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Evolution of star clusters on eccentric orbits
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ABSTRACT
We study the evolution of star clusters on circular and eccentric orbits using direct N-body
simulations. We model clusters with initially N = 8k and 16k single stars of the same mass,
orbiting around a point-mass galaxy. For each orbital eccentricity that we consider, we find
the apogalactic radius at which the cluster has the same lifetime as the cluster with the same N
on a circular orbit. We show that then, the evolution of bound particle number and half-mass
radius is approximately independent of eccentricity. Secondly, when we scale our results to
orbits with the same semimajor axis, we find that the lifetimes are, to first order, independent
of eccentricity. When the results of Baumgardt and Makino for a singular isothermal halo
are scaled in the same way, the lifetime is again independent of eccentricity to first order,
suggesting that this result is independent of the galactic mass profile. From both sets of
simulations, we empirically derive the higher order dependence of the lifetime on eccentricity.
Our results serve as benchmark for theoretical studies of the escape rate from clusters on
eccentric orbits. Finally, our results can be useful for generative models for cold streams and
cluster evolution models that are confined to spherical symmetry and/or time-independent
tides, such as Fokker–Planck models, Monte Carlo models, and (fast) semi-analytic models.
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1 IN T RO D U C T I O N

The evolution of star clusters is driven by internal factors, such
as two-body relaxation, stellar and binary evolution, and external
factors such as the galactic tidal field (see e.g. Heggie & Hut 2003).
As a result, star clusters gradually dissolve and eventually lose all
their stars to the galactic field.

The escape rate from clusters in a static tidal field, as applies to
cluster on circular orbits in a time-independent external potential,
has been topic of extensive theoretical (e.g. Hénon 1961; King 1966;
Gieles, Heggie & Zhao 2011) and numerical work (e.g. Chernoff
& Weinberg 1990; Oh & Lin 1992). A consensus picture for the
dependence of the dissolution time-scale τ diss on the properties of
the cluster and its orbit has emerged.

When approximating the tidal limitation by a simple cut-off ra-
dius, beyond which stars are considered unbound, τ diss scales with
the half-mass relaxation time-scale τ rh of the cluster, which itself
depends on the number of stars in the cluster N, the crossing time of
stars within the cluster τ cr as τ rh ∝ (N/log �)τ cr, where log � is the
Coulomb logarithm, which slowly varies with N. For Roche-filling
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clusters on circular orbits in a scale-free galactic potential, τ cr is
a constant fraction of the period of the galactic orbit, hence for
these clusters τ cr ∝�−1 (Lee & Ostriker 1987), with � the angular
frequency of the orbit.

If a tidal field is included, the escape of stars is delayed (Fukushige
& Heggie 2000), and this effect changes the N dependence of τ diss

to (Baumgardt 2001)

τdiss(RG, ε = 0) ∝
(

N

log �

)3/4

�−1. (1)

Here, ε is the orbital eccentricity and RG is the galactocentric radius,
which for the circular orbit relates to � as � = Vcirc/RG, with Vcirc

the circular velocity at RG.
For compact clusters that underfill the Roche volume, the fraction

of escapers per τ rh is lower because the tides are weaker, and because
τ rh itself is shorter, the fraction of escapers per unit of physical
time is approximately independent of the half-mass radius rh of the
cluster and the result for τ diss of equation (1) is, therefore, almost
independent of the initial rh (Gieles & Baumgardt 2008).

Baumgardt & Makino (2003, hereafter BM03) studied clusters
on circular and eccentric orbits using direct N-body integrations
with NBODY4 (Aarseth 1999). Their clusters contained a stellar mass
spectrum, the effect of stellar and binary evolution and a realistic
description of the tidal field of the galaxy, which was assumed to be
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due to a singular isothermal galactic halo. For eccentric orbits, they
find that the N dependence in τ diss is the same as for the circular
orbits, and they show that τ diss can be expressed in terms of the
scaling for the circular orbits as

τdiss(Ra = RG, ε) = τdiss(RG, 0)(1 − ε). (2)

Here Ra is the apogalactic radius of the orbit, which in BM03
was kept the same as the galactocentric radius RG of the circular
orbit.

