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We study the motion of neutral and charged spinning bodies in curved spacetime in the test-particle limit.
We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation that allows
for different choices of the Hamiltonian. We derive conditions for the existence of constants of motion and
apply the formalism to the case of spherically symmetric spacetimes. We show that the periastron of a
spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstrøm background not only precesses
but also varies radially. By analyzing the stability conditions for circular motion we find the innermost
stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the
ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived
from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.
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I. INTRODUCTION

Relativistic dynamics is becoming increasingly relevant
in astrophysics and cosmology, for example when it comes
to understanding compact stars, black holes, and gravita-
tional waves. It was realized long ago that spin, i.e. the
internal angular momentum of compact objects, can have
important dynamical effects, and an extensive literature on
the subject has become available [1–10].
In a recent article [11] three of us presented a nonstand-

ard covariant description of spinning bodies in the test-
particle limit. In contrast to the most-widely used approach
of test-particle dynamics [12–16], it is formulated in terms
of a covariant kinetic momentum rather than a canonical
momentum which is not proportional to the four-velocity of
the body. The price to pay is a world line that does not
always coincide with that of a center of mass; rather it
follows the spin, with the result that there is a mass dipole
describing the displacement between the two in the
presence of curvature. There are several advantages to this
formulation: it does not require constraints like the Pirani or
Tulczyjew conditions, it can be used with a variety of
Hamiltonians, and it makes the analysis of the motion of
spinning test particles in curved spacetime more tractable;
in some cases of practical interest exact results are obtained.
In this paper we continue to develop this formalism of

spin dynamics in the test-particle limit. It is organized as
follows. In Sec. II we provide a brief summary of the
Hamiltonian phase-space approach of Ref. [11], extending
it to include also electric charge and electromagnetic fields.
We proceed with the role of Killing vectors in constructing

constants of motion in Sec. III. In Sec. IV the formalism is
applied to motion associated with a minimal kinetic
Hamiltonian in static and spherically symmetric spacetimes
of Schwarzschild and Reissner-Nordstrøm type. We ana-
lyze circular orbits in Sec. Vand find noncircular orbits by a
perturbative construction in Sec. VI. We also determine the
effects of spin on the periastron and show that in addition to
precessing the periastron also shifts radially. In Sec. VII the
stability of circular orbits is analyzed in detail to determine
the radius of the innermost stable circular orbit (ISCO) as a
function of spin. The stability conditions are found to
impose an upper limit on the spin associated with the ISCO.
Section VIII describes how to include Stern-Gerlach forces
[17–21], both of electromagnetic and of gravitational
origin, using a class of nonminimal Hamiltonians. We
show that they allow for an extension of all the constants of
motion associated with the minimal Hamiltonian and
determine also the circular orbits for this case. In
Sec. IX it is shown that the equations of motion we use
can be derived in a different way from consistency of the
Einstein equations with an appropriate energy-momentum
tensor. Finally in Sec. X we conclude with a discussion and
summary. Some mathematical details have been collected
in the appendixes.

II. COVARIANT HAMILTON FORMALISM
FOR SPINNING BODIES

Test particles are gravitational objects characterized by a
finite number of degrees of freedom such as mass, charge,
and spin, of which the backreaction on spacetime geometry
can be considered negligible. Thus the phase space is finite
dimensional; it is spanned by the position xμ, momentum
πμ, and antisymmetric spin tensor Σμν, with mass m and
charge q constant parameters characterizing the strength of
interactions. While the four-velocity uμ ¼ _xμ is a timelike
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unit vector, the spin tensor can actually be decomposed in a
spacelike vector Zμ, the mass dipole vector, and a spacelike
axial vector Sμ, the spin proper,

Σμν ¼ −
1ffiffiffiffiffiffi−gp εμνκλuκSλ þ uμZν − uνZμ; ð1Þ

where

Sμ ¼
1

2

ffiffiffiffiffiffi
−g

p
εμνκλuνΣκλ; Zμ ¼ Σμνuν; ð2Þ

such that S · u ¼ Z · u ¼ 0. It is interesting to note that in
addition one can define a third spacelike vector

Wμ ¼ −
1ffiffiffiffiffiffi−gp εμνκλuνSκZλ ¼ ðΣμν − uμZνÞZν; ð3Þ

orthogonal to the other ones,

W · u ¼ W · S ¼ W · Z ¼ 0: ð4Þ

Together ðu; S; Z;WÞ form a set of independent vectors,
one timelike and three spacelike, which can be used to
define a frame of basis vectors carried along the particle
world line.
We build our formulation of the dynamics on a set of

covariant Poisson-Dirac brackets that are closed in the
sense of Jacobi identities and independent of the specific
Hamiltonian,

fxμ; πνg ¼ δμν ;

fπμ; πνg ¼ 1

2
ΣκλRκλμν þ qFμν;

fΣμν; πλg ¼ Γ μ
λκ Σνκ − Γ ν

λκ Σμκ;

fΣμν;Σκλg ¼ gμκΣνλ − gμλΣνκ − gνκΣμλ þ gνλΣμκ; ð5Þ

with all other brackets vanishing. The structure functions
appearing in these brackets are the metric, connection,
and curvature tensor of the spacetime manifold, with the
electromagnetic field strength Fμν appearing as the struc-
ture function for the central charge q.
Next we have to specify a Hamiltonian to generate the

equations of motion via the brackets (5). The minimal
choice is the kinetic Hamiltonian

H0 ¼
1

2m
gμνðxÞπμπν: ð6Þ

Other choices are possible, and we will discuss a specific
example in Sec. VIII. The equations of motion derived from
the Hamiltonian H0 are

πμ ¼ gμνmuν; mDτuμ ¼
1

2
ΣκλR μ

κλν uν þ qFμ
νuν;

ð7Þ

for the world line, and

DτΣμν ¼ 0; ð8Þ

for the spin tensor; here Dτ is the pullback of the covariant
derivative on the world line. It follows that the world line is
a curve on which the spin tensor is covariantly constant.
This does not hold for the vectors S and Z individually as
they satisfy

mDτSμ ¼
1

2

ffiffiffiffiffiffi
−g

p
εμνκλΣκλ

�
1

2
ΣαβR ν

αβ σ þ qFν
σ

�
uσ;

mDτZμ ¼ Σμν

�
1

2
ΣκλRκλνσ þ qFνσ

�
uσ: ð9Þ

Comparing with the conventional analysis of spinning
particle dynamics [4,5,7] it is seen that the constraint on
the mass dipole (e.g., the Pirani condition [22]) has been
replaced here by a proper equation of motion. As a result in
our formulation of classical relativistic mechanics the mass-
dipole Z cannot vanish permanently, except in flat field-free
Minkowski spacetime.1 However, it is easily established
that the two approaches can be made to agree to linear order
in the spin tensor.

