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Spinning bodies in curved spacetime
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We study the motion of neutral and charged spinning bodies in curved spacetime in the test-particle limit.
We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation that allows
for different choices of the Hamiltonian. We derive conditions for the existence of constants of motion and
apply the formalism to the case of spherically symmetric spacetimes. We show that the periastron of a
spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstrgm background not only precesses
but also varies radially. By analyzing the stability conditions for circular motion we find the innermost
stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the
ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived
from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.
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I. INTRODUCTION

Relativistic dynamics is becoming increasingly relevant
in astrophysics and cosmology, for example when it comes
to understanding compact stars, black holes, and gravita-
tional waves. It was realized long ago that spin, i.e. the
internal angular momentum of compact objects, can have
important dynamical effects, and an extensive literature on
the subject has become available [1-10].

In a recent article [11] three of us presented a nonstand-
ard covariant description of spinning bodies in the test-
particle limit. In contrast to the most-widely used approach
of test-particle dynamics [12-16], it is formulated in terms
of a covariant kinetic momentum rather than a canonical
momentum which is not proportional to the four-velocity of
the body. The price to pay is a world line that does not
always coincide with that of a center of mass; rather it
follows the spin, with the result that there is a mass dipole
describing the displacement between the two in the
presence of curvature. There are several advantages to this
formulation: it does not require constraints like the Pirani or
Tulczyjew conditions, it can be used with a variety of
Hamiltonians, and it makes the analysis of the motion of
spinning test particles in curved spacetime more tractable;
in some cases of practical interest exact results are obtained.

In this paper we continue to develop this formalism of
spin dynamics in the test-particle limit. It is organized as
follows. In Sec. II we provide a brief summary of the
Hamiltonian phase-space approach of Ref. [11], extending
it to include also electric charge and electromagnetic fields.
We proceed with the role of Killing vectors in constructing
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constants of motion in Sec. III. In Sec. IV the formalism is
applied to motion associated with a minimal kinetic
Hamiltonian in static and spherically symmetric spacetimes
of Schwarzschild and Reissner-Nordstrgm type. We ana-
lyze circular orbits in Sec. V and find noncircular orbits by a
perturbative construction in Sec. VI. We also determine the
effects of spin on the periastron and show that in addition to
precessing the periastron also shifts radially. In Sec. VII the
stability of circular orbits is analyzed in detail to determine
the radius of the innermost stable circular orbit (ISCO) as a
function of spin. The stability conditions are found to
impose an upper limit on the spin associated with the ISCO.
Section VIII describes how to include Stern-Gerlach forces
[17-21], both of electromagnetic and of gravitational
origin, using a class of nonminimal Hamiltonians. We
show that they allow for an extension of all the constants of
motion associated with the minimal Hamiltonian and
determine also the circular orbits for this case. In
Sec. IX it is shown that the equations of motion we use
can be derived in a different way from consistency of the
Einstein equations with an appropriate energy-momentum
tensor. Finally in Sec. X we conclude with a discussion and
summary. Some mathematical details have been collected
in the appendixes.

II. COVARIANT HAMILTON FORMALISM
FOR SPINNING BODIES

Test particles are gravitational objects characterized by a
finite number of degrees of freedom such as mass, charge,
and spin, of which the backreaction on spacetime geometry
can be considered negligible. Thus the phase space is finite
dimensional; it is spanned by the position x*, momentum
7, and antisymmetric spin tensor ¥, with mass m and
charge g constant parameters characterizing the strength of
interactions. While the four-velocity u# = x* is a timelike

© 2016 American Physical Society
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unit vector, the spin tensor can actually be decomposed in a
spacelike vector Z*, the mass dipole vector, and a spacelike
axial vector S, the spin proper,

1
SH = — iy S B 7Y — yV (1)

where

1
Sy = 2V _ggﬂvk/luyz"d’ Z¢ =2y, (2)

such that S-u = Z - u = 0. It is interesting to note that in
addition one can define a third spacelike vector

1
WH = —7/:98"”"’11@&2/1 =@ -wzi)z,, (3)

orthogonal to the other ones,
Wu=WwW-S=Ww-Z=0. (4)

Together (u,S,Z, W) form a set of independent vectors,
one timelike and three spacelike, which can be used to
define a frame of basis vectors carried along the particle
world line.

We build our formulation of the dynamics on a set of
covariant Poisson-Dirac brackets that are closed in the
sense of Jacobi identities and independent of the specific
Hamiltonian,

{7} =au,
1
{”/u ﬂv} = EZKARKA;W + qFMD’
{Zuv’ ”/1} — FAK Ilzuk _ F}uc uz‘/uc’
{2/41/72101} — gﬂkzwl _ gyﬂzwc _ g”KZ‘M + gwlzfuc’ (5)

with all other brackets vanishing. The structure functions
appearing in these brackets are the metric, connection,
and curvature tensor of the spacetime manifold, with the
electromagnetic field strength F,, appearing as the struc-
ture function for the central charge g.

