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Abstract
For the synthesis of spherical Au nanoparticles (NPs), Turkevich 
method is very popular. However, in this method the citrate 
reduction of gold is carried out at high temperature, which is 
often a draw back. Herein, we describe a near room-temperature 
synthesis of cetyltrimethylammonium bromide (CTAB) 
stabilized spherical Au NPs of various sizes in a novel one-step 
synthesis protocol. We show that, in a growth solution containing 
CTAB, HAuCl4 and ascorbic acid, nucleation can be induced by 
the addition of AgNO3. This allowed us to eliminate the necessity 
of the presence of seed particles for NP growth. We show that 
NP size is strongly influenced by the CTAB to Ag molar ratio 
in the reaction medium. By tuning the CTAB to Ag molar ratio 
the sizes of the NPs can be tuned from 8 to 64 nm. Owing to 
the ease of synthesis and superior properties, CTAB stabilized 
NPs can replace the conventional citrate capped NPs for many 
applications. 

Introduction
The shape and size dependent optical properties of Au NPs 
make them attractive for applications in photonics, sensing , 
catalysis and biomedicine [1-7]. There has been intense interest 
in developing protocols for size and morphology controlled 
synthesis of NPs. Among various synthesis methods, wet-
chemical synthesis of Au NPs is simple, efficient and inexpensive. 
For the optimization of growth conditions and replication of 
recipes for more complex particle shapes, understanding the 
mechanism of growth in the wet-chemical synthesis is of crucial 
importance. However, the studies of the mechanisms involved 
are complicated by the presence of numerous reactants, as they 
often work in cooperation or in competition with one another. 
Therefore, well-established growth mechanisms are frequently 
challenged by new experimental findings. 

For the synthesis of spherical Au NPs the Turkevich method is 
widely used. The method was initially developed by Turkevich et 
al. in 1951 and was later modified by many others [8-11]. In this 

method, anionic sodium citrate acts both as reducing and capping 
agent. This synthesis protocol has its advantages but the yield of 
low NP concentrations and need of high reaction temperatures 
(80-90°C) makes it inefficient especially for large scale production 
of NPs. More recently, a cationic surfactant CTAB has been 
used for the synthesis of Au NPs. The CTAB stabilized Au NPs 
are superior than their citrate capped counterparts for various 
applications [12-15]. For instance, the inter-particle repulsive 
interaction owing to the positively charged bilayer of CTAB 
on particle surface prevents random disordered aggregation of 
NPs during solvent evaporation [12]. Therefore, uniform inter-
particle spacing equal to the length of CTAB molecule (2 nm) can 
be achieved on substrates making CTAB coated Au NPs excellent 
candidate for surface enhanced Raman spectroscopy [12]. The 
CTAB stabilized Au NPs also show excellent stability even under 
large salt concentration and low pH, whereas citrate capped Au 
NPs tend to agglomerate [15]. Furthermore, the synthesis of 
CTAB coated Au NPs can be carried out near room temperature 
which makes them economically viable for large scale production. 
However, for the synthesis of CTAB capped NPs in the size 
range of tens of nanometer, usually a seed-mediated, two-step 
method is followed [16-22]. First, seed particles are synthesized 
by reducing Au ions with a strong reducing agent, which are 
then added to a growth solution. The growth solution contains 
Au precursor, growth directional agents AgNO3 and CTAB, and 
a weak reducing agent, ascorbic acid (AA). It is widely believed 
that AA can only reduce Au(III) to Au(I) in a low pH reaction 
medium [21,22]. Therefore, for complete reduction of Au ions, 
seed particles must be added to the growth solution [16,17]. The 
seed particles provide catalytic effect for the reduction of Au(I). 
Therefore, Au(I) ions are reduced on top of seed particles where 
they afterwards deposit. 