Along an eccentric orbit, the tidal field strength varies and it is,
therefore, often assumed that the evolution of clusters on eccentric
orbits is determined by the perigalactic radius Rp, where the tidal
field is strongest (King 1962; Innanen, Harris & Webbink 1983).
This is indeed true for collisionless systems (Peñarrubia, Navarro
& McConnachie 2008), but it is not what follows from the BM03
result for collisional systems on eccentric orbits. Taken together,
equations (1) and (2) suggest that the ‘effective radius’ Reff

G , i.e.
the radius of the circular orbit on which a cluster has the same
lifetime as a cluster on the given elliptic orbit, is given by Reff

G =
Rp(1 + ε) = Ra(1 − ε), i.e. the effective radius lies between Rp

and Ra. The different dependence of τ diss on the external tides
as compared to the collisionless case, suggests that the combined
influence of two-body relaxation and the (time-dependent) tides,
result in a different overall evolution of (globular) clusters than what
is found for (collisionless) dwarf galaxies that get tidally stripped
in the host potential (see also the discussion in Amorisco 2015, on
differences in the escape mechanisms in collisional and collisionless
systems).

In this study, we want to establish whether it is possible to ap-
proximate the evolution of a cluster on an eccentric orbit, by that of
a cluster on a circular orbit. Whether possible, or not, the answer
helps to identify the dominant mechanism that drives the escape
from clusters on eccentric orbits. If possible, it would greatly sim-
plify the treatment of eccentric orbits in dynamical models of cluster
evolution that are limited to spherical symmetry/circular orbits and
in (fast) semi-analytic models of clusters and cold tidal streams.
Secondly, we aim to shed light on the scaling for τ diss(Ra, ε) for
clusters on eccentric orbits.

We run a series of direct N-body integrations of idealized systems,
without the effect of stellar evolution, which can be scaled and
compared to the result of BM03. This paper is organized as follows:
the details of the N-body experiments are described in Section 2. Our
results are presented in Section 3 and our conclusions are presented
in Section 4.

2 N- B O DY SI M U L ATI O N S

2.1 N-body integrator and units

For all simulations, we used the N-body code NBODY6, which is
a fourth-order Hermite integrator with Ahmad & Cohen (1973)
neighbour scheme (Makino & Aarseth 1992; Aarseth 1999, 2003),
with accelerated force calculation on NVIDIA Graphical Processing
Units (GPUs; Nitadori & Aarseth 2012). All our models are scaled
to the conventional Hénon N-body units (Hénon 1971), in which
G = M = −4E = 1, where G is the gravitational constant and M
and E are the total mass and energy of the cluster, respectively. Our
models are initially in virial equilibrium, such that the gravitational
energy W = 2E and the virial radius rv = −GM2/(2W) = 1.

2.2 Initial conditions

We model clusters with N = 8k and 16k point particles of the
same mass, without primordial binaries, with initial positions and
velocities sampled from a Plummer (1911) model, truncated at 10
scale radii.1 For this model, rh � 0.78rv. The galactic potential is
that of a point mass and the differential forces due to the galaxy are
added in a non-rotating frame that is initially centred on the centre
of mass of the cluster.

We adopt this simplified set of initial conditions because (i) we
want to focus on one single physical ingredient (i.e. the tidal field),
explored within the simplest possible choice of galactic mass model,
(ii) some of the key results of the paper are based on three different
scaling of the simulations, which must therefore be performed in
the absence of any factor imposing a physical scale (e.g. stellar
evolution), (iii) we wish to provide some ‘empirical’ evidence of
the process underlying the escape of stars from clusters on elliptic
orbits, for which a proper theory is still lacking, therefore we decided
to explore first very idealized models, and to increase the complexity
of the systems under consideration only in a second phase of the
investigation.

For each N, we consider seven different orbital eccentricities:
ε = [0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8]. For the circular orbits, we
choose an orbit such that rh/rJ = 0.1, where rJ is the Jacobi radius,
which for the point-mass galaxy and ε = 0 depends on RG and the
mass of the galaxy MG as

rJ =
(

M

3MG

)1/3

RG. (3)

The initial conditions of NBODY6 need to be fed in physical units.
We choose MG = 1010 M�, rv = 1 pc and m̄ = M/N = 1 M�.
The remaining parameter to choose is RG, which given the con-
straint of the initial rh/rJ and equation (3) is RG = 7.86(3 ×
1010/N)1/3 pc, which is RG = 1211 pc(962 pc) for the circular orbit
of the N = 8k(16k) cluster.2 All models started with the same
rh = 0.78 in N-body units. The physical units are only used
in the input of the code, and they are not relevant for our re-
sults and we report all our results in the internal N-body units
(Section 2.1).

