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For systems with infinite-order phase transitions, in which an order parameter smoothly becomes
nonzero, a new observable for finite-size scaling analysis is suggested. By construction this new
observable has the favourable property of diverging at the critical point. Focussing on the example
of the F -model we compare the analysis of this observable with that of another observable, which
is also derived from the order parameter but does not diverge, as well as that of the associated
susceptibility. We discuss the difficulties that arise in the finite-size scaling analysis of such systems.
In particular we show that one may reach incorrect conclusions from large-system size extrapolations
of observables that are not known to diverge at the critical point. Our work suggests that one
should base finite-size scaling analyses for infinite-order phase transitions only on observables that
are guaranteed to diverge.

I. INTRODUCTION

The study of phase transitions is a central topic in phys-
ics. In statistical physics these drastic changes in the
physical properties of a system show up in non-analytic
behaviour of quantities such as the free energy f per
volume. For finite-order phase transitions (FOPTs) this
takes the form of non-smoothness, where some derivat-
ive of f makes a jump at the critical temperature. Such
discontinuous functions provide suitable observables for
numerical investigation into universal as well as model-
specific properties of the phase transition. In this setting
finite-size scaling (FSS) is a powerful tool to quantitat-
ively extrapolate the power-law behaviour of observables
near criticality [1, 2].

For infinite-order phase transitions (IOPTs) the situ-
ation is more subtle since the transition is not as ab-
rupt as for FOPTs. In the prototypical example, the
XY -model, the critical—or perhaps more appropriately
‘transition’—temperature marks the point at which free
vortices start to dominate the physics, even though
the susceptibility, which characterizes the single-vortex
fluctuations, has a peak away from this temperature
[3]. From a more mathematical perspective the non-
analyticity marking IOPTs is rather weak: the free en-
ergy depends smoothly on the temperature, where f and
all its derivatives are continuous, but it has an essential
singularity at the critical temperature. (Recall that, un-
like in the complex case, there are smooth functions that
are not real-analytic; a standard example is the func-
tion given by exp(−1/x) for x > 0 and zero elsewhere.)
In addition IOPTs often exhibit logarithmic finite-size
corrections [4–6]; although this does not make FSS im-
possible [7] it has been shown to give rise to difficulties [8],
and rather large systems must be investigated to accur-
ately analyse the scaling. Accordingly, various other nu-
merical methods for studying IOPTs have also been de-
veloped [9–11].

In such a more delicate setting one has to take care

to select appropriate observables for numerical analysis
using FSS. Order parameters do not directly allow one to
locate the critical point for IOPTs since the numerical de-
termination of the point at which a function smoothly be-
comes nonzero is a futile task. For this reason observables
that diverge at the critical point, e.g. susceptibilities
for second-order phase transitions, are more suitable for
studying a model’s behaviour near criticality [8, 12, 13].
One should also keep in mind that for IOPTs there are
also observables, such as the specific heat, that do not
diverge for increasing system size; they peak away from
the critical temperature and do not tend to a Dirac delta
function in the thermodynamic limit of infinite system
size [5]. In this work we propose a new observable that,
by construction, peaks at the critical temperature in the
thermodynamic limit for any model with an IOPT that
is characterized by a smooth order parameter.

Specifically we consider the F -model, which is an in-
teresting test case since it was solved analytically on a
square lattice with periodic boundaries in the thermo-
dynamic limit [14, 15]. At the same time it is related
to the XY -model via a series of dualities involving the
discrete Gaussian solid-on-solid model and the Coulomb
gas [14, 16–18]. Our new observable is essentially the
logarithmic derivative of the spontaneous staggered po-
larization P0, for which an asymptotic analytical expres-
sion is known for all temperatures [19]. We use a FSS
analysis to compare the new observable with the ordin-
ary derivative of P0 and the susceptibility associated with
P0. These observables behave quite differently: the log-
arithmic derivative nicely diverges at the critical point in
the thermodynamic limit, the ordinary derivative has a
bounded peak elsewhere for all system sizes, and for the
susceptibility—which is commonly used to analyse crit-
ical behaviour—the scaling near criticality in the thermo-
dynamic limit has been conjectured [20]. In our estimates
of characteristics such as the critical temperature, how-
ever, identical analyses of these observables lead to sim-
ilar asymptotic results. This once more illustrates that
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one should be careful in numerical analyses of IOPTs.
In particular, our work thus suggests that one should
base FSS analyses for IOPTs only on observables that
are guaranteed to diverge.

