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ABSTRACT

Context. The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, have been recently cross-matched to
construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were separated from stars and quasars through colour
cuts, which may leave imperfections because different source types may overlap in colour space.
Aims. The aim of the present work is to identify galaxies in the WISE × SuperCOSMOS catalogue through an alternative approach
of machine learning. This allows us to define more complex separations in the multi-colour space than is possible with simple colour
cuts, and should provide a more reliable source classification.
Methods. For the automatised classification we used the support vector machines (SVM) learning algorithm and employed SDSS
spectroscopic sources that we cross-matched with WISE × SuperCOSMOS to construct the training and verification set. We performed
a number of tests to examine the behaviour of the classifier (completeness, purity, and accuracy) as a function of source apparent
magnitude and Galactic latitude. We then applied the classifier to the full-sky data and analysed the resulting catalogue of candidate
galaxies. We also compared the resulting dataset with the one obtained through colour cuts.
Results. The tests indicate very high accuracy, completeness, and purity (>95%) of the classifier at the bright end; this deteriorates
for the faintest sources, but still retains acceptable levels of ∼85%. No significant variation in the classification quality with Galactic
latitude is observed. When we applied the classifier to all-sky WISE × SuperCOSMOS data, we found 15 million galaxies after
masking problematic areas. The resulting sample is purer than the one produced by applying colour cuts, at the price of a lower
completeness across the sky.
Conclusions. The automatic classification is a successful alternative approach to colour cuts for defining a reliable galaxy sample.
The identifications we obtained are included in the public release of the WISE × SuperCOSMOS galaxy catalogue.

Key words. methods: data analysis – methods: numerical – astronomical databases: miscellaneous – galaxies: statistics –
large-scale structure of Universe

1. Introduction

Modern wide-field astronomical surveys include millions of
sources, and future catalogues will increase these numbers to
billions. As most of the detected objects cannot be followed-up
spectroscopically, research done with such datasets will heavily
rely on photometric information. Without spectroscopy, an ap-
propriate identification of various source types is complicated,
however. In the seemingly most trivial case of star-galaxy sep-
aration in deep-imaging catalogues, we quickly reach the limit
where this cannot be done based on morphology: we lack res-
olution, and distant faint galaxies become unresolved or point-
like, similar to stars (e.g. Vasconcellos et al. 2011). Additional
information is then needed to separate out these and some-
times other classes of sources (such as point-like but extragalac-
tic quasars). This has traditionally been done with magnitude
and colour cuts; however, when the parameter space is mul-
tidimensional, such cuts become very complex. Additionally,
noise in photometry scatters sources from their true positions in

? The public release of the WISE × SuperCOSMOS galaxy catalogue
is available from http://ssa.roe.ac.uk/WISExSCOS

the colour space. This, together with huge numbers of sources,
most of which are usually close to the survey detection limit,
precludes reliable overall identification with any manual or by-
eye methods. For these reasons, the idea of automatized source
classification has recently gained popularity and was applied to
multi-wavelength datasets such as AKARI (Solarz et al. 2012),
the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS, Saglia et al. 2012), the VIMOS Public Extra-
galactic Redshift Survey (VIPERS, Małek et al. 2013), the cross-
match of the Wide-field Infrared Survey Explorer – Two Micron
All Sky Survey (WISE–2MASS; Kovács & Szapudi 2015), the
Sloan Digital Sky Survey (SDSS, Brescia et al. 2015), and the
WISE-only (Kurcz et al. 2016), and it has been tested in view of
the Dark Energy Survey data (Soumagnac et al. 2015).

The present paper describes an application of a machine-
learning algorithm to identify galaxies in a newly compiled
dataset, based on the two currently largest all-sky photometric
catalogues: WISE in the mid-infrared, and SuperCOSMOS in
the optical. This work is a refinement of a simpler approach
at source classification that was applied in Bilicki et al. (2016),
hereafter B16, where stars and quasars were filtered out on a sta-
tistical basis using colour cuts to obtain a clean galaxy sample for
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the purpose of calculating photometric redshifts. The two parent
catalogues we use here, described in detail below and in Sect. 2,
both include about a billion detections each, of which a large
part are in common. For various reasons, however, the available
data products from these two surveys offer limited information
on the nature of the catalogued objects, which indeed presents a
challenge to the classification task.

WISE (Wright et al. 2010), which is the more sensitive of
the two, suffers from low native angular resolution resulting
from the small aperture of the telescope (40 cm): it is equal to
6.1′′ in its shortest W1 band (3.4 µm), increasing to 12′′ at the
longest wavelength W4 of 23 µm. This leads to severe blend-
ing in crowded fields, such as at low Galactic latitudes, and
original photometric properties of the blended sources become
mixed. In addition, proper isophotal photometry has not been
performed for the majority of WISE detections, and no WISE
all-sky extended source catalogue is available as yet (see, how-
ever, Cluver et al. 2014; and Jarrett et al. 2016, for descriptions
of ongoing efforts to improve on this situation). Finally, WISE-
based colours provide limited information for classification pur-
poses: at rest frame, the light in its two most sensitive passbands,
W1 and W2 (3.4 and 4.6 µm), is emitted from the photospheres
of evolved stars (Rayleigh-Jeans tail of the spectrum), and the
catalogue is dominated by stars and galaxies of relatively low
redshift, which typically have similar W1 − W2 colours. The
two other WISE filters, W3 and W4 centred on 12 and 23 µm,
respectively which might serve to reliably separate out stars
from galaxies and QSOs when combined with W1 and W2
(Wright et al. 2010), offer far too low detection rates to be ap-
plicable for most of the WISE sources.

SuperCOSMOS (hereafter SCOS) on the other hand, which
is based on the scans of twentieth century photographic plates
(Hambly et al. 2001c), does offer point and resolved source iden-
tification (Hambly et al. 2001b). This classification, although
quite sophisticated, is based mostly on morphological informa-
tion, however, and on the one hand, unresolved galaxies and
quasars are classified as point sources, and on the other, blend-
ing in crowded fields (Galactic Plane and Bulge, Magellanic
Clouds) leads to spurious extended source identifications (see
also Peacock et al. 2016).