We define τ diss as the time when 10 per cent of the initial number
of stars remains bound. We then need to define bound. For a cluster
on a circular orbit, in a coordinate system centred on the cluster
and corotating with the galactic orbit, bound is defined as having
a Jacobi energy smaller than the critical energy of escape. For ec-
centric orbits, there is no conserved integral of motion; hence, we
need to find another way to separate bound from unbound stars.
We consider a star as bound when the sum of its specific kinetic
energy, computed from the velocities corrected for the centre-of-
mass velocity, is less than its specific potential energy due to the
N − 1 other stars, with N being determined iteratively until conver-
gence (as in Renaud, Gieles & Boily 2011).

For each value of ε we aim to find the Ra that results in the
same τ diss as for the circular orbit at RG, i.e. τ diss(Ra, ε) = τ diss(RG,
0). This is different from the approach of BM03, who started all

1 In principle, the Plummer model has no truncation radius; in practice, it is
truncated at 10 scale radii in NBODY6.
2 In this paper, we use the definition of 1k = 1000, so that the 8 and 16k
models correspond to the total particle number of exactly 8000 and 16 000,
respectively. Note that this is slightly different from the convention used in
the BM03 paper, where they defined 1k = 1024.
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Table 1. Apogalactic radii Ra for the N = 8k and 16k simulations that result
in the same τ diss as the circular model. The values of Ra for each ε were
found by iteration, see the text in Section 2.2 for details.

N τ diss Ra(ε)
0 0.1 0.2 0.3 0.4 0.6 0.8

8k 5060 1212 1362 1516 1798 2043 2934 4834
16k 8230 962 1081 1245 1420 1677 2502 4126

their eccentric orbits at the same Ra(ε) = RG(ε = 0), which re-
sults in shorter lifetimes for the eccentric orbits. In Section 3, we
scale results for comparison. Because we do not know the scal-
ing of Ra(RG, ε) a priori for clusters with the same rh, we find Ra

by iteration: in the first attempt, we adopt the scaling of BM03
(equation 2) and run a model with Ra = RG/(1 − ε)2/3 (note that
the index of 2/3 is because for a point-mass galaxy � ∝ R

−3/2
G ).

At this stage we could adapt the scaling τdiss(Ra) ∝ R−3/2
a to find

Ra that results in the correct lifetime. However, scaling will not
keep the initial half-mass radius fixed, which is our intention in
this study, and we therefore proceed by finding the correct Ra by
iteration.

If τ diss of the first attempt is shorter (longer) than that of the
circular orbits, we run an additional model with Ra 20 per cent
larger (smaller). We continue this, until we have two models whose
τ diss(Ra, ε) bracket the result for the circular orbit. We then ap-
ply a linear interpolation to get the final Ra and run a model
at that Ra. The final interpolated Ra values are summarized in
Table 1.

The corresponding initial rh/rJ at apocentre for all models with
different orbital eccentricities ε are shown in Fig. 1, where rJ was
computed using equation 7 in King (1962). For comparison, we
present also the ratio rh/rJ the cluster would have if we would have
started the evolution at pericentre. We also show the values for rh/rJ

of the N = 32k models of BM03, which we will later compare our
results against, using the King (1962) definition for rJ (note that the
equation used by BM03 is slightly different).

Figure 1. Initial rh/rJ for all models as a function of orbital eccentricities
ε. the values corresponding to the apocentre are connected with full lines;
the values corresponding to the pericentre are connected with dashed lines.
Results for the N = 32k models of BM03 are also plotted in the same way
for comparison.

