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Abstract 

Feature selection in which most informative variables are selected for model generation is an important step in pattern 
recognition. Here, one often tries to optimize multiple criteria such as discriminating power of the descriptor, performance of 
model and cardinality of a subset. In this paper we propose a fuzzy criterion in multi-objective unsupervised feature selection by 
applying the hybridized filter-wrapper approach (FC-MOFS). These formulations allow for an efficient way to pick features from 
a pool and to avoid misunderstanding of overlapping features via crisp clustered learning in a conventional multi-objective 
optimization procedure. Moreover, the optimization problem is solved by using non-dominated sorting genetic algorithm, type 
two (NSGA-II). The performance of the proposed approach is then examined on six benchmark datasets from multiple 
disciplines and different numbers of features. Systematic comparisons of the proposed method and representative non-fuzzified 
approaches are illustrated in this work. The experimental studies show a superior performance of the proposed approach in terms 
of accuracy and feasibility. 
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1. Introduction  

Feature selection (FS), in some areas also referred to as dimensionality reduction, deals with selection of one or 
several optimal sets of attributes that are necessary and/or essential for the recognition process. The challenge of FS 
is to decide a minimum subset of features with little or no loss of classification/clustering accuracy. This can be 
formulated as a multi-objective optimization (MOO) problem. The task is the selection of relevant features, 
elimination of redundant features, and minimization of selected set cardinality. To date, a range of MOO-based FS 
techniques have been reported14. Cross-applications the related FS approaches can be categorized into four groups: 
 Filter-supervised, i.e. class-labels known: features are selected based on their discriminating power with respect 

to the target classes. 
 Wrapper-supervised, i.e. class labels known: subsets of features are evaluated from classification, at the point 

where comparison of resulting labels and actual labels occurs.   
 Filter-unsupervised, i.e. class-labels unknown: features are ranked from the performance histogram of all feature 

dimension vectors and one or several criteria are chosen for deciding a group of features. 
 Wrapper-unsupervised, i.e. class-labels unknown: computation of the subset of features is applied in terms of the 

performance of a clustering algorithm. In this case, tuning of parameters in clustering process will contribute in 
obtaining an acceptable subset of features.  

The search for proper supervised predictors can usually be regarded as a pursuit for optimization, where the 
number of wrong-predicted operators for a known dataset should be minimized1. However, figuring out a similar 
criterion for validation in unsupervised schemas is a difficult task2. It cannot be relied upon that a new-found pattern 
obtained by optimizations resulting from an unsupervised algorithm, is able to decide if a given pattern is trustful or 
not. To some extent, the validity of pattern discovery is depended on a priori knowledge and intentions of decision 
makers. This brings us to the assumption that one often desires to employ unsupervised learning schemas in order to 
produce several candidate solutions for users. Additionally, some tasks in FS, cover inherent data groups and thereby 
omit features which might reveal the nature of hidden patterns. Therefore, the unsupervised-based multi-objective 
heuristic optimization algorithm is becoming an attractive approach, that has been given and increasing attention this 
decade.  

There has been reported on development of evolutionary algorithms for multi-objective (MOEA) for unsupervised 
feature selection3. Oliveira, et al.4 proposed a Pareto-based approach to generate a so-called Pareto-optimal front in a 
supervised context. Sensitivity analysis and neural networks (NN) enable to representative evaluation of fitness 
values. About the same time, Kim, et al.5, used k-means clustering and Expectation Maximization (EM) as 
embedded unsupervised approach to evaluate a feature subset encoded in chromosomes. The MOEA employed in 
this case is called evolutionary local search algorithm (ELSA). With these results as a starting point, research of 
unsupervised learning in feature selection was expanded. Morita, et al.6 used the k-means clustering algorithm in a 
wrapper approach, that encoded with Non-dominated Sorting Genetic Algorithm, type two (NSGA-II). Moreover, 
two objective functions, i.e. the number of features in a set, and a clustering validation (e.g. Davies-Bouldin (DB)7) 
index are introduced. Handl and Knowles8 examined different combinations of objective functions and Mierswa1 
investigated different indices, i.e. the normalized DB index. More recent work9 stated that their multi-objective 
unsupervised feature selection algorithm (MOUFSA) outperforms several other multi-objective and conventional 
single-objective methods, by using redundant measurements and negative epsilon-dominance. In addition, three new 
mutation methods are designed to enhance MOUFSA.  

