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Abstract

In the nonparametric Gaussian sequence space model an ℓ2-confidence ball
Cn is constructed that adapts to unknown smoothness and Sobolev-norm of
the infinite-dimensional parameter to be estimated. The confidence ball has
exact and honest asymptotic coverage over appropriately defined ‘self-similar’
parameter spaces. It is shown by information-theoretic methods that this ‘self-
similarity’ condition is weakest possible.

Keywords: Adaptation, confidence sets,
2000 MSC: 62G15, 62G10, 62G20

1. Introduction

Successful statistical methodology in high-dimensional and nonparametric
models gives rise, either by construction or implicitly, to statistical procedures
that adapt to unknown properties of the parameter, such as smoothness or
sparsity. It is well-known by now ([14], [13], [4], [17], [9], [12], [1], [2], [15],
[6]) that such adaptive procedures cannot straightforwardly be used for un-
certainty quantification. Particularly, and unlike in the classical parametric
situation, adaptive estimators do not automatically suggest valid confidence
sets for natural high- or infinite dimensional parameters. Rather, some addi-
tional constraints on the parameter space have to be introduced.

In nonparametric models one such constraint that is naturally compatible
with the desired adaptation properties has been studied in [10], [12], [1], [19],
[7] – the term ‘self-similarity assumption’ has been associated with this condi-
tion, for reasons that will become apparent below. Except for [19], the above
references have studied such parameter constraints in the ‘L∞-setting’ of con-
fidence bands, pertaining to the uniform-norm as a statistical loss function.
The situation in the ‘L2-setting’ – where the risk function is induced by the
more common integrated squared loss – is in principle more favourable (see
[13], [5], [17], [2], [3], [18]), and for certain ranges of parameter spaces such
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‘self-similarity’ conditions are simply not necessary. However, as will be ex-
plained below, for the most meaningful adaptation problems that range over a
full scale of Sobolev spaces with possibly unbounded Sobolev-norm of the func-
tion to be estimated, the situation becomes more delicate and ‘self-similarity
conditions’ are relevant again.

In the present article we consider the basic nonparametric sequence space
model and provide minimal ℓ2-type self-similarity constraints on a Sobolev -
parameter space that cannot be improved upon from an information theoretic
point of view. We also show that an easy to construct, asymptotically ex-
act, confidence ball based on the idea of unbiased risk estimation performs
optimally under such constraints. In contrast to most constructions in the
literature, no ‘under-smoothing’ is necessary, and the confidence set adapts to
minimax rate of convergence and radius constant.

The interest in this problem is partly triggered by recent progress on the un-
derstanding of the frequentist properties of Bayesian uncertainty quantification
methods in [19], where L2-type self-similarity conditions have been employed
successfully. Combined with some arguments of [18] our results imply that
natural nonparametric Bayes approaches based on Gaussian priors with hier-
archical or maximum marginal likelihood empirical Bayes prior specification
of the smoothness parameter do not achieve the information theoretic limits
of uncertainty quantification.

As usual our ideas and techniques carry over from the sequence space model
to more common nonparametric regression and density estimation problems,
both constructively by virtue of the L2 ∼ ℓ2 isometry of the loss functions,
and more fundamentally through asymptotic equivalence theory for statistical
experiments.

2. Main results

Consider observations Y = (yk : k ∈ N) in the Gaussian sequence space
model

yk = fk +
1√
n
gk, gk

i.i.d.∼ N(0, 1), k ∈ N, (1)

and write Prf or Pr
(n)
f for the law of (yk : k ∈ N). The symbol Ef or E

(n)
f

denotes expectation under the law Prf . Let us assume that the unknown
sequence of interest f = (fk) ∈ ℓ2 belongs to a Sobolev ball, that is, an
ellipsoid in ℓ2 of the form

Ss(B) = {f ∈ ℓ2 : ‖f‖s,2 ≤ B}, s > 0, B > 0,

where the Sobolev norm is given by

‖f‖2s,2 =
∞
∑

k=1

f 2
kk

2s.

Note that ‖ · ‖2 ≡ ‖ · ‖0,2 is the usual ℓ2-norm.
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The parameters B, s > 0 are typically not available a priori, and the chal-
lenge arises to adapt to their unknown values in a data-driven way. We will
consider adaptation to ‘smoothness degrees’ s in any fixed window [smin, smax],
and to the ‘radius’ B ∈ [b,∞). Here 0 < smin < smax < ∞ are fixed and known
parameters whereas b > 0 is a (not necessarily known) lower bound for B.

It is well known and not difficult to prove that adaptive estimators f̂n =
f̂n(Y ) exist that attain the minimax optimal ℓ2-risk for every ellipsoid Ss(B):

sup
f∈Ss(B)

Ef‖f̂n − f‖2 ≤ K(s)B1/(2s+1)n−s/(2s+1), ∀s > 0, ∀B > 0, (2)

where the constant K(s) > 0 depends only on s. In fact even exact adaptation
to the minimax constant K(s) is possible by suitable Stein-type shrinkage
estimators (see Section 3.7 in [20]).

In this paper we focus on the construction of confidence sets Cn for f in

⋃

s∈[smin,smax]

Ss(B), B ≥ b arbitrary,

that reflect the risk bound (2) – that is, we want to find a data-driven subset
Cn of ℓ2 that contains f with Prf -probability at least 1− α (where 0 < α < 1
is a chosen significance level), and we also want Cn to have ℓ2-diameter of
correct order B1/(2s+1)n−s/(2s+1) up to possibly a multiplicative constant K ′(s)
(we do not consider adaptation to the exact minimax constant here). Just as
f̂n(Y ) above, Cn = Cn(Y, α) should be adaptive and hence not depend on the
unknown values s, B.

In the special case smax < 2smin this is possible by adapting the proof of
Theorem 3A in [2] to the sequence space setting. However, in the general
setting smax > 2smin relevant in nonparametric statistics, the construction of
such a confidence set is not possible, and a valid confidence set always has
‘worst case’ diameter coming from the maximal model Ssmin(B) (this follows,
e.g., from the proof of Theorem 1 in [2], see also Theorem 8.3.5 in [11]). New
constraints on the parameter space Ss(B) need to be introduced. For instance,
if an upper bound B0 on the radius B known, a testing approach as in [2] could
be used to construct an adaptive confidence set that is honest over a sequence
of parameter spaces that asymptotically (n → ∞) contains the maximal pa-
rameter space Ssmin(B0). It is also proved in Theorem 4 in [2] that such a result
is impossible without the bound B0 on B – for unbounded B some functions
from the smin-Sobolev space have to be permanently removed for ‘honest’ infer-
ence to be possible (the results in [2] are in the i.i.d. sampling model but apply
in our simpler setting too). In order to remove ‘as few functions as possible’
we shall consider – inspired by [16], [10], [1] – a ‘self-similarity’ constraint,
which in effect enforces a certain signal-strength condition on the sequence
(fk : k ∈ N).
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2.1. Self-similarity conditions

For s ∈ [smin, smax], ‘self-similarity’ function ε : [smin, smax] → (0, 1], J0 ∈
N, 0 < b < B < ∞, and constant c(s) = 16× 22s+1, define ‘self-similar’ classes

