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Abstract In this paper, we study the problem of energyminimization whenmapping stream-
ing applications with throughput constraints to homogeneous multiprocessor systems in
which voltage and frequency scaling is supported with a discrete set of operating volt-
age/frequency modes. We propose a soft real-time semi-partitioned scheduling algorithm
which allows an even distribution of the utilization of tasks among the available processors.
In turn, this enables processors to run at a lower frequency, which yields to lower energy
consumption. We show on a set of real-life applications that our semi-partitioned scheduling
approach achieves significant energy savings compared to a purely partitioned scheduling
approach and an existing semi-partitioned one, EDF-os, on average by 36% (and up to
64%) when using the lowest frequency which guarantees schedulability and is supported by
the system. By using a periodic frequency switching scheme that preserves schedulability,
instead of this lowest supported fixed frequency, we obtain an additional energy saving up to
18%.Although the throughput of applications is unchanged by the proposed semi-partitioned
approach, the mentioned energy savings come at the cost of increased memory requirements
and latency of applications.

Keywords Energy efficient multiprocessor scheduling · Energy-efficient design ·
Real-time multiprocessor scheduling · Model-based design · Embedded streaming systems

1 Introduction

Modern Multiprocessor Systems-on-Chip (MPSoCs) offer ample amount of parallelism. In
recent years, we have witnessed the transition from single core to multi-core and finally to
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many-coreMPSoCs (e.g., [13]). Exploiting the available parallelism in thesemodernMPSoCs
to guarantee system performance is a challenging task because it requires the designer to
expose the parallelism available in the application and decide how to allocate and schedule
the tasks of the application on the available processors. Another challenging task is to achieve
energy efficiency of these MPSoCs. Energy efficiency is a desirable feature of a system, for
several reasons. For instance, in battery-powered devices, energy efficiency can guarantee
longer battery life. In general, energy-efficient design decreases heat dissipation and, in turn,
improves system reliability.

To address the challenge of exploiting the available parallelism and guaranteeing system
performance,Models-of-Computation (MoCs) such as SynchronousDataflow (SDF) [18] are
commonly used as a parallel application specification. Then, to derive a valid assignment and
scheduling of the tasks of applications, recent works (e.g., [4]) have proposed techniques that
derive periodic real-time task sets from the initial application specification. This derivation
allows the designer to employ scheduling algorithms from real-time theory [9] to guarantee
timing constraints and temporal isolation among different tasks and different applications,
using fast schedulability tests. In contrast with [4], existing techniques that exploit the analy-
sis of self-timed scheduling of SDF graphs to guarantee throughput constraints (e.g., [22])
necessitate a complex design space exploration (DSE) to determine the minimum number of
processors needed to schedule the applications, and themapping of tasks to processors. Based
on the analysis of [4], a promising semi-partitioned approach [7] has been proposed recently
to schedule streaming applications. In semi-partitioned scheduling most tasks are assigned
statically to processors, while others (usually a few) can migrate. In [7], these migrations
are allowed at job boundaries only, to reduce overheads. Semi-partitioned approaches which
satisfy this property are said to have restricted migrations.

To address the energy efficiency challenge, mentioned above, many techniques to reduce
energy consumption have been proposed in the past decade. These techniques exploit
voltage/frequency scaling (VFS) of processors and have been applied to both streaming
applications and periodic independent real-time tasks sets. VFS techniques can be either
offline or online. Offline VFS uses parameters such as the worst-case execution time (WCET)
and period of tasks to determine, at design-time, appropriate voltage/frequency modes for
processors and how to switch among them, if necessary. Online VFS exploits the fact that
at run-time some tasks can finish earlier than their WCET and determines, at run-time, the
voltage/frequency modes to obtain further energy savings.

Problem statement To the best of our knowledge, the potential of semi-partitioned
scheduling with restricted migrations together with VFS techniques to achieve lower energy
consumption has not been completely explored. Therefore, in this paper,we study the problem
of energy minimization when mapping streaming applications with throughput constraints
using such semi-partitioned approach for homogeneous multiprocessor systems in which
voltage and frequency scaling is supported with a discrete set of operating voltage/frequency
modes.

1.1 Contributions

We propose a semi-partitioned scheduling algorithm, called Earliest Deadline First based
semi-partitioned stateless (EDF-ssl), which is targeted at streaming applications where some
of the tasks may be stateless. We derive conditions that ensure valid scheduling of the tasks
of applications, under EDF-ssl, in two cases. First, when using the lowest frequency which
guarantees schedulability and is supported by the system. Second, when using a periodic
frequency switching scheme that preserves schedulability, which can achieve higher energy
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savings. In general, our EDF-ssl allows an even distribution of the utilization of tasks among
the available processors. In turn, this enables processors to run at a lower frequency, which
yields to lower power consumption. Moreover, compared to a purely partitioned scheduling
approach, our experimental results show that our technique achieves the same application
throughput with significant energy savings (up to 64%) when applied to real-life streaming
applications. These energy savings, however, come at the cost of highermemory requirements
and latency of applications.

1.2 Scope of work

Assumptions In our work we make some assumptions that we describe and motivate below:

(1) We consider systems with distributed program and data memory to ensure predictability
of the execution at run-time and scalability.

(2) We consider semi-partitioned scheduling, which is a hybrid between two extremes, par-
titioned and global scheduling. In partitioned scheduling, tasks are statically assigned
to processors. Such scheduling algorithms allow no task migration, thus have low run-
time overheads, but cannot efficiently utilize the available processors due to bin-packing
issues [16]. In global scheduling (e.g., [5]), tasks are allowed to migrate among proces-
sors, which guarantees optimal utilization of the available processors but at the cost of
higher run-time overheads and excessive memory overhead on distributed memory sys-
tems. This memory overhead is introduced because in distributed memory systems the
code of all tasks should be replicated on all the available cores. As shown in [7], semi-
partitioning can ameliorate the bin-packing issues of partitioned scheduling without
incurring the excessive overheads of global scheduling.

(3) We assume that the system’s communication infrastructure is predictable, i.e., it provides
guaranteed communication latency. We include the worst-case communication latency
when computing the WCET of a task. The WCET in our approach includes the worst-
case time needed for the task’s computation, the worst-case time needed to perform
inter-task data communication on the considered platform and the worst-case overhead
of the underlying scheduler as explained in Sect. 2.3.

Limitations The problem addressed in this paper, described earlier in the problem state-
ment, is extremely complex. In order tomake itmore tractable, our approach considers certain
limitations. However, we argue that even under these limitations many hardware platforms
and applications can be handled by our proposed technique. In what follows, we list the
limitations considered in our proposed approach.

(1) We assume that applications are modeled as acyclic SDF graphs. Although this assump-
tion limits the scope of our work, our analysis is still applicable to the majority of
streaming applications. In fact, a recent work [23] has shown that around 90% of stream-
ing applications can be modeled as acyclic SDF graphs.

(2) We use a VFS technique in which the voltage/frequency mode is changed globally over
the considered set of processors. Our technique, therefore, finds applicability in two
kinds of hardware platforms:

– Hardware platforms that apply a single voltage/frequency mode to all the processors
of the system (e.g., the OMAP 4460, as in [28]).

– Hardware platforms that allowVFSmanagement at the granularity of voltage islands
(clusters), which may contain several cores (as in [13]). In these systems, our tech-
nique can be applied by considering each cluster as a separate sub-systemwith global
VFS.
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In the second kind of platforms listed above, our VFS technique can be used to comple-
ment existing approaches that derive an efficient partitioning of tasks to clusters, such
as [8,17]. Note that our proposed technique does not consider per-core VFS, therefore it
may be less beneficial for systems which support this kind of VFS granularity. However,
per-core VFS is deemed unlikely to be implemented in next generation of many-core
systems, due to excessive hardware overhead [10].

(3) Our technique uses offline VFS because we do not exploit the dynamic slack created
at run-time by the earlier completion of some tasks. This choice is motivated by the
following two reasons. (i) Online VFS may require VFS transitions for each execution
of a task. Given that in our approach tasks execute periodically, with very short periods,
online VFS would incur significant transitions overhead. For instance, the period of
tasks in the applications that we consider can be as low as 100μs. Since the VFS
transition delay overhead of modern embedded systems is in the range of tens of μs
[20], the overhead of online VFS would be substantial with such short task periods.
(ii) Moreover, the existence of a global frequency for the whole voltage island renders
online VFS less applicable. This is because online VFS would only be effective if all
cores in the voltage island have dynamic slack at the same time.

1.3 Related work

Several techniques addressing energy minimization for streaming applications have already
been presented. Among these, the closest to our work are [15,22,24]. Wang et al. [24]
considers applications modeled as Directed Acyclic Graphs, applies certain transformation
on the initial graph and then generates task schedules using a genetic algorithm, assuming
per-core VFS. [22] assumes that applications are modeled as SDF graphs, and is composed
of an offline and online VFS phases, to achieve energy optimization. As shown in Sect. 3,
our approach exploits results from real-time theory that allow, in the presence of stateless
tasks, to set the global system frequency to the lowest value which guarantees schedulability
and is supported by the system. Both [24] and [22] cannot in general make the system
execute at the lowest frequency that supports schedulability because they use pure partitioned
assignment of tasks to processors and non-preemptive scheduling. Finally, [15] considers both
per-core and global VFS but assumes applications modeled as Homogeneous SDF graphs,
and that task mapping and the static execution order of tasks is given. By contrast, our
approach handles a more expressiveMoC and does not assume that the initial task mapping is
given.

