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Abstract Mathematical analysis of pharmacological models is becoming increasingly rel-
evant for drug development. Emphasis on mechanistic models has grown and qualitative
understanding of complex biological systems has improved a great deal. In this paper we
present two examples of basic modular processes which are involved in a wide range of
physiological systems. The first model concerns the interaction of a drug with its target, the
way the compounds bind and then elicit an effect. The secondmodel is central in signal trans-
duction across the cell wall. Both models demonstrate the complex and interesting dynamics
which is directly relevant for the impact of the drug.

Keywords Modular systems · Drug-disposition · TMDD · Signalling · RTK’s

1 Introduction

In recent years, mathematical ideas and methods gain increasing traction in the pharma-
cological community, as it becomes evident that they can contribute to an understanding
of complex physiological and biochemical processes as well as the analysis of complex
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data sets. With expanding knowledge about biological and physiological processes, thanks
to results obtained in System Biology, systems-based studies are being carried out in which
mathematical ideas about dynamical systems are used.Wemention themodelling of complex
regulatory networks such as studied by Fujioka et al. [11] and Sasagawa et al. [26].

Simultaneously, mathematical analysis is also contributing in translating insights about
complex systems studied in Systems Biology into tools which the practical pharmacologist
can use for making reliable predictions on the basis of limited data (cf. Benson et al. [5]).
These tools often involve smaller systems of typical modules that are found in complex
systems, or they may be models which focus on particular aspects of drug dynamics (cf.
Hartwell et al. [14] and Shankaran et al. [27]). Their study is often referred to as Systems
Pharmacology. For more detailed reviews we refer to Benson et al. [4] and [7].

In light of the increasing relevance of mathematical ideas and methods in the realm of
pharmacology the time seems ripe to coin the termMathematical Pharmacology for the field
of study that is aimed at using mathematical approaches to achieve a better understanding
of pharmacological processes. In this paper we present two examples of complex systems
designed to address fundamental questions in pharmacology. Both examples involve math-
ematical models describing rich and complex dynamics. Gaining an understanding of these
models: understanding the shape of their signature profiles, dissect the different processes
which make up the full system and quantitively determine the impact of the different rate
constants and concentrations of the compounds, not only serves increased pharmacological
understanding, but also makes for fascinating mathematical challenges.

Target-mediated drug disposition. In 1994 Levy [17] introduced the concept of target-
mediated drug disposition (TMDD) for the phenomenon of drug distribution through binding
to the pharmacological target in the context of pharmacokinetic–pharmacodynamic (PKPD)
behaviour. TMDD has featured prominently in the literature as a saturable clearance mecha-
nism for biologics, in particular peptides, proteins and monoclonal antibodies (mAbs). Over
the last few years a large body of literature has developed addressing the theoretical aspects
of TMDD, typically based on mathematical analysis and simulations.

Signal transduction across the cell wall. Receptor tyrosine kinases (RTK’s) are high-affinity
cell surface receptors for many polypeptide growth factors, cytokines, and hormones which
straddle the cell wall and possess a binding domain, which faces extra-cellular space and
a kinase domain, which faces the intra-cellular space. (cf. Haugh and Lauffenburger [16],
Robinson et al. [25]). It is important to know how one can influence (inhibit or stimulate)
cellular processes from outside the cell, i.e. from interstitial space, by binding a suitable
compound to the binding domain of RTK’s, and to determine quantitatively the impact of
such binding. This requires intimate knowledge of the dynamics of these proteins.

2 Target Mediated Drug Disposition (TMDD)

Target mediated drug disposition is the phenomenon in which a drug binds with high affin-
ity to its pharmacological target, such as a receptor, to such an extent that this affects its
pharmacokinetic characteristics (cf. Levy [17]).

The basic TMDDmodel introduced by Levy [17] (see also Sugiyama [28] and Mager and
Jusko [19]) is shown schematically in Fig. 1: drug or ligand (L) binds the target (R) to form
complex (RL). Drug and target are supplied and eliminated and complex is internalised. In
many practical situations, the drug is also present in a peripheral compartment from which
it may or may not be eliminated.
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Fig. 1 Schematic description of
the basic TMDD model

Mathematically, the TMDDmodel shown in Fig. 1 can be formulated as a system of three
nonlinear ordinary differential equations, one for each compound:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dL

dt
= −konL · R + koff RL − kelL

dR

dt
= ksyn − kdegR − konL · R + koff RL

dRL

dt
= konL · R − (koff + kint)RL

(2.1)

The symbols L , R and RL stand for the concentrations of ligand, target and ligand-target
complex, kon and koff denote the second-order on- and first-order off-rate of the ligand. Ligand
is eliminated according to a first order process involving the rate constant kel = Cl/Vc, where
Cl denotes the clearance of ligand from the central compartment, and Vc the volume of this
compartment. Ligand-target complex is internalised according to a first order process with
a rate constant kint. Finally, receptor synthesis and degeneration are, respectively, a zeroth
order process (ksyn) and a first order process (kdeg).

