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ABSTRACT

Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics,
including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the
evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper,
we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the
SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes
within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable
MT to occur. We then derive the probability for each respective binary to experience a direct dynamical
interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries
undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-
mass clusters ( 104 M), on the order of a few to a few tens of percent of binaries undergoing MT are expected to
be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in
more massive globular clusters we expect 1% to be interrupted. Furthermore, using numerical scattering
experiments performed with the FEWBODY code, we show that the probability of interruption increases if
perturbative fly-bys are considered as well, by a factor ∼2.
Key words: binaries: close – binaries: general – galaxies: star clusters: general – globular clusters: general – open
clusters and associations: general – stars: kinematics and dynamics

1. INTRODUCTION

Binary mass transfer (MT) is thought to be responsible for
the production of most observed exotic stellar populations,
including blue straggler stars, low-mass X-ray binaries,
millisecond pulsars, cataclysmic variables, etc., and the process
is thought to contribute significantly to the rate of SNe Ia,
gravitational waves, gamma-ray bursts, etc. A complete
understanding of binary evolution is a prerequisite for
predicting the rates of these high-energy phenomena. Many
are thought to occur in star clusters, facilitated by their high
densities that stimulate direct7 gravitational encounters leading
to e.g., exchange interactions, fly-bys, and/or collisions. Such
strong encounters can modify the binary orbital parameters, and
hence directly affect the course of binary evolution (e.g.,
Ivanova et al. 2005; Hurley et al. 2007; Marks et al. 2011;
Leigh & Geller 2012, 2013, 2015; Geller et al. 2013b; Geller
et al. 2013a, 2015).

By necessity, full star cluster dynamical simulations,
including both direct N-body (Aarseth 2003 e.g., NBODY6)
and Monte Carlo methods (e.g., Spurzem & Giersz 1996; Joshi
et al. 2000; Vasiliev 2015), rely on a number of simplifying
assumptions in order to treat binary star evolution. In particular,
binary MT is often parameterized, following a pre-calculated
grid of more detailed models that were evolved in isolation.
These models are based on a sophisticated treatment of stellar
evolution, with some basic assumptions for the actual MT

process (e.g., energy conservation, mass conservation, etc.).
The hydrodynamics involved in the MT process is traditionally
not modeled directly within full star cluster simulations.
Moreover, even if the parameterizations are able to approx-
imate the binary evolution accurately, perturbations during MT
are rarely treated properly (and are often ignored). For example,
a direct encounter involving a binary undergoing MT could
disrupt the binary or exchange a different star into the system,
thus halting the MT process. Scenarios such as these are not
accounted for in many star cluster dynamical models.
The assumption that MT occurs in relative isolation (even in

star clusters) is often justified by comparing timescales; in
many clusters the duration of MT, particularly for high-mass
stars, can be quite short when compared to the single—binary
(1+2) encounter time. However, for lower-mass stars, the
typical duration of MT can greatly increase (e.g., due to the
longer thermal and nuclear timescales within the stars).
Furthermore, the binary—binary (2+2) encounter timescale
can be much shorter than the 1+2 encounter time in clusters
with large binary frequencies.8

In this paper, we begin to quantify the validity of the
assumption that MT can be treated as an isolated process within
star clusters. Due to mass segregation and dynamical friction,
most binaries live in the dense cluster core, where they may not
be allowed to evolve fully before being interrupted. We use the
binary evolution code SeBa (Portegies Zwart & Verbunt 1996;
Nelemans et al. 2001; Toonen et al. 2012) to simulate the time
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6 NSF Astronomy and Astrophysics Postdoctoral Fellow.
7 We use the term, direct, to indicate that the distance of closest approach
between an interloping object and a binary undergoing MT is equal to or less
than the binary semimajor axis.

