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008Chapter 1

1.1 Migraine as a disease
Migraine is a common brain disorder characterized by episodic attacks of severe throbbing unilateral 

headache that is accompanied by nausea, vomiting, photophobia and phonophobia. Attacks can last 

from 4 to 72 hr (ICHD 2004). Migraine is clinically divided into two main types, migraine with aura 

(MA) and migraine without aura (MO); one-third of patients suffer from MA. The aura that can 

accompany the migraine headache in patients with MA consists of focal disturbances that almost 

always include visual symptoms but may also include sensory, aphasic, and motor symptoms. In 

western countries migraine affects about 15% of the general population (Lipton & Stewart 1998, 

Goadsby et al 2002). Migraine is most prevalent in the age range 25 to 55 and is three times more 

common in women than men (Lipton et al 2001). Attack frequency varies widely from a few attacks 

per year to several attacks per month; at least 10% of patients report weekly attacks (Goadsby et al 

2002). Because of its severity and high prevalence the World Health Organization has rated migraine 

among the most common chronic disabling disorders of central nervous system (Vos et al 2013). 

Understanding the pathophysiology of migraine is important to identify new drug targets, which is 

dearly needed as many patients receive inadequate treatment despite the effectiveness of standard 

pain killers and serotonin agonists (so-called triptans) (Goadsby et al 2002). 

1.2 Migraine pathophysiology

1.2.1 Migraine aura

Visual auras present as flashing jagged lights with fortification figures that spread from the center of the 

visual field to the periphery. In the beginning of the aura there is a short transient period of hyperemia 

with an increase in neuronal activity and cerebral blood flow (CBF) that is followed by oligemia or 

hypoperfusion that lasts much longer and is probably due to silencing of neuronal activity, which 

extends into the headache phase (Olesen et al 1981). Already early on, it was proposed that the aura 

was caused by cortical spreading depression (CSD) (Lauritzen 1994). The CSD phenomenon was 

initially discovered by Aristides Leaõ in 1944 (Leao 1944). While trying to record pin prick-induced 

seizures in the cortex of rabbits, Leaõ noticed that instead of inducing seizure activity he observed a 

temporary silencing of cortical electrical activity (presented as a flattening of the electrocorticogram 

trace) that propagated over the cortex. We now know that CSD is a wave of depolarization of neurons 

and glia cells, followed by suppression of neuronal activity, that spreads at a rate of 3-5 mm/min 

through the cortex via grey matter continuity and is associated with a massive disruption of ionic 

balance (Somjen 2001). 

Evidence that CSD is relevant to migraine pathophysiology mainly comes from studies in animals. 

Regardless, using imaging techniques it was convincingly demonstrated that the observed temporal 

and spatial characteristics of cortical blood flow changes as they occur during CSD nicely correlated 

with patients descriptions of the spread of their aura symptoms (Hadjikhani et al 2001). Observations 

like these led to the now widely accepted notion that CSD is the electrophysiological correlate of 
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migraine aura. There is an active debate though whether CSD events also occur in migraine without 

aura attacks, in so-called “silent” brain areas (i.e., other than visual cortex), whereby CSD events 

would remain unidentifiable to the patient. Except for an isolated case with characteristic spreading 

blood flow changes reminiscent of a CSD in a patient with migraine without aura attacks (Woods 

et al 1994), it is mere speculation whether CSD indeed occurs in MO. Nonetheless, unraveling the 

neurobiological mechanisms underlying CSD is important for understanding not only the diseased 

brain but also normal brain functioning (Somjen 2004).

1.2.2 Migraine headache

How migraine pain is generated is not fully understood. The current view is that the headache is 

generated by activation of the trigeminovascular system (TGVS). The TGVS consists of meningeal 

and superficial cortical blood vessels that are innervated by the trigeminal nerve. Release of vasoactive 

peptides from perivascular afferents are able to trigger a series of events during which sensory (i.e., 

nociceptive) input is transmitted to trigeminal ganglion (TG) neurons and further to neurons in the 

brainstem trigeminal nucleus caudalis (TNC). Sensory signals from these nuclei are sent rostrally to 

thalamus and from there to higher brain centers to produce the sensation of pain (Goadsby et al 2002). 

1.2.3. Can CSD/aura initiate headache mechanisms?

What the initial triggers are for activation of the TGVS remains to be determined. It is debated whether 

CSD events can trigger migraine headaches (Ayata 2010, Charles 2010). Although there is quite 

compelling evidence from studies in experimental animals suggesting that this is the case, evidence 

in humans is lacking. Already in 1993 it was shown by Moskowitz and colleagues (Moskowitz et al 

1993) that experimentally induced CSD in rat brain can activate neurons in the ipsilateral TNC, as 

shown by increased expression of neuronal activation marker c-fos. The fact that the increased c-fos 

signal could be blocked by transection of trigeminal meningeal afferents innervating the dura, as well 

as by administration of 5-HT
1B/1D

 receptor agonist sumatriptan, an effective migraine drug, suggested 

that CSD is important in generating migraine headache. Second, it was shown that CSD induction, in 

addition to increasing c-fos immunoreactivity in TNC, also caused an increase in middle meningeal 

artery diameter and protein extravasation from trigeminal meningeal afferents (Bolay et al 2002). 

Third, CSD can activate both peripheral and central components of the trigeminovascular pathway 

as CSD induction has been shown to cause increased firing of (i) peripheral meningeal nociceptors 

that in some trials showed a time-delay reminiscent of aura-headache events seen in patients (Zhang 

et al 2010) and (ii) central trigeminovascular neurons in the C1-2 spinal trigeminal nucleus (Zhang et 

al 2011a). Sensitization of first-order neurons that project from trigeminal ganglia and innervate the 

meninges are believed to be responsible for the throbbing nature of migraine headache (Strassman et 

al 1996). Sensitization of higher-order trigeminovascular neurons of the medullary dorsal horn, which 

project to thalamus and receive convergent sensory information from the dura and extracranially from 

the skin of face and limbs, is thought to control the development of cutaneous allodynia, the perceived 

painful response to non-noxious stimuli such as combing one’s hair that many patients experience 
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during attacks (Burstein et al 2000). Figure 1 summarizes the role of pain pathway activation, and the 

possible relationship with CSD, in migraine headache.

1.3 Genetics of migraine
Migraine has a strong genetic component, which is already exemplified by the fact that migraine runs in 

families. Family-and population-based epidemiological studies revealed an increased risk for migraine 

in first-degree relatives of individuals with migraine (Russell & Olesen 1995, Stewart et al 1997). In 

addition, twin studies showed that the concordance rate was significantly higher in monozygotic 

than in dizygotic twins (Gervil et al 1999, Ulrich et al 1999), which is also regarded as a proof that 

migraine has a genetic component. The heritability (i.e., the proportion of the phenotypic variance 

explained by genetic factors) is approximately 50%; the other half is explained by environmental 

factors (Mulder et al 2003). 

1.3.1 Genetic findings in common forms of migraine

The identification of genes that confer migraine risk for common forms of migraine has been challenging 

for a long time. Multiple gene variants, each with only a small contribution to disease risk, together with 

environmental factors, are expected to render an individual susceptible to common forms of migraine 

(de Vries et al 2009). The advent of unbiased genome-wide association studies (GWAS) in recent years 

has made it possible to identify migraine susceptibility genes. So-called “associated variants” show a 

difference in allele frequency between cases and controls for a specific single-nucleotide polymorphism 

(SNP) with a level of significance that survives correction for the many performed statistical tests. 

GWAS produce statistically robust findings, but the associated variants almost without exception have 

a small effect size indicating that an individual genetic factor increases disease risk by only a little. The 

genes that were assigned to associated loci seem to affect neurons (i.e., glutamatergic neurotransmission 

and the development of neurons and synapses), brain vasculature, and pain sensation (Anttila et al 2010, 

Chasman et al 2011, Freilinger et al 2012, Anttila et al 2013). Future research will hopefully give insight 

in how these genes contribute to causing migraine. 

1.3.2 Genetic findings in monogenic familial hemiplegic migraine

Initial success in gene identification in migraine came from investigating familial hemiplegic migraine 

(FHM), a rare monogenic subtype of migraine with aura (ICHD 2004). FHM is characterized by at 

least some degree of body weakness (hemiparesis) during the aura that may last from min to several hr 

or days. Apart from the hemiparesis, the headache and aura features of an FHM attack are identical to 

those of attacks of common forms of migraine; the majority of FHM patients also experience attacks 

of “normal” migraine with or without aura that are not associated with hemiparesis (Thomsen et al 

2002). Thus, from a clinical point of view, FHM seems part of the migraine spectrum, and a valid 

model to study the common forms of migraine. Genetic research in FHM led to the discovery of three 

genes (van den Maagdenberg et al 2007). FHM1 is caused by mutations in the CACNA1A gene, which 

encodes the α
1
 pore-forming subunit of Ca

V
2.1 calcium channels (Ophoff et al 1996). These channels 
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are involved in presynaptic release of neurotransmitters (Mintz et al 1995, Wu et al 1999). CACNA1A 

mutations are associated with various clinical phenotypes, e.g., FHM and episodic ataxia type 2 (van 

den Maagdenberg et al 2007). Clinical presentations with FHM1 mutations can range from pure FHM 

(e.g., with missense mutation R192Q) (Ophoff et al 1996) to a complex severe phenotype of FHM 

with cerebellar ataxia, susceptibility to seizures and sometimes lethal cerebral edema after trivial 

head trauma (with missense mutation S218L) (Kors et al 2001, Stam et al 2009).

Figure 1. Schematic overview of brain anatomy and mechanisms involved in migraine aura and headache. 
Cortical spreading depression (CSD) is a slowly propagating wave of neuronal and glial depolarization that starts in the 
visual cortex and is accompanied by the release of neurotransmitters, ions and vasoactive neuropeptides such as SP, CGRP 
and NKA (indicated by colored circles around dural vessels) into the extracellular space. These molecules may reach 
pial, arachnoid (not shown) and dural surfaces and activate the perivascular trigeminovascular sensory afferents from 
the trigeminal ganglion (TG) neurons. Signals of activated meningeal nociceptors are relayed via the TG to trigeminal 
nucleus caudalis (TNC) neurons and from there, further to thalamic and cortical areas involved in the processing of pain. 
From the trigeminal nucleus caudalis, collaterals are also send to dural vessels via the sphenopalatine ganglion (SPG). 
Adapted from Goadsby et al 2002.
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The FHM2 gene, ATP1A2, encodes the α
2
 subunit of the Na+/K+-ATPase (De Fusco et al 2003) that 

in adulthood is expressed in glial cells (McGrail et al 1991). This catalytic subunit binds Na+, K+, and 

ATP, and utilizes ATP hydrolysis to exchange Na+ ions out of the cell for K+ ions into the cell. Thus, 

the ATPase is able to modulate the re-uptake of K+ and glutamate from the synaptic cleft into the glial 

cell. FHM2 mutations have been associated with pure FHM (De Fusco et al 2003, Riant et al 2005, 

Vanmolkot et al 2006), FHM with cerebellar ataxia (Spadaro et al 2004), and also permanent mental 

retardation (Jurkat-Rott et al 2004,Vanmolkot et al 2006).  Finally, the FHM3, SCN1A, gene encodes 

the α
1 
subunit of Na

V
1.1 sodium channels (Dichgans et al 2005). These channels are mainly expressed 

in inhibitory interneurons (Ogiwara et al 2007) where they play a crucial role in the generation and 

propagation of action potentials (Catterall et al 2005). 