In addition, several techniques to achieve energy efficiency for systems executing peri-
odic independent real-time tasks have been proposed. Among these techniques, the ones
presented in [10] and [21] are closely related to our approach because they consider global
VFS. The authors in [10] study the problemof energyminimizationwhen executing a periodic
workload on homogeneousmultiprocessor systems. Their approach, however, considers pure
partitioned scheduling. As we show in this paper, pure partitioned scheduling can not achieve
the highest possible energy efficiency. In our approach, instead, we consider semi-partitioned
scheduling and we show that this approach yields significant energy savings compared to
a pure partitioned one. The authors in [21] also address the problem of energy minimiza-
tion under a periodic workload with real-time constraints. However, their approach allows
migration of tasks at any time and to any processor. Therefore, their approach considers
global scheduling of tasks. As explained earlier, in distributed memory systems global task
scheduling entails high overheads, in terms of required memory and number of required
preemptions and migrations of tasks. Our approach considers semi-partitioned scheduling in

123



Energy efficient semi-partitioned scheduling... 243

order to reduce such overheads,while obtaining higher energy efficiency than pure partitioned
approaches.

Similar to our work, other related approaches exploit task migration to achieve energy
efficiency, such as [14] and [27]. In [14], the authors re-allocate tasks at run-time to reduce the
fragmentation of idle times on processors. This in turn allows the system to exploit the longer
idle times by switching the corresponding processors off.As explained earlier, in our approach
we do not exploit run-time processor transitions to the off state because such transitions incur
high overheads, especially when running dataflow tasks which have short periods.

The approach presented in [27] is closely related to ours because it leverages a semi-
partitioned approach, where tasks migrate with a predictable pattern, to achieve energy
efficiency. The author in [27] presents a heuristic to assign tasks to processors in order
to obtain an improved load balancing. When tasks cannot entirely fit on one processor, they
are split in two shares which are assigned to two different processors. Our work differs from
[27] in two main aspects. First, we allow tasks with heavy utilization to be divided in more
than two shares. This can yield to much higher energy savings compared to the technique
proposed in [27]. Second, we allow job parallelism, i.e., we allow the concurrent execution
on different processors of jobs of the same task. This, in turn, contributes to an improved
balancing of the load among processors, which allows us to apply voltage and frequency scal-
ing more effectively, as will be shown in Sect. 3. Moreover, the applicability of the analysis
proposed in [27] to task sets with data dependencies, as in our case, is questionable. In fact,
the semi-partitioned scheduling algorithm underlying [27] is identical to the one proposed
by Anderson et al. in [1]. As the latter paper shows, under this semi-partitioned scheduling
algorithm tasks can miss deadlines by a value called tardiness, even when VFS is not consid-
ered. Since in our case tasks communicate data, to guarantee that data dependencies among
tasks are respected this tardiness must be analyzed. However, an analysis of task tardiness is
not given by [27].

As mentioned earlier, the approach we propose in our paper exploits the concurrent exe-
cution on different processors of jobs of the same task. In a similar fashion, related work that
exploit parallel execution of a task on different processors to achieve energy efficiency are
[25] and [19]. In [25] the authors exploit the data parallelism available in the input applica-
tion. That is, jobs of an application are divided in sub-jobs which process independent subsets
of the input data. These sub-jobs can therefore be executed independently and concurrently
on different processors, obtaining a more balanced load on processors, which in turn allows
a more effective scaling of voltage and frequency of processors. The approach presented in
[25], however, incurs a drawback in the case of distributed memory architectures. In fact,
the mentioned sub-jobs of the application can be seen as separate instances of the input
application, which execute independent chunks of input data. This means that, in distrib-
uted memory architectures, the code of the whole application has to be replicated on all the
processors which execute these sub-jobs. By contrast, in our approach only certain tasks of
the input application have to be replicated (only migrating tasks), which reduces significantly
the memory overhead of our approach compared to the one in [25]. An approach similar to
[25] has been proposed by the authors in [19]. The technique presented in [19] also divides
computation-intensive tasks to sub-tasks which can be concurrently executed on multiple
cores. As in [25], this yields to a more balanced load on processors, and in turn allows the
system to run at a lower frequency. Moreover, the authors in [19] consider systems with
discrete set of operating frequencies. Similar to our technique, when the lowest frequency
which guarantees schedulability is not supported by the system, the analysis in [19] employs
a processor frequency switching scheme to obtain this lowest frequency and still meet all
deadlines. However, our analysis is different from [19] in several aspects. First, when assign-
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ing sub-tasks load to the available processors, [19] considers only symmetric distribution of
the load of a task to different processors. In contrast, in our paper, as shown in Example 4
in Sect. 3, in order to obtain optimal energy savings we allow an asymmetric distribution of
the load of certain tasks to the available processors. Second, two major differences concern
the derivation of the periodic VFS switching scheme that guarantees schedulability. The first
difference is that the analysis in [19] does not account for the overheads incurred when per-
forming VFS transitions. By contrast, our analysis take this realistic overhead into account.
The second difference is that in [19] such periodic VFS switching scheme is derived in order
tomeet all the deadlines of tasks. This requires the system to perform very frequent VFS tran-
sitions, especially when tasks have short periods as in our case. Conversely, in our approach
we allow some task deadlines to be missed, by a bounded amount. This allows our approach
to perform much fewer VFS transitions. As VFS transitions incur time and energy overhead
in realistic systems, our approach guarantees higher effectiveness compared to [19].

The semi-partitioned scheduling that we propose, EDF-ssl, allows only restricted migra-
tions. Notable examples of existing semi-partitioned scheduling algorithms with restricted
migrations are EDF-fm [1] and EDF-os [2], from which our EDF-ssl inherits some prop-
erties, as explained in Sect. 2.4. The closest to our EDF-ssl is EDF-os because it allows
migrating tasks to run on two or more processors, not strictly on two as in EDF-fm. The
fundamental difference between EDF-os and our proposed EDF-ssl lays in the kind of
applications that are considered by these two scheduling algorithms. In EDF-ssl we con-
sider applications in which some of the tasks may be stateless and therefore can execute
different jobs of the same task in parallel, if released on different processors. By contrast,
EDF-os considers applications modeled as sets of tasks where all tasks are stateful. This
means that different jobs of the same task cannot be executed concurrently. As explained
in detail in Sect. 3, this fact prevents EDF-os from achieving energy-optimal results when
streaming applications have stateless tasks with high utilization. This phenomenon is also
described in the experimental results section (Sect. 5.3). Similar to our work, analyses of
scheduling algorithms that allow jobs within a single task to run concurrently are presented
in [12,26]. However, both these works consider global scheduling algorithms which, as
mentioned earlier, entail high overheads especially in distributed memory architectures. In
addition, in both [12] and [26] the potential of exploiting job parallelism to achieve higher
energy efficiency is not explored.

2 Background

In Sects. 2.1 and 2.2 we introduce the systemmodel and task set model assumed in our work,
respectively. Then, we summarize techniques instrumental to our approach: soft real-time
scheduling of acyclic SDF graphs (Sect. 2.3) and some properties of the EDF-os semi-
partitioned approach which are leveraged in our work (Sect. 2.4).

2.1 System model

We consider a system composed of a set � = {π1, π2, . . . , πM } of M homogeneous proces-
sors. As explained in Sect. 1, we consider the problem of mapping applications to systems
(or clusters) in which all the cores belong to the same voltage/frequency island. This means
that any processor in the system either runs at the same “global” frequency and voltage level,
or is idle. Each idle processor has no tasks assigned to it and consumes negligible power. We
assume that the system supports only a discrete set Φ = {F1, F2, . . . , FN } of N operating
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frequencies, where the maximum frequency is FN = Fmax. To ease the explanation of our
analysis, based on this maximum frequency Fmax we define the normalized system speed as
follows.

Definition 1 (Normalized speed)Given a frequency F at which the system runs, this system
is said to run at a normalized system speed α = F/Fmax.

This definition creates a one-to-one correspondence between any frequency at which the con-
sidered system runs and its normalized speed.Wewill exploit this correspondence throughout
this paper. Given the set of supported frequencies Φ, by applying Definition 1 we obtain a
set of supported normalized system speeds A = {α1, α2, . . . , αN }, where αN = αmax = 1.