8 The exact binary fraction at which the 2+2 encounter rate begins to
exceed the 1+2 rate is around f 10%b ~ (e.g., Sigurdsson & Phinney 1993;
Leigh & Sills 2011).
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evolution of the binary orbital parameters of individual binaries
undergoing stable MT, as described in Section 2. We then
compare the MT timescales to analytic estimates for the
timescales over which other single and binary stars in the
cluster are expected to encounter, or “interrupt,” the ongoing
MT, as calculated in Section 3. We show that the fraction of
interrupted binaries can reach a few tens of percent, for certain
cluster parameters. Finally, we discuss in Sections 5 and 6 the
implications of our results and offer some concluding remarks.

2. BINARY EVOLUTION

We present results from ∼106 individual binary evolution
simulations performed using the SeBa code. SeBa is a fast
stellar and binary evolution code, that parameterizes stars by
their mass, radius, luminosity, core mass, etc., as functions of
time and initial mass. The binary evolution includes mass loss,
MT, angular momentum loss, common envelope evolution,
magnetic braking, and gravitational radiation. We consider
only stable MT between hydrogen-rich non-degenerate stars.
The stability of MT and the MT rate depend mainly on the
adiabatic and thermal response of the donor star’s radius, and
the response of the Roche lobe, to the re-arrangement of mass
and angular momentum within the binary. For an overview of
the method and a comparison with other methods, see Toonen
et al. (2014, Appendix B).

We follow a nearly identical method to define the masses
and orbital parameters of our initial binary population as in
Geller et al. (2015). Briefly, primary masses are chosen from a
Kroupa et al. (1993) initial mass function between 0.1M and
100M. We draw mass ratios (q m m2 1= ) from a uniform
distribution such that q 1 and m 0.12 > M. We choose
binary orbital periods and eccentricities from the log-normal
and flat distributions, respectively, as observed by Raghavan
et al. (2010) for binaries with solar-type primary stars in the
Galactic field, which are also consistent with observations of
solar-type binaries in open clusters (OCs; e.g., Geller
et al. 2010, 2013b; Geller & Mathieu 2012).

We initially performed a set of simulations allowing binaries
to occupy nearly the entire log-normal period distribution and
determined that the longest-period binary that will undergo MT
in SeBa within a Hubble time (over all primary masses) is

Plog days 4.16( [ ]) = . We then imposed this maximum orbital
period, along with a minimum orbital period chosen such that
the binaries are initially detached, and drew 106 random
binaries for SeBa.9 Binaries in the contact stage are excluded
in our analysis.

We performed two sets of experiments, one at
Fe H 1.5[ ] = - , typical for an old globular cluster (GC), and
the other at Fe H 0[ ] = , appropriate for an OC. We use the
SeBa code to evolve these binaries for a Hubble time and
produce time-averaged orbital parameters (i.e., mean separa-
tion, mean binary mass) calculated over the course of stable
MT, as well as the cluster age at the onset of MT and the total
duration of the MT phase, td, for each binary.

3. ENCOUNTER TIMESCALES

We use the output from SeBa to calculate the expected
timescales for another single or binary star in the cluster to
(directly) encounter, or “interrupt,” each of the binaries while

MT is ongoing, which we will call te. We then compare this
timescale directly to the MT duration, td, which is calculated
and outputted by SeBa.
To calculate the encounter timescale, te, we must first find

the time for a single (1) or binary (2) star to interrupt an ongoing
episode of stable MT, which we will refer to as, respectively,

2 1t + and 2 2t + . As in, Geller & Leigh (2015), we define these
timescales as follows (Leonard 1989; Leigh & Sills 2011):
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where n0 is the star cluster central number density, vrms,0 is the
central root-mean-square velocity (and we assume
v 3rms,0 0 0,1Ds s= = ), m is the mean mass of a star in the
cluster (for which we adopt m = 0.5 M), fb is the binary

frequency, and Renc
2p is the mean gravitationally focused cross

section, where Renc is either the time-averaged separation of the
binary undergoing stable MT (for 1+2 encounters) or the
orbital separation corresponding to the cluster hard–soft
boundary10 (for 2+2 encounters). Finally, the total time until
a subsequent encounter is given by