A cross-match of the WISE and SCOS catalogues improves
the classification of different types of sources that is useful
for extragalactic applications, as shown in B16. However, al-
though only extended SCOS sources were considered in B16,
blends mimicking resolved objects dominated at Galactic lati-
tudes as high as ±30◦ and had to be removed on a statistical
basis. In the present paper we improve on that work by gener-
ating a wide-angle (almost full-sky) galaxy catalogue from the
WISE × SCOS cross-match through machine-learning. For this
purpose we use the support vector machines (SVM) supervised
algorithm.

A similar task for other WISE-based datasets was under-
taken in two recent works. Kovács & Szapudi (2015), who used
a cross-match of WISE W1 < 15.2 sources with the 2MASS
Point Source Catalogue (PSC, Skrutskie et al. 2006) and per-
formed an SVM analysis in multicolour space, showed that a
cut in the W1WISE − J2MASS colour efficiently separates stars
and galaxies. Based on these results, they produced a galaxy
catalogue containing 2.4 million objects with an estimated star
contamination of 1.2% and a galaxy completeness of 70%. The
separation was only made for stars and galaxies, with no infor-
mation regarding quasars. A limitation of a WISE – 2MASS
cross-match is the much smaller depth of the latter with re-
spect to the former. Most of the 2MASS galaxies are located

within z < 0.2 (Bilicki et al. 2014; Rahman et al. 2016), while
WISE extends well beyond this, detecting L∗ galaxies at z ∼ 0.5
(Jarrett et al. 2016).

Using only photometric information from WISE,
Kurcz et al. (2016) employed SVM and attempted classi-
fying all unconfused WISE sources brighter than W1 < 16 into
three classes: stars, galaxies, and quasars. This led to identi-
fication of 220 million candidate stars, 45 million candidate
galaxies, and 6 million candidate QSOs. The latter sample is
however, significantly contaminated with what was interpreted
as a possibly very local foreground, such as asteroids or zodiacal
light.

The present paper is laid out as follows: the data are de-
scribed in Sect. 2, Sect. 3 explains the principles of the sup-
port vector machine-learning algorithm and introduces the train-
ing sample used here, and in Sect. 4 we present various tests
that allowed us to quantify the performance of the SVM algo-
rithm. Section 5 contains the description and properties of the
final galaxy catalogue, as well as a comparison with the results
of B16 . In Sect. 6 we summarise our analysis.

2. Data: WISE and SuperCOSMOS

The catalogues used to construct the main photometric dataset,
WISE and SuperCOSMOS, are comprehensively described in
Bilicki et al. (2014) and B16. Here we briefly summarize them
and the preselections applied for the purpose of this project.
They are practically equivalent to those from the latter paper;
for more details see Sect. 2 of B16, and in particular Table 1 and
Figs. 1–3 therein.

2.1. WISE

The Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010), a NASA space-based mission, surveyed the entire sky in
four mid-infrared (IR) bands: 3.4, 4.6, 12, and 23 µm (W1 –
W4, respectively). Here we used its second full-sky release, the
AllWISE dataset1 (Cutri et al. 2013), combining data from the
cryogenic and post-cryogenic survey phases. It includes almost
750 million sources with signal-to-noise (S/N) ratio ≥ 5 in at
least one of the bands, and its averaged 95% completeness in
unconfused areas is W1 . 17.1, W2 . 15.7, W3 . 11.5, and
W4 . 7.7 in Vega magnitudes, with variable coverage, however,
that is highest at ecliptic poles and lowest near the ecliptic, espe-
cially in stripes resulting from Moon avoidance manoeuvres.

Our WISE preselection required sources with S/N ratios
higher than 2 in the W1 and W2 bands, and that they were
not obvious artefacts (cc_flags[1,2],“DPHO”); this yielded
603 million detections over the whole sky. Owing to the low sur-
vey resolution (∼6′′), the immensely crowded Galactic Plane and
Bulge are entirely dominated by stellar blends, and extracting
particularly extragalactic information is practically impossible
(extinction is not such a problem in the WISE passbands unless
in very high-extinction regions, however). We therefore focused
on the 83% of the sky available at |b| > 10◦, which reduced the
sample to about 460 million objects.

The depth of WISE observations is position dependent be-
cause of the scanning strategy, and it is highest at the eclip-
tic poles (Jarrett et al. 2011) and lowest at the ecliptic2. The

1 Available for download from IRSA at http://irsa.ipac.
caltech.edu
2 http://wise2.ipac.caltech.edu/docs/release/allwise/
expsup/sec2_2.html
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95% completeness limit of AllWISE over large swaths of un-
confused sky is W1 = 17.1 mag (Vega)3, and we independently
verified by analysing the WISE source distribution in W1 mag-
nitude bins that adopting a flux limit of W1 < 17 leads to a
relatively uniform selection as far as instrumentally driven arte-
facts are concerned. This cut gave a final input WISE dataset
of about 343 million sources at |b| > 10◦. At the bright end,
this sample is dominated by stars even at high Galactic latitudes
(Jarrett et al. 2011, 2016), and we estimate about 100 million of
the WISE sources, mostly faint, to be galaxies and quasars (B16;
Kurcz et al. 2016), the remainder are of stellar nature.

The WISE database currently does not offer reliable (e.g.
isophotal) aperture photometry for the resolved sources and
they are not even identified therein (except for fewer than
500 000 cross-matches with the 2MASS Extended Source
Catalogue). We therefore used the w?mpro magnitudes (where
the question mark stands for the channel number), which are
based on point spread function profile-fit measurements. The
only proxy for morphological properties that we adopted here
from the database is given by circular aperture measurements
performed on the sources within a series of fixed radii. These
were obtained without any contamination removal or compensa-
tion for missing pixels, however. In particular, as in Bilicki et al.
(2014) and Kurcz et al. (2016), in the classification procedure
we used a differential measure (a concentration parameter), that
is defined as

w1mag13 = w1mag_1 − w1mag_3, (1)

where w1mag_1 and w1mag_3 were measured in fixed circular
apertures of radii of 5.5′′ and 11′′, respectively. The w1mag13
parameter is expected to have different distributions for point
and resolved sources, which indeed is the case, as we verified
against SDSS spectroscopic data described in Sect. 3.1.