2.2 Task set model

As shown in Sect. 2.3 below, the input application, modeled as an acyclic SDF graph with
n actors, can be converted to a set Γ = {τ1, τ2, . . . , τn} of n real-time periodic tasks. We
assume that tasks can be preempted at any time. A periodic task τi ∈ Γ is defined by a 4-tuple
τi = (Ci , Ti , Si ,Δi ), where Ci is the WCET of the task, Ti is the task period, Si is the start
time of the task, and Δi represents the task tardiness bound, as defined in Definition 2 below.
Note that Ci is obtained at the maximum available processor frequency, Fmax. Therefore, we
can derive the worst-case task execution requirement in clock cycles as CCi = Ci · Fmax. In
this paper, we consider only implicit-deadline tasks, which have relative deadline Di equal
to their period Ti . The utilization of a task τi is given by u(τi ) = Ci/Ti (also denoted by ui ).
The cumulative utilization of the task set is denoted with UΓ = ∑

τi∈Γ u(τi ).
The kth job of task τi is denoted by τi,k . Job τi,k of τi , for all k ∈ N0, is released in the system

at the time instant ri,k = Si + kTi . The absolute deadline of job τi,k is di,k = Si + (k + 1)Ti ,
which is coincident with the arrival of job τi,k+1. We denote the actual completion time of
τi,k as zi,k . Note that the conversion of the input application to a corresponding periodic task
set, as described in Sect. 2.3, creates a one-to-one correspondence between actor vi of the
application and task τi ∈ Γ . Similarly, there is a one-to-one correspondence between the kth
invocation vi,k of vi and job τi,k of τi . These correspondences will be exploited throughout
this paper.

In this paper, we consider as soft real-time (SRT) those systems in which tasks are allowed
to miss their deadline by a certain bounded value, called tardiness. The bound on tardiness
is defined as follows.

Definition 2 (Tardiness bound) A task τi is said to have a tardiness bound Δi if zi,k ≤
(di,k + Δi ),∀k ∈ N0.

Note that even if job τi,k has tardiness greater than zero, in our approach the release time
of the next job τi,k+1 is not affected. That is, job τi,k+1 will be available to be scheduled
although the previous job τi,k of task τi has not yet finished its execution. However, in such
a case, if job τi,k and job τi,k+1 are released on the same processor and the local scheduler
is EDF (as we assume in this paper) job τi,k+1 will always have to wait until the completion
of job τi,k because this job has higher priority. This is because the deadline of job τi,k is by
definition earlier than that of job τi,k+1.

2.3 Soft real-time scheduling of SDF graphs

In this paper we consider applications modeled as acyclic SDF graphs [18]. An SDF graph
G is composed of a set of actors V and a set of edges E , through which actors communicate.
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We define as input actor of G an actor that receives the input stream of the application, and
as output actor of G an actor that produces the output stream of the application. The authors
in [4] show that the actors in any acyclic SDF graph can be scheduled as a set of real-time
periodic tasks Γ , as defined in Sect. 2.2. Their analysis begins with the computation of the
WCET Ci of an SDF actor vi . The value of Ci is computed such that both the worst-case
communication and computation of vi is included:

Ci = CR ·
∑

eu∈inp(vi )
yui + CC

i + CW ·
∑

er∈out(vi )
xri (1)

In Eq. (1), CR /CW represents the (platform-dependent) worst case time needed to read/write
a single token from/to an input/output channel; yui /x

r
i is the number of tokens read/written

by actor vi from/to edge eu /er ; inp(vi )/out(vi ) is the set of input/output edges of vi ; and CC
i

is the worst-case computation time of actor vi . Note that CC
i includes also the worst-case

overhead incurred by the underlying scheduler (e.g., EDF), following the analysis of [11].

2.3.1 Derivation of minimum periods of tasks

Based on the WCETs of each actor computed by Eq. (1) and on the properties of the graph,
the authors in [4] derive the minimum period Ti of each task τi (which corresponds to SDF
actor vi ∈ V ), using Lemma 2 in [4]. These derived task periods ensure that each actor vi
executes qi times in every iteration period H :

q1T1 = q2T2 = · · · = qnTn = H (2)

where qi , derived from the properties of the SDF graph, is the number of repetitions of vi
per graph iteration [18] and n is the number of actors in the graph.

The technique presented in [4] has been recently extended by [7], which considers that
the derived periodic task set is scheduled by an SRT scheduler with bounded task tardiness
(see Definition 2). This extension is summarized in the following subsection.

2.3.2 Earliest start times and buffer size calculation

As long as tardiness is bounded by a value Δi for each task τi , earliest start times of each
task τi can be derived (Lemma 1 in [7]). The earliest start times of task τi corresponds to
the parameter Si defined in Sect. 2.2. Similarly, minimum buffer sizes can be calculated
(Lemma 2 in [7]). Earliest start times and minimum buffer sizes are derived such that, in
the resulting schedule, every actor can be released strictly periodically, without incurring
any buffer underflow or overflow. Note that the technique in [7] allows tasks to miss their
deadlines by a bounded value, because it uses an SRT scheduling algorithm. However, in
the analysis, the worst-case tardiness that may affect each task is considered to guarantee
that data-dependencies among tasks are respected. Furthermore, [7] shows that applications
achieve the same throughput under SRT and HRT schedulers. In addition, even under a SRT
scheduling algorithm, [7] guarantees hard real-time behavior at the interfaces between the
system and the environment, provided that the buffers which implement these interfaces are
appropriately sized to compensate for the tardiness of input and output actors.

The complete formulas to derive earliest start times of tasks and minimum buffer sizes are
not reported and explained here due to space limitations but can be found in [7]. However, the
intuition behind these formulas is the following. Let us consider the data-dependent actors
vs (source) and vd (destination) shown in Fig. 1. They exchange data tokens over edge eu .
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Fig. 1 SDF actors vs and vd
with dependency over eu

Every invocation of vs produces xus tokens to eu , and every invocation of vd consumes yud
tokens from eu . To derive the earliest start time of the destination actor vd in presence of task
tardiness, Lemma 1 in [7] considers the worst case scheduling of the source and destination
actors. This worst case scheduling, when deriving start times, occurs when the source actor
vs completes its jobs as late as possible (ALAP) and the destination actor vd is released as
soon as possible, with no tardiness. ALAP completion schedule in case of tardiness is defined
below.

Definition 3 (ALAP completion schedule in case of tardiness)TheALAP completion sched-
ule considers that all invocations vi, j (jobs τi, j ) of an actor vi (task τi ) incur the maximum
tardiness Δi , therefore complete at zi,k = di,k + Δi .

The ALAP completion schedule of actor vs can be represented by a fictitious actor ṽs , which
has the same period as vs , no tardiness, and start time S̃s = Ss + Δs . At run-time, any
invocation of vs , even if delayed by the maximum allowed tardiness Δs , will never complete
later than the corresponding invocation of ṽs . Then, the earliest start time of the destination
actor vd can be calculated considering ṽs as source actor.

Once the start times of source and destination actors have been calculated, Lemma 2 in [7]
allows the derivation of the required size of the buffer that implements the communication
over eu . Lemma 2 in [7] considers the worst case scheduling for buffer size derivation.
This occurs when the source actor executes as soon as possible, with no tardiness, and the
destination actor completes its jobs as late as possible. Similarly to the analysis used to derive
start times, the ALAP schedule of destination actor vd can be represented by a fictitious actor
ṽd which has the same period as vd , no tardiness, and start time S̃d = Sd + Δd . Then, the
buffer size can be derived considering vs as source actor and ṽd as destination actor.

Example 1 Consider the SDF graph shown in Fig. 2a, which has three actors (v1, v2, v3) with
WCET indicated between parentheses (C1 =2, C2 =3, C3 =2) and production/consumption
rates indicated above the corresponding edges. Using Lemma 2 in [4], we derive the fol-
lowing minimum periods: T1 =T3 =6 and T2 =3, as shown in Fig. 2b. Then, suppose that the
underlying SRT scheduling algorithm guarantees tardiness bounds Δ1 =1, Δ2 =2 (as indi-
cated in Fig. 2a and shown in Fig. 2b), whereas Δ3 =0. By Lemma 1 in [7], using these
tardiness bounds, we derive the earliest start times Si shown in Fig. 2b. For instance, note
that S2 =7 ensures that any invocation of v2 will always have enough data to read as soon as
it is released. This holds even when all the invocations of v1 incur the largest tardiness Δ1,
i.e., they execute according to the ALAP completion schedule.

Note that, similar to our approach, the work in [7] also uses semi-partitioned scheduling,
in which some tasks are assigned to a single core (fixed tasks) whereas some others may
migrate between cores (migrating tasks). Only stateless tasks are allowed to migrate. The
definition of stateless task is given below.

Definition 4 (Stateless task)A task τi is said to be stateless when it does not keep an internal
state between two successive jobs.

The authors in [7] allow only stateless tasks to migrate because the overhead incurred in
moving a (potentially large) internal state can be high, in distributed memory systems.
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(a)

(b)
Fig. 2 Example of the approach described in [7]. a Simple example of an SDF graph. bDerived periodic task
set and minimum start times. Up arrows represent job releases, down arrows represent task deadlines. Only
the first period of v3 is shown due to space constraints

2.4 EDF-os semi-partitioned algorithm

Our scheduling algorithm, presented in Sect. 3, inherits some definitions and properties from
EDF-os [2]. Far from being a complete description of the EDF-os algorithm, the rest of this
subsection presents this “common ground” between our approach and EDF-os.