We have recently reported the synthesis of worm-shaped Au NPs 
using a single-step, in which we have also observed that AA can 
completely reduce Au ions under high pH reaction conditions 
[23]. In this paper we report on the synthesis of spherical NPs of 
different sizes by a seedless one-step reaction. CTAB coated Au NPs 
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in the size range of 8-64 nm were synthesized by reducing Au ions 
with AA, under low pH conditions. Interestingly, the nucleation 
is induced by the addition of AgNO3 in growth solution. We 
observe that the size of the NPs is strongly influenced by the 
ratio of CTAB to Ag ions in the reaction medium. We believe 
that the AgBr NPs that are possibly formed upon the addition of 
AgNO3 in the reaction medium play the role of seeds facilitating 
the formation of larger Au NPs. 

Experimental Methods
All chemicals were purchased from Sigma-Aldrich and were used 
as received without any further purification. For the preparation 
of solutions, Millipore water (18.2 MΩcm), was used. 

For the synthesis of NPs, HAuCl4 was added in 10ml of CTAB 
solution. The color of the solution at this stage was yellow. Next, 
a freshly prepared AA solution was added, which makes the 
solution colorless, indicating the reduction of Au ions. Finally, 
an AgNO3 solution was added. The addition of AgNO3 resulted 
in appearance of a brownish color, indicating the nucleation and 
growth of Au NPs. The solution was left undisturbed overnight at 
25°C. Before imaging, the NP solution was centrifuged twice at 
12000 rpm to remove excess CTAB, and redispersed in Millipore 
water. 

Results and Discussion
Figure 1 depicts the spherical Au NPs prepared by various 
concentrations of CTAB while keeping the concentrations of the 
other reactants constant. Figure 1a shows a scanning electron 
microscopy (SEM) image of NPs prepared with the highest 
concentration of CTAB in solution (0.2M). The synthesized NPs 
are approximately spherical, having an average size of 39 nm. 
Reducing the CTAB concentration to 0.15M leads to a reduction 
of average particle size to 35 nm, as illustrated by Figure 1b. 
Further reduction in CTAB concentration reduces the particles 
size even further. Figure 1f depicts the variation of particle size 
with CTAB concentration. It is evident that the particle size 
decreases with decreasing CTAB concentration. Regardless of 
the CTAB concentration in the solution, only compact, nearly 
spherical NPs were obtained. 

The NP size is also seen to be affected by the concentration 
of Ag ions in the solution, when CTAB concentration is kept 
constant. Figure 2(a-c) depicts Au NPs synthesized with a 
CTAB concentration of 0.05M, and AgNO3 concentrations of 
0.05mM, 0.10 mM and 0.6 mM, respectively. As is evident from 
the SEM images, the particle size decreases with increasing 
AgNO3 concentration. Similarly, for 0.1M CTAB, the particle 
size decreases from 64 nm for 0.05mM AgNO3 (Figure 2d) to 20 
nm for 0.6 mM AgNO3 (Figure 2e). As evident from Figure 2(f), 
for each AgNO3 concentration, the particle size is larger for the 
CTAB concentration of 0.1 M in the solution as compared to 0.05 
M. Note that in both cases (Figure 1 & Figure 2), particle size 
decreases with decreasing CTAB to Ag ratio. 

Figure 3 shows the variation of particle size with CTAB to Ag ratio. 
The ratio is changed by independently varying the concentration 
of either CTAB or Ag, while keeping the concentration of the 
other one constant. The plot depicts that, although not perfect, 
the particle size has nearly liner dependence on CTAB to Ag 
molar ratio. These results clearly show that CTAB to Ag ratio 
plays a crucial role in controlling the particle size. 

It is important to note that in the conventional methods of 
synthesis Ag ions are added in the reaction medium before the 
reduction of Au ions is initiated by AA. In contrast, in the method 
employed here Ag ions are added only after the reduction of Au 
ions by AA. Similar observations have been reported by Sau et al. 
during the synthesis of multi-spiked Au NPs [24]. They propose 
that Ag ions are first reduced, forming Ag(0) nuclei which lead 
to Au NP growth either by sacrificial oxidation of Ag or by Ag(0) 
nuclei serving as seeds and facilitating Au+ reduction on their 
surface by a catalytic effect. On the other hand, many researchers 
have argued that AA cannot reduce Ag(I) (when it exists as AgBr 
in CTAB solution prior to adding AA), in an acidic reaction 
medium [25-28] like the one used for the current study. However, 
the monoanion of AA, ascorbate, is a stronger reducing agent 
than the AA itself [22, 29], and at high solution pH, it is able to 
undertake the reduction of Ag(I) in CTAB solution [18]. As the 
first pKa of AA is 4.1, only a small fraction of AA dissociates into 
ascorbate monoanions below the pH of 4.1 [22]. Consequently, 