Ss
ε(s) ≡ Ss

ε(s)(b, B, J0) ≡ (3)

{

f ∈ ℓ2 : ‖f‖s,2 ∈ [b, B] :
2J
∑

k=2J(1−ε(s))

f 2
k ≥ c(s)‖f‖2s,22−2Js ∀J ∈ N, J ≥ J0

}

,

where the notation
∑b

k=a ck for a, b ∈ R stands for
∑⌊b⌋

k=⌈a⌉ ck throughout the

whole paper. Note that ‖f‖s,2 < ∞ implies, for all J ∈ N,

∑

k≥2J(1−ε(s))

f 2
k ≤ ‖f‖2s,22−2J(1−ε(s))s = ‖f‖2s,22−2Js × 22Jε(s)s

and for ‘self-similar’ functions this upper bound needs to be matched by a lower
bound, accrued repeatedly over coefficient windows k ∈ [2J(1−ε(s)), 2J ], J ≥ J0,
that is not off by more than a factor of 22Jε(s)s/c(s). As a consequence the
regularity of f is approximately identified across all scales J ≥ J0.

If condition (3) holds for some ε(s) > 0 then it also holds for c(s) =
16×22s+1 replaced by an arbitrary small positive constant and any ε′(s) > ε(s)
(for J0 chosen sufficiently large). In this sense the particular value of c(s) is
somewhat arbitrary, and chosen here only for convenience.

Larger values of ε(s) correspond to weaker assumptions on f : Indeed, in-
creasing the value of ε(s) makes it easier for a function to satisfy the self-
similarity condition, as the lower bound is allowed to accrue over a larger
window of ‘candidate’ coefficients, and since the ‘tolerance factor’ 22Jε(s)s in
the lower bound increases. In contrast, smaller values of ε(s) require a strong
enough signal in blocks of comparably small size.

We shall demonstrate that signal strength conditions enforced through the
‘self-similarity’ function ε(s) allow for the construction of honest adaptive con-
fidence balls over the parameter space

⋃

smin≤s≤smax

Ss
ε(s),

with performance resembling the adaptive risk bound (2). We will effectively
show that

ε(s) <
1

2
∀s

is a necessary condition for the construction of such adaptive confidence sets
(when smax > 2smin), whereas a sufficient condition is

ε(s) <
s

2s+ 1/2
∀s.

As s → ∞ we have s/(2s+ 1/2) → 1/2, showing that the necessary condition
cannot be improved upon.
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Comparing to the self-similarity condition (3.4) in [19], which for f ∈ Ss(B)
and transposed into our notation, requires for some η > 0,

2J
∑

k=2J/ρ

f 2
k ≥ ηB22−2Js, for all J ≥ J0 and some ρ > 1, (4)

one can easily see that the self-similarity condition (3) is strictly weaker, both
in terms of the window sizes along which the lower bound has to accrue, and
in terms of the lower bound itself. One can show that in the context of [19]
their stronger assumption is actually necessary (for the particular marginal
likelihood empirical Bayes procedure used there). Furthermore we note that
(as a consequence of [18]) hierarchical Bayes methods behave similarly to the
maximum marginal likelihood empirical Bayes method in the sense that the
self-similarity condition (4) can not be relaxed. Our results imply that this is
an artefact of the above mentioned adaptive Bayesian approaches, and that
more refined nonparametric techniques can reach the information-theoretic
limits for adaptive confidence sets in ℓ2. It is conceivable, however, that an
appropriately modified empirical Bayes method might achieve the information
theoretic limits derived in the present paper; see [18] for some related results
and ideas.

Before we proceed with our main results let us clarify that the statistical
complexity of the estimation problem did not decrease quantitatively by in-
troducing the self-similarity constraint: The minimax estimation rate over the
class (3) is equal to the minimax rate over the Sobolev class Ss(B).

Theorem 1. For any fixed values of 0 < b < B, J0 ∈ N, ε ∈ (0, 1), the
minimax rate of estimation over all self-similar functions Ss

ε ≡ Ss
ε(b, B, J0) in

the Gaussian sequence model (1) is of order

inf
T̂n=T̂n(Y )

sup
f∈Ss

ε

Ef‖T̂n − f‖2 ≃ n−s/(2s+1).

2.2. Construction of the confidence ball

In this subsection we give an algorithm which provides asymptotically hon-
est and adaptive confidence sets over the collection of self-similar functions. As
a first step we split the ‘sample’ into two parts y′ = (y′k) and y′′ = (y′′k) (with
Gaussian noise g′k and g′′k with variance 2, respectively, see [17] for instance),
inflating the variance of the noise by 2, with distributions Pr1 and Pr2, and
expectations E1 and E2, respectively. Furthermore by slightly abusing our
notation introduced in the beginning of Section 2 we denote in this section
by Prf and Ef the joint distribution and the corresponding expected value,
respectively.

Using the first sample y′ we denote by f̂n(j) the linear estimator with
‘resolution level’ (=truncation point) j ∈ N,

f̂n(j) ≡ (y′k)1≤k≤2j , E1f̂n(j) = (fk)1≤k≤2j = Kj(f), (5)
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where Kj denotes the projection operator onto the first 2j coordinates. Let
us consider minimal and maximal truncation levels jmin = σ log2 n, jmax =
σ log2 n – for concreteness we take σ = 1/(2s′ + 1) for arbitrary s′ > smax and
σ = 1, but other choices are also possible. We define a discrete grid J of
resolution levels

J = {j ∈ N : j ∈ [jmin, jmax]}
that has approximately log2 n elements. Using Lepski’s method define a first
estimator by

ĵn ≡ min

{

j ∈ J : ‖f̂n(j)− f̂n(l)‖22 ≤ 4× 2l+1

n
∀l > j, l ∈ J

}

. (6)

While ĵn is useful for adaptive estimation via f̂n(ĵn), for adaptive confi-
dence sets we shall need to systematically increase ĵn by a certain amount –
approximately by a factor of two. To achieve this let us take a fixed parameter
0 < m < 1 and choose parameters 0 < κ1, κ2 < 1 that satisfy

m <
2smin + 1/2

smin + (smin + 1/2)/κ1
< 1 and 0 <

1 + κ1

2κ2
< κ2 < 1. (7)

Intuitively, given δ > 0 we can choose m,κ1, κ2 such that all lie in (1 − δ, 1) –
the reader may thus think of m and the κi’s as constants that are arbitrarily
close to one. Next an ‘under-smoothed estimate’ is defined as

Ĵn = ⌈Jn⌉, where
1

Jn
≡ 1

2κ2

1

ĵn
− 1− κ2

2κ2

1

log2 n
. (8)

With Ĵn in hand, we use again the sample y′ to construct any standard adaptive
estimator f̂n for which the conclusions of Theorem 4 in the Appendix hold true,
and use the second subsample y′′ to estimate the squared ℓ2-risk of f̂n: The
risk estimate

Ũn(f̂n) =
∑

k≤2Ĵn

(y′′k − f̂n,k)
2 − 2Ĵn+1

n

has expectation (conditional on the first subsample y′)

E2Ũn(f̂n) =
∑

k≤2Ĵn

(fk − f̂n,k)
2 = ‖KĴn

(f − f̂n)‖22. (9)

Our ℓ2-confidence ball is defined as

Cn =

{

f : ‖f − f̂n‖22 ≤ Ũn(f̂n) +
√
8γα

2Ĵn/2

n

}

, (10)

where γα denotes the 1 − α quantile of the standard normal N(0, 1) random
variable, 0 < α < 1. We note that, unlike [1],[2] or [19], we do not require
knowledge of any self-similarity or radius parameters in the construction; we
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only used the knowledge of smax in the construction of the discrete grid J and
the parameters m and smin in the choice of κ2.