This paper is organised as follows. In Section II we
recall the basics of the F -model and discuss the relev-
ant observables and their known asymptotic expression.
The Monte Carlo cluster algorithm and data processing
are treated in Section III. The analysis of the three ob-
servables is performed in Section IV, and the results are
discussed in Section V. We end with a conclusion in Sec-
tion VI.

II. THE F-MODEL AND OBSERVABLES

The six-vertex model, or ice-type model, is a lattice
model for which each vertex is connected to four oth-
ers by edges carrying an arrow pointing in or out of
the vertex, such that precisely two arrows point towards
each vertex. Thus there are six allowed configurations
around each vertex as shown in Figure 1. To each such
vertex configuration i one assigns a (local) Boltzmann
weight exp(−β ǫi), where β := 1/(kBT ) is the inverse
temperature and ǫi the energy of that configuration. The
(global) Boltzmann weight of the entire configuration is
the product of the local weights of all vertex configura-
tions. The F -model [21] is given by the particular choice
ǫ1 = ǫ2 = ǫ3 = ǫ4 = ǫ > 0 and ǫ5 = ǫ6 = 0. This is the
prototype of the antiferroelectric regime of the six-vertex
model, where vertex configurations 5 and 6 are energet-
ically favourable. At sufficiently low temperatures the
system orders in an antiferroelectric fashion, with ver-
tices 5 and 6 alternating in a checkerboard-like fashion.
From now on we consider the F -model on a square L×L
lattice with periodic boundary conditions in both direc-
tions, and set kB = ǫ = 1.

ǫ1 = ǫ ǫ3 = ǫ ǫ5 = 0

ǫ2 = ǫ ǫ4 = ǫ ǫ6 = 0

Figure 1. The six allowed vertices with associated energies
for the F -model, where ǫ > 0.

The free energy (per site) in the thermodynamic limit
was found analytically for the F -model by Lieb [14, 15]
using a Bethe-ansatz analysis. There is an IOPT with

critical (or ‘transition’) temperature βc = ln 2, or ∆c =
−1 where ∆ := 1 − exp(2β)/2. In the low-temperature
regime the free energy can be expressed as a convergent
series,

β fana(λ) = β − λ −
∞

∑

n=1

exp(−nλ) sinh(nλ)

n cosh(nλ)
(1)

where λ := arccosh(−∆) > 0 parametrizes β > βc, while
at high temperatures one has an integral representation

β fana(µ) = β − (2)

1

4µ

∫

∞

0

dt

cosh(πt/2µ)
ln

(

cosh(t) − cos(2µ)

cosh(t) − 1

)

for µ := arccos(−∆), 0 < µ < π/2, parametrizing β < βc.
The entire high-temperature region can be regarded as
critical in the sense that correlations decay as inverse
power laws rather than exponentially [4].

Although the six-vertex model has not been solved
in the presence of an external staggered electric field,
Baxter [19] found an exact expression for the spontan-
eous staggered polarization P0 per site. To each micro-
state C one can associate an ‘instantaneous’ spontaneous
staggered polarization P0(C), which can be computed as
the ‘staggered’ sum of the net polarizations at the ver-
tices, where the direction of the net polarization is flipped
at every other site (in a checkerboard-like way). Then the
thermal average P0 := 〈P0(C)〉 is an order parameter for
the F -model, vanishing for β < βc and becoming nonzero
at the critical temperature. When β > βc it is given by

P ana
0 (λ)1/2 =

√

2π

λ

∞
∑

n=1

exp

(

− (n − 1/2)2π2

2λ

)

. (3)

Like the free energy this function is smooth with an es-
sential singularity at β = βc, which is very weak: the
functions and all their derivatives do tend to zero as β
approaches βc from above. When the F -model is reinter-
preted as a height model (the body-centred solid-on-solid
model) the IOPT is a roughening transition [16].