3 R ESULTS

3.1 Evolution of N and rh: can the evolution on an eccentric
orbit be compared to the evolution on a circular orbit?

Figs 2 and 3 show the evolution of the bound N for our models with
different ε and initial N = 8k and 16k, respectively. The N(T) curves
of the models on eccentric orbits display a ‘staircase’ shape, with
a frequency that corresponds to the orbital period. The amplitude
of the ‘stairs’ depends on the number of particles N and the orbital
eccentricity ε. The steps correspond to pericentre, where stars are
removed fastest, and the fractional number of escapers at each step
is larger in the small-N model because of two effects: (i) the lifetime
of the small-N model is smaller (Figs 2 and 3), while (ii) the time
between pericentre passages in the small-N model (which can be
inferred from the values of Ra in Table 1) is larger. Therefore, the
number of pericentre passages is smaller in the small-N model than
in the corresponding large-N model. The rapid mass loss during the
pericentre passages implies that dissolution is almost bound to hap-
pen around the pericentre, and for this reason the dissolution time of
the high-eccentricity models is not really a continuous function of
ε. This is important to keep in mind for the forthcoming comparison
of lifetimes for different N.

We note that the removal of stars at pericentre does not imply
that pericentre crossings are the sole mechanism that unbinds stars.
For alternative definitions of bound, for example, being within rJ,
the N(T) curves display an oscillating behaviour, where N(T) goes

Figure 2. Evolution of the number of bound stars for the 8k models with
different orbital eccentricities ε.

Figure 3. Evolution of number of bound stars for the 16k models with
different orbital eccentricities ε.
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up after a pericentre passage (see e.g. fig. 2 in BM03). This should
also not be interpreted as mass gain of the cluster. Both the staircase
pattern, and the oscillations, are artefacts of the definition of bound
for clusters and illustrate that it is not possible to have a unique
definition of the number of bound stars in a cluster on an eccentric
orbit. However, the differences between N(T) for different defini-
tions of bound are small and it is safe to interpret the general trend
of N(T) as the evolution of the number of stars in the cluster.

Comparing the overall shape of the N(T) curves of the different
orbits, we see that there are similarities. Core collapse is reached
at approximately T = 0.3τ diss, after which the escape rate approx-
imately doubles (Lamers, Baumgardt & Gieles 2010). For equal-
mass models without mass-loss as the result of stellar evolution, the
escape rate increases in the pre-collapse phase and this manifests
in all curves as a convex curvature (a negative second derivative).
After core collapse the escape rate goes as Ṅ ∝ N1/4 (equation 1,
and Baumgardt 2001), which manifests as a concave curve N(T)
(positive second derivative, note that a constant Ṅ would result in
linear N(T) curves). The curvature in pre-collapse and post-collapse
evolution is similar for models of different ε, though it may be com-
plicated by the ‘steps’ caused by pericentre passages. This trend is
not known to apply universally for all galactic tidal fields, but a
discussion of the shapes of N(t) curves is beyond the scope of this
paper.

In Figs 4 and 5, we show the evolution of rh(T) of the bound
stars for the N = 8k and 16k models, respectively. As for the N(T),

Figure 4. Half-mass radius rh evolution of the 8k models with different ε

and the same τ diss.

Figure 5. Same as Fig. 4 but for 16k models.

there is general agreement in shape of the rh(T) curves. All models
start with the same initial rh � 0.78, and until core collapse, rh

shrinks as the result of escapers and the absence of a central energy
source (Gieles et al. 2014). During the gravothermal catastrophe, rh

increases by about 50 per cent, after which it gradually decreases as
N1/3 (Hénon 1961). Similar to the N(T) curves, the rh(T) curves also
exhibit oscillation behaviour and the amplitudes depend on both N
and ε. During pericentre rh decreases sharply and then slowly grows
until the next pericentre. We note that this behaviour depends on
our definition of bound. For example, rh of all the stars within rJ

also oscillates, but has a maximum at Ra.
We recognize similar overall behaviour of rh(T) in all models, and

combined with the similarity between the N(T) curves, we conclude
that it is possible to describe the evolution of a cluster on an eccentric
orbit, by the evolution of a clusters on a circular orbit with the same
τ diss.

3.2 Scaling of τ diss(Ra, ε)

3.2.1 Results for constant τ diss

In Fig. 6, we show the ratio of Ra(ε) (Table 1) over Ra(0) = RG of
the circular orbit, for all ε considered. For constant Ra, τ diss must be
a decreasing function of ε, and so for increasing ε, Ra must increase
to keep τ diss of the eccentric orbit the same as the circular orbit, and
this is indeed what we find. The way Ra(ε) increases with increasing
ε contains information about how τ diss depends on ε.