Cellular studies of FHM mutations have suggested a single common consequence, i.e., increased 

excitatory neurotransmission (Figure 2); either by gain-of-function effects on Ca
V
2.1 channels by 

FHM1 mutations in excitatory neurons, loss-of-function effects on ATPases by FHM2 mutations in 

glial cells, or loss-of-function effects by FHM3 mutations on inhibitory interneurons. 

1.4 Modulators of migraine

1.4.1 Gender

The idea that gender is an important modulator of migraine comes from the observation that migraine 

is three times more common in women compared to men (Lipton et al 2001). Female hormones 

estrogen and progesterone have been implicated in the initiation and worsening of migraine attacks 

(Brandes 2006). Estrogen increases cortical excitability in humans (Smith et al 2002) and sudden 

changes in estrogen levels, such as estrogen withdrawal (Somerville 1972) may bring about migraine 

attacks. Notably, acute exposure of rat neocortical slices to estrogen and progesterone increases CSD 

frequency in a dose-dependent manner (Sachs et al 2007). Testosterone seems to counteract effects 

of estrogen as it was shown that testosterone down-regulates the expression of estrogen receptors in 

mouse cortex (Thakur & Sharma 2007); although it was not shown that testosterone directly inhibits 

neuronal excitability. Of note, danazol, a synthetic testosterone derivative, was shown effective in 

reducing migraine attack frequency and severity of headache in migraineurs (Lichten et al 1991).

1.4.2. Circadian rhythm 

Acute shifts in daily sleeping patterns (i.e., sleeping too much or too little) have been reported to 

precipitate migraine attacks suggesting that circadian factors can influence attack onset (Solomon 

1992). Attack occurrence has been reported to have a circadian component: migraine attacks occur 

more often between 4 am to 9 am, probably as a consequence of the changes that occur to prepare the 

body for the upcoming active period (Fox and Davis 1998). However, a prospective study in female 

patients pointed to a peak in attacks around the middle of the day (Alstadhaug et al 2008). The release 

of important hormones such as cortisol, melatonin and adenosine varies according to circadian rhythm. 

Presumably, particular hormonal and related neuronal activity changes occur during the transition 
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from the light to the dark period. It can be envisaged that the inability of an organism to adequately 

adapt to these abrupt changes might turn on a modulator of migraine attack onset. 

1.4.3 Stress 

The experience of stress and especially the recovery after a stressful period has been reported by 

patients as precipitating factor of their migraine attacks (Robbins 1994, Fanciullacci et al 1998, 

Hauge et al 2011). However, it is not known how stress would bring about migraine attacks. Of 

note, no significant link was observed between objective (i.e., saliva cortisol, heart rate and heart 

rate variability) and subjective (e.g., perception of stress) stress-related parameters and the onset of a 

migraine attack (Schoonman et al 2007). A recent study proposed a relationship between changes in 

perceived stress and migraine attacks (Lipton et al 2014) which could involve changes in perception 

rather than actual changes in stress levels (Goadsby 2014). Studies in rodents indicate that stress and 

in particular stress hormone corticosterone (i.e., the equivalent of cortisol in human) can increase 

neuronal excitability (Yuen et al 2009, Popoli et al 2011), which would link to migraine via the 

concept that cortical hyperexcitability is believed to underlie the sensitivity to migraine attacks 

(Aurora & Wilkinson 2007). Perhaps stress, with its associated changes in stress hormones, can act 

as a modulatory (i.e., additive) factor adding to the already heightened brain excitability in migraine 

sufferers, thus increasing the propensity for a migraine attack.

1.4.4 Migraine triggers and migraine?

Migraine is a heterogeneous disease. Not surprisingly most patients report more than one triggering 

factor as modulator of their migraine attacks (Hauge et al 2011, Pavlovic et al 2014). In addition to the 

modulators already mentioned, alcohol consumption (especially red wine), consuming certain food 

items, intense physical exercise, and smoking, are also often reported as migraine triggers (Hauge et 

al 2011). Still there is no solid scientific evidence that, and if proven, in which combination and how, 

the different modulatory factors, may bring about migraine attacks.   

1.5 Pathways associated with cortical spreading depression

CSD, the mechanism underlying aura, can be triggered in the brain experimentally by a variety 

of stimuli such as pinprick, application of electrical current, application of K+ or glutamate, and 

compounds such as endothelin (Somjen 2001, Dreier et al 2002). CSD can be more readily triggered 

in “smooth” non-convoluted brains of rodents than in convoluted brains of cats, monkeys and humans 

(Bures et al 1974). CSD events are associated with neuronal, glial and vascular changes in the brain, 

as well as inflammatory and biomolecular changes that are briefly discussed below.

1.5.1 Neuronal and glial changes associated with CSD

CSD consists of a large negative shift of extracellular potential due to a massive depolarization of 

neurons and glial cells which is associated with a massive redistribution of ions (Somjen 2001). The 

massive efflux of K+ from neurons during CSD is accompanied by a concomitant neuronal release of 
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glutamate and organic anions (Szerb 1991, Fabricius et al 1993). At the same time there is an influx 

of Na+, Cl- and Ca2+ into neurons (Hansen & Zeuthen 1981, Somjen & Aitken 1984). The excess of 

extracellular K+ is taken up by glial cells mainly via passive flow through ohmic conductances and by 

activation of the Na+/ K+  ATPase (Somjen 2004). On the other hand, the excess of glutamate in the 

synaptic cleft is removed by the excitatory-amino acids transporters (EAATs) of both neurons and glial 
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Figure 2. Functional effects of FHM mutations on neuronal excitability.
The illustration shows a glutamatergic tripartite synapse of the brain of a WT mouse (A) compared to a situation with an 
FHM1 (B), FHM2 (C) or FHM3 (D) mutation, respectively (red circles). (B) FHM1 mutations in the CACNA1A gene 
which encodes the pore-forming α

1 
subunit of Ca

V
2.1 calcium channels. Due to the gain-of-function effect of FHM1 

mutations the influx of calcium through voltage-gated Ca
V
2.1 channels in the presynaptic neuron terminal is enhanced 

causing neurotransmitter vesicles to fuse and release the neurotransmitter glutamate. Note that the gain-of-function effect 
is found only in the excitatory glutamatergic neurons and not in inhibitory GABAergic interneurons. (C) FHM2 mutations 
in the ATP1A2 gene which encodes the α

2
 isoform of the Na+/K+-ATPase. FHM2 mutations lead to loss-of-function effects 

which abate the ability of glial cells to remove K + and glutamate from the synaptic cleft and terminate the action of the 
excitatory neuron. (D) FHM3 mutations in the SCN1A gene which encodes the Na

V
1.1 voltage-gated sodium channels. 

FHM3 mutations lead also to loss-of-function effects inhibiting the generation and propagation of action potentials in 
inhibitory interneuron which regulate the activity of excitatory neurons. The net effect of each gene mutations will lead 
to an increase in neuronal excitability.
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cells, e.g., EAAT1 and 2 (Danbolt 2001). Of the large voltage changes in neurons that occur during 

CSD, most notable are changes in inward and outward currents in dendrites and somata, respectively. 

Other notable changes are an increase in extraneuronal electrical impedance following CSD, and 

the increase in neuronal membrane potential that reaches almost zero during CSD (Collewijn & 

Harreveld 1966, Ferreira-Filho & Martins-Ferreira 1982). The glial cells follow the action of neurons 

during CSD. Glial cells also depolarize, mainly because of the neuronally-induced rise in extracellular 

K+ that enters glial cells via their their K+-permeable membrane (Muller & Somjen 2000), while the 

input resistance of glial cells drops slightly. The observation that CSD is preceded by an increase 

in neuronal excitability, which is a phase-locked activity of groups of neurons, led to the idea that 

CSD is an all-or-non phenomenon that, once started, becomes independent of the triggering stimulus 

(Rosenblueth & Garcia Ramos 1966, Herreras & Somjen 1993). 

1.5.2 Vascular changes associated with CSD

As mentioned above, CSD is associated with a marked CBF response. The response is typically 

triphasic in character with an initial hypoperfusion that is followed by transient hyperemia and 

subsequently a pronounced oligemia that can last for an hr (Piper et al 1991, Eikermann-Haerter 

& Ayata 2010). Whereas the vascular response to CSD is comparable among most species, mice 

present a unique variability. Mice differ from for instance rats, in the sense that in mice the CSD-

induced initial hypoperfusion is much more pronounced and the following hyperemia is reduced, 

suggesting species-specific differences in vascular sensitivity to elevated extracellular K+ (Ayata et 

al 2004). Brennan and colleagues (Brennan et al 2007) studied arterial diameter in mice during CSD 

and reported an initial dilation which is followed by a profound constriction and subsequently an even 

larger dilation. 

1.5.3 Neuroinflammation associated with CSD

Recently, experimental evidence emerged that provided a convincing link between CSD, inflammation 

and headache. Karatas and colleagues (Karatas et al 2013) provided evidence how CSD may lead 

to sustained activation/sensitization of trigeminovascular afferents in mice. They showed that CSD 

induction causes the opening of Pannexin 1 megachannels (Panx1) in neurons. Opening of Pannexin 

channels activates Caspase-1, which initiates a parenchymal inflammatory cascade by releasing high-

mobility group box 1 (HMGB1) and interleukin-1β (IL-1β). In glial cells the increased levels of 

HMGB1 and IL-1β can trigger the translocation to the nucleus of astrocytes of nuclear factor κB 

(NF-κB) and induction of cyclooxygenase-2 (COX2) and iNOS. The activation of this inflammatory 

cascade provides the necessary sustained activation for the sensitization of trigeminal afferents and 

initiation of headache as shown by headache-like behavior in mice. As second piece of evidence that 

inflammation is important in migraine comes from the fact that administration of tumor necrosis 

factor-α (TNF-α) in rat trigeminal ganglia induced mechanical sensitization of meningeal nociceptors 

via a COX-dependent mechanism, as shown by an increased firing rate of the trigeminal neurons 

(Zhang et al 2011b). 
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1.5.4 Biochemical changes associated with CSD

CSD is associated with profound changes in concentrations of various neurotransmitters, (neuro) 

peptides and metabolites. Elevated extracellular levels of glutamate have been detected during a CSD 

wave in animals (Fabricius et al 1993; Iijima et al 1998). In agreement with changes during CSD,  

Martinez and colleagues (Martinez et al 1993) found increased levels of glutamate in cerebrospinal 

fluid (CSF) in both MA and MO patients during an attack compared to controls, while glutamate 

levels in plasma were lower in both MA and MO compared to controls. Other studies though found 

increased levels of glutamate in the plasma for both MA and MO patients during migraine attacks 

compared to controls (Ferrari et al 1990). 

