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ABSTRACT

Context. The journey from dust particle to planetesimal involves physical processes acting on scales ranging from micrometers
(the sticking and restructuring of aggregates) to hundreds of astronomical units (the size of the turbulent protoplanetary nebula).
Considering these processes simultaneously is essential when studying planetesimal formation.
Aims. The goal of this work is to quantify where and when planetesimal formation can occur as the result of porous coagulation of
icy grains and to understand how the process is influenced by the properties of the protoplanetary disk.
Methods. We develop a novel, global, semi-analytical model for the evolution of the mass-dominating dust particles in a turbulent
protoplanetary disk that takes into account the evolution of the dust surface density while preserving the essential characteristics of the
porous coagulation process. This panoptic model is used to study the growth from sub-micron to planetesimal sizes in disks around
Sun-like stars.
Results. For highly porous ices, unaffected by collisional fragmentation and erosion, rapid growth to planetesimal sizes is possible
in a zone stretching out to ∼10 AU for massive disks. When porous coagulation is limited by erosive collisions, the formation of
planetesimals through direct coagulation is not possible, but the creation of a large population of aggregates with Stokes numbers
close to unity might trigger the streaming instability (SI). However, we find that reaching conditions necessary for SI is difficult and
limited to dust-rich disks, (very) cold disks, or disks with weak turbulence.
Conclusions. Behind the snow-line, porosity-driven aggregation of icy grains results in rapid (∼104 yr) formation of planetesimals.
If erosive collisions prevent this, SI might be triggered for specific disk conditions. The numerical approach introduced in this work
is ideally suited for studying planetesimal formation and pebble delivery simultaneously and will help build a coherent picture of the
start of the planet formation process.
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1. Introduction

Protoplanetary disks are the sites of planet formation. In these
disks, the coagulation of microscopic dust particles, already
present in the interstellar medium, into kilometer-sized plan-
etesimals constitutes the first – and arguably least understood
– step in the assembly of fully grown planets (Testi et al. 2014;
Johansen et al. 2014). Initially, the dust aggregates, held together
by surface forces, grow by sticking to each other in gentle, low-
velocity collisions (e.g., Kempf et al. 1999). As a result, aggre-
gates form very open, porous structures. As the aggregates gain
mass and their relative velocities increase, collisions become
more energetic, possibly leading to compaction and catastrophic
fragmentation (Dominik & Tielens 1997; Blum & Wurm 2000;
Ormel et al. 2007). A second hurdle is presented in the form of
the radial drift barrier: particles with certain aerodynamic prop-
erties decouple from the gas and drift radially on short timescales
(Whipple 1972; Weidenschilling 1977; Brauer et al. 2008).

In the inner few AU of the protoplanetary disk, dust grains
consist mainly of silicates, and these aggregates bounce off each
other in collisions or even disrupt completely upon impact at
collision velocities above several m s−1 (Blum & Wurm 2008;
Güttler et al. 2010). These collisional processes limit the growth
beyond a centimeter or so in the inner disk (Brauer et al. 2008;
Zsom et al. 2010; Windmark et al. 2012).

? Now at the Department of the Geophysical Sciences, The
University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637,
USA.

Outside the snow line, located typically at ∼3 AU (Min et al.
2011), water ice becomes an important constituent of the dust
grains. This is beneficial for growth because aggregates com-
posed mostly of ice are capable of sticking at tens of m s−1

(Wada et al. 2009, 2013; Gundlach & Blum 2015). In addition,
these icy particles maintain highly porous structures (Suyama
et al. 2008, 2012), making them less likely to bounce in colli-
sions (Wada et al. 2011; Seizinger & Kley 2013) and allowing
them to out-grow the radial drift barrier in the inner ∼10 AU of
the protoplanetary nebula (Okuzumi et al. 2012; Kataoka et al.
2013a). However, the growth of these porous aggregates might
be frustrated by high-velocity erosive collisions (Krijt et al.
2015) or sintering in certain regions of the disk (Sirono 2011).

Instead of coagulating directly, planetesimals can also be
formed through particle concentration mechanisms (Johansen
et al. 2014, and references therein). One promising mecha-
nism is the streaming instability (SI; Youdin & Goodman 2005;
Johansen et al. 2007; Bai & Stone 2010a,b), which can be trig-
gered by a dense midplane layer of partially decoupled dust
particles. Recently, Dra̧żkowska & Dullemond (2014) have de-
fined a set of conditions for SI and compared them to dedi-
cated models of compact coagulation. They found that in the
inner disk, where the growth of silicates is limited by bounc-
ing/fragmentation, particles cannot grow to Stokes numbers1

large enough (St ∼ 10−2−1) for triggering SI. Outside the

1 A measure for the degree of coupling between the dust particle and
the surrounding gas.
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snow-line however, rapidly growing highly porous ice aggre-
gates can grow to large Stokes numbers (Okuzumi et al. 2012) at
which point their growth is possibly limited by erosive collisions
(Krijt et al. 2015). The possibility of triggering SI through rapid
porous coagulation has not yet been investigated, but it has been
shown that erosion-limited porous growth can concentrate most
of the dust mass in St ∼ 1 particles (Krijt et al. 2015).

We set out to study the formation of the first generation of
planetesimals. Giant planets have not yet formed, hence the pro-
toplanetary disk is smooth. The focus is to understand the evo-
lution of the mass-dominating particles in disks around Sun-like
stars and understand how their evolution influences the dust sur-
face density. Ultimately, the goal is to identify regions in both
space and time where the first planetesimals can form, either
through direct porous coagulation (e.g., Okuzumi et al. 2012)
or through coagulation triggering SI (Dra̧żkowska & Dullemond
2014).

In order to answer these questions, we develop a global,
semi-analytical, panoptic model that captures the evolution of
the mass-dominating particles as they grow and drift radially in
the protoplanetary disk (Sect. 3.1), including a detailed descrip-
tion of grain porosity (Sect. 3.2) and erosion (Sect. 3.3). After
testing the method against two well-studied cases in Sect. 3.4,
we use it to study rapid porous growth through the drift barrier
in Sect. 4 and erosion-limited porous growth as a possible cause
for SI (Sect. 5). The results are discussed in Sect. 6 and conclu-
sions are presented in Sect. 7.

2. Nebula model and dust properties

We consider a turbulent disk of gas around a 1 M� star.
Neglecting the possible presence of pressure bumps, dead zones,
etc., we concentrate on the outer regions where ices are an im-
portant part of the solid mass reservoir.

2.1. Nebula model

We adopt a truncated power-law for the gas surface density
distribution,

Σg =


Σg,0r−γ for r ≤ rout,

0 for r > rout·

(1)

The normalization constant will be determined by fixing the total
mass of the gas disk MD, using

Σg,0 = (2 − γ)
MD

2πr2−γ
out

· (2)

Typical power law exponents range between γ = 3/2, appro-
priate for the minimum mass solar nebula (MMSN; Hayashi
1981); and γ ' 1, consistent with observations (Andrews et al.
2009) and accretion disk theory (e.g., Armitage 2010). Disk
masses between MD = 10−3 M� and 0.2 M� and radii be-
tween 30−100 AU are consistent with observational constraints
for disks in the Taurus star forming region (Andrews & Williams
2005; Andrews et al. 2013), though the drop in surface density in
the outer edge is found to be much less dramatic than the drop-
off in Eq. (1).