EDF-os is aimed at soft real-time systems, in which tasks may miss deadlines, but only
up to a bounded value. Under EDF-os, processors are assumed to run at the highest available
frequency, which means that any processor πk can handle a total cumulative utilization up to
1. Tasks can be either fixed ormigrating. Migrating tasks are allowed to migrate between any
number of processors, with the restriction that migration can only happen at job boundaries.
Each task τi is assigned a (potentially zero) share of the available utilization of a processor,
as defined below.

Definition 5 (Task share) A task τi is said to have a share si,k on πk when a part si,k of its
utilization ui is assigned to πk .

In turn, the task fraction of task τi on processor πk is defined as follows.

Definition 6 (Task fraction) Given si,k , πk executes a fraction fi,k = si,k
ui

of τi ’s total execu-
tion requirement.

If task τi is migrating, it has non-zero shares on several processors. If τi is fixed, it has
non-zero shares on a single processor. The share assignment in EDF-os ensures that the
cumulative sum of the shares of a task, over all the processors, equals the task utilization
ui = ∑M

k=1 si,k , with M being the total number of processors in the system.
The total share allocation on processor πk is denoted by σk �

∑
τi∈Γ si,k . In order to avoid

overloading processor πk in the long run, σk must always be lower than the total processor
utilization:

σk ≤ 1.0 (3)
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(a) (b)
Fig. 3 Share assignments considered in Example 2 and Example 3. Migrating tasks are indicated in gray.
a Share assignment considered in Example 2. b Share assignment considered in Example 3

In addition, to avoid overloading a processor in the long run, EDF-os enforces that, in the
long run, the fraction of workload executed on πk is equal to the task fraction fi,k given by
Definition 6. This long-run workload distribution according to task fractions is obtained by
leveraging results from Pfair scheduling [5]. In particular, out of the first ν consecutive jobs
released by τi , EDF-os ensures that the number of jobs released on processor πk is between
� fi,k · ν� and � fi,k · ν� (Property 1 in [2]). Note that for ν → ∞ the fraction of jobs released
on πk tends to fi,k , as expected. In turn, out of any c consecutive jobs of a migrating task τi ,
the number of jobs released on πk (indicated as ci,k) is bounded by the following expression:

ci,k ≤ fi,k · c + 2 (4)

The above expression is given by Property 6 in [2]. For a more detailed explanation of
assignment rules for jobs of migrating tasks, the reader is referred to [1] and [2].

Example 2 Given the task set {τ1 = (C1 = 3, T1 = 4), τ2 = (3, 4), τ3 = (1, 2)}, the
EDF-os algorithm derives the task assignment shown in Fig. 3a. The utilization of task τ3 in
Fig. 3a is split in two shares, s3,1 = 1/4 on π1 and s3,2 = 1/4 on π2. Therefore, in the long
run half of the jobs of τ3 will be released on π1 and the other half will be released on π2.

3 Proposed semi-partitioned algorithm: EDF-ssl

In this section we describe our proposed semi-partitioned scheduler, called EDF-ssl. In
EDF-ssl, only stateless tasks (recall Definition 4) are allowed to be migrating. We enforce
this condition because migrating the internal state of a stateful task can be prohibitive in a
distributed memory system. Note that under EDF-ssl task migrations can only happen at job
boundaries. Once a job is released on a certain processor, it cannot migrate to another one.
Moreover,EDF-ssl exploits the fact that migrating tasks are stateless by allowing successive
jobs to execute in parallel on different processors.

With ourEDF-sslwewant to show that, in the presence of stateless tasks, semi-partitioned
scheduling can be used to improve energy efficiency, while achieving the same application
throughput compared to purely partitioned scheduling. To achieve better energy efficiency
it may be beneficial to run processors at voltage/frequency levels lower than the maximum.
The following example shows that under certain conditions the classical partitioned VFS
techniques (e.g., [3]) are not effective. Moreover, existing semi-partitioned approaches do
not exploit the presence of some stateless tasks in the considered applications and therefore
cannot be applied to achieve energy efficiency, if these stateless tasks have high utilization.

Example 3 Consider a single stateless task τ1 = (C1 = 3, T1 = 3). The task utilization
is u1 = 1. In this case, existing partitioned VFS techniques can not be effective, because
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(a)

(b)
Fig. 4 Job executions of τ1, as defined in Example 3, according to the share assignment of Fig. 3b.Up arrows
indicate job releases, down arrows indicate job deadlines. Black rectangles indicate job completion. a Job
executions according to EDF-os rules. b Job executions according to EDF-ssl rules

τ1 can only be assigned to one processor and this processor must run at its highest volt-
age/frequency level, because u1 = 1. Moreover, even existing semi-partitioned approaches
cannot distribute the utilization of τ1 over more than one processor, as shown in the follow-
ing. Assume that to improve energy efficiency the utilization of τ1 has to be split over two
cores, π1 and π2, running at half of the maximum frequency, i.e., at normalized processors
speed α = 1/2. Note that under these conditions Eq. (3) has to be changed accordingly. We
enforce therefore σ1 ≤ α and σ2 ≤ α. The resulting assignment of shares of τ1 is shown in
Fig. 3b.

In this scenario, the problem of EDF-os is that it does not consider job parallelism. This
means that job τi,k+1 of a migrating task τi has to wait for the completion of the previous
job τi,k . For instance, in Fig. 4a, job τ1,0 is released on π1 at time 0. Since α = 1/2, τ1,0
finishes at time 6. Therefore job τ1,1, although released at time 3 on π2, has to wait until
time 6 to start executing. As shown in Fig. 4a, although jobs of τ1 are assigned alternatively
to π1 and π2, the tardiness Δ incurred by successive jobs of τ1 increases unboundedly. Our
EDF-ssl avoids this linkage between processors by allowing jobs released by a migrating
task to execute in parallel, exploiting the fact that migrating tasks are assumed to be stateless.
As depicted in Fig. 4b, this leads to bounded tardiness for all jobs of τ1.

Under our EDF-ssl, necessary (but not sufficient) conditions to guarantee schedulability
are the following. First, the total utilization of the task set Γ cannot be higher than the
total available utilization on processors: UΓ ≤ α · M , where M is the number of available
processors in the system and assuming that they all run at the same normalized speed α ≤ 1.
Second, α must be greater than the utilization of any stateful task in Γ : α ≥ us,max, where
us,max is the utilization of the heaviest stateful task in Γ . This is because stateful tasks are
fixed, and any processor to which the utilization us,max > α is assigned will be overloaded.
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We merge the above two conditions in the following expression, which provides necessary
higher and lower bounds for α:

max{UΓ /M, us,max} ≤ α ≤ 1 (5)

We now proceed with a detailed description of our EDF-ssl. As in all semi-partitioned
approaches (e.g., [1,2]), EDF-ssl is composed of two phases, an assignment phase and an
execution phase, which are described in Sects. 3.1 and 3.2, respectively. Tardiness bounds
guaranteed under EDF-ssl are derived in Sect. 3.3, for the case of processors running at a
fixed normalized speed α. Finally, Sect. 3.4 presents a processor speed switching technique,
called “Pulse Width Modulation (PWM) scheme”, that provides a certain normalized speed
in the long run. Tardiness bounds are derived also for the latter scenario.

3.1 Assignment phase

The assignment phase of EDF-ssl is given inAlgorithm 1. It consistsmainly of 3 steps, which
we explain below. Note that under EDF-ssl processors can run at a normalized speed α lower
than 1. Therefore, to avoid overloading processors in the long run, we modify condition (3)
as follows:

σk ≤ α, ∀ πk ∈ � (6)

which means that the total share assignment on any processor πk cannot exceed its normal-
ized speed. Moreover, note that executing Algorithm 1 makes only sense if condition (5) is
satisfied.

First step (lines 1–5) In this step, the algorithm finds the set of stateful tasks Γs within the
original task set Γ . Then, it uses the First-Fit Decreasing Heuristic (FFD) [16] to allocate
these stateful tasks as fixed tasks over the available processors. This means that if τi ∈ Γs

is assigned to processor πk , its share on πk should be equal to the whole task utilization:
si,k = ui and si,l = 0,∀l �= k.

Second step (lines 6–10) This step tries to assign all the remaining (stateless) tasks as fixed
tasks over the remaining available processor utilization, using FFD. The tasks which can not
be assigned as fixed are added to a set of tasks Γna, which are assigned in the next step.

Third step (lines 11–17) The final step assigns all the remaining tasks, which could not be
allocated as fixed tasks. Considering the processor list in reversed order {πM , πM−1, . . . π1},
task τi ∈ Γna is allocated a share on successive processors, considering the remaining uti-
lization on each processor, in a sequential order. (The remaining utilization on processor πk

is given by (α − σk)). The assignment of task τi finishes when the sum of its shares over the
processors equals the task utilization ui . The third step considers the processor list in reversed
order as a way to minimize the number of processors, which already have fixed tasks, that are
utilized to assign migrating shares. This can lead to a lower number of tasks with tardiness.