In a forthcoming study, Bar-Or et al. (in preparation) derive the
dependence of τ diss on ε using perturbation theory. They find that,
to first order, τ diss is independent of ε for orbits with the same semi-
major axis a (Bar-Or, private communication). To test this result
we plot a line Ra(ε) = Ra(0)(1 + ε), corresponding to orbits with
the same a, because Ra(ε) = a(1 + ε) and for the circular orbit
RG = a. We see that this relation follows the results of our simula-
tions for ε � 0.3 quite well, independently of N, and confirming the
first order result of Bar-Or et al. (in preparation). But we also con-
sider eccentricities that are much higher than the regime to which
the perturbation theory applies. These empirical results thus serve
to quantify the higher order dependence of τ diss(a, ε) on ε, which is
the topic of the next sections.

Figure 6. The apocentre distance Ra(ε), normalized to Ra(0) of the circular
orbit, for clusters with the same lifetimes and different eccentricities ε

(data from Table 1). To first order the data follows the relation y = 1 + ε,
corresponding to a constant semimajor axis a.
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Figure 7. Dissolution times for all models scaled to the same Ra, normalized
to τ diss of the circular orbit. Solid lines denote polynomial fits to the data
(for details, see Section 3.2.2). Also shown are the results for the N = 32k
models of BM03.

3.2.2 Results scaled to constant Ra

We first want to directly compare our results to the scaling for
τ diss(Ra, ε) reported by BM03 (equation 2). To make the comparison,
we need to scale our results such that all our models have the same
Ra. We, therefore, need to multiply all our galactic radii by a scale
factor R∗ = Ra(0)/Ra(ε). Because for the point-mass galaxy the
radial scale of the cluster is proportional to the galactic radial scale
(equation 3), the scale factor for the cluster’s length scale is r∗ =
R∗ and the scale factor for time can be related to the galactic scale
factor as t∗ = R3/2

∗ . In Fig. 7, we show the results for τ diss scaled to
the same Ra, combined with the results of BM03. The ε dependence
seems to be stronger in our models, which is suggestive that the
mass profile of the galaxy is important in setting τ diss(ε).

However, the difference can be understood (at least for small ε)
by adopting the hypothesis that τ diss is independent of ε for fixed
a = RG, as in Section 3.2.1, i.e. that τ diss(Ra = RG(1 + ε), ε) =
τ diss(RG, 0). Since t∗ = R3/2

∗ for the point-mass galaxy, we deduce
that τ diss(Ra = RG, ε) = τ diss(RG, 0)/(1 + ε)3/2 � τ diss(RG, 0)(1 −
1.5ε). For the singular isothermal model of BM03, however, t∗ =
R∗, and so the corresponding result is τ diss(Ra = RG, ε) � τ diss(RG,
0)(1 − ε). Our hypothesis therefore explains why the dependence
on ε in Fig. 7 is steeper for our models than in BM03, for small ε,
and unifies the results of the two studies in this regime.

Fig. 7 also gives second-order polynomial fits3 to our results,
and the foregoing argument approximately explains the first-order
coefficient of ε in these fits. BM03 themselves showed that the
factor 1 − ε gave a satisfactory fit to their models for the entire
range of ε. By reversing the above argument we easily see that this
result is consistent with a hypothesis that τ diss(Ra = RG(1 + ε), ε)
= τ diss(RG, 0)(1 − ε2), which we discuss further in the next section,
where we scale all results to orbits with the same a.

3.2.3 Results scaled to constant semimajor axis a

To be able to compare all results to the theoretical prediction by
Bar-Or et al. (in preparation), we present all results scaled to orbits

3 It could be argued that the lifetime should be zero for ε = 1, and the
quadratic fits provided in Fig. 7 are inconsistent with this, but those in Fig. 8
accommodate this idea. On the other hand, the lifetime of the model can
hardly be less than the time taken to reach perigalacticon.

Figure 8. Dissolution time τ diss for different ε, normalized to the result for
the circular orbit, for the models discussed in this paper and BM03 (32k
models). All results have been scaled to orbits with the same semimajor axis
a. Simple even polynomial functions, up to fourth order in ε, are shown for
comparison (for details, see Section 3.2.3).

with the same a. We note that the results of this exercise for the
BM03 models should be interpreted with caution, because their
models include the effect of stellar evolution, which imposes a
fixed physical time-scale. Bearing this word of caution in mind, we
scale the galactic orbits with R∗ = (1 + ε)Ra(0)/Ra(ε). The radial
scale factor of the cluster itself is dependent on the mass profile:
for the point-mass galaxy r∗ = R∗ as before, while for the singular
isothermal halo r∗ = R2/3

∗ . The scale factors for time for the two
galaxy mass models are related to R∗ as t∗ = R3/2

∗ and t∗ = R∗,
respectively.