Next we have to specify a Hamiltonian to generate the
equations of motion via the brackets (5). The minimal
choice is the kinetic Hamiltonian

1
Hy = %gﬂy(x)”ﬂ”u' (6)

Other choices are possible, and we will discuss a specific
example in Sec. VIII. The equations of motion derived from
the Hamiltonian H, are
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1
T = Gumit mDout =S TR+ gF

(7)
for the world line, and
D 2" =0, (8)

for the spin tensor; here D, is the pullback of the covariant
derivative on the world line. It follows that the world line is
a curve on which the spin tensor is covariantly constant.
This does not hold for the vectors S and Z individually as
they satisfy

1 1
mDrSﬂ = 5 V _geﬂwﬂzd <5 ZrlﬂR”ﬂ Z’ + qF(Hr) u”v
1
mD,ZV = X <§ TR e + qFW> ue. 9)

Comparing with the conventional analysis of spinning
particle dynamics [4,5,7] it is seen that the constraint on
the mass dipole (e.g., the Pirani condition [22]) has been
replaced here by a proper equation of motion. As a result in
our formulation of classical relativistic mechanics the mass-
dipole Z cannot vanish permanently, except in flat field-free
Minkowski spacetime.l However, it is easily established
that the two approaches can be made to agree to linear order
in the spin tensor.

III. CONSTANTS OF MOTION

In the Hamiltonian formalism constants of motion are
found by requiring its bracket with the Hamiltonian to
vanish. There are three generic constants of motion for any
spacetime geometry. First the Hamiltonian itself, which
defines the particle mass

Hy = —% = guu'u’ = —1. (10)

In addition, there are two constants of motion for the spin:
the total spin

1
IZEQMKQDAWDZK/I:S‘S+Z‘Z (11)

and the pseudoscalar product

1
D =2\ ~Geun S =S - Z. (12)

lHowever, one can have Z# = 0 in pseudoclassical models in
which the spin tensor is represented in terms of Grassmann
variables X* = jy*y", because of conservation of the super-
charge O = y*x, [23-25].
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Furthermore there are constants of motion depending on
the symmetries of the geometry. They are constructed in
terms of Killing vectors and tensors. In particular, constants
of motion J of the form

1
J=y+a'nm, + zﬁwﬂ‘” (13)

exist if

V”al, + Vuaﬂ == 0, V,lf)’w == R;UMK(XK’
8#?’ = qFﬂl/ay' (14)

Thus o is a Killing vector and f,, its curl,

(V,a, = V,a,), (15)

[NSR

ﬁ;w =

while a solution for y can be found if the Lie derivative of
the vector potential with respect to a vanishes,

a’0,A, + 0,0’A, =0 =y = gA,a". (16)

This requirement, in fact, states that the electromagnetic
and gravitational fields must both exhibit the same sym-
metries for an associated constant of motion to exist.

IV. SPHERICAL SYMMETRY

There are few static solutions of the Einstein equations
possessing spherical symmetry. The most relevant ones
are the Minkowski and Schwarzschild geometries. In
addition, the Reissner-Nordstrgm geometry is a static and
spherically symmetric solution of the Einstein-Maxwell
equations. In these symmetric spacetimes the orbital
angular momentum combines with the spin to create a
conserved total angular momentum. In this section we
consider the exterior Reissner-Nordstrgm geometry of an
electrically charged massive spherical body and its
reduction to Schwarzschild spacetime in the limit of
vanishing charge.

The standard form of the Schwarzschild-Reissner-
Nordstrgm metric is represented by the line element

. 2M Q2 5 dr?
g,wdx”dx —<1 —74—7)(11‘ +1_T+Q_2

r r2

+ r2d0* + r’sin’0dg?. (17)

Here M is the mass and Q is the charge of the source
creating the spacetime curvature as well as a static electric
Coulomb field

0 1 0
A=Adv' ==-Zdi.  SF=dA=Zdradi (18)
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The components of the connection and curvature tensor
are collected in Appendix A. In the line element (17) ¢ and
@ are cyclic coordinates implying simple constant Killing
vectors for time translations and rotations around the z axis.
Two more Killing vectors exist generating rotations around
the two other axes. As the Coulomb potential is also static
and spherically symmetric, we obtain four constants of
motion: (i) the particle energy

2
E:—n,+§— <K—Q—>2", (19)

r2 7”3

with O = 0 in Schwarzschild spacetime; (ii) and the three-
vector of total angular momentum

J| = —singm, — cotand cos g, —r sin g’
— rsinfcos 0 cos pZ + r’sin’@ cos pX?,
J, = cos pmy — cotand sin gz, +r cos g’
— rsin@cos @sin X + r’sin’6 sin X%,
J3 = 1, + rsin0%"? + r* sin@ cos 9. (20)
The analysis of the equations of motion can be simplified

considerably by using the spherical symmetry to fix the
direction of the total angular momentum to be the z axis,

J=1(0,0,J), J = mriu? + rx'e, (21)
resulting in
0 _ 0 op _
Y = —mru?, X% = — cotand. (22)
r

Clearly this choice does not fix the motion to be in the
equatorial plane € = n/2, as the spin and orbital angular
momentum are not necessarily aligned; indeed, it is
possible to have precession of both the spin and the orbital
angular momentum, making the plane of the orbit precess
[26] as well.