During CSD in experimental animals there are also increased levels of neuropeptides such as calcitonin 

gene related peptide (CGRP), neurokinin-α (NKA) and substance P (SP) (Colonna et al 1994, Tozzi et 

al 2012).  Changes in these compounds have also been observed in patients during migraine attacks. 

For example, during migraine attacks but not in headache-free periods, CGRP levels in plasma were 

higher in MA compared to MO young patients whereas the NKA levels were similarly increased 

in MA and MO compared to controls (Gallai et al 1995). In another study, MA and MO patients 

interictally had similarly elevated plasma levels of CGRP and SP (Fusayasu et al 2007).

In addition to neurotransmitters and neuropeptides, CSD induction causes changes in the levels 

also of metabolites in animals. CSD induction triggers an increase in levels of cyclic guanosine 

monophosphate (cGMP) in rats and nitric oxide (NO) in cats (Read et al 2001, Wahl et al 1994). 

Similar to experiments in animals, levels of cGMP and NO are increased in MA and MO patients 

during migraine attacks (Shimomura et al 1999, Stepien and Chalimoniuk 1998). Not surprisingly, 

levels of adenosine triphosphate (ATP) decrease during CSD in rats (Selman et al 2004) due to the 

high energy demand required to restore homeostasis following CSD. In addition, CSD triggers the 

release of arachidonic acid (Lauritzen et al 1990) and lactate in rats and human patients with acute 

brain injury (Cruz et al 1999, Feuerstein et al 2010).

From the above it is clear that CSD causes major changes in brain biochemical status which can be of 

relevance to migraine. Studying those changes in transgenic mice with migraine relevant mutations 

will potentially provide insights on the role of CSD in migraine pathophysiology.

1.6 Transgenic mouse models of migraine 

1.6.1 Transgenic knock-in mice that harbor FHM1 mutations

The use of disease mouse models offers great opportunities for understanding disease pathophysiology 

and developing novel therapeutics. To this end knock-in (KI) mouse models were generated that 

carry CACNA1A missense mutations R192Q or S218L that both cause gain-of-function effects on 

Ca
V
2.1 channels that were previously identified in FHM patients. The mutations were introduced 

in the mouse orthologous Cacna1a gene by homologous recombination (van den Maagdenberg et 

al 2004, van den Maagdenberg et al 2010). Whereas homozygous mice of the R192Q strain did 
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not show an overt phenotype, S218L mice showed cerebellar ataxia, a greater tendency for seizures 

and brain edema after a mild head trauma (van den Maagdenberg et al 2004, van den Maagdenberg 

et al 2010). Electrophysiological studies revealed that the mechanism underlying these phenotypes 

was an increased neuronal calcium influx through Ca
V
2.1 channels with concomitant increased 

neurotransmitter release at peripheral and central synapses of mutant mice that was more pronounced 

in the severer S218L strain (van den Maagdenberg et al 2004, Eikermann-Haerter et al 2009, Tottene 

et al 2009, van den Maagdenberg et al 2010). Both strains of KI mice showed a marked increased 

propensity for CSD with a gene-dosage effect and a more pronounced phenotype in S218L mice. 

Furthermore, female mutant mice showed a greater CSD susceptibility compared to male mice. 

1.6.2 Other transgenic mouse models of migraine

Three additional transgenic mouse models of migraine have been generated. First of all, a transgenic 

KI mouse FHM2 model with the W887R missense mutation in the α
2
-subunit of Na+, K+-ATPase 

was generated (Leo et al 2011). Heterozygous KI mice had a reduced threshold for CSD and an 

increased CSD propagation rate similar to effects observed with the FHM1 KI mice. Second, a “CGRP 

transgenic mouse model” was generated to investigate the in vivo role of increased CGRP levels by 

overexpressing the wild-type receptor activity-modifying protein-1 (RAMP1) protein under control 

of the Nestin promotor gene (Zhang et al 2007). RAMP1 codes for a transmembrane protein that is 

necessary for the functioning of CGRP receptor (McLatchie et al 1998). Overexpression of human 

RAMP1 sensitizes the mice to the action of CGRP as a result of which mutant mice have increased 

CGRP-induced plasma extravasation in trigeminal ganglia which was interpreted as evidence for 

increased central sensitization after induction of mechanical allodynia (Marquez de Prado et al 2009). 

Nestin/hRAMP1 mice showed a migraine-relevant phenotype of increased light-aversive behavior 

that was worsened by administration of CGRP and abrogated by a CGRP blocker (Recober et al 2009, 

Recober et al 2010). Third, transgenic overexpressor mice were generated that carry a mutation in 

casein kinase Iδ (CKIδ), a protein kinase that plays a role in circadian rhythm, which was identified 

in patients with familial advanced sleep phase syndrome (FASP) and migraine with aura (Brennan et 

al 2013). Patients with FASP go to sleep unusually early in the evening and get-up very early in the 

morning. Transgenic CKIδ mice exhibited various migraine-relevant features including a reduced 

threshold for CSD and hyperalgesia after nitroglycerine administration (Brennan et al 2013).  

1.7 Scope and outline of the thesis
The aim of the studies performed for this thesis was to investigate and delineate modulatory factors for 

and consequences of CSD in transgenic mice with the human pathogenic R192Q missense mutation 

in the α
1
 subunit of voltage-gated Ca

V
2.1 calcium channels that causes familial hemiplegic migraine 

in patients.  

The physiological condition of an organism, especially blood pressure and levels of blood gases, 

influences the outcome of experiments that aim to determine CSD susceptibility. In Chapter 2 we 
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investigated to what extent controlling and maintaining critical physiological parameters within a 

range, or allowing these parameters to vary freely during a course of an experiment, affects CSD 

frequency and threshold measurements in male and female FHM1 R192Q and WT mice.

Chapter 3 addressed the question whether the enhanced CSD susceptibility in FHM1 R192Q mice 

is related to changes in cortical excitability as measured by EEG and multi-unit recordings in freely 

behaving mice. Observed alterations in EEG activity and occurrence of CSD events in the visual and 

motor cortex from the long-term recordings in freely behaving mice were paralleled by studies in 

anesthetized and physiologically-controlled FHM1 R192Q mice in which CSD frequency and CSD 

threshold were compared for different times of the day and different regions of the cortex.

In Chapter 4 the role of stress and its main hormone corticosterone on CSD susceptibility were 

investigated in FHM1 R192Q and WT mice. Restraint stress was used as a physiological stressor 

whereas corticosterone administration was used to selectively mimic the rise in stress hormone in the 

experiments. 

In Chapters 5 and 6 we tested the applicability of matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI - MS) imaging to reveal changes in biomolecular distribution of proteins, 

peptides and metabolites in different brain regions. In Chapter 5 we addressed the question whether 

CSD causes changes in composition of these compound classes after CSD in the brains of WT mice. 

In Chapter 6 we assessed which molecular changes occur following CSD events in the mouse brain, 

but with high spatial resolution. To this end, we subjected mice to a fixed number of CSD events (or a 

sham procedure) after which changes in metabolite, peptide and protein distribution in the brain were 

measured and compared between FHM1 R192Q and WT mice.

In Chapter 7 we addressed the question whether changes in metabolite profiles, assessed by capillary 

electrophoresis mass spectrometry (CE-MS) technology, could also be captured in blood after 

inducing CSD events in the brains of FHM1 R192Q and WT mice. 

A general discussion on the experimental findings from this thesis is presented in Chapter 8 along 

with suggestions for future research. 
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ABSTRACT 

Changes in physiology and anesthesia modulate susceptibility to cortical spreading depression (CSD), 

the neurobiological correlate of migraine aura. Here we investigated to what extent CSD susceptibility 

parameters (frequency and threshold) depend on whether physiological parameters (pO
2
, pCO

2,
 pH and 

blood pressure) were: i) not monitored at all, ii) only monitored (i.e., measured in blood from a femoral 

artery catheter; physiological monitoring), or iii) monitored and controlled (i.e., adjusted during the 

experiment by subtle changes in mechanical ventilation using tracheotomy; physiological control). In 

addition, we investigated to what extent the anesthesia gas mixture affects these CSD parameters. We 

studied effects of the methodologies in both wild-type (WT) mice and familial hemiplegic migraine 

type 1 (FHM1) transgenic mice that express the human pathogenic R192Q missense mutation in 

voltage-gated Ca
V
2.1 Ca2+ channels (R192Q mice). A previous study revealed an enhanced CSD 

frequency in the visual cortex of mutant mice, an effect that was most pronounced in females, when 

experiments were performed with isoflurane-N
2
O/O

2
 anesthesia and physiological control. In the 

present study, however, using isoflurane-air anesthesia without physiological monitoring and without 

physiological control, we observed that visual cortex CSD frequency was equally enhanced in mutant 

mice of both genders. In contrast, a gender difference was observed for CSD threshold which was 

decreased in R192Q mice compared to WT to a larger extent in males than in females. The absence 

of a gender effect on CSD frequency in mutant mice was not related to the use of air instead of 

N
2
O/O

2, 
but to the presence of mechanical ventilation and possible subtle changes in pH, pCO

2
 or 

blood pressure when physiological parameters were not controlled. Genotypic effects of enhanced 

CSD susceptibility in R192Q compared to WT mice were identified irrespective of the tested 

methodologies. Comparison of CSD susceptibility in visual cortex vs motor cortex revealed a regional 

difference in CSD susceptibility that was influenced by gender in the absence of physiological control.  