Plainly, the steady state of this system is given by

L = 0, R = R0
def= ksyn

kdeg
, RL = 0 (2.2)

In this paper we focus on the dynamics of the TMDD-system (2.1) after an initial drug dose
has been administered intravenously to the system in equilibrium, i.e., with R(0) = R0 and
RL(0) = 0. The resulting initial drug concentration is denoted by L0.

Remark 1 TheTMDDmodel (2.1) is closely related to the classicalMichaelis–Menten (MM)
model [22] in enzyme kinetics:

S + E
kon
�
koff

SE
kint−→ E + P (2.3)

Here S denotes the substrate, E the enzyme, SE the substrate-enzyme complex and P a
product. Formally, the TMDD model reduces to the MM model when we put ksyn = kintR
and kdeg = 0.

It has long been established that when the amount of substrate is much larger than the
total amount of enzyme (Etot = E + SE)—which is a conserved quantity—then to good
approximation

SE = Etot · S

Km + S
(The Langmuir equation [15]) (2.4)
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Fig. 2 Drug-time courses after four iv bolus dose administrations of D = 1.5, 5, 15 and 45 mg/kg and a
compartment volume of V = 0.05 L/kg

Fig. 3 The TMDD signature
profile exhibiting four phases,
which characterise different
processes in the drug disposition

and that the substrate dynamics may be captured by the simpler model

dS

dt
= −Vmax

S

Km + S
where Vmax = kintEtot, Km = koff + kint

kon
(2.5)

We shall see that comparable reductions can be established for the full TMDD model.
In contrast to linear first order elimination, TMDD leads to complex elimination dynamics.

In Fig. 2 we show typical drug-versus-time data obtained after four iv bolus bolus admin-
istrations resulting in initial drug concentrations amounting to L0 = 30, 100, 300 and 900
mg/L.

Characteristic phases of the time course are easily identified in Fig. 2. Initially the data
show a binding phase (A) followed by a linear phase (B), a nonlinear phase (C) and a second
linear phase (D). For convenience we indicate the times of the transitions between by these
phases by T1 (A/B), T2 (B/C) and T3 (C/D). We observe in Fig. 2 that the times T2 and T3
shift to the right as the drug dose increases by a equal amounts �T which appear to be more
or less proportional to the logarithm of the drug dose, log(D). The phases A, B, C and D are
shown schematically in Fig. 3.
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Table 1 Parameter values

kel kon koff ksyn kdeg kint R0

Value 0.0015 0.091 0.001 0.11 0.0089 0.003 12

Unit h−1 {(mg/L)h}−1 h−1 (mg/L)/h h−1 h−1 mg/L

The TMDD model poses interesting challenges to pharmacologists and mathematicians
alike.
• From the perspective of data analysis onewould like to (i) Identify characteristic features in
data sets of drug-versus-time series which call for a TMDDmodel. (ii) Exploit the complexity
of the data set to draw conclusions about the underlying physiology, and (iii) Determine how
physiological assumptions can be used to simplify the TMDDmodel and so make it possible
to estimate the values of the parameters in the model when data is limited.
• From an analytical perspective, the TMDD model is very rich: it involves a series of
different processes, each with its own time scale: (i) ligand-target binding, (ii) target inter-
nalisation, (iii) target synthesis and degradation, and (iv) ligand elimination. Combined with
often very disparate ligand and target concentrations, this results in a variety of different
types of dynamics.

Specifically, one would like to know how different parameters involved in themodel affect
the dynamics, and derive estimates for their impact, and determine for what parameter ranges
the dynamics can be described by simpler models. This last question is important, because
in many practical situations data are only available for the free drug concentration (L).

We conclude with a slightly different formulation of ligand and receptor dynamics which
will prove very useful.

Conservation laws: In light of the rapid binding of ligand and receptor, the total amounts of
free and bound drug and receptor,

L tot = L + RL and Rtot = R + RL (2.6)

are very useful quantities in the analysis of the TMDD model. They satisfy the following
balance equations:

⎧
⎪⎪⎨

⎪⎪⎩

dLtot
dt

= −kelL − kintRL

dRtot

dt
= ksyn − kdegR − kintRL

(2.7)

2.1 Simulations

In order to gain an impression of the dynamics of the three compounds we show simulations
for the parameter values associated with the data set shown in Fig. 2. They are listed in
Table 1.

The dissociation constant Kd , and a related constant Km are here given by

Kd = koff
kon

= 0.011 mg/L and Km = koff + ke(RL)

kon
= 0.044 mg/L. (2.8)

In Fig. 4 we show graphs of the concentrations of the three compounds versus time: free
drug (L) on a semi-logarithmic scale, and free receptor (R), and receptor-drug complex (RL)
on a linear scale.
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Fig. 4 Graphs of L on a semi-logarithmic scale (left), and R (middle) and RL (right) on a linear scale, versus
time. The parameters are listed in Table 1 and the initial receptor and receptor-drug complex value are the
baseline concentrations, given by (2.2). The initial drug concentrations are L0 = 30, 100, 300, 900 mg/L. The
dashed line indicates the target baseline level R0 and the dotted line the reference value Km defined in (2.8)

We make the following observations:

Drug dynamics:
(a) The drug concentration curves shown in Fig. 4 exhibit the signature profile shown in Fig.
3, except that the initial phase A appears to be absent.
(b) In Phase B, where log(L) is linear, the slope is independent of the dose, and shifts upwards
as the drug dose increases. In addition, R ≈ 0.
(c) Phase C is a transitional phase in which the ligand concentration suddenly drops more
quickly. The timing of Phase C shifts— horizontally—to the right as the drug dose increases
over a distance which appears to by approximately proportional to log(L0).
(d) Phase D, in which log(L) is linear, is the terminal phase with slope −λz which appears
to be independent of the drug dose. For the parameter values of Table 1 one finds that
λz ≈ kint = 0.003 h−1 [24].