V. CIRCULAR ORBITS

In a Schwarzschild-Reissner-Nordstrgm background
planar motion requires alignment of the spin and orbital
angular momentum. In this section we consider, in par-
ticular, the conditions for plane circular motion. The
analysis is most conveniently done by taking the plane
of motion to be the equatorial plane, which implies 6 =
n/2 and u’ = 0 as well as i’ = 0. As a result

30 =30 = % =0, (23)

From the definition (12) it follows that such orbits satisfy
the conservation law
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D=S-Z=0. (24)
For circular motion we additionally impose » = R = const and 4" = &t" = 0.
Using the equation of motion (7) for the r-coordinate, the latter condition leads to
(2MR? —3M?R?> —3R?Q? + 6MRQ?* — 20*)(R* — 2MR + Q?)u"
—(R* = 3MR + 2Q%)(MR — Q*)R*u?*
[(ZMR 30%)e - (MR -20%) 1= 99 = | (R = 2MR + 0*)Ru' + (MR - Q*PyRPu, (25)

where ¢ = E/m and n = J/m are the particle energy and
angular momentum per unit of mass. The Hamiltonian
constraint (10) for circular orbits becomes

2
<1 —2—M—|—Q—> u? =1+ R*u?. (26)

R  R?

Hence (25) and (26) constitute two independent equations

for u' and u? in terms of (M, Q, R) and (e, n); therefore u’

and u? are constant on circular orbits,
u'=u?=0. (27)

As aresult, on circular orbits the equations of motion for u’

and u? reduce to

mg, i’ = X'R =X"%R

» =0, u' =0,

(28)
!

0 —
1ptpU Mgyl tptp

(R —3MR? + 3M*R — MQ?*)u®
_pR3 _ g 2 _ 2\ _ 2 qQ 2
R <8 mR> + {(R 20%)e — (R* — MR — Q%) ]R

For the case of Schwarzschild geometry we take Q = 0 to
get

eR*(1 —u”) = R(R-3M)u' — (R* = 3MR + 3M?*)u®

(32)

It is straightforward to check that in the spinless case with

u' = , (33)

this relation reduces to the standard result

|
implying that £ = 0. This in turn also requires £ = 0, or

(MR _ Q2>ut2r¢ + (RZ —2MR + Q2)u(p2tr =0. (29)

Using the conservation laws for E and J, this can be
replaced by

(MR = 0*)%qu' — (R? = 2MR + Q%) (s - %) Ry

+ (R* =3MR +20°)(R — M)R*u'u? = 0. (30)

As this is yet another equation between (u', u”) and the
constants of motion, it fixes a relation between the energy
E = me and total angular momentum J = m# for a given
circle r = R. In fact, we can now eliminate 5 between
Egs. (25) and (30), using the constraint (26), to get

— (R? = 3MR + 2Q%)Ru'

(31)
1 —2M
8:—R3M’ (34)
=%

for circular orbits.

Having solved Eq. (31)—or (32) if appropriate—one can
then also compute the orbital angular momentum per unit
of mass from the Hamiltonian constraint,

£? = R*u*?> = (R> —=2MR + Q*)u"® — R?. (35)
For neutral particles (¢ = 0) instead of eliminating # and u?
from Egs. (25) and (30), one can alternatively eliminate &
and u' to get a relation for the total angular momentum per
unit of mass # and the proper angular velocity u?,
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n(MR — 0)?[2MR - 30 + R°u”*(R* — 20?)]
= R?u?(M*R* — 2M*R*Q* - 2MR3Q? + R*Q* + 4MRQ* — 20°)
— R*u” (MR’ — 6M’R* + 6M3R*> — R*Q? + 10MR*Q* — 11M?R>Q?

—4R*Q* + SMRQ*%).

In Schwarzschild spacetime this reduces to the result
quoted in Ref. [11],

n 2+R3u‘/’2 _R3u‘/’1 R3u%? | 6M_'_6M2
M M ) M M R R2 )|

(37)

VI. PLANE NONCIRCULAR ORBITS

In general relativity the standard procedure for compar-
ing geodesics is the method of geodesic deviations. It is
based on a covariant definition of differences between
geometric quantities associated with geodesics, like the unit
tangent vectors defining the proper four-velocities of test
particles. The procedure can be generalized to world lines
of particles carrying charge and/or spin as follows.

Consider two solutions (x*(z), u*(z), 2*(r)) and (X*(z),
(), 2" ()) of the equations of motion (7) and (8). The
|

(36)

[

direct differences between dynamical quantities on each
world line at equal proper time 7 are denoted by 9,

8X(r) = X(z) = X(z), (38)

for any X = (x*,u*,3*). As the coordinates x* are
spacetime scalars, the velocities u* spacetime vectors,
and the spin-dipoles X*¥ spacetime tensors, we can define
their covariant differences by parallel displacement,

Ax*(7) = 6x*(7), Aut = dut (1) + ox'T ), u?,
AZH = S + 5x'T,, EN 4 6x'T,, VEHX. (39)

The equations of motion now imply equations for the
proper-time dependence of these covariant variations; to
linear order,

Aut = D, Ax*,

1 1
D2Ax* — R, * ju*u’ Ax* = — ¥R, #, D, Ax* + —3°V,R
2m 2m

1
+— AR F o+

2m
D ATH + (R Z% — Ry’ T uF Ax* = 0.

