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Robustness of Stepwise Latent Class Modeling With
Continuous Distal Outcomes

Zsuzsa Bakk and Jeroen K. Vermunt
Tilburg University

Recently, several bias-adjusted stepwise approaches to latent class modeling with continuous
distal outcomes have been proposed in the literature and implemented in generally available
software for latent class analysis. In this article, we investigate the robustness of these meth-
ods to violations of underlying model assumptions by means of a simulation study. Although
each of the 4 investigated methods yields unbiased estimates of the class-specific means of
distal outcomes when the underlying assumptions hold, 3 of the methods could fail to different
degrees when assumptions are violated. Based on our study, we provide recommendations on
which method to use under what circumstances. The differences between the various stepwise
latent class approaches are illustrated by means of a real data application on outcomes related
to recidivism for clusters of juvenile offenders.

Keywords: latent class analysis, robustness, stepwise approaches

Latent class (LC) analysis is a method widely used in the
social and behavioral sciences to group individuals based on
their responses on a set of observed variables (Goodman,
1974). Examples include the creation of a clustering
concerning tolerance toward nonconformity (McCutcheon,
1985) or a typology of psychological contract types (De
Cuyper, Rigotti, Witte, & Mohr, 2008). Often in LC anal-
ysis applications the interest lies not only in obtaining a
clustering, but also in determining whether the classes dif-
fer with respect to one or more, possibly continuous, distal
outcome variables. For example, De Cuyper et al. (2008)
tested whether the means of variables related to well-being
differed for latent classes representing types of psycho-
logical contracts; Pastor, Barron, Miller, and Davis (2007)
studied differences in academic achievement of college stu-
dents across goal orientation clusters; and Mulder, Vermunt,
Brand, Bullens, and Van Merle (2012) compared the means
of 70 variables measuring different aspects of recidivism
across clusters of juvenile offenders.

The class-specific means of a distal outcome can be deter-
mined by either a one-step or a stepwise approach. In the

Correspondence should be addressed to Zsuzsa Bakk, Methodology
and Statistics, Tilburg University, Warandelaan 2, Tilburg, 5037AB, The
Netherlands. E-mail: z.bakk@uvt.nl

one-step approach, the distal outcome is incorporated in
the LC model as an additional response variable and the
resulting expanded model is estimated in the usual way.
This approach has several disadvantages, however. The main
problem is related to the fact that rather strong assumptions
need to be made about the within-class distribution of the
distal outcome, and if these assumptions are violated the
original LC model could be completely distorted. A related
issue is that it is problematic to deal with multiple distal
outcomes, which could either be dealt with simultaneously,
requiring strong assumptions about their joint distribution,
or one by one, implying that the LC solution might change
per distal outcome. Furthermore, because the interest lies in
explaining differences across classes in the distal outcome,
using the distal outcome as one of the variables defining the
latent classes creates an unintended circularity. Because of
these problems, researchers often prefer using a three-step
approach in which one first builds the LC model without the
distal outcome(s), then determines the class memberships,
and subsequently investigates the relationship between class
memberships and the distal outcome(s), say using a sim-
ple analysis of variance (ANOVA; Bakk, Tekle, &; Vermunt,
2013). However, a well-known disadvantage of this approach
is that the estimates obtained in the third step are attenuated
because of the classification error introduced when assigning
individuals to classes (Bolck, Croon, & Hagenaars, 2004).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

] 
at

 0
4:

40
 1

7 
N

ov
em

be
r 

20
15

 

mailto:z.bakk@uvt.nl


2 BAKK AND VERMUNT

Recently, alternative three-step approaches have been pro-
posed that yield unbiased estimates of the class differences
in the distal outcome (Bakk et al., 2013). One method,
called ML involves estimating the class-specific means and
variances by maximum likelihood while correcting for the
classification errors (Bakk et al., 2013; Vermunt, 2010).
Another approach based on the work of Bolck et al. (2004),
which we therefore call the BCH approach, involves per-
forming a weighted ANOVA, with weights that are inversely
related to the classification error probabilities (Bakk et al.,
2013; Vermunt, 2010). Both approaches can be used with
either equal or unequal variance across classes.

A different type of stepwise approach for dealing with dis-
tal outcomes was proposed by Lanza, Tan, and Bray (2013).
This approach, which we refer to as the LTB approach,
involves estimating an LC model in which the distal outcome
of interest is used as a covariate predicting class mem-
bership using a logistic model rather than as a response
variable affected by the classes. As a second step, the class-
specific means for the distal outcome are calculated from the
parameters of the estimated LC model using Bayes theorem.

Although simulation studies have shown that these three
recently developed stepwise approaches (ML, BCH, and
LTB) yield unbiased estimates of the class-specific means of
distal outcomes when all underlying model assumptions hold
(Bakk et al., 2013; Lanza et al., 2013), it is unknown whether
these methods are robust for violations of these assump-
tions. For example, the ML and BCH approaches assume
that the distal outcome is normally distributed within classes.
whereas the ML approach is expected to be affected by viola-
tions of this assumption (Asparouhov & Muthén, 2014), the
BCH approach is probably more robust because it is simi-
lar to a standard ANOVA. At the same time, for continuous
variables, the LTB approach assumes that the relationship
between the latent classes and the distal outcome is linear
on a logit scale, and it is unknown whether violation of
this assumption will bias the estimates of the class-specific
means. In the remainder of this article, we first introduce
the different types of stepwise approaches and describe their
assumptions. Subsequently, in a simulation study, we com-
pare the performance of the various approaches when certain
underlying assumptions are violated. Next, we illustrate the
methods with an analysis of a data example on juvenile
recidivism. We end with a discussion and recommendations
regarding the use of the different methods.

THE BASIC LATENT CLASS MODEL AND
APPROACHES FOR DEALING WITH A

CONTINUOUG DISTAL OUTCOME

In the following, we first introduce the basic LC model.
Then, we describe different ways to deal with distal out-
comes; that is, the simultaneous or one-step method, the
LTB approach, and the three-step ML and BCH approaches.

Special attention is dedicated to the assumptions made by the
various approaches.

The Basic LC Model and Its Extension to Include a
Continuous Distal Outcome

Let Yik denote the response of individual i on one of K cat-
egorical response variables, where 1 ≤ k ≤ K and 1 ≤ i ≤
N. The full response vector is denoted by Yi. LC analysis
assumes that individuals belong to one of the T categories
of an underlying categorical latent variable X that affects the
responses (Goodman, 1974; Hagenaars, 1990; McCutcheon,
1987). Denoting a particular latent class by t, the model can
be formulated as follows:

P (Yi) =
T∑

t=1

P (X = t) P (Yi |X = t ) , (1)

where P (X = t) represents the (unconditional) probability of
belonging to class t and P (Yi |X = t ) represents the class-
specific distribution of the responses Yi. These class-specific
distributions are simplified further by assuming that the K
response variables are independent within classes, which is
known as the local independence assumption. This yields:

P (Yi) =
T∑

t=1

P (X = t)
K∏

k=1

P (Yik |X = t ). (2)

For categorical responses, P (Yik |X = t ) =
Rk∏

r=1
π

I(Yik=r),
ktr

where πktr is the probability of giving response r on variable
k for class t, and I (Yik = r) is an indicator variable taking on
the value 1 if Yik = r and 0 otherwise.