We note that of the four available WISE bands we did not
employ the longest wavelength W4 because of its very low
sensitivity, which leads to an overwhelming number of non-
detections. In addition, whenever W3 was used, all the sources
with w3snr < 2 (upper limits and non-detections, which to-
gether dominate the W3 channel in our sample), were artificially
dimmed by +0.75 mag to statistically compensate for their over-
estimated fluxes, which we determined to be an appropriate av-
erage correction (see Appendix A for details). Possible errors as-
sociated with this procedure are not important for our final cata-
logue, however, as we finally did not employ the 12 µm passband
for the overall classification because of the photometry issues, al-
though it does bring some improvement (cf. Sect. 4.1). The W3
information was used only in the test phase.

2.2. SuperCOSMOS

The SuperCOSMOS Sky Survey (SCOS, Hambly et al.
2001a,b,c) consists of digitized photographs in three bands,
B,R, I, obtained through automated scanning of source plates
from the United Kingdom Schmidt Telescope (UKST) in the
south and the Palomar Observatory Sky Survey-II (POSS-II)
in the north. The observations were conducted in the last
decades of the twentieth century. The data are publicly available
from the SuperCOSMOS Science Archive4, with photometric,
morphological, and quality information for 1.9 billion sources.

3 http://wise2.ipac.caltech.edu/docs/release/allwise/
expsup/sec2_4a.html
4 http://surveys.roe.ac.uk/ssa/

SCOS provides source classification flags in each of the three
bands, as well as a combined one, meanClass, which is equal to
1 if the source is resolved, 2 if it is unresolved, 3 if it is un-
classifiable, and 4 if it is likely noise (Hambly et al. 2001b), the
two latter cases comprising a negligible fraction (�1%) of all
the sources. The derived catalogue of extended sources was ac-
curately calibrated all-sky using SDSS photometry in the rele-
vant areas, and the calibration was extended over the remaining
sky by matching plate overlaps and by using the average colour
between the optical and 2MASS J bands (Peacock et al. 2016).
This was not the case for the point sources, however, which very
much limits their applicability for uniform source selection. In
B16 only the SCOS sources with meanClass = 1 were used to
obtain a WISE × SCOS galaxy sample that was further scourged
of residual quasars and stars. In the present paper we followed
this preselection, but we recall that only a part of these SCOS
sources are in fact extragalactic. Especially at low Galactic lati-
tudes, this extended source catalogue is dominated by blends of
stars with other stars and with extragalactic objects. The remain-
ing SCOS preselections are also the same as in B16 and ear-
lier in Bilicki et al. (2014): objects need to be properly detected
with aperture photometry in the B and R bands5 (gCorMagB and
gCorMagR2 not null; quality flags qualB and qualR2 < 2048,
meaning no strong warnings or severe defects, Hambly et al.
2001b).

The publicly available catalogue was supplemented with ad-
ditional data in corners of the photographic plates that were
missing from the original dataset because of so-called step-
wedges (Hambly et al. 2001b). This mostly affects low declina-
tions. The B and R magnitudes were additionally calibrated be-
tween the north and the south (the split being at δ1950 = 2.5◦)
to compensate for differences between effective passbands of
UKST and POSS-II; see Peacock et al. (2016) for details.

To preserve the all-sky photometric reliability and to mit-
igate problems with catalogue depth that varies from plate to
plate, two flux limits were applied to the SCOS dataset, B < 21
and R < 19.5 (AB-like, extinction corrected). As already men-
tioned, we did not use the Galactic Plane strip of |b| < 10◦, where
blending and high extinction make SCOS photometry unreliable.
The resulting SCOS catalogue of extended sources outside of the
Galactic Plane includes over 85 million objects.

2.3. Cross-matched WISE × SuperCOSMOS photometric
sample

The two photometric catalogues were paired using a matching
radius of 2′′. The resulting flux-limited cross-matched sample at
|b| > 10◦ contains almost 48 million sources. This number in-
cludes WISE sources supplemented from an earlier cryogenic
phase of observations (“All-Sky”, Cutri et al. 2012), to fill in
strips of missing data centred on ecliptic longitudes of λ ∼ 50◦
and λ ∼ 235◦.

All the magnitudes were extinction corrected using
the Schlegel et al. (1998) maps throughout and apply-
ing the following extinction coefficients, derived from the
Schlafly & Finkbeiner (2011) re-calibration (B16): AB = 3.44,
AR = 2.23, AW1 = 0.169, and AW2 = 0.130. The usage of
de-redenned magnitudes also for stars is motivated by the fact
that we focus on extragalactic sources, the stellar ones being
contamination for our applications. As these corrections are
often significant in the optical, neglecting them would lead to
considerable biases in the final galaxy catalogue. Still, we did

5 We did not use the third SCOS band, I, as it is too shallow.
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Fig. 1. Colour–colour diagrams for galaxies, stars, and quasars from a cross-match of WISE × SuperCOSMOS with SDSS spectroscopic data. Left
panel: WISE colours only; right panel: WISE and SCOS colours. Blue contours correspond to galaxies, red contours represent stars, and green
contours illustrate quasars.

not use the areas of very high extinction, E(B − V) > 0.25,
which have almost no training data for classification, and the
photometry especially in the optical is problematic. This cut,
removing another 7.2 million sources, is the same as applied in
B16, where the appropriate threshold was determined through an
analysis of spurious under- and overdensities in WISE × SCOS
source distribution.