The formalism, eventually with higher-order extensions
[27-29], can be applied to a perturbative construction
of world lines starting from a known solution of the
equations of motion. The circular orbits found in the previous
section define such a starting point to construct eccentric
planar or nonplanar bound orbits in Schwarzschild-Reissner-
Norstrgm backgrounds. However, computationally it is
simpler to work with the noncovariant variations (38) rather
than the covariant ones (39).

Considering eccentric orbits in the equatorial plane
we keep the conditions (23) and (24). With these
restrictions the allowed deviations from circular orbits
can be parametrized by éx* = (6t, 6r, 5¢) for the orbital
and ST = (86X, 6%, 5X") for the spin degrees of
freedom. Now using the conservation laws the varia-
tions S and 6L can equivalently be expressed by
the change in energy de and total angular momentum &7y
and the coordinate variations. In a condensed notation

v A
po v paﬂuu Ax

q

= F*,D Ax* + a V,F* u’ Ax*,
m m

(40)

the relevant linearized deviation equations (40) then
reduce to

j_; 0 ag P ot 0

0 £ 44 ¢ sp | 0
K% /1% 51_:24_# 0 or adn + boe
y% 0% ¥ % 5 con + doe

(41)

where the coefficients are defined in terms of the
parameters of the circular reference orbit; the explicit
expressions are given in Appendix B.

The general solution of the inhomogenous linear equa-
tions (41) can be decomposed in a specific solution plus a
solution of the homogeneous equation. Now it is easy to
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find a simple specific solution: a constant shift §r such that
the new circular orbit has the same energy ¢ = ¢ + e and
total angular momentum ' =5+ &y as the noncircular
orbit we wish to construct. Hence by taking this special
circular orbit as the reference orbit we fix oe = oy = 0, and
we only have to solve the homogeneous equation (41).

To solve the homogeneous equation, we consider the
characteristic equation for the periodic eigenfunctions of
the operator (41),

o’ (w* — Aw® + B) =0, (42)
where

A=p—ax—pv—yl—_{o,
B = p(ky — v + y(Av —k6)) + {(Ay — po — a(Av — ko)).
(43)

In addition to three 0-modes for potential secular solutions
familiar from the motion of spinless particles [27,28], there
are two pairs of nontrivial periodic solutions with angular
frequencies

1
o ZE(Aj: A2—4B). (44)

These periodic solutions can be cast in the simple form

St=nl sinw, (r—7,)+n.sinw_(r—1_),
S =n% sinw (t—71,)+n?sinw_(z—1_),
dr=n cosw (t—71,)+n’cosw_(r—1_),

86X =n%sinw, (t—17,) +n’sinw_(t—1_), (45)

where 7, are constants of integration determining the
relative phases of the oscillations, and up to some common
normalization constants C the amplitudes are

. = Coli(Br —af) + Blo?. — ).

nf = Cil—x(fy — af) + {(@} — )],

ny = Cowi(fr+CA),

ng = Cro’ (0l —p+ ax + yA). (46)

The null solutions of Eq. (42) suggest that in addition to the
periodic solutions (45) there might also be secular solutions
for the orbital degrees of freedom [27]. However, as we
have chosen the energy and total angular momentum of the
orbit to be the same as that of the circular reference orbit, no
such freedom is left in this case, except for trivial shifts in
the origin of the ¢ and ¢ coordinates. Therefore the
complete first-order solution for the noncircular planar
orbits is

PHYSICAL REVIEW D 93, 044051 (2016)

0 500 1000 1500 2000 2500 30001
FIG. 1. Radial deviation from circular orbit with R = 10M and
¢ = 4M as a function of proper time in Schwarzschild spacetime
for deviation parameters as in Eq. (48).

H(r) =u't+n' sinw, (t—7,.)+n_sinw_(r—17_),

p(t) =u’t+nYsinw, (t—7,)+n?sinw_(r—7_),

r(t)=R+n cosw (t—1,.)+n’cosw_(r—1_),
(

X%(7) =ngsinw, (t—7,)+nlsinw_(r—17_).

(47)

The perturbations, in particular those in the radial
direction, have double periods. Hence the periastron
and apastron will behave in a complicated way, as the
body reaches different minimal or maximal radial
distances at nonconstant intervals. However, in the limit
B < A? the dominant frequency will be w, = VA, and
the variations in the periastron and apastron will be
relatively slow. An example for the case of
Schwarzschild geometry (Q =0) is given in Fig. 1,
where we have plotted the radial variation as a function
of proper time for a circular reference orbit R = 10M
with orbital angular momentum ¢ =4M and for
deviation parameters

n” = 0.05R,

n" =0.1R, r. —7_ = 100M.