t 2e 2 1 2 2
1( ) ( )= G + G+ +

-

where 1 tG = .
To calculate the parameters in Equation (1), we consider

total cluster masses Mcl ranging from 103 to 106M in steps of
1 in Mlog10 cl( [M]), and assume a Plummer model
(Plummer 1911) with a half-mass–radius11 of 3 pc. See Geller
et al. (2015) for specific details. In general n0 increases with
increasing cluster mass, while fb decreases with increasing
cluster mass (as is consistent with observations, e.g., Leigh
et al. 2015).

4. FRACTION OF INTERRUPTED BINARIES
UNDERGOING STABLE MT

We find from these binary evolution simulations that, the
probability that a given binary will be interrupted during MT in
a star cluster core ranges from 1% to well over unity. The
main results are plotted in Figures 1and 2.
As shown in Figure 1, both 1 2t + and 2 2t + are sensitive to the

total cluster mass, whereas the MT durations td are not. The
sensitivity of 1 2t + and 2 2t + to Mcl is due to the dependence of
the semimajor axis at the hard–soft boundary on Mcl, which
results (on average) in tighter binaries and lower binary
fractions in more massive clusters. In low-mass clusters, the
mean binary separation and binary fraction are both large,
causing 2 2t + to be short. As Mcl increases, both the mean
binary separation and binary fraction decrease along with the

9 This number of binaries is chosen to be sufficiently large to provide reliable
statistics.

10 The hard–soft boundary is a theoretical separation in either semimajor axis
or orbital period. Binaries inside this boundary are dynamically “hard,” and
encounters with other stars in the cluster tend to shrink (i.e., harden) the binary.
Binaries beyond this boundary are dynamically “soft,” and encounters tend to
widen and eventually ionize the binary. Note that this results in an approximate
lower limit for the 2+2 timescale. We also calculate a rough upper limit
below by adopting instead the mean orbital separation below the hard–soft
boundary for Renc.
11 Note that for these parameters, the mean orbital separation during MT is
much smaller than the hard–soft boundary, independent of Mcl.
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separation at the hard–soft boundary, causing 1 2t + and 2 2t + to
decrease and increase, respectively. Importantly, most binaries
undergoing stable MT have time-averaged separations that are
on the order of only a few stellar radii, causing 1 2t + to exceed a
Hubble Time nearly independent of Mcl. On the other hand,

2 2t + is always much shorter than a Hubble Time, due to the
larger mean separation of the entire cluster binary population.

In Figure 1, a bimodality is apparent in the distribution for
1 2t + at low metallicity (i.e., Z = 0.0006) that is not apparent in

either the 1 2t + distribution at high metallicity (i.e., Z = 0.02) or
in either of the 2 2t + distributions. This is due to a bimodality
that appears in the mean binary separation during MT, which
dominates the 1+2 cross-section but not the 2+2 cross-
section, since the mean binary separation in the cluster is much
larger than the mean binary separation during MT. The first
peak in this bimodal distribution (at small orbital separations) is
due to systems for which stable MT is initiated in a relatively
tight binary, involving relatively unevolved stars. The second
peak is due to systems with asymptotic giant branch (AGB)
donors that have lost so much mass that they are less massive
than their companion. Consequently, the resulting MT is stable.
For low metallicities, this second group is bigger, and a second
peak becomes clearly visible (relative to high metallicities).
This is because the lifetimes of low metallicity stars are shorter
relative to more metal-rich stars. Therefore, low mass stars are
able to evolve off the main sequence, become an AGB star, and
hence fill their Roche lobe all within a Hubble time.
In Figure 2, we compare td and te for each individual

encounter directly by calculating the cumulative Poisson
probability or the probability that a given binary will undergo
at least one encounter with another star or binary within a time
interval td:

P e1 . 3t td e ( )= - -

Equation (3) approximates the probability that a given binary
undergoes a direct encounter with another star or binary in the
cluster before MT stops (shown on the x-axis in Figure 2).
Importantly, fly-by encounters will also perturb binaries

undergoing MT, and this is not accounted for in Figures 1 and
2. To quantify this effect, we ran simulations of 1+2
encounters using the FEWBODY code (Fregeau et al. 2004). We
fix the binary orbital parameters and relative velocity at infinity
for the encounters, but sample the impact parameter in
multiples of b0.5 0, where b0 is the impact parameter
corresponding to a distance of closest approach equal to the
binary semimajor axis a, or (Leonard 1989; Leigh &
Sills 2011):

b
Gma

v
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. 40
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Here, m is the mean single star mass in the cluster and vinf is
the relative velocity at infinity. We perform 104 numerical
scattering experiments for every choice of the impact
parameter. All stars are assumed to be point particles with
masses of 1 M. The initial binary semimajor axis and
eccentricity are 1 AU and 0, respectively. The incoming
velocity at infinity is set to v 5inf = km s−1.
The results of these scattering experiments are illustrated in

Figure 3, which shows the mean (absolute) change in the
binary semimajor axis and eccentricity for all simulations, as a
function of the impact parameter. We assume here that a fly-by
encounter “interrupts” a given binary undergoing MT if either
of the two following criteria are met: (1) the change in
semimajor axis a∣ ∣D is greater than or equal to the typical stellar
radius at the onset of Roche lobe overflow (∼1 R for most
binaries), and/or (2) the change in eccentricity e∣ ∣D corre-
sponds to a change in the quantity r rp a- that is greater than
or equal to the typical stellar radius at the onset of MT,
where rp and ra are the pericenter and apocenter distances,
respectively, from the binary center of mass. We assume that

Figure 1. Distributions of the total duration of stable MT (t ;d solid black
histograms) and times until the next direct 1+2 ( ;1 2t + dotted blue histograms)
and 2+2 ( ;2 2t + dashed red histograms) encounter, drawn from clusters with
half-mass radii of 3 pc and the Mcl values indicated in each panel. The left and
right panels distinguish between assumed metallicities of Z = 0.0006 and
Z = 0.02, respectively.

Figure 2. Distributions of the probability for binary MT interruption, as defined
in Equation (3). The binary populations used to calculate these probabilities are
the same as in Figure 1.
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the magnitude of such a perturbation is sufficiently large to
at least temporarily halt the MT process (provided a 0D >
and/or e 0D < ).

As shown in Figure 3, the perturbative effects of fly-bys
remain significant for b  b1.5 0. Moreover, both a∣ ∣D and e∣ ∣D
undergo a steep drop-off between b = b1 0 and b = b2 0, such
that neither of our criteria for a “significant” perturbation are
satisfied for b  b1.5 0. Our analytic estimates for the 1+2 and
2+2 encounter rates are directly proportional to the
gravitationally focused cross-section bgf

2s pµ , for some
impact parameter b. Hence, if fly-bys are included, the
timescales for 1+2 and 2+2 encounters should each
decrease by a factor 1.5 2.12 ~ , as should te. Working from
Equation (3), we find that the probabilities typically increase by
a corresponding factor of ∼2. That is, the ratio between the
probabilities calculated with and without this additional factor
of ∼2.1 in our estimate for te peak at a value of ∼2 with very
little scatter.