Figure 1 shows why using an automatic classifier rather than
simple colour cuts is more suitable to separate galaxies from
stars and quasars in the WISE × SCOS sample. The diagrams il-
lustrate distributions of three source types (galaxies, quasars, and
stars) on two colour–colour (c-c) planes. Source identifications
come from the WISE × SCOS × SDSScross-match described in
detail in Sect. 3.1. In the left panel we show the W2 − W3 vs.
W1 − W2 c-c plane, which is often used for object separation
in WISE (e.g. Jarrett et al. 2011; Ferraro et al. 2015). The plot
shows that it is challenging to find simple cuts in these param-
eters that would maximise both the completeness and the pu-
rity of the resulting samples. While we might quite well separate
QSOs from other sources, for example by a W1 − W2 = 0.8
cut (Stern et al. 2012; Assef et al. 2013; Yan et al. 2013), it is
much more difficult, if possible at all, to apply a single thresh-
old to efficiently separate galaxies from stars. The galaxy and
star distributions overlap very much even if the additional colour
W2−W3 is taken into account. The situation is similar for other
colour combinations that are available from the five bands in
WISE × SCOS. The right panel of Fig. 1 illustrates the R−W1 vs.
B−R c–c plane, where the three source types also largely overlap.

3. Classification method: support vector machines

For the classification performed in this work we used the
SVM method. SVM is a supervised learning algorithm that
is a maximum-margin classifier able to determine decision
planes between sets of objects with different class member-
ships, to establish a decision boundary by maximising the
margin between the closest points of the classes (the so-
called support vectors). Each single object is classified based
on its relative position in the n-dimensional parameter space
(Cristianini & Shawe-Taylor 2000; Shawe-Taylor & Cristianini
2004; Solarz et al. 2012; Małek et al. 2013).

The SVM algorithm is an increasingly popular way of han-
dling astronomical data to classify different types of objects.
For various applications of SVM in astronomy we refer to, for

instance, Woźniak et al. (2004), Huertas-Company et al. (2008),
Solarz et al. (2012), Saglia et al. (2012), Małek et al. (2013),
Kovács & Szapudi (2015), Marton et al. (2016), and Kurcz et al.
(2016).

In our case, SVM was used to build a non-linear classifier
for the photometric data in the WISE × SCOS all-sky catalogue.
As input data we used photometric information such as magni-
tudes, colours, and a differential aperture magnitude (see Sect. 4
for details). The input data were transformed by a kernel into a
higher-dimensional feature space, where the separation between
different classes is less complex than in the input parameter
space. For more details see for example Manning et al. (2008)
or Małek et al. (2013); an illustrative description of how SVM
classification operates is provided in Han et al. (2016).

The SVM algorithm searches for a boundary B in the feature
space that will separate examples from different categories by
maximizing a fitness function F:

F = M −C
∑

i

ξi(B,M), (2)

where M is the margin of the boundary, and ξ(B,M) is the
number of training examples violating this criterion. The cost
parameter C is a trade-off between large margins and poor
classification. Equation (2) shows that for very large C each
training example on the wrong side of the margin is heavily
penalized. When C is small, individual ξi penalize Eq. (2) less
heavily, thus the optimal boundary may be one that misclass-
fies a small number of outliers. More details can be found in
Beaumont et al. (2011).

For our particular implementation, we used a C-SVM algo-
rithm with a Gaussian kernel to identify three different classes
of objects: galaxies, quasars, and stars, with the final aim to re-
liably pinpoint the galaxies. The Gaussian kernel function (also
dubbed radial basic) is defined as

k(xi, y j) = exp(−γ||xi − x j||
2), (3)

where ||xi − x j|| is the Euclidean distance between feature vec-
tors in the input space. The parameter γ is related to the breadth
of the Gaussian distribution, σ, namely γ = 1/(2σ2), and deter-
mines the topology of the decision surface. Too high a value of γ
sets a complicated decision boundary, while too low γ can give a
decision surface that is too simple, which might cause misclassi-
fications. The classifier is trained using a subset of input data for
which class identifications are known. In our case, the training
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set was derived from SDSS DR12 spectroscopic data matched
with WISE × SCOS (see Sect. 3.1).

The two parameters, C and γ, were optimized based on the
training set through a grid search and N-fold cross-validation; we
used N = 10, in which case the training data were split into ten
equal sets, and the classifier was trained on nine of them. Then
the classifier was tested against the remaining tenth subset (the
so-called self-check or validation). This test was repeated ten
times with a different subset removed for each training run. The
classification accuracy was then calculated by averaging over the
ten runs. The same method was used in Solarz et al. (2012) and
Małek et al. (2013), where a more detailed description of this
process is provided. Moreover, an additional test sample was
used (data with known classification, but not used for training)
for an independent check of the classifier performance.

In the test phase of our study, we used only the discrete
classes assigned by SVM to each source. For the final classifi-
cation, however, we decided to employ the full probability dis-
tributions for each class. This allowed us to examine the cases of
problematic classification where the probabilities that a source
belongs to two or three classes were roughly equal. This is dis-
cussed in detail in Sect. 5.

For our analysis we used LIBSVM6 (Chang & Lin 2011), in-
tegrated software for support vector classification, which allows
for multiclass identifications. We also employed R, a free soft-
ware environment for statistical computing and graphics, with
the e1071 interface (Meyer 2001) package installed.

3.1. Training sample: SDSS DR12 spectroscopic data

A well-chosen training sample is crucial for the SVM method,
because the classifier is tuned based on the properties of this
sample: the C and γ parameters are estimated and the hyperplane
between classes is determined. This means that a representative
sample of sources, with known properties that we wish to iden-
tify, is essential. In our specific case of a catalogue including
z . 0.5 galaxies (Bilicki et al. 2014; B16) as well as stars and
higher-redshift quasars, such a training set requires good-quality
and high-reliability pre-classification using spectroscopic mea-
surements. For this reason, for training and testing purposes we
chose to employ the spectroscopic sample from the Sloan Digi-
tal Sky Survey Data Release 12 (SDSS DR12, Alam et al. 2015)
cross-matched with the WISE × SCOS dataset defined above.