Physiological control can either unmask or mask a gender effect on specific CSD parameters. This 

sensitivity of CSD susceptibility to methodology has important implications when comparing data 

from different studies. Moreover, it suggests that there is a drawback of controlling physiological 

status of an animal as one may miss specific characteristics of CSD susceptibility when these depend 

on differences in physiological parameters between R192Q mutant and WT mice. 
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INTRODUCTION  

One-third of migraine patients experience auras in addition to headaches, characterized by 

neurological sensory dysfunctions that in most cases consist of visual symptoms (Goadsby et al 

2002, ICHD 2004). Cortical spreading depression (CSD) is the likely cause of the migraine aura, and 

it is characterized by a slowly propagating wave of neuronal and glial depolarization followed by a 

transient suppression of neuronal activity (Lauritzen 1994). 

Changes in physiological parameters such as pH, pO
2
, pCO

2
 and blood pressure have been shown to 

influence CSD susceptibility measurements in animals under anesthesia as they can change neuronal 

excitability and vascular function (Holland et al 2012, Kudo et al 2008, Pietrobon & Moskowitz 

2014, Ruusuvuori & Kaila 2014, Sukhotinsky et al 2010). For this reason, physiological parameters 

are in most studies monitored via femoral artery catheterization (physiological monitoring) and 

controlled using mechanical ventilation by changing the ventilation settings to adjust physiological 

parameters as needed (physiological control). In addition to the presence or absence of physiological 

monitoring and control, CSD experiments also vary with respect to choice of anesthesia gas mixture, 

which can also affect the outcome of CSD susceptibility measurements. For instance, N
2
O (instead 

of pressurized air) in the anesthesia gas mixture has a suppressive effect on CSD parameters (Kudo 

et al 2008). Consequently, the experimental design of CSD experiments under anesthesia that may 

include physiological monitoring or physiological control, or neither, is expected to result in different 

outcomes of CSD frequency and threshold. 

The importance of understanding the consequences of methodologies for assessing CSD parameters 

is especially relevant when comparing results from different studies. Here we show the relevance of 

different methodologies for CSD assessment with respect to the investigation of transgenic knock-

in mice that carry the R192Q missense mutation in the α
1
 subunit of Ca

V
2.1 Ca2+ channels (van den 

Maagdenberg et al 2004). In humans, this mutation causes familial hemiplegic migraine 1 (FHM1; 

(Ophoff et al 1996). FHM1 R192Q mice have been used in different laboratories to unravel migraine-

relevant mechanisms (Ferrari et al 2015).  

Different methodologies and read-out measures have been used in different laboratories to assess the 

susceptibility of CSD in R192Q mice. A decreased threshold for the induction of CSD, assessed with 

increasing electrical stimulus intensity, was reported for the visual cortex of mutant mice that were 

kept under urethane anesthesia (van den Maagdenberg et al 2004, van den Maagdenberg et al 2010). 

Physiological parameters were not monitored during these experiments, and a gender difference was 

not reported. In another study, an increased frequency of CSD, assessed with a 30-min application of 

a cotton ball soaked in 300 mM KCl, was reported for the visual cortex of mutant mice in experiments 

performed with isoflurane-N
2
O/O

2 
(70%/30%) anesthesia and physiological monitoring and control 

(Eikermann-Haerter et al 2009a, Eikermann-Haerter et al 2009b). In those studies, female mutant 

mice showed a higher CSD frequency than male mutants; ovariectomy normalized CSD frequency in 
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mutant females to males levels. WT mice showed no gender difference and no effect of ovariectomy in 

females. Notably, a gender difference had been observed when CSD threshold was studied in the cortex 

of C57BL/6 WT mice that were kept under isoflurane-air anesthesia and physiologically monitored 

(Brennan et al 2007). Apparently, a gender difference is revealed when using one methodology but 

not another methodology. This leads to the question whether certain aspects of CSD susceptibility 

may only be observed when a specific combination of methodology and anesthetics is used, and 

whether results between laboratories can be compared.  

We here assessed cortical CSD frequency in male and female R192Q and WT mice using various 

methologies. Namely, i) without monitoring and control using  isoflurane-air anesthesia, ii) monitoring 

without control using isoflurane-air anesthesia, iii) monitoring without control using isoflurane-N
2
O/

O
2
 anesthesia, and iv) monitoring and control using isoflurane-N

2
O/O

2 
anesthesia. In addition, we 

compared CSD frequency and threshold in visual and motor cortex, in both male and female mice, in 

the absence of physiological monitoring and physiological control. 

MATERIALS AND METHODS

Animals

Male and female homozygous Cacna1a FHM1 R192Q knock-in (“R192Q”) and wild-type (“WT”) 

mice of 2-4 months were used. The R192Q mice were generated by introduction of the human FHM1 

pathogenic R192Q missense mutation in the mouse Cacna1a gene using a gene targeting approach 

(van den Maagdenberg et al 2004). All experiments were approved by the Animal Experiment Ethics 

Committee of Leiden University Medical Center. 

CSD threshold and frequency recordings without physiological monitoring  
or physiological control

All experiments were performed during daytime between 10.00 am–13.00 pm. Mice were anesthetized 

using 1.5% isoflurane in pressurized air (80% N
2 
and 20% O

2
) and were breathing spontaneously. Core 

body temperature was maintained at 37 ºC using a heating pad (Stoelting, Wood Dale, IL, USA). Mice 

were mounted into a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Subsequently, 

a midline incision of ~2.5 cm was made over the top of the head, the skin was retracted to expose the 

skull, and the periosteum was removed with cotton-tipped applicator sticks. Two craniotomy windows 

were drilled at the following coordinates in the right hemisphere (in mm with respect to Bregma): 

3.5 posterior/2.0 lateral (visual cortex) and 1.5 anterior/2.0 lateral (motor cortex) (Figure 1A). Care 

was taken to keep the dura intact to minimize trauma to the underlying brain tissue. At the recording 

site a sharp glass capillary electrode (FHC Inc., Bowdoin, ME, USA) filled with 150 mM NaCl was 

advanced through the dura to a depth of 300 µm. After insertion of the electrode, a drop of mineral oil 

(~5 µL) was applied to the recording site to prevent drying of cortical tissue. The surgical procedure 

was completed within 20 min after the start of the anesthesia. DC-potential signals were measured 
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with respect to an Ag/AgCl reference electrode placed subcutaneously at the neck and amplified 10x 

(Molecular Devices, Sunnyvale, CA, USA). The DC signal was low-pass filtered at 4 Hz and digitized 

at 100–200 Hz using PowerLab 16/30 hardware (AD Instruments, Inc., Colorado Springs, CO, USA). 

Data were recorded and analyzed off-line using LabChart Pro (AD Instruments). In each mouse, first 

the CSD threshold was measured either in the visual or motor cortical window. To this end a cotton 

pellet (Interguide Dental Supply, Burlingame, CA, USA) soaked in a solution of KCl with a specific 

concentration (initially 5 mM) was placed on the dura overlaying either the visual or motor cortex for 3 

min. In case no CSD was induced during this time window, the cotton pellet was replaced with another 

pellet that contained a higher K+ concentration. Solutions contained increasing K+ concentrations with 

7.5-mM increments (with total osmolarity kept at 300 mOsmol by addition of NaCl to the solution). The 

measurements continued until a CSD event was observed, so the CSD threshold could be determined. 

After the CSD threshold measurement, the induction site was rinsed with 150 mM NaCl. Subsequently, 

CSD frequency was determined at the same location. The location used (visual vs motor cortex) is 

mentioned for the respective CSD frequency result in the legend. For CSD frequency measurements, 

CSD events were induced by placement of a cotton pellet soaked in 1 M KCl on the dura overlaying 

the visual or motor cortex for 30 min, with refreshment of the pellet after 15 min. The total number of 

CSD events that occurred within 30 min was used to calculate the frequency per hr. For both the CSD 

threshold and frequency measurements, only reversible DC deflections with amplitudes larger than 5 

mV were considered CSD events and included for further analysis. 

CSD frequency recordings with physiological monitoring 

Mice were maintained under 1.5% isoflurane anesthesia in 80% N
2
O/20% O

2
 and allowed to breathe 

spontaneously. Blood gas and mean arterial blood pressure values were monitored by placing a 

catheter in the left femoral artery. The surgical procedures were completed within 30 min after the 

start of the anesthesia. Blood pressure was measured continuously via a blood pressure transducer 

(AD instruments) connected to the femoral artery lead. To obtain information on physiological 

parameters (pH, pO
2
, pCO

2
; Table 2), 40-µL blood samples were collected before the start and at the 

end of the 30 min CSD frequency measurement and used for blood-gas analysis. Accepted ranges 

for physiological parameters were: pH=7.35-7.45; pO
2
=80-140 mmHg; pCO

2
=30-40 mmHg; and 

blood pressure=70-110 mmHg. Visual cortex CSD frequency measurements were performed upon 

induction of CSD by 1 M KCl application on the dura overlaying the visual cortex, as described 

above. In a subset of the experiments, isoflurane-air was used instead of isoflurane-N
2
O/O

2
 anesthesia.

CSD frequency recordings with physiological control 

In contrast to experiments with physiological monitoring, described in the previous section, mice were 

now mechanically ventilated and physiological parameters adjusted when necessary. Measurement 

of CSD frequency with physiological control was performed as described in (Eikermann-Haerter et 

al 2009b), with slight modifications. In brief, mice were maintained under 1.5% isoflurane anesthesia 

in a gas mixture of 70-80% N
2
O and 20-30% O

2
. Blood gas and mean arterial blood pressure values 
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were monitored via a catheter in the left femoral artery, as described above. After insertion of the 

catheter in the femoral artery, an endotracheal tube was inserted in the trachea that allowed artificial 

ventilation of the mouse. The mouse received an i.p injection of 0.04 mg/kg pancuronium for muscle 

paralysis to suppress spontaneous breathing and was connected to a mouse ventilator (SAR-830, 

CWE Inc, Ardmore, PA, USA). The surgical procedures were completed within 45 min after the start 

of the anesthesia. Visual cortex CSD frequency was measured upon induction of CSD by 1 M KCl 

application on the dura overlaying the visual cortex (Figure 1A), as described in the previous section, 

except that physiological parameters (i.e., pH, pO
2
, pCO

2
 and blood pressure) were now monitored 

(Table 2) and, if necessary, controlled by adjustments in ventilation. Blood pressure was measured 

continuously, as described above. For the other parameters, 40 µL blood samples were collected before 

the start and at the end of the 30 min CSD frequency measurement and used for blood-gas analysis; 

accepted ranges for physiological parameters were: pH=7.35-7.45; pO
2
=80-140 mmHg; pCO

2
=30-40 

mmHg; and blood pressure=70-110 mmHg. When pH and pCO
2
 values were outside the accepted 

ranges, breathing rate and time were adjusted. When pO
2 
values

 
were outside the accepted ranges,

 

adjustments were made to the administered O
2
 concentration. In this way physiological parameters 

were controlled during the experiment. The effect of the ventilator adjustments on physiological 

parameters was determined by taking a blood sample, immediately after the adjustment. 