Receptor dynamics:
(a) Evidently, very quickly the drug binds the receptor, exhausting the initial receptor supply
and raising the complex concentration to R0.
(b) On a longer time scale, receptor is synthesised and binds to the drug to form additional
drug-receptor complex. In fact, RL(t) climbs along a curve � which starts at RL(0) ≈ R0

and ultimately levels off at some ceiling value R∗, as long as R(t) ≈ 0. Over this period of
time, the equation for Rtot in (2.7) becomes to good approximation

dRtot

dt
= ksyn − kintRtot (2.9)

since R(t) ≈ 0 so that Rtot ≈ RL . Thus, as long as R(t) ≈ 0 we have

RL(t) ≈ Rtot = R∗ + (R0 − R∗)e−kint t , R∗ = ksyn
kint

(2.10)

In fact, one can prove the universal upper bound [24],

Rtot(t) ≤ max{R∗, R0} for t ≥ 0 (2.11)

(c) Beyond Phase C, R returns to R0 and RL to 0. This phase also involves interesting
dynamics as Fig. 5 clearly demonstrates.
The drug-receptor complex RL decays mono-exponentially, whilst the graph of the receptor
concentration R exhibits a kink and hence R0 − R decays bi-exponentially. Eventually RL
and R0 − R decay with the same terminal slope λz , which is approximately equal to kint for
the parameter values of Table 1 [24].
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Fig. 5 Graphsof R0−R (Left) and RL (Right) on a semi-logarithmic scale versus time (Note that 0 < t < 5000
h in the left picture and 0 < t < 8000 h in the right picture). The parameters are listed in Table 1, the
initial receptor and receptor-drug complex value are the baseline values given by (2.2) and the initial drug
concentrations are L0 = 30, 100, 300, 900 mg/L

2.2 Reduced Models

From the early studies of TMDD on, beginning with the paper of Mager and Jusko in [19],
simplifications of the TMDD model have been proposed, based on assumptions about the
underlying physiology. Below we describe a few.

1. The Constant Target Pool hypothesis. When no information about the target is available it
is sometimes assumed that the target pool is constant, i.e.,

Rtot(t) = R(t) + RL(t) = R0 for t ≥ 0 (2.12)

This is equivalent to assuming that kdeg = kint. To see this we eliminate R from the second
equation in the system (2.7) to obtain

dRtot

dt
= ksyn − kdegRtot + (kdeg − kint)RL (2.13)

It is now readily seen that in light of the initial data (2.2) we may conclude that Rtot(t) =
R0 = ksyn/kdeg for all t ≥ 0 if and only if kdeg = kint.

Mager and Jusko [19] first studied this case (see also [23] and [18]). It is particularly
interesting from an instructional point of view because the identity R + RL = R0 makes
it possible the eliminate one variable and so reduce (2.1) to a two dimensional system,
which can be analysed in the Phase Plane. Thus, if R is eliminated, solutions can be studied
geometrically as Orbits in the (L , RL)-plane, starting at the point (L , RL) = (L0, 0) and
converging to the origin (0,0).

2. The Quasi-Equilibrium (QE) hypothesis (cf. Mager and Krzyzanski [20]) assumes that
within a brief initial period drug, target and drug-target complex reach (quasi-)equilibrium,
i.e.,

L · R = Kd RL where Kd = koff
kon

(2.14)

and from then on remain in quasi-equilibrium.
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3. The Quasi-Steady State (QSS) hypothesis (cf. Gibiansky et al. [12]) assumes that drug,
target and internalisation quickly reach (quasi-)equilibrium so that

L · R = Km RL where Km = koff + kint
kon

(2.15)

and remain in quasi-steady state throughout later times.
Once in (quasi-)equilibrium or quasi-steady state, we have to good approximation:

RL = Rtot
L

L + K
where K = Kd or K = Km (2.16)

Because rapid binding of drug to target is assumed, the QE and QSS approximations
focus on the total drug concentration L tot = L + RL and the total receptor concentration
Rtot = R + RL as principal variables. They satisfy the system (2.7). When we eliminate
R = Rtot − RL and RL through (2.16) we obtain the system

⎧
⎪⎪⎨

⎪⎪⎩

dLtot
dt

= −kelL − kintRtot
L

L + K
dRtot

dt
= ksyn − kdegRtot + (kdeg − kint)Rtot

L

L + K

(2.17)

where K = Kd in the QE-approximation and K = Km in the QSS-approximation.
Finally, L is related to L tot and Rtot through the implicit relation