Irrespective of the disk mass, we adopt a temperature
structure

T = 125
( r
5 AU

)−1/2
K, (3)

Table 1. Benchmark disk model used throughout this work.

Quantity Symbol Value

Total disk mass MD 10−2 M�
Disk cut-off radius rout 100 AU
Surface density exponent γ 1.5
Initial dust-to-gas ratio Z0 0.02
Turbulence strength α 10−3

appropriate for an optically thin disk and in agreement with ob-
servational constraints (Andrews & Williams 2005).

Most other quantities are derived, together with assumptions
about the turbulence and vertical structure, from Eqs. (1) and (3).
The isothermal gas sound speed is given by

cs =

√
kBT/mg, (4)

with kB Boltzmann’s constant and mg = 2.34mp = 3.9 × 10−24 g
with mp the mass of a proton. The Kepler frequency equals

Ω =
√

GM�/r3 = 1.8 × 10−8
( r
5 AU

)−3/2
s−1. (5)

Assuming an isothermal column, the gas density drops with in-
creasing distance from the midplane z according to

ρg =
Σg
√

2πhg
exp

−z2

2h2
g

 , (6)

with the vertical scale height of the gas hg = cs/Ω. The turbulent
viscosity is parametrized as νturb = αc2

s/Ω following Shakura &
Sunyaev (1973). Unless noted otherwise, we will use the disk
parameters listed in Table 1.

2.2. The dust content

Initially, the dust density follows the gas density through
Σd/Σg = Z0, with Z0 = 0.02 the vertically integrated metallicity.
The individual dust particles are assumed to be compact spher-
ical monomers with radii a• and masses m = m• = (4/3)πρ•a3

•.
We use ρ• = 1.4 g cm−3, appropriate for icy particles. When dust
particles grow, they are uniquely described by a mass m and vol-
umetric filling factor φ (e.g., Krijt et al. 2015). Depending on
the details of the growth process (i.e., the disk properties and
collision physics), the filling factor (a measure for the porosity)
can be as low as ∼10−5 or very close to 1, resembling compact
spheres.

2.2.1. Vertical and radial motions

The relative dust scale height is given by (Youdin & Lithwick
2007)

hd

hg
=

(
1 +

Ωts
α

1 + 2Ωts
1 + Ωts

)−1/2

· (7)

The dust scale height depends on the particle Stokes number
Ωts, with the stopping time ts a function of the particle mass
and porosity, and the local gas properties. Appendix A describes
how the stopping time can be calculated.

The radial drift velocity is then given by (Weidenschilling
1977)

ṙ = −vdrift = −
2Ωts

1 + (Ωts)2 ηvK, (8)
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where vK = RΩ is the Keplerian orbital velocity and η can be
written as (Nakagawa et al. 1986)

η ≡ −
1
2

(
cs

vK

)2 ∂ ln(ρgc2
s )

∂ ln r
≈

(
cs

vK

)2

· (9)

The drift timescale is defined as

tdrift ≡ −r/ṙ (10)

and depends on the masses and porosities of the dust particles
through their dimensionless stopping time Ωts (see Appendix A).
Equation (8) neglects the backreaction of the dust particles on
the gas and overestimates the drift velocity when the dust den-
sity becomes comparable to the gas density. In most models pre-
sented here such conditions are not reached and identifying re-
gions and times where such collective effects become important
is one of the goals of this paper.

2.2.2. Growth timescales in the single-size approximation

The model for porous coagulation is based on the semi-
analytical model of Krijt et al. (2015, Sect. 5). At the heart of the
semi-analytical approach lies the assumption that the local dust
population can be approximated by a mono-disperse grain popu-
lation, with a single characteristic mass and characteristic poros-
ity. This assumption is valid when i) the full mass distribution
has a clearly defined peak mass and porosity; and ii) the growth
(and porosity-evolution, if dominated by collisions) of the peak-
mass grains is mainly due to collisions with similar-size parti-
cles. These assumptions generally hold for populations resulting
from porous coagulation (e.g., Ormel et al. 2007; Okuzumi et al.
2012).

For a mono-disperse dust population, and assuming all colli-
sions result in perfect sticking, the growth rate is given by

ṁ =
Σd
√

2πhd
σcolvrel, (11)

with hd the dust scale height, σcol the collisional cross section,
and vrel the relative velocity between the (identical) dust parti-
cles. The growth timescale is then defined as

tgrow ≡ m/ṁ. (12)

Appendix B describes how to calculate vrel between two grains
with arbitrary properties.

In reality however, the dust size distribution will not be in-
finitely narrow and dust grains will grow by colliding with dust
particles with a broad range of masses and porosities, see for
example Okuzumi et al. (2012, Fig. 9) and Krijt et al. (2015,
Fig. 10). In order to simulate the width of the distribution, in-
stead of calculating the velocity between identical particles, we
calculate the velocity between two particles with Stokes num-
bers Ωts and κΩts, with 0 ≤ κ ≤ 1 a numerical factor2. The
two limiting cases refer to the relative velocity between identi-
cal particles (κ = 1) and between a particle and an extremely
well-coupled small grain (κ = 0).

In Fig. 1, we compare Eq. (11) to the full Monte Carlo
model of Krijt et al. (2015). For this comparison, radial drift
is neglected and perfect sticking is assumed. For every particle
mass, the corresponding porosity is calculated by assuming an
initial hit-and-stick phase that is followed by gas-compaction

2 See Sato et al. (2015) for further discussion on this approach in the
case of compact growth.
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Fig. 1. Growth timescales of highly porous aggregates in an MMSN-
like disk at 5 AU with a turbulence of α = 10−3. The solid black line
is obtained with Monte Carlo models that take into account the full
particle size and porosity distributions (Krijt et al. 2015) and the colored
lines show Eq. (11) for three different values of κ (see text).

and eventually self-gravity compaction (see Sect. 3.2 and
Appendix C for more details). The disk model is identical to
the one in Okuzumi et al. (2012) and Krijt et al. (2015) with
γ = 3/2, Z0 = 0.01, Σg(5 AU) = 152 g cm−2, and α = 10−3.

Overall, the semi-analytical model captures the growth
timescales very well. The largest discrepancies are seen in the
mass-range where growth is dominated by turbulent velocities,
but where the grains are still relatively well coupled to the
gas: ts < tη. In that regime (see Appendix B and in particu-
lar Eq. (B.2)) the relative velocity scales with the difference in
Stokes numbers and is very sensitive to the choice of κ. While
a closer correspondence with the MC model could be obtained
by having a mass-dependent κ, we will use a constant value of
κ = 0.5 in the remainder of this work. The same value is used by
Sato et al. (2015).

2.2.3. Bouncing, fragmentation, and erosion

In reality, not every collision will result in sticking and particles
can bounce off each other, erode one another, or even completely
fragment (Blum & Wurm 2000, 2008). The regimes in which
these processes occur are usually defined by relatively sharp
threshold velocities. In realistic models, the transition velocities
for these collisional outcomes to occur are complex functions
of the particle size(s), porosity, and material properties (e.g.,
Güttler et al. 2010).