Example 4 Consider the SDF graph example in Fig. 2a. In Example 1, we derived the corre-
sponding task set Γ = {τ1 = (2, 6), τ2 = (3, 3), τ3 = (2, 6)}. The total utilization of the
task set is UΓ = 1/3 + 1 + 1/3 = 5/3. Assume that we want to execute this task set on
M = 3 processors. By condition (5), α ≥ UΓ /M = 5/9, therefore the lowest α which could
provide schedulability is αopt = 5/9. Running the system at this lowest speed αopt minimizes
the energy consumption. Now, if the system supports the speed αopt, we can simply set the
system speed to that value. In this case, we can derive tardiness bounds using the result in
Sect. 3.3, which considers fixed processors speed.

However, suppose that the considered system supports a set of normalized speeds A =
{0.25, 0.5, 0.75, 1}. Note that αopt /∈ A. In this case, we have two choices. Choice 1)We set
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(a) (b)
Fig. 5 Share assignments considered in Example 4. Values of α are shown in red. a α = 0.75. b α = αopt =
5/9. (Color figure online)

Algorithm 1: Share assignment heuristic.
Input: A set of M processors � = {π1, π2, . . . , πM }, their normalized speed α, a set of n periodic

tasks Γ = {τ1, τ2, . . . , τn}.
Result: An M-partition describing the share assignment onto M processors if Γ is schedulable, False

otherwise.
Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};1
for τi ∈ (Γs , sorted by decreasing utilization) do2

Try to assign si,k = ui of task τi on a single πk using FF;3
if FF fails for all πk ∈ � then4

return False;5

Γna = ∅ (the set of unassigned tasks, initially empty)6
for τi ∈ (Γ − Γs , sorted by decreasing utilization) do7

Try to assign si,k = ui of task τi on πk using FF;8
if FF fails for all πk ∈ � then9

Γna = Γna ∪ τi ;10

k = M (start share assignment from processor πM to π1);11
for τi ∈ Γna do12

uremaining = ui ;13

while uremaining > 0 do14
si,k = min(uremaining, (α − σk ));15

σk , uremaining = (σk + si,k ), (uremaining − si,k );16

if σk = α then17
k = k-118

the system speed to the lowest α ∈ A such that α > αopt, condition which could provide
schedulability: α = 0.75. We can then refer again to Sect. 3.3 to derive tardiness bounds
in this scenario. Fig. 5a shows the share assignment of tasks in Γ , when α = 0.75 and
assuming that input and output actors (τ1, τ3) are stateful. Choice 2) We use the periodic
speed switching technique described in Sect. 3.4 to get the normalized speed αopt in the
long run, and we derive the corresponding tardiness bounds. Fig. 5b shows the assignment
obtained when α = αopt = 5/9.

3.2 Execution phase

At run-time, EDF-ssl follows the simple rules defined below.
Job releasing rules Jobs of a fixed task τ f are released periodically, every T f , on a single

processor. Jobs of a migrating task τm are distributed over all the processors on which τm
has non-zero shares. Our EDF-ssl inherits from EDF-os the job releasing techniques for
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migrating tasks (see Sect. 2.4). In particular, Eq. (4), which provides an upper bound of the
number of jobs released on a processor as a function of the migrating task share, is still valid.
This result will be instrumental to the derivation of tardiness bounds under our EDF-ssl.

Job prioritization rules As mentioned before, jobs of fixed and migrating tasks released
on a certain processor are scheduled using a local EDF scheduler. As shown in Example 3,
under our EDF-ssl when a task migrates from a processor to another one, the job released
on the latter processor does not wait until the completion of the job released on the former
processor. This is in contrast with what happens under EDF-os. Moreover, contrary to our
EDF-ssl, under EDF-os certain tasks are statically prioritized over others.

3.3 Tardiness bounds under fixed processor speed

Given the rules and properties of our EDF-ssl, described in Sects. 3.1 and 3.2, we now
derive its tardiness bounds, which are provided by Theorem 1 below. Note that due to the
way task shares are assigned in the third step of the assignment phase, each processor runs
at most two migrating tasks.

Theorem 1 Consider a processor πk running at a fixed normalized speed α. Assume two
migrating tasks, τi and τ j , are assigned toπk . Then, jobs of fixed andmigrating tasks released
on πk may incur a tardiness of at most

Δπk = 2 (Ci + C j )

α
(7)

where Ci and C j are the worst-case execution time of τi and τ j , respectively, and α follows
Definition 1.

Proof We prove Theorem 1 by contradiction. We focus on a certain job τq,l , belonging to
either a fixed or a migrating task, assigned to πk . Let assume that this job incurs a tardiness
which exceeds Δπk . We define the following time instants to assist the analysis: td is the
absolute deadline of job τq,l ; tc = td + Δπk ; and t0 is the latest instant before tc such that
no migrating or fixed job released before t0 with deadline at most td is pending at t0. By
definition of t0, just before t0 πk is either idle or executing a job with deadline later than td .
Moreover, t0 cannot be later than rq,l , the release time of job τq,l . Note that since we assume
that job τq,l incurs a tardiness exceedingΔπk , it follows that τq,l does not finish at or before tc.

We denote as γ the total set of tasks, fixed and migrating, assigned to πk . We first deter-
mine the demand placed on πk by γ in the time interval [t0, tc). By the definitions of t0, td ,
and tc, any job of any task that places a demand in [t0, tc) on πk is released at or after t0 and
has a deadline at or before td . Therefore, the demand of any task τi in [t0, tc) is given by the
number of jobs released in this interval multiplied by the job execution time.

The number of jobs released on πk in [t0, tc), by a fixed task τ f , is at most c = � td−t0
T f

�
because fixed tasks release all of their jobs on πk . By contrast, a migrating task τm releases
c = � td−t0

Tm
� jobs, but only part of them are assigned to πk . An upper bound of the amount

of jobs assigned to πk , out of every c consecutive jobs, is given by Eq. (4).
We can now compute the total demand from tasks assigned to πk . We denote as γ f and

γm the fixed and migrating sets of tasks mapped on πk , respectively. Note that γm = {τi , τ j }.
Given the total number of released jobs c, from Eq. (4) the demand dmd from migrating

tasks in [t0, tc) is upper bounded by:
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dmd(γm, t0, tc) ≤
(

fi,k

⌊
td − t0
Ti

⌋

+ 2

)

Ci +
(

f j,k

⌊
td − t0
Tj

⌋

+ 2

)

C j

≤ (td − t0)

(

fi,k
Ci

Ti
+ f j,k

C j

Tj

)

+ 2(Ci + C j )

Given the definition of fi,k in Definition (6), we obtain:

dmd(γm, t0, tc) ≤ (td − t0)(si,k + s j,k) + 2(Ci + C j ) (8)

At the same time, the demand from fixed tasks in [t0, tc) is upper bounded by:

dmd(γ f , t0, tc) ≤
∑

τ f ∈γ f

⌊
td − t0
T f

⌋

C f ≤ (td − t0)
∑

τ f ∈γ f

C f

T f

From condition (6), we obtain:

dmd(γ f , t0, tc) ≤ (td − t0)(α − si,k − s j,k) (9)

Combining Eq. (8) and (9), we derive an upper bound for the total demand of fixed and
migrating tasks in [t0, tc):

dmd(γ f ∪ γm, t0, tc) ≤ α(td − t0) + 2(Ci + C j ) (10)

To ease our analysis, we now express the total demand from tasks in clock cycles. Recall
that any requirement in processor time can be converted to clock cycles. For instance, for any
task τa , its worst-case clock cycles requirement is CCa = Ca · Fmax (see Sect. 2.1). Then,
from Eq. (10) we get:

dmd_cc(γ f ∪ γm, t0, tc) ≤ Fmax
(
α(td − t0) + 2(Ci + C j )

)
(11)

Now, from our initial assumption that the tardiness of job τq,l exceeds Δπk , it follows that
the amount of clock cycles provided by the processor in the interval [t0, tc) is less than the
total demand from tasks dmd_cc in the same time interval. In the considered interval, the total
demand from tasks is upper bounded byEq. (11),whereas the amount of clock cycles provided
by processor πk is Fmaxα(tc − t0), because πk runs at frequency Fmaxα. Therefore, we have:

Fmaxα(tc − t0) < Fmax
(
α(td − t0) + 2(Ci + C j )

)
(12)

Dividing both sides by Fmaxα:

tc < td + 2(Ci + C j )/α ⇒ tc < td + Δπk (13)

Expression (13) contradicts the earlier definition of tc = td + Δπk , therefore Theorem 1
holds. ��

Note that the tardiness bound given by Eq. (7) differs from the tardiness bounds of EDF-
os given by Eqs. (3) and (10) in [2]. This is caused by the differences in the execution phase
between the two scheduling algorithm described in Sect. 3.2.