However, the defined criteria in classical objective functions used in unsupervised MOEA, fail to predict the 
performance of clustering results, i.e. the overlapping information (features) in-between classes which probably 
highlights the essentials that are shared within these classes. To solve this problem, we employ fuzzy criteria in a 
hybrid filter-wrapper approach. Pioneered by Zadeh10, fuzzy logic-based systems have been successfully utilized to 
various application areas, e.g. control system and pattern classification11. The comprehensibility of fuzzy criteria, 
namely the linguistic interpretability of fuzzy partitions and the simplicity of fuzzy if-then rules12, makes it a 
promising method to access qualified optimization in MOEA when employed into unsupervised learning. Although 
fuzzy criteria are addressed in a supervised manner13, it rarely has been reported in unsupervised cases, in which the 
natural patterns are discovered according to fuzzy clustering validity and fuzzy objective functions.  
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In this paper, FS procedure is optimized using the generic heuristic search algorithm NSGA-II, and fuzzy criteria 
are employed in both filter and wrapper approaches. In the unsupervised learning procedure a new fuzzy index is 
specifically proposed as one of the objective functions. The target functions are: (i) value of Correlation Membership 
Measurement (CMM); and (ii) cardinality of feature subset. Here we intend to contribute to the further development 
of the hybrid methodology, by realizing a sensible integration of fuzzy criteria and MOEA approach in FS area  This 
methodology is applied to a wide set of benchmark datasets and it is compared with commonly used approaches to 
show its general applicability and competitive advantages.  

The remainder of this paper is organized as follows. In Section 2, we introduce the methodology including 
application of fuzzy criteria and fuzzy model in FS; subsequently, the utilization of NSGA-II in an unsupervised 
context is presented. In Section 3 experimental results are given and Section 4 conclusions are presented. 

2. Methodology 

2.1. Fuzzy entropy in filter-approach 

In information theory, entropy is a measure of chaos or uncertainty associated with the variables. The concept of 
entropy has been defined in various ways and used in different fields; fuzzy logic is becoming commonly used in the 
estimation of entropies. On this basis, we propose an approach embedding fuzzy c-means (FCM)14 clustering 
algorithm to estimate the fuzzy entropy by automatically computing the feature memberships. To depict the level of 
similarity, the feature membership index assigned with a fuzziness characteristic that can be expressed as . In this 
manner, according to De Luca and Termini15, the fuzzy entropy can be defined as: 

                                            (1) 

In Eq. (1),  denotes the membership index of the jth feature in the feature pattern vector, meaning every 
individual feature entropy is computed along all the samples x. Subsequently, the entire set of features is ranked for 
guiding the optimization procedure in the wrapping approach, via maximizing their corresponding fuzzy entropies. 

2.2. Fuzzy cost function in wrapping-approach 

   Multi-objective function optimization, by means of a wrapper technique for unsupervised feature selection, relies 
on the use of an internal technique of cluster validation. In other words, clustering validation techniques have been 
designed specifically for the selection of the best clustering solution on the basis of its distance performance. 
Sometimes the clustering performance is estimated by considering the ratios between intra-class compactness, and 
inter-class separation. As reported Handl and Knowles8, this generally suffers from the bias of these measurements 
with respect to the dimensionality of the feature space. The conflict of this bias can be noticed when dimensionality 
of a given dataset is enlarged: i.e. the mean of the distribution tends to increase while simultaneously the variance of 
the distribution decreases. This will cause such a validation technique to be unable to sensitively estimate the 
difference between all pairs of points, especially in a high dimensional dataset.  