Though only few experimental investigations have been per-
formed with icy grains, it is clear that they are much stickier than
their silicate counterparts (Dominik & Tielens 1997; Wada et al.
2013; Gundlach & Blum 2015). Moreover, they are expected
to grow into porous structures (Okuzumi et al. 2012), making
them less likely to bounce (Wada et al. 2011; Seizinger & Kley
2013). Therefore, we do not include bouncing and fragmenta-
tion. Recently however, Krijt et al. (2015) argued that erosion by
small particles can be an effective way of halting growth when
radial drift starts to play a role. We will include the effects of
erosion on the growth timescale in Sect. 5.

3. The batch method

Here we introduce a new numerical approach for modeling the
evolution of solids in a protoplanetary disk on a global scale.
The method differs from grid-based methods (Brauer et al. 2008;
Birnstiel et al. 2010; Okuzumi et al. 2012) and Monte Carlo co-
agulation models (Ormel et al. 2007; Zsom & Dullemond 2008)
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Fig. 2. Illustration of the batch method described in Sect. 3. A) Globally, the dust content of the protoplanetary disk is described by a collection of
unique and independent batches. The trajectories that individual batches follow in space and time are dubbed lifelines. B) Each batch is composed
of three separate legs. These legs can move closer together or further apart, but the mass enclosed between the inner two and outer two legs
is always identical. For each leg, growth and radial drift are solved simultaneously using Eqs. (13) and (14), while the batch’s surface density
and its first derivative (needed to calculate the growth timescales) are obtained using Eqs. (17) and (20). C) At every leg location, the local
dust component is described by a monodisperse aggregate population with a single mass, size, and porosity. D) The aggregates themselves are
composed of (sub)micron-sized monomers, whose properties profoundly affect the aggregate’s strength against fragmentation and compaction
(see Appendix C).

in a fundamental way, as it employs a Lagrangian approach, in
which dust particles are followed through the disk as they grow
through collisions and drift radially through the disk. A similar
Lagrangian way of thinking is found in particle-tracking mod-
els that simulate diffusion in evolving disks (e.g., Ciesla 2011;
Hughes & Armitage 2012), but there are important differences
between those methods and the approach presented here (see
Sect. 6.1).

In this section, we first introduce the principles of the
method (Sect. 3.1), describe how to include porosity and erosion
(Sects. 3.2 and 3.3), and test the method against two well-studied
cases (Sect. 3.4).

3.1. Description

In our approach we follow the evolution of a small groups of
dust particles, referred to as a batch. The idea is to follow in-
dividual batches in time, while the constituent dust grains grow
through collisions and drift inward as the result of radial drift.
Specifically, we are interested in solving the Lagrangian (i.e.,
co-moving with the batch) derivatives for dust grains
Dm
Dt

=
m

tgrow
, (13)

and radial drift
Dr
Dt

= −
r

tdrift
, (14)

where the drift- and growth timescales are given by Eqs. (10)
and (12). By following a single batch in both time and space, in-
formation about the particle’s history is easily accessible. The

key assumption of this method is that the dust particles in-
side a batch grow exclusively by colliding with similar parti-
cles. Similar not only because they have comparable masses and
porosities, but also because they share the same growth- and drift
histories. This assumption allows us to calculate the evolution
of multiple batches independently, without necessarily knowing
how the dust in the rest of the disk is evolving. The validity of
this assumption will be discussed further in Sect. 6.

In order to capture the evolution of the dust surface density,
we will give the batches a finite radial width. One could imagine
following the front-side (slightly closer to the star) and back-side
(slightly further from the star) of the batch separately. When they
move closer because of small differences in the drift velocity at
both sides, the surface density of dust increases; when they move
away from each other, it decreases. However, this does not allow
the surface density gradient to change. It transpires that we need
three coordinates: one at the inner edge, one at the outer edge,
and one at the center of mass. At the location of each leg, the
dust is described by a mono-disperse distribution, the properties
of which are initially identical, but will start to differ slightly
in time because of the dependence on location in the details of
the coagulation process. To create a complete picture of the dust
evolution on a global scale, we will combine the results of many
batches that start out at different locations. The approach is illus-
trated in Fig. 2.

An alternative approach would be to calculate batches with
a single leg and obtain a single global function for the surface
density by looking at the distribution of all the batches simul-
taneously. However, in such an approach, batches cannot over-
take each other, as this gives rise to infinite surface densities.
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An important feature of our method, is that the local surface
density – determined by the spacing of a batch’s three legs –
is a property of the batch itself. This renders the batches truly
independent, allowing one to calculate their evolution separately,
but also making it possible for two batches with different con-
stituent particles and different surface densities to occupy the
same location. We will encounter such a situation in Sect. 4.

At a time t, the state of a batch is then fully described by the
vector

x(t) =



mi
mc
mo
ri
rc
ro


, (15)

where indices i, c, o correspond to the inside (or front), center
of mass, and outside (or back) of the batch respectively, and by
the batch’s dust surface density, assumed to be a power-law with
index p

Σd(r) = Σ0

(
r
rc

)−p

, (16)

with both Σ0 and p functions of time. At t = 0, both Σ0 and p
can be obtained from Eq. (1). Specifically, Σ

(t=0)
0 = Z0Σg(rc) and

p(t=0) = γ. Later, when the dust is evolving, the surface density
within the batch is acquired from the locations of the three ‘legs’
at the front, back, and center of mass of the batch. First, given
that there is equal mass between ri and rc as there is between rc
and ro, the slope can be found by solving∫ rc

ri

rΣd(r) dr =

∫ ro

rc

rΣd(r) dr, (17)

which can be approximated as

p ' 1 − 2rc
2rc − ri − ro

(ro − rc)2 + (ri − rc)2 · (18)

Second, the total mass inside the batch

MB =

∫ ro

ri

2πrΣd(r) dr =
2πΣ0

p − 2

[
r2

i

(
ri

rc

)−p

− r2
o

(
ro

rc

)−p]
, (19)

is conserved. Since MB is known at t = 0, Eq. (19) can be in-
verted to obtain Σ0 at later times as a function of the location of
the three legs3.

Σ0 =
p − 2
2π

MB

[
r2

i

(
ri

rc

)−p

− r2
o

(
ro

rc

)−p]−1

. (20)

For the starting conditions, we will assume all dust particles start
out as monomers, such that mi = mc = mo = m• at t = 0. The
initial locations of the three legs can be chosen freely, but batches
should not become too wide, i.e., (ro − ri)/rc � 1.

Now everything is in place to calculate the evolution of a
single batch. For a given disk model, dust properties, and batch
starting conditions, the evolution of a single batch, i.e., x(t), can
be calculated by integrating Eqs. (13) and (14) simultaneously
for the three legs, while using Eqs. 17 and 20 to calculate the

3 When p = 2, Eqs. (18)–(20) break down. In that case, they should be
replaced by rc = (riro)1/2 and MB = 2πr2

c Σ0 ln (ro/ri).

surface density at their locations. To solve this initial value prob-
lem, we have made use of the scipy.integrate.ode package
of python.

