction, MI size was reduced in Abca1e/e

(�58%, p ¼ 0.007;�59%, p ¼ 0.03) compared toWT. Ex vivoMI induction showed no effect of Abca1e/e on
infarct size. Interestingly, two weeks after MI, Abca1e/e mice showed higher circulating levels of B-cells
(þ3.0 fold, p ¼ 0.02) and T-cells (þ4.2 fold, p ¼ 0.002) compared to WT. Bone marrow-specific Abca1e/e

tended to reduce infarct size (�43%, p ¼ 0.12), suggesting a detrimental role for hematopoietic Abca1
after MI.
Conclusions: Although Abca1 has a protective role in atherosclerosis, it exerts detrimental effects on
cardiac function after MI.
© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

ATP-binding cassette transporter A1 (Abca1) utilizes ATP to
transport cholesterol across membranes. Abca1 is an important
determinant of circulating high-density lipoprotein (HDL) levels,
and exerts several cardioprotective and anti-atherogenic functions
[1,2]. Hence, up regulation of Abca1 is considered an important
therapeutic strategy to prevent atherosclerotic cardiovascular dis-
ease. However, the role of Abca1 during myocardial infarction (MI),
an acute cardiovascular event often resulting from rupture of
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advanced atherosclerotic lesions [3], is currently unknown.
In humans, mutations in the ABCA1 gene are associated with

extremely low levels of HDL [4]. Notably, low HDL levels correlate
with an increased MI risk in humans [5]. The inflammatory
response following MI is a critical factor in the balance between
adverse ventricular remodeling on one hand, and cardiac repair on
the other hand [6]. Abca1A has important anti-inflammatory
properties, due to its key role in modulating the cholesterol con-
tent of plasma membranes and intracellular compartments [7,8].
Furthermore, in response to binding of lipid-poor apoA-I, Abca1
acts as an anti-inflammatory mediator by inducing signaling
through the Janus kinase 2/signal transducer and activator of
transcription 3 (Jak2/Stat3) pathway, an important regulator of
cytokine signaling [9]. Abca1 is thus anticipated to be car-
dioprotective during MI, both directly by its anti-inflammatory ef-
fects through the Jak2/Stat3 pathway as well as indirectly by
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generating HDL.
To investigate this hypothesized role of Abca1 inMI recovery, we

performed permanent coronary artery ligation experiments in total
body and bone marrow-specific Abca1e/e mice and the respective
wild type (WT) controls and experiments on isolated hearts from
Abca1e/e and WT mice.

Our results show that Abca1 has unanticipated unfavorable
cardiac effects after MI.

2. Materials and methods

An expandedmethods section is available in the Supplementary
data.

2.1. Animals

Female WT mice (C57BL/6J background) and Abca1e/e mice
were used. For the 24-h and 2-week experiment, 6 and 8 WT mice
and 6 and 4 Abca1e/e mice were used, respectively. Animal exper-
iments were approved by the Ethics Committee for Animal Exper-
iments of Leiden University.

2.2. Bone marrow transplantation

To generate bone marrow chimeras, bone marrow from WT
mice and Abca1e/e mice was transplanted into WT mice as previ-
ously described [10]. TwelveWTchimeras and 8 Abca1e/e chimeras
were used. Briefly, irradiated WT recipients received 5 � 106 bone
marrow cells. After 8 weeks myocardial infarctions were induced or
mice were subjected to a sham operation.

2.3. Induction of myocardial infarctions

Mice were anesthetized, artificially ventilated and the left
anterior descending coronary artery was ligated. All mice that had
ischemia, confirmed by bleaching of the left ventricle (LV) and the
emergence of arrhythmias, were included in the study.

2.4. Infarct size and immunohistochemistry

Twenty-four hours or two weeks after MI the mice were sacri-
ficed, hearts were removed and subsequently cut into four equal
thick slices. The two lower slices were used for infarct quantifica-
tion either by Evans Blue (5% solution injected i.v. 20 min before
sacrifice, 24 h post-MI) or immunohistochemically after staining
with Sirius red for collagen (2 weeks post-MI). Total LV wall area
and infarct area were measured. Infarct areas were normalized to
total LV areas and averaged for individual hearts.

2.5. Flow cytometry

Upon sacrifice blood was collected by retro-orbital venous
plexus puncture. Subsequently, 200,000 blood cells were stained
with the appropriate antibodies.