3.4 Tardiness bounds under PWM scheme

The optimal normalized speed αopt which can minimize energy consumption while guaran-
teeing schedulability, is derived from the lower bound in expression (5). This αopt, however,
often may not be supported by the system. Example 4 shows such a case. Recall that by
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Fig. 6 PWM scheme execution

Definition 1, αopt corresponds to the optimal frequency Fopt that can guarantee schedulabil-
ity. Although running constantly at this optimal frequency Fopt may not be supported by the
system, it is possible to achieve this optimal frequency value in the long run, exploiting a
“Pulse Width Modulation” (PWM) scheme, where the system switches periodically between
two supported frequencies, FL and FH , with FL < Fopt < FH . In particular, we consider
the PWM technique presented in [6], which we summarize in the following subsection.

3.4.1 PWM scheme

The PWM scheme presented in [6] is aimed at uniprocessor systems with HRT constraints.
The execution of the scheme at run-time is sketched in Fig. 6. The PWM scheme switches
periodically between a lower frequency FL and a higher frequency FH . The period of the
PWM scheme is denoted by P .

The duration of the interval of the low-frequency (high-frequency) mode is QL (QH ).
Note that QL + QH = P . Moreover, [6] defines λL = QL

P and λH = QH
P , the fraction of

time spent running at low and high modes, respectively.
As shown in Fig. 6, the scheme considers time overheads due to frequency switching.

These overheads are denoted by oLH for transitions between lower to higher frequencies, and
by oHL for the opposite transitions. In addition, [6] denotes the amount of clock cycles lost
during frequency transitions as ΔLH = FLoHL + FHoLH.

Under the above definitions, the effective frequency obtained by running the processor at
FL for QL time and FH for QH time is given by expression (8) in [6]:

Feff = λL FL + λH FH − ΔLH/P (14)

To ensureHRT execution on the system, in their analysis the authors leverage the processor
supply function Z(t), defined as theminimumnumber of cycles that the processor can provide
in every interval of length t . From the parameters of the PWM scheme, Z(t) is depicted with
a solid red line in Fig. 7, with omax = max{oLH, oHL} and omin = min{oLH, oHL}. Function
Z(t) is zero in [0, omax]; grows linearly with slope FL in [omax, omax + QL − oHL]; stays
constant in [omax + QL − oHL, omax + QL − oHL + omin]; finally, grows with slope FH until
the end of the period P . Note that Z(t) is periodic with period P .

3.4.2 Tardiness bounds derivation

In our approach, we leverage the processor supply function Z(t) to derive tardiness bounds
for any task running on a processor under our EDF-ssl scheduling algorithm. These tardiness
bounds are given by the following theorem.

Theorem 2 Consider a processor πk , on which the PWM scheme described in Sect. 3.4.1
is applied to obtain an effective frequency Feff. Assume that two migrating tasks, τi (with
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Fig. 7 Supply function Z(t)

WCET Ci ) and τ j (with WCET C j ), are assigned to πk . Then, jobs of fixed and migrating
tasks released on πk may incur a tardiness of at most

Δ
πk
PWM = 2(Ci + C j )

αeff
+ ρ

Feff
(15)

with ρ = (Feff − FL)QL + FLoHL + FeffoLH and αeff is derived using Definition 1 from Feff.

Proof To prove Theorem 2, we first derive a lower bound for Z(t). We define the following
parameter:

ρ = maxt∈R+{Feff · t − Z(t)}
which represents the maximum difference between the “optimal” number of cycles, provided
in [0, t] by a processor running at Feff, and Z(t). From Fig. 7 we get:

ρ = (Feff − FL)QL + FLoHL + FeffoLH (16)

from which we can express a lower bound for Z(t) as:

Ž(t) = Feff · t − ρ (17)

Ž(t) is depicted in Fig. 7 with a dashed red line. We can then express Z(t) as Z(t) =
Ž(t) + e(t), with e(t) ≥ 0,∀t ≥ 0.

Now, we follow the proof of Theorem 1. This time, the instant tc is defined as tc =
td+Δ

πk
PWM, andwe assume that a certain job τq,l does not complete by time tc. The definitions

of t0 and td are unchanged. The demand from fixed and migrating tasks, expressed in clock
cycles, is still boundedby (11).However,wehave to change the left-hand side of the inequality
in (12) with Z(tc − t0), obtaining:

Feff · (tc − t0) − ρ + e(tc − t0) < Fmax
(
αeff(td − t0) + 2(Ci + C j )

)
(18)

Since Feff = Fmaxαeff, dividing both sides by Fmaxαeff we get:

(tc − t0) − ρ − e(tc − t0)

Feff
< (td − t0) + 2(Ci + C j )

αeff

therefore:

(tc − td) <
2(Ci + C j )

αeff
+ ρ − e(tc − t0)

Feff
= Δ

πk
PWM − e(tc − t0)

Feff
(19)

Even with e(tc − t0) = 0, which represents the worst case, expression (19) contradicts the
definition of tc, therefore Theorem 2 holds. ��
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Note that by Eq. (15) it follows that tardiness can be experienced even on processors with
no migrating tasks, given the fact that the term ρ depends only on the parameters of the PWM
scheme.

4 Start times and buffer sizes under EDF-ssl

In Sect. 2.3.2 we summarize the analysis that guarantees correctness of start times and buffer
sizes under the SRT scheduling algorithm used in [7], namely EDF-fm. In order to maintain
this analysis valid for our proposed EDF-ssl, we must take into account the differences
between our EDF-ssl and EDF-fm.

Let us consider again the data-dependent actors vs (source) and vd (destination) shown
in Fig. 1. We recall that, as described in Sect. 2.3, in our analysis vs and vd are converted
into two periodic tasks τs and τd . Assume, for instance, that the system runs at a certain
constant normalized speed α, and both τs and τd are assigned to the processors as migrating
tasks, with the share assignment shown in Fig. 8a. Shares ss,1 and ss,2 of τs are assigned
to π1 and π2, whereas shares sd,2 and sd,3 of τd are assigned to π2 and π3. In Fig. 8a, the
dashed areas in each processor represent processor utilization assigned to tasks other than
τs and τd . These other tasks are assumed to be of fixed type (i.e., not migrating). Since π1

and π3 run only one migrating tasks, by Eq. (7) we derive the following tardiness bounds:
Δπ1 = 2Cs/α, Δπ2 = 2(Cs + Cd)/α, Δπ3 = 2Cd/α, where Cs and Cd are the WCETs
of τs and τd , respectively. It follows that under our EDF-ssl jobs of the same migrating task
have different tardiness bounds, depending on which processor the jobs are released. For
instance, jobs of τs will incur a tardiness of at most Δπ2 when released on π2, and Δπ1 when
released on π1, with Δπ2 > Δπ1 . By contrast, under EDF-fm used in [7], jobs of a migrating
task experience no tardiness at all, because tardiness can only be experienced by fixed tasks.
In addition, under our EDF-ssl jobs of the same migrating task can execute in parallel. This
cannot happen under EDF-fm.

In the remainder of this section we define a way to guarantee a correct schedule of τs
and τd , with no buffer underflow or overflow, under our EDF-ssl. As shown in Fig. 8b,
we assume that processors running communicating tasks have access to a shared memory
where data communication buffers are allocated. Note that our approach allows data and
instruction memory of all processors to be completely distributed, therefore contention can
only occur when accessing the shared communication memory. In Fig. 8b, buffer bu of size
B implements the communication over edge eu of Fig. 1. Our analysis to guarantee a correct
scheduling of τs and τd comprises two parts. First, we guarantee valid start times of τs and
τd and buffer size B by adapting the analysis in [7] to our EDF-ssl. Second, we define a

(a) (b)
Fig. 8 Analysis of communication between data-dependent actorswhen both source and destination actors are
implemented as migrating tasks. a Considered share assignment of τs and τd . b Scheme of the communication
between τs and τd over bu
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pattern that τs and τd use when reading/writing from/to bu to ensure functional correctness.
These two parts are described below.

Part 1—Valid start times and buffer sizes As mentioned earlier, under our EDF-ssl
jobs of the same migrating task can have different tardiness bounds, if released on different
processors. According to Definition 2, the tardiness bound Δi of a certain task τi must be
valid for all its jobs. Therefore, we set the value of Δi to the maximum tardiness bound
among the processors which are assigned (non-zero) shares of τi , as follows:

Δi =
{
maxk | si,k>0{Δπk } under fixed processor speed

maxk | si,k>0{Δπk
PWM } under PWM scheme

(20)

where Δπk and Δ
πk
PWM are the tardiness bounds calculated for processor πk under fixed

processor speed and under the PWM scheme described in Sect. 3.4.1, respectively. For each
processor πk , Δπk and Δ

πk
PWM are obtained using Eq. (7) and Eq. (15), respectively. Finally,

in Eq. (20) si,k represents the share of τi on πk .
By using the tardiness bound Δi expressed by Eq. (20), we can represent the ALAP

completion schedule (see Definition 3 in Sect. 2.3.2) of actor vi (corresponding to task
τi ) as a fictitious actor ṽi , which has the same period as vi , no tardiness, and start time
S̃i = Si + Δi . From Eq. (20) it follows that at run time any invocation vi, j of actor vi
will never be completed later than the corresponding invocation ˜vi, j of actor ṽi , regardless
of which processor is executing that invocation. Therefore, the analysis for start times and
buffer sizes in the presence of tardiness described in Sect. 2.3.2 can be applied considering
the tardiness bounds given by Eq. (20) and it is correct for our EDF-ssl.