                                     
                                           (a)                                                                                            (b) 

Fig.1. Sketch diagram for CMM. (a) In a high dimensional feature space, two overlapping classes (A and B) with centroids  and  are 
projected onto two principle component axis PC1 and PC2. S is the distance between objects and its belonging center;  is the in-between cluster 
center distance. (b) After Fisher discriminant analysis (FDA) linear projection (project onto the FDA-Component axis), the corresponding 
components can be rewritten as  and S  respectively. 
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   To tackle this bias, we propose a fuzzy cost function, the correlation membership measurement (CMM). This 
function employs both individual clustering information and shared (overlapping) information (cf. Fig. 1 (a)). We 
measure the similarity between pairs of vectors using their scalar distance and their directions in high-dimensional 
attribute space are compared via the projection onto low-dimensional space (cf. Fig. 1 (b)). This is defined as:  

 
                                                                               (2) 

subject to 

                         (3) 

   Where in the first term of Eq. (2), i.e. the dependent membership  of class A and class B are measured,  
and  are the distance of the vector  and  to their corresponding centroid  and ; while  is the 
distance between two cluster centroids, and ||.|| is distant norm as well. N and M are the numbers of the elements that 
belong to their classes. The evaluation of performance for the overlapping clusters can be achieved by estimating the 
positions of every individual vectors in a feature subspace. In a high-dimensional domain, however, the comparison 
of vectors in terms of directions and angles is not applicable. Therefore, principle projection in FDA16 is used to find 
a linear combination of features that characterizes two or more classes. The projection matrix can be defined as: 

  
                                                                                                 (4) 

Where                                                                                                             (5) 
 
    Subsequently, in the second term of Eq. (2), i.e. in the correlated membership , the projected vector  and   
can be obtained by multiplying S norm and d norm with FDA projection matrix  respectively. Moreover, one 
should realize that, when applied on a real dataset, the , i.e. the with-in class scatter matrix, normally is a singular 
matrix and thus non-invertible. We have added a tiny perturbation factor to prevent the projection program from 
being trapped and the projection matrix is rewritten as: 

 
                                                                           (6) 

 
Here,  is a unit diagonal matrix. The objective is to achieve proper clustering by minimizing the CMM index.  With 
respect to the aim of feature selection, it is more efficient and direct to use the cardinality of feature subsets as a 
second cost function. However, one can observe (cf. Fig. 2) that the CMM value decreases with increasing feature 
numbers. Therefore, a constraint is that at least one feature count in the second objective function should be set. 

2.3. Bi-objective optimization 

In the previous section, two objective functions (the cardinality of feature subsets and Eq. 4) are formulated as 
quality indicators for the feature extraction procedure. Those two objective functions are conflicting and form a 
combinatorial bi-objective optimization problem. Therefore, we aim at searching for the Pareto front, which 
represents the non-dominated solutions of the proposed feature selection procedure and which can be used to assess 
the trade-off. In order to achieve this, Evolutionary Multi-objective Optimization Algorithm (EMOA) is adopted due 
to its capability of handling combinatorial problems. We specifically utilized the well-known NSGA-II21 algorithm 
(Non-dominated Sorting Genetic Algorithm) which is the multi-objective extension to the classical Genetic 
Algorithm22. NSGA-II has the ability to generate well-spread Pareto fronts with relatively low computational 
overhead and it is proved to be robust in real-world applications through numerous testing and applications. In this 
paper, we omit the detailed discussion on the optimization procedure and use NSGA-II as a ‘standard’ multi-
objective optimizer.  

As we are dealing with combinatorial optimization problem, discrete Pareto fronts are obtained from NSGA-II, in 
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which each point on the resulting Pareto front represents a candidate feature subset. Each candidate solution will be 
used for the clustering algorithm and the one giving the best clustering performance (cf. the performance indicators 
in Section 3.2) is chosen. Note that the functionality of the bi-objective optimization is to prescreen the ‘bad’ 
candidate solutions (Pareto dominated feature subsets) from all the possible solutions, leaving the Pareto optimal 
candidates, the number of which is very small compared to the entire number of solution candidates, to be tested in 
clustering.   