III. CONSTANTS OF MOTION

In the Hamiltonian formalism constants of motion are
found by requiring its bracket with the Hamiltonian to
vanish. There are three generic constants of motion for any
spacetime geometry. First the Hamiltonian itself, which
defines the particle mass

H0 ¼ −
m
2
⇒ gμνuμuν ¼ −1: ð10Þ

In addition, there are two constants of motion for the spin:
the total spin

I ¼ 1

2
gμκgνλΣμνΣκλ ¼ S · Sþ Z · Z ð11Þ

and the pseudoscalar product

D ¼ 1

8

ffiffiffiffiffiffi
−g

p
εμνκλΣμνΣκλ ¼ S · Z: ð12Þ

1However, one can have Zμ ¼ 0 in pseudoclassical models in
which the spin tensor is represented in terms of Grassmann
variables Σμν ¼ iψμψν, because of conservation of the super-
charge Q ¼ ψμπμ [23–25].
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Furthermore there are constants of motion depending on
the symmetries of the geometry. They are constructed in
terms of Killing vectors and tensors. In particular, constants
of motion J of the form

J ¼ γ þ αμπμ þ
1

2
βμνΣμν ð13Þ

exist if

∇μαν þ∇ναμ ¼ 0; ∇λβμν ¼ Rμνλκα
κ;

∂μγ ¼ qFμνα
ν: ð14Þ

Thus αμ is a Killing vector and βμν its curl,

βμν ¼
1

2
ð∇μαν −∇ναμÞ; ð15Þ

while a solution for γ can be found if the Lie derivative of
the vector potential with respect to α vanishes,

αν∂νAμ þ ∂μα
νAν ¼ 0 ⇒ γ ¼ qAμα

μ: ð16Þ

This requirement, in fact, states that the electromagnetic
and gravitational fields must both exhibit the same sym-
metries for an associated constant of motion to exist.

IV. SPHERICAL SYMMETRY

There are few static solutions of the Einstein equations
possessing spherical symmetry. The most relevant ones
are the Minkowski and Schwarzschild geometries. In
addition, the Reissner-Nordstrøm geometry is a static and
spherically symmetric solution of the Einstein-Maxwell
equations. In these symmetric spacetimes the orbital
angular momentum combines with the spin to create a
conserved total angular momentum. In this section we
consider the exterior Reissner-Nordstrøm geometry of an
electrically charged massive spherical body and its
reduction to Schwarzschild spacetime in the limit of
vanishing charge.
The standard form of the Schwarzschild-Reissner-

Nordstrøm metric is represented by the line element

gμνdxμdxν ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ dr2

1 − 2M
r þ Q2

r2

þ r2dθ2 þ r2sin2θdφ2: ð17Þ

Here M is the mass and Q is the charge of the source
creating the spacetime curvature as well as a static electric
Coulomb field

A ¼ Aμdxμ ¼ −
Q
r
dt;

1

2
F ¼ dA ¼ Q

r2
dr∧dt: ð18Þ

The components of the connection and curvature tensor
are collected in Appendix A. In the line element (17) t and
φ are cyclic coordinates implying simple constant Killing
vectors for time translations and rotations around the z axis.
Two more Killing vectors exist generating rotations around
the two other axes. As the Coulomb potential is also static
and spherically symmetric, we obtain four constants of
motion: (i) the particle energy

E ¼ −πt þ
qQ
r

−
�
M
r2

−
Q2

r3

�
Σtr; ð19Þ

with Q ¼ 0 in Schwarzschild spacetime; (ii) and the three-
vector of total angular momentum

J1 ¼ − sinφπθ − cotanθ cosφπφ−r sinφΣrθ

− r sin θ cos θ cosφΣrφ þ r2sin2θ cosφΣθφ;

J2 ¼ cosφπθ − cotanθ sinφπφþr cosφΣrθ

− r sin θ cos θ sinφΣrφ þ r2sin2θ sinφΣθφ;

J3 ¼ πφ þ rsin2θΣrφ þ r2 sin θ cos θΣθφ: ð20Þ

The analysis of the equations of motion can be simplified
considerably by using the spherical symmetry to fix the
direction of the total angular momentum to be the z axis,

J ¼ ð0; 0; JÞ; J ¼ mr2uφ þ rΣrφ; ð21Þ

resulting in

Σrθ ¼ −mruθ; Σθφ ¼ J
r2
cotanθ: ð22Þ

Clearly this choice does not fix the motion to be in the
equatorial plane θ ¼ π=2, as the spin and orbital angular
momentum are not necessarily aligned; indeed, it is
possible to have precession of both the spin and the orbital
angular momentum, making the plane of the orbit precess
[26] as well.