However, the above construction has also its limitations, it will not work for
every self-similarity function ε(·), hence we have to introduce some additional
restriction. Assume that the function ε(·) satisfies

sup
s∈[smin,smax]

ε(s)
2s+ 1/2

s
≤ m < 1, (11)

for a fixed parameter m ∈ (0, 1) introduced in (7).

To formulate our main results let us introduce the notation

S(ε) = S(ε, b, B, J0) ≡ ∪s∈[smin,smax]S
s
ε(s)(b, B, J0). (12)

for the collection of self-similar functions with regularity ranging between
[smin, smax] and function ε : [smin, smax] 7→ (0, 1).

Theorem 2. For any 0 < b < B < ∞, J0 ∈ N, and self-similarity function ε
satisfying (11), the confidence set Cn defined in (10) has exact honest asymp-
totic coverage 1− α over the collection of self-similar functions S(ε), i.e.,

sup
f∈S(ε,b,B,J0)

∣

∣

∣
Prf(f ∈ Cn)− (1− α)

∣

∣

∣
→ 0

as n → ∞. Furthermore the ℓ2-diameter |Cn| of the confidence set is rate
adaptive: For every s ∈ [smin, smax], B > b, J0 ∈ N, and δ > 0 there exists
C(s, δ) > 0 such that

lim sup
n→∞

sup
f∈Ss

ε(s)
(b,B,J0)

Prf (|Cn| ≥ C(s, δ)B1/(2s+1)n−s/(2s+1)) ≤ δ.

2.3. Information theoretic lower bound

The assumption of self-similarity in Theorem 2 could be entirely removed
when smax < 2smin, by adapting the proof of Theorem 3A in [2] to the sequence
space setting considered here. In the more realistic setting smax > 2smin this is,
however, not the case, as our results below will imply. We shall prove that for
general adaptation windows [smin, smax], the self-similarity function ε(s) > 0
can not exceed 1/2 for an honest and adaptive confidence set to exist over the
class S(ε). This will be deduced from the following general lower bound on the
size of honest confidence sets for constant self-similarity function ε(·) ≡ ε > 0
and two regularity levels s > r.

Theorem 3. Fix α ∈ (0, 1/2), 0 < ε(·) ≡ ε < 1, 0 < r < r′ < r/(1− ε) <∞,
and let s ∈ (r′, r/(1− ε)) be arbitrary. Then there does not exist a confidence
set Cn in ℓ2 which satisfies for every 0 < b < B, J0 ∈ N,

lim inf
n→∞

inf
f∈Sr

ε (b,B,J0)∪Ss
ε(b,B,J0)

Prf(f ∈ Cn) ≥ 1− α, (13)

sup
f∈Ss

ε(b,B,J0)

Prf(|Cn| > rn)
n→∞→ 0, (14)

for any sequence rn = o(n
− r′

2r′+1/2 ).
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Remark 1. Theorem 3 also holds with rn = O(n
− r′

2r′+1/2 ), but for clarity of the

proof we decided to state it in the present form. The rn = o(n
− r′

2r′+1/2 ) version
of the theorem is already sufficient to prove the next corollary.

Corollary 1. Assume that smax > 2smin and ε(·) ≡ ε > 1/2. Then there does
not exist a confidence set Cn in ℓ2 which satisfies for every 0 < b < B, J0 ∈ N,

lim inf
n→∞

inf
f∈∪s∈[smin,smax]S

s
ε(b,B,J0)

Prf (f ∈ Cn) ≥ 1− α, (15)

and for all s ∈ [smin, smax], δ > 0, and some large enough any K > 0

lim sup
n→∞

sup
f∈Ss

ε(b,B,J0)

Prf(|Cn| > Kn−s/(2s+1)) ≤ δ. (16)

Proof. Assume that there exists a honest confidence set Cn satisfying (15) and
(16). Then take any s ∈ (2smin, smax) and choose the parameters r, r′ such that
they satisfy s/2 > r′ > r > max{(1− ε)s, smin}. Following from Theorem 3 if
assertion (15) holds then (14) can not be true, i.e., the size of the confidence
set for any f ∈ Ss

ε(b, B, J0) can not be of a smaller order than n−r′/(2r′+1/2).
However, since r′ < s/2 we have n−s/(2s+1) = o(n−r′/(2r′+1/2)). Hence the size
of the honest confidence set has to be of a polynomially larger order than
n−s/(2s+1), which contradicts (16).

Remark 2. In Theorem 2 we have proved that for ε(s) ≤ ms/(2s+1/2) (with
s ∈ [smin, smax] and m arbitrary close to 1) the construction of adaptive and
honest confidence sets is possible. The upper bound tends to 1/2 as s goes
to infinity and m to one, showing that the restriction ε > 1/2 in Corollary 1
cannot be weakened in general.

3. Proof of Theorem 2

As a first step in the proof we investigate the estimator of the optimal
resolution level ĵn balancing out the bias and variance terms in the estimation.
The linear estimator f̂n(j) defined in (5) has bias and variance so that

‖E1f̂n(j)− f‖22 ≤ ‖f‖2s,22−2js ≡ B(j, f) (17)

and

E1‖f̂n(j)− E1f̂n(j)‖22 = (1/n)E1

2j
∑

k=1

g′k
2
=

2j+1

n
. (18)

Our goal is to find an estimator which balances out these two terms. For
this we used Lepski’s method in (6). For f ∈ Ss(B) we define

j∗n = j∗n(f) ≡ min{j ∈ J : B(j, f) ≤ 2j+1/n} (19)

which implies, by monotonicity, that

B(j, f) = 2−2js‖f‖2s,2 ≤
2j+1

n
, ∀j ≥ j∗n, j ∈ J , (20)
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B(j, f) = 2−2js‖f‖2s,2 >
2j+1

n
, ∀j < j∗n, j ∈ J .

We note that for n large enough (depending only on b and B) the inequalities
j∗n < ⌊log2 n⌋ and j∗n > ⌈(log2 n)/(2s′ + 1)⌉ hold (recall that s′ > smax is an
arbitrary parameter defined below display (5)), hence we also have

22s+12−2j∗ns‖f‖2s,2 ≥
2j

∗
n+1

n
. (21)

Therefore we can represent j∗n and the given value of s as

j∗n =
log2 n+ 2(log2(‖f‖s,2) + cn)

2s+ 1
, and (22)

s =
log2 n

2j∗n
+

log2(‖f‖s,2) + cn
j∗n

− 1

2
, (23)

respectively, where cn ∈ [−1/2, s] ⊂ [−1/2, smax].

The next lemma shows that ĵn is a good estimator for the optimal resolution
level j∗n in the sense that with probability approaching one it lies between
(1− ε(s))j∗n and j∗n whenever f is a self-similar function in the sense of (3).