(48)

As we have obtained the noncircular orbits (47) under
the conditions that the specific energy and total angular
momentum are the same as those of the circular reference
orbits, the conservation laws (19) and (21) for the spin-
dipole components link the variations 6X* of these
quantities to those of the orbital parameters

5 5
510 = Fou? + GEr, 53 = Kéu' + LEr, (49)

where
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F=-mR, GI—%(HRZM‘”),

mR3 2M  Q?
k=" (1-224 5 )
MR-0 R 'R

_ mR* 2M M 20%\ Q2 oA\ ,
=g (& (r w) w0

XM 307\ qO (M 207
(EE I e X (22 ) 50
(R R2>€+mR R R (50)
As a result
82 =NV cosw,(t—71,)+N?cosw_(t—1_),
82" =Nl cosw,(t—7,) +N"cosw_(t—17_), (51)

with

nr
N7 = w Kn', +L%.

(52)

F nr
N = w.Fn? —|—G%,

Thus we have obtained a large class of noncircular planar
orbits (to first order in the deviations), parametrized by the
constants C, and the radial coordinate R of the circular
orbit with the same specific energy and total angular
momentum.

VII. THE ISCO

In black-hole spacetimes there is an ISCO at a specific
distance from the horizon. For simple point masses in
Schwarzschild spacetime this orbit is located at R = 6M.
Here the effective potential has a flex point where the
orbital angular momentum reaches a minimum of
£? = 12M?. Circular orbits at values R < 6M are possible
in principle but not in practice, as they correspond to
maxima of the effective potential rather than minima; thus
they are unstable under small perturbations.

The presence of spin alters the stability conditions and
therefore the location of the ISCO. The stability conditions
for circular orbits can be derived directly from the analysis
in the previous section. Indeed, circular orbits are stable as
long as the planar deviations display oscillatory behavior.
In contrast, whenever the frequency w of these deviations
develops an imaginary part, the radial motion displays
exponential behavior and the orbit becomes unsta-
ble [30,31]. Now the frequencies of the deviations are
solutions of the eigenvalue equation (44). Thus we must ask
what is the parameter domain in which the eigenvalues are
real, and especially where the boundary between stability
and instability is located. The first condition is obviously
for w% to be real; this requires

A2—4B > 0. (53)

PHYSICAL REVIEW D 93, 044051 (2016)

FIG. 2. Allowed domains of radius R/M and orbital angular
momentum #/M for plane circular orbits in Schwarzschild
spacetime. Included are four curves labeled f, g, h, p defining
orbits of fixed spin per unit of mass ¢ for retrograde, vanishing,
and prograde spin o/M = (-0.5,0,0.5,0.7).

In addition, for the frequencies w.. themselves to be real as
well we must demand that @3 > 0, which happens if
A >0, B >0. (54)
Figure 2 shows the solutions of these inequalities for the
case of Schwarzschild spacetime in terms of the allowed
values of the dimensionless radial coordinate R/M and of
the orbital angular momentum per unit of mass
£ = R*u?. (55)
The shaded area corresponds to stable circular orbits. As we
have established in Sec. V that any circular orbit is deter-
mined for a given background geometry by the parameters R
and J—which fix u?, u’, and E—the allowed orbits for fixed
R/M and various £/M in Fig. 2 differ in the values of
n = J/m.Equivalently they differ in the value of the spin per
unit of mass parametrized by the dimensionless variable

R
o= (56)
M  mM

We have also indicated in Fig. 2 several curves of
constant spin. The curves g, f, h represent isospin lines
for spin ¢ = 0, for retrograde spin ¢ = —0.5M, and for
prograde spin ¢ = 0.5M, respectively. In each case the
ISCO is defined by the value of R/M where the curve
crosses the line B = 0. For vanishing spin this is at the
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L 1 1 N J

-10 -0.5 0.5 10Mm

FIG. 3. Radius of the ISCO: R,/ M, as a function of spin 6/ M
for Schwarzschild spacetime (continuous curve) compared with
the radius of minimal orbital angular momentum R,;,/M at fixed
spin (dashed curve).

well-known value R = 6M, for prograde spin it is at a lower
value of R, and for retrograde spin it is at a higher value
of R. There actually is a smallest ISCO R =4.5M for
o =0.55M, where the curve B = 0 reaches a minimum
value of orbital angular momentum.

For higher spin values the ISCO is reached at the point
where the isospin curves cross the line A> —4B = 0; an
example is the curve labeled p corresponding to ¢ = 0.7M.
In general such high values of /M are possible only if the
masses m and M of the test particle and the black hole
creating the background become comparable. Of course,
the backreaction of the test mass can then no longer be
ignored, and our estimates of the ISCO become unreliable.

By calculating the values of the spin parameter ¢/M on
the lines separating regions of stable and unstable orbits, we
have extracted the values of R for the ISCO as a function of
0/M in Schwarzschild spacetime. The result is represented
by the continuous curve labeled R;, in Fig. 3. The two
branches correspond to lower-spin ISCOs on the curve
B = 0 and higher-spin ISCOs on the curve A> —4B = 0,
respectively. These results agree qualitatively with other
studies in the literature based on the conventional
Mathisson-Papapetrou-Dixon approach [30,32].