V. CIRCULAR ORBITS

In a Schwarzschild-Reissner-Nordstrøm background
planar motion requires alignment of the spin and orbital
angular momentum. In this section we consider, in par-
ticular, the conditions for plane circular motion. The
analysis is most conveniently done by taking the plane
of motion to be the equatorial plane, which implies θ ¼
π=2 and uθ ¼ 0 as well as _uθ ¼ 0. As a result

Σtθ ¼ Σrθ ¼ Σθφ ¼ 0: ð23Þ

From the definition (12) it follows that such orbits satisfy
the conservation law
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D ¼ S · Z ¼ 0: ð24Þ
For circular motion we additionally impose r ¼ R ¼ const and ur ¼ _ur ¼ 0.
Using the equation of motion (7) for the r-coordinate, the latter condition leads to

ð2MR3 − 3M2R2 − 3R2Q2 þ 6MRQ2 − 2Q4ÞðR2 − 2MRþQ2Þut2
−ðR2 − 3MRþ 2Q2ÞðMR −Q2ÞR4uφ2

¼
�
ð2MR − 3Q2Þε − ðMR − 2Q2Þ qQ

mR

�
ðR2 − 2MRþQ2ÞR2ut þ ðMR −Q2Þ2ηR2uφ; ð25Þ

where ε ¼ E=m and η ¼ J=m are the particle energy and
angular momentum per unit of mass. The Hamiltonian
constraint (10) for circular orbits becomes

�
1 −

2M
R

þQ2

R2

�
ut2 ¼ 1þ R2uφ2: ð26Þ

Hence (25) and (26) constitute two independent equations
for ut and uφ in terms of ðM;Q; RÞ and ðε; ηÞ; therefore ut
and uφ are constant on circular orbits,

_ut ¼ _uφ ¼ 0: ð27Þ
As a result, on circular orbits the equations of motion for ut

and uφ reduce to

mgtt _ut ¼ ΣtφRtφtφuφ ¼ 0; mgφφ _uφ ¼ ΣtφRtφtφut ¼ 0;

ð28Þ

implying that Σtφ ¼ 0. This in turn also requires _Σtφ ¼ 0, or

ðMR −Q2ÞutΣrφ þ ðR2 − 2MRþQ2ÞuφΣtr ¼ 0: ð29Þ

Using the conservation laws for E and J, this can be
replaced by

ðMR −Q2Þ2ηut − ðR2 − 2MRþQ2Þ
�
ε −

qQ
mR

�
R4uφ

þ ðR2 − 3MRþ 2Q2ÞðR −MÞR3utuφ ¼ 0: ð30Þ

As this is yet another equation between ðut; uφÞ and the
constants of motion, it fixes a relation between the energy
E ¼ mε and total angular momentum J ¼ mη for a given
circle r ¼ R. In fact, we can now eliminate η between
Eqs. (25) and (30), using the constraint (26), to get

ðR3 − 3MR2 þ 3M2R −MQ2Þut3 − ðR2 − 3MRþ 2Q2ÞRut

¼ −R3

�
ε −

qQ
mR

�
þ
�
ðR2 − 2Q2Þε − ðR2 −MR −Q2Þ qQ

mR

�
Rut2: ð31Þ

For the case of Schwarzschild geometry we take Q ¼ 0 to
get

εR2ð1 − ut2Þ ¼ RðR − 3MÞut − ðR2 − 3MRþ 3M2Þut3:
ð32Þ

It is straightforward to check that in the spinless case with

ut ¼ ε

1 − 2M
R

; ð33Þ

this relation reduces to the standard result

ε ¼ 1 − 2M
Rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3M
R

q ; ð34Þ

for circular orbits.
Having solved Eq. (31)—or (32) if appropriate—one can

then also compute the orbital angular momentum per unit
of mass from the Hamiltonian constraint,

l2 ¼ R4uφ2 ¼ ðR2 − 2MRþQ2Þut2 − R2: ð35Þ
For neutral particles (q ¼ 0) instead of eliminating η and uφ

from Eqs. (25) and (30), one can alternatively eliminate ε
and ut to get a relation for the total angular momentum per
unit of mass η and the proper angular velocity uφ,
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ηðMR −Q2Þ2½2MR − 3Q2 þ R2uφ2ðR2 − 2Q2Þ�
¼ R2uφðM2R4 − 2M2R2Q2 − 2MR3Q2 þ R2Q4 þ 4MRQ4 − 2Q6Þ
− R4uφ3ðMR5 − 6M2R4 þ 6M3R3 − R4Q2 þ 10MR3Q2 − 11M2R2Q2

−4R2Q4 þ 5MRQ4Þ: ð36Þ

In Schwarzschild spacetime this reduces to the result
quoted in Ref. [11],

η

M

�
2þ R3uφ2

M

�
¼ R3uφ

M2

�
1 −

R3uφ2

M

�
1 −

6M
R

þ 6M2

R2

��
:

ð37Þ

VI. PLANE NONCIRCULAR ORBITS

In general relativity the standard procedure for compar-
ing geodesics is the method of geodesic deviations. It is
based on a covariant definition of differences between
geometric quantities associated with geodesics, like the unit
tangent vectors defining the proper four-velocities of test
particles. The procedure can be generalized to world lines
of particles carrying charge and/or spin as follows.
Consider two solutions ðxμðτÞ; uμðτÞ;ΣμνðτÞÞ and ðx̄μðτÞ;

ūμðτÞ; Σ̄μνðτÞÞ of the equations of motion (7) and (8). The

direct differences between dynamical quantities on each
world line at equal proper time τ are denoted by δ,

δXðτÞ ¼ X̄ðτÞ − XðτÞ; ð38Þ

for any X ¼ ðxμ; uμ;ΣμνÞ. As the coordinates xμ are
spacetime scalars, the velocities uμ spacetime vectors,
and the spin-dipoles Σμν spacetime tensors, we can define
their covariant differences by parallel displacement,

ΔxμðτÞ ¼ δxμðτÞ; Δuμ ¼ δuμðτÞ þ δxλΓλν
μuν;

ΔΣμν ¼ δΣμν þ δxλΓ μ
λκ Σκν þ δxλΓ ν

λκ Σμκ: ð39Þ

The equations of motion now imply equations for the
proper-time dependence of these covariant variations; to
linear order,

Δuμ ¼ DτΔxμ;

D2
τΔxμ − Rλκ

μ
νuκuνΔxλ ¼

1

2m
ΣρσRρσ

μ
νDτΔxν þ

1

2m
Σρσ∇λRρσ

μ
νuνΔxλ

þ 1

2m
ΔΣρσRρσ

μ
νuν þ

q
m
Fμ

νDτΔxν þ
q
m
∇λFμ

νuνΔxλ;