Lemma 1. Assume that f ∈ Ss(B) for some s ∈ [smin, smax] and any B > 0.
a) We have for all n ∈ N,

Pr1(ĵn ≥ j∗n) ≤ C exp{−2j
∗
n/8},

with C = 2/(1− e−1/8)2.
b) Furthermore, if the self-similarity condition (3) holds we also have for all
n ∈ N such that j∗n ≥ J0 that

Pr1
(

ĵn < j∗n(1− ε(s))
)

≤ j∗n exp{−(9/8)2j
∗
n}.

Proof. See Section 3.1.

We note that by definition j∗n ≥ log2 n/(2s
′ + 1) → ∞ hence for n large

enough j∗n ≥ J0 holds uniformly over f ∈ S(ε, b, B, J0).
As a next step we examine the new (under-smoothed) estimator of the

resolution level Ĵn. Assuming f ∈ Ss
ε(s)(b, B, J0), the estimate ĵn of j∗n can be

converted into an estimate of s. We note that a given f does not necessarily
belong to a unique self-similar class Ss

ε(s)(b, B, J0), but the following results
hold for any class f belongs to. We estimate s simply by

s̄n =
log2 n

2ĵn
− 1

2
,

ignoring ‘lower order’ terms in (23). We then have from (23) that

s̄n − s =
log2 n

2ĵn
− 1

2
− log2 n

2j∗n
− log2(‖f‖s,2) + cn

j∗n
+

1

2

=
log2 n

2

(

j∗n − ĵn

j∗nĵn

)

− log2(‖f‖s,2) + cn
j∗n

.
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Now choose a constant κ3 ∈ (κ2, 1) so that

0 <
1 + κ1

2κ2
< κ2 < κ3 < 1,

recalling (7). From Lemma 1a) we have Pr1(ĵn − j∗n < 0) → 1 uniformly over
f ∈ ∪s∈[smin,smax]S

s(B), hence from the inequality j∗n ≥ (log2 n)/(2s
′ + 1) we

have for some constant C = C(B, s′), B ≥ ‖f‖s,2,

Pr1 (s̄n ≤ κ3s) = Pr1 (s̄n − s ≤ (κ3 − 1)s)

≤Pr1

(

log2 n

2

(

ĵn − j∗n
j∗nĵn

)

+
log2(‖f‖s,2) + cn

j∗n
≥ (1− κ3)smin

)

≤ Pr1 (C/ log2 n > (1− κ3)smin) + o(1)= o(1).

On the other hand we also have from Lemma 1b), (22), and 0 < ε(s) ≤ 1 that

Pr1(s̄n ≥ (1 + κ1)s)

= Pr1(s̄n − s ≥ κ1s)

≤ Pr1

(

log2 n

2

(

j∗n − ĵn

j∗nĵn

)

− log2(‖f‖s,2) + cn
j∗n

≥ κ1s

)

≤ Pr1

(

j∗n − ĵn

j∗nĵn
≥ 2κ1s

log2 n
+

2(log2(‖f‖s,2) + cn)

j∗n log2 n

)

≤ Pr1

(

ε(s)j∗n >
2κ1s(1− ε(s))(j∗n)

2

log2 n
+

2(1− ε(s))j∗n(log2(‖f‖s,2) + cn)

log2 n

)

+ o(1)

= Pr1

(

ε(s) >
2κ1s(1− ε(s))

2s+ 1
+

2κ1s(1− ε(s))

2s+ 1
×

2(log2(‖f‖s,2) + cn)

log2 n
+

2(1− ε(s))(log2(‖f‖s,2) + cn)

log2 n

)

+o(1)

≤ Pr1

(

ε(s) >
2κ1s(1− ε(s))

2s+ 1
+

2(κ1 + 1)s+ 1

2s+ 1
×2 log2(b/2) ∧ 0

log2 n

)

+ o(1)

= Pr1

(

ε(s) >
κ1s

(1 + κ1)s+ 1/2
+

2 log2(b/2) ∧ 0

log2 n

)

+ o(1).

The probability on the right hand side tends to zero for n large enough (de-
pending only on b), since

ε(s) ≤ m
s

2s+ 1/2
<

κ1(2smin + 1/2)

(1 + κ1)smin + 1/2
× s

2s+ 1/2
≤ κ1s

(1 + κ1)s+ 1/2

following from the definition of κ1 given in (7) and the monotone increasing
property of the function g(s) = (2s+ 1/2)/[(1+ κ1)s+1/2]. Therefore we see
that on an event of probability approaching one we have

s̄n ∈ (κ3s, (1 + κ1)s) , (24)
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and hence if we define
ŝn = s̄n/(2κ2)

we see

Pr1

(

ŝn ∈
(

κ3

2κ2
s,

1 + κ1

2κ2
s

))

→ 1 (25)

as n → ∞. By choice of the κi’s we see that ŝn systematically “underestimates”
the smoothness s and is contained in a closed subinterval of (s/2, s) with
probability approaching one. The ‘resolution level’ J corresponding to ŝn is
Ĵn: Easy (but somewhat cumbersome) algebraic manipulations imply

2n1/(2ŝn+1/2) > 2Ĵn ≥ n1/(2ŝn+1/2) (26)

(where Ĵn was defined in (8)). Furthermore we note that from (8) and ĵn ∈ J
also follows

Ĵn ∈
[

2κ2

2s′ + κ2

log2 n, ⌈2 log2 n⌉
]

. (27)

Next we turn our attention to the analysis of the confidence set Cn given in
(10). First of all note that

Ũn(f̂n)− E2Ũn(f̂n) =
1

n

∑

k≤2Ĵn

(

(g′′k)
2 − 2

)

+
2√
n

∑

k≤2Ĵn

(fk − f̂n,k)g
′′
k

≡ −An − A′
n. (28)

We deal with the two random sums An and A′
n on the right hand side sepa-

rately. First we show that A′
n = OPrf (n

− 2s+1/2
2s+1 ). Note that conditionally on

the first sample the random variable A′
n has Gaussian distribution with mean

zero and variance (8/n)
∑

k≤Ĵn
(fk−f̂n,k)

2 ≤ (8/n)‖f−f̂n‖22 . Furthermore note

that ‖f − f̂n‖22 = OPr1(n
− 2s

2s+1 ) following from the adaptive construction of the
estimator f̂n. Hence we can conclude following from the independence of the
samples y′ and y′′, and Chebyshev’s inequality that for every δ > 0 there exists

a large enough constant K such that A′
n ≥ Kn− 2s+1/2

2s+1 with Prf -probability
less than δ.