The observables on which we will focus are the derivat-
ives β2 ∂β ln P0 and β2 ∂βP0, where ∂β := ∂/∂β, together
with the susceptibility χ := β [〈P0(C)2〉−〈P0(C)〉2] of the
staggered polarization, which is called the spontaneous
staggered polarizability. Baxter [20] conjectured the fol-
lowing form of the susceptibility in the low-temperature
regime

χ(λ) ∼ λ−2 exp(π2/2λ) . (4)

The preceding discussion ensures that β2 ∂β ln P0 di-
verges at the critical temperature whereas β2 ∂βP0 has
a (finite) peak at some βmax > βc. To the best of our
knowledge neither β2 ∂β ln P0 nor β2 ∂βP0 have been con-
sidered before in the literature. The latter is included to
demonstrate one has to be careful in FSS for IOPT: we
show that it is hard to extrapolate numerical data to
the thermodynamic limit, even when the exact limiting
expressions are known.
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III. SIMULATIONS

Our Monte Carlo simulations are based on a cluster al-
gorithm that uses the (one-to-three) mapping from the
six-vertex model to a three-colouring of the square lat-
tice [14, Note added in proof]. Choose three colours,
ordered in some way, and use one of them to colour any
single plaquette (face) of the lattice. Then any config-
uration of the six-vertex model uniquely determines a
three-colouring, where the direction of the arrow on an
edge dictates whether the colour increases or decreases
(modulo three), and the ice rule ensures that the colour-
ing is well defined. For the F -model vertices surrounded
by all three colours (configurations 1 to 4 in Figure 1) are
energetically less favourable than those at which only two
colours meet (configurations 5 and 6).

The multi-cluster algorithm builds clusters containing
adjacent faces of two colours, and patches these clusters
together diagonally with a probability that is such that
required detailed balance is met. After no more clusters
can be included the colours in the clusters are swapped
and one cluster update has been performed [2]. Because
of the small autocorrelation times at the temperatures
near the phase transition, we take measurements after
10 of these cluster updates for system sizes L < 128, and
after each cluster update for larger systems. At least 106

measurements are made per temperature per system, at
minimally 15 different temperatures. For the largest sys-
tem that we consider, with L = 512, we simulate at 29
different temperatures with slightly over 8 × 106 meas-
urements performed per temperature.

From expressions (1)–(2) for the free energy we can
estimate the mean and variance in energy measurements
for finite systems at a given temperature. Moreover the
specific heat Cv = β2∂2

β(βf) is bounded and, in leading
order, does not scale with L. Together these ensure that
the parallel-tempering and multi-histogram methods can
be applied successfully.

Parallel tempering is a simulation method in which
systems are simulated at various temperatures and peri-
odically swapped [22]. Here the probability of swapping
two configurations at different temperatures is given by
Pswap = min[1, exp(δβ δE)], where δβ := βhigh − βlow and
δE := Ehigh − Elow are the difference in inverse tem-
perature and energy between the two configurations, re-
spectively. To make sure that Pswap is large enough for
configurations to move reasonably fast through this tem-
perature landscape we want the histograms of the en-
ergies at different temperatures to overlap significantly.
Starting from some temperature for which we know the
average energy U := 〈E(C)〉 and the standard deviation
σU from the analytical expression of the free energy, a
neighbouring temperature is chosen such that the differ-
ence in energies is roughly σU , viz. β′ = β ± β/

√
Cv.

After each measurement we may swap the configuration
with one at such a neighbouring temperature, with ac-
ceptance probability Pswap between 47% and 53% for all
simulations at large system sizes.

At each measurement we record the energy E(C) and
instantaneous spontaneous staggered polarization P0(C)
for various temperatures. Using the multi-histogram
method any function of the values E(C) and P0(C) can
then be reliably estimated as a function of temperat-
ure [23]. For this method to work the energy histograms
must have significant overlap; we have ensured that this
is indeed the case for our data. Figure 2 shows the res-
ult for β2 ∂β ln P0, β2 ∂βP0 and χ, together with their
known and conjectured analytical form. Note that the
data in the low-temperature regime are in agreement with
the analytical forms of β2 ∂β ln P0 and β2 ∂βP0. For χ
the data collapse in this regime and support the conjec-
ture (4).