Figure 1: SEM image of Au NPs synthesized using HAuCl4, AA and AgNO3 concentrations of 1 
mM, 1.1 mM and 0.2 mM, respectively. The CTAB concentration is 0.2M (a), 0.15M (b), 0.1M 
(c), 0.05M (d) and 0.025M (e). Variation of particle size with CTAB concentration is shown by (f). 
The scale bar is 100 nm
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reduction of preexisting Ag(I) by AA is difficult in acidic reaction 
conditions and in the presence of CTAB. Numerous studies have 
shown that Ag ions under such reaction conditions can only 
reduce to Ag(0) through the under potential deposition (UPD) 
on Au NP surfaces [20,30,31]. Consequently, Au ions have to 
be reduced first to metallic Au for the reduction of Ag ions to 
Ag(0). 

However, one can assume that Ag is seen by AA as AgBr when 
the Ag salt is added before AA, while it encounters preexisting 
AA in solution as Ag+ when it is added after AA. The reduction 
potentials of Ag(I) when it exists as Ag+ and AgBr are +0.799V 
and +0.071V, respectively. Therefore, the reduction of Ag(I) is 
easier when it exits as Ag+ compared to the case when it exists 
as AgBr. Consequently, the reduction of Ag(I) may be easier due 
to the presence of pre-existing AA in solution. If that happens, 
the switching of the addition of AgNO3 and AA may lead to 
nucleation of Ag NPs. For higher concentrations of AgNO3, 
higher number of Ag NP seeds may form. The same amount of 
Au ions in reaction medium, and greater number of Ag seeds 
would lead to a smaller final Au NP size. This might explain the 
decrease in particle size with increasing AgNO3 concentration 
in reaction medium. However, increase in particle size with 
increasing CTAB concentration, for the same amount of AgNO3, 
cannot be explained by the argument of Ag NPs formation. 

Another possibility of initiation of growth of Au NPs with the 
addition of Ag ions in reaction medium is due to the formation 
of AgBr NPs. AgBr NPs can form when Ag is added in a medium 
containing CTAB. The yield of AgBr NPs is very sensitive to 
the chemical environment [32, 33]. This could be the reason 
that AgBr NPs are only formed when AgNO3 is added after the 
addition of AA, and not the other way around. 

Chakraborty et al showed that AgBr NPs can be obtained by 
progressive addition of AgNO3 in CTAB solution [32]. AgBr 
NPs are semiconductors with an indirect bandgap of 2.3eV 
(absorption edge at 477nm). Therefore, electrons can be excited 

to the conduction band by visible light. These optically excited 
electrons, present in the conduction band of AgBr NP, can act 
as a reducing agent to catalyze the reduction of metal ions [34]. 
Therefore, AgBr NPs can play the role of seeds for the growth of 
Au NPs by a catalytic effect for reduction of Au(I) to Au(0). 

The increase in particle size with increasing CTAB to Ag molar 
ratio can also be explained if one assumes that AgBr seeds cause 
Au NP formation. Chakraborty et al postulated that for higher 
concentrations of CTAB in solution larger numbers of micelles 
are formed [32]. For the same concentration of Ag ions and 
more CTAB micelles, the average number of Ag ions per CTAB 
micelle decreases and hence the probability of achieving critical 
number of AgBr monomers for the nucleation of AgBr within a 
micelle decreases. Therefore, higher CTAB concentrations lead 
to lower number of AgBr NPs. On the other hand, a higher Ag 
ion concentration in solution, for same amount of CTAB, would 
imply a larger number of Ag ions per CTAB micelle. Hence the 
probability of AgBr nuclei formation increases. Therefore, larger 
numbers of AgBr NPs are formed for higher Ag ion concentration 
in solution. Consequently, the number of AgBr nuclei is lower 
for higher CTAB to Ag molar ratios [32]. For the same amount 
of Au ions in solution, less AgBr seeds lead to the formation of 
larger NPs. This explains the increase in size of NPs by increasing 
the CTAB concentration in solution (Figure 1). Similarly, the 
decrease in particle size with increasing AgNO3 concentration 
(Figure 2) can also be understood by the reasoning presented 
here. In both cases, the CTAB to Ag ratio changes leading to a 
change in particle size. 