Ovariectomy

For removal of the ovaries, female mice were anesthetized using 1.5% isoflurane in pressurized air 

(80% N
2 
and

 
20% O

2
). A 1 cm incision was made in the skin of the flank followed by an incision in 

the muscle wall. Ovaries were separated from the surrounding tissue with ligatures, and carefully 

removed, after which the skin was closed with sutures. The mouse was given a subcutaneous injection 

of 1 mL 0.9% NaCl to maintain physiological hydration. The mouse also received an intramuscular 

injection of 0.1 mg/kg temgesic for post-operative analgesia. After a 2-week recovery period, CSD 

threshold and frequency recordings were performed using isoflurane-air anesthesia in the absence of 

physiological monitoring or control, as described above.

Statistical analysis

For statistical analysis of CSD threshold, which is skewed, the Mann-Whitney U-test was used. For 

CSD frequency values, one-way ANOVA followed by Bonferroni correction or Student’s t-test was 

used. Statistical significance was set at 0.05. 
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Figure 1. In the absence of physiological monitoring and control under isoflurane-air anesthesia, visual cortex CSD 
frequency is enhanced in R192Q mice compared with WT, with no difference between genders.
(A) Schematic representation of visual cortex CSD frequency measurements in anesthetized mice. CSD is induced by 
placement of a cotton pellet containing 1 M KCl on the dura overlaying the visual cortex for a period of 30 min, while CSD 
events are measured by DC-recording via a glass-electrode placed in the motor cortex. In experiments without physiological 
monitoring or control, CSD frequency measurements followed CSD threshold measurements (see Methods) (B) Example CSD 
frequency traces illustrating enhanced visual cortex CSD frequency in male R192Q compared with WT mice in the absence 
of physiological control using isoflurane-air aesthesia (C) Bar diagram depicting enhanced CSD frequency in the visual 
cortex in both male and female R192Q compared with WT mice (†p=0.0001 and ‡ p=0.0001; one-way ANOVA Bonferroni 
correction). No CSD frequency difference was observed for male compared with female R192Q mice in experiments without 
physiological control using isoflurane-air anesthesia. 



036Chapter 2

RESULTS 

CSD frequency in the visual cortex is enhanced in R192Q mice without revealing 
a gender difference, when assessed in the absence of physiological monitoring or 
physiological control

We determined visual cortex CSD frequency (Figure 1A, B) of male and female R192Q and WT mice 

using isoflurane-air anesthesia in the absence of physiological monitoring or physiological control. 

Both female and male R192Q mice showed an enhanced visual cortex CSD frequency compared with 

WT (female R192Q, 16.4±3.3 CSD/hr, vs female WT, 8.5±3.6 CSD/hr, N=9, p=0.0001; male R192Q, 

17.0±2.1 CSD/hr, N=10, vs male WT, 8.9±2.8 CSD/hr, N=14, p=0.0001). For both R192Q and WT mice 

no gender difference was observed (female R192Q vs male p=0.6; female WT vs male p=0.7) (Figure 

1C). Table 1 summarizes CSD amplitude and duration characteristics for the different groups. Except 

for CSD duration, which was longer for female WT compared with female R192Q mice, no statistical 

differences were observed. Not finding a gender difference in R192Q mice contrasts with published data 

that revealed that female mutant mice displayed a higher CSD frequency when isoflurane-N
2
O/O

2
 was 

used and physiological parameters were controlled (Eikermann-Haerter et al 2009b).

CSD threshold in the visual cortex is reduced in R192Q mice, and more so in male 
mutants, when assessed in the absence of physiological monitoring and physiological 
control

A study by Brennan et al. (Brennan et al 2007) showed that CSD threshold in the visual cortex was 

reduced in female compared with WT mice in experiments in which physiological parameters were 

monitored, and not controlled. We here assessed visual cortex CSD threshold of R192Q and WT 

mice of both genders, using isoflurane-air anesthesia, without monitoring or controlling physiological 

parameters. CSD threshold, as assessed by the KCl concentration required to elicit a CSD (Figure 2A), 

was reduced in both female and male R192Q mice compared with WT mice of the same gender (female 

R192Q, median=51.8 mM KCl, N=14 vs female WT, median=68.7 mM KCl, N=9; p=0.01; male 

R192Q, median=38.7 mM KCl, N=11 vs female WT, median=58.7 mM KCl, N=14; p=0.001) (Figure 

2B). Rather unexpectedly, male R192Q mice showed a lower CSD threshold (p=0.02) compared with 

female R192Q mice. CSD threshold did not statistically differ between female and male WT mice, 

although male WT mice showed a trend towards a lower threshold (p=0.08). There were no statistical 

differences in CSD amplitude or duration between female and male mice, or between genotypes for 

the visual cortex threshold experiments (Table 1).  
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Figure 2. Visual cortex CSD threshold is reduced in R192Q mice compared to WT in the absence of physiological 
control under isoflurane-air anesthesia, with strongest effect in males.
(A) Specimen recordings of CSD threshold assessments illustrating the lower KCl concentration that is required to induce 
a CSD in the visual cortex of a male R192Q compared with a WT mouse (B) Box plots depicting lower visual cortex CSD 
threshold in male R192Q compared with female mice (*p=0.02 male R192Q vs female R192Q, Mann-Whitney U-test) and 
in R192Q male and female mice compared with WT (#p=0.001 male R192Q vs WT; §p=0.01 female R192Q vs WT, Mann-
Whitney  U-test). 
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Table 1. CSD amplitude and duration characteristics of CSD frequency and threshold recordings 
from visual and motor cortex in R192Q and WT mice for experiments performed in the absence 
of physiological monitoring or control, using isoflurane-air  

Male Female
CSD Frequency N Amplitude 

(mV)
Duration 

(sec)
N Amplitude 

(mV)
Duration 

(sec)

R192Q visual 10 18.9±3.3 32.4±11.9 14 20.4±2.6‡ 25.4±5.0

WT visual 14 20.9±3.0 34.4±18.0 9 23.4±2.6* 46.3±25.1*

R192Q motor 7 14.9±6.2 20.8±7.4 12 15.4±3.9 30.4±11.2

WT motor 10 21.1±4.1† 33.3±8.1 7 10.7±3.4 27.2±10.9

CSD Threshold

R192Q visual 11 21.9±1.9 71.1±35.2 14 22.2±3.5 63.5±22.8

WT visual 14 25.0±4.3 71.2±39.0 9 25.7±3.1* 72.4±19.5

R192Q motor 8 17.9±5.0 56.2±26.4 12 19.4±2.8 72.3±27.6

WT motor 11 22.7±2.7† 45.8±10.6 10 15.9±3.0 46.8±19.2

CSD susceptibility is not affected by gender when assessed in the motor cortex in the 
absence of physiological monitoring and physiological control 

Given reports on visual cortex hyperexcitability in migraine patients (Aurora & Wilkinson 2007), 

and the suggestion of CSD to initiate preferably in the visual cortex (Hadjikhani et al 2001), we next 

assessed whether effects of genotype and gender on measures of CSD susceptibility frequency and 

Table 1. Values are shown as mean ± SD. CSD duration was measured at half-maximal amplitude. CSD frequency data: 
comparison of CSD characteristics in CSD frequency recordings revealed a lower CSD amplitude in female WT mice for 
the motor cortex compared with female WT mice for the visual cortex (*p=0.0001), and compared with male WT mice in 
the motor cortex (†p=0.038, one-way ANOVA, Bonferroni correction). CSD amplitude was also reduced in female R192Q 
mice for the motor cortex compared to the visual cortex (‡p=0.049, one-way ANOVA, Bonferroni correction). There were 
no differences in CSD duration except for a shorter duration in female R192Q mice for the visual cortex compared with 
female WT mice visual cortex (*p=0.016, one-way ANOVA, Bonferroni correction). CSD threshold data: CSD amplitude 
was reduced in female WT mice for the motor compared to the visual cortex (*p=0.0001) and compared to motor cortex in 
male WT mice (†p=0.0001, one-way ANOVA, Bonferroni correction). There were no differences between groups in CSD 
duration for CSD threshold measurements.
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threshold are specific to the visual cortex. Therefore, we investigated these CSD measurements also in 

the motor cortex. Experiments were carried out using isoflurane-air anesthesia without physiological 

monitoring or physiological control. Regarding a possible effect of genotype, for the motor cortex 

both male and female R192Q mice exhibited higher CSD frequencies compared with WT mice of the 

same gender (male R192Q, 14.0±3.6 CSD/hr, N=7 vs male WT, 7.6±1.3 CSD/hr, N=10, p=0.0001; 

female R192Q, 13.0±3.9 CSD/hr, N=12 vs female WT, 5.5±1.7 CSD/hr, N=7, p=0.0001) (Figure 3A). 

For CSD threshold however, both male and female R192Q mice showed comparable CSD thresholds 

as WT mice of the same gender (male R192Q, median=56.8 mM KCl, N=9 vs male WT, median=57.5 

mM KCl, N=11, p=0.8; female R192Q, median=59.3 mM KCl, N=12 vs female WT, median=63.1 

mM KCl, N=10, p=0.60 (Figure 3B). With respect to gender, for motor cortex CSD frequency, similar 

as observed for the visual cortex, no difference was observed between male and female mice for both 

R192Q (p=0.5) and WT mice (p=0.3) (Figure 3A). For CSD threshold measurements in the motor 

cortex, in contrast to the visual cortex, no difference was observed between genders in R192Q mice 

(p=0.7). In WT mice, as seen for the visual cortex, no gender effect was observed for motor cortex 

CSD threshold (p=0.8) (Figure 3B).Figure 3
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Figure 3. In the absence of physiological control, CSD susceptibility in the motor cortex is not influenced by gender. 
Experiments were performed in the absence of physiological control under isoflurane-air anesthesia (A) Bar diagrams 
showing an increased motor cortex CSD frequency for both male (†p=0.0001) and female R192Q mice (‡p=0.0001; one-
way ANOVA, Bonferroni correction) compared with WT, with no differences between genders among mice of the same 
genotype (B) CSD threshold values in the motor cortex were comparable between R192Q and WT mice of both genders in 
experiments without monitoring or control.
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Given these observations, we next assessed whether CSD susceptibility measurements of frequency 

and threshold may differ between the visual and motor cortex, with possible effects of genotype 

and gender. Between cortical regions, male R192Q mice exhibited comparable CSD frequencies for 

visual and motor cortex, although a trend towards higher CSD frequency was observed for the visual 

compared with motor cortex (p=0.05). Female R192Q mice displayed a significantly higher CSD 

frequency in the visual compared with motor cortex (p=0.02). CSD frequency was not different for 

the visual compared with motor cortex in male WT (p=0.2) and female WT mice (p=0.07) (Figures 

1C and 3A). CSD threshold was lower in the visual compared with the motor cortex (p=0.009) in 

male R192Q mice. Female R192Q mice however showed comparable CSD thresholds for both visual 

and motor cortex (p=0.1). In WT mice, CSD threshold was not different between motor and visual 

cortex in both male (p=0.6) and female mice (p=0.7) (Figures 2B and 3B). Table 1 summarizes CSD 

characteristics amplitude and duration for the different groups. For CSD frequency measurements, 

some differences were observed regarding CSD amplitude. In particular, for female R192Q mice, 

lower CSD amplitude was observed in motor compared with visual cortex. Furthermore, female WT 

mice showed lower CSD amplitude in the motor compared with the visual cortex, and compared with 

male WT mice in the motor cortex. For CSD threshold measurements, no differences were observed 

except for lower CSD amplitude in female WT mice in the motor compared with the visual cortex.