The basic LC model described in Equation 2 can be
extended to include a continuous distal outcome denoted by
Zi (visualized in Figure 1). This yields the following joint
model for Yi and Zi.

P (Yi, Zi) =
T∑

t=1

P (X = t)
K∏

k=1

P (Yik |X = t ) f (Zi |X = t ) ,

(3)

FIGURE 1 One-step approach.
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ROBUSTNESS OF STEPWISE LCA APPROACHES 3

where f (Zi |X = t ) denotes the class-specific distribution of
Zi, which for continuous distal outcomes is typically defined
to be a normal distribution with mean μt and variance σ 2

t .
Note that the distal outcome serves as an additional response
variable in the LC model.

The main disadvantage of this simultaneous modeling
procedure is that the inclusion of Z in the model can
alter the meaning of the classes (Petras & Masyn, 2010),
especially when the normal distribution assumption for
f (Zi |X = t ) does not hold. Such a misspecification can even
lead to overextraction of the classes (Bauer & Curran, 2003).
Moreover, when respecifying the model for a different out-
come variable, the definition of the classes could change.
Another disadvantage is that from a substantive perspec-
tive it is undesired that the distal outcome contributes to the
definition of the classes; that is, it creates a kind of circu-
larity. To prevent these problems, alternative methods were
proposed that we present in the following.

The LTB Approach

To overcome the problems of the one-step approach result-
ing from the normal distribution assumption for Z, Lanza
et al. (2013) proposed an alternative procedure that does not
require making such an assumption. The LTB approach is a
two-step procedure, that proceeds as follows:

1. Estimate an LC model in which Z is included as a
covariate instead of a response variable (Figure 2a).

2. Based on the estimates from the first step, calculate the
class-specific means for Z (Figure 2b).

In the first step, “covariate” Z is added to the model by
extending the basic LC model described in Equation 2 as
follows:

P(Yi|Zi) =
T∑

t=1

P(X = t|Zi)
K∏

k=1

P(Yik|X = t), (4)

where P(X = t|Zi) denotes the probability of belong to class
t given the “covariate” value Zi. This probability is modeled
by a multinomial logistic regression equation; that is,

(b)(a)

FIGURE 2 The two steps of the LTB approach.

P(X = t|Zi) = eαt+βtZi

T∑
s=1

eαs+βsZi

, (5)

with intercepts αt and slopes βt.
The second step involves computing the class-specific

means μt. It should be noted that these can be obtained as
follows:

μt =
∫

Z
f (Z|X = t) (6)

where f (Z|X = t), the class-specific distribution of Z, can
be calculated using Bayes theorem as follows (Lanza et al.,
2013):

f (Z|X = t) = f (Z)P(X = t|Z)

P(X = t)
. (7)

The quantities P(X = t|Z) and P(X = t) can be obtained
from the estimated LC model, but f (Z) is unknown. Lanza
et al. (2013) suggested approximating f (Z) by a kernel den-
sity estimate, and calculate the class-specific mean of Z using
this estimate.

However, as suggested by Asparouhov and Muthén
(2014), a much simpler solution is to use the empirical
distribution of Z, which involves replacing the integral in
Equation 6 by a sum over the N sample units and replacing
f (Z) in Equation 7 by 1

N . This yields:

μt =
N∑

i=1

Zi
P(X = t|Zi)

N P(X = t)
. (8)

This is how the LTB method is implemented in Mplus
7.1 (Muthén & Muthén, 1998–2012) and LatentGOLD 5.0
(Vermunt & Magidson, 2013).

Lanza et al. (2013) did not discuss standard error (SE)
estimation for the μt, implying that they did not solve the sta-
tistical testing problem. However, Asparouhov and Muthén
(2014) suggested estimating these SEs as the square root of
the within-class variance divided by the class-specific sample
size; that is, as σ 2

t /[N P(X = t)], where

σ 2
t =

N∑
i=1

(Zi − μt)
2 P(X = t|Zi)

N P(X = t)
. (9)

These SE estimates seem to somewhat underestimate the
actual variation (Asparouhov & Muthén, 2014), which is
probably caused by the fact that the uncertainty about the
individuals’ class memberships is not accounted for.

The simulation study by Lanza et al. (2013) showed that
when generating Z from normal distribution with different
means but equal variances (homoskedastic errors), the LTB
estimates of the class-specific means are unbiased. It should
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4 BAKK AND VERMUNT

be noted that in this situation the relationship between Z and
X is linear-logistic, which is a well-known result on the rela-
tionship between linear discriminant analysis and logistic
regression analysis (Agresti, 2002, p. 335). In other words,
Lanza et al. (2013) looked only at the situation in which
the “covariate” model is correctly specified. However, in
other situations the relationship between Z and X might not
be linear-logistic, in which case applying the LTB method
could yield biased estimates of the class-specific means.
This occurs, for example, when Z is normally distributed
but with unequal variances across classes (when errors are
heteroskedastic). In our simulation study, we investigate
whether violating the linear-logistic association assumption
of the “covariate” part of the LC model leads to biased
estimates of the class-specific means.

A limitation of the LTB approach is that it cannot be
used with multiple distal outcomes. A possible way out is to
repeat the LTB analysis for every distal outcome, but in doing
so there is no guarantee that the LC solution will remain
the same across analyses. Moreover, when there are missing
values on the Z variables, the sample could vary per distal
outcome, which might yield additional differences in the def-
inition of the latent classes. As the one-step approach, the
LTB is also affected by the fact that the classes are partially
defined by Z, the outcome variable one wishes to predict.

The Bias-Adjusted Three-Step Approaches

We now discuss the bias-adjusted three-step approaches for
dealing with continuous distal outcomes. These proceed as
follows:

1. Build a standard LC model based on the categorical
response variables (Figure 3a).

2. Assign individuals to latent classes (Figure 3b). The
assigned class memberships are denoted by W.

3. Estimate the association between X and Z using the
assigned class memberships W, taking into account
that these contain classification errors (Figure 3c).

In the first step, a model is built for response variables
Yi using the basic LC model described in Equation 3 and
depicted in Figure 3a. In the second step, individuals are
assigned to latent classes based on their posterior class

(a) (b) (c)

FIGURE 3 The three steps of the bias-adjusted three-step approaches.

membership probabilities W. These are calculated from the
parameters of the Step 1 model using Bayes rule; that is,

P(X = t|Yi) = P(X = t)P(Yi|X = t)

P(Yi)
. (10)

Two possible assignment rules are modal and proportional
assignment, which in cluster analysis terminology yield a
hard and a soft partitioning, respectively (Dias & Vermunt,
2008). In modal assignment, each individual is assigned to a
single class; that is, the class for which the posterior member-
ship probability is largest. This can be expressed as follows:
P(W = s|Yi) = if P(X = s|Yi) > P(X = t|Yi) for all s �= t
and equals to 0 for the other classes. In proportional assign-
ment, each individual is assigned to each of the classes with a
weight equal to P(W = s|Yi) = P(X = s|Yi). In practice, this
implies that subsequent analyses should be performed using
an expanded data with T records for each unit, with records
weights equal to P(W = s|Yi).

Irrespective of the assignment method used, classifica-
tion errors will be present unless the classification is perfect
(Bolck et al., 2004). By aggregating over the observed data
patterns, the amount of errors can be expressed as the prob-
ability of an assigned class membership s conditional on the
true class membership t (Bakk et al., 2013; Vermunt, 2010),

P (W = s |X = t ) =

N∑
i=1

P (X = t |Yi ) P (W = s |Yi )

N P(X = t)
.