3. Experimental results 

The objective of this section is to assess the performance of integrating fuzzy criteria into unsupervised multi-
objective feature selection procedure. Acceptable results in terms of developing either searching optimization or 
clustering validation algorithms has been reported in a number of papers. However, for a fair and effective validation 
of the proposed FC-MOFS method, a commonly used approach without fuzzy constraint8, referred to as NF-MUFS, 
is used. Additionally, all datasets are employed in Baseline, using the full feature set. The experiments are conducted 
on six publicly available datasets, representing multiple disciplines and real life problems (cf. Table 1).  

Table 1. Dataset description. 

Dataset Type Size Dimension Class 
Glass 

Numerical 
data  

214 9 6 
Wine 178 13 3 

WDBC 569 30 2 
Libras 270 90 15 
Sonar Voice 208 60 2 

UMIST Image 575 644 20 

3.1.      Parameter setting 

In both FC-MOFS and NF-MUFS, the maximum generation and population size are set as same to 100 and 25 
respectively; the crossover percentage is 0.9 and the mutation percentage is 0.4, while the rate of mutation is 
adaptively selected according to the non-dominated sorting performance and expected number of local optima. The 
clustering algorithm in unsupervised learning of FC-MOFS is fuzzy c-means, which is substituted by k-means in 
NF-MUFS.  

3.2. Validation of FS approach 

From the literature, three widely used evaluation metrics, i.e., Accuracy17 (ACC), Normalized Mutual 
Information18 (NMI) and Rand Index19 (RI) are computed for our experiments. To gain insight in the proposed 
method, we investigated some aspects that influence clustering performance after feature selection schemes. In the 
filter approach, the fuzzy entropy feature selection runs once to rank all features for guiding the process in NSGA-II 
algorithm as initialization; then the results of 20 independent runs of NSGA II to obtain global non-dominated 
features (cf. Fig. 2) set are tested on six different benchmarks (cf. Table 2 to Table 4). Setting three different 
evaluation strategies, i.e., the application on full sample population (f-s), random sampling (r-s) on the basis of 
bootstrapping, and uniform distribution sampling (u-s), the accuracy and general capability of FC-MOFSA are 
measured in overall 50 times. 

 The results of bi-objective optimization are illustrated in Fig. 2, in which each subfigure stands for one data set. 
The blue crosses in the figure represent different candidate feature subsets after the termination of NSGA-II 
optimizer. Because of the stochasticity of the NSGA-II optimizer, 20 independent runs are conducted for each data 
set, resulting in a ‘layering structure’ of the blue crosses. From all the independent runs, we only selected the non-
dominated ones using the non-dominated sorting technique. The Pareto fronts generated from 20 independent runs 
are marked by red circles in Fig. 2. Most of the Pareto fronts are convex, except for Fig. 2(a), in which only 3  
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Fig. 2. The Pareto fronts for all dataset ((a) to (f)), consisting of 20 independent runs for each database, including 100 generations per run; the          
global non-dominated sets are selected (red circle) from local non-dominated sets (blue cross). The vertical axis is CMM error w.r.t the number 
of features on the horizontal axis. 

                    Table 2. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering results in ACC index (best-row 
performance is marked as bold italic). 

dataset 
Sampling 
strategy 

ACC ± std (%) 

FC-MOFSA nf NF-MUFS nf Baseline 
 f-s 53.93 ± 2.11 2 44.72 ± 2.12 2 44.20 ± 4.15 

Glass r-s 54.36 ± 3.77 2 42.61 ± 3.39 3 41.76 ± 4.43 
 u-s 55.50 ± 4.09 2 43.36 ± 2.47 1 41.85 ± 4.81 

 f-s 80.34 ± 3.15 2 75.28 ± 3.22 3 70.22 ± 2.28 
Wine r-s 80.27 ± 5.15 2 75.20 ± 3.45 10 69.02 ± 5.21 

 u-s 78.31 ± 6.34 2 74.58 ± 4.97 3 68.00 ± 7.39 

 f-s 88.40 ± 2.38 2 83.83 ± 1.85 14 85.41 ± 2.49 
WDBC r-s 88.27 ± 2.15 2 84.38 ± 1.95 14 84.51 ± 2.11 