Ovariectomy has no strong influence on visual cortex CSD susceptibility in 
experiments without physiological monitoring and physiological control  

Although visual cortex CSD frequency was comparable between male and female R192Q mice in 

physiologically uncontrolled experiments, the enhanced CSD frequency that was observed for female, 

but not male, R192Q mice in the visual compared with the motor cortex suggests some effect of 

gender on CSD characteristics in the absence of physiological control. Hence we next determined, in 

experiments performed in the absence of physiological monitoring and control, whether ovariectomy 

in female R192Q mice may reduce visual cortex CSD frequency values to those observed for 

motor cortex. After ovariectomy in female R192Q mice, visual cortex CSD frequency did not show 

a difference anymore with motor cortex CSD frequency from intact female R192Q mice (p=0.2). 

Nevertheless, visual cortex CSD frequency itself was not significantly reduced by ovariectomy in 

female R192Q or WT mice (R192Q ovariectomized (Ovx), 15.2±4.0 CSD/hr, N=8 vs R192Q intact, 

16.4±3.3 CSD/hr, N=14, p=0.8; WT Ovx, 7.9±2.0 CSD/hr, N=5 vs WT intact, 8.5±3.6 CSD/hr, N=9, 

p=0.7). Similar as for intact female R192Q compared with WT mice, ovariectomized female R192Q 

mice showed higher visual cortex CSD frequency compared with ovariectomized WT mice (p=0.003).  

Given the observed, unexpected, higher visual cortex CSD threshold observed for female compared 

with male R192Q mice, we next determined whether this effect may be influenced by ovariectomy. 

Similar as for CSD frequency, visual cortex CSD threshold was not influenced by ovariectomy for both 

female R192Q and WT mice (R192Q Ovx, median=57.5 mM KCl, N=7 vs R192Q intact, median=51.8 

mM KCl, N=14, p=0.3; WT Ovx, median=72.5 mM KCl, N=5 vs WT intact, median=68.7 mM KCl, 
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N=9, p=0.4). As a consequence, ovariectomized female R192Q mice still showed a higher visual 

cortex CSD threshold compared with male R192Q mice (p=0.01). The genotype effect on visual 

cortex CSD threshold was also not influenced by ovariectomy. Ovariectomized R192Q mice showed 

reduced CSD threshold compared with ovariectomized WT (p=0.04). CSD amplitude and duration 

were not influenced by ovariectomy for both CSD frequency and threshold experiments.

CSD frequency in the visual cortex is enhanced in R192Q mice, and more so in female 
mutants, when assessed in the presence of physiological monitoring and physiological 
control

Although our experiments performed without physiological monitoring or physiological control show 

the reported genotypic effect of the R192Q mutation on CSD susceptibility, the absence of a gender 

effect on visual cortex CSD frequency is not in line with earlier experiments in R192Q mice from 

Eikermann-Haerter et al. that were performed in the presence of physiological control (Eikermann-

Haerter et al 2009b). For CSD threshold in WT mice, in contrast to studies from Brennan et al. 

(Brennan et al 2007) we did not observe an effect of gender, and for male R192Q mice we observed 

an unexpected lower CSD threshold compared with female R192Q mice. Given the variable duration 

of a CSD threshold paradigm that may have an impact on the studies in mice without physiological 

control, in our next experiments we choose to use only visual cortex CSD frequency assessment. We 

performed visual cortex CSD frequency measurements using an experimental paradigm in which 

isoflurane-N
2
O/O

2
 anesthesia was used, and in which mice were kept under physiological control, 

thus following the protocol described in Eikermann-Haerter et al. (Eikermann-Haerter et al 2009b). 

Physiological parameters (pO
2
, pCO

2,
 pH and blood pressure) are shown in Table 2. Both female 

(p=0.0002) and male R192Q mice (p=0.004) exhibited a higher CSD frequency compared with WT 

of the respective gender. In line with published data, CSD frequency was higher in female than in 

male R192Q mice (female R192Q, 22.8±4.5 CSD/hr, N=7 vs male R192Q, 16.32±1.9 CSD/hr, N=6; 

p=0.007), while no gender difference was observed for WT mice (female WT, 10.42±1.8 CSD/hr, 

N=5 vs male WT, 12.0±1.7 CSD/hr, N=5; p=0.1) (Figure 4). No statistical differences were observed 

for CSD amplitude and duration among the different groups, except for a longer CSD duration for 

female WT compared with female R192Q mice and compared with male WT mice (Table 2).

The absence of a gender effect on CSD frequency in experiments that are not 
physiologically controlled is related to the absence of mechanical ventilation and 
slight differences in physiology

The observation of a gender effect on visual cortex CSD frequency in R192Q mice in physiologically 

monitored and controlled experiments raises the question whether this gender effect may also be 

observed for experiments that are only physiologically monitored, provided that physiological 

parameters are within ranges. CSD threshold was not considered as a readout measure, given the 

variable duration of this paradigm. Therefore, we performed visual cortex CSD frequency assessments 
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Figure 4. In physiologically controlled
experiments performed under isoflurane-N

2
O/

O
2
 anesthesia, visual cortex CSD frequency 

is enhanced in female R192Q mice compared 
with males. In agreement with previous findings 
in which physiological parameters were controlled 
using mechanical ventilation and isoflurane-N

2
O/O

2
 

anesthesia (Eikermann-Haerter et al 2009b), female 
R192Q mice exhibited increased visual cortex CSD 
frequency compared with male R192Q mice (*p=0.007 
female vs male R192Q; Student’s t-test). Genotypic 
comparisons revealed a higher CSD frequency for both 
male and female R192Q mice in comparison with WT 
(§p=0.004 male R192Q vs male WT; †p=0.0002 female 
R192Q vs female WT, one-way ANOVA, Bonferroni 
correction).

Table 2. CSD amplitude and duration and physiological parameters of R192Q and WT mice 
for CSD frequency experiments performed with physiological monitoring-only, or with 
physiological monitoring and control

CSD  
Frequency

N pH pO
2 (mmHg)

pCO
2 (mmHg)

MABP 
(mmHg)

Amplitude 
(mV)

Duration 
(sec)

Male R192Q 
monitored-air

6 7.45±0.02‡ 97.8±4.0 25.5±2.7 74.2±1.1$ 21.1±1.1* 27.1±5.1

Female R192Q 
monitored-air

6 7.38±0.02§ 102.8±5.9 28.6±2.1 77.3±3.3 19.3±2.8† 28.6±11.1

Male R192Q 
monitored-N

2
O/O

2

5 7.41±0.02 133.7±37.7 29.2±3.7 85.0±10.8# 14.8±2.9 26.9±11.1

Female R192Q 
monitored-N

2
O/O

2

6 7.36±0.03* 113.1±10.9 33.2±5.0† 83.5±3.0 19.3±1.1 19.8±2.5

Male R192Q 
controlled-N

2
O/O

2

6 7.40±0.03 123.1±13.3 31.1±1.9§ 95.3±9.1 20.3±3.9† 28.2±5.9

Female R192Q 
controlled-N

2
O/O

2

7 7.42±0.04 128.1±23.0‡ 27.5±1.9# 94.7±8.9§ 22.0±1.9 21.8±4.9*

Male WT 
Controlled-N

2
O/O

2

5 7.39±0.01 132.4±3.4 31.0±1.6 95.2±11.6§ 22.9±2.8 27.0±3.9†

Female WT 
Controlled-N

2
O/O

2

5 7.38±0.01 128.7±3.5 31.5±2.4$ 99.5±9.0‡ 21.6±6.9 45.2±14.0
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in male and female R192Q mice that were physiologically monitored (by femoral artery catheterization) 

but not controlled (i.e., animals were breathing freely and were not mechanically ventilated). Under 

these conditions, we compared CSD frequency characteristics between male and female R192Q 

mice for experiments performed with air (as in our unmonitored and uncontrolled experiments) with 

experiments performed with N
2
O/O

2
 (as in the fully controlled experiments). Both with the use of air 

and N
2
O/O

2
 in the gas anesthesia mixture, physiologically monitored male and female R192Q mice 

showed comparable CSD frequencies (isoflurane-air: male R192Q, 17.8±2.0 CSD/hr, N=6 vs female 

R192Q, 16.1±1.7 CSD/hr, N=6, p=0.1; isoflurane-N
2
O/O

2
: male R192Q, 16.1±3.0 CSD/hr, N=5 vs 

female R192Q, 15.4±2.9 CSD/hr, N=6, p=0.7) (Figure 5A, B). For these monitored experiments, 

all physiological parameters were within accepted ranges (Table 2). No consistent relationship was 

apparent between higher or lower CSD frequency values and levels of physiological parameters, with 

physiological values showing changes in both positive and negative directions. 

Table 2. Values are shown as mean ± SD. CSD duration was measured at half-maximal amplitude. In monitored 
experiments, physiological parameters were only monitored (via femoral artery catheterization) but not controlled by 
mechanical ventilation. In these experiments mice were breathing spontaneously using isoflurane with either air or N

2
O/O

2
. 