(11)

Lastly, in the third step, the class assignments W are
used to estimate the relation between X and Z while correct-
ing for the known classification errors introduced in Step 2
(Figure 3c). This is achieved using a model of the form (Bakk
et al., 2013):

P (W = s, Zi) =
T∑

t=1

P(X = t)f (Zi |X = t ) P (W = s |X = t ) .

(12)

Note that this is an LC model in which Z and W are
used as response variables, and in which P(W = s|X = t) is
fixed. The model described in Equation 12 can be either esti-
mated using maximum likelihood estimation (yielding the
ML approach) or using a weighted analysis as proposed by
Bolck, et al. (yielding the BCH approach; Bolck et al., 2004;
Vermunt, 2010). These two approaches are presented in more
detail in the following.

The ML Approach

The ML approach estimates the LC model defined in
Equation 12 directly. The P(W = s|X = t) are fixed to their
estimated values from the second step (see Equation 11),
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ROBUSTNESS OF STEPWISE LCA APPROACHES 5

whereas the parameters in the part of interest, f (Zi|X = t),
are freely estimated. To be able to estimate the class-specific
means μt, we need to specify the distributional form of
f (Zi|X = t), which for continuous Z is usually defined to be
a normal distribution. The variance of Z can be modeled as
either equal or unequal across classes, which we refer to as
the ML(equal) and ML(unequal) approaches. SE estimates
for the free parameters are obtained based on the robust
estimator, which is especially needed when proportional
assignment is used (Bakk, Oberski, & Vermunt, 2014). Tests
for the equality of means can be performed using Wald tests.

The ML approach yields unbiased estimates of the μt

and their standard errors when normality assumption holds
(Bakk et al., 2014, Bakk et al., 2013). However, the approach
could fail when this assumption is violated. For example,
when Z has a bimodal distribution within the classes, the
Step 3 LC model might pick up this bimodality in Z, which
will fully distort the original definition of the latent classes
(Asparouhov & Muthén, 2014). To decrease the likelihood
of obtaining a completely different LC solution, both in the
Mplus 7.1 and the Latent GOLD 5.0 implementation-specific
starting values are used for the Step 3 model1. In this way, a
local maximum of the likelihood is obtained with class defi-
nitions that are closer to those of first-step model than of the
global maximum (Asparouhov & Muthén, 2014)2.

The ML approach could also lead to biased estimates for
μt if the error variance is wrongly assumed to be equal across
the classes. However, it is less clear how problematic such a
misspecification will be. In the simulation study, we inves-
tigate the impact of bimodality and of wrongly assuming
homoskedastic variances when they are heteroskedastic.

The BCH Approach

Whereas ML approach estimates the LC model defined in
Equation 12 directly, the BCH approach transforms the prob-
lem and estimates an ANOVA model with observed variables
only. It re-creates the true latent classification by weighting
W with the inverse of the classification errors (Bolck et al.,
2004; Vermunt, 2010). The resulting model is estimated
using a pseudo maximum likelihood estimation procedure.
To account for the multiple (T) records per individual and for
the weighting, robust standard errors should be used (Bakk
et al, 2014; Vermunt, 2010). The equality of class-specific
means is tested using Wald tests.

1Note that the ML approach is called 3step in Mplus 7.1 and is an option
of ‘Auxiliary’

2Mplus 7.1 estimates the Step 3 model using as starting values the esti-
mated class sizes from the first step, whereas Latent GOLD 5.0 fixes these
values. For the means of Z, Mplus 7.1 uses the unadjusted class-specific
means, whereas Latent GOLD 5.0 starts using the overall mean and vari-
ance of Z for all classes. Due to this different implementation, in some
cases different results can be obtained, although this is rare and occurs
mainly in situations where the use of the ML approach is anyway not
recommended.

An important advantage of the BCH approach compared
to the ML approach is that the class definitions will not
change when the distribution of Z is misspecified. The
reason for this is that it involves performing an ANOVA-like
analysis with observed variables only rather than estimating
an LC model. Moreover, a positive side effect of using robust
SEs is that these correct for all kinds of misspecifications,
thus also for a possible misspecification of the distribution
of the errors. This means, for example, that Wald tests for
the class-specific means are identical irrespective of whether
one assumes homoskedastic or heteroskedastic errors. So,
we can simply assume equal error variances when using the
BCH approach.

A possible problem associated with the BCH approach,
which could occur with very low class separation and small
sample sizes, is that the error variance might become nega-
tive in one or more classes when these variances are specified
to be unequal across classes. In these situations, it is rec-
ommended not to use the BCH approach with class-specific
variances. A similar problem was reported by Bakk et al.
(2013) for nominal outcomes, where negative cell frequen-
cies could be found. However, negative variances will not
occur when using the BCH method with equal variances,
which is therefore the preferred approach.

The BCH approach is available in Latent GOLD 5.0,
with the default specification for continuous distal outcomes
being the one with equal variances. The Mplus 7.1 version
available at the time we performed this research did not
implement the BCH approach, but we were notified that it
will become available in the next version.

A Comparison of the Underlying Assumptions of the
Stepwise Approaches and the Possible
Consequences of Violating These Assumptions

Table 1 summarizes the assumptions of the various
approaches and the possible consequences of their viola-
tions. As can be seen, for certain assumptions it is known
that their violation will have an impact on the estimated
class-specific means, their SEs, or both. For example, viola-
tion of the normality assumption, such as when class-specific
distributions are bimodal, might bias the results obtained
with the ML method (Asparouhov & Muthén, 2014). It is
also known that plugging in the parameter values from Step
1 without accounting for their sampling fluctuation can lead
to underestimated SEs when using the three-step approaches
(Bakk et al., 2014). The same seems to apply to the some-
what ad hoc SE estimates proposed by Asparouhov and
Muthén (2014) for the LTB approach. However, the extent
of these effects has not systematically been investigated so
far. Moreover, for some of the assumptions it is unknown
whether their violation will cause bias. For instance, we do
not know how strongly the LTB method is affected by a
possible logistic nonlinearity of the true Z–X association.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

] 
at

 0
4:

40
 1

7 
N

ov
em

be
r 

20
15

 



6 BAKK AND VERMUNT

TABLE 1
Underlying Assumptions of the Stepwise Latent Class Analysis

Approaches and Hypothesized Consequences of Their Violation

BCH ML(equal) ML(unequal) LTB

Assumptions
Normal distribution Yes Yes Yes No
Linear-logistic Z-X

relationship
No No No Yes

Equal variances Yes Yes No Yes
No uncertainty in Step 1

parameters
Yes Yes Yes Yes

Violation hypothesized to affect
Normal distribution None Means, SEs Means, SEs —
Linear-logistic Z-X

relationship
— — — Means

Equal variances None Means, SEs — Means
No uncertainty in Step 1

parameters
SEs SEs SEs SEs

Note. SE = Standard error.