IV. ANALYSIS

The usual finite-size scaling procedure is to take the data,
see Fig. 2, and collapse the graphs by scaling the distance
to the critical temperature and the height as functions
of the system size L. For the F -model there are large
logarithmic corrections due to ‘quasi’ long-range correla-
tions [3] as well as higher-order finite-size corrections [13].
The systems size at which the finite-size corrections be-
come negligible do not yet seem to be within reach, so we
cannot perform a data collapse based purely on analytical
expressions.

Instead we will perform a numerical data collapse. For
each of the three observables that we are interested in
we determine the coordinates (βmax, hmax) of the max-
imum, together with the peak width w. Here we define
the width by demanding that the function passes through
the point (βmax + w, 0.95 hmax). This definition is chosen
such that w can be accurately measured for large sys-
tems given the simulation data; we focus on lower tem-
peratures (higher β) because of the asymmetry of the
observables around the critical temperature. Thus we
have three characteristics, which are well defined since
any observable is smooth and bounded for finite sys-
tems. This allows for a numerical data collapse by shift-
ing (βmax, hmax) and (βmax +w, 0.95 hmax) on top of each
other. The result for our three observables is shown in
Fig. 3. Sufficiently close to the critical point β2 ∂β ln P0

and χ scale well, which is a positive sign for scalability to
the thermodynamic limit. Note that β2 ∂βP0, for which
we know the (bounded) asymptotic solution, does not ex-
hibit scalability for the system sizes that we investigate.
We extrapolate the characteristics (βmax, hmax) and w,
extracted from the data for various system sizes, to the
thermodynamic limit.

A. Peak position βmax

The analytic expression in Eq. (3) reveals that
β2 ∂β ln P0 must develop a Dirac delta-like peak at βc ≈
0.6931 as L → ∞. Instead, the peak of β2 ∂βP0 re-
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Figure 2. The observables β2 ∂β ln P0 (upper panel), β2 ∂βP0

(central panel), and χ (lower panel) versus β for system sizes
up to L = 512. The data points show the temperatures at
which the simulations were run, while the solid lines are the
functions extracted from this data using the multi-histogram
method. When available the analytical form for infinite sys-
tems, cf. Eq. (3), is shown by a dashed black line. For suffi-
ciently low temperatures all graphs collapse onto these dashed
black lines, corroborating the validity of our simulations. For
L → ∞ we know that β2 ∂β ln P0 must diverge at the critical
temperature βc = ln 2, indicated by a vertical line, whereas
β2 ∂βP0 is bounded and peaks elsewhere. A fit to the conjec-
tured form of χ, Eq. (4), is indicated by a dotted black line
in the lower panel.

mains finite and shifts to βana
max ≈ 0.7394. The large-L

behaviour of the spontaneous staggered polarizability χ
is not analytically known. The form of the leading finite-
size corrections can be obtained by expanding the inverse
temperature in L as [13]

βmax(L) = βc +
Aβ

ln2 L
+

Bβ

ln3 L
+

Cβ

ln4 L
. (5)

Figure 4 displays our results for βmax as a function of L
as obtained from our three observables, together with the
analytic asymptotic values, and the best fits to Eq. (5).
These fits yield βfit

max = 0.6914(28) for β2 ∂β ln P0, βfit
max =

Figure 3. The three observables scaled such that for each
system size (βmax, hmax) 7→ (0, 1) and w 7→ 1. This scaling
works well in the low-temperature regime for β2 ∂β ln P0 (up-
per panel) and χ (lower panel). For β2 ∂βP0 (central panel) it
seems to fail, cf. the deviation from the asymptotic analytical
result indicated by a dashed black line.

0.6955(17) for β2 ∂βP0, and βfit
max = 0.6937(11) for χ.