In physiologically controlled experiments, mice were both monitored and mechanically ventilated, using isoflurane-N
2
O/

O
2
 anesthesia. In physiologically controlled experiments physiological parameters were maintained within physiological 

range by adjusting ventilation guided by femoral artery blood measurements. For some of the experimental groups, 
differences in CSD amplitude, duration or physiological parameters were observed. For female R192Q and WT mice, 
CSD amplitude and duration were not different among groups. There were some differences in physiological parameters: 
pH was higher (*p=0.044) whereas pCO

2
 was lower (†p=0.020, one-way ANOVA, Bonferroni correction) for the female 

R192Q controlled-N
2
O/O

2
 compared to the female R192Q monitored- N

2
O/O

2
 group. Furthermore, the female R192Q 

controlled-N
2
O/O

2
group exhibited higher pO

2
 values (‡p=0.031) and higher MABP (§p=0.0001, one-way ANOVA, 

Bonferroni correction) compared to the female R192Q monitored-air group. For male R192Q mice, CSD duration was 
not different among groups. With respect to amplitude, the male R192Q monitored-N

2
O/O

2
 group showed a lower CSD 

amplitude compared to the male R192Q monitored-air group (*p=0.009) and compared to the male R192Q controlled-
N

2
O/O

2
 group (†p=0.021, one-way ANOVA, Bonferroni correction). For the male R192Q monitored-air group compared 

to male R192Q controlled-N
2
O/O

2
 group, pH was slightly higher (‡p= 0.042) and pCO

2
 was lower (§p=0.013, one-way 

ANOVA, Bonferroni correction). MABP was higher for the male R192Q controlled-N
2
O/O

2
 group compared to both male 

R192Q monitored-air ($p=0.0001) and male R192Q monitored-N
2
O/O

2
 groups (#p=0.010, one-way ANOVA, Bonferroni 

correction). Between genders, the female R192Q monitored- N
2
O/O

2 
group showed higher CSD amplitude compared to 

the male R192Q monitored-N
2
O/O

2 
group

 
(†p=0.007, Student’s t-test). In addition, the male R192Q monitored-air group 

exhibited higher pH values compared to the female R192Q monitored-air group (§p=0.001, Student’s t-test). For the 
different controlled-N

2
O/O

2 
groups, some differences were observed in CSD characteristics and physiological parameter 

values between WT and R192Q mice, for both males and females. Although CSD amplitude for these experiments was 
comparable among groups, CSD duration was longer for female R192Q compared with female WT mice (*p=0.0001) 
and for female WT compared to male WT mice (†p=0.01, one-way ANOVA, Bonferroni correction). Furthermore, of the 
controlled-N

2
O/O

2 
groups

, 
female WT mice exhibited higher MABP values compared with female R192Q (‡p=0.002) 

and compared with male WT mice (§p=0.005, one-way ANOVA, Bonferroni correction). Lastly, pCO
2 
was lower for the 

controlled-N
2
O/O

2 
group

 
of female R192Q mice compared to female WT ($p=0.038) and compared with male R192Q 

mice (#p=0.027, one-way ANOVA, Bonferroni correction). MABP: mean arterial blood pressure.
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Next, we carried out a direct comparison of the visual cortex CSD frequency data from male and 

female R192Q mice from the 4 different experimental methodologies used in the present study, i.e., 

i) uncontrolled-air, ii) monitored-air, iii) monitored-N
2
O/O

2
, and iv) monitored & controlled-N

2
O/

O
2
. This comparison revealed that for male R192Q mice, CSD frequency was comparable for all 

4 conditions. For female R192Q mice however, CSD frequency was significantly higher for the 

physiologically controlled group in which mice were both monitored and mechanically ventilated 

using isoflurane-N
2
O/O

2
 anesthesia (controlled-N

2
O/O

2
 vs uncontrolled-air p=0.001; controlled-

N
2
O/O

2 
vs monitored-air p=0.006; controlled-N

2
O/O

2 
vs monitored-N

2
O p=0.005; one-way ANOVA, 

Bonferroni correction) (Figure 5C). Comparison of CSD duration revealed no differences among 

groups. CSD amplitude however was lower in the male R192Q monitored-N
2
O/O

2 
group

 
compared 

to the male R192Q monitored-air and compared to the male R192Q controlled-N
2
O/O

2
 group. In 

addition, the female R192Q monitored-N
2
O/O

2
 group showed higher CSD amplitude compared to 

the R192Q male monitored-N
2
O/O

2
 group (Table 2). 

Finally, we assessed whether the absence of higher CSD frequency in R192Q female mice that 

were not physiologically controlled may be associated with differences in physiological parameters 

(pH, pO
2
, pCO

2
 and blood pressure) in comparison to experiments under physiological control.  

For female R192Q mice in the monitoring-only-N
2
O/O

2
 group, compared to the physiologically 

controlled-N
2
O/O

2
 group, pCO

2
 values were slightly higher (p=0.02) and pH was slightly lower 

(p=0.04). Blood pressure was lower in both the monitoring-only-air and the monitoring-only-N
2
O/O

2 

groups, compared to the physiologically controlled-N
2
O/O

2
 group (controlled vs monitoring-only-air 

p=0.0001; controlled vs monitoring-only-N
2
O/O

2
 p=0.01) (Table 2). Physiological parameters were 

comparable between experiments performed in male R192Q mice with physiological control (using 

N
2
O/O

2
) and male R192Q mice that were monitored-only using N

2
O/O

2, 
except for a lower blood 

pressure in R192Q monitored-N
2
O/O

2
 compared to R192Q controlled-N

2
O/O

2 
mice

 
(p=0.01). 

Figure 5. Increased visual cortex CSD frequency in female R192Q mice in experiments with physiological control is 
not related to the anesthesia gas mixture but to the use of mechanical ventilation.
(A, B) Bar diagrams depicting the lack of a gender effect on visual cortex CSD frequency between male and female R192Q 
mice for experiments carried out in the presence of physiological monitoring (via the femoral artery), but in the absence of 
mechanical ventilation (i.e., animals were allowed to breathe spontaneously and were not physiologically controlled), using 
isoflurane-air anesthesia (A) (p=0.1, male vs female R192Q, Student’s t-test) and (B) isoflurane-N2O/O2 anesthesia (p=0.7, 
male vs female R192Q Student’s t-test) (C) Bar diagrams depicting the comparison of the visual cortex CSD frequency data 
from male and female R192Q mice tested among the different experimental conditions. Grey colour indicates that these data 
were presented in earlier figures. Male R192Q mice displayed no differences in visual cortex CSD frequency across the 4 
different experimental conditions. Female R192Q mice however displayed a significantly increased CSD frequency (indicated 
by *) in the presence of physiological control (i.e., monitoring via femoral catheterization and mechanical ventilation using 
isoflurane-N

2
O/O

2
 anesthesia) in comparison to female R192Q mice that were: i) uncontrolled with isoflurane-air (p=0.001); 

ii) physiologically monitored and not controlled but using isoflurane-air (p=0.006); or iii) physiologically monitored and not 
controlled using isoflurane-N

2
O/O

2
 (p=0.005 one-way ANOVA, Bonferroni correction). 
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DISCUSSION 

Using CSD frequency as readout for CSD susceptibility, we here showed that in the absence of 

physiological monitoring and control, R192Q mice exhibit an increased visual cortex CSD frequency 

compared to WT. In contrast to earlier studies, performed in the presence of physiological control 

(Eikermann-Haerter et al 2009b), the effect was not more pronounced in females. The absence of a 

gender effect was not explained by the CSD readout parameter: also with threshold measurements 

visual cortex CSD susceptibility was not enhanced, and was even increased, for female compared 

to male R192Q mice. In addition, comparison between visual and motor cortex as sites of CSD 

induction revealed that also for the motor cortex, CSD frequency was specifically enhanced in 

R192Q compared with WT mice.  CSD threshold however was not different for R192Q compared 

with WT mice in the motor cortex. Gender had no influence on CSD frequency or threshold in the 

motor cortex. When comparing the two cortical regions, CSD susceptibility was enhanced in visual 

compared to motor cortex for CSD threshold in male R192Q mice, and for CSD frequency in female 

R192Q mice, indicating an effect of gender. Ovariectomy however had no effect on either visual 

cortex CSD frequency or threshold in female WT and R192Q mice in the absence of physiological 

control. Experiments performed with physiological monitoring, but without physiological control, 

revealed that the lack of a gender effect on visual cortex CSD frequency in the absence of control was 

not related to the use of air instead of N
2
O/O

2, 
but to the absence of mechanical ventilation. In these 

monitored experiments, slight differences in pH, pCO
2
 and blood pressure were observed that may 

contribute to the lack of enhanced CSD frequency in female compared to male R192Q mice when 

physiological parameters are not controlled. 

Our data indicate that parameters of CSD susceptibility can be masked or unmasked depending on the 

experimental paradigm used. This has important implications for the interpretation and comparison 

of experimental CSD studies across laboratories, since it is plausible that certain effects on CSD 

characteristics are related to the used methodology. Below, we discuss possible implications of certain 

methodologies with respect to specific CSD characteristics. 

The effect of enhanced visual cortex CSD frequency in R192Q mice in the present study for 

experiments performed using isoflurane-air anesthesia, is in line with findings from earlier work 

performed in the presence of physiological control and isoflurane-N
2
O/O

2
 anesthesia (Eikermann-

Haerter et al 2009a, Eikermann-Haerter et al 2009b). This indicates that the genotypic effect on CSD 

frequency is not influenced by the presence or absence of physiological monitoring or control, or by 

the used anesthesia gas mixture. Our data extend the genotypic effect on CSD frequency also to the 

motor cortex. The reduced visual cortex CSD threshold in R192Q mice which we observed for both 

genders in the absence of physiological control is for male mice in line with earlier uncontrolled 

CSD studies. In those studies urethane was used instead of isoflurane anesthesia, and for threshold 

assessment electrical stimulation was used (van den Maagdenberg et al 2004, van den Maagdenberg 

et al 2010) instead of topical KCl application. Gender effects were not studied before in FHM1 



047

mice for CSD threshold. We observed an opposite gender effect in the absence of physiological 

control, with visual cortex CSD threshold being lower in male compared to female R192Q mice. In 

addition, contradictory effects were observed for possible regional differences in CSD susceptibility 

among genders. Furthermore, ovariectomy had no effect on visual cortex CSD frequency or threshold 

in R192Q mice for physiologically uncontrolled experiments. For CSD frequency this contrasts 

reported effects of ovariectomy for experiments performed under physiological control (Eikermann-

Haerter et al 2009b). It is plausible that in the absence of physiological control, variations occur in 

physiological parameters that influence CSD susceptibility characteristics, in particular during CSD 

threshold paradigms with variable durations. 