DτΔΣμν þ ðRλκσ
μΣσν − Rλκσ

νΣσμÞuκΔxλ ¼ 0: ð40Þ

The formalism, eventually with higher-order extensions
[27–29], can be applied to a perturbative construction
of world lines starting from a known solution of the
equations ofmotion. The circular orbits found in the previous
section define such a starting point to construct eccentric
planar or nonplanar bound orbits in Schwarzschild-Reissner-
Norstrøm backgrounds. However, computationally it is
simpler to work with the noncovariant variations (38) rather
than the covariant ones (39).
Considering eccentric orbits in the equatorial plane

we keep the conditions (23) and (24). With these
restrictions the allowed deviations from circular orbits
can be parametrized by δxμ ¼ ðδt; δr; δφÞ for the orbital
and δΣμν ¼ ðδΣtr; δΣrφ; δΣtφÞ for the spin degrees of
freedom. Now using the conservation laws the varia-
tions δΣtr and δΣrφ can equivalently be expressed by
the change in energy δε and total angular momentum δη
and the coordinate variations. In a condensed notation

the relevant linearized deviation equations (40) then
reduce to

0
BBBBBB@

d2

dτ2 0 α d
dτ β

0 d2

dτ2 γ d
dτ ζ

κ d
dτ λ d

dτ
d2

dτ2 þ μ 0

ν d
dτ σ d

dτ χ d
dτ

1
CCCCCCA

0
BBB@

δt

δφ

δr

δΣtφ

1
CCCA ¼

0
BBBBBB@

0

0

aδηþ bδε

cδηþ dδε

1
CCCCCCA
;

ð41Þ

where the coefficients are defined in terms of the
parameters of the circular reference orbit; the explicit
expressions are given in Appendix B.
The general solution of the inhomogenous linear equa-

tions (41) can be decomposed in a specific solution plus a
solution of the homogeneous equation. Now it is easy to

SPINNING BODIES IN CURVED SPACETIME PHYSICAL REVIEW D 93, 044051 (2016)

044051-5



find a simple specific solution: a constant shift δr such that
the new circular orbit has the same energy ε0 ¼ εþ δε and
total angular momentum η0 ¼ ηþ δη as the noncircular
orbit we wish to construct. Hence by taking this special
circular orbit as the reference orbit we fix δε ¼ δη ¼ 0, and
we only have to solve the homogeneous equation (41).
To solve the homogeneous equation, we consider the

characteristic equation for the periodic eigenfunctions of
the operator (41),

ω3ðω4 − Aω2 þ BÞ ¼ 0; ð42Þ

where

A ¼ μ − ακ − βν − γλ − ζσ;

B ¼ βðκχ − μνþ γðλν − κσÞÞ þ ζðλχ − μσ − αðλν − κσÞÞ:
ð43Þ

In addition to three 0-modes for potential secular solutions
familiar from the motion of spinless particles [27,28], there
are two pairs of nontrivial periodic solutions with angular
frequencies

ω2
� ¼ 1

2

�
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p �
: ð44Þ

These periodic solutions can be cast in the simple form

δt ¼ ntþ sinωþðτ − τþÞ þ nt− sinω−ðτ − τ−Þ;
δφ ¼ nφþ sinωþðτ − τþÞ þ nφ− sinω−ðτ − τ−Þ;
δr ¼ nrþ cosωþðτ − τþÞ þ nr− cosω−ðτ − τ−Þ;

δΣtφ ¼ nσþ sinωþðτ − τþÞ þ nσ− sinω−ðτ − τ−Þ; ð45Þ

where τ� are constants of integration determining the
relative phases of the oscillations, and up to some common
normalization constants C� the amplitudes are

nt� ¼ C�½λðβγ − αζÞ þ βðω2
� − μÞ�;

nφ� ¼ C�½−κðβγ − αζÞ þ ζðω2
� − μÞ�;

nr� ¼ C�ω�ðβκ þ ζλÞ;
nσ� ¼ C�ω2

�ðω2
� − μþ ακ þ γλÞ: ð46Þ

The null solutions of Eq. (42) suggest that in addition to the
periodic solutions (45) there might also be secular solutions
for the orbital degrees of freedom [27]. However, as we
have chosen the energy and total angular momentum of the
orbit to be the same as that of the circular reference orbit, no
such freedom is left in this case, except for trivial shifts in
the origin of the t and φ coordinates. Therefore the
complete first-order solution for the noncircular planar
orbits is

tðτÞ ¼ utτ þ ntþ sinωþðτ − τþÞ þ nt− sinω−ðτ − τ−Þ;
φðτÞ ¼ uφτ þ nφþ sinωþðτ − τþÞ þ nφ− sinω−ðτ − τ−Þ;
rðτÞ ¼ Rþ nrþ cosωþðτ − τþÞ þ nr− cosω−ðτ − τ−Þ;
ΣtφðτÞ ¼ nσþ sinωþðτ − τþÞ þ nσ− sinω−ðτ − τ−Þ:

ð47Þ

The perturbations, in particular those in the radial
direction, have double periods. Hence the periastron
and apastron will behave in a complicated way, as the
body reaches different minimal or maximal radial
distances at nonconstant intervals. However, in the limit
B ≪ A2 the dominant frequency will be ωþ ≃ ffiffiffiffi

A
p

, and
the variations in the periastron and apastron will be
relatively slow. An example for the case of
Schwarzschild geometry (Q ¼ 0) is given in Fig. 1,
where we have plotted the radial variation as a function
of proper time for a circular reference orbit R ¼ 10M
with orbital angular momentum l ¼ 4M and for
deviation parameters

nrþ ¼ 0.1R; nr− ¼ 0.05R; τþ − τ− ¼ 100M:

ð48Þ

As we have obtained the noncircular orbits (47) under
the conditions that the specific energy and total angular
momentum are the same as those of the circular reference
orbits, the conservation laws (19) and (21) for the spin-
dipole components link the variations δΣμν of these
quantities to those of the orbital parameters

δΣrφ ¼ Fδuφ þ G
δr
R
; δΣtr ¼ Kδut þ L

δr
R
; ð49Þ

where

FIG. 1. Radial deviation from circular orbit with R ¼ 10M and
l ¼ 4M as a function of proper time in Schwarzschild spacetime
for deviation parameters as in Eq. (48).
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F¼−mR; G¼−
m
R
ðηþR2uφÞ;

K¼ mR3

MR−Q2

�
1−

2M
R

þQ2

R2

�
;