The fraction of binaries expected to be interrupted during
MT can be estimated from the probability distributions
presented in Figure 2. To do so, we integrate the probability
distributions in Figure 2 and divide by the total number of
binaries. The resulting fractions are fi ~ 0.18, 0.10, 0.03, and
0.01 for our model clusters with Mcl[M] = 103, 104, 105, and
106, respectively, and a metallicity Z = 0.02. These fractions
remain the same to within±1% for a metallicity Z = 0.0006.
As shown in Figure 4, the mean MT duration is 105.5~ years
during the first 1 Gyr of cluster evolution, then quickly
increases by roughly an order of magnitude. After this, the
mean MT duration slightly and slowly decreases over the next

∼12 Gyr, but remains much larger than during the initial 1 Gyr.
Hence, if the initial 1 Gyr of the cluster lifetime is excluded
from our calculation for the fraction of binaries expected to be
interrupted during MT, these estimates increase by a factor12

∼2. These fractions correspond approximately to upper limits,
since we adopt the mean orbital separation at the hard–soft
boundary when calculating the 2+2 encounter time. If we
adopt instead the mean orbital separation below the hard–soft
boundary (which does not include the presence of soft
binaries), these fractions decrease by a factor of a few (of the
same order as the increase from including fly-bys).
From these fractions, we can also estimate the number of

binaries that are expected to be directly interrupted during
ongoing stable MT:

N N f f , 5bin,i bin MT i ( )=

where Nbin is the total number of initial binaries in the cluster
(estimated as f Nb stars), fMT is the fraction of binaries expected
to undergo MT (calculated by SeBa for our assumed binary
orbital parameter distributions) and fi is the fraction of binaries
undergoing MT that are expected to be interrupted over a
Hubble time of cluster evolution (as calculated above for our
four cluster masses). These parameters are shown in Table 1,
for all four assumed values of the total cluster mass.

Figure 3. The (logarithm of the) mean change in eccentricity e∣ ∣D (red
triangles) and semimajor axis a∣ ∣D (black open circles; in AU) for binaries
involved in single-binary interactions, as a function of the impact parameter (x-
axis). The impact parameter is sampled in units of b0.5 0, defined as in
Equation (4). The uncertainties correspond to the standard deviation of the
mean. (The distributions for a∣ ∣D and e∣ ∣D are not strictly Gaussian, so the
uncertainties should formally be asymmetric. However, the differences are
negligible for our purposes here.) The dashed lines correspond to the critical
values of a∣ ∣D (black; in AU) and e∣ ∣D (red) defined by our criteria for a
“significant” perturbation described in the text.

Figure 4. The (logarithm of the) mean duration of mass transfer (shown on the
y-axis; in years) as a function of the (logarithm of the) host cluster age (x-axis;
in Gyr), for all cluster masses adopted in Figures 1 and 2. The mean is
calculated in 1 Gyr intervals, using all binaries that initiate mass transfer during
each 1 Gyr window of the cluster lifetime. Error bars correspond to the
standard error of the mean. Black and red solid circles correspond to
metallicities of, respectively, Z = 0.0006 and Z = 0.02.

12 Note that the final increase in the mean duration of mass transfer at ∼13 Gyr
seen for the Z = 0.0006 case should be regarded with caution. This is due in
part to small number statistics, and the presence of a handful of binaries with
unusually long MT durations at late times. This is not visible in the error bars,
since we are showing the standard error of the mean here, and the number of
binaries included in this calculation is large. Perhaps more importantly, these
error bars do not reflect any inherent uncertainties in the SeBa code and binary
evolution in general, which are certainly non-negligible.
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The resulting total numbers of binaries expected to be
interrupted over the lifetime of the clusters is then Nbin,i ~ 6,
27, 59, and 116 for our model clusters with Mcl[M] = 103,
104, 105, and 106, respectively. If perturbative fly-bys are
included, these values each increase by a factor ∼2. The
calculated rate of MT interruption for clusters is ∼1–10 binary
per Gyr, with only a weak tendency for this rate to increase
with increasing cluster mass.

5. DISCUSSION

We find that a relatively large fraction fi of binaries
undergoing stable MT may encounter another single or binary
star in the core of a star cluster before the MT proceeds to
completion. We calculate fi ~ 0.18, 0.10, 0.03, and 0.01 for
our model clusters with Mcl[M] = 103, 104, 105, and 106,
respectively, nearly independent of metallicity. These fractions
are only slightly lower than we calculated in Geller & Leigh
(2015) for the fraction of interrupted stellar encounters in star
clusters, which ranges from <0.01 in massive GCs to >0.4 in
low-mass OCs. The origin of this analogous dependence
between the fraction of interrupted “events” and the total
cluster mass is ultimately the same (see below).