By connecting the properties4 of all batches (e.g., particle
mass, surface density) at specific times, the disk-wide dust dis-
tribution can be obtained as a function of time. As the batches
are completely independent, there are no restrictions on their dis-
tribution. For example, it is not necessary that the edges of one
batch are connected to edges of the adjacent ones. In most of
this work, we will use between 102 and 103 batches5, distributed
logarithmically between 3 AU and rout.

3.2. Treatment of porosity

In principle, the vector x of Eq. (15) can be expanded to include
additional dust properties such as porosity, chemical composi-
tion, water fraction, etc., provided that a recipe for determining
the corresponding time-derivative exists.

In the case of porosity, obtaining an expression for (Dφ/Dt)
that covers fractal growth and the various different compaction
mechanisms is not straightforward. Therefore, in this work, we
will use a different method. Instead of adding the porosity to the
vector in Eq. (15), we will construct a unique function that gives
the filling factor as a function of the current particle mass and
location, i.e., φ = φ(m, r). Appendix C discusses this function in
more detail. Once φ(m, r) is available, we can use it whenever we
need to know a particle’s porosity, for example when calculating
the collisional cross section or the Stokes numbers.

3.3. Including erosion

The growth rate of Eq. (11) assumes all collisions result in stick-
ing. However, as shown by Krijt et al. (2015), erosive collisions
have the potential to effectively halt growth when the drift veloc-
ity exceeds the threshold velocity veros needed for erosion. While
the method outlined in this section does not provide informa-
tion about the population of small projectiles, we can nonethe-
less mimic the effect of efficient erosion by adjusting the growth
timescale as follows

t(eros)
grow = tgrow

1 + exp


(
v∗rel

veros

)2

 , (21)

where v∗rel is the relative velocity between the particle in question
and a fiducial monomer grain. In this way, the growth timescale
rapidly increases when the drift velocity exceeds the erosion
threshold. Both catastrophic fragmentation and bouncing could
be simulated in a similar fashion, but in that case the relevant vrel
becomes the velocity between similar-size particles. In this work
however, as we are limiting ourselves to the study of sticky ices
in the outer disk, we only include erosion as a possible growth
barrier.

3.4. Test cases

In the remainder of this Section, we illustrate and test the ap-
proach outlined above by comparing it against two well-known

4 For this purpose, we use the dust properties at the batch center of
mass rc.
5 While the total number of batches used does not influence the evo-
lution of the individual batches, a higher number does result in a better
sampling of the disk at a given time. We found that using between 102

and 103 batches was sufficient to provide smooth curves in Fig. 3.
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Fig. 3. Evolution of the dust surface density in time. A) No growth case. Particles always have a = 1 mm. The dashed lines show analytical results
of Youdin & Shu (2002). B) Compact growth with perfect sticking. Dust particles start out as 0.1 µm monomers and grow on timescales given by
Eq. (11), while staying compact at all times (φ = 1). The gas surface density is shown by the dotted line. The results are qualitatively different,
with the no-growth case resulting in pile-ups (locally increasing Σd/Σg) and the compact coagulation model showing an inside-out removal of dust
(decreasing Σd/Σg everywhere).

cases: the drift-only case (neglecting coagulation completely)
and the compact-growth case (without fragmentation).

3.4.1. Test case I: drift-only

When the particle size is kept constant in time (i.e., no coagula-
tion takes place), grains in the outer disk drift faster than parti-
cles in the inner disks, causing pileups and potentially planetesi-
mal formation (Youdin & Shu 2002; Youdin & Chiang 2004). To
study the drift-only case, we use the disk model of Table 1 and
set ṁ = 0 everywhere. The dust particles are compact icy grains
with a radius of 1 mm.

Figure 3A shows the resulting dust surface density evolution.
Since, for a single grain size, Stokes numbers are largest in the
outer part of the disk, particles further out will drift faster. As a
result, the outer disk is slowly depleted of dust and pile-ups are
created closer in (e.g., Youdin & Shu 2002; Youdin & Chiang
2004; Birnstiel & Andrews 2014). The pile-ups are caused by
the slowing down of particles as they drift into the denser inner
disk and are the result of the assumption of a fixed size of the
particles. Below we will see that when grain sizes are limited
by aerodynamical properties, no such pile-ups are created. Our
model is in excellent agreement with the analytical prediction
for this case Youdin & Shu (2002, Eq. (28)), shown by the over-
plotted dashed lines. The razor-sharp outer edge of the dust dis-
tributions in Fig. 3A is not actually resolved, but simply marks
the location of the outermost batch at any given time. When an
exponentially decaying disk is assumed instead of Eq. (1), the
dust distributions at later times are smoother (e.g., Youdin &
Shu 2002, Fig. 5). The outer edge of the dust distribution will
be discussed further in Sect. 6.

In Fig. 4A, we plot the lifelines of a selection of batches
for the same simulation. In this representation, batches move
up in time and to the left as they start to drift in. The places
where lines move close together correspond to the pile-ups in
Fig. 3A. An important observation is that while batches get
close to each other, the lifelines do not cross, justifying the as-
sumption that they evolve independently. Dashed lines indicate
the Stokes numbers of the dust particles inside the batch are

10−2 < Ωts < 3. Since particles are always mm-sized in the no-
growth scenario, Stokes numbers are highest in the outer disk,
with the transition Ωts = 10−2 around 10 AU. In addition, the
background colors indicate the midplane dust-to-gas ratio, cal-
culated as(
ρd

ρg

)
z=0

=
Σd

Σg

(
hd

hg

)−1

, (22)

where the fraction of scale-heights on the right-hand-side is a
function of the particle Stokes number (see Eq. (7)). Initially,
because of settling, the highest midplane dust-to-gas ratios are
found exclusively in the outer disk. Later, when pile-ups are
formed, high dust-to-gas ratios are reached at smaller radii as
well. After ∼105 yr, all batches have drifted inside the snow-line
and the solid content of the disk has vanished.

3.4.2. Test case II: compact growth

The next test includes growth, but assumes that the particles stay
compact (φ = 1) at all times. For this test, the dust particles start
out as monomers with a• = 0.1 µm and their growth timescale
is calculated using Eq. (11). Disk-wide numerical simulations of
compact coagulation (with or without fragmentation) and drift
have been performed by many authors, including Brauer et al.
(2008), Birnstiel et al. (2010), Okuzumi et al. (2012), Birnstiel
& Andrews (2014).