SIMULATION STUDY

The goal of the simulation study is to compare the differ-
ent stepwise LC methods for dealing with continuous distal
outcomes with regard to their robustness against violations
of underlying assumptions. We focus on the assumptions
summarized in Table 1. More specifically, we generated data
under different degrees of bimodality and heteroskedasticity.
Bimodality violates the assumption of normality made by the
BCH and the two ML approaches. Heteroskedasticity vio-
lates the assumption of equal variances of the ML (equal)
approach and the assumption of logistic linearity of the LTB
method. We not only investigate bias, but also the quality of
the SE estimates provided by the various stepwise methods.
The results of two studies are presented: In the first study
we focus solely on bias, whereas in the second study the
consequences of sampling fluctuation are also considered.

Study 1

In Study 1, we investigated the bias in the estimated class-
specific means of the distal outcome for each of the stepwise
methods. The population model was two-class model for six
dichotomous response variables. Class sizes were set to be
equal. The class-specific probability of a positive answer
was set to .80 in Class 1 for all indicators, and to .20 in
Class 2, corresponding to an entropy-based R2 value of .82.
Both modal and proportional assignment were used when
applying the three-step approaches.

Furthermore, we manipulated the degree of
heteroskedasticity and bimodality in the class-specific
distribution of Z. We defined four conditions with gradually
increasing degrees of heteroskedasticity. We set the variance
in Class 1 equal to 1, and in Class 2 equal to 1, 4, 9, and
25, respectively, thus going from equal to highly unequal

variances. In addition, we defined three conditions with
gradually increasing degrees of bimodality. In Class 1, Z was
assumed to come from the mixture of normal distributions
of the form 0.75N(−2, τ 2) + 0.25N(2, τ 2), thus having
a class-specific mean of −1. In Class 2, Z followed the
mixture distribution 0.75N(2, τ 2) + 0.25N(−2, τ 2), thus
having a class-specific mean of 1. The degree of bimodality
was manipulated by setting the variance σ 2 to either 0.01,
0.50, or 1, which affects the overlap between the mixing
distributions. In this way, conditions were created without
any overlap at all and thus extreme bimodality (τ 2 = 0.01),
some overlap and thus moderate bimodality (τ 2 = 0.50),
and large overlap and thus nonextreme bimodality (τ 2 = 1).

In all investigated conditions, we generated a single data
set with 1,000,000 observations. For each condition and each
estimator, we determined the bias in the difference in means
between the two classes (the true difference is 2). The ML
estimator was applied with equal and unequal variances, and
for both of these methods we used versions with random and
with predefined starting values. Because results were very
similar for modal and proportional assignment, we report
only the results obtained with modal assignment.

Table 2 summarizes the results for the four
heteroskedasticity conditions. As can be seen in the
first row, when the variances are equal between the two
classes, all the methods perform well. This result is similar to
what was found in previous simulation studies (Asparouhov
& Muthén, 2014, Bakk et al., 2013; Lanza et al., 2013).
However, as the degrees of heteroskedasticity increase (vari-
ance in Class 2 increases), the ML(equal) estimate becomes
more strongly biased. The ML approach with random
starting values shows larger bias than its counterpart with
predefined starting values. At the same time, the BCH and
the ML(unequal) approaches obtain unbiased estimates in all
conditions. The estimates obtained with the LTB approach
have a small bias when the variances are unequal, which
shows that the method is indeed affected by the relationship
between Z and X being nonlinear on the logit scale.

Table 3 summarizes the conditions where Z has a bimodal
within-class distribution. In all three conditions, the BCH
and LTB methods obtain the correct class-specific means.
In contrast, the ML approaches are highly sensitive to
bimodality. When the bimodality becomes more extreme, the
bias of the ML estimates increases. The ML approaches with
prespecified starting values show somewhat smaller bias than
their counterparts with the random starting values.

In summary, the LTB and the ML (equal) approaches
yielded biased estimates when variances are unequal
between classes. Moreover, both ML approaches were sen-
sitive for bimodality. The ML approaches with prede-
fined starting values (as implemented as default setting
in Mplus 7.1 and LatentGOLD 5.0) performed some-
what better than their counterparts with random start-
ing values. The BCH approach performed well in all
conditions.
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ROBUSTNESS OF STEPWISE LCA APPROACHES 7

TABLE 2
Absolute Bias in the Estimated Difference of Means Obtained With the Stepwise Latent Class Methods for Varying Degrees of

Heteroskedasticity Using Modal Assignment in Study 1

Heteroskedasticity BCH
ML (equal,
nonrandom)

ML(unequal,
nonrandom)

ML(equal,
random)

ML(unequal,
random) LTB

None 0.00 0.00 0.00 0.00 0.00 0.00
Low 0.00 0.15 0.00 0.19 0.00 0.04
Medium 0.01 0.05 0.01 0.06 0.01 0.04
High 0.00 0.10 0.00 0.11 0.00 0.03

TABLE 3
Absolute Bias in the Estimated Difference of Means Obtained With the Stepwise Latent Class Methods for Varying Degrees of Bimodality Using

Modal Assignment in Study 1

Bimodality BCH
ML(equal,

nonrandom)
ML(unequal,
nonrandom)

ML(equal,
random)

ML(unequal,
random) LTB

Low 0.00 0.11 0.11 0.11 0.11 0.01
Medium 0.00 0.12 0.12 0.12 0.12 0.01
High 0.01 0.21 0.21 2.00 2.00 0.01

Study 2

In the following, we compare the different methods using a
larger and more realistic LC model and, moreover, account-
ing for sampling fluctuation. Given that the ML methods
with random starting values proved to be more biased than
their counterparts that use predefined starting values, we
restrict ourselves to the latter implementation.

Data were generated from a four-class model with eight
dichotomous indicators, with parameter values based on
the application to psychological contract types described by
Bakk et al. (2013). The class sizes were set to .50, .30, .10,
and .10, similarly to this real data example used as starting
point. In Class 1, all indicators have a high probability of
a positive answer, whereas in Class 2 the first four indica-
tors have a high probability of a positive answer, and the
last four of a negative answer. At the same time, in Class
3 the first four indicators have a low probability of a posi-
tive answer, whereas the last four have a high probability of
a positive answer, and in Class 4 all indicators have a low
probability of a positive answer. We manipulated the class
separation by setting the probability of a positive answer to
.80 (.20) or .90 (.10), which yields a moderate and a high
separation condition.

The class-specific means of the distal outcome were set
to −1, −0.5, 0.5, and 1, respectively. Similarly to Study
1, we looked into two types of situations: unequal class-
specific variances of Z (heteroskedasticity) and bimodal
class-specific distributions of Z. More specifically, the con-
ditions with heteroskedasticity were created by setting the
variance of Z to 1, 4, 9, and 25 in Classes 2 and 3, while keep-
ing it equal to 1 in Classes 1 and 4. The bimodal conditions
were defined such that Classes 2 and 3 have bimodal distribu-
tions, whereas Classes 1 and 4 have unimodal distributions.

The bimodality was again obtained by using the mixture
distribution: 0.75N(−1, τ 2) + 0.25N(1, τ 2) in Class 2 and
0.75N(1, τ 2) + 0.25N(−1, τ 2) in Class 3. We manipulated
the extremeness of the bimodal distributions by setting τ 2

equal to 1, 0.5, and 0.01.
Three sample size conditions were investigated: 500,

1,000, and 2,000. For all conditions, 500 replications were
used. The bias in class-specific means and the coverage rate
based on the SE estimates were investigated for the LTB,
BCH, ML(equal), and ML(unequal) approaches. We con-
sider an estimator to perform well if it has a bias close to
0 and a coverage rate close to .95.