The isospin curves in Fig. 2 for lower-spin values,
corresponding to the left-hand branch in Fig. 3, also
suggest that the circular orbits become unstable when
the orbital angular momentum reaches its minimum as a
function of radial distance for constant ¢. This issue can be
analyzed more precisely by returning to Eq. (37) and
rewriting it in the form

oR2R+f2_fR 5 R* ¢ (R 3
M*\M M) M\M M* M*\M ‘

(57)
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FIG. 4. Stable circular orbits of a chargeless spinning particle in
Reissner-Nordstrgm spacetime with Q/M = 0.5.

From this equation one can derive the minimum of £/M as a
function of R/M for fixed spin 6. The result is plotted as the
dashed curve labeled R,;, in Fig. 3. Over the range of
predominant physical interest —0.5 < /M < 0.5 the curve
nearly coincides with that for R;.,. However, there are small
differences for larger absolute spin values, reminiscent of
those found in higher-order post-newtonian corrections for
compact binaries [31]. Note that the parts of the dashed curve
for large retrograde spin actually enter the region of instability
and hence do not correspond to stable circular orbits.

A similar analysis can be done for the case of a spinning
test particle in a Reissner-Nordstrgm background. Of
course, one has two more parameters to account for: the
charge Q of the central black hole, and the charge ¢ of the

o
-10 -05 05 10 M
FIG. 5. R;.,/M as a function of 6/M for Reissner-Norstrgm

spacetime with Q/M = 0.5.

044051-8



SPINNING BODIES IN CURVED SPACETIME

test particle. Figure 4 shows the stability region of circular
orbits of electrically neutral spinning test particles for a
black hole of charge Q = 0.5M, including the curve
representing the £ — R relation for circular orbits of a
spin-0 particle. In Fig. 5 the radial coordinate of the ISCO is
given as a function of spin for the same black-hole
background geometry with Q = 0.5M. We observe that
the ISCOs are located closer to the horizon, Ry, = 1.87M,
and that with this value of the black-hole charge the
minimal ISCO is reached at a somewhat smaller spin value
than in the Schwarzschild case, 6, = 0.53M.

VIII. A NONMINIMAL HAMILTONIAN

In the presence of external fields spinning particles can be
subject to spin-dependent forces coupling to gradients in the
fields like the well-known Stern-Gerlach force [21,33-35] in
electrodynamics. Such forces can be modeled in our approach
by additional spin-dependent terms in the Hamiltonian,

A
Hsg = 3 Ry ZVZ% + 5 F,, 2.

(58)

H:HO—I_HSG’

Using this nonminimal Hamiltonian in the brackets to con-
struct equations of motion, we get

m, = mg/wu”,
1
Mgy Dt = ST Ry 1t + GF f—twwvﬂRpm
A
ST,y (59)

and
D 3H = (KZ/”’R,,(,"i + /IF"/I)Z’”1 - (KX/"’RM”i + AF ”/1)2/”.
(60)

Remarkably, using Egs. (15) and (16) and the Bianchi
identities for ', and R,,,,, it is straightforward to generalize
the theorem of Ref. [11], that any constant of motion (13)
remains a constant of motion in the presence of Stern-Gerlach
forces,

1
{‘]’ HSG} = KX <_Z /IvﬂRpaﬂv + Rpo-;ﬁﬂﬂv)

1
+ Az (—zaﬁvAFW + F,/ﬁ,h,) =0. (61)
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In particular, in Schwarzschild and Reissner-Nordstrgm
backgrounds the energy E, Eq. (19), and all three components
of the full total angular momentum J, Egs. (20), remain
constants of motion for spinning neutral and charged particles.

The existence of these constants of motion enable us to
perform a similar analysis of orbits as in the case of the
minimal Hamiltonian. As an example we solve for plane
circular orbits in a Schwarzschild background similar to
those discussed in Sec. V for the minimal case. Again we
take the plane of the orbit to be the equatorial plane
0 = /2 with u’ = u” = 0 and % = 0 for all values of v.
Then the conservation laws reduce to the same form as in
Egs. (19) and (21),

2M M
E=m 1—? u’——Z”,

=2 J = mR?u? + RY'.

The Hamiltonian constraint now reads

m
HZHO"‘HSG:_Ev (62)
which becomes
2M
- <1 ——)u’z + R*u?? +1
R
= _ZK_M iztr2+ e _l 1_2_M Y2
m |R3 R-2M R R '
(63)

Next the total spin is

2M R?379?
I — —2"2 - R2 <1 - 7) Zt(lﬂ + I——M ) (64)
R

a constant. These constraints plus the vanishing of the
radial acceleration " = 0 imply that the angular velocity
and the time-dilation factor are constant, in fact causing X'?
to vanish,

w=u?=3x%=0. (65)
Then one finds a quartic equation for the angular velocity in

terms of the radius R and the angular momentum J = my,
which generalizes Eq. (37),

OM\2 [2M?
(1 - —) Ru® [ T_ Mu® + Mqu? + (R* — 6MR + 6M?)Ru?®

R3

= kmA + K*m*B + K’m3C,
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where the coefficients (A, B, C) are quartic polynomials in
u? themselves; the explicit expressions are given in
Appendix C. After solving this equation for u?, the energy
E = me and the values of u!, X, and X'? can also be
determined.