Figures 3B and 4B show the results of the panoptic model
for compact growth in the disk of Table 1. The behavior of
the dust component is fundamentally different from the no-
growth case in a number of ways. We focus on Fig. 4B first.
Since particles start out as well-coupled sub-micron monomers,
Ωts � 10−2 everywhere in the disk and radial drift is negligi-
ble. However, Brownian motion and the presence of turbulence
causes the particles to collide and grow. As the grains gain mass,
they slowly decouple from the gas and their Stokes number in-
creases. At some point, the drift timescale becomes comparable
to the growth timescale and the particles will start to drift in-
ward. Because the timescales for growth are shortest at small
radii, grains that start out in the inner disk reach high Stokes
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Fig. 4. Locations of dust batches in time for four standard cases. A) No growth, particles are always 1 mm and compact. B) Compact growth
starting from 0.1 µm particles. C) Porous growth with perfect sticking. Successful planetesimal formation (Ωts > 103) through coagulation is
indicated by the (•)-symbol. The lifeline of the batch that formed planetesimals furthest out is colored red. D) Porous growth followed by erosion
above velocities of 20 m s−1. Dashed lines indicate the particles in the batch have 10−2 < Ωts < 3 and background colors indicate the midplane
dust-to-gas ratio of particles that have Ωts ≤ 3.

numbers much earlier. This causes an inside-out clearing of the
dust component, very different from the no-growth scenario. As
illustrated in Fig. 3B, the inside-out removal of dust does not
allow the formation of pile-ups and the dust surface density de-
creases in time at every location.

For turbulence-driven growth in the Epstein drag regime (as
is the case here), a pure drift-growth balance leads to a dust
surface density profile Σd ∝ (Σgr−2Ω−2)1/2 (e.g., Birnstiel et al.
2012). For γ = 3/2, this results in Σd ∝ r−1. The surface density
curves of Fig. 3B are in excellent agreement with this predic-
tion and with grid-based numerical models of similar disks (e.g.,
Okuzumi et al. 2012, Fig. 3).

4. Porous growth with perfect sticking

While compact growth typically results in an inside-out removal
of the disk’s solids, highly porous growth could potentially lead
to planetesimal formation by allowing fluffy icy grains to quickly
grow through the radial drift barrier (Okuzumi et al. 2012). In
this Section, we will study such highly porous growth using our
Lagrangian approach and quantify in which regions of the pro-
toplanetary disk such rapid growth is feasible.

The set-up is the same as in Sect. 3.4.2, but the dust par-
ticle porosity φ(m, r) is now calculated assuming hit-and-stick
growth followed by compaction by gas-pressure and eventually
self-gravity (Sect. 3.2 and Appendix C). When the aggregates
inside a batch grow to Stokes numbers Ωts > 103, we classify
them as planetesimals6 and no longer follow their evolution.

Figure 4C shows the result of the porous growth case assum-
ing 0.1 µm icy monomers and perfect sticking. The (•)-symbols
indicate successful planetesimal formation. Our results confirm
the findings of Okuzumi et al. (2012), Kataoka et al. (2013a)
and Krijt et al. (2015), indicating that growth through the ra-
dial drift barrier is possible in the region just outside the snow-
line. Indeed, dust can grow from sub-micron to planetesimal
sizes within ∼104 yr. In the outer disk, the behavior is similar
to that in Fig. 4B: dust grains grow to Ωts ∼ 1 and drift inward.
We note, however, that in the porous case these Ωts = 1 grains
have masses and porosities that differ from the compact grains
by many orders of magnitude (see Fig. 3 of Johansen et al. 2014).

6 At 5 AU, these Stokes numbers correspond to aggregates with a mass
of about ∼1014 g and a porosity of ∼1%.
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Fig. 5. Influence of total disk mass on the location where planetesimals
and pebbles form (Sect. 4.1). Material that starts out left of the solid
blue line successfully grows through the drift barrier, eventually form-
ing planetesimals a bit closer in. The red outermost planetesimal of
Fig. 4C has been plotted for the MD/M� = 10−2. Material that starts
out in the gray region cannot coagulate fast enough, experience rapid
radial drift, and at some point drift past the already-formed planetesi-
mals in the inner disk. For reference, the current locations of the four
Jovian planets are indicated by capital letters.

4.1. Planetesimals and pebbles

Using Fig. 4C, three distinct regions can be identified inside the
protoplanetary disk. First, we identify the batch that formed the
outermost planetesimals. The lifeline of this batch is shown in
red in Fig. 4C. Dust particles that are located inside of this batch
at t = 0 will eventually grow into planetesimals on a timescale
of ∼104 yr.

Material located outside of the red batch at t = 0 will grow
to Ωts ∼ 1 and drift in. We call these particles pebbles7. Around
104 yr, material from the outer disk will start to drift into the
planetesimal belt located just behind the snow-line. Since our
model at this point does not include any interaction between
batches, the pebbles fly through the planetesimals unaffected. In
reality, the planetesimals can potentially accrete the pebbles very
efficiently (Ormel & Klahr 2010; Guillot et al. 2014). In Fig. 4C,
material that starts out outside ∼10 AU will form pebbles. For
the disk profile of Eq. (1), the fraction of the disk’s total mass
located outside r equals

R ≡

∫ rout

r rΣd(r) dr∫ rout

0 rΣd(r) dr
= 1 −

(
r

rout

)2−γ

· (23)

Thus, the pebbles formed outside of 10 AU together hold ∼2/3
of the total dust mass and have the potential to boost protoplanet
growth after the formation of planetesimals. We will discuss peb-
ble accretion further in Sect. 6.

4.2. Influence of disk mass

In Fig. 5 we combine simulations performed with different disk
masses (the other properties, i.e., turbulence, disk outer radius,

7 While some batches starting outside of the red batch form planetes-
imals, these grains have at some point drifted past the already-formed
planetesimals in the inner disk.

metallicity, are identical to those in Table 1) and show how disk
mass influences the location where planetesimals and pebbles
originate. The figure should be read as follows: For a given
disk mass, material that starts to the left of the solid blue line
will form planetesimals in the ‘planetesimal zone’ marked by
the shaded region. Material that starts out in the gray area will
grow and drift to enter the previously formed planetesimal zone
at Stokes numbers 10−2 < Ωts < 3. The red lifeline of Fig. 4C is
also plotted at the corresponding disk mass of 10−2 M�.

From the figure we can identify two trends. First, more mas-
sive disks form planetesimal at larger radii. This is to be ex-
pected, as more massive disks have a higher dust surface den-
sity, making growth through the radial drift barrier easier (e.g.,
Okuzumi et al. 2012, Sect. 4). For disk masses comparable to the
MMSN, planetesimal formation around the current location of
Jupiter is a realistic possibility. Second, the boundary between
the regions where planetesimals and pebbles originate, moves
out for increasing disk mass. This means that for more massive
disks, a larger fraction of the dust content can form planetesimals
directly, leaving a smaller fraction available to be accreted in the
form of pebbles later. Nonetheless, for the most massive disks
considered here the pebble origin region still contains ∼1/2 of
all the dust.

5. Porous growth with erosion

So far we have assumed that all collisions result in perfect stick-
ing. And while collisions between icy same-size aggregates in
the outer disk are indeed likely to occur below the critical frag-
mentation threshold, Krijt et al. (2015) have shown that high-
velocity collisions with large mass ratios can result in efficient
erosion and possibly frustrate the further growth of aggregates
with Stokes numbers Ωts ∼ 1. Here, we mimic the effect of
efficient erosion by adjusting the growth timescale according
to Eq. (21), using an erosion threshold velocity of 20 m s−1

(Gundlach & Blum 2015).
The results of the simulation with erosion are shown in

Fig. 4D. The largest difference with the perfect sticking scenario
of Fig. 4C is that there are no planetesimals being formed in the
inner disk. Instead, when particles grow to Ωts ∼ 1, their growth
is frustrated by erosion and they drift inward.