L tot = L + RL = L + Rtot
L

L + K
(2.18)

Because for each value of Rtot the right-hand side of (2.18) is a strictly increasing function
of L , we may solve for L in terms of L tot and Rtot to obtain the expression

L = F(L tot, Rtot)
def= 1

2

{
L tot − Rtot − K +

√
(L tot − Rtot − K )2 + 4K L tot

}
(2.19)

When we substitute L = F(L tot, Rtot) into the system (2.17) we obtain two equations which
only involve the total concentrations of drug L tot and receptor Rtot:

⎧
⎪⎪⎨

⎪⎪⎩

dLtot
dt

= (kint − kel)F − kintRtot

dRtot

dt
= ksyn + (kint − kdeg)F − kintRtot

(2.20)

What has been gained through this reduction is that the on- and off-rates of drug and target
no longer feature individually in the model, but only in combination, throughKd or Km , in
the expression for the function F .

4. QE or QSS hypothesis and constant target pool combined: Since Rtot is now constant
and equal to R0 it follows that (2.16) yields an expression for RL in terms of L . Using this
expression in the ligand equation in the system (2.17) we obtain an equation in L only:

d

dt

(

L + R0
L

L + K

)

= −kelL − kintR0
L

L + K
(2.21)

or

dL

dt
= −

kelL + kintR0
L

L + K

1 + R0K

(L + K )2

(2.22)
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This equation was first derived by Wagner in [29].
The question as to when the QE-approximation, and when the QSS-approximation is

correct has been the subject of numerous investigations. This is a delicate issue and the
answer may depend, not only on the parameter values, but also on the phase of the process.
Thus, in some of the phases (A–D), one approximation is valid, whilst in different phases
the other approximation holds. An example of this situation is shown in Fig. 6.

Evidently, for the parameter values given in Table 1, the QE approximation is valid in the
terminal phase (Phase D). This is consistent with the fact that for these parameter values, the
terminal slope is approximately equal to kint (cf. [24]). In the earlier Phase B, when the drug
dose is large enough, we have R(t) ≈ 0, and dR/dt ≈ 0 (cf. Aston et al. [1] and [24]), so
that we deduce from the equation for R in the system (2.1) that in this phase

�
def= L × R − Kd RL = ksyn

kon
. (2.23)

We see this confirmed numerically in Fig. 6. Thus, in Phase B, the QE approximation does
not hold. However, in that part of Phase B in which RL assumes its global maximum, i.e.,
RL(t) ≈ R∗ = ksyn/kint (cf. Eq. (2.10) and Fig. 4) we have

L × R − Kd RL = kint
kon

· ksyn
kint

≈ kint
kon

RL �⇒ L × R ≈ Km RL . (2.24)

Thus, in this period of time, the QSS approximation is valid.
The results above are confined to a single set of parameter values. It is an interesting

question to delineate the conditions under which the two approximations are valid for a
wider set of values. In this connection we mention the work of Gibiansky et al. [12] who
show that the QE approximation fails when kint 	 koff .

We conclude with a model that is often used as a simpler alternative to the TMDDmodel.
5. The Michaelis–Menten model

In what is commonly referred to as the the Michaelis–Menten (MM) model, drug elim-
ination is assumed to be partly first order linear (kel) and partly nonlinear and saturable,
i.e.,

dL

dt
= −kelL − Vmax

L

K + L
(2.25)

where the saturable term is modelled by a typical MM-function. Note the similarity of the
Eqs. (2.22) and (2.25). Evidently,

Fig. 6 Graph of
� = L × R − Kd RL for
L0 = 300 and 900 mg/L and the
parameter values of Table 1 (In
the figure kin is ksyn.)
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d

dt
log(L) = −kel − Vmax

K + L
(2.26)

The right hand side of this equation is an increasing function of L . Therefore, since L is
decreasing with time, the graph of log(L) versus time is concave. This means that the MM
model can only be used to fit data which exhibit only Phases B and C (cf. Bauer et al. [3]).

2.3 Discussion

Over the years a rich literature has built up about the TMDD model and its applications in
data analysis. Below we briefly dwell upon a few topics.
•Mathematical analysis:The basic TMDDmodel (2.1) has been studied fromamathematical
perspective in order to understand intrinsic properties of the system, such as the characteristic
form of the signature profiles of drug-, receptor- and drug-receptor complex versus time and
the subdivision phases A–D. In Peletier and Gabrielsson [23] and Ma [18] the system was
analyzed subject to the restriction of a constant target pool, using phase plane methods to
inspect the validity of the QE and the QSS approximation. Aston et al. [1] studied the initial
binding Phase A estimating Rmin and obtained conditions for initial overshoot after an iv
bolus dose. In Peletier and Gabrielsson [24] the full system was studied, subject to a-priori
assumptions on the parameter values: (i) a large affinity of drug to receptor, (ii) the elimination
rate of ligand and receptor, and the internalization rate of complex are all comparable in size
to koff and (iii) L0 > R0. This results in a sequence of well defined time scales, analytic
estimates of the transition times of the different phases, and the corresponding values of the
concentration of drug-, receptor- and drug-receptor concentration. It would be interesting to
explore how robust these estimates are when some of the assumptions are relaxed.
•Peripheral compartment: Inmany practical situations the central compartment is connected
to a peripheral compartment. Transfer between the central and peripheral compartment adds
another time scale to the process and thus affects the concentration versus time graphs in the
central compartment and the estimates obtained in [24] for the basic system (2.1). In particular,
the initial behaviour will reveal the impact of distribution over the two compartments and in
the long-term behaviour the effect on the terminal slope will show up, especially when the
transfer between the two compartments is slow.
• Target in peripheral compartment: In a recent study Cao and Jusko [9] investigated the
situation when the target is located in the interstitial fluid (ISF), i.e., in a peripheral com-
partment. It is found that the parameters which are related to the receptor and its binding to
the drug, such as Rtot, Kd , Km and kint are affected. Thus, this calls for a generalisation of
the analysis performed in Peletier and Gabrielsson [24], in which characteristic properties
of the drug-versus-time graphs were interpreted in terms of properties and parameters in the
model.