Results Under Heteroskedasticity

Table 4 shows the results averaged across separation
level and sample size conditions for all levels of
heteroskedasticity. Note that the four different levels of
heteroskedasticity (none, small, medium, and large) cor-
respond with a variance of 1, 4, 9, and 25 in Classes
2 and 3. Similar to Study 1, the estimates obtained with
the BCH approach are unbiased in all conditions. Moreover,
coverage rates are between .93 and .95, thus slightly too
low in some conditions. Also the ML approaches yield
results comparable to Study 1. That is, in all conditions
the estimates obtained with the ML(unequal) approach are
unbiased. Coverage rates are between .93 and .95. With
ML(equal), the estimates are highly biased.

At the same time, the LTB estimates are increasingly
biased as the degree of heteroskedasticity increases. Whereas
the first class is hardly affected by this bias, the other
classes are strongly affected, especially Class 2. The cover-
age rates obtained with LTB are too low even in the none
heteroskedastic condition (between .86 and .91), although
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8 BAKK AND VERMUNT

TABLE 4
Bias and Coverage Rate for Class-Specific Means Averaged Across Separation Level and Sample Size Conditions For Different Degrees of

Heteroskedasticity: Study 2

Bias Coverage

Method Heteroskedasticitv X = 1 X = 2 X = 3 X = 4 X = 1 X = 2 X = 3 X = 4

BCH None 0.00 0.00 0.01 −0.01 0.94 0.94 0.94 0.93
BCH Low 0.00 0.00 0.01 0.01 0.94 0.94 0.94 0.94
BCH Medium 0.00 0.00 0.00 0.00 0.94 0.94 0.95 0.94
BCH High 0.00 −0.01 0.01 0.00 0.94 0.96 0.94 0.94
ML(equal) None 0.00 0.00 0.00 −0.01 0.94 0.93 0.93 0.93
ML(equal) Low 0.01 −0.01 0.01 0.17 0.94 0.84 0.91 0.77
ML(equal) Medium 0.02 −10.18 −0.05 0.36 0.93 0.81 0.90 0.70
ML(equal) High 0.03 −0.24 −0.12 0.53 0.93 0.86 0.89 0.77
ML(unequal) None 0.00 0.00 0.00 −0.01 0.94 0.93 0.92 0.93
ML(unequal) Low 0.00 0.00 0.00 −0.01 0.94 0.94 0.93 0.94
ML(unequal) Medium 0.00 0.00 0.00 0.00 0.95 0.94 0.94 0.94
ML(unequal) High 0.00 −0.01 −0.01 0.00 0.94 0.95 0.94 0.95
LTB None 0.00 0.00 0.00 0.00 0.91 0.88 0.86 0.86
LTB Low 0.00 −0.18 0.11 0.00 0.97 0.65 0.71 0.94
LTB Medium −0.02 −0.48 0.22 0.12 0.94 0.58 0.64 0.83
LTB High −0.03 −0.50 0.21 0.29 0.91 0.64 0.64 0.86

TABLE 5
Bias and Coverage Rate for the Mean of Class 2 Per Separation Level and Sample Size Condition for Different Degrees of Heteroskedasticity:

Study 2

Low Separation High Separation

Method Heteroskedasticity N = 500 N = 1,000 N = 2,000 N = 500 N = 1,000 N = 2,000

BCH None −0.01 0.91 −0.01 0.93 0.00 0.93 0.00 0.95 0.00 0.93 0.00 0.95
BCH Low −0.01 0.95 0.00 0.93 0.00 0.93 0.00 0.95 0.01 0.94 0.00 0.94
BCH Medium −0.01 0.93 −0.01 0.95 −0.01 0.93 0.00 0.95 0.01 0.96 −0.01 0.95
BCH High −0.02 0.94 −0.01 0.95 0.00 0.96 0.00 0.96 −0.01 0.97 −0.01 0.96
ML(equal) None −0.01 0.92 0.00 0.92 0.00 0.95 0.00 0.94 0.00 0.93 0.00 0.95
ML(equal) Low −0.15 0.85 −0.15 0.76 −0.16 0.64 −0.05 0.94 −0.04 0.93 −0.05 0.91
ML(equal) Medium −0.27 0.80 −0.29 0.72 −0.31 0.54 −0.07 0.94 −0.07 0.95 −0.09 0.89
ML(equal) High −0.40 0.84 −0.40 0.77 −0.42 0.68 −0.07 0.96 −0.08 0.97 −0.08 0.93
ML(unequal) None 0.00 0.92 0.00 0.92 0.00 0.93 0.00 0.95 0.00 0.93 0.00 0.95
ML(unequal) Low −0.01 0.94 0.00 0.93 0.00 0.94 0.00 0.95 0.01 0.94 0.00 0.94
ML(unequal) Medium 0.00 0.94 −0.02 0.94 −0.01 0.94 0.00 0.94 0.01 0.96 −0.01 0.95
ML(unequal) High −0.03 0.93 −0.01 0.94 −0.01 0.94 0.00 0.95 −0.02 0.96 −0.01 0.96
LTB None 0.00 0.87 0.00 0.87 0.00 0.90 0.00 0.94 0.00 0.94 0.00 0.92
LTB Low −0.44 0.49 −0.37 0.49 −0.25 0.50 −0.01 0.82 0.01 0.81 0.00 0.80
LTB Medium −1.05 0.35 −0.88 0.42 −0.90 0.39 −0.02 0.76 0.00 0.81 −0.02 0.76
LTB High −1.17 0.47 −0.95 0.49 −0.81 0.55 −0.01 0.79 −0.03 0.79 −0.02 0.74

the estimated class-specific means are unbiased. This shows
that the undercoverage is the result of an underestimation of
the SEs.

Table 5 presents the bias and coverage rate for the mean
of Class 2, but now separately for each separation level and
sample size condition. We chose to give the detailed results
only for the mean of Class 2 because this parameter showed
the largest bias. For all methods at hand, it can be seen that
as uncertainty increases (smaller sample size and lower sep-
aration), the bias increases and the coverage rate decreases.
Only the BCH approach obtains almost unbiased estimates
and good coverage rates in all conditions. However, even this

method obtains a somewhat too low coverage rate with low
separation and small sample size (between .91 and .93), thus
showing that the SEs are somewhat underestimated in these
situations.

It can be seen that the LTB method is very sensitive to the
stability of the Step 1 model: In the low separation conditions
the bias is extremely large, Whereas in the high separation
conditions the bias is negligible. The coverage rates with the
LTB approach are clearly too low (between .87 and .94), even
in the conditions with equal variances, which shows that the
SEs are underestimated. At the same time, the ML methods
are less affected by the class separation. If the variance of Z is
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ROBUSTNESS OF STEPWISE LCA APPROACHES 9

correctly specified, the ML estimates are unbiased in all con-
ditions, obtaining a coverage rate between .92 and .94 (thus
having a minor undercoverage). However, if the variances
are wrongly assumed to be equal, the bias is always large.

Results With Bimodality

Let us now look at the results for the three bimodality condi-
tions, which are presented in Table 6. These are again aver-
ages across sample size and separation level conditions. The
BCH estimates are unbiased in all conditions and their cov-
erage rates are between .90 and .94, with the lowest coverage
rates occurring in the most extreme bimodality condition.