In Fig. 8, we present the results of all models, scaled to the
same a and normalized to the circular orbit. We note that Webb
et al. (2014) studied eccentric orbits with direct N-body models
with similar properties as BM03, and they compared a model with
high eccentricity (ε = 0.9) to a model on a circular orbit with
approximately the same lifetime. Applying the same scaling to their
values of Ra we find that their ε = 0.9 data point would extend the
trend of the BM03 scaling. Our results are slightly below the results
of BM03. It is tempting to explain this offset to the difference in
galactic mass model: the point-mass model has stronger tidal forces
at peri-centre and, therefore, one way of interpreting the difference
in Fig. 8 is that clusters on eccentric orbits dissolve faster in such
haloes.

However, the small difference can perhaps also be explained by
differences in how the clusters were setup relative to the tides and
the differences in treatment of stellar evolution. BM03 consider
King models with Roche-filling initial conditions for the models on
circular orbits, which means that the truncation radius of the King
model equals rJ. For their models on circular orbits the initial ratio
rh/rJ � 0.19 (Fig. 1), which is somewhat larger than what is adopted
here (rh/rJ = 0.1).

In addition, their models consider stellar evolution mass loss,
and for the clusters on circular orbits, a fraction of the stars is
pushed over the tidal boundary as the result of the expansion due
to stellar mass loss (Lamers et al. 2010), shortening the lifetimes of
the models on circular orbits by a mechanism that is not included in
our models (for a discussion on the sensitivity of the Roche-filling
models of BM03 to stellar mass-loss, see Contenta, Varri & Heggie
2015).

For eccentric orbits, BM03 fix rh to the value a cluster would have
on a circular orbit at Rp of the eccentric orbit. During the evolution,

MNRAS 455, 596–602 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/455/1/596/985488
by Leiden University / LUMC user
on 05 April 2018



Evolution of clusters on eccentric orbits 601

rJ is time dependent, but motivated by our earlier finding, we can
define rJ for the eccentric orbit as the Jacobi radius of an identical
cluster on a circular orbit with the same τ diss. Using that definition,
the BM03 models initially have rh/rJ ∝ (1 + ε)−2/3, whereas in our
models rh/rJ = 0.1, for all ε. Therefore, the BM03 models with
high ε are more compact with respect to the tides than our models,
which could result in slightly larger τ diss compared to our models
at the same ε. We are therefore cautious with interpreting the small
difference between the BM03 results, and ours, as being due to
difference in galactic mass profile.

In order to quantify the higher order dependence of τ diss on ε, we
plot two simple functions in Fig. 8. The functional form y = 1 − ε2

is motivated by the results of BM03, because this relation is what
follows when scaling the result reported by BM03 (equation 2) to
orbits with constant a (Section 3.2.2). As expected, this relation
describes the BM03 results very well. However, it overpredicts τ diss

of our models, with a maximum difference of about 20 per cent at
ε = 0.6.

Motivated by our empirical findings, and the theoretical work of
Bar-Or et al. (in preparation), we speculatively propose a charac-
terization of the higher order dependence of τ diss on ε, on the basis
of a simple symmetry argument. Indeed, it can be argued that the
quantity τ diss(a, ε)/τ diss(a, 0) should naturally be an even function
of ε, which implies that, in a series expansion in ε, the odd terms of
any order must vanish. This expectation on the parity of the function
follows if we assume that the lifetime is independent of the initial
phase on the galactic orbit, as reversing the sign of ε simply corre-
sponds to starting at perigalacticon instead of (as in our models) at
apogalacticon. We therefore consider an even, polynomial function
such that y(ε) = 0 for ε = 1: y(x) = (1 − ε2)(1 + (c + 1)ε2), in
which the constant term is imposed to be 1 by virtue of the chosen
normalization τ diss(a, ε)/τ diss(a, 0). We have then determined the
best-fitting value of the free coefficient c for the two sets of models
with N = 8k and 16k, as depicted in Fig. 8.