2.6. Ex vivo langendorff perfusion

Hearts from 5 WT and 7 Abca1e/e mice were removed and
placed in ice cold KrebseHenseleit buffer. Cannulated hearts were
perfused with KrebseHenseleit buffer in a retrograde fashion with
a constant pressure. Hearts were exposed to 20 min stabilization,
35 min of no-flow global ischemia and 45 min of reperfusion.
Hearts were frozen, cut into 6e7 slices and incubated with tri-
phenyltetrazolium chloride to stain viable myocardium. Total
myocardium and infarcted areas were measured.
2.7. Statistical analysis

Statistically significant differences were tested using the un-
paired Student’s t-test. The probability level for statistical signifi-
cance was set at 0.05. Results are expressed as average ± SEM.

3. Results

To investigate the effects of Abca1 deficiency on MI-induced
injury in vivo, we subjected Abca1e/e and WT mice to acute coro-
nary artery ligation. Surprisingly, despite the anticipated car-
dioprotective functions of Abca1, Abca1e/e mice displayed a
substantial 58% reduction in MI size as compared to WT mice as
measured by absence of blood circulation in the infarcted area
(Evans Blue unstained area, p ¼ 0.007; Fig. 1A and B) 24 h after MI
induction. The smaller infarct size observed Abca1e/e mice after
coronary artery ligation is most likely not (primarily) caused by
Abca1 deficiency in cardiomyocytes, as supported by an unaltered
infarct size after ex vivoMI induction using the Langendorff system
(Fig. 1C and D).

To examine the effect of Abca1 deficiency on long term
remodeling after MI, Abca1e/e and WT mice were subjected to 2
week coronary artery ligation. Comparable to the acute effects
observed after MI, Abca1e/e mice showed a 59% reduction in
collagen-rich scar formation at 2 weeks after coronary ligation as
compared toWTmice (Sirius red positive area, p¼ 0.03; Fig. 2A and
B). To investigate a possible role of circulating leukocytes, FACS
analysis was performed. No differences pre-MI were found in T-
lymphocyte (CD3þ, CD4þ, and CD8þ), B-lymphocyte (CD19þ),
dendritic cell (CD11cþ) or monocytes/macrophage (F4/80þ)
numbers between Abca1e/e and WT mice (Fig. 2C). Importantly, 2
weeks after MI induction a striking 4.2-fold increase in CD3þ T-
lymphocytes (p ¼ 0.002; Fig. 2D) in Abca1e/e mice was observed.
This phenomenon was accompanied with increased CD4þ T-helper
lymphocytes (4.6-fold increase; p ¼ 0.002) and CD8þ cytotoxic T-
lymphocytes (3.6-fold increase; p ¼ 0.002). In addition, Abca1e/e

mice displayed a clear 3.0-fold increase in CD19þ B-lymphocytes
after MI (p¼ 0.02). In contrast, monocyte/macrophage (F4/80þ) and
dendritic cell (CD11cþ) numbers did not differ between both ge-
notypes uponMI. Together, these data indicate that the induction of
MI in Abca1e/e mice primarily increased common lymphoid
progenitor-derived cells, such as T- and B-lymphocytes, rather than
common myeloid progenitor-derived cells, including monocytes/
macrophages and dendritic cells.

To establish the importance of Abca1 deficiency in the he-
matopoietic lineages for cardioprotection after MI, coronary artery
ligation was performed in WT mice, transplanted with bone
marrow from Abca1e/e vs WT mice. Quantification of infarct size
two weeks after MI showed a clear trend towards a reduction in MI
size (�43%; p ¼ 0.12, Fig. 2E and F) in mice transplanted with
Abca1e/e bone marrow as compared to WT bone marrow. These
data suggest that the detrimental role of Abca1 in post MI cardiac
remodeling is, at least in part, mediated by hematopoietic Abca1.

4. Discussion

The current study is the first to show thatmice lacking Abca1 are
protected against cardiac damage after coronary artery ligation.
This finding is particularly important as Abca1e/e mice are virtually
depleted of HDL, which is commonly accepted to have protective
effects afterMI [11,12]. Abca1e/emice had a smaller infarct size after
coronary artery ligation. This effect was present both 24 h and 2
weeks post-MI induction, suggesting that Abca1 exerts both acute
and persistent detrimental effects on cardiac injury. MI induction in
isolated hearts showed no effect of Abca1 deficiency on infarct size.