L¼ mR4

ðMR−Q2Þ2
��

2M
R

�
1−

M
R
þ2Q2

R2

�
−
Q2

R2

�
3þQ2

R2

��
ut

−
�
2M
R

−
3Q2

R2

�
εþ qQ

mR

�
M
R
−
2Q2

R2

��
: ð50Þ

As a result

δΣrφ ¼ Nrφ
þ cosωþðτ − τþÞ þ Nrφ

− cosω−ðτ − τ−Þ;
δΣtr ¼ Ntrþ cosωþðτ − τþÞ þ Ntr

− cosω−ðτ − τ−Þ; ð51Þ

with

Nrφ
� ¼ ω�Fn

φ
� þ G

nr�
R

; Ntr
� ¼ ω�Knt� þ L

nr�
R

:

ð52Þ

Thus we have obtained a large class of noncircular planar
orbits (to first order in the deviations), parametrized by the
constants C� and the radial coordinate R of the circular
orbit with the same specific energy and total angular
momentum.

VII. THE ISCO

In black-hole spacetimes there is an ISCO at a specific
distance from the horizon. For simple point masses in
Schwarzschild spacetime this orbit is located at R ¼ 6M.
Here the effective potential has a flex point where the
orbital angular momentum reaches a minimum of
l2 ¼ 12M2. Circular orbits at values R < 6M are possible
in principle but not in practice, as they correspond to
maxima of the effective potential rather than minima; thus
they are unstable under small perturbations.
The presence of spin alters the stability conditions and

therefore the location of the ISCO. The stability conditions
for circular orbits can be derived directly from the analysis
in the previous section. Indeed, circular orbits are stable as
long as the planar deviations display oscillatory behavior.
In contrast, whenever the frequency ω of these deviations
develops an imaginary part, the radial motion displays
exponential behavior and the orbit becomes unsta-
ble [30,31]. Now the frequencies of the deviations are
solutions of the eigenvalue equation (44). Thus we must ask
what is the parameter domain in which the eigenvalues are
real, and especially where the boundary between stability
and instability is located. The first condition is obviously
for ω2

� to be real; this requires

A2 − 4B ≥ 0: ð53Þ

In addition, for the frequencies ω� themselves to be real as
well we must demand that ω2

� ≥ 0, which happens if

A ≥ 0; B ≥ 0: ð54Þ
Figure 2 shows the solutions of these inequalities for the
case of Schwarzschild spacetime in terms of the allowed
values of the dimensionless radial coordinate R=M and of
the orbital angular momentum per unit of mass

l ¼ R2uφ: ð55Þ
The shaded area corresponds to stable circular orbits. As we
have established in Sec. V that any circular orbit is deter-
mined for a given background geometry by the parametersR
and J—which fix uφ, ut, andE—the allowed orbits for fixed
R=M and various l=M in Fig. 2 differ in the values of
η ¼ J=m. Equivalently they differ in the value of the spin per
unit of mass parametrized by the dimensionless variable

σ

M
¼ RΣrφ

mM
: ð56Þ

We have also indicated in Fig. 2 several curves of
constant spin. The curves g, f, h represent isospin lines
for spin σ ¼ 0, for retrograde spin σ ¼ −0.5M, and for
prograde spin σ ¼ 0.5M, respectively. In each case the
ISCO is defined by the value of R=M where the curve
crosses the line B ¼ 0. For vanishing spin this is at the

FIG. 2. Allowed domains of radius R=M and orbital angular
momentum l=M for plane circular orbits in Schwarzschild
spacetime. Included are four curves labeled f, g, h, p defining
orbits of fixed spin per unit of mass σ for retrograde, vanishing,
and prograde spin σ=M ¼ ð−0.5; 0; 0.5; 0.7Þ.

SPINNING BODIES IN CURVED SPACETIME PHYSICAL REVIEW D 93, 044051 (2016)

044051-7



well-known value R ¼ 6M, for prograde spin it is at a lower
value of R, and for retrograde spin it is at a higher value
of R. There actually is a smallest ISCO R≃ 4.5M for
σ ≃ 0.55M, where the curve B ¼ 0 reaches a minimum
value of orbital angular momentum.
For higher spin values the ISCO is reached at the point

where the isospin curves cross the line A2 − 4B ¼ 0; an
example is the curve labeled p corresponding to σ ¼ 0.7M.
In general such high values of σ=M are possible only if the
masses m and M of the test particle and the black hole
creating the background become comparable. Of course,
the backreaction of the test mass can then no longer be
ignored, and our estimates of the ISCO become unreliable.
By calculating the values of the spin parameter σ=M on

the lines separating regions of stable and unstable orbits, we
have extracted the values of R for the ISCO as a function of
σ=M in Schwarzschild spacetime. The result is represented
by the continuous curve labeled Risco in Fig. 3. The two
branches correspond to lower-spin ISCOs on the curve
B ¼ 0 and higher-spin ISCOs on the curve A2 − 4B ¼ 0,
respectively. These results agree qualitatively with other
studies in the literature based on the conventional
Mathisson-Papapetrou-Dixon approach [30,32].
The isospin curves in Fig. 2 for lower-spin values,

corresponding to the left-hand branch in Fig. 3, also
suggest that the circular orbits become unstable when
the orbital angular momentum reaches its minimum as a
function of radial distance for constant σ. This issue can be
analyzed more precisely by returning to Eq. (37) and
rewriting it in the form

σR
M2

�
2R
M

þ l2

M2

�
¼ l

M

�
R
M

− 2

��
R2

M2
−

l2

M2

�
R
M

− 3

��
:

ð57Þ

From this equation one can derive the minimum of l=M as a
function of R=M for fixed spin σ. The result is plotted as the
dashed curve labeled Rmin in Fig. 3. Over the range of
predominant physical interest −0.5 < σ=M < 0.5 the curve
nearly coincides with that for Risco. However, there are small
differences for larger absolute spin values, reminiscent of
those found in higher-order post-newtonian corrections for
compact binaries [31]. Note that the parts of the dashed curve
for large retrograde spin actually enter the region of instability
and hence do not correspond to stable circular orbits.
A similar analysis can be done for the case of a spinning

test particle in a Reissner-Nordstrøm background. Of
course, one has two more parameters to account for: the
charge Q of the central black hole, and the charge q of the

FIG. 4. Stable circular orbits of a chargeless spinning particle in
Reissner-Nordstrøm spacetime with Q=M ¼ 0.5.