5.1. Streaming instability

Apart from coagulating directly, planetesimals can also be
formed through SI (e.g., Youdin & Goodman 2005; Johansen
et al. 2007; Bai & Stone 2010a,b). In this section we investigate
how porous coagulation followed by erosion can lead to condi-
tions suitable for triggering SI.

We make use of the work of Dra̧żkowska & Dullemond
(2014), who, based on the work of Johansen et al. (2007, 2009)
and Bai & Stone (2010a,b) defined three conditions for trigger-
ing SI. For a mono-disperse particle distribution, these condi-
tions are equivalent to:

i) The Stokes number of the mass dominating particles needs
to be close to unity. Typically, one needs 10−2 ≤ Ωts ≤ 3.

ii) The midplane dust-to-gas ratio of these particles needs to
exceed, or be close to, unity.

iii) The vertically integrated metallicity should be at least a few
times Solar, i.e., Z & 0.02−0.03.

See also Fig. 8 of Carrera et al. (2015) for points i) and iii).
Lastly, SI needs time to develop and will not be triggered if the
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Fig. 6. Similar to Fig. 4D (porous growth + erosion), but with A) an increased metallicity of Z0 = 0.06; B) a reduced turbulence strength of
α = 3 × 10−4; and C) a gas temperature 50% lower than that in Eq. (3). All three modifications result in a higher maximum dust-to-gas ratio
compared to Fig. 4D.

growth timescales of the particles are too short. In other words,
tgrow > Ω−1. The first two conditions are related to efficient mo-
mentum transfer between dust particles and the gas. Particles
with much higher Stokes numbers do not effectively interact
with the gas, while particles with with much smaller stopping
times do not result in strong clumping. Condition iii) is related
to suppressing midplane turbulence. For low metallicities, the
strength of this turbulence drops sharply (Bai & Stone 2010a).

Concentrating on conditions i) and ii) and armed with the
semi-analytical model of Sect. 3, we can identify regions in
space and time where these conditions are met. In Fig. 4,
dashed lines indicate the particles in the batch meet condition
i), while the background colors show the midplane dust-to-gas
ratio (Eq. (22)), important for condition ii).

Focussing on the porous growth + erosion case (Fig. 4D),
we see that conditions for SI are not reached. While every batch
eventually forms particles with high Stokes numbers (evidenced
by the dashed lines), the achieved midplane densities are about
a factor 10 too low. We can see a front of moderate midplane
densities moving outward in time, starting in the inner disk at
103 yr and reaching 100 AU after almost 106 yr.

This behavior can be understood in the following way.
Essentially, the midplane dust-to-gas ratio is the combination of
the vertically integrated metallicity and the degree of settling(
ρd

ρg

)
z=0
∼ Z

(
Ωts
α

)1/2

· (24)

where Z = (Σd/Σg) and we have used that hd/hg ∼ (α/Ωts)1/2 for
high Stokes numbers (see Eq. (7)). Second, since the removal
of dust occurs from the inside-out, the surface density – at a
given r – will decrease, very much like in Fig. 3B, and pile-
ups like the ones seen in the no-growth case do not occur. As a
result, the highest vertically integrated metallicity is achieved at
the very beginning and Z ≤ Z0. The highest midplane densities
are then achieved in the interval when growth toward Ωts > 10−2

has occurred, but before enough time has past for radial drift to
reduce the local dust surface density. The diagonal shape of high
(ρd/ρg)z = 0 in Fig. 4D occurs because growth takes longer in the
outer disk.

5.2. Disk metallicity, turbulence, and temprature

Inspired by Eq. (24), we briefly discuss three ways that can help
to create conditions suitable for SI. All three are shown in Fig. 6.

Increasing the initial dust content: the most straightforward
way to reach higher midplane dust-to-gas ratios is to start out
with a higher metallicity from the beginning. Figure 6A shows
that for Z0 = 0.06, a mass loading close to unity can be achieved
in the inner ∼10 AU.

Decreasing the turbulence strength: the turbulence strength
influences the degree of settling and for a given metallicity and
particle size, the midplane dust-to-gas ratio is inversely propor-
tional to

√
α. For example, reaching a mass loading of 1 in a

column with Z = 0.01 and Ωts = 0.1 particles requires α ∼
10−5. However, the turbulence cannot be decreased to arbitrarily
small values. The presence of marginally decoupled grains will
give rise to Kelvin-Helmholtz instability (Weidenschilling 1980,
1995; Johansen et al. 2006) and SI (e.g., Takeuchi et al. 2012),
resulting in turbulence that can be parametrized with for example
Eq. (8) of Dra̧żkowska & Dullemond (2014). For the disk mod-
els used in this work, the strength of this turbulence amounts
to αmp ' 5 × 10−4 and ∼10−3 at 5 and 50 AU, respectively, for
particles with Stokes numbers around unity.

Decreasing the temperature: the temperature structure used
so far (Eq. (3)) is based on an optically thin disk. However, mid-
plane temperatures in disks might be significantly lower, espe-
cially if the disk is optically thick (e.g., Andrews et al. 2009).
In contrast, the presence of viscous heating can affect the tem-
perature profile significantly (Bitsch et al. 2015). Lowering the
temperature affects many things. Most important for the calcu-
lations presented here is that a lower temperature decreases the
pressure gradient η (see Eq. (9)), causing the radial drift to be
slower. This makes erosion less efficient (lower ηvK) and also
gives grains more time to grow, allowing them to reach larger
sizes. Reducing the temperature by 50% indeed results in higher
midplane dust-to-gas ratios (Fig. 6C), but the effect is not large
enough to trigger SI.

6. Discussion

6.1. Batch approach

The numerical approach introduced in this work (Sect. 3), in
which individual batches of dust are followed as they grow and
drift in the protoplanetary nebula, provides an intuitive and flex-
ible way to calculate (porous) coagulation and the evolution of
the global surface density simultaneously, connecting the prop-
erties of the (sub)micron monomers to the growing aggregates
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and the global redistribution of solids (Fig. 2). The flexibil-
ity and speed of this approach allow us to study the impact
of different coagulation models (Fig. 4) and or disk properties
(Fig. 6) quickly, while preserving the essential characteristics of
the growth process.

At this point, the method has three main drawbacks. First, it
traces only the mass-dominating particles and does not provide
information about the number distribution for smaller masses. If
the distribution can be assumed to be in growth/fragmentation
equilibrium, the complete mass distribution may be recon-
structed (e.g., Birnstiel et al. 2011), though this has not yet been
attempted for porous growth or for a steady state between growth
and erosion.

Second, batches do not interact with each other. In most situ-
ations encountered here this is justified, as evidenced by the fact
that the different lifelines do not cross in Fig. 4. In some cases
however, this assumption does not hold. One example, in which
pebbles from the outer disk drift past planetesimals in the inner
disk, is found in Sect. 4 and will be discussed below. Another sit-
uation where batches come uncomfortably close is in the outer
edge of an exponential disk. Birnstiel & Andrews (2014) have
shown that in exponentially decaying disks, a pile-up will be cre-
ated at the outer edge (e.g., their Figs. 3 and 4). In theory, these
pile-ups host all dust grains that were originally located further
out. Coagulation inside such a pile-up would be hard to model
with independent dust batches.