At the same time, the ML(equal) approach fails when
the bimodality is the most extreme, but as the bimodality
becomes less extreme the bias decreases. The bias in the
ML(unequal) estimates is lower than in those of ML(equal).
However, even the ML(unequal) estimates are much worse
than the LTB and BCH estimates. Both ML approaches

show much too low coverage rates, but these are in fact
uninformative given that these estimates are biased any-
how. Furthermore, the LTB approach yields estimates with
very small bias; however, the coverage rate is again too low
(.77 at its worst), especially in Classes 2 and 3, which have a
bimodally distributed Z.

Table 7 presents the results for the mean in Class 2, but
now separately per sample size and separation condition. The
BCH approach is unbiased. In the low separation conditions,
it has a coverage rate between .89 and .93. However, in the
high separation condition, the coverage rate is better.

The ML methods fail with the most extreme bimodality,
which is also what we saw in Study 1. As the bimodality
becomes less extreme, the estimates obtained using
ML(unequal) become less biased. This tendency depends
solely on the amount of bimodality and not on separation
level or sample size. At the same time, using the LTB
method, the bias is small in all conditions. However, in
the low separation conditions, the coverage rate is too low,
irrespective of the sample size.

TABLE 6
Bias and Coverage Rate for the Class-Specific Means Averaged Across Separation Level and Sample Size Conditions for Different Degrees of

Bimodality: Study 2

Bias Coverage

Method Bimodality X = 1 X = 2 X = 3 X = 4 X = 1 X = 2 X = 3 X = 4

BCH Low 0.00 0.00 0.01 −0.01 0.93 0.94 0.93 0.93
BCH Medium 0.00 0.00 0.00 −0.01 0.93 0.94 0.93 0.93
BCH High 0.00 0.00 0.01 0.00 0.90 0.93 0.93 0.92
ML(equal) Low 0.00 −0.05 0.04 0.07 0.94 0.87 0.90 0.88
ML(equal) Medium 0.00 −0.13 0.16 0.10 0.93 0.62 0.69 0.68
ML(equal) High 0.00 −0.50 0.49 0.00 0.95 0.01 0.01 0.95
ML(unequal) Low −0.01 0.00 0.02 0.01 0.93 0.94 0.91 0.93
ML(unequal) Medium −0.02 −0.02 0.05 0.04 0.90 0.92 0.87 0.87
ML(unequal) High 0.00 −0.17 0.26 0.01 0.93 0.65 0.47 0.90
LTB Low 0.00 −0.02 0.03 −0.01 0.94 0.84 0.84 0.94
LTB Medium 0.01 −0.03 0.04 −0.02 0.96 0.77 0.81 0.95
LTB High 0.01 −0.01 0.03 −0.03 0.95 0.84 0.82 0.94

TABLE 7
Bias and Coverage Rate for the Mean of Class 2 Per Separation Level and Sample Size Condition for Different Degrees of Bimodality: Study 2

Low Separation High Separation

Method Bimodality N = 500 N = 1,000 N = 2,000 N = 500 N = 1,000 N = 2,000

BCH Low 0.00 0.94 −0.01 · 0.94 −0.01 0.91 0.01 0.95 −0.01 0.94 −0.01 0.97
BCH Medium 0.00 0.94 0.00 0.93 0.00 0.91 0.00 0.95 0.00 0.96 0.00 0.95
BCH High 0.00 0.89 0.00 0.91 0.00 0.91 0.00 0.96 0.00 0.95 0.00 0.94
ML(equal) Low −0.07 0.89 −0.08 0.83 −0.09 0.71 −0.02 0.95 −0.03 0.91 −0.03 0.92
ML(equal) Medium −0.18 0.62 −0.20 0.42 −0.20 0.22 −0.07 0.89 −0.07 0.82 −0.07 0.73
ML(equal) High −0.50 0.00 −0.50 0.00 −0.50 0.00 −0.48 0.03 −0.49 0.01 −0.50 0.00
ML(unequal) Low 0.00 0.93 −0.01 0.92 −0.01 0.90 0.01 0.96 −0.01 0.94 −0.01 0.96
ML(unequal) Medium −0.03 0.91 −0.02 0.90 −0.02 0.87 −0.01 0.96 −0.01 0.96 0.00 0.95
ML(unequal) High −0.25 0.42 −0.30 0.38 −0.33 0.35 −0.05 0.92 −0.05 0.92 −0.04 0.91
LTB Low −0.04 0.78 −0.03 0.78 −0.03 0.76 0.00 0.92 −0.01 0.92 −0.01 0.91
LTB Medium −0.08 0.67 −0.06 0.65 −0.05 0.63 −0.01 0.89 −0.01 0.90 0.00 0.89
LTB High −0.04 0.76 −0.02 0.79 −0.02 0.76 0.00 0.92 −0.01 0.91 0.00 0.88
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10 BAKK AND VERMUNT

All in all, we see that the ML approaches fail when Z
has a bimodal distribution within classes. At the same time,
in the heteroskedastic variance conditions, estimated class-
specific means obtained with the ML approach are unbiased
if the variance is modeled correctly. This shows that the ML
methods are very sensitive to misspecification when dealing
with continuous distal outcomes. The LTB approach turns
out to yield biased estimates when the underlying assump-
tion of logistic linearity is violated. In all conditions, the
method that obtained the least biased estimates was the BCH
approach. All investigated approaches yield too low cover-
age rates in the higher uncertainty conditions; that is, when
class separation is lower and sample size is smaller.

EMPIRICAL EXAMPLE: RECIDIVISM OF
LATENT CLASSES OF JUVENILE OFFENDERS

To illustrate the stepwise LC modeling approaches we
use a data set on juvenile offenders’ recidivism from the
Dutch Ministry of Justice, which was analyzed earlier by
Mulder et al. (2012) using unadjusted three-step LC anal-
ysis. Although these authors were aware of the fact that this
approach could yield biased estimates, for them it was the
only way to proceed given the large number (70) of dis-
tal outcomes, which cannot be dealt with using a one-step
approach (Mulder et al., 2012), and given that bias-adjusted
approaches were not available at that time.

As did Mulder et al. (2012), we built an LC model using
13 categorical indicators, representing the offense frequency
prior to conviction (grouped into three categories: low. aver-
age, and high) and 12 types of offenses (yes–no). The model
selected based on the Baycsian Information Criterion (BIC)
is the four-class model (BIC = –3769), which turns out to
be a rather strong clustering model in terms of class separa-
tion (entropy-based R2 = .75). The four groups are, as shown
in Table 8, the violent property offenders (being differenti-
ated from the other groups by high scores on the property
offenses and misdemeanor, and a high number of offenses),
the property offenders (similar to the first group, but lower
offense rates), the serious violent offenders (with high scores
on manslaughter and murder), and the sexual offenders (with
high scores on sexual offenses with same age victims and
pedophilic offenses).