Part 2—Reading/writing pattern to/from bu Let us focus on the source actor vs in Fig. 1,
and let assume the share assignment shown in Fig. 8a. Under our EDF-ssl, jobs of τs , which
correspond to invocations of vs , may execute in parallel if released onto different processors.
Moreover, as mentioned earlier, jobs of τs may experience different tardiness, depending on
which processor the job is released. It follows that jobs of τs may write out-of-order to buffer
bu in Fig. 8b. This is because job τs,k+a , for some a > 0, may finish before job τs,k if they
are released on different processors. Similarly, jobs of the destination task τd may read from
bu out-of-order.

In this scenario, it is clear that bu is not a First-in First-out (FIFO) buffer. Thus, every job
of τs /τd (invocation of vs /vd ) must know where it has to write/read to/from bu . Part 1 of our
analysis (described above) ensures that B, the size of bu , is large enough to guarantee that
tokens produced by τs will never overwrite locations which contain tokens still not consumed
by τd . Then, given xus , the amount of tokens produced on eu by every job of τs , we enforce
that job j of τs (with j ∈ N0) writes tokens to bu in the order indicated by Algorithm 2. In
fact, Algorithm 2 defines a writing pattern that follows the one which would be obtained if
the jobs of τs wrote in-order to a FIFO buffer of size B implemented as a circular buffer.
Lines 5-7 in Algorithm 2 handle the case in which the xus tokens are “wrapped” in the buffer.
Note that by replacing in Algorithm 2 xus with yud and write operations with read operations
we obtain the reading pattern corresponding to job j of destination task τd .

As an example of the reading and writing pattern enforced by Algorithm 2, consider the
case in which the production rate of source task τs and the consumption rate of destination
task τd over edge eu are the same, i.e., xus = yud . In this case, job j of the destination task
τd must read tokens produced by job j of the source task τs . This is ensured if both τs and
τd comply to the reading/writing pattern defined by Algorithm 2, regardless of the order in
which (i) consecutive jobs of τs write to buffer bu and (ii) consecutive jobs of τd read from
buffer bu . Note that Algorithm 2 captures also the case in which xus �= yud .
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Algorithm 2: Write pattern of job j of source task τs .
Input: Number of produced tokens xus , job index j , buffer size B.
bgn = [(xus · j) mod B] + 1;1
end = (xus · ( j + 1)) mod B;2
if bgn < end then3

write xus tokens from bu [bgn] to bu [end]4

else5
write (bgn-B+1) tokens from bu [bgn] to bu [B];6
write remaining tokens from bu [1] to bu [end];7

5 Evaluation

In this section we evaluate the effectiveness of our semi-partitioned approach in terms of
energy savings. We compare our results with the heuristic-based partitioned approach which
guarantees the most balanced distribution of utilization of tasks among the available proces-
sors, and therefore the least energy consumption, as shown in [3]. The authors in [3] also show
that the most balanced distributions are derived when worst fit decreasing (WFD) heuristic is
used to determine the assignment of tasks to processors. Each processor then schedules the
tasks assigned to it using a localEDF scheduler. In the rest of this section, we will refer to this
partitioned approach with the acronym PAR. Note that under PAR all tasks meet their dead-
lines. By contrast, our proposed semi-partitioned approach will be denoted in the rest of this
section with SPwhen fixed processor speed is used, and with PWMwhen the periodic speed
switching scheme is adopted. Note that although under our approach tasks may experience
tardiness, this has no effect on the guaranteed throughput, which remains constant among
all the considered approaches (PAR, SP, PWM). However, task tardiness has an impact on
buffer sizes and start times of tasks (and, in turn, on the latency of applications), as described
in Sect. 4. Note that although the PAR approach provides HRT guarantees to all tasks in the
system, whereas both SP and PWM only provide SRT guarantees, our comparison remains
fair. This is because:

– As shown in [7] and mentioned in Sect. 2.3.2, also SP and PWM can guarantee HRT
behavior at the input/output interfaces with the environment, although some of the tasks
of the application may experience tardiness.

– Both SP and PWM, adopting the technique of [7] described in Sect. 2.3.2, guarantee the
same throughput as PAR.

These two conditions are sufficient for the kind of applications that we consider, in which
throughput constraints are more relevant than application latency and memory overheads.
Note also that in our scheduling framework, since actors are released strictly periodically, the
application latency is the elapsed time between the start of the first firing of the input actor
and the worst-case completion of the first firing of the output actor.

5.1 Power model

As mentioned in Sect. 2.1, we consider homogeneous multiprocessor systems, in which any
core can be either idle or running at a global (normalized) speed α. We assume that the system
supports a discrete set of operating voltage/frequency modes. In our experiments we refer
to the operating modes of a modern System-on-Chip, the OMAP 4460, as in [28]. This SoC
comprises twoARMCortex-A9 cores that can operate atΦA9 = {0.350, 0.700, 0.920, 1.200}
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GHz, at a supply voltage of {0.83, 1.01, 1.11, 1.27} V, respectively. From ΦA9 we can derive
the set of supported normalized speed:

AA9 = {0.292, 0.583, 0.767, 1.0}
We use the power model of a similar dual Cortex-A9 core system, considered in [20], which
we normalize to a single core:

pcpu = pdyn + psta = (0.223V 2
cpuFcpu) + (K1Vcpu + K2) (21)

where K1 = 0.08965, K2 = 0.07635, Vcpu represents the voltage supplied to the CPU in
Volts, and Fcpu represent the CPU frequency in GHz. The model comprises dynamic power
pdyn and static power psta, and the value of pdyn assumes that the core is fully utilized. Note
that expression (21) assumes that the processor runs at one of the supported normalized speeds
αi ∈ AA9. From this αi , we can derive the processor frequency Fcpu = Fi by Definition 1.
Similarly, to a normalized speed αi corresponds an unique voltage level Vcpu. Therefore, the
power consumption pdyn and psta depend uniquely on αi . We make this relation explicit by
using the notation pdyn(αi ), psta(αi ), and pcpu(αi ).

5.2 Energy per iteration period

Based on the power model expressed by Eq. (21), we now proceed by deriving the energy
consumption under PAR, SP, and PWM. In particular, we derive the energy consumed by
the system during one iteration period (H ) of the graph (recall Eq. (2)). Note that the iteration
period of the graph is the same and constant amongPAR,SP, andPWM, because the periods
of all tasks do not change depending on the considered scheduling approach. Note also that,
regardless of the application latency, every task τi executes qi times during one iteration
period H (recall, again, Eq. (2)). We assume that α is sufficient to guarantee schedulability,
therefore α ≥ σk , for any active processor πk . In the following, we denote the number of
active cores with MON.

Static energy of (PAR, SP) Both these approaches run at a fixed speed αi , and the static
energy consumed in one iteration period H is given by:

EH,FIX
sta = H · pFIXsta = H · MON · psta(αi ) (22)

Dynamic energy of (PAR, SP) We derive the dynamic energy consumption in one iter-
ation period H . During one iteration period, each task τ j executes q j = H/Tj times. Each
worst-case execution takes C j/αi time, at dynamic power pdyn(αi ). Therefore, the dynamic
energy consumed by task τ j during one iteration period H is:

EH,FIX
dyn (τ j ) = q j

C j

αi
pdyn(αi ) (23)

From Eq. (23) we derive the dynamic energy consumed in one iteration period H by the
whole task set as follows:

EH,FIX
dyn =

∑

τ j∈Γ

q j
C j

αi
pdyn(αi ) = pdyn(αi )

αi

∑

τ j∈Γ

q jC j (24)

Total energy of (PAR, SP) From Eqs. (22) and (24) we derive the total energy consumed
during one iteration period H under (PAR, SP) by:

EH,FIX
tot = H · MON · psta(αi ) + pdyn(αi )

αi

∑

τ j∈Γ

q jC j (25)
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Total energy of PWMUnder PWM, the system switches periodically between normalized
speedsαL andαH to guarantee a certainαeff in the long run. Therefore, we cannot use Eq. (25)
to model the energy consumption per iteration period under the PWM scheme, because that
expression is only valid when the system runs constantly at one of the supported normalized
speeds αi . For the sake of clarity, we will denote pcpu(αL) and pcpu(αH ), obtained from
Eq. (21), with pL and pH , respectively. In this scenario, the total power of a single core of
the system is provided by expression (9) in [6], reported below.

pPWM
cpu = λL pL + λH pH + ESW/P (26)

where ESW = eLH − pHoLH + eHL − pLoHL, which represents the energy wasted during
two speed transitions. The terms λL , λH , oLH, oHL, P , are parameters of the PWM scheme
defined in Sect. 3.4.1, whereas eLH and eHL represent the energy overhead incurred in the
speed transition from αL to αH and vice versa. We assume that eLH = eHL = 1μJ and
oLH = oHL = 10μs. These values are compatible with the findings in [20]. Now, given the
number of active cores MON, we can express the total energy per iteration period H under
PWM as:

EH,PWM
tot = H · MON · pPWM

cpu (27)

Note that Eq. (27) depends on Eq. (26), which in turn depends on the parameters of the PWM
scheme. In particular, we have to find an appropriate value for the PWM scheme period P .
Since we assume that speed changes can only happen at the granularity of the operating
system tick (which has period TOS), we enforce P to be a multiple of TOS. From Eq. (14),
we derive the shortest P , multiple of TOS, that makes the overhead-induced clock cycles
loss less than ε = 0.01 times the desired Fopt. Thus, P ≥ ΔLH/(εFopt). Given P , we find
the shortest QH , multiple of TOS, that guarantees an effective frequency Feff greater than or
equal to Fopt (from Eq. (14); note that QL = P − QH ). At this point, all the parameters of
the PWM scheme are known and the total energy consumption per iteration period can be
derived using Eq. (27).