Another important ratio for controlling the reaction kinetics 
is the AA to Au ratio. It is know that each molecule of AA can 
only donate two electrons. Therefore, for complete reduction 
of all Au ions, one would need at least a AA to Au ratio of 1.5 
[17]. Here we are using an AA to Au ratio of 1.1. Therefore, 
only a fraction of Au ions are completely reduced to Au(0) and 
hence we expect a limited supply of monomers for growth of 

Figure 2: SEM image of Au NPs synthesized using HAuCl4, and AA concentrations of 1 mM and 
1.1 mM, respectively. The CTAB concentration is 0.05M (a-c) and 0.1 M (d, e); the AgNO3 con-
centration is 0.05 mM (a), 0.1 mM (b), 0.6 mM(c), 0.05 mM(d) and 0.6 mM (e). The variation 
of particle size as a function of the AgNO3 concentration is shown in panel (f). The curves serve 
as a guide to the eye. The scale bar in (a-e) is 100 nm, but please note the different length of 
this scale bar for (c) and (e)
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NPs. Under such reaction conditions the growth rate of all the 
facets seems to be the same as a spherical morphology results 
(Figure 1, 2). The growth kinetics can be changed by having a 
higher concentration of AA in solution. A higher concentration 
of AA would lead to faster growth kinetics leading to different 
particle morphology. Figure 4(a,b) depicts the particles prepared 
by using AA to Au molar ratio of 1.5 and 10, respectively. The 
resultant particle shapes deviate from the spherical shapes seen 
in Figures 1 and 2. We observe a range of different particle shapes 
such as octahedra, truncated ditetragonal and trisoctahedra. The 
polydispersity in shape is indicative of poorly controlled growth 
probably due to a fast growth rate. Nonetheless, an important 
conclusion that can be drawn from this is that at higher AA to 
Au ratios, the growth rate of different facets is not the same. We 
believe that slight tuning of the reaction conditions may lead to 
yield of highly monodispersed NPs of various shapes. Further 
work on the synthesis of different particle shapes by our one-step 
method is under way. 

Figure 3: Variation of particle size with CTAB to Ag molar ratio. Black 
squares, red circles and blue triangles represent samples prepared 
with a fixed AgNO3 concentration of 0.2 mM, fixed CTAB concentration 
of 0.05M and fixed CTAB concentration of 0.1 M, respectively. The 
curve serves as guide to the eye

Figure 4: SEM image of Au NPs synthesized using HAuCl4, CTAB and 
AgNO3 concentrations of 1 mM, 0.1 M and 0.2 mM, respectively. The 
AA concentration is 1.5 mM (a), and 10 mM (b). The white scale bar 
is 100nm

Conclusion
In conclusion, we demonstrated that Au NPs can be synthesized 
by a single step near room temperature. We show that, contrary 
to the widely accepted views, nucleation and growth of Au NP 
can be achieved by reducing Au ions with AA, without the need 
of addition of separately prepared seeds or a stronger reducing 

agent in the reaction medium. Consequently, two step synthesis 
protocol can be reduced to a single step for the synthesis of 
spherical NPs in a wide size range. We have seen that the size of 
the NPs is strongly influenced by Ag to CTAB molar ratio in the 
reaction medium. The NP size can be controlled by tuning the 
Ag to CTAB ratio. Finally, particle shapes can be tuned by using 
higher concentrations of the reducing agent AA. 
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