 u-s 88.37 ± 2.54 3 84.83 ± 2.34 6 84.53 ± 2.64 

 f-s 47.79 ± 4.44 16 44.44 ± 4.29 20 44.81 ± 2.21 
Libras r-s 28.85 ± 3.35 16 27.67 ± 4.30 20 17.23 ± 2.01 

 u-s 28.46 ± 4.22 16 28.55 ± 4.31 29 17.93 ± 2.28 

 f-s 57.44 ± 2.99 15 51.44 ± 2.46 4 55.29 ± 3.85 
Sonar r-s 59.67 ± 2.89 5 54.35 ± 2.30 14 55.20 ± 3.73 

 u-s 60.67 ± 3.34 4 54.46 ± 2.70 16 56.37 ± 4.03 

 f-s 47.91 ± 4.11 167 45.78 ± 2.88 197 43.65 ± 1.48 
UMIST r-s 25.78 ± 2.39 199 22.50 ± 2.48 197 13.43 ± 1.53 

 u-s 25.56 ± 3.20 204 23.33 ± 3.05 197 13.78 ± 1.45 

 
features are present and which indicates the existence of trade-off solutions. In addition, the points on the Pareto 
front are well-spread. In Fig. 2(c), the distribution of the points is not as good as the rest, which suggests that using 
more evaluation budget in the multi-objective optimization might improve the quality of the Pareto front on the 
WDBC dataset. On the basis of our candidate solutions, the resulting Pareto fronts are reliable for using later in the 
clustering algorithm. The details of six datasets are shown in Table 1. The results of comparisons of clustering 
performance are listed in Table 2, Table 3 and Table 4. The values indicated in bold are the best results among the 
algorithms in the same situation and nf denotes the number of features used in the clustering. These results suggest 
the following evaluations: (1) Compared with the baseline, it can be observed that the feature selection procedure is  
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                   Table 3. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering results in NMI index (best-row   
performance is marked as bold italic). 

dataset 
Sampling 
strategy 

NMI ± std (%) 
FC-MOFSA nf NF-MUFS nf Baseline 

 f-s 41.25 ± 4.35 2 33.12 ± 2.63 2 39.37 ± 5.42 
Glass r-s 45.14 ± 4.25 2 35.14 ± 2.93 2 38.60 ± 5.08 

 u-s 47.01 ± 3.33 2 36.62 ± 3.76 2 39.11 ± 5.50 

 f-s 52.37 ± 5.43 2 41.63 ± 5.22 10 42.87 ± 5.19 
Wine r-s 53.36 ± 0.64 2 44.60 ± 4.86 10 44.95 ± 6.40 

 u-s 52.09 ± 8.40 2 44.09 ± 5.61 7 44.95 ± 7.90 

 f-s 44.79 ± 5.35 1 38.02 ± 4.28 28 42.20 ± 5.08 
WDBC r-s 41.17 ± 5.01 1 38.56 ± 4.44 4 40.41 ± 4.32 

 u-s 39.85 ± 5.45 2 39.90 ± 5.24 6 41.42 ± 5.25 

 f-s 62.10 ± 2.83 16 56.36 ± 3.33 29 60.84 ± 3.44 
Libras r-s 25.98 ± 3.00 16 20.80 ± 3.24 16 19.93 ± 3.39 

 u-s 28. 85 ± 2.59 16 22.67 ± 3.39 29 22.01 ± 3.52 

 f-s 0.91 ± 0.81 14 0.91 ± 1.83 4 0.88 ± 0.87 
Sonar r-s 2.53 ± 0.71 5 1.82 ± 0.79  14 1.21 ± 0.73 

 u-s 2.84 ± 1.11 4 1.95 ± 1.47 16 1.64 ± 0.81 

 f-s 63.84 ± 4.04 167 64.74 ± 4.83 167 63.82 ± 1.83 
UMIST r-s 25.57 ± 3.95 199 20.17 ± 3.86  197 13.10 ± 2.12 

 u-s 28.39 ± 4.67 204 22.43 ± 4.98 197 14.86 ± 1.63 

 
                   Table 4. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering results in RI index (best-row    

performance is marked as bold italic). 