It remains to deal with An. In view of sample splitting the centered vari-
ables (2− (g′′k)

2) are independent of Ĵn, have variance σ2 = 8 and finite skew-
ness ρ > 0. From the law of total probability, (24), (27) and Berry-Esseen’s
theorem (Theorem (4.9) in [8]) we deduce that

∣

∣

∣
Prf

(

An ≤ σγα2
Ĵn/2

n

)

− (1− α)
∣

∣

∣
=

≤
⌈2 log2 n⌉
∑

j=2κ2 log2 n/(2s
′+κ2)

∣

∣

∣
Pr2

( 1

σ2j/2

2j
∑

k=1

(2− (g′′k)
2) ≤ γα

)

− (1− α)
∣

∣

∣
Pr1(Ĵn = j)

≤ (3ρ/σ3)2−κ2 log2 n/(2s
′+κ2) = o(1). (29)
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Next note that in view of f ∈ Ss(B) and Theorem 4 (using that ‖f̂n‖s,2 is
uniformly bounded for f ∈ Ss(B)) the bias satisfies that

22Ĵnŝn‖KĴn
(f − f̂n)− (f − f̂n)‖22 = O

(

22Ĵnŝn−2Ĵns(‖f‖2s,2 + ‖f̂n‖2s,2)
)

= oPr1(1),

(30)

since s > [(κ1+1)/(2κ2)]s > ŝn with Pr1-probability tending to 1. Furthermore

following from (26) we have 22Ĵnŝn ≥ n2−Ĵn/2. Then by using Pythagoras’
theorem, (30) and (28) we deduce

n2−Ĵn/2‖f − f̂n‖22 = n2−Ĵn/2
(

‖KĴn
(f − f̂n)‖22 + ‖KĴn

(f − f̂n)− (f − f̂n)‖22
)

= n2−Ĵn/2E2Ũn(f̂n) + oPr1(1)

= n2−Ĵn/2
(

Ũn(f̂n) + An + A′
n

)

+ oPr1(1). (31)

Following from (25) and (26) we obtain that (uniformly over S(ε, b, B, J0)) with
Pr1-probability tending to one

2Ĵn/2/n & n
− s(1+κ1)/κ2

s(1+κ1)/(κ2)+1/2 ,

where the right hand side is of larger order than n
− 2s

2s+1/2 by the definition of

κ1 and κ2. Furthermore following from A′
n = OPrf (n

− 2s+1/2
2s+1 ) and n− 2s+1/2

2s+1 =

o(n− 2s
2s+1/2 ) we see that the right hand side of (31) can be rewritten as

n2−Ĵn/2Ũn(f̂n) + An + oPrf (1). (32)

Therefore following from (31), (32) and (29) we deduce that the confidence set
Cn given in (10) has exact asymptotic coverage 1− α

Prf(f ∈ Cn) = Prf

(

n2−Ĵn/2‖f − f̂n‖22 ≤ n2−Ĵn/2Ũn(f̂n) +
√
8γα

)

= Prf

(

n2−Ĵn/2An ≤
√
8γα + oPrf (1)

)

= 1− α + o(1).

Finally we show that the radius of the confidence set is rate adaptive. First
we note that

2Ĵn/4/
√
n ≤ 21/4n−ŝn/(2ŝn+1/2) = oPr1(n

−s/(2s+1)),

following from s >ŝn > sκ3/(2κ2) > s/2 with Pr1-probability tending to 1 and
(26). Then following from (9) and Theorem 4 we conclude

Ef Ũn(f̂n) = E1‖KĴn
(f − f̂n)‖22 ≤ E1‖f − f̂n‖22 ≤ K(s)B1/(1+2s)n−s/(1+2s),

so that the second claim of Theorem 2 follows from Markov’s inequality.
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3.1. Proof of Lemma 1

a) Pick any j ∈ J so that j > j∗n and denote by j− = j − 1 ≥ j∗n the
previous element in the grid. One has, by definition of ĵn,

Pr1(ĵn = j) ≤
∑

l∈J :l≥j

Pr1

(

∥

∥

∥
f̂n(j

−)− f̂n(l)
∥

∥

∥

2

2
> 4× 2l+1

n

)

, (33)

and we observe that

∥

∥

∥
f̂n(j

−)− f̂n(l)
∥

∥

∥

2

2
=

1

n

2l
∑

k=2j−+1

g′2k +

2l
∑

k=2j−+1

f 2
k − 2√

n

2l
∑

k=2j−+1

fkg
′
k.

Since f ∈ Ss(B) and l ≥ j− ≥ j∗n we have

2l
∑

k=2j−+1

f 2
k ≤ ‖f‖2s,22−2sj− = B(j−, f) ≤ 2j

−+1

n
≤ 2l+1

n
. (34)

Therefore each probability in (33) are bounded from above by the sum of the
following probabilities

Pr1

(1

n

2l
∑

k=2j−+1

g′k
2 ≥ 2× 2l+1

n

)

≤ Pr1

(

2l
∑

k=2j−+1

(g′k
2 − 2) ≥ 2l+1

)

(35)

and

Pr1

(∣

∣

∣

2√
n

2l
∑

k=2j−+1

fkg
′
k

∣

∣

∣
≥ 2l+1

n

)

≤ Pr1

(

|Z| ≥ 2l√
n

)

, (36)

where Z is a Gaussian distributed random variable with mean zero and variance
2
∑2l

k=2j−+1f
2
k ≤ 2l+2/n following from (34). Then by Theorem 6 (with t = 2l+1,

σ2 = 2, and n = 2l − 2j
−
) the right hand side of (35) is bounded from above

by

exp
{

− 22l+2/4

4(2l+1/2 + 2l − 2j−)

}

≤ exp
{

− 22l

4(2l + 2l)

}

≤ e−2l/8.

Furthermore by a standard Gaussian tail bound the probability in (36) is
bounded by

2√
2π2l/2−1

exp{−2l−2} ≤ e−2l/4.

We thus obtain that

Pr1(ĵn = j) ≤
log2 n
∑

l=j

2e−2l/8 ≤ 2

1− e−1/8
e−2j/8, j ≥ j∗n,

Pr1(ĵn ≥ j∗n) ≤
log2 n
∑

j=j∗n

Pr1(ĵn = j) ≤ 2

(1− e−1/8)2
e−2j

∗
n/8.
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For Part b), fix j ∈ J such that j < j∗n(1 − ε), where ε = ε(s). Then by
definition of ĵn

Pr1(ĵn = j) ≤ Pr1(‖f̂n(j)− f̂n(j
∗
n)‖2 ≤ 2

√

2j∗n+1/n). (37)

Now, using the triangle inequality

‖f̂n(j)− f̂n(j
∗
n)‖2 = ‖f̂n(j)− f̂n(j

∗
n)− E1(f̂n(j)− f̂n(j

∗
n)) + E1(f̂n(j)− f̂n(j

∗
n))‖2

≥ ‖E1(f̂n(j)− f̂n(j
∗
n))‖2 − ‖f̂n(j)− f̂n(j

∗
n)− E1(f̂n(j)− f̂n(j

∗
n))‖2

=

√

√

√

√

2j
∗
n
∑

k=2j+1

f 2
k − 1√

n

√

√

√

√

2j
∗
n
∑

k=2j+1

g′k
2.

