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Extended-spectrum-cephalosporin-resistant Enterobacteriaceae are a public health concern due to limited treatment options.
Here, we report on the occurrence and the molecular characteristics of extended-spectrum-cephalosporin-resistant Enterobacte-
riaceae recovered from wild birds (kelp gulls). Our results revealed kelp gulls as a reservoir of various extended-spectrum cepha-
losporinase genes associated with different genetic platforms. In addition, we report for the first time the presence of a known
epidemic clone of Salmonella enterica serotype Heidelberg (JF6X01.0326/XbaI.1966) among wild birds.

Extended-spectrum-cephalosporinase-producing Enterobacte-
riaceae have been reported worldwide among isolates obtained

from humans and from food-producing and companion animals,
as well as from environmental sources (1). In spite of the limited
number of studies regarding the occurrence of antibiotic resis-
tance in natural environments, where animals do not naturally
come into contact with antibiotics, the occurrence of extended-
spectrum-cephalosporin-resistant (ESCr) Enterobacteriaceae has
been detected lately in wild birds, especially in populations of gulls
(Laridae) (2–7). The kelp gull (Larus dominicanus) is a large gull
species distributed in coastal areas through much of the Southern
Hemisphere and is the only gull species inhabiting the Antarctic
continent. It is known to be a food generalist, regularly feeding on
food resulting from human activities (abattoirs, garbage, sewage
outfalls, etc.) (8). This behavior makes it an interesting sentinel
species for the study of the environmental spread of antibiotic-
resistant bacteria. Our aim was to determine the occurrence and
the molecular characteristics of ESCr Enterobacteriaceae isolates
recovered from kelp gulls, as this species could favor the dissemi-
nation of ESCr Enterobacteriaceae in human populations and in
the pristine Antarctic environment.

(Preliminary results from this study were presented as an oral
presentation at the 26th European Congress of Clinical Microbi-
ology and Infectious Diseases [ECCMID], 9 to 12 April 2016, Am-
sterdam, the Netherlands.)

During November 2012, fresh fecal specimens (n � 50) were
collected from a flock of approximately 500 kelp gulls on a sandy
beach where they were roosting in Ushuaia, in Argentina. All sam-
ples were enriched either in brain heart infusion broth (Becton-
Dickinson, Franklin Lakes, NJ, USA), supplemented with 16 mg/
liter vancomycin, or in buffered peptone water (SVA, Uppsala,
Sweden) for 18 to 24 h in 37°C and subsequently inoculated on
ChromID ESBL (bioMérieux, Solna, Sweden) for the selective
isolation of extended-spectrum-�-lactamase (ESBL)-produc-
ing Enterobacteriaceae or on modified semisolid Rappaport
Vassiliadis agar (SVA, Uppsala, Sweden) for the selective isolation
of Salmonella species, respectively. Presumptive extended-spec-
trum-cephalosporinase-producing isolates were identified using
matrix-assisted laser desorption ionization–time of flight

(MALDI-TOF) mass spectrometry (Brucker, Coventry, United
Kingdom), while Salmonella isolates were further serotyped by the
microtitration method. Antibiotic susceptibility of the isolates
was assessed by broth microdilution and interpreted according
the epidemiologic cutoff values recommended by the European
Committee on Antimicrobial Susceptibility Testing (http://mic
.eucast.org), whereas ESBL and/or AmpC production was evalu-
ated by a combined disc test, as previously described (9).

Genes conferring the ESCr phenotype were sought and their
genetic location on either the chromosome or a plasmid was de-
termined as previously described (9). Standard methods (PCR-
based replicon [rep] typing, plasmid multilocus sequence typing
[pMLST]/plasmid double-locus sequence typing [pDLST]/repli-
con sequence typing [RST], and S1 nuclease pulsed-field gel elec-
trophoresis [PFGE]) were applied for further plasmid analysis,
while the conjugal transferability of the extended-spectrum
cephalosporinase genes and the presence of known insertion se-
quences (ISs) upstream of them were examined (9). Genetic relat-
edness among Escherichia coli and Salmonella enterica serotype
Heidelberg isolates was assessed by MLST and XbaI-PFGE typing,
respectively, as previously described (9, 10).

Overall, we recovered 37 nonduplicate ESCr Enterobacteriaceae
isolates from 34 of the fecal samples included in the study. Among
them, 91.9% (n � 34) were identified as E. coli and 8.1% (n � 3) as
S. Heidelberg. The copresence of ESCr E. coli and S. Heidelberg
was documented in three fecal samples. The recovered isolates
exhibited non-wild-type MICs mainly for ciprofloxacin (n � 27;
73.0%), nalidixic acid (n � 25; 67.6%), tetracycline (n � 22;
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59.5%), sulfamethoxazole (n � 20; 54.0%), and chloramphenicol
(n � 15; 40.5%). All isolates were susceptible to meropenem and
tigecycline, whereas they exhibited non-wild-type MICs for the
remaining tested agents (ranging from 5.4% to 27.0%). All E. coli
isolates exhibited an ESBL phenotype and carried blaCTX-M-2 (n �
14; 41.2%), blaCTX-M-14 (n � 11; 32.3%), blaSHV-2 (n � 4; 11.8%),
blaSHV-2A (n � 4; 11.8%), and blaCTX-M-15 (n � 1; 2.9%) genes,
whereas all S. Heidelberg isolates exhibited an AmpC phenotype
and carried the blaCMY-2 gene.