For recent reviews of the TMDDmodel and its literature we refer to Zheng et al. [31] and
Dua et al. [10].

3 Dynamics of Receptor Tyrosine Kinases (RTK’s)

RTK’s are composed of small networks of reactions situated across the cell wall. In this
section we dissect the dynamics of these networks and compare ways they can be exploited
in order to influence cellular processes.
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Fig. 7 Schematic picture of a Receptor Tyrosine Kinase situated on the cell wall with its Binding domain
facing the interstitial fluid compartment and the Kinase domain facing the cellular compartment

In Fig. 7 we give a schematic picture of a Receptor Tyrosine Kinase as it is situated on the
cell wall between the Interstitial fluid compartment (IF) and the cellular compartment with
its Binding domain facing the IF compartment and the Kinase domain facing the cell.

On the left, the receptor in its free state, with its binding domain R1
1 and its kinase domain

K2, the latter in equilibrium with the constant receptor pool PK2. The receptor binds to an
endogenous ligand L1 in the IF compartment; the receptor-ligand complex is shown in the
middle, with its binding domain RL1 and its kinase domain K L2, the latter shaded to highlight
a conformational change. On the right K L2 is shown in its phosphorylated state, denoted by
P2, which induces a cellular response.

Thus, the RTK ligand–receptor system involves the following system of reaction equa-
tions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ksyn−→ L1 + R1

kLf
�
kLb

RL1, L1
kdeg−→,

R1

ClR12
�

ClR21

K2, RL1

ClK12
�

ClK21

K L2,

K2

kPKb
�
kPKf

PK2, K L2
kcat−→ P2.

(3.1)

We compare three ways of inhibiting a cellular process, i.e., the production of P2. We do
this by analysing the following scenarios.

1 By way of convention, all compounds in the IF compartment will be labelled by a subscript 1 and those in
the cell by a 2.
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(1) In Scenario 1 the inhibitor D binds the ligand and so prevents it from binding the receptor
and forming the complex RL1, which produces the product P2. It is a large molecule drug,
such as a mAb which is confined to the interstitial fluid.
(2) In Scenario 2 the inhibitor D binds the receptor as well as its ligand-complex. It is a
small molecule drug which can move easily across the cell wall. It binds the receptor, and its
ligand-complex, both on their binding domains and their kinase domains.
(3) In Scenario 3 the inhibitor is confined to the cell where it binds the receptor and its
complex.
In the first two scenario’s drug action involves two compartments, the interstitial fluid and the
cell, whilst in the third scenario drug action involves only one compartment, the cell. Thus,
we compare (i) the impact of large and small molecule drugs, each with their own mode of
action, and (ii) a two- and a one-compartment model for the small molecule.

The outline of this section is the following.We first give a brief description of the structure
of the RTK-system in the absence of inhibitor: we derive the model, do some simulations,
and sketch the underlying mathematical analysis. Then we model the three scenario’s and
compare the impact of the inhibitor.

Mathematically the system of reaction equations (3.1) can be written by the following two
systems of differential equations, one for the IF compartment:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dL1
dt

= ksyn − kdegL1 − kLf L1 · R1 + kLbRL1,

dR1

dt
= −kLf L1 · R1 + kLbRL1,

dRL1
dt

= kLf L1 · R1 − kLbRL1,

(3.2)

and one for the cellular compartment:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dK2

dt
= −kPKbK2 + kPKf PK2,

dKL2
dt

= −kcatK L2,

dP2

dt
= kcatK L2.

(3.3)

The signal transduction across the membrane carried out by the receptors situated in the
cell membrane, i.e., between R1 and K2 and between RL1 and K L2, is modelled by the
following equations

⎧
⎪⎪⎨

⎪⎪⎩

dR∗
1

dt
= ClR21K ∗

2 − ClR12R∗
1 ,

dRL∗
1

dt
= ClK21K L∗

2 − ClK12RL∗
1,

(3.4)

where R∗
1 , RL

∗
1, K

∗
2 and K L∗

2 denote the number of molecules of these compounds, and
ClR21, ClR12, ClK21 and ClK12 equilibrium constants (1/min).