In consideration of the simplicity of our argument, based on
a reasonable but unproven assumption, we encourage the reader to
accept the values resulting from the fitting process only for empirical
guidance, as the full perturbation analysis of the escape problem,
which is needed to constrain analytically the coefficient c, is beyond
the scope of this article (see Bar-Or et al., in preparation).

In addition, given the relatively low N of our models compared
to the BM03 simulations, and other differences in the initial con-
ditions between the two sets of models (see the discussion above
on differences in the initial rh/rJ), we are cautious with concluding
that these different scalings as being due to the different galactic
mass models.

These results serve as benchmarks for future theoretical work on
the dissolution of clusters on eccentric orbits in different galactic
potentials.

4 C O N C L U S I O N S

We model star clusters on circular and eccentric orbits with direct
N-body simulations in order to gain insight in the evolution of cluster
properties at different eccentricities ε, and the scaling relations for
the dissolution time-scale (τ diss) as a function of ε. We deploy direct
N-body simulations to model idealized systems of N = 8k and 16k
stars of the same mass, on orbits around a point-mass galaxy. For
the models on eccentric orbits, we iteratively find the apogalactic
radius Ra on which the cluster τ diss is the same as for the circular
orbit.

When scaling our results to orbits with the same semi-major axis
a, we find that τ diss is, to first order, independent of ε. We show that
this scaling agrees with results presented by BM03, who modelled
clusters with a mass spectrum and the effects of stellar mass loss
in singular isothermal galactic haloes. Their results suggest slightly
longer τ diss at higher ε than found here, which can be explained
by differences in the initial rh with respect to the tidal truncation.
Alternatively, there may be a dependence on galactic mass profile,
in the sense that τ diss is more sensitive to ε in the case of point-mass
galaxies. This explanation has theoretical support, because the heat-
ing at perigalactic passages in a point-mass model is more severe
than in the extended singular isothermal model (Gnedin, Hernquist
& Ostriker 1999). Because of the many differences between our
models and the BM03 we are cautious with interpreting the small
difference between our results and BM03 in either direction.

Finally, we quantify the higher order dependence of τ diss(a, ε)
on ε. A relation of the form τ diss(a, ε) = f(ε)τ diss(a, 0), with
f(ε) = 1 − ε2 describes the results of BM03 very well. For the
models presented here, a functional form of f(ε) = (1 − ε2)(1 −
cε2), with c � 0.5, is more accurate. These data serve as benchmark
for future theoretical work on the dissolution of clusters on eccentric
orbits.

We find that clusters with the same initial N, rh and τ diss, but
different ε, have similar evolution of the number of bound stars and
half-mass radius rh. This implies that we can approximate the evo-
lution of properties of clusters on eccentric orbits by that of clusters
on circular orbits. This is useful for modelling techniques that are
not able to include orbital eccentricity, such as the Fokker–Planck
method, or the Monte Carlo method and/or time-dependent galactic
tides. For example, Heggie & Giersz (2008) present Monte Carlo
models of the galactic globular cluster M4, which is on an eccentric
orbit. The authors model M4 on a circular orbit, with approximately
the same τ diss as M4 has on its eccentric orbit. Our results confirm
that this approach is valid and results in a representative evolution
of N and rh in these models. Another application of our result can
be found in semi-analytic models of cluster evolution (e.g. Gnedin,
Ostriker & Tremaine 2014). The fast cluster evolution code Evolve
Me A Cluster of StarS (EMACSS; Alexander & Gieles 2012; Gieles
et al. 2014; Alexander et al. 2014) solves a set of coupled differ-
ential equations for the rate of change of rh, rJ and N. The method
requires an expression for Ṅ that depends on the tidal field. The
results in this study can be used to include orbital eccentricity in
EMACSS by using the functional form for τ diss(a, ε) to include ε in
the Ṅ term.

Finally, several models for generating tidal tails of globular clus-
ters have recently been developed (Küpper, Lane & Heggie 2012;
Bovy 2014; Amorisco 2015). These models require as input an
escape rate of stars from the cluster. Our analytic expression for
τ diss(a, ε) can be used to obtain expressions for the average escape
rate from clusters on eccentric orbits.
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