Since j < j∗n(1 − ε) we have from the definition of self-similarity (3) and (21)
that

√

√

√

√

2j
∗
n

∑

k=2j+1

f 2
k ≥

√

√

√

√

2j
∗
n
∑

k=2j
∗
n(1−ε)

f 2
k ≥ 4× 2s+1/2‖f‖s,22−j∗ns ≥ 4×

√

2j∗n+1

n
,

so that the probability on the right hand side of (37) is less than or equal to

Pr1





1√
n

√

√

√

√

2j
∗
n
∑

k=2j+1

g′k
2 ≥

√

√

√

√

2j
∗
n
∑

k=2j+1

f 2
k − 2

√

2j∗n+1

n





≤ Pr1





2j
∗
n
∑

k=1

g′k
2
> (4− 2)22j

∗
n+1





= Pr1





2j
∗
n
∑

k=1

(g′2k − 2) > 3× 2j
∗
n+1



 .

This probability on the right hand side is bounded by exp{−(9/8)2j
∗
n} following

from Theorem 6 (with t = 3 × 2j
∗
n+1, σ2 = 2 and n = 2j

∗
n). The overall result

follows by summing the above bound in j < (1− ε)j∗n < j∗n.

4. Proof of Theorem 3

The proof of the theorem adapts ideas from the proof of Theorem 4 of
[2]. In this section we use the notation Pr

(n)
f and E

(n)
f introduced in Section

2 for the distribution and expected value of y, defined in (1), respectively
(there is no sample splitting in this case as in Section 2.2). As a special case

we note that Pr
(n)
0 and E

(n)
0 denotes the distribution and expected value of

yk = gk/
√
n, k ∈ N, respectively.

Let us assume that such a confidence set Cn exists and derive a contra-
diction with the help of a particularly constructed sequence (fm : m ∈ N) of
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s-self-similar functions. We denote the limit of these sequences by f∞, which
will also be shown to be r-self-similar. Then we show that along a subsequence
nm of n, and for δ = (1− 2α)/5 > 0,

sup
m

Pr
(nm)
f∞

(

f∞ ∈ Cnm

)

≤ 1− α− δ (38)

contradicting (13).

We partition N into sets of the form Z0
i = {2i, 2i + 1, ..., 2i + 2i−1 − 1} and

Z1
i = {2i + 2i−1, 2i + 2i−1 + 1, ..., 2i+1 − 1}. Let us choose a parameter s′ > s

satisfying r > s′(1−ε) > s(1−ε) and define self-similar sequences fm = (fm,k),
for m ∈ N,

fm,k =











2−(s′+1/2)l for l ∈ N ∪ {0} and k ∈ Z0
l ,

2−(r′+1/2)jiβji,k for i ≤ m and k ∈ Z1
ji
,

0 else,

for some monotone increasing sequence ji ∈ N tending to infinity and coeffi-
cients βji,k = ±1 to be defined later. First we show that independently of the
choice of the monotone increasing sequence ji and of the coefficients βji,k = ±1,
the signals fm and f∞ satisfy the self-similarity condition.

Using the definition of fm, the monotone decreasing property of the function
f(x) = x−1−2(s′−s)and the inequality s > r′ one can see that

‖fm‖2s,2 =
∞
∑

k=1

f 2
m,kk

2s ≤ 22s
′+1

∞
∑

k=1

k−1−2(s′−s) + 22s
m
∑

i=1

∑

k∈Z1
ji

2ji(2s−2r′−1)

≤ 22s
′+1(1 +

∫ ∞

1

x−1−2(s′−s)dx) + 22s−1
m
∑

i=1

2ji(2s−2r′)

≤ 22s
′+1(1 +

1

2(s′ − s)
) + 22s−1 2jm(2s−2r′)

1− 2−(2s−2r′)
≡ B(s, s′, r′, jm), (39)

where the constant B(s, s′, r′, jm) depends only on s, s′, r′ and jm. Furthermore

2J
∑

k=2(1−ε)J

f 2
m,k ≥

∑

k∈Z0
⌈(1−ε)J⌉

f 2
m,k = 2−(2s′+1)⌈(1−ε)J⌉ × 2⌈(1−ε)J⌉−1 = 2−2s′⌈(1−ε)J⌉/2,

(40)

for J ≥ ⌈(1− ε)J⌉+ 1, which holds for J ≥ J0 (where J0 depends only on ε).
Then following from the upper bound on the norm (39) and the inequalities
s′(1− ε) < r < s the right hand side of (40) is further bounded from below by

2−2rJ/2 ≥ 16× 22s+1B(s, s′, r′, jm)2
−2sJ ≥ 16× 22s+1‖fm‖2s,22−2sJ ,

for J > J0 (where J0 depends on s, s′, r, r′,ε and jm). [We note that the
dependence of J0 on jm is harmless since nm is defined independently of jm,
see below. ] Finally the lower bound on the Sobolev norm can be obtained via

‖fm‖2s,2 ≥
∑

k∈Z0
1

f 2
m,kk

2s = 2−1−2(s′−s) > 2−1−2(s′−r) ≡ b2. (41)
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Next we show that f∞ is r-self-similar. First we note that the existence of
f∞ follows from the Cauchy property of the sequence (fm) in ℓ2. Furthermore
by definition we have that f∞,k = fm,k for all k ≤ 2jm, m ∈ N. Therefore
similarly to (41) and (39) the signal f∞ satisfies ‖f∞‖r,2 ≥ b and

‖f∞‖2r,2 =
∞
∑

k=1

f 2
∞,kk

2r ≤ 22r
′+1

∞
∑

k=1

k−1−2(r′−r)

≤ 22r
′+1(1 +

1

2(r′ − r)
) ≡ B(r, r′), (42)

hence it belongs to the Sobolev ball Sr(B) with radius B = B(r, r′) depending
only on r and r′. Then similarly to (40) we deduce from (42) and the inequality
(1− ε)s′ < r that

2J
∑

k=2(1−ε)J

f 2
∞,k ≥ 2−2s′⌈(1−ε)J⌉/2 ≥ 16× 22r+1B(r, r′)2−2rJ

≥ 16× 22r+1‖f∞‖2r,22−2rJ ,

for J > J0 (where J0 depends only on r, r′, s′ and ε).
Next we give a recursive algorithm for the choice of the sequence jm and

the parameters (βji,k : k ∈ Z1
ji
). We start the sequence with j0 = 1 and n0 = 1.

If we assume that for 0 ≤ i ≤ m− 1 the parameters ji and (βji,k : k ∈ Z1
ji
) are

already chosen, then for nm large enough (depending only on jm−1 (through
fm−1), δ and not on jm) we have from (13) and (14) that

Pr
(nm)
fm−1

(fm−1 /∈ Cnm) ≤ α + δ, (43)

Pr
(nm)
fm−1

(|Cnm| ≥ rnm) ≤ δ, (44)

with fm−1 ∈ Ss
ε(b, B, J0), where b, J0 and B depend only on s, s′, r, r′, jm−1, ε

and are independent of nm. Then we choose jm such that

nm = c2jm(2r′+1/2), (45)

with a small enough constant c satisfying

ec
2/2 ≤ 1 + δ2. (46)

We note furthermore that nm has to be chosen large enough such that jm/jm−1

is at least 1 + 1/(2r′).
Next we define the coefficients {βjm,k : k ∈ Z1

jm}. Let the kth coefficient of
the sequence fm,β be

fm,β,k = fm−1,k + βjm,k2
−(r′+1/2)jm1{k∈Z1

jm
}, k ∈ N,

denote the sequence derived from the sequence fm−1 by adding the coefficients
{βjm,k2

−(r′+1/2)jm : k ∈ Z1
jm}. Then define

Zβ =
dPr

(nm)
fm,β

dPr
(nm)
fm−1
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and set Z = 2−2jm−1∑

β Zβ, so E
(nm)
fm−1

(Z) = 1. Let us introduce the notation

γnm = nm2
−(2r′+1)jm .