The SDSS is a multi-filter imaging and spectroscopic sur-
vey, and its DR12, used for our analysis, includes dedicated star,
galaxy, and quasar surveys. These samples are shallower than
the imaging part of the SDSS, but they are available with high
reliability only from spectra (Bolton et al. 2012): the photomet-
ric classification of SDSS was only based on source morphol-
ogy (resolved vs. point-like, Stoughton et al. 2002). SDSS DR12
contains almost 3.9 million spectroscopic sources, of which 61%
were identified as galaxies, 22% as stars, and the remaining 16%
as quasars/AGNs (SDSS class “QSO”). To avoid unreliable spec-
troscopic measurements and hence problematic classification,
we used additional information on the redshift from the SDSS
database as a quality determinant: the zWarning flag and the
relative error in redshift (radial velocity for stars) defined as
∆z = zerr/z, where zerr is the database value. Only the sources
with zWarning = 0 were used throughout, with the additional
conditions of ∆z < 0.1 for galaxies and quasars, and ∆z < 1 for
stars.

Pairing these sources with our WISE × SCOS flux-limited
catalogue within 1′′ matching radius resulted in over 1 million
common objects, 95% of which were galaxies, 2% were stars,

Fig. 2. Normalised number counts of W1 magnitudes in the
WISE × SCOS × SDSS cross-matched sample for stars, galaxies, and
quasars.

and 3% were quasars. Clearly, the stars and most of the quasars
are point sources and should not be resolved. That we identi-
fied over 50 000 of them in the cross-match of SDSS with the
WISE × SCOS extended source catalogue reflects the suscep-
tibility of SCOS morphological classification (the meanClass
flag) to blending, which mimics resolved sources (B16). The
main purpose of the present study is to reliably filter out such
sources from the galaxy catalogue we aim to produce.

4. SVM classification performance

This section describes various tests made using the SDSS-based
training sample, which allowed us to quantify the performance
of the SVM algorithm in view of the final classification of the
entire catalogue.

To check the classification efficiency, to calculate the depen-
dence on different parameters, and to perform the final classifi-
cation, the following procedure was used: (1) as galaxy prop-
erties change with magnitude, each sample (training and test
sets, final catalogue) were divided into five W1 magnitude bins
(W1 < 13, 13 ≤ W1 < 14, 14 ≤ W1 < 15, 15 ≤ W1 < 16,
and 16 ≤ W1 < 17); (2) five SVM algorithms separately tuned
for these bins were used to classify galaxies, stars, and quasars;
and (3) five SVM outputs were merged and treated as one final
output. We verified that there is no evidence for an inconsistency
between different W1 magnitude bins.

Figure 2 shows normalized W1 magnitude distributions for
the three types of sources in the WISE × SCOS × SDSS cross-
match. As was shown in Kurcz et al. (2016), the derived classi-
fication statistics depends on the number of training objects, but
the classifier stabilizes for subsamples of 3000 objects in each
class. In our case, however, at both the bright (W1 < 13) and the
faint end (W1 > 16), we did not have large enough numbers of
sources to select randomly 3000 objects of each class from the
input sets to build the training sample. In particular, we needed
to use all the stars and quasars from these bins for the training
and tests. For this reason, our training samples consist of differ-
ent numbers of objects in each W1 bin: 1000, 4000, 4000, 5000,
and 2600 of each type for the 12 < W1 < 13, 13 < W1 < 14,
14 < W1 < 15, 15 < W1 < 16, and 16 < W1 < 17 mag bins,
respectively.

The first step of the tests was to determine the optimal C
and γ parameters for the five W1 bins, therefore we tuned five
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Fig. 3. Example of the C − γ plane obtained from one of the five
WISE × SCOS C-SVM classifiers. The mean misclassification rate
(colour bar) as a function of the C and γ parameters was estimated
through ten-fold cross-validation for each pair of the two parameters.
The lower the misclassification rate, the better the performance of the
SVM algorithm.

different C-SVM classifiers for our purpose. Figure 3 illustrates
an exemplary grid search for one of the classifiers. The colours
code the mean misclassification rate for given combinations of
γ and C; the lower the rate, the better the performance of the
SVM algorithm. Here the misclassification rate is defined for
each magnitude bin as the complement to the total accuracy
(TA), the latter being the mean of accuracies Ai for individual
validation iterations:

TA =
1

10

10∑
i=1

Ai. (4)

The accuracy for a given iteration is defined as

Ai =
TG + TQ + TS

TG + TQ + TS + FG + FQ + FS
· (5)

The components of this equation are true galaxies (TG), quasars
(TQ) and stars (TS) from the training sample, properly classified
as galaxies, quasars, and stars, respectively; and false galaxies
(FG), which are real quasars or stars misclassified as galaxies,
with false quasars (FQ) and false stars (FS) defined in a similar
manner.

To further compare the performance of different classi-
fiers, we calculated the following measures, as defined by
Soumagnac et al. (2015): completeness (c), contamination ( f ),
and purity (p) for galaxy, star, and quasar samples. We used the
following equations (here for galaxies):

cg =
TG

TG + FGS + FGQ
, (6)

fg =
FSG + FQG

TG + FSG + FQG
, (7)

pg = 1 − fg =
TG

TG + FSG + FQG
, (8)

where FGS and FGQ stand for galaxies misclassified as stars and
quasars, and FSG, FQG are stars and quasars misclassified as
galaxies. Definitions for stars and quasars follow in an analogous
way. The accuracy for an individual class of objects is defined in
the same way as the purity.

Table 1. Comparison of the performance for two classifiers: one using
five parameters (W1, W1−W2, R−W1, B−R, w1mag13) and the other
adding W3 as the sixth parameter.

5D classifier 6D classifier
c [%] p [%] c [%] p [%]

Galaxies 90.3 89.9 96.8 96.7
Quasars 95.1 92.2 98.1 98.6

Stars 90.0 88.5 96.9 98.1
TA 91.8 % 97.3%

Notes. TA = total accuracy; c = completeness, and p = purity, all cal-
culated as a weighted arithmetic mean for all five W1 bins.