Whereas Mulder et al. (2012) built the Step 1 model using
the full sample of 1,082 respondents, we used a subsample of
728 respondents. This is the subsample for which recidivism
information is available; that is, meeting the requirement of
having been released to the community for a minimum of
2 years at the time of the data collection. We used this sub-
sample instead of the full sample because the LTB approach
requires that the distal outcomes are observed for all units.
For comparability of results, the same sample was used
for the three-step approaches as well, although for these

TABLE 8
Profile of Latent Classes of Juvenile Offenders

Violent Property Property Serious Violent Sexual

Class proportion 0.46 0.29 0.15 0.10
Number of offenses

Low 0.00 0.32 0.73 0.80
Medium 0.30 0.45 0.27 0.18
High 0.70 0.24 0.00 0.02

Misdemeanor 0.56 0.08 0.20 0.05
Drugs 0.06 0.03 0.05 0.00
Vandalism 0.00 0.00 0.00 0.00
Property 0.99 1.00 0.28 0.17
Moderate violent 0.91 0.36 0.74 0.15
Violent property 0.63 0.82 0.18 0.01
Serious violent 0.41 0.05 0.24 0.00
Sexual same age 0.14 0.04 0.11 0.63
Pedosexual 0.04 0.00 0.00 0.61
Manslaughter 0.08 0.03 0.43 0.06
Arson 0.05 0.00 0.10 0.00
Murder 0.01 0.01 0.18 0.03

approaches it is no problem to base the third step analysis
on a subsample of the sample used to build the LC model.3

We computed the class-specific means and their SEs of
two distal outcome variables, the frequency and severity of
recidivism, using the stepwise LC methods (see Table 9). The
overall Wald test indicates that there is a significant differ-
ence between the class-specific means of the frequency of
recidivism with all methods at hand. It can be seen that as a
result of the attenuation effect, the differences between the
classes are somewhat smaller for the unadjusted three-step
approach. Irrespective of the method used, violent property
offenders have the highest recidivism frequency, followed by
the property offenders. All methods except ML (unequal)
obtain a somewhat higher class-specific mean for the serious
violent offenders than for sexual offenders, whereas this lat-
ter method reverses the order of these two groups. This might
be the result of the fact that ML(unequal) is more strongly
affected by arbitrary deviations from within-class normal-
ity. The estimated class-specific means are similar for BCH
and ML (equal), but somewhat different from LTB estimates.
This might indicate that the linear-logistic assumption is vio-
lated to a certain extent. Note also that the SEs obtained with
the LTB approach are smaller than those of the bias-adjusted
three-step methods and sometimes even smaller than those
of the unadjusted three-step analysis. This confirms that
the LTB SEs are probably underestimating the actual sam-
pling variability in the reported class-specific means. Also
for severity of recidivism, the overall Wald test shows a sig-
nificant difference in means across classes for all methods
at hand. Moreover, again the differences between the classes
are somewhat smaller for the unadjusted three-step approach.

3The model parameters obtained with 1,082 observation are very simi-
lar, which is probably the result of the measurement model being strong.
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ROBUSTNESS OF STEPWISE LCA APPROACHES 11

TABLE 9
Mean and Standard Error of Frequency and Severity of Recidivism
for the Four Offender Classes Obtained With Five Stepwise Latent

Class Approaches

Violent Property Property Serious Violent Sexual

Frequency of recidivism
Unadjusted 9.85 (.62) 6.08 (.53) 3.33 (.58) 2.78 (.54)
BCH 10.46 (.72) 5.73 (.65) 3.03 (.65) 2.74 (.57)
ML (equal) 10.39 (.65) 5.69 (.48) 3.31 (.49) 2.83 (.5l)
ML (unequal) 12.72 (.76) 3.50 (.51) 1.31 (.47) 3.07 (.61)
LTB 10.15 (.66) 5.92 (.50) 3.27 (.40) 2.81 (.43)

Severity of recidivism
Unadjusted 5.60 (.17) 4.80 (.22) 3.75 (.33) 2.13 (.34)
BCH 5.73 (.20) 4.77 (.26) 3.75 (.38) 2.02 (.36)
ML (equal) 5.74 (.20) 4.76 (.27) 3.72 (.39) 2.03 (.35)
ML (unequal) 5.73 (.20) 4.76 (.27) 3.83 (.40) 1.89 (.50)
LTB 5.69 (.17) 4.79 (.22) 3.76 (.30) 1.98 (.31)

The severity is highest among violent property offenders,
followed by property offenders, violent offenders, and sex-
ual offenders. Note that all adjusted methods give almost the
same class-specific means, showing that assumption viola-
tions are not a problem here. SE estimates are again probably
too low for the LTB approach.

CONCLUSIONS AND DISCUSSION

We investigated the robustness of four stepwise LC anal-
ysis methods for studying the relationship between class
membership and continuous distal outcomes. The BCH
method, the ML method with equal variances, and the
ML method with unequal variances are bias-adjusted three-
step approaches, which assume that the distal outcome
is normally distributed, whereas ML(equal) also assumes
homoskedasticity. The LTB method, which obtains the class-
specific means of the distal outcome by estimating an LC
model in which the distal outcome is treated as a covariate,
assumes that the relationship between the distal outcome and
class membership is linear on a logistic scale.

In a simulation study, we investigated the perfor-
mance of the stepwise methods under different degrees of
heteroskedasticity and bimodality of the class-specific dis-
tributions of the distal outcome. Bimodality is a violation
of the assumption of normality needed for the BCH and
ML approaches; heteroskedasticity violates the assumption
of logistic linearity of the LTB approach, and the assump-
tion of homoskedasticity of the ML approach with equal
variances. The simulation results revealed that the BCH
method is the most robust approach: It yielded unbiased
estimates under all investigated conditions. This is most
probably the result of the fact that it involves performing
a weighted ANOVA, a method that is known to be robust
against violations of assumptions. The other methods are
sensitive to the violations considered. The ML approach
fails to different degrees in all the situations investigated.

When the variance is heteroskedastic, modeling it as equal
between the classes produces a bias in the class-specific
means. However, if the heteroskedasticity is correctly mod-
eled, the ML method works fine. The ML approach cannot
handle bimodal class-specific distributions of the outcome
variable and probably any other departure from normality
as well.4 The LTB approach yields biased estimates of the
class-specific means when the errors are heteroskedastic, and
shows a small bias with certain conditions of bimodality.

All four methods yielded coverage rates lower than the
nominal .95 rate when the separation between classes is low
and the sample size is small. For the three-step approaches,
the too low coverage rate is caused by ignoring the uncer-
tainty about the fixed parameter estimates from Step 1
(Bakk et al., 2014). However, by taking this uncertainty into
account, coverage rates close to the nominal .95 level can
be obtained, as shown by Bakk et al. (2014) for the ML
approach. For the LTB approach, a somewhat ad hoc SE esti-
mator was used, which turned out to yield a too low coverage
in all investigated conditions; the undercoverage increases
when the uncertainty about the Step 1 parameters and about
the class memberships increases.

Because it performed very well in all investigated
conditions, we recommend using the BCH approach for
stepwise LC modeling with continuous distal outcomes. The
use of the ML methods with continuous distal outcomes
is recommended only with precaution due to its sensitivity
to assumption violations. We also recommend caution
with the LTB method, both due to the bias that can occur
with heteroskedastic errors and due to the undercoverage
resulting from the current SE estimates. The application
to the juvenile recidivism data showed that results might
indeed differ depending on the method that is used. It seems
to be safest to rely on the results obtained with the very
robust BCH approach.