FIG. 3. Radius of the ISCO: Risco=M, as a function of spin σ=M
for Schwarzschild spacetime (continuous curve) compared with
the radius of minimal orbital angular momentum Rmin=M at fixed
spin (dashed curve).

FIG. 5. Risco=M as a function of σ=M for Reissner-Norstrøm
spacetime with Q=M ¼ 0.5.
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test particle. Figure 4 shows the stability region of circular
orbits of electrically neutral spinning test particles for a
black hole of charge Q ¼ 0.5M, including the curve
representing the l − R relation for circular orbits of a
spin-0 particle. In Fig. 5 the radial coordinate of the ISCO is
given as a function of spin for the same black-hole
background geometry with Q ¼ 0.5M. We observe that
the ISCOs are located closer to the horizon, Rhor ≃ 1.87M,
and that with this value of the black-hole charge the
minimal ISCO is reached at a somewhat smaller spin value
than in the Schwarzschild case, σmin ≃ 0.53M.

VIII. A NONMINIMAL HAMILTONIAN

In the presence of external fields spinning particles can be
subject to spin-dependent forces coupling to gradients in the
fields like the well-known Stern-Gerlach force [21,33–35] in
electrodynamics. Such forces can bemodeled in our approach
by additional spin-dependent terms in the Hamiltonian,

H ¼ H0 þHSG; HSG ¼ κ

4
RμνκλΣμνΣκλ þ λ

2
FμνΣμν:

ð58Þ
Using this nonminimal Hamiltonian in the brackets to con-
struct equations of motion, we get

πμ ¼ mgμνuν;

mgμνDτuν ¼
1

2
ΣκλRκλμνuν þ qFμνuν −

κ

4
ΣρσΣκλ∇μRρσκλ

−
λ

2
Σκλ∇μFκλ; ð59Þ

and

DτΣμν ¼ ðκΣρσRρσ
μ
λ þ λFμ

λÞΣνλ − ðκΣρσRρσ
ν
λ þ λFν

λÞΣμλ:

ð60Þ
Remarkably, using Eqs. (15) and (16) and the Bianchi
identities forFμν andRμνκλ, it is straightforward to generalize
the theorem of Ref. [11], that any constant of motion (13)
remains a constant ofmotion in the presence of Stern-Gerlach
forces,

fJ;HSGg ¼ κΣμνΣρσ

�
−
1

4
αλ∇λRρσμν þ Rρσμ

λβλν

�

þ λΣμν

�
−
1

2
αλ∇λFμν þ Fμ

λβλν

�
¼ 0: ð61Þ

In particular, in Schwarzschild and Reissner-Nordstrøm
backgrounds the energyE, Eq. (19), and all three components
of the full total angular momentum J, Eqs. (20), remain
constants ofmotion for spinningneutral andchargedparticles.
The existence of these constants of motion enable us to

perform a similar analysis of orbits as in the case of the
minimal Hamiltonian. As an example we solve for plane
circular orbits in a Schwarzschild background similar to
those discussed in Sec. V for the minimal case. Again we
take the plane of the orbit to be the equatorial plane
θ ¼ π=2 with uθ ¼ ur ¼ 0 and Σθν ¼ 0 for all values of ν.
Then the conservation laws reduce to the same form as in
Eqs. (19) and (21),

E ¼ m

�
1 −

2M
R

�
ut −

M
R2

Σtr; J ¼ mR2uφ þ RΣrφ:

The Hamiltonian constraint now reads

H ¼ H0 þHSG ¼ −
m
2
; ð62Þ

which becomes

−
�
1 −

2M
R

�
ut2 þ R2uφ2 þ 1

¼ −
2κM
m

�
2

R3
Σtr2 þ Σrφ2

R − 2M
−
1

R

�
1 −

2M
R

�
Σtφ2

�
:

ð63Þ

Next the total spin is

I ¼ −Σtr2 − R2

�
1 −

2M
R

�
Σtφ2 þ R2Σrφ2

1 − 2M
R

; ð64Þ

a constant. These constraints plus the vanishing of the
radial acceleration _ur ¼ 0 imply that the angular velocity
and the time-dilation factor are constant, in fact causing Σtφ

to vanish,

_ut ¼ _uφ ¼ Σtφ ¼ 0: ð65Þ

Then one finds a quartic equation for the angular velocity in
terms of the radius R and the angular momentum J ¼ mη,
which generalizes Eq. (37),

�
1 −

2M
R

�
2

Ruφ
�
2M2η

R3
−Muφ þMηuφ2 þ ðR2 − 6MRþ 6M2ÞRuφ3

�

¼ κmAþ κ2m2Bþ κ3m3C; ð66Þ
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where the coefficients ðA;B; CÞ are quartic polynomials in
uφ themselves; the explicit expressions are given in
Appendix C. After solving this equation for uφ, the energy
E ¼ mε and the values of ut, Σtr, and Σrφ can also be
determined.

IX. ENERGY-MOMENTUM TENSOR

In the previous sections the equations of motion for a
relativistic spinning particle were obtained starting from a
closed set of brackets (5) and the choice of aHamiltonian.The
same equations can be derived by energy-momentum con-
servation using an appropriate energy-momentum tensor
[36,37]. This tensor then also defines the source term in the
Einstein equations to compute the backreaction of the particle
on the spacetime geometry; indeed, the Einstein equations
require the energy-momentum tensor to be divergence-free

Gμν ¼ Rμν −
1

2
gμνR ¼ −8πGTμν ⇒ ∇μGμν

¼ −8π∇μTμν ¼ 0: ð67Þ

This identity is to be guaranteed by the equations of motion.
For a neutral particle described by the minimal Hamiltonian,
this follows by taking2

Tμν
0 ¼ m

Z
dτuμuν

1ffiffiffiffiffiffi−gp δ4ðx − XÞ

þ 1

2
∇λ

Z
dτðuμΣνλ þ uνΣμλÞ 1ffiffiffiffiffiffi−gp δ4ðx − XÞ:

ð68Þ

The covariant divergence of Tμν
0 is

∇μT
μν
0 ¼

Z
dτ

�
m
Duν

Dτ
−
1

2
ΣκλRκλ

ν
μuμ

�
1ffiffiffiffiffiffi−gp δ4ðx − XÞ

þ 1

2
∇λ

Z
dτ

DΣνλ

Dτ

1ffiffiffiffiffiffi−gp δ4ðx − XÞ ¼ 0 ð69Þ

and vanishes upon applying the equations of motion (7)
and (8) with q ¼ 0. Similarly, for a particle subject to
the gravitational Stern-Gerlach force with the hamiltonian
H0 þHSG the correct expression is

Tμν ¼ Tμν
0 þ κTμν

1 ; ð70Þ

where

Tμν
1 ¼ 1

2
∇κ∇λ

Z
dτðΣμλΣκν þ ΣνλΣκμÞ 1ffiffiffiffiffiffi−gp δ4ðx − XÞ

þ 1

4

Z
dτΣρσðRρσλ

νΣλμ þ Rρσλ
μΣλνÞ 1ffiffiffiffiffiffi−gp δ4ðx − XÞ:

ð71Þ

Again performing standard operations from tensor calculus
including Ricci and Bianchi identities leads to the result

∇μT
μν
1 ¼ 1

4

Z
dτ∇νRρσκλΣρσΣκλ 1ffiffiffiffiffiffi−gp δ4ðx − XÞ

þ 1

2
∇λ

Z
dτΣρσðRρσκ

λΣκν − Rρσκ
νΣκλÞ

×
1ffiffiffiffiffiffi−gp δ4ðx − XÞ: ð72Þ

Combining this with the expression (69) for∇μT
μν
0 it follows

that the divergence of the full energy-momentum tensor
vanishes

∇μðTμν
0 þ κTμν

1 Þ ¼ 0; ð73Þ

provided the nonminimal equations of motion (59) and (60)
hold. Finally, one can also take into account the electromag-
netic Lorentz and Stern-Gerlach forces by additional con-
tributions

Tem
μν ¼ Fμ

λFνλ −
1

4
gμνFκλFκλ

−
λ

2
gμν

Z
dτFκλΣκλ 1ffiffiffiffiffiffi−gp δ4ðx − XÞ: ð74Þ

X. DISCUSSION AND SUMMARY

In this paper we have developed a covariant
Hamiltonian framework for spinning particles in gravi-
tational and electromagnetic background fields. One of its
strong points is that it does not require an a priori choice
of Hamiltonian; hence it can be applied to a large variety
of models of relativistic spin dynamics. We have dis-
cussed in particular the case of the minimal kinetic
Hamiltonian H0 defined in Eq. (6) and its extension
with a Stern-Gerlach type interaction Hamiltonian HSG
defined in Eq. (58). Other extensions are possible in
principle. For example, one could introduce more covar-
iant tensor fields allowing general expressions of the
form

Heff ¼
1

2m
gμνπμπν þ Kλ

μνπλΣμν þ 1

2
MμνκλΣμνΣκλ; ð75Þ

where Kλ
μν and Mμνκλ receive contributions from addi-

tional fields and/or geometric structures like torsion and

2We define the delta function as a scalar density of weight 1=2,
such that for scalar functions fðxÞ

Z
d4yδ4ðx − yÞfðyÞ ¼ fðxÞ:
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curvature. Alternatively the equations of motion for
spinning particles can be derived from the Einstein
equations using appropriate energy-momentum tensors;
we showed this explicitly for simple spinning particles
with minimal or Stern-Gerlach dynamics.
We have applied our formalism to the case of spinning

particles in Schwarzschild and Reissner-Nordstrøm back-
grounds. We have found interesting new effects. For
example, the periastron of spinning particles in bound
orbits is not only subject to an angular shift, but the point
of closest approach shows radial variations as well. Also
the radius of the innermost stable circular orbit changes
with spin; over a wide range of spin values −0.5M <
σ < 0.5M it is quite close to the orbit of minimal orbital
angular momentum, but only for spinless particles do the
two actually coincide. In addition we find an absolute
minimal ISCO R≃ 4.3M at an intermediate point
between low and high spin values; beyond this the
crossover to instability occurs on a different branch of
stability limits, but these values are in the regime where
the backreaction of the spinning particle on the spacetime
geometry can no longer be neglected. For extreme mass
ratio binaries with typical mass ratios m=M < 10−4 this
limit is never reached, and the ISCO coincides to good
approximation with the circular orbit of minimal orbital
angular momentum.
With the formalism in hand there are still many open

problems and applications to be studied. First of all, it
would be interesting to consider the effect of spin on the
emission of gravitational waves, as well as the backreaction
of gravitational radiation on the spin dynamics. But also the
generalization of our results to the case of nonminimal
Hamiltonians and to Kerr backgrounds with the associated
spin-spin coupling may have important astrophysical
applications. Finally our approach is based on the ideali-
zation of compact spinning bodies as pointlike test par-
ticles. It may be refined to apply to finite-size bodies by
including higher mass multipoles. All of this is left for
future investigation.
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APPENDIX A: REISSNER-NORDSTRØM
GEOMETRY

In this appendix we collect the expressions for the
components of the connection and Riemann curvature
tensor used in the main body of the paper.