The broad-host-range IncI1 (n � 21; 67.7%) and narrow-host-
range IncF (n � 7; 22.6%) plasmids were by far the most common
rep types accounted for the ESCr phenotype among the recovered
isolates. The blaCTX-M-2 gene was found mainly on the chromo-
some (n � 6; 42.9%) or on plasmids of different replicon types,
including IncF plasmids with fused FIB-FII replicons (n � 5;
35.7%), IncHI2 (n � 1; 7.1%), IncA/C (n � 1; 7.1%), and non-
typeable ones (n � 1; 7.14%). The blaCTX-M-14 and blaCTX-M-15

genes were identified exclusively on IncI1/sequence type 80
(ST80) and IncFIA-FIB plasmids, respectively. The blaSHV-2 gene
was associated with IncI1/ST12 and blaSHV-2A with IncI1/ST187
and IncFIA-FIB plasmids, whereas the blaCMY-2 gene was located
on IncI1/ST12 plasmids. Detailed results regarding the subtyping,
the size, and the transferability of the plasmids are summarized in
Table 1.

Three insertion sequence elements previously associated
with the mobilization and support of extended-spectrum cepha-
losporinase genes were identified. Briefly, in all isolates carrying
blaCTX-M-2, the gene was accompanied upstream by a copy of
ISCR1 in the same orientation as the resistance gene, regardless of
the plasmid replicon type or whether the gene was chromosomally
located (Table 1). Similarly, ISEcp1 was found upstream of the
blaCTX-M-15 and blaCMY-2 genes, while IS26 was found upstream of
the blaSHV-2 and blaSHV-2A genes. ISEcp1, ISCR1, or IS26 insertion
sequences were not found upstream of blaCTX-M-14 gene (Table 1).

High diversity of genotypes was observed among the E. coli
isolates, resulting in 17 different STs, each comprised of one to six
isolates. The most predominant genotypes were ST744 (n � 6;
17.6%), ST617 (n � 5; 14.7%), ST57 (n � 3; 8.8%), ST93 (n � 3;
8.8%), and ST4038 (n � 3; 8.8%), while isolates belonging to
ST10, ST69, ST88, ST101, ST117, ST212, ST359, ST1011, ST1193,
ST2485, STNew1, and STNew2 were also identified. All S. Heidel-
berg isolates belonged to epidemic clone JF6X01.0326/XbaI.1966
(PulseNet database). Different ESBL determinants were found
among isolates with the same genotype; conversely, different ge-
notypes carrying the same ESBL determinants were identified
(Table 1).

Several studies have documented the occurrence of ESCr En-
terobacteriaceae isolates among wild birds at prevalences ranging
from 0% to 37% (4, 11–15). However, our study revealed a higher
occurrence among kelp gulls in accordance with studies regarding
Brown-headed gulls and Franklin’s gulls (5). Although the resis-
tance gene families described in this study are similar to those
reported previously (2, 4, 5, 12, 14–19), we documented for the
first time the presence of blaSHV-2A and the predominance of
blaCTX-M-2 among wild birds. The latter mirrors the situation ob-
served for nosocomial infections in Argentinian hospitals (20, 21),
confirming the endemicity of blaCTX-M-2 within this area and its
potential transmission from humans to wild birds and/or vice
versa. Of note was the association of blaCTX-M-2 gene with ISCR1
on four different plasmid replicon types associated with six differ-

ent E. coli STs and on the chromosome of five other different E. coli
STs, underscoring that ISCR1 has probably played a significant
role in the capture of this gene by conjugative plasmids and in its
further interreplicon and interclone dissemination. Moreover,
our data suggest the horizontal transfer of a conjugative IncI1/
ST80 plasmid (105 kb) carrying blaCTX-M-14 among five different
E. coli STs, underscoring the dissemination of this gene owing to a
successful plasmid-gene combination.

Among the 17 different STs detected here, we identified sev-
eral, namely, ST10, ST69, ST101, ST117, ST167, ST617, and
ST744, that have been previously reported from ESCr E. coli iso-
lates of human and animal origin (1, 5, 12, 15). Interestingly, some
of the identified STs (ST10, ST117, ST157, ST359, ST617, and
ST744) have been previously reported among wild birds as well,
but they have been found to harbor different extended-spectrum
cephalosporinase genes, suggesting that avian commensal E. coli
strains play a role in the maintenance and dissemination of these
genes (1, 5, 12, 15). In contrast with the solely ESCr S. Heidelberg
isolate carrying blaCMY-2 on a 97-kb IncN plasmid reported previ-
ously from an Argentinian adult inpatient (22), here we docu-
mented for the first time the presence in wild birds of a known
epidemic ESCr S. Heidelberg clone (JF6X01.0326/XbaI.1966), car-
rying blaCMY-2 on a 110-kb IncI1/ST12 plasmid. This PFGE type,
circulating in the United States and recently introduced to Europe
(9), has been documented to cause outbreaks and exhibit potency
for bloodstream infections (23).

In conclusion, although there are few studies on the presence of
resistance genes conferring the ESCr phenotype among Enterobac-
teriaceae from wild birds, to our knowledge this is the first report
presenting a detailed characterization of ESCr Enterobacteriaceae,
including the underlying antibiotic resistance gene content and its
genetic support (plasmids and IS elements). Our data imply that
kelp gulls act as reservoirs of a variety of extended-spectrum
cephalosporinase genes associated with different genetic plat-
forms that could facilitate their horizontal transfer. In addition,
our findings underscore the potential role of kelp gulls as a bridge
species for transfer of ESCr Enterobacteriaceae between humans
and wildlife and as a spreader of these isolates among human
populations and naturally antibiotic-resistant-bacterium-free en-
vironments (Antarctic continent) via their movement and migra-
tion.
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