B. Peak height hmax

Since we know from the asymptotic formula for P0

that β2 ∂β ln P0 diverges as L → ∞ let us consider in-
verse heights. The inverse peak height of β2 ∂βP0 tends
to (hana

max)−1 ≈ 0.3009. If a naive linear fit is applied
to h−1 as a function of ln−2 L the extrapolation yields
(hfit

max)−1 ≈ −0.0095(16) for β2 ∂β ln P0 and (hfit
max)−1 ≈

0.2161(17) for β2 ∂βP0. Adding finite-size corrections to
the conjectured form of χ in Eq. (4) gives [13]

hmax(L) = Aχ L ln2 L

(

Bχ

ln L
+

Cχ

ln2 L
+

Dχ

ln3 L

)

(6)

for the maximum of the susceptibility. The peak heights
of the three observables and corresponding best fits are
shown as function of system size in Fig. 5.
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Figure 4. The inverse temperatures at which β2 ∂β ln P0 (blue
circles), β2 ∂βP0 (green squares), and χ (yellow diamonds) are
maximal, here shown as functions of the system size. The
asymptotic solutions, βc = ln 2 for β2 ∂β ln P0 and βana

max ≈

0.7394 for β2 ∂βP0, are shown at ln−2 L = 0. Best fits of the
form Eq. (5) to the data are shown as solid lines, and all seem
to converge to βc.

Figure 5. The inverse maximal heights of β2 ∂β ln P0 (blue
circles), β2 ∂βP0 (green squares) and χ (yellow diamonds)
as functions of ln−2 L. The inset shows the peak height
of χ with differently scaled axes. The asymptotic values,
(hana

max)−1 = 0 for β2 ∂β ln P0 and (hana

max)−1
≈ 0.3009, are in-

cluded at ln−2 L = 0. Data indeed suggests that β2 ∂β ln P0

and χ diverge while β2 ∂βP0 stays finite. Best linear fits as
functions of ln−2 L are shown as solid blue and green lines for
β2 ∂β ln P0 and β2 ∂βP0, respectively, while the best fit for χ

as in Eq. (6) is displayed in yellow.

C. Peak width w

From the asymptotic expression we know that wana =
0 for β2 ∂β ln P0 and wana ≈ 0.0180 for β2 ∂βP0 in the
thermodynamic limit. Our data, together with these ana-
lytic values, are shown in Figure 6. Since the analytic
form of the scaling behaviour for w is lacking no best fit
is performed.

Figure 6. The width, defined as the distance between the
peak and the (lower-temperature) position at which the curve
reaches 95% of the maximal height, shown for β2 ∂β ln P0

(blue circles), β2 ∂βP0 (green squares), and χ (yellow dia-
monds) at various system sizes. The asymptotic values,
wana = 0 for β2 ∂β ln P0 and wana

≈ 0.0180 for β2 ∂βP0, are
indicated at ln−2 L = 0. Note that in the observed regime all
observables decrease monotonically with L, yet β2 ∂βP0 must
increase at some point to reach its asymptotic value.

β2 ∂β ln P0 β2 ∂βP0 χ

βmax

ana ln 2 ≈ 0.6931 0.7394 ln 2 (conj)
fit 0.6914(28) 0.6955(17) 0.6937(11)

h−1

max

ana 0 0.3009 0 (conj)
fit −0.0095(16) 0.2161(17) 0

w
ana 0 0.0180 0 (conj)
fit - - -

Table I. All analytically known and conjectured asymptotic
values of our characteristics, together with our numerically
extrapolated best values, are shown for our three observables.

V. COMPARISON OF OBSERVABLES

Using our results we can compare the performance of our
new observable for the F -model, β2 ∂β ln P0, with that of
β2 ∂βP0 and that of χ. Asymptotic analytical and numer-
ically extrapolated values for the three characteristics of
these observables are collected in Tab. I if available.

A. Logarithmic derivative of P0

Our claim is that for an IOPT the logarithmic deriv-
ative of the order parameter is a suitable observable for
numerical analysis: it must, by construction, tend to a
Dirac delta-like distribution at the critical point in the
thermodynamic limit. The extrapolated characteristics
βfit

c and hfit
max = −0.0095(16) for β2 ∂β ln P0 are in agree-

ment with this claim. Note that a linear fit for the in-
verse peak height as a function of ln−2 L yields a negat-
ive asymptotic result, albeit close to zero, which indicate
that there must be other leading finite-size corrections



6

that become important for system sizes outside the reach
of the simulations performed here.