Then from Proposition 1 we have that

Z = 2−2jm−1
∑

β

dPr
(nm)
fm,β

/dPr
(nm)
0

dPr
(nm)
fm−1

/dPr
(nm)
0

= 2−2jm−1
∑

β

exp{nm

∞
∑

k=1

(fm,β,k − fm−1,k)yk + nm(‖fm,β‖22 − ‖fm−1‖22)/2}

= 2−2jm−1
∑

β

exp{
∑

k∈Z1
jm

(
√
nmβjm,k

√
γnmyk)− 2jm−1(γnm/2)}.

= 2−2jm−1
∑

β

∏

k∈Z1
jm

exp{√nmβjm,k
√
γnmyk − γnm/2}.

By applying Fubini’s theorem, Proposition 1, the formula E
(n)
0 e

√
nuyk = eu

2/2

and that fm−1,k = 0 for k ∈ Z1
jm we see that

E
(nm)
fm−1

Z2 = E
(nm)
fm−1

(

2−2jm−1
∑

β

∏

k∈Z1
jm

exp{√nmβjm,k
√
γnmyk − γnm/2}

)2

= 2−2jm
∑

β,β′

E
(nm)
0

(

∏

k∈Z1
jm

exp{√nm(βjm,k + β ′
jm,k)

√
γnmyk − γnm}×

exp{nm

∞
∑

k=1

fm−1,kyk − nm‖fm−1‖22/2}
)

= 2−2jm
∑

β,β′

∏

k∈Z1
jm

exp{γnm

2
(βjm,k + β ′

jm,k)
2 − γnm}

= 2−2jm
∑

β,β′

exp{γnm

∑

k∈Z1
jm

βjm,kβ
′
jm,k}

= E
(

exp{γnmYjm}
)

,

where Yjm =
∑2jm−1

i=1 Ri for i.i.d. Rademacher random variables Ri and E is
the corresponding expectation.

Note that following (45) c = nm2
−(2r′+1/2)jm = γnm2

jm/2 and recall the
definition of the hyperbolic cosine function cosh(x) = (ex + e−x)/2. Then we
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deduce that

E
(

exp{γnmYjm}
)

= E
(

exp{c2−jm/2
2jm−1
∑

i=1

Ri}
)

=
(e−c2−jm/2

+ ec2
−jm/2

2

)2jm−1

= cosh(c2−jm/2)2
jm−1

=
(

1 + c22−jm(1 + o(1))
)2jm−1

≤ exp
{

c2(1/2 + o(1))
}

≤ 1 + δ2,

using the definition of c given in (46). Conclude that therefore

E
(nm)
fm−1

(Z − 1)2 = E
(nm)
fm−1

(Z − E
(nm)
fm−1

Z)2

=E
(nm)
fm−1

Z2 − (E
(nm)
fm−1

Z)2 ≤ 1 + δ2 − 1 ≤ δ2. (47)

As a consequence of the preceding inequality if we consider the test Tnm =
1{∃f ∈ Cnm, ‖f − fm−1‖2 ≥ rnm} then by the Cauchy-Schwarz and Jensen’s
inequality

Pr
(nm)
fm−1

(Tnm = 1) + max
β

Pr
(nm)
fm,β

(Tnm = 0)

≥ Pr
(nm)
fm−1

(Tnm = 1) + 2−2jm−1
∑

β

Pr
(nm)
fm,β

(Tnm = 0)

= 1 + E
(nm)
fm−1

[(Z − 1)1{Tnm = 0}]
≥ 1− δ. (48)

We set fm equal to fm,β maximizing the preceding expression in β.
Then for the limiting sequence f∞ we can likewise compute the likelihood

ratio

Z ′ =
dPr

(nm)
f∞

dPr
(nm)
fm

.

We have that E
(nm)
fm

[Z ′] = 1 and

‖f∞ − fm‖22 =
∞
∑

i=m+1

∑

k∈Z1
ji

2−(2r′+1)ji ≤ (1/2)
∞
∑

i=m+1

2−2r′ji

≤ 2−2r′jm+1

2− 21−2r′
≤ 2−(2r′+1)jm

2− 21−2r′
, (49)

following from the definition of jm. Let us denote by γnm,ji = nm2
−(2r′+1)ji .
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Then similarly to the computation of E
(nm)
fm−1

[Z2] we have

E
(nm)
fm

[Z ′2] = E
(nm)
fm

(

∞
∏

i=m+1

∏

k∈Z1
ji

exp{βji,k
√
nmγnm,jiyk − γnm,ji/2}

)2

= E
(nm)
0

(

∞
∏

i=m+1

∏

k∈Z1
ji

exp{2√nmβji,k
√
γnm,jiyk − γnm,ji}×

exp{nm

∞
∑

k=1

fm,kyk − nm‖fm‖22/2}
)

=

∞
∏

i=m+1

∏

k∈Z1
ji

exp{2β2
ji,k

γnm,ji − γnm,ji}

= exp{nm‖f∞ − fm‖22},

where the right hand side following from (45) and (49) is bounded from above
by

exp{D2−jm/2} ≤ 1 + δ2,

for some positive constant D (depending only on r and c) and m large enough.

Hence similarly to (47) E
(nm)
fm

[(Z ′− 1)2] ≤ δ2 which together with (48) leads to

Pr
(nm)
fm−1

(Tnm = 1) + Pr
(nm)
f∞

(Tnm = 0) = Pr
(nm)
fm−1

(Tnm = 1) + E
(nm)
fm

[Z ′1{Tnm = 0}]
≥ 1− δ + E

(nm)
fm

[(Z ′ − 1)1{Tnm = 0}]
≥ 1− 2δ. (50)

Now if Cnm is a confidence set as in the theorem satisfying (43) and (44)
then we have from the definition of the test Tnm that

Pr
(nm)
fm−1

(Tnm = 1) ≤ Pr
(nm)
fm−1

(fm−1 /∈ Cnm) + Pr
(nm)
fm−1

(|Cnm| ≥ rnm) ≤ α + 2δ,

which combined with the previous display gives

Pr
(nm)
f∞

(Tnm = 0) ≥ 1− α− 4δ.