Although in this article we focused on the performance
of stepwise LC analysis approaches for the simple case
in which one studies the relationship between class mem-
bership and a single continuous distal outcome, it should
be mentioned that these approaches can also be used in
much more general situations. The ML and BCH three-
step approaches are very flexible, and can, for instance, also
be applied with covariates (Vermunt, 2010), with multiple
latent variables (Bakk et al, 2013), with continuous indica-
tors (Gudicha & Vermunt, 2011), with latent Markov models
(Vermunt & Magidson, 2013), and with multilevel models
(Bennink, Croon, & Vermunt, 2014), as well as with models
combining these features; for example, a regression model
for a continuous distal outcome in which not only the LC
variable but also other predictors are included, or a structural
equation model in which the LC variable is predicted by

4Note that Mplus gives a warning when the definition of the classes
changes due to deviations from normality. When this problem occurs, the
BCH approach should clearly be preferred.
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12 BAKK AND VERMUNT

other variables and is itself a predictor of one or more dis-
tal outcomes. Although all these possibilities exist and are
available in software, there is a need for further research into
the performance of the stepwise approaches in these more
complex setups. For example, in models in which variance
estimates are of interest, one should investigate the effect of
the negative weighting used in BCH on the parameter esti-
mates. It should be stressed that the LTB approach is more
limited in the sense that it can only be used for the situa-
tion in which there is a single distal outcome, the situation
investigated in this article. It should, however, be mentioned
that it can also be used with distal outcomes that are not
continuous (Lanza et al, 2013). When used with categorical
outcomes, the problems reported here do not occur and the
LTB approach can be used without any concern.

Future research might focus on improving the recently
proposed LTB method in various ways. First, it seems to
be possible to prevent the encountered bias by expanding
the logistic part of the model with quadratic and higher
order terms. Moreover, the undercoverage problem could
be resolved by using better SE estimates; for instance, SEs
obtained by bootstrapping. It might also be useful to trans-
form the LTB approach into a true stepwise approach, in
which as in the three-step approaches the estimation of the
LC model and the investigation of the association between
classes and distal outcomes are fully separated. This would
prevent the need to reestimate the original LC model for each
distal outcome. Moreover, it would also make it possible
to base the distal outcome analysis on a subsample, as was
actually needed in our real data example, or even on a fully
different sample, as would be the case when the classification
information is obtained from an earlier study.

Another area that needs further attention are the some-
what underestimated BCH SEs in the conditions with small
sample size and low class separation. The SE estimates could
be corrected for by accounting for the uncertainty in the BCH
weights, which are computed using the Step 1 parameter
estimates, similar to the correction proposed for the ML
approach by Bakk et al. (2014). Another possible solution
could be to switch to bootstrap SEs in these conditions.
It should then be investigated whether bootstrapping in Step
3 only suffices, or whether it is needed in Step 1 as well.

A limitation of our study is that we focused on problems
associated with heteroskedasticity and bimodality. It is rec-
ommended for future research to analyze whether other types
of violations of normality, such as skewness, excess kurtosis,
and outliers, are problematic for the stepwise approaches at
hand. We hypothesize that such violations will have only a
minor effect on the rather robust BCH approach, whereas
they could bias parameter estimates of the ML and LTB
methods to varying degrees.

REFERENCES

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York, NY:
Wiley.

Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture
modeling: Three-step approaches using Mplus. Structural Equation
Modeling, 21, 329–341.

Bakk, Z., Oberski, D., & Vermunt, J. (2014). Relating latent class assign-
ments to external variables: Standard errors for correct inference. Political
Analysis, 22, 520–540.

Bakk, Z., Tekle, F. T., & Vermunt, J. K. (2013). Estimating the association
between latent class membership and external variables using bias-
adjusted three-step approaches. Sociological Methodology, 43, 272–311.

Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of
growth mixture models: Implication for overextraction of latent trajectory
classes. Psychological Methods, 8, 338–363.

Bennink, M., Croon, M. A., & Vermunt, J. K. (2014). Stepwise latent class
models for explaining group-level outcomes using discrete individual-
level predictors, Tilburg University, Working paper.

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure
models with categorical variables: One-step versus three-step estimators.
Political Analysis, 12, 3–27.

De Cuyper, N., Rigotti, T., Witte, H. D., & Mohr, G. (2008). Balancing
psychological contracts: Validation of a typology. International Journal
of Human Resource Management, 19, 543–561.

Dias, J. G., & Vermunt, J. K. (2008). A bootstrap-based aggregate classifier
for model-based clustering. Computational Statistics, 23, 643–659.

Goodman, L. A. (1974). The analysis of systems of qualitative variables
when some of the variables are unobservable: Part I. A modified latent
structure approach. American Journal of Sociology, 79, 1179–1259.

Gudicha, D. W., & Vermunt, J. K. (2011). Mixture model clustering with
covariates using adjusted three-step approaches. In B. Lausen, D. van den
Poel, & A. Ultsch (Eds.), Algorithms from and for nature and life: Studies
in classification, data analysis, and knowledge organization (pp. 87–93).
Heidelberg: Springer-Verlag GmbH.

Hagenaars, J. A. (1990). Categorical longitudinal data: Loglinear analysis
of panel, trend and cohort data. Newbury Park, CA: Sage.

Lanza, T. S., Tan, X., & Bray, C. B. (2013). Latent class analysis with
distal outcomes: A flexible model-based approach. Structural Equation
Modeling, 20, 1–26.

McCutcheon, A. L. (1985). A latent class analysis of tolerance for noncon-
formity in the American public. Public Opinion Quarterly, 49, 474–488.

McCutcheon, A. L. (1987). Latent class analysis. Newbury Park, CA: Sage.
Mulder, E., Vermunt, J., Brand, E., Bullens, R., & Van Merle, H.

(2012). Recidivism in subgroups of serious juvenile offenders: Different
profiles, different risks? Criminal Behaviour and Mental Health, 22,
122–135.

Muthén, L., & Muthén, B. (1998–2012). Mplus user’s guide (7th ed.). Los
Angeles, CA: Muthén & Muthén.

Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A
latent profile analysis of college students’ achievement goal orientation.
Contemporary Educational Psychology, 32, 8–47.

Petras, H., & Masyn, K. (2010). General growth mixture analysis with
antecedents and consequences of change. In A. Piquero & D. Weisburd
(Eds.), Handbook of quantitative criminology (pp. 69–100). New York,
NY: Springer.

Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved
three-step approaches. Political Analysis, 18, 450–469.

Vermunt, J. K., & Magidson, J. (2013). Technical guide for Latent
GOLD 5.0: Basic, advanced and syntax. Belmont, MA: Statistical
Innovations.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

] 
at

 0
4:

40
 1

7 
N

ov
em

be
r 

20
15

 


	Abstract
	THE BASIC LATENT CLASS MODEL AND APPROACHES FOR DEALING WITH A CONTINUOUG DISTAL OUTCOME
	The Basic LC Model and Its Extension to Include a Continuous Distal Outcome
	The LTB Approach
	The Bias-Adjusted Three-Step Approaches
	The ML Approach
	The BCH Approach
	A Comparison of the Underlying Assumptions of the Stepwise Approaches and the Possible Consequences of Violating These Assumptions

	SIMULATION STUDY
	Study 1
	Study 2
	Results Under Heteroskedasticity
	Results With Bimodality

	EMPIRICAL EXAMPLE: RECIDIVISM OF LATENT CLASSES OF JUVENILE OFFENDERS
	CONCLUSIONS AND DISCUSSION
	REFERENCES