To be consistent with Eqs. (3.2) and (3.3) in which the dependent variables are concentra-
tions measured in micro-molars, we transform the quantities R∗

1 etc. into quantities measured
in micro-molars. This involves dividing these quantities in the system (3.4) by the number
of Avogadro Na and the respective volumes V1 = Vif or V2 = Vc:
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R1 = R∗
1

NaV1
, RL1 = RL∗

1

NaV1
, K2 = K ∗

2

NaV2
, K L2 = K L∗

2

NaV2
. (3.5)

With these new variables, the system (3.4) becomes
⎧
⎪⎪⎨

⎪⎪⎩

dR1

dt
= μClR21K2 − ClR12R1,

dRL1
dt

= μClK21K L2 − ClK12RL1.

where μ = V2
V1

, (3.6)

Comparable equations can be derived for K2 and K L2.
Combining equations (3.2), (3.3) and (3.6)we obtain the following basic sets of differential

equations:
For the compounds in the IF compartment:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dL1
dt

= ksyn − kdegL1 − kLf L1 · R1 + kLbRL1,

dR1

dt
= μClR21K2 − ClR12R1 − kLf L1 · R1 + kLbRL1,

dRL1
dt

= μClK21K L2 − ClK12RL1 + kLf L1 · R1 − kLbRL1,

(3.7)

and for the compounds in the cellular compartment:
⎧
⎪⎪⎨

⎪⎪⎩

dK2

dt
= 1

μ
ClR12R1 − ClR21K2 − kPKbK2 + kPKf PK2,

dKL2
dt

= 1

μ
ClK12RL1 − ClK21K L2 − kcatK L2.

(3.8)

This amounts to a system of five equations for the concentrations of five compounds. Once
the dynamics of this system is known, the generation of the product P2 follows from the
equation

dP2
dt

= kcatK L2. (3.9)

For simplicity we assume throughout that ClR12 = ClR21 = ClK12 = ClK21
def=Cl.

Remark 2 An elementary computation shows that when kcat = 0 the steady state concentra-
tions are given by:

L1 = L0
def= ksyn

kdeg
and K2 = K0

def= kPKf
kPKb

PK2 (3.10)

and

R1 = R0
def=μK0 and RL1 = RL0

def= kLf
kLb

L0 · R0. (3.11)

When kcat > 0, ligand and receptor are eliminated as complex K L2. On the other hand,
ligand is supplied at a constant rate in the IF compartment and receptor is supplied from a
constant receptor pool PK2 in the cellular compartment. Therefore, concentrations drop and
converge to lower, but still positive, limiting values. Since K L2 is converted into product,
ultimately P2 will increase at a constant rate.
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Fig. 8 Graphs of the six compounds versus time based on simulations of the full model defined by the systems
(3.7)–(3.9) for parameter values from Table 2 and initial data from Table 3. The graphs of the compounds in
the interstitial fluid compartment are solid and those in the cellular compartment are dashed. On the left the
long time behaviour and on the right the short time behaviour. We see that the graphs of R1 and RL1 nearly
coincide with those of, respectively, μK2 and μK L2

Table 2 Parameter values of the ligand–receptor system

kLf kLb kPKf kPKb ksyn kdeg kcat Cl

372 0.00384 0.05 0.017 3.85 × 10−8 1.283 × 10−3 60 2000

1/(μMmin) 1/min 1/min 1/min μM/min 1/min 1/min 1/min

3.1 Simulations

In Fig. 8 we demonstrate the dynamics of the RTK system through a simulation of the system
(3.7)–(3.9), which shows how the concentrations of the compounds L1, R1 and RL1 in the
IF compartment, and K2, K L2 and P2 in the cellular compartment, evolve with time.

We take the parameter values for the ligand–receptor-membrane system from Sasagawa
et al. [26]; they are listed in Table 2.

Note that

KL = kLb
kLf

= 1 × 10−5 μM, KP = kPKb
kPKf

= 0.34, Kel = kcat
kLf

= 0.16 μM.

(3.12)

For the volume of the interstitial fluid compartment V1 and the cellular compartment V2
we take V1 = 12 L and V2 = 10−3 L. The former is a well known estimate and the latter
is based on a neuron volume of 1 nL (cf. Groves and Rebec [13]) and a target population
of neurons (e.g. containing pain sensors) of 1 million. This results in the estimate given for
V2. We denote the ratio of the two volumes by μ = V2/V1; for the volumes quoted above,
μ = 0.833 × 10−4.

For the initial concentrations of the compounds we choose the steady state values of the
concentrations of the compounds in the absence of inhibitor when there is no elimination
of K L2, i.e., when kcat = 0. They are given in (3.10) and (3.11). For the parameter values
shown in Table 2 they result in the values shown in Table 3. We assume that initially P2 = 0.
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Table 3 Initial concentrations in μM

L1,0 R1,0 RL1,0 μK2,0 μK L2,0 P2,0

3 × 10−5 5.05 × 10−6 1.515 × 10−5 5.05 × 10−6 1.515 × 10−5 0

The constant concentration of the receptor pool is taken to be PK2 = 0.020631μM (cf.
Sasagawa et al. [26]).