5.3 Experimental results

We evaluate the considered approaches (PAR, SP, PWM) on a set of real-life applications
modeled as SDF graphs, which are listed in Table 1. For each application, the table reports:

– a short description of its functionality (column Description);
– the number of SDF actors (column No. of actors);
– the maximum WCET among actors (column Max WCET ), expressed in seconds [s].

Table 1 Characteristics of the considered applications

Application Description No. of actors Max WCET [s]

DCT Discrete cosine transform 8 7.94 × 10−5

JP2 JPEG2000 image encoder 6 2.88 × 10−3

MJPEG Motion JPEG video encoder 5 1.03 × 10−4

MPEG2 MPEG2 video decoder 23 7.68 × 10−5

TDE Time-delay equalization 29 1.23 × 10−4
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InTable 2we show the results obtained using the considered approaches (PAR,SP,PWM)
on the set of applications listed in Table 1. The name of each application is shown in column
App of Table 2. Moreover, for each application, columnUΓ reports the cumulative utilization
of the corresponding task set. In addition, column R shows the throughput obtained for each
application. For a certain application, given xout which is the number of tokens produced by its
output actor at every invocation, the application throughput can be computed as R = xout/Tout
where Tout is the period of the output actor. Therefore, the application throughput R is given
in tokens per second [tkns/s]. Note that the throughput R and the total utilizationUΓ of each
application remain constant among all considered allocation/scheduling approaches (PAR,
SP, PWM). The reason is that the WCET of each task τi , derived using Eq. (1), does not
depend on the actual assignment of tasks to processors, because it considers the worst-case
communication time among all possible assignments of tasks.

Each row in Table 2 corresponds to results obtained considering a system composed of
M̂ available cores, with M̂ ∈ {4, 8, 12}. Note that column M̂ shows only meaningful values,
those which satisfy M̂ ≥ �UΓ �. For each of the considered approaches (PAR, SP, PWM),
and for each value of M̂ , we consider each possible number of active processors MON in the
range [�UΓ �, M̂] and look for the lowest energy consumption, thereby exploring the design
space exhaustively. For every value of MON in that range, we follow a different procedure
depending on the considered approach.

In PAR, we simply assign the utilization of tasks to the MON active cores using the WFD
heuristic. Then, if WFD is successful, we derive the lowest αi ∈ AA9 which guarantees
schedulability (minαi∈AA9{αi ≥ σk,∀ activeπk}). Knowing MON and αi , we determine the
total energy per iteration period EH

PAR by Eq. (25).
InSP,wefind the necessaryminimum speedαopt = UΓ /MON.We round this speed value

to the closest greater or equal value in AA9, which we denote with αi . We run Algorithm 1
with this speed value αi and M = MON. If Algorithm 1 is successful, we determine the total
energy per iteration period EH

SP by Eq. (25) with the considered αi and MON.
In PWM, we calculate αopt = UΓ /MON and we run Algorithm 1 with speed value αopt

and M = MON. If Algorithm 1 is successful, we use αH = minαi∈AA9{αi ≥ αopt} and
αL = maxαi∈AA9{αi ≤ αopt} and derive the total energy per iteration period EH

PWM by
Eq. (27).

For each valid task share assignment, we derive earliest start times of actors and buffer
size requirements by using the formulas mentioned in Sect. 2.3.2 with, for each task τl , either
of the following tardiness bound values: Δl = 0 in PAR; Δl obtained by Eq. (20) in SP and
PWM.

At the end of the design space exploration, for PAR and SP, we report in Table 2 the
values of MON ∈ [�UΓ �, M̂] that yielded to the lowest energy consumption. For PAR (SP),
these values are shown in column Mo

PAR (Mo
SP). Note that the optimal values of MON for

PWM are identical to Mo
SP, therefore they are not included.

In the following discussion, we will identify rows in Table 2 with the couple (App, M̂).
For each of these rows, under PAR, the table shows: the optimal number of active processors
Mo

PAR; the total memory requirement TMPAR (including code, stack, buffers); the application
latency LPAR; the energy consumption EH

PAR.
We see from Table 2 that SP consumes significantly lower energy than PAR, see column

EH
SP/E

H
PAR. On average, we obtain an energy saving of 36%. The energy saving goes up to

64%, see row (JP2, 8). These energy savings, however, come at a cost. The total memory
requirements (see column TMSP/TMPAR) and application latencies (see column LSP/LPAR)
are increased. Memory requirements increase due to i) more task replicas (with their code
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and stack memory) needed by the semi-partitioned approach and ii)more buffers due to task
tardiness. Similarly, application latency increases because task tardiness postpones the start
times of the tasks of the application.

The rightmost part of Table 2 presents the results under PWM. It shows that this approach
can provide higher energy savings compared to SP (compare columns EH

PWM/EH
PAR and

EH
SP/E

H
PAR). The additional energy saving can grow up to 18% (see rows (JP2,4) and

(MJPEG,4)) compared to SP. Rows with na (not applicable) values indicate that the value of
αopt (see the corresponding column) is lower than the minimum speed in AA9. Therefore, the
PWM scheme is not applicable.Note that in three rows the value of EH

PWM/EH
PAR is higher than

EH
SP/E

H
PAR. This means that, in those cases,PWM is less effective thanSP. The largest ineffi-

ciency is obtained in row (MPEG2,12). In all these cases, the value of αopt is extremely close
to one of the speeds in AA9, therefore the energy overhead incurred by the PWM scheme ren-
ders PWM disadvantageous. Finally, note that PWM incurs more total memory and latency
overheads compared with SP, see columns TMPWM/TMPAR and LPWM/LPAR. This is due
to the higher number of task replicas, and higher values of tardiness, incurred under PWM.

Note that our experimental results, summarized in Table 2, evaluate our proposed
approaches SP and PWM using PAR as a reference point. However, we also made a second
comparison, by evaluating our SP and PWM against the results that can be obtained by
using the EDF-os scheduling algorithm as a reference. We do not show the results of the
comparison against EDF-os in a separate table because that table would be nearly identical to
Table 2. This is because PAR and EDF-os achieve nearly the same results, for the following
reason. Since our designs are aimed at achieving the maximum throughput of the considered
applications, the utilization of at least one of the tasks of each application is close to one. In
this scenario, as shown in Sect. 3, EDF-os cannot distribute the utilization of such “heavy”
tasks on multiple processors, therefore the operating frequency of the system cannot be low-
ered without compromising the schedulability of the system. Because of this, EDF-os does
not outperform the PAR approach in our experiments, with the exceptions of the (MPEG2,8)
and (MPEG2,12) cases. In both these two cases, EDF-os requires 7 processors to schedule
the tasks set (one processor less than PAR) which results in a slightly reduced total energy
of 2.67× 10−4 J (compared to EH

PAR = 2.70× 10−4 J ). Since the difference between PAR
and EDF-os involves only the MPEG2 benchmark, and is in fact minimal, we choose not
to show explicitly in a separate table the comparison of our proposed SP and PWM against
EDF-os to avoid redundancy.

Finally, we made a third comparison by evaluating the approaches proposed in this paper
(SP and PWM) with the semi-partitioned approach used in [7], in terms of energy savings.
Similar to the comparison against EDF-os, described in the above paragraph, we do not
report the results of this comparison in a separate table because that table would be nearly
identical to Table 2. This is because the approach of [7] and of PAR, which is used as reference
point in Table 2, achieve nearly identical results. In fact, the approach of [7] yields the same
results as EDF-os, which are considered and explained in the above paragraph.

6 Conclusions

In this paper,we propose a novel soft real-time scheduling algorithm that exploits the presence
of stateless tasks in streaming applications, to achieve higher energy efficiency. Our approach
provides significant energy savings compared to a pure partitioned scheduling approach and
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an existing semi-partitioned one, EDF-os, guaranteeing the same throughput. However, this
comes at the cost of higher memory requirements and application latency.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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