B. Ordinary derivative of P0

It is instructive to compare our new observable with
a similar observable that, by construction, should not
be suitable for numerical analysis. Interestingly, when
the temperature at which β2 ∂βP0 peaks is extrapolated
in a similar fashion as for the logarithmic derivative the
results are comparable. By construction, however, we
know that βmax must go to a much higher value in the
thermodynamic limit; there must be an inflection point
outside the range of simulated system sizes. Similarly, a
linear extrapolation for the inverse peak height matches
with the data, yet is far from the known asymptotic ex-
pression. Concerning the peak width one notes that the
observed peaks for L ≥ 128 are less wide than the peak of
the asymptotic expression, cf. the central panel in Fig. 2;
thus w must start to increase at some larger system size,
even though it decreases monotonically in the simulated
regime.

C. Polarizability

Finally we turn to χ. Recall that this quantity is not
known analytically but there is a conjecture, Eq. (6), for
its scaling behaviour. The observed βmax for χ are very
close to those of β2 ∂β ln P0, cf. Fig. 4, and the extra-
polated value βfit

max = 0.6937(11) is in agreement with
βc = ln 2. Together with the steadily decreasing width
for growing system sizes the data suggests that χ also
tends to a Dirac delta-like distribution. Our data fits well
with the conjectured form if higher-order finite-size cor-
rections are taken into account, although it must be noted
that many alternative forms are also consistent with the
data for systems of sizes investigated here.

VI. CONCLUSION

In this work we looked at infinite-order phase transitions
(IOPTs), with the case of the F -model as a guiding ex-
ample. We have suggested a new observable that can
be used for finite-size scaling analyses. For any sys-
tem exhibiting an IOPT with a smooth order parameter
this observable is basically the logarithmic derivative
of the order parameter, which by construction diverges
in the thermodynamic limit. For the F -model this is
β2 ∂β ln P0, where P0 is the spontaneous staggered polar-
ization. Since the exact asymptotic form of P0 is known

in the thermodynamic limit the F -model is a good test
case to study the performance of our new observable in
a finite-size scaling analysis.

For comparison we also have analysed two other ob-
servables. The first is β2 ∂βP0, which we know to be
bounded with peak away from the critical point for all
system sizes. Although it must therefore behave quite
differently when L → ∞, its observed characteristics
turned out to be rather similar to that of β2 ∂β ln P0 at
the system sizes investigated. This illustrates that seem-
ingly reasonable yet incorrect conclusions, cf. the extra-
polation to the critical point in Fig. 4, may be reached
for an IOPT when no analytical expressions are avail-
able. The logarithmic corrections and large finite-size
corrections for the F -model require utmost caution in
finite-size analysis; in particular one has to take care
to select appropriate observables in order to make hard
claims by means of extrapolation to the thermodynamic
limit. Given the similarities in FSS of different observ-
ables our work thus suggests choosing an observable that
is guaranteed to diverge at the critical point. In this
way we ensure that the FSS analysis is formally correct,
although system sizes large enough to reveal all leading-
order corrections will likely be hard to reach.

The final observable that we have investigated is the
(spontaneous staggered) susceptibility χ = β [〈P0(C)2〉−
〈P0(C)〉2], which is widely used to analyse phase trans-
itions. The observed characteristics show striking simil-
arities with those of β2 ∂β ln P0 and suggests that χ also
diverges in the thermodynamic limit. The data are com-
patible with Baxter’s conjecture for χ’s scaling behaviour
near criticality.

Due to the ice rule the F -model is sensitive to the
choice of boundary conditions [24]. Certain choices for
fixed boundary conditions have already been subjected to
some numerical investigations [25, 26]. In the near future
we intend to analyse the influence of boundary conditions
using finite-size scaling. More generally it would be in-
teresting to test our observable for other models with an
IOPT such as the XY -model.
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