4.1. Usefulness of the W3 passband for the classification

We tested two classifiers for the separation between galaxies,
quasars, and stars: one with five and the other with six parame-
ters. These were W1 magnitude, W1−W2 colour, R−W1 colour,
B − R colour, and the w1mag13 differential aperture magnitude
for the W1 channel. The sixth parameter in the tests was the
W3 magnitude, which is often used in WISE-based source classi-
fications (e.g. Kovács & Szapudi 2015; Ferraro et al. 2015), fol-
lowing the considerations of Wright et al. (2010), for example,
that different types of sources occupy different regions of the
W1 −W2 vs. W2 −W3 colour plane. However, as Fig. 1 shows,
this idealized picture becomes more complicated for actual ob-
servations, and we decided to test how much the W3 passband
from WISE improves the automatic classification. We note that
to avoid biases for overestimated fluxes, a recalibration of the
W3 upper limits was necessary, as discussed in Sect. 2.1 and de-
tailed in Appendix A; this did not prevent very low S/N W3 mea-
surements (which dominate the sample) from introducing possi-
ble confusion, however.

The results for the two classifiers are summarized in Table 1.
The accuracy, completeness, and purity for both cases are very
high. The contamination levels rarely exceed 10% and 5% for the
5D and 6D classifier, respectively. The 6D classifier clearly pro-
vides better results in all the calculated metrics, which shows that
the availability of the W3 band allows for (possibly considerable)
improvement in the classification. However, the low detection
rate in this band (only 30% of our sources have w3snr > 2) and
the large variations in sensitivity on the sky6 mean that using this
band might introduce biases into the final catalogue. Based on
these considerations, together with the fact that each new classi-
fication parameter extends computation time, we decided not to
use the W3 passband for the final classification.

4.2. General performance of the classifier

To quantify the general performance of the set of five clas-
sifiers tuned for different W1 magnitude bins, we analysed
the final results (merged output catalogues from different
W1 bins) of the self-check and the test sample. As the test
sample we randomly chose 5000 galaxies from the same
WISE × SCOS × SDSScatalogue, independent of the training
sample. The total accuracy, calculated over the galaxy test sam-
ple, was equal to 92.5%. It was not possible to perform the
same analysis for stars and quasars because for the brightest and
faintest bins, all of them were used to build the training sample.

6 See e.g. http://wise2.ipac.caltech.edu/docs/release/
allsky/expsup/sec6_2.html
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(a) Self-check (b) Test sample

Fig. 4. Accuracy of the 5D classifier as a function of the limiting W1 magnitude for the three types of classified sources, for the self-check (left
panel) and the test sample (right panel). Blue diamonds correspond to galaxies, green squares to quasars, and red circles to stars. The points were
shifted horizontally for clarity.

(a) completeness (b) purity

Fig. 5. Completeness and purity for galaxies, stars, and quasars as a function of the W1 magnitude for the 5D classifier. These results refer to the
self-check.

4.2.1. Dependence on the W1 magnitude

After determining the total accuracy of the 5D classifier, we in-
vestigated its performance in more detail, starting with the de-
pendence on the W1 magnitude for the three classes. The results
are illustrated in Fig. 4 for the self-check (left panel) and test
samples (right panel, only for galaxies). In general the accura-
cies retain very high levels of about 90%, but there is significant
deterioration in classification quality for faint galaxies and stars.
This is related to the fact that beyond W1 & 15.5 the training
set contains very few galaxies and stars. The misclassification of
galaxies occurs mainly for objects with W1 > 15 mag, and in
most cases, true galaxies are misclassified as stars. The accuracy
for galaxies calculated for the test sample has the same depen-
dence on W1 magnitude as the one derived from the self-check.

As we show in Fig. 5a, the completeness of the galaxy
sample also decreases with increased W1. For galaxies in the
15 ≤ W1 < 17 mag bin, the completeness equals ∼87%. This
deterioration was expected, as there are far fewer training objects

in the galaxy and star samples for the faintest W1 bin than in the
quasar sample.

We also checked the purity as a function of W1 for the
sources classified with the 5D classifier. As Fig. 5b shows, it is
at similar levels as the completeness, although its dependence on
W1 is somewhat different. In particular, for all the three classes,
there is a significant decrease in purity at the faint end. Still, as
far as galaxies are concerned (of main interest for the present
analysis), it stays at a reasonable level of p > 80% in all the
bins.

Based on the findings of this section, we conclude that the
5D classifier is stable and can be safely used for the final classi-
fication. In principle, using the self-check and test results, we
could estimate the main statistics of the final WISE × SCOS
galaxy catalogue. The caveat is, however, that the SDSS training
sample may not be representative enough for the WISE × SCOS
dataset, which can lead to biases in such assessments of the final
sample quality.
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Fig. 6. Accuracy of the 5D classifier as a function of Galactic latitude
for the three source classes.

In the final catalogue we will keep all the sources prese-
lected as in Sect. 2, but owing to the above considerations, it
might be preferable for more sophisticated analyses to remove
the faintest sources to avoid possible misclassification. Never-
theless, we stress that the classification accuracy for the fainter
part of our galaxy sample is still satisfying as it reaches very high
levels even for the faintest sources (87% for 15 < W1 < 16 mag
bin, and ∼90% for galaxies with W1 > 16 mag for the self-check
of the 5D classifier, and more than 85% for the galaxy test sam-
ple with W1 > 15 mag).

4.2.2. Dependence on Galactic latitude

We also checked how the accuracy of the five classifiers depends
on Galactic latitude, b. We divided the training sample into six
15◦-wide bins in |b|, and calculated the accuracy for each of the
bins. The results are shown in Fig. 6. For the lowest latitude bin
of |b| < 15◦, the training sample contains practically no galaxies
nor quasars, it was therefore not used in this test. This also means
that to avoid extrapolation, this area may need to be discarded
from the eventual galaxy catalogue.