We make the following observations:
• Over time, the compounds L1, R1 and K2 converge towards steady states with a half-life
t1/2 ≈ 400 min, whilst RL1 and K L2 drop to very small values over a very short time
(t1/2 ≈ 0.04 min).
• Initially, P2 rises very rapidly (t1/2 ≈ 0.04 min) to a quasi-steady state or plateau value
and then proceeds to rise slowly at an eventually constant rate.
• The graphs of R1 and μK2 and those of RL1 and μK L2 appear to coincide.

3.2 The Reduced Ligand–Receptor System

Thanks to the very large value of the permeability Cl of the membrane between the two
compartments (cf. Table 2), the concentrations of the receptors at each side of the membrane
converge very quickly (t1/2 ≈ 10−4 min) (cf. Benson et al. [6]) so that throughout we may
assume that

μK2 = R1 and μK L2 = RL1. (3.13)

This makes it possible to reduce the model (3.7), (3.8) for the ligand–receptor system to one
which involves only three differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dL1
dt

= ksyn − kdegL1 − kLf L1 · R1 + kLbRL1,

dR1

dt
= − 1

2kLf L1 · R1 + 1
2kLbRL1 − 1

2kPKbR1 + 1
2kPKf (μPK2),

dRL1
dt

= 1
2kLf L1 · R1 − 1

2kLbRL1 − 1
2kcatRL1.

(3.14)

In addition, because of (3.13), the production of P2, as given by equation (3.9), can be
computed by means of the equation

d(μP2)

dt
= kcatRL1. (3.15)

It is interesting to note that the system (3.14) is very similar to the basic model for TMDD (cf.
equation (2.1) and Mager and Jusko [19]). In fact, were it not for the factor 1/2, the systems
would be identical.

3.3 Mathematical Analysis of Reduced Ligand–Receptor System

We briefly summarise the main points of the analysis of the ligand–receptor system (3.14)
given in Benson et al. [6], and present quantitative estimates of the short and long time scale
displayed in Fig. 2.
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In order to compare the different terms in (3.14) we introduce dimensionless variables
using the initial concentrations of ligand (L0), receptor (R0) and complex (RL0) as reference
values for L1, R1 and RL1, and (kLf R0)

−1 for the time t . Thus we put

x = L1

L0
, y = R1

R0
, z = RL1

RL0
, τ = kLf R0 t. (3.16)

Translating the system (3.14) into these new dimensionless variables we obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dτ
= a(1 − x) − (x · y − z) ,

dy

dτ
= − 1

2b (x · y − z) − 1
2c (y − 1) ,

dz

dτ
= 1

2d (x · y − z) − 1
2e z,

(3.17)

where we have defined the following dimensionless constants:

a = kdeg
kLf R0

, b = L0

R0
, c = kPKb

kLf R0
, d = KL

R0
, e = kcat

kLf R0
. (3.18)

For the parameter values quoted in Table 2 the constants a, . . . , e become

a = 0.68, b = 5.9, c = 9.05, d = 2.04, e = 3.2 × 104. (3.19)

Short-time behaviour. We observe that the constants a, b, c and d are all of moderate size,
but that due to the large value of kcat, the constant e is very large. It can be shown (cf. [6])
that this implies that z(τ ) is approximately given by the mono-exponential function

z(τ0) = z + (1 − z)e−eτ/2, z = d

e
= 0.64 × 10−4. (3.20)

In terms of the original variables this yields

RL1(t) = RL1 + (RL0 − RL1)e
− 1

2 kcat t , RL1 = RL0 z. (3.21)

Therefore, RL1(t) quickly drops off exponentially to a small plateau value RL1 with a
half-life that amounts to

t1/2 = 2

kcat
ln(2) ≈ 0.023 min. (3.22)

Over the same period of time, P2(t) climbs to its plateau value P2:

μP2 ≈ kcaat

∫ ∞

0
RL1(s) ds ≈ 2RL0. (3.23)

Large-time behaviour. After the initial rapid depletion of receptor–ligand complex, z =
RL1/RL0 is very small, and remains so, so that x(τ ) and y(τ ) are well approximated by the
solution of the reduced system obtained by putting z = 0 in (3.17):

⎧
⎪⎨

⎪⎩

dx

dτ
= a(1 − x) − x · y,

dy

dτ
= − 1

2b x · y − 1
2c (y − 1) ,

(3.24)

whilst z(τ ) is shown to be in quasi-steady state with x(τ ) and y(τ ), so that by (3.17),

d {x(τ ) · y(τ ) − z(τ )} − e z(τ ) = 0 �⇒ z(τ ) = d

d + e
x(τ ) · y(τ ). (3.25)
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Table 4 Drug-related rates kDf kDb Kd

600 0.6 10−3

1/(μMmin) 1/min μM

It is readily seen that

x(τ ) → xss, y(τ ) → yss and z(τ ) → zss as τ → ∞, (3.26)

where (xss, yss) is the unique equilibrium point of the system (3.24) and

zss = d

e + d
a(1 − xss). (3.27)

For the data of Table 2, the half-life of this convergence is estimated at τ1/2 = 0.55. In terms
of the original time variable this gives a half-life of t1/2 = 295 min. We see this behaviour,
and the estimate of the half-life, confirmed in the simulations shown in Fig. 8.