1. Connection

From the line element (17) one derives the following
expressions for the connection coefficients:

Γrt
t ¼ −Γrr

r ¼ Mr −Q2

rðr2 − 2MrþQ2Þ ;

Γtt
r ¼ 1

r5
ðMr −Q2Þðr2 − 2MrþQ2Þ;

Γφφ
r ¼ sin2θΓθθ

r ¼ −
sin2θ
r

ðr2 − 2MrþQ2Þ;

Γrθ
θ ¼ Γrφ

φ ¼ 1

r
;

Γθφ
φ ¼ cos θ

sin θ
; Γφφ

θ ¼ − sin θ cos θ: ðA1Þ

2. Curvature components

The corresponding curvature two-form Rμν ¼
1
2
Rκλμνdxκ∧dxλ has the following components:

Rtr ¼
1

r4
ð2Mr − 3Q2Þdt∧dr;

Rtθ ¼ −
1

r4
ðMr −Q2Þðr2 − 2MrþQ2Þdt∧dθ;

Rtφ ¼ −
1

r4
ðMr −Q2Þðr2 − 2MrþQ2Þsin2θdt∧dφ;

Rrθ ¼
Mr −Q2

r2 − 2MrþQ2
dr∧dθ;

Rrφ ¼ Mr −Q2

r2 − 2MrþQ2
sin2θdr∧dφ;

Rθφ ¼ −ð2Mr −Q2Þsin2θdθ∧dφ: ðA2Þ

APPENDIX B: COEFFICIENTS OF THE
DEVIATION EQUATIONS

The deviation equations for planar orbits of spinning
particles in Reissner-Nordstrøm spacetime with respect to a
reference circular orbit r ¼ R can be written in the form
(41). Here we provide the explicit expressions for the
coefficients:

a ¼ MR −Q2

R3
uφ;

b ¼ ð2MR − 3Q2ÞðR2 − 2MRþQ2ÞÞ
R3ðMR −Q2Þ ut;

c ¼ −
ðMR −Q2Þmut

R2ðR2 − 2MRþQ2Þ ; d ¼ R2muφ

MR −Q2
; ðB1Þ

and furthermore
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α ¼ ð2MR2ðR −MÞ − RQ2ð3R − 4MÞ −Q4Þ
RðMR −Q2ÞðR2 − 2MRþQ2Þ ut

−
Rð2MR − 3Q2Þ

ðMR −Q2ÞðR2 − 2MRþQ2Þ εþ
qQ
m

MR − 2Q2

ðMR −Q2ÞðR2 − 2MRþQ2Þ ;

β ¼ −
ðMR −Q2Þ

mR2
uφ;

γ ¼ 2R2 − 5MRþ 3Q2

RðR2 − 2MRþQ2Þ u
φ þ ðMR −Q2Þ

R3ðR2 − 2MRþQ2Þ η;

ζ ¼ −
ðR2 − 2MRþQ2ÞðMR −Q2Þ

mR6
ut;

κ ¼ −
ð2MR − 3Q2ÞðR2 − 2MRþQ2Þ

R3ðMR −Q2Þ εþ qQ
m

ðMR − 2Q2ÞðR2 − 2MRþQ2Þ
R4ðMR −Q2Þ ;

λ ¼ 2ðMR2 −Q2ð2R −MÞÞ
MR −Q2

uφ −
MR −Q2

R3
η; ðB2Þ

and also

μ ¼ −
2M2R3ðR − 3MÞ − 3MR2Q2ð2R − 7MÞ þ RQ4ð3R − 20MÞ þ 6Q6

R4ðMR −Q2Þ2

þ 2M2R3ðR − 4MÞ − 2MR2Q2ð3R − 14MÞ þ RQ4ð3R − 28MÞ þ 9Q6

R4ðMR −Q2Þ2 εut

−
qQ
m

2M2R3ðR − 3MÞ −MR2Q2ð7R − 24MÞ þ RQ4ð4R − 25MÞ þ 8Q6

R5ðMR −Q2Þ2 ut

þM2ðR2 −Q2Þ − 2MRQ2 þ 2Q4

ðMR −Q2Þ2 uφ2 þ 2MR − 3Q2

R4
ηuφ;

ν ¼ R2ðR −MÞðR − 3MÞ þ 2RQ2ðR −MÞ
ðMR −Q2ÞðR2 − 2MRþQ2Þ muφ þ MR −Q2

R2ðR2 − 2MRþQ2Þmη;

σ ¼ RðR −MÞðR2 − 3MRþ 2Q2Þ
ðMR −Q2ÞðR2 − 2MRþQ2Þmut −

R2

MR −Q2
mεþ qQR

MR −Q2
;

χ ¼ ðMR2 −Q2ð2R −MÞÞðR2ðR2 − 4MRþ 5M2Þ þ 2Q2ðR2 − 3MRÞ þ 2Q4Þ
ðMR −Q2Þ2ðR2 − 2MRþQ2Þ2 muφut

−
MR2ð3R − 4MÞ −Q2Rð4R − 7MÞ − 2Q4

R3ðR2 − 2MRþQ2Þ2 mηut

−
RðMR − 2Q2Þ
ðMR −Q2Þ2 mεuφ −

qQ3uφ

ðMR −Q2Þ2 :

Of course, the corresponding expressions for Schwarzschild spacetime are obtained automatically by taking Q ¼ 0.

APPENDIX C: CIRCULAR ORBITS WITH NONMINIMAL HAMILTONIAN

In Sec. VIII we derived an equation for circular orbits for test particles in the presence of Stern-Gerlach
interactions, Eq. (66). In this appendix we give the explicit expressions for the quantities A, B, and C, which are
polynomials in the angular velocity uφ for given values of radius R and angular momentum per unit of mass η. They read as
follows:
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A ¼ Mðη − R2uφÞ
R2

	
6M2η

R3

�
1 −

2M
R

��
2 −

m
M

�

−4Muφ
�
3

�
1 −

2M
R

��
1 −

M
R
−

m
2R

�
þMη2

R3

�
1 −

3M
R

��

þηRuφ2
�
2M
R

�
7 −

16M
R

�
−
3m
M

�
1 −

2M
R

��
1 −

4M
R

þ 6M2

R2

��

þ12R3uφ3
�
1 −

49M
6R

þ 19M2

R2
−
13M3

R3
þ m
4M

�
1 −

6M
R

þ 14M2

R2
−
12M3

R3

��

;

B ¼ 12Mðη − R2uφÞ2
R3

	
3M2

R2

�
1 −

2M
R

�
þ 2M3η2

R5
−
Mη

R
uφ

�
M
R

�
5 −

6M
R

�
−
3m
M

�
1 −

2M
R

�
2
�

−MRuφ2
�
3 −

20M
R

þ 26M2

R2
þ 3m

M

�
1 −

2M
R

�
2
�


;

C ¼ 72M3ðη − R2uφÞ4
R7

�
M
R
−
3m
2M

�
1 −

2M
R

��
: ðC1Þ
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