5. Results: final galaxy catalogue

After thoroughly verifying the performance of the SVM algo-
rithm on the test data, we applied it to the full WISE × SCOS
sample described in Sect. 2. To prepare the final galaxy cata-
logue based on our automatic classification, we used additional
information provided by SVM, namely the probabilities that the
sources belong to particular classes. We also checked the cata-
logue for outliers in magnitude and colour space, and finally we
compared it with the catalogue presented in B16, where simple
colour cuts were employed to remove stars and quasars.

Although the SVM classifier assigns the final distinction
based on discrete classes, it also provides additional informa-
tion on object distance from different boundaries, which can be
used as a probability for a given source to belong to a particular
class. The probability calculated in SVM is given by the formula
from Platt (1999), and this a posteriori probability function was
implemented in the SVM kernel by Lin et al. (2007). For classi-
fication into more than two source types, the single class prob-
abilities are combined together to estimate final probabilities
by the pairwise coupling method (for detailed information see
Wu et al. 2003). As our aim is to obtain a pure galaxy sample
(with a strong decision value), we decided to take advantage of
the full probability distributions to eliminate sources of unclear

classification (located between different classes), instead of us-
ing discrete classes alone. Initially, the galaxy candidate cata-
logue output by SVM (i.e. such that pgal > pstar and pgal > pQSO)
included over 16.8 million sources. As in Kurcz et al. (2016),
here we also checked whether cuts on source type probabilities
might lead to an improvement in quality of the catalogue. Unlike
in that analysis, however, in the case of WISE × SCOS galax-
ies even a cut of pgal > 0.5 (as well as more aggressive cuts)
did not lead to an increase in the purity of the sample, while it
lowered its completeness. For the subsequent analysis we there-
fore kept all the sources flagged as galaxies by SVM. We note
that the derived SVM probability values are made available in
the WISE × SCOS database. This will allow users to apply their
own cuts to purify the sample (at the expense of completeness),
for instance by setting maximum thresholds on pstar and pQSO,
or cutting more aggressively on pgal.

The resulting catalogue was examined further for possi-
ble outliers in magnitude and colour space. Here we used
the WISE × SCOS × SDSS data as the calibration to determine
cases of extreme extrapolation from the training data. We found
a very small number (only ∼1500) of sources that had colours
very different from those in the calibration sample. Most of
them are located near the Galactic Plane or by the Magellanic
Clouds, where WISE × SCOS photometry is problematic be-
cause of blending. These areas need to be masked out with a
mask such as the one derived in B16. Applying that mask to the
current catalogue, we were left with 15 million sources that are
shown in Fig. 7.

5.1. Comparison with Bilicki et al. (2016)

It is interesting to compare the WISE × SCOS galaxy catalogue
derived in this paper with the dataset presented in B16. The par-
ent sample used in that work was the same as ours, but galax-
ies were separated from stars and quasars through colour cuts.
In particular, the star-galaxy separation was made through a
position-dependent cut in the W1 −W2 colour to accommodate
variations in the stellar locus with the position in the Galaxy. At
high Galactic latitudes the cut was W1 − W2 > 0, while it was
gradually increased at lower latitudes to reach W1 −W2 > 0.12
by the Galactic Plane and Bulge; see Sect. 4.2 and the appendix
of B16 for details. To this, three cuts were added to mitigate
stellar contamination and blending: (i) removal of the bright end
of the sample (W1 < 13.8), which is dominated by stars on the
one hand and is already sampled extragalactically by the 2MASS
Photometric Redshift catalogue (2MPZ, Bilicki et al. 2014) on
the other; (ii) a cutout of the Galactic Bulge reaching up to |b| =
17◦ at ` = 0◦; and (iii) manual cutouts of the Magellanic Clouds
and M 31. Finally, quasars and blends thereof were removed by
B16 with colour cuts in the (W1−W2)− (R−W2) plane: anything
with R − W2 > 7.6 − 4(W1 − W2) or W1 − W2 > 0.9 was dis-
carded. These cuts resulted in a dataset of 21.5 million sources;
however, the sample still presented some spurious over- and un-
derdensities in some areas, and an iterative procedure was per-
formed to design the final mask. After the masking, the eventual
WISE × SCOS galaxy catalogue of B16 included 18.7 million
sources over 68% of the sky.

A cross-match of the SVM galaxy dataset with the dataset
presented by B16 gives over 14.8 million common sources,
which means that there are almost 2 million objects identified
by SVM as galaxies that had been removed from the B16 sam-
ple. However, for this comparison to be meaningful, we should
also remove the W1 < 13.8 sources from the SVM catalogue,
as well as those in the Bulge area, in the same way as in B16.
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Fig. 7. Aitoff projection of sources identified by SVM as galaxy candidates in the WISE × SCOS catalogue after masking (see text for details).
This plot shows 15 million objects in Galactic coordinates (with ` = 0◦, b = 0◦ at the centre).

These two cuts reduce the sample generated by SVM but not by
the colour cuts to 1.3 million, which is roughly 8% of the origi-
nal SVM galaxy dataset. These objects are mostly concentrated
at low Galactic latitudes (|b| < 30◦) and around the Magellanic
Clouds, that is to say, in areas where the stellar blending that
affects both parent catalogues has a negative impact on the pho-
tometry of extracted sources. Practically all of these objects have
W1−W2 < 0.12, as expected (the upper limit of the B16 adaptive
cut), and 1 million of them are outside the B16 mask. In general,
the colours of the sources that are identified by SVM as galaxies
but are absent from the B16 catalogue are consistent with those
of SDSS stars or quasars.

Interestingly, practically no sources identified by B16 as
quasars are present in the SVM galaxy catalogue: 1300 objects
that meet the QSO colour criteria mentioned above are found
in the SVM dataset. As those colour cuts were calibrated on a
comparison of SDSS QSOs and GAMA galaxies (Liske et al.
2015), we conclude that our present catalogue is practically free
of quasar contamination. This is consistent with the results from
the tests presented in Sect. 4.2.