By construction and (45) we have

‖f∞ − fm−1‖22 ≥
∑

k∈Z1
jm

β2
k2

−(2r′+1)jm = 2−2r′jm/2 = (c
2r′

2r′+1/2/2)n−2r′/(2r′+1/2)
m ,

and r2nm
= o(n

−2r′/(2r′+1/2)
m ) hence the event f∞ ∈ Cnm implies that Cnm con-

tains an element (f∞) that is at least rnm far away from fm−1. We deduce the
desired contradiction

Pr
(nm)
f∞

(f∞ ∈ Cnm) ≤ Pr
(nm)
f∞

(Tnm = 1) ≤ α+ 4δ = 1− α− δ.
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5. Proof of Theorem 1

The proof is a standard minimax lower bound after checking that the least
favourable ‘prior’ concentrates on self-similar functions. Note that Ss

ε(s)(b, B, J0)

is a subset of Ss(B) hence it is sufficient to show that the minimax rate
over Ss

ε(r)(b, B, J0) is bounded below by a small enough constant multiplier

of n−s/(1+2s). For notational simplicity we write ε = ε(s).
For fixed 0 < b < B < ∞ and given noise level we construct a set of s-

self-similar functions {fm : m ∈ M} and a benchmark s-self-similar function
f0. First we show that the signals fm are sufficiently far away from each other
with respect to the ℓ2-norm (constant times the minimax rate far away). Then
we show that their Kullback-Leibler divergence K(·, ·) from f0 is small enough
to apply Theorem 5 in the Appendix.

Take r > s such that s > (1−ε)r and using the notations of Theorem 3 let
Z0

i = {2i, 2i+1, ..., 2i+2i−1−1} and Z1
i = {2i+2i−1, 2i+2i−1+1, ..., 2i+1−1}.

Then we define f0, fm,j ∈ ℓ2 as

f0,k =

{

K12
−(r+1/2)l for l ∈ N and k ∈ Z0

l ,

0 else,

and

fm,j,k =











K12
−(r+1/2)l for l ∈ N and k ∈ Z0

l ,

δβm,j,k2
−(s+1/2)j for k ∈ Z1

j ,

0 else,

for some coefficients βm,j,k ∈ {0, 1} and K1, δ > 0 to be defined later. Next we
show that all the above defined sequences f0 and fm,j are s-self-similar.

First of all we show that their ‖ · ‖s,2-norm is bounded from below by b.
From definition we have

‖fm,j‖2s,2 ≥ ‖f0‖2s,2 = K2
1

∑

l∈N

∑

k∈Z0
l

2−(1+2r)lk2s,

where the right hand side is finite and depends only on the choice of s and r.
We choose K1 such that the right hand side of the preceding display is equal
to b2.

As a next step we verify that f0 and fm,j are in Ss(B)

‖f0‖2s,2 ≤ ‖fm,j‖2s,2 =
∞
∑

k=1

f 2
m,j,kk

2s

≤ K2
1

∑

l∈N

∑

k∈Z0
l

2−(1+2r)lk2s + 22sδ2
∑

k∈Z1
j

β2
m,j,k2

−j

=b2 + δ222s−1.

It is easy to see that for small enough choice of the parameter δ > 0 the right
hand side is bounded above by B2 (the choice δ2 < (B2−b2)21−2s is sufficiently
good) hence both f0 and fm,j belong to the Sobolev ball Ss(B). Then we show
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that f0 satisfies the lower bound (3) as well. Similarly to the proof of Theorem
3 we have following from r(1− ε) < s that

2J
∑

k=2(1−ε)J

f 2
0,k ≥

∑

k∈Z0
⌈(1−ε)J⌉

f 2
0,k = (K2

1/2)2
−2r⌈(1−ε)J⌉

≥ 16× 21+2sB22−2sJ ≥ 16× 21+2s‖f0‖2s,22−2sJ ,

for J > J0 (where the parameter J0 depends only on r, s, B and ε). The
s-self-similarity of the functions fm,j follows exactly the same way.

Next we define the sequences fm (m ∈ Mj) with the help of the sequences
fm,j , such that the ℓ2-distance between them is sufficiently large. It is easy to
see that

‖fm,j,k − fm′,j,k‖22 = 2−j(2s+1)δ2
∑

k∈Z1
j

(βm,j,k − βm′,j,k)
2.

Then following from the Varshamov-Gilbert bound ([20]) there exist a subset

Mj ⊂ {0, 1}|Z1
j | with cardinality Mj = 22

j/16 such that

∑

k∈Z1
j

(βm,j,k − βm′,j,k)
2 ≥ 2j/16,

for any m 6= m′∈ Mj . Therefore

‖fm,j − fm′,j‖22 ≥ (δ2/16)2−2js,

for m 6= m′ ∈ Mj . Then choosing j = jn such that jn = ⌊log2 n/(1 + 2s)⌋ the
fm ≡ fm,jn sequences are 2 × (δ2/25)n−2s/(1+2s) separated and are satisfying
the self-similarity condition.

The KL-divergence is bounded by

K(Prf0 ,Prfm) =
n

2
‖fm − f0‖22 =

n

2
2−jn(2s+1)δ2

∑

k∈Z1
jn

β2
m,jn,k

≤ 22s+12jnδ2

4
≤ 22s+3δ2

ln 2
lnMjn .

Therefore we can conclude the proof by applying Theorem 5 with 0 < δ <√
2−2s−4 ln 2 (since in this case α = (22s+3/ ln 2)δ2 < 1/2, hence the constant

on the right hand side of (A.1) is positive) and rn = (δ2/25)n−2s/(1+2s).

Appendix A.

We collect here some basic background material used in the proofs, most
of which can be found or proved as in [20] or [11].

Theorem 4. Consider the Gaussian sequence model (1) and assume that the
true sequence f ∈ ℓ2 belongs to a collection of Sobolev balls ∪s∈[smin,smax]S

s(B)
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for some fixed 0 < smin < smax < ∞ and (unknown) B > 0. Then there
exists a rate adaptive estimator f̂n ∈ ℓ2 over ∪s∈[smin,smax]S

s(B), i.e., for every
s ∈ [smin, smax], B > 0

sup
f∈Ss(B)

Ef‖f̂n − f‖2 ≤ K(s)B1/(2s+1)n−s/(2s+1),

where 0 < K(s) < ∞ is a fixed constant. We can moreover take f̂n such that
‖f̂n‖s,2 = OPrf (1) uniformly in f ∈ Ss(B).

Theorem 5. Suppose F contains {fm : m = 0, 1, ...M}, M > 1, that are
2rn separated (d(fm, fm′) ≥ 2rn, ∀m 6= m′), and such that the Prfm are all
absolutely continuous with respect to Prf0 . Set M̄ = max{e,M} and assume
that for some α > 0

1

M

M
∑

m=1

K(Prfm ,Prf0) ≤ α log M̄.

Then the minimax risk from is lower bounded by

inf
f̃n

sup
f∈F

Efd(f̃n, f) ≥ rn

√
M̄

1 +
√
M̄

(

1− 2α−
√

2α

log M̄

)

.

Proposition 1. For the Gaussian vector (yk : k ∈ Z) from (1) denote by

Pr
(n)
f the product corresponding law on the cylindrical σ-algebra C of RZ. If

(fk : k ∈ Z) ∈ ℓ2 then Pr
(n)
f is absolutely continuous with respect to Pr

(n)
0 , and

the likelihood ratio, for Pr
(n)
0 is given by

dPr
(n)
f

dPr
(n)
0

= exp
{

n
∑

k∈Z
fkyk −

n

2
‖f‖22

}

. (A.1)

Theorem 6. Let gi, i = 1, ..., n, be i.i.d. N(0, σ2) and set X =
∑n

i=1(g
2
i −σ2).

Then for any t ≥ 0,

Prf(X > t) ≤ exp
{

− t2/σ4

4(n+ t/σ2)

}

,

and the same inequality holds for −X.
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