As a binary undergoing MT generally has a relatively small
geometric cross section, the interloper in these cases are most
often binary stars themselves, resulting in 4-body encounters
that may dramatically alter the course of the binary evolution.
Interrupted MT is expected to occur most often in massive OCs
and low-mass GCs ( 104~ M), where in general the binary
frequency is larger, and (detached) binaries can have larger
orbital separations and therefore larger geometric cross
sections. These larger binary frequencies and geometric cross
sections present in the low-mass cluster regime also result in a
larger fraction of interrupted stellar encounters. No publicly
available code for star cluster dynamics accounts directly for
the hydrodynamics of binary MT needed to accurately model
such interrupted/perturbed MT binaries.

As discussed in Geller & Leigh (2015) for interrupted stellar
encounters, the dependence of fi on Mc is encouraging for
numerical models of star clusters, since low-mass clusters such
as OCs are most often modeled with direct N-body simulations.
Direct N-body codes, such as NBODY6, can in principle apply
perturbations to binaries undergoing (parameterized) MT, if the
time steps are chosen appropriately. Given our results, a more
detailed study of how often such cases of interrupted MT occur
and how accurately they are treated in direct N-body codes is
warranted. Massive clusters, on the other hand, are more often
modeled with Monte Carlo codes (e.g., Chatterjee et al. 2010;
Hypki & Giersz 2013). Here, binary evolution is typically
assumed to run to completion in isolation. In massive GCs, we
find that this assumption is much more valid than in OCs (albeit

not perfect, see Figure 2), similar to what was found in Geller
& Leigh (2015) for interrupted stellar encounters.
The time-averaged separations of binaries undergoing stable

MT are typically on the order of a few solar radii. However,
stable and conservative MT leads to an increase in the binary
orbital separation (if the donor is less massive than the
accretor). Generally toward the end of the MT phase, after a
mass-ratio inversion, the orbits expand significantly, increasing
the binary cross-section and decreasing the 1+2 and 2+2
encounter times. Hence, the timescale for interruption
decreases markedly at the end of the MT phase and beyond,
which is not properly accounted for in our models (since we
only use the mean binary separation during MT). Interestingly,
the final separation is on the order of 1 AU in our models,
which is comparable to the hard–soft boundary in old massive
( 106~ M) GCs. Hence, these binaries become subject to
ionization due to dynamical encounters with other single and
binary stars after MT. Assuming a MT origin, this could be of
particular relevance for blue straggler formation in GCs. In
particular, this naively predicts a rough correlation whereby the
fraction of blue stragglers in binaries increases with decreas-
ing Mcl.

6. CONCLUSIONS

Even the very intimate dance of binary MT can be
interrupted by an interloping single or, more often, binary star
in a star cluster. Up to about a quarter of all binaries undergoing
stable MT in the cores of massive OCs and low-mass GCs
( 104~ M) may encounter another star (or stars) before
completing this phase of evolution (see Figure 2). This fraction
decreases toward 1 % for more massive GCs, primarily
because the binary frequency in these clusters is much lower.
Cases of interrupted MT may lead to significantly different
outcomes than are assumed for isolated evolution, which in
turn may impact the formation rates of MT products in star
clusters, from exotic stars like blue stragglers, to SN Ia and
gamma-ray burst progenitors. Our results highlight the need for
a more detailed treatment of binary evolution in star cluster
simulations.

The authors would like to thank an anonymous reviewer for
useful suggestions for improvement. N.W.C.L. is grateful for
the generous support of an NSERC Postdoctoral Fellowship.
A.M.G. is funded by a National Science Foundation Astron-
omy and Astrophysics Postdoctoral Fellowship under Award
No. AST-1302765.
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