Fig. 1. Acute coronary artery ligation in Abca1e/e mice results in reduced MI size in vivo, but is unaltered after ex vivo ischemia reperfusion. (A) Twenty-four hours after induction of
myocardial infarction (MI) infarct size was determined. (B) Representative cross sections are shown, stained with Evans blue to visualize the infarcted area (dotted line, white area).
For ex vivoMI induction, isolated hearts were stabilized for 20 min in a Langendorff perfusion system, followed by 35 min of no-flow global ischemia, and 45 min of reperfusion. (C)
Infarct size was normalized to total left ventricular area and averaged for individual hearts. (D) Representative cross sections, stained with Triphenyltetrazolium chloride to
determine viable myocardium (dotted line, red staining). Values are means ± SEM (n � 5 mice per group). **p < 0.01. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Furthermore, mice lacking Abca1 in bone marrow-derived cells
displayed a similar trend to a reduced infarct size as found inwhole
body Abca1e/e mice, suggesting a detrimental role for hematopoi-
etic but not cardiomyocyte Abca1 after MI.

Induction of MI in Abca1e/e mice resulted in a substantial in-
crease in circulating B- and T-lymphocytes after 2 weeks. Hofmann
et al. previously showed that T-cell receptor activation by released
cardiac autoantigens is a prerequisite for proper wound healing
after MI [13]. In line, CD4þ T-lymphocytes, are protective mediators
of myocardial perfusion injury after MI, likely by modulating
monocyte influx [14,15], Moreover, intramyocardial injection of B-
lymphocytes into the early post-ischemic myocardium preserves
cardiac function [16], underlining the protective roles of B- and T-
lymphocytes upon MI.

Cholesterol enrichment of B- and T-lymphocytes is known to
initiate cellular activation [17,18]. One could therefore hypothesize
that Abca1 deficiency-induced inability to efflux cholesterol en-
hances the activation status of immune cells towards a more effi-
cient repair of the MI-induced damage. In line, Wilhelm et al.
observed increased circulating lymphocyte counts in Western-type
diet fed Ldlre/e mice lacking apoA-I, the major apolipoprotein of
HDL [17]. Absence of HDL may thus, at least in part, have promoted
the observed secondary effects on lymphocyte numbers upon MI in
Abca1e/e mice. However, further studies are needed to determine
exactly how Abca1-expressing leukocytes exert their detrimental
effects during cardiac wound healing after MI.

In conclusion, despite its protective role in atherosclerosis,
Abca1 has adverse effects on cardiac function after MI, likely due to
a direct effect of Abca1 function in bone marrow-derived cells.
Importantly, although Abca1 is considered a potential therapeutic



Fig. 2. Myocardial infarction (MI) size reduction two weeks after coronary artery ligation in Abca1e/e mice is accompanied by increased circulating T- and B-cells, and is at least in
part mediated by hematopoietic Abca1 expression. (A) Twoweeks after induction of MI, infarct size was determined. (B) Representative cross sections are shown, stained with Sirius
red to visualize the collagen-rich infarcted area. For FACS analysis, isolated white blood cells (WBC) were stained for T-cells (CD3þ, CD4þ, and CD8þ), B-cells (CD19þ), monocytes/
macrophages (F4/80þ) and dendritic cells (CD11cþ) and analyzed pre- (C) and post-MI (D). For MI induction in Abca1 chimeras, WT mice were transplanted with bone marrow from
WT or Abca1e/e mice. After 8 weeks of recovery, MI was induced by ligation of the coronary artery. (E) Infarct size was determined 2 weeks post-MI. (F) Representative cross
sections, stained with Sirius red to visualize the collagen-rich infarcted area (red staining). WT/WT, WT mice transplanted with WT bone marrow, Abca1e/e /WT, WT mice
transplanted with Abca1e/e bone marrow. Values are means ± SEM (n � 4 per group). Values are means ± SEM (n � 4 mice per group). *p < 0.05, **p < 0.01. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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target to treat atherosclerosis, strategies aiming at up regulation of
Abca1 function should be pursued with care in light of its potential
adverse effects on cardiac damage following MI.
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