IX. ENERGY-MOMENTUM TENSOR

In the previous sections the equations of motion for a
relativistic spinning particle were obtained starting from a
closed set of brackets (5) and the choice of a Hamiltonian. The
same equations can be derived by energy-momentum con-
servation using an appropriate energy-momentum tensor
[36,37]. This tensor then also defines the source term in the
Einstein equations to compute the backreaction of the particle
on the spacetime geometry; indeed, the Einstein equations
require the energy-momentum tensor to be divergence-free

G

1
w =Ry — Egm,R = -82GT,, = V'G,,

= —8zV*T,, = 0. (67)
This identity is to be guaranteed by the equations of motion.

For a neutral particle described by the minimal Hamiltonian,
this follows by taking2

1
-9

Ty = m/dru”u” M(x—X)

1 1

+-V /d WWEPA 4oy YA ——— 54 (x — X).

SV [ ) =0 %)
(68)

The covariant divergence of T’ is

v Du" 1_. ., 1
v, T :/dr(m Do —EZ'IRKA u””) —Tg54(x—X)

1 Dz 1,
+§Vi/d1’ Dz —_g(S (X—X) =0 (69)

and vanishes upon applying the equations of motion (7)
and (8) with ¢ = 0. Similarly, for a particle subject to
the gravitational Stern-Gerlach force with the hamiltonian
H, + Hgg the correct expression is

™ = T 4 kT", (70)

where

*We define the delta function as a scalar density of weight 1/2,
such that for scalar functions f(x)

/ Pyt (x =) () = £(x).
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1 1
™ =-VJV, / de(DHEr 4 sz —— 54 (x — X)
2 V-9

1 1
— | dt¥°(R,,,)*I* + R, #IM) ——8*(x — X).
+ 4 / T ( POl + PO ) \/_—g ('x )
(71)

Again performing standard operations from tensor calculus
including Ricci and Bianchi identities leads to the result

v 1 v 0V K. 1
VﬂT’f :Z/d’l'v Rp(,,dfﬂ ZA—_g(s“(X—X)

1
+§V,1 / dTZ/”’(R/mK’IZ"” - R/,GK”ZM)

g .

Combining this with the expression (69) for V, Ty it follows
that the divergence of the full energy-momentum tensor
vanishes

V, (T 4 k") =0, (73)

provided the nonminimal equations of motion (59) and (60)
hold. Finally, one can also take into account the electromag-
netic Lorentz and Stern-Gerlach forces by additional con-
tributions

em A 1 KA
Tﬂu = F/l F, _Zg;wFldF

A 1
-z F Sk ——§4(x — X). 74
) g/uz / dz KA \/_—g (X ) ( )

X. DISCUSSION AND SUMMARY

In this paper we have developed a covariant
Hamiltonian framework for spinning particles in gravi-
tational and electromagnetic background fields. One of its
strong points is that it does not require an a priori choice
of Hamiltonian; hence it can be applied to a large variety
of models of relativistic spin dynamics. We have dis-
cussed in particular the case of the minimal kinetic
Hamiltonian H, defined in Eq. (6) and its extension
with a Stern-Gerlach type interaction Hamiltonian Hgg
defined in Eq. (58). Other extensions are possible in
principle. For example, one could introduce more covar-
iant tensor fields allowing general expressions of the
form

1 1
H. s = %gﬂyﬂﬂﬂ'y + K‘Wﬂlff“’ + EMWME‘/‘”ZM, (75)

where K’IW and M, receive contributions from addi-
tional fields and/or geometric structures like torsion and
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curvature. Alternatively the equations of motion for
spinning particles can be derived from the Einstein
equations using appropriate energy-momentum tensors;
we showed this explicitly for simple spinning particles
with minimal or Stern-Gerlach dynamics.

We have applied our formalism to the case of spinning
particles in Schwarzschild and Reissner-Nordstrgm back-
grounds. We have found interesting new effects. For
example, the periastron of spinning particles in bound
orbits is not only subject to an angular shift, but the point
of closest approach shows radial variations as well. Also
the radius of the innermost stable circular orbit changes
with spin; over a wide range of spin values —0.5M <
o < 0.5M it is quite close to the orbit of minimal orbital
angular momentum, but only for spinless particles do the
two actually coincide. In addition we find an absolute
minimal ISCO R =43M at an intermediate point
between low and high spin values; beyond this the
crossover to instability occurs on a different branch of
stability limits, but these values are in the regime where
the backreaction of the spinning particle on the spacetime
geometry can no longer be neglected. For extreme mass
ratio binaries with typical mass ratios m/M < 107* this
limit is never reached, and the ISCO coincides to good
approximation with the circular orbit of minimal orbital
angular momentum.