3.4 Inhibition

We consider two kinds of drugs:
Large molecule drugs, such as monoclonal antibodies (mAb). These drugs are confined to
the IF compartment, where they may bind to the ligand:

D1 + L1

kDf
�
kDb

DL1, (3.28)

and so, down the road, inhibit the formation of the product P2.
Small molecule drugs. These drugs may pass through the cell wall, and inside the cell bind
to the receptor and its complex in their respective kinase domains, K2 and K L2:

D2 + K2

kDf
�
kDb

DK2 and D2 + K L2

kDf
�
kDb

DK L2. (3.29)

We compare the impact of a large- and a small molecule drug through three scenario’s. In
the first two scenario’s the drug is supplied to the IF compartment and in the third scenario,
a small molecule drug is supplied to the cellular compartment from where it cannot escape
into the IF compartment.

For the sake of transparency, the on- and off-rates of the drug are taken the same, whether
it binds to the ligand, the receptor or the ligand–receptor complex. The rates are given in
Table 4.

In all three scenario’s we assume that drug, free and bound, does not degenerate.
The drug doses in the three scenario’s are the same: D1(0) = 0.0, 0.1, 0.2, 0.3μM and
D2(0) = 0μM.

In Fig. 9 we show how the concentration of the product P2 (scaled by μ = V2/V1) in the
cellular compartment increases with time in each of the three scenario’s, and how the growth
is inhibited by the drug, given in three doses.

It is evident that in the third scenario—drug action in the cell only—the impact of the drug
is much smaller than in the other two scenario’s for which the impact is of the same order,
though larger for the large molecule drug than for the small molecule drug.
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Fig. 9 Growth of μP2 over 6000 min (= 100 h ≈ 4 days) in scenarios 1, 2 and 3 with parameters given by
Table 2, initial data given by Table 3 and drug-related rates given by Table 4. The doses are D1(0) = 0.0, 0.1,
0.2, 0.3 and D2(0) = 0. The red - dashed - curve is obtained for D1(0) = 0 and D2(0) = 0μM (Color figure
online)

In order to understand these simulations, and obtain quantitative estimates for the impact
of the drug, the RTK-model needs to be extended to include the drug reactions in the IF
compartment and in the cell.

For the large molecule inhibitor, (Scenario 1) a model extending the RTK model which
incorporates the drug action was developed by Benson et al. [6]. It was found that to good
approximation

RL1(t) = RL1;ss(1 − e−t/TL ), TL = AL
D0

Kd
, (3.30)

where RL1;ss is the steady-state concentration of RL1 and AL a constant which is drug-
independent. For the parameter values of Table 2 we obtain AL = 607 min. Therefore, in
light of (3.9) and (3.13) we then conclude that

μ P2(t) = kcat

∫ t

0
RL1(τ ) τ = kcat RL1;ss

(
t − TL + O(e−t/TL )

)
(3.31)

We see that eventually, the inhibitor causes a shift in the quantity μP2 over a distance TL in
time, and that this shift increases when the drug dose increases or the dissociation constant
Kd decreases.
For the small molecule inhibitor (Scenario 2) the RTKmodel had to be extended differently
because (i) the drug binds the receptors and (ii) the drug is present in both compartments.
Publication of this extension is in preparation (cf. Benson et al. [8]). We obtain:

μ P2(t) = kcatRL1;ss
(
t − TS + O(e−t/TS )

)
, TS = AS

D0

Kd
, (3.32)

where AS = 52 min for the parameter values of Table 2. We see that the inhibitory effect is
similar to that of the large molecule drug, except that the shift TS is smaller by a factor of
O(10).

We conclude that under these conditions on drug dose and affinity the impact of the large
molecule drug in Scenario 1, is significantly greater than that of the small molecule drug in
Scenario 2. This is confirmed by the simulations shown in Fig. 9.

Finally, that Scenario 3 is so much inferior to the other two scenario’s can also understood
from a detailed analysis as done in Benson et al. [8]. The main reason turns out to be that
because V2 � V1 the amount of drug that is supplied is much smaller and hence, that free
receptors are much sooner back up to their original level.
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3.5 Discussion

Wehave seen how the three scenario’s comparewhen the drug properties such as binding rates
to ligand and to receptor and the manner of administration (iv bolus) are the same. Plainly the
third scenario, the “one-compartment” scenario, is inferior to the other two scenario’s whilst
under these conditions, the large molecule and the small molecule inhibitor show comparable
impact. Thus, in the context of an enquiry into understanding dose response relationships,
this work emphasises the need for appropriate and accurate account of physiology.

It should be emphasised though that the conditions under which the three scenario’s have
been compared are a little artificial: in practice, both drugs are eliminated, small molecule
drugs rapidly, at such a rate that doses need to be repeated daily, whilst large molecule drugs
much more slowly, so that the dosing period can be much longer. Also, the affinity of the
large molecule drug is significantly larger than that of the small molecule drug. In Benson et
al. [8] the two two-compartment scenario’s are compared under more realistic conditions.
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