There are significantly more sources (5.6 million after mask-
ing) in the B16 galaxy catalogue that are absent from the SVM
catalogue than the other way round. They are generally dis-
tributed over the entire sky, although their surface density in-
creases towards the Galactic Plane. Their W1 − W2 colour dis-
tribution is bimodal, with one peak at W1 − W2 ∼ 0.1 and the
other at W1 −W2 ∼ 0.5. The former might indeed be stars that
survived the position-dependent cut of B16, but were correctly
classified by SVM. The latter are probably starburst or dusty
galaxies, which our SDSS-based training sample is less sensitive
to, hence they were partly misidentified by the classifier and
removed from the SVM dataset; they were (correctly) kept in
the B16 sample, however.

Finally, a comparison of source counts as a function of
Galactic latitude (Fig. 8) suggests that the SVM catalogue is
purer than the catalogue assembled by B16, as the rise in the
number counts with decreasing absolute latitude occurs at lower
|b| in the former than in the latter. However, as B16 estimated
that their catalogue was less than 90% complete at |b| > 30◦

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
|sin(b)|

200

300

400

500

600

700

800

co
un

ts
 p

er
 s

qu
ar

e 
de

gr
ee

SVM galaxies
B'16 galaxies
SVM x B'16

Fig. 8. Number counts as a function of the sine of Galactic latitude for
three samples of WISE × SuperCOSMOS galaxies: selected with colour
cuts by (Bilicki et al. 2016; red dotted), identified by SVM (present
work; blue solid), and common to both datasets (green dashed).

(|sin b| > 0.5), and the absolute counts of the present dataset are
lower than those of the B16 sample even in the Galactic caps, we
conclude that the higher purity of the SVM catalogue comes at
the price of lower completeness.

6. Summary

The WISE × SCOS galaxy sample is currently the largest in
terms of its size and sky coverage at z ∼ 0.2, giving access
to angular scales not accessible with samples such as SDSS.
At the same time, it is much deeper than other all-sky datasets
that are available from IRAS or 2MASS. Here we presented
an approach to identify galaxies in the WISE × SCOS photo-
metric data that is an alternative to the colour cuts applied in
Bilicki et al. (2016). By using the support vector machines al-
gorithm, trained and tested on a cross-match of spectroscopic
SDSS data with WISE × SCOS, we identified about 15 million
galaxy candidates over 70% of sky. This number is smaller than
18.5 million obtained by B16, mostly because our sample is of
higher purity but lower completeness than the colour-selected
sample. The resulting source probabilities assigned by SVM are
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provided in the photometric redshift WISE × SCOS dataset re-
leased together with the publication of B167.

We focused on galaxies because we used only extended (re-
solved) sources from SuperCOSMOS. Still, this work might be
continued to obtain a more general identification of stars, galax-
ies, and quasars in the full WISE × SCOS sample. This would re-
quire SCOS point-source photometry to be calibrated all-sky in a
similar way as the aperture-based measurements (Peacock et al.
2016), however, which currently is not the case.

Successful machine-learning galaxy identification in
WISE × SCOS shows that a similar approach will be worth-
while for other samples based on WISE, cross-matched
with forthcoming wide-angle datasets such as Pan-STARRS,
SkyMapper, or VHS. For WISE itself, first efforts of all-sky
star, galaxy, and QSO separation in that catalogue have been
reported in Kurcz et al. (2016).
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Appendix A: Calibration of W3 and W4 upper limits

The AllWISE Source Catalogue lists only the sources that
were detected with S/N ≥ 5 in at least one of the four survey
bands. On the other hand, whenever there was a 5σ detection
in any of the bands, all the other bands were also measured at
the given position, which means that each of the catalogued
sources has magnitudes listed for all the bands (except for
some very rare cases of processing or instrumental artefacts).
Because of the much higher sensitivities in the W1 and W2
bands than in the two other channels, the AllWISE catalogue
is mostly W1 selected. In the W3 channel (12 µm), most of
the w1snr ≥ 5 sources will have w3snr < 2. Such objects are
provided in the database as upper limits (or non-detections if
w3snr < 0) and their fluxes are systematically overestimated. To
be able to use such measurements in the classification procedure,
we have designed an empirical correction for W3 upper limits
and non-detections. Analysing the dependence of the mean W3
magnitude value on the W3 S/N estimate from the database, we
have found that there is a roughly constant shift in w3mpro at
the w3snr = 2 threshold, amounting to ∼0.75 mag, which can
therefore be removed by artificially dimming the low-w3snr
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Fig. A.1. Illustration of the calibration procedure of W3 upper limits and non-detections: values from the database (left panel) and after our
empirical offset by +0.75 mag for the w3snr < 2 sources (right panel).
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Fig. A.2. Illustration of the calibration procedure of W4 upper limits and non-detections: values from the database (left panel) and after our
empirical offset by +0.75 mag for the w4snr < 2 sources (right panel).

sources. Figure A.1 illustrate this calibration procedure for a
random sample of WISE sources: the left panel shows quan-
tities taken directly from the database, while the right panel
presents our “w3cal” magnitude on the y-axis, obtained by
adding 0.75 mag to the database w3mpro value. Obviously, at
w3snr < 0, the values are pure noise. A similar procedure can
be applied to the W4 (∼23 µm) band, where the relevant offset
for w4snr < 2 sources was found to be the same as in W3. This
is illustrated in Fig. A.2. In this case, most of the sources remain
undetected at all (w4snr < 0); for this reason, we did not use
this band in our work.

We note that a more appropriate way of estimating mag-
nitudes for the W3 and W4 upper limits and non-detections
would be to use information from another band(s) in which a
given source is detected with S/N > 5 (for instance from the
SuperCOSMOS bands). This is the idea behind the aperture-
matched photometry, employed by GAMA (Wright et al. 2016)
and the forced-photometry technique applied to 400 million
WISE sources selected from the SDSS (Lang et al. 2016). This
method, albeit certainly of great interest, is beyond the scope of
the present work, however.
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