Third, the approach does not include radial mixing as a result
of turbulent diffusion. With one of the underlying assumptions
of the model being that dust grains that start out together evolve
in a similar manner, it appears not to be straightforward to add
these processes. Radial mixing and diffusion are accurately cap-
tured by particle tracking models that simulate individual trajec-
tories for a large number of individual grains (e.g., Ciesla 2011;
Hughes & Armitage 2012). Such models differ from the method
presented here in a number of ways. First, in our approach, the
dust surface density is solved from the evolution of a batch itself,
rather than being obtained by looking at the dynamical evolution
of all the particles in the simulation. Second, where we focus on
the effects of the details of the coagulation process in a static
disk, these works primarily look at evolving gas disks and either
neglect particle coagulation (Ciesla 2011) or treat it in a simpli-
fied way; for example by injecting particles of increasing size at
a later stages (Hughes & Armitage 2012). Despite these differ-
ences, the main conclusions of Hughes & Armitage (2012) and
this work are similar: both do not find significant enhancements
of the vertically-integrated dust-to-gas ratio.

6.2. Rapid porous growth

For porous icy aggregates, fragmentation occurs only at very
high velocities (Wada et al. 2013) and the resulting fluffy aggre-
gates can swiftly grow through the radial drift barrier (Fig. 4C).
Rapid growth is harder to achieve in the outer disk, since
timescales are longer and dust and gas spatial densities are lower.
As a result, planetesimals form in a zone just behind the snow-
line. Figure 5 shows how the size of this region depends on disk
mass. Comparing the planetesimal formation zone to the current
locations of the Solar System giant planets8, we find that while
it is hard to form planetesimals all the way out to the current

8 In the Nice model however, the giant planets of the Solar System
were originally located much closer in, roughly between 5 and 17 AU,
migrating out at later times (Tsiganis et al. 2005; Morbidelli et al. 2005;
Gomes et al. 2005).

location Uranus and Neptune, it is very well possible to form
planetesimals in the location where Jupiter is now. One could
envision a scenario where enough planetesimals accumulate to
trigger the formation of Jupiter early on. At that point, the as-
sumptions in our model break down and the presence of Jupiter
will steer the evolution of the disk and planet formation therein
(e.g., Pollack et al. 1996; Pinilla et al. 2012; Kobayashi et al.
2012).

6.3. Pebble accretion

After being studied by Ormel & Klahr (2010), Lambrechts &
Johansen (2012), pebble accretion has received a lot of attention
as a robust way of growing planetesimals and planetary embryos
(Lambrechts & Johansen 2014; Kretke & Levison 2014; Levison
et al. 2015). The method developed in this work is ideally suited
for studying pebble accretion. First, it provides the location and
formation time of the planetesimal population (e.g., Fig. 4C), but
it also accurately captures the properties of the pebbles that drift
in later and provides information about their history (e.g., where
the pebbles originated from, how long they spent in which part
of the disk, etc.). The next step will be to include interaction be-
tween different batches when they overlap. Once could imagine
syphoning mass from the batch with pebbles to the batch with
planetesimals with a certain efficiency. This accretion efficiency
depends sensitively on the properties of the local gas, the size of
the planetesimals, and the aerodynamic properties of the pebbles
(e.g., Guillot et al. 2014; Visser & Ormel 2015), information that
is all readily available in our approach.

6.4. Erosion and streaming instability

In Krijt et al. (2015), it was seen that the growth of Ωts ∼ 1
particles stagnates (i.e., ṁ → 0) soon after the drift velocity ex-
ceeds the erosion threshold velocity. The growth stagnated be-
cause a balance was reached between growth through similar-
size collisions and erosion by small grains (Krijt et al. 2015,
Fig. 10). Inspired by these results, we adopted Eq. (21) to sim-
ulate efficient erosion. While instructive, this treatment of ero-
sion is very rudimentary, but since our monodisperse approach
does not hold information about the population of small grains,
a self-consistent treatment of erosion is not possible at this point.
Unfortunately at the moment, no global codes are available that
can self-consistently treat the porosity evolution and radial drift
of the full mass distribution while taking into account destructive
and erosive collisions.

In Sect. 5.1, we investigated when porous growth might lead
to SI, making use of the conditions as defined by Dra̧żkowska &
Dullemond (2014). Our simulations indicate that, in a smooth
disk, reaching conditions for SI is not straightforward. While
porous growth (possibly followed by erosion) naturally leads to
a population of aggregates with 10−2 ≤ Ωts ≤ 3 in a large por-
tion of the protoplanetary disk (Figs. 4C and D), the creation of
a dense midplane layer of solids is problematic. The main reason
for this is that growth followed by drift inevitably results in an
inside-out removal of the solid content and does not lead to pile-
ups (see also Fig. 3). These results are in line with Dra̧żkowska
& Dullemond (2014), who, focussing on compact growth, con-
cluded that SI can only follow if the bouncing barrier can be
overcome, the local metallicity can somehow be enhanced, and
the turbulence is sufficiently weak. A number of ways to in-
crease the maximum midplane dust-to-gas ratio are discussed
in Sect. 5.2 and depicted in Fig. 6. Such variations in the disk
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properties, perhaps working together, could result in conditions
suitable for SI in a subset of protoplanetary disks.

6.5. Sintering

One intriguing possibility of creating regions of enhanced dust
density is by having dust sintering in specific regions of the
disk. Sintering is expected to lower the fragmentation thresh-
old velocity in regions around the ice-lines of major volatile
species (Sirono 2011), effectively creating alternating regions
of fragmentation-limited and drift-limited growth. Recently,
Okuzumi et al. (2015) have argued that the existence of such
sintering regions can result in pile-ups of material, offering a
possible explanation for the peculiar shape of the HL Tau pro-
toplanetary disk (Brogan et al. 2015). While it appears sintering
can play an important role in the radial redistribution of solids
in some systems, there are still many uncertainties. For example,
it is not yet clear how sintering affects the porosity evolution
described in Appendix C or how exactly it alters the expected
collisional outcomes.

7. Conclusions

We have developed a novel Lagrangian approach for calculating
the evolution of the mass-dominating dust aggregates as they
grow and drift in a protoplanetary disk. The method, summa-
rized in Fig. 2, allows the calculation of the global evolution of
the dust surface density on Myr timescales while preserving the
essential characteristics of the porous growth process and can be
used to study planetesimal formation and pebble delivery.

After testing the new approach against two well-known cases
(Fig. 3), we use it to study the formation of the first generation of
planetesimals – those that can form in a smooth disk structure –
in disks around Sun-like stars. When fragmentation and erosion
are inefficient, we find that:

1. Planetesimals can coagulate very rapidly, within ∼104 yr,
around the current location of Jupiter. While they end up
in the region just behind the snow-line, the planetesimals
include material from a broader region that extends out to
∼10 AU for an MMSN-like disk (Fig. 4C).

2. For more massive disks, both the region where planetesimals
eventually form and the region where they originate from
move outward (Fig. 5). Thus, in these massive disks, a larger
fraction of the dust content can directly form planetesimals,
leaving less material to be accreted as pebbles later on.