dataset 
Sampling 
strategy 

RI ± std (%) 
FC-MOFSA nf NF-MUFS nf Baseline 

 f-s 65.49 ± 2.15 2 58.94 ± 2.88 2 53.63 ± 4.32 
Glass r-s 65.97 ± 2.17 2 58.22 ±2.62 2 48.89 ± 3.60 

 u-s 65.59 ± 2.03 2 58.35 ± 2.93 2 44.35 ± 1.58 

 f-s 77.86 ± 3.02 1 73.00 ± 2.99 3 71.86 ± 5.58 
Wine r-s       78.03 ± 3.90 1 74.53 ± 3.20 3 43.66 ± 5.02 

 u-s 76.48 ± 4.90 1 74.01 ± 4.10 3 44.91 ± 5.46 

 f-s 73.79 ± 3.58 1 73.08 ± 2.99 5 75.04 ± 2.19 
WDBC r-s 74.34 ± 3.02 1 73.64 ± 2.68 14 50.70 ± 5.51 

 u-s 74.46 ± 3.89 2 74.27 ± 3.26 6 50.46 ± 5.92 

 f-s 90.40 ± 4.85 16 90.16 ± 3.25 20 90.37 ± 7.85 
Libras r-s 90.68 ± 4.76 16 91.30 ± 4.66 29 83.87 ± 7.87 

 u-s 91.55 ± 4.95 16 91.29 ± 6.26  18 82.34 ± 2.45 

 f-s 50.80 ± 6.55 4 49.70 ± 6.88 4 50.32 ± 4.19 
Sonar r-s 51.11 ± 5.98 5 50.16 ± 5.08 4 49.97 ± 3.91 

 u-s 51.18 ± 8.53 4 50.14 ± 8.78 4 49.99 ± 6.42 

 f-s 95.51 ± 6.11 198 88.51 ± 4.37 197 92.80 ± 1.48 
UMIST r-s 94.69 ± 5.24 199 86.95 ± 4.58 167 88.01 ± 1.04 

 u-s 94.40 ± 6.65 199 89.11 ± 5.12  167 85.72 ± 1.24 

 
necessary and efficient by removal of noise and redundancy . (2) The best solutions of the proposed FC-MOFSA 
mostly have higher accuracy, mutual information and RI other than the non-fuzzified feature selection algorithms 
(NF-MUFS and Baseline employment). In spite of the slightly less performance on WDBC, Libras and UMIST 
dataset, the u-s and f-s value are still competitive compared with the best results of other methods. (3) The average r-
s means that even though with less samples (information) obtained from entire population, still, in most situations, 
the results of FC-MOFSA are better than those of NF-MUFS and Baseline. (4) The proposed method, in most cases, 
has the least numbers of features for prediction of the best results. In the second highest cases, FC-MOFSA still 
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obtains the lowest cardinality of feature sets. (5) By expressing the descriptor of similarity in RI and descriptor of 
redundancy in NMI, our method achieves an accurate clustering performance. This is due to the exploitation of 
discriminative and overlapping information in an unsupervised context. (6) The accuracy and the similarity grouping 
capability of the experimental algorithms suffer from a serious degradation when down-sampling is applied on the 
Libras and UMIST dataset. The sparse distribution of these dataset complicates the unsupervised categorization 
scheme. However, it is observed that FC-MOFSA is superior to the rest approaches by uncovering the underlying 
patterns and possibly skewed structure.  

4. Conclusions 

In this paper, we present a new multi-objective feature selection algorithm utilizing the fuzzy hybrid filter-
wrapper approach. We introduce a fuzzy criterion-based manner in multi-objective optimization problems and 
thereby increase the clustering accuracy in unsupervised feature selection schemas. The proposed method 
outperforms the commonly used multi-objective feature selection method with non-fuzzified parameters, in terms of 
accuracy and general capability. In addition to the fuzzy entropy in pre-selection, we also present a new fuzzy index 
called Correlation Membership Measurement (CMM), which produces superior results, particularly on sparse and 
skewed datasets. Future work will focus on further comprehensive and systematic validation considering different 
combinations of clustering algorithms and objective functions3 using principles of fuzziness. 
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