With the formalism in hand there are still many open
problems and applications to be studied. First of all, it
would be interesting to consider the effect of spin on the
emission of gravitational waves, as well as the backreaction
of gravitational radiation on the spin dynamics. But also the
generalization of our results to the case of nonminimal
Hamiltonians and to Kerr backgrounds with the associated
spin-spin coupling may have important astrophysical
applications. Finally our approach is based on the ideali-
zation of compact spinning bodies as pointlike test par-
ticles. It may be refined to apply to finite-size bodies by
including higher mass multipoles. All of this is left for
future investigation.
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APPENDIX A: REISSNER-NORDSTROM
GEOMETRY

In this appendix we collect the expressions for the
components of the connection and Riemann curvature
tensor used in the main body of the paper.
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1. Connection

From the line element (17) one derives the following
expressions for the connection coefficients:

Mr — Q2
r1rlt - _Frrr - 2 2\ ?
r(r* =2Mr + Q°)
1
r, = = (Mr— Q%) (r* —=2Mr + Q?),
. 29
T, = sin20lg = — " (2 = 2Mr + Q2),

1
0 _ —
Frﬂ *Fr(p(p*;’

0
. I ?=—sinfBcosh.

Al
sin@’ v (A1)

Op
2. Curvature components
The corresponding  curvature two-form R, =

%R,dm,dx"/\dx’1 has the following components:

1
=5 (2Mr =3Q°)dindr.

1
R,y = F(Mr — 0% (r? = 2Mr + Q?)dtnde,
1
R, = _F(Mr — 0%)(r* = 2Mr + Q?)sin®0dtAde,
Mr— 2
Ry=—-1=Q o,
r-=2Mr+ Q
Mr— Q?

R,, = msjnzédr/\d(p,

Ry, = —(2Mr — Q?)sin20dOndp. (A2)

APPENDIX B: COEFFICIENTS OF THE
DEVIATION EQUATIONS

The deviation equations for planar orbits of spinning
particles in Reissner-Nordstrgm spacetime with respect to a
reference circular orbit ¥ = R can be written in the form
(41). Here we provide the explicit expressions for the
coefficients:

N2
MR-,
. (2MR —30%)(R? —2MR + Q%))
- R*(MR - Q) ’
— 0?2 t 2
= — (MR — O)mu g Romu? (B1)

R*(R? —2MR + Q?)°

and furthermore
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_ (2MR*(R—M)-RQ*(3R-4M) - Q%) |,
~ R(MR - Q*)(R*-2MR + Q?)

R(2MR - 30?) q0 MR —20?
T (MR- Q0)(RZ—2MR 1+ 0%)°© o (MR = 0*)(R* —=2MR + Q?)°
2
- _(MI;RZQ )u(p’
_ 2R*-5MR+30% | (MR - Q?)
"TRIR-2MR+ Q)" T RI(RP-2MR+ Q)"
(R* —2MR + Q?)(MR — Q%)
{=- 3 u',
mR
(2MR - 30%*)(R> =2MR + Q)  qQ (MR —20Q*)(R> —2MR + Q?)
T R3(MR — 0?) T R* (MR - 0?) ’
2 2 2
L 2MR MRQ_(2QI§ M)) o _ MRR3 Q " (B2)

and also

2M?R*(R — 3M) — 3MR*Q*(2R — TM) + RQ*(3R — 20M) + 6Q°
- R*(MR - Q%)
2M?R3(R — 4M) — 2MR*Q*(3R — 14M) + RQ*(3R — 28M) + 9Q°
T 4 2\2 eu
RY(MR - Q%)
qO2M*R3(R — 3M) — MR*Q*(7R — 24M) + RQ*(4R — 25M) + 80Q° |
T RS (MR - 0%)? !
M?*(R? — Q*) —=2MRQ?* +20* o 2MR - 30?
(MR — QZ)Z R*
_ R*(R-M)(R-3M)+2RQ*R-M) MR — Q?
VST MR-0) (R —2MR+ 05 M TR 2MR + 0%
R(R—M)(R*-3MR +20%) R? qOR
MR- (R —2MR+ )™ “mr-0" " MR- 0%
(MR* — Q*(2R — M))(R*(R* — 4MR + 5M*) + 2Q°(R* - 3MR) +20%)
(MR — Q?)*(R? —2MR + Q°)° "
MR*(3R —4M) — Q*R(4R —TM) — 2Q*
B R3(R?2 —2MR + Q?)?
RMR-20%) = qQu’
(MR=0?) " T (MR- Q)

ﬂ:

t

+

nu?,

mmn,

ut

t

mnu

Of course, the corresponding expressions for Schwarzschild spacetime are obtained automatically by taking Q = 0.

APPENDIX C: CIRCULAR ORBITS WITH NONMINIMAL HAMILTONIAN

In Sec. VIII we derived an equation for circular orbits for test particles in the presence of Stern-Gerlach
interactions, Eq. (66). In this appendix we give the explicit expressions for the quantities A, B, and C, which are
polynomials in the angular velocity u? for given values of radius R and angular momentum per unit of mass 7. They read as
follows:
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A M(n — R*u?) {6M2:7 (1 _2_M) (2—ﬁ

R? R?

(-2

R

oM 16M\ 3m M
Ru?| == (7-—=) -2 (1-22
e 5 (1= 50) =5 0%

49M  19M?*  13M°

+12R3u®3 [1 -

B_ 12M (n — R*u?)? {3M2 (1 ZM)

R3 R U R
20M 26M?* 3m M
“MRu?? |3 - 2 P (2
! { R R +M<

c

R’ R 2M

Mm) Mn

W (7))

R R R am

RS

_ 72M3 (n — R*u?)* [g 3m (1 ZM) f
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