These scenarios rely on the assumption that fragmentation and
erosion are relatively unimportant at collision speeds up to sev-
eral tens of m s−1. Alternatively, when erosion balances growth
around Ωts ∼ 1 (Krijt et al. 2015), further coagulation is not
possible but conditions necessary for streaming instability (SI)
might be reached. In these cases, we find that:

3. While porous growth limited by drift-induced erosion is an
effective way of creating aggregates with 10−2 ≤ Ωts ≤ 3 in
a large region of the protoplanetary disk (Figs. 4D and 6),
conditions needed for SI are generally not reached.

4. The most stringent condition is creating and maintaining a
dense midplane layer of solids. In a smooth gas disk, rapid
porous growth followed by erosion leads to an inside-out
clearing of the dust disk. In such a scenario, no pile-ups are
created and the metallicity decreases.

5. The highest midplane densities are reached in the inner disk
first and then move out toward the outer parts. A reduced tur-
bulence level and lower gas temperature increase the maxi-
mum midplane dust-to-gas ratios slightly, but the biggest im-
pact comes from increasing the initial metallicity (Fig. 6).

Future improvements to the method, in particular the addition of
interaction between batches, will help build a coherent picture
of the planet formation process.
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Appendix A: Particle stopping time

The particle stopping time is a function of an aggregate’s mass m
and size a, and the properties of the local gas. Depending on the
aggregate size in relation to a gas molecule mean free path λmfp,
the stopping time is given by the Epstein or Stokes drag regime
through

ts =


t(Ep)
s =

3m
4ρgvthA

for a <
9
4
λmfp,

t(St)
s =

4a
9λmfp

t(Ep)
s for a >

9
4
λmfp,

(A.1)

with vth =
√

8/πcs the mean thermal velocity of the gas
molecules. The mean free path depends on the gas density and
is given by λmfp = mg/(σmolρg), with σmol = 2 × 10−15 cm2 the
molecular cross section. For porous aggregates, the cross sec-
tion A equals the orientation-averaged projected cross-section
Okuzumi et al. (2009).

Equation (A.1) is valid when the particle Reynolds number
Rep = 4avdg/(vthλmfp) < 1, with vdg the relative velocity between
the gas and the dust particle. For the largest bodies however, this
condition is often not met. In these cases, it is useful to write the
stopping time as

ts =
2m

CDρgvdgA
, (A.2)

with CD the drag coefficient. Following Weidenschilling (1977),
we use

CD =


24(Rep)−1 for Rep < 1,

24(Rep)−3/5 for 1 < Rep < 800,

0.44 for 800 < Rep.

(A.3)

For large Reynolds numbers, the stopping time depends the ve-
locity relative to the gas, and one has to iterate to obtain ts.

Appendix B: Particle relative velocity

The relative velocity between particle 1 and particle 2 is obtained
by adding various velocity sources quadratically. We take into
account relative velocities arising from Brownian motion, tur-
bulence, radial drift, and azimuthal drift. The Brownian motion
relative velocity is given by

∆vBM =

√
8kBT (m1 + m2)

πm1m2
, (B.1)

and depends only on particle masses and temperature.
The turbulence-induced relative velocity between two par-

ticles with stopping times ts,1 and ts,2 ≤ ts,1 has three regimes
(Ormel & Cuzzi 2007)

∆vturb ' δvg×



Ret
1/4 Ω(ts,1 − ts,2) for ts,1 � tη,

1.4 . . . 1.7
(
Ωts,1

)1/2 for tη � ts,1 � Ω−1,(
1

1 + Ωts,1
+

1
1 + Ωts,2

)1/2

for ts,1 � Ω−1,

(B.2)
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Fig. C.1. Particle porosity as a function of aggregate mass at various
locations in the benchmark disk model (see Table 1), assuming 0.1 µm
monomers. When calculating φ(m, r), we assume the aggregates grow
though hit-and-stick collisions, followed by gas- and self-gravity com-
paction (see text). Gas compaction is more efficient at smaller radii.

where δvg = α1/2cs is the mean random velocity of the
largest turbulent eddies, and tη = Ret

1/2tL is the turn-
over time of the smallest eddies. The turbulence Reynolds
number is Ret = αc2

s/(Ωνmol), with the molecular viscosity
νmol = vthλmfp/2.

The relative velocity from radial drift just equals ∆vr =
|vdrift(Ωts,1)− vdrift(Ωts,2)|, with the drift velocity given by Eq. (8).
The azimuthal relative velocity is obtained in a similar way, as
∆vφ = |vφ(Ωts,1) − vφ(Ωts,2)| with

vφ = −
ηvK

1 + (Ωts)2 · (B.3)

Finally, the total relative velocity is given by

vrel =

√
(∆vBM)2 + (∆vturb)2 + (∆vr)2 + (∆vφ)2. (B.4)

The particle stopping times and relative velocities are calculated
in the midplane of the gas disk, as this is where most of the
coagulation occurs.

Appendix C: Particle porosity evolution

Initially, particles grow through low-energy hit-and-stick col-
lisions. During this growth phase, the fractal dimension is ∼2
(Kempf et al. 1999), and the porosity is given by

φ ' (m/m•)1/2, (C.1)

where m• is the monomer mass. The fractal growth regime
ends when collisions become energetic enough for compaction
(Dominik & Tielens 1997) or when gas ram pressure compaction
becomes effective (Kataoka et al. 2013b).

For low internal densities, Kataoka et al. (2013b) found that
the external pressure a dust aggregate can just withstand equals

Pcrit =
Eroll

a3
•

φ3. (C.2)

An important parameter is the critical rolling energy Eroll
(Dominik & Tielens 1997). Based on experimental investiga-
tions (Heim et al. 1999; Gundlach et al. 2011) and theoretical
work (Krijt et al. 2014) we obtain

Eroll =

(
a•

1 µm

)5/3

×


1.8 × 10−7 erg for water ice,

8.5 × 10−9 erg for silicate.
(C.3)
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The pressure of Eq. (C.2) can then be compared to the pressure
arising form the surrounding gas and from self-gravity (Kataoka
et al. 2013a)

Pgas =
vdgm
πa2ts

, Pgrav =
Gm2

πa4 , (C.4)

with G the gravitational constant.
In our semi-analytical model, the porosity is determined by

fractal growth followed by gas- and eventually self-gravity com-
paction. Specifically, we make use of Eq. (C.1), until the exter-
nal pressures become too large for the aggregate to withstand.
At that point, we obtain the porosity by setting Eq. (C.2) equal
to Eq. (C.4). Of these processes, only gas pressure compaction
varies with disk location, being more efficient in at smaller disk
radii.

As particles only move inward in the cases considered in this
work (Fig. 4), we can construct a single function φ(m, r) that is
independent of the dust particle’s growth- and drift history. More
specifically, for our assumptions (i.e., fractal growth followed
by gas- and self-gravity compaction), φ(m, r1) ≥ φ(m, r2 > r1).
Figure C.1 shows porosity as a function of mass for three differ-
ent radii, assuming 0.1 µm monomers and the disk properties of
Table 1.
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