Apart from CSD threshold and frequency, amplitude and duration of CSD events may also be 

influenced by alterations in physiology. A longer CSD duration for example has been associated 

with impaired tissue perfusion and recovery in rats (Sukhotinsky et al 2010). In previous studies 

under physiologically controlled conditions, CSD duration and amplitude were not different for 

visual cortex CSD frequency recordings between male and female mice for both WT and R192Q 

mutants (Eikermann-Haerter et al 2009b). In our study, no differences in CSD duration were observed 

that could contribute to the enhanced CSD frequency for female R192Q mice in the physiologically 

controlled group. CSD amplitude differences that were observed among some of the experimental 

groups were not related to differences in CSD frequency. In general, it should be noted that CSD 

amplitude may not be considered a reliable readout for CSD susceptibility given its dependence on 

recorded cortical depth. 

Enhanced CSD susceptibility of female FHM1 mice is clinically relevant in the context of the 

higher propensity of women for migraine (Fettes 1999). Underlying mechanisms could involve 

enhancement of glutamatergic neuronal excitability by estradiol (Kelly et al 2003, Sato et al 2003, 

Smith 1989, Woolley et al 1997). A direct effect of estradiol on glutamatergic neurotransmission fits 

the observation of a gender effect only in FHM1 and not in WT mice. The finding that a gender effect in 

physiologically controlled experiments was observed regardless of estrous cycle, as the phase was not 

determined, suggests that intrinsic brain differences between males and females (Borsook et al 2014) 

may contribute to enhanced CSD susceptibility in female FHM1 mice. Interestingly, expression of the 

subunit of P/Q-type Ca2+ channels was shown to be enhanced in the pituitary of female compared to 

male rodents, and fluctuate during the estrous cycle (Fiordelisio et al. 2007), suggesting a modulation 

of CSD frequency by female hormones at the level of the mutant Ca2+ channels. The observation that 

a gender effect on CSD frequency was not observed in physiologically uncontrolled experiments 

suggests that mechanisms underlying the gender effect are influenced by changes in physiology. 

Although in all monitored experiments physiological parameters were within normal ranges for 

anesthetized rodents, monitored-only female R192Q mice displayed slightly higher pCO
2
 and lower 

blood pressure values compared to female R192Q mice from the physiologically controlled group. 

Changes in pCO
2
 and related changes in brain pH can modulate neuronal excitability by affecting ion 
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channels and transporters (Ruusuvuori & Kaila 2014), whereby high pCO
2
 and low pH are expected 

to lower CSD susceptibility (Holland et al 2012). It is thus possible that the absence of a gender effect 

in monitored-only female R192Q mice relates to the slightly higher pCO
2 
for this group. Changes in 

blood pressure can also affect CSD characteristics (Sukhotinsky et al 2010). Lower blood pressure 

of monitored-only female R192Q mice, compared to physiologically controlled mice, may thereby 

have contributed to a lower CSD frequency, thus masking a gender effect in the absence of control. 

Alternatively, it is possible that the use of mechanical ventilation for physiological control causes 

certain changes in physiology that are not monitored, but which may influence CSD characteristics. It 

has been described that mechanical ventilation can affect cerebral blood flow (Milan et al 2009), which 

has a bi-directional relationship with CSD initiation and propagation (Ayata 2013). Since estradiol 

can alter the brain’s vascular responses to CGRP (Gupta et al 2007), it is possible that vascular effects 

of mechanical ventilation influence modulation of CSD susceptibility by estradiol. 

Our CSD experiments performed in the absence of physiological control suggested that the visual 

cortex may be more susceptible to CSD than the motor cortex in R192Q, but not in WT mice. If 

true, this would be in line with neurophysiological studies reporting visual cortex hyperexcitability 

in migraine patients (Aurora et al 1998, Aurora et al 2003, Aurora & Wilkinson 2007). Further 

clinical relevance comes from imaging studies in migraine patients suggesting CSD initiation to 

occur preferably in the visual cortex (Hadjikhani et al 2001). Our data however showed that an 

effect of cortical region on CSD susceptibility was evident for CSD threshold only in male, and 

not in female R192Q mice. For CSD frequency, a regional difference was observed only in female, 

and not in male R192Q mice. Since these observations were made in the absence of physiological 

monitoring and control it is difficult to assess whether these findings may be confounded by possible 

changes in physiology during recordings. Studies in WT mice under halothane anesthesia, in the 

absence of physiological monitoring or control, showed no difference in CSD susceptibility between 

the occipital and frontal cortex (Godukhin & Obrenovitch 2001), similar to our observations in WT 

mice. For insight in a putative effect of cortical region on CSD susceptibility, additional experiments 

with physiological monitoring, and possibly mechanical ventilation for control, would be useful, as 

well as CSD studies in freely behaving mice that allow for exclusion of possible effects of anesthesia, 

catheterization or ventilation.

In conclusion, we showed that in experimental CSD studies in mice, control of physiological parameters 

can influence CSD susceptibility characteristics. Although the mechanisms remain to be unraveled, the 

occurrence of a gender effect on visual cortex CSD frequency in R192Q mice appeared sensitive to the 

use of mechanical ventilation and to possible changes in systemic pH, pCO
2
 or blood pressure levels. 

Effects of other factors on CSD susceptibility, such as a putative effect of cortical region, may become 

apparent in the absence of control if such effects are sensitive to changes in physiology that are influenced 

by mechanical ventilation. Comparison among CSD studies need to take into account influences of the 

used methodologies and, ideally, should include studies in awake, unanesthetized animals. 
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ABSTRACT

Migraine is an episodic brain disorder for which cortical hyperexcitability has been proposed as 

one of the key disease mechanisms. Two main subtypes of migraine are distinguished based on the 

presence of an aura that can accompany headaches in many patients. The aura is likely caused by 

cortical spreading depression (CSD), a slowly spreading wave of neuronal and glial depolarization. 

Familial hemiplegic migraine type 1 (FHM1) mutant mice that carry a R192Q missense mutation in 

the Cacna1a gene, which had been previously identified in patients, display enhanced (glutamatergic) 

neuronal excitability and increased CSD susceptibility. Here we performed continuous day-night DC-

EEG and multi-unit activity recordings in visual and motor cortex from freely behaving FHM1 R192Q 

and wild-type (WT) mice to investigate whether cortical network properties differ between genotypes 

and whether these can lead to spontaneous CSD events. Parallel experiments under anesthesia were 

aimed to investigate whether CSD susceptibility differs between the light and dark period and/or 

between visual and motor cortex. Under freely behaving conditions, FHM1 mice displayed enhanced 

gamma (30-45 Hz) EEG power in both visual and motor cortex throughout vigilance states (i.e., active 

waking, REM sleep and non-REM sleep); delta (0.75-5 Hz) power was reduced in motor cortex during 

REM and non-REM sleep. In 4 out of 10 FHM1 mice, in total 13 spontaneous CSD events occurred 

that were never observed in WT mice. CSD events occurred both during light and dark periods. For 

9 events, the start of CSD was observed first in the visual cortex while for the remaining events the 

CSD event appeared nearly simultaneously in the visual and motor cortex. Under anesthesia, CSD 

frequency did not show a correlation with the time-of-day, and was enhanced in both visual and motor 

cortex for FHM1 mice compared with WT. Taken together, the changes in EEG power and occurrence 

of spontaneous CSD events in FHM1 mutants are in line with increased cortical network excitability 

in mutants. Cortical network changes and occurrence of spontaneous CSD events in FHM1 mice 

provide a unique opportunity to study the episodic nature of migraine attacks.
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INTRODUCTION     

Migraine is a common episodic brain disorder characterized by recurrent attacks of headache and 

associated autonomic and neurological symptoms (ICHD 2004, Goadsby et al 2002). In one-third 

of patients migraine attacks are accompanied, in most cases preceded, by an aura, which typically 

consists of visual symptoms. Cortical spreading depression (CSD) is the most likely mechanism of 

migraine aura (Lauritzen 1994, Hadjikhani et al 2001), and a potential trigger of the headache, as 

suggested by studies in rodents (Bolay et al 2002, Zhang et al 2010, Zhang et al 2011). CSD is defined 

as a slowly spreading cortical wave of neuronal and glial depolarization that is followed by a temporary 

suppression of activity (Lauritzen 1994). Clinical and animal data indicate that migraine attacks may 

be caused by neuronal hyperexcitability (Welch et al 1990, Aurora & Wilkinson 2007, Badawy & 

Jackson 2012). The visual nature of migraine auras (Eriksen et al 2004), reports of photophobia 

(Maniyar et al 2015) and structural (Granziera et al 2006) and functional alterations (Aurora et al 

1999) in the visual cortex of patients suggest that in the migraine susceptible brain, hyperexcitability 

may prominently manifest itself in the visual cortex. Moreover, circadian changes in physiology may 

contribute to the enhanced neuronal excitability (Herzog 2007, Cho 2012) that can explain apparent 

circadian rhythmicity in the timing of attacks with the majority of the attacks occurring during the 

active/light period in humans (Fox & Davis 1998, Alstadhaug et al 2008).

To investigate the link between neuronal hyperexcitability and migraine susceptibility, transgenic 

knock-in mice have been generated that carry the missense mutation R192Q in the Cacna1a gene 

that encodes the α
1
 subunit of Ca

V
2.1 (P/Q-type) Ca2+ channels (van den Maagdenberg et al 2004). 

In patients, this mutation causes familial hemiplegic migraine type 1 (FHM1) (Ophoff et al 1996). 

FHM1 R192Q knock-in mice display increased propensity to experimentally induced CSD under 

anesthesia (van den Maagdenberg et al 2004, Eikermann-Haerter et al 2009, van den Maagdenberg 

et al 2010), and enhanced glutamatergic neuronal transmission in cortical brain slices (Tottene et al 

2009, Vecchia et al 2014). 

The well-controlled conditions in which neuronal excitability was studied in brain slices and 

anesthetized mice exclude studying effects of sleep-wake patterns or interactions of external and 

internal stimuli with brain physiology. Enhanced neuronal network excitability resulting from such 

interactions may sporadically create a window of opportunity for the initiation of spontaneous 

attacks in patients (Stankewitz & May 2009) that can only be identified in freely behaving mice. To 

assess in what way FHM1 mutations affect ongoing neuronal network activity patterns in the intact 

awake brain, we performed longitudinal day-night recordings of full-band (DC) EEG and multi-unit 

activity (MUA) in freely behaving FHM1 R192Q and WT mice. Findings were related to the time-

of-day and cortical location (i.e., visual vs motor cortex). In parallel, we compared susceptibility to 

experimentally induced CSD (i.e., by cortical application of KCl to the exposed dura) performed at 

the start of the light vs the dark period, as well as between visual and motor cortex, in anesthetized 

mice under physiological monitoring and control. Our data reveal that freely behaving FHM1 R192Q 
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mice can display spontaneous CSD events. Observed changes in EEG power are suggestive of overall 

enhanced cortical excitability. When taking into account also experiments in anesthetized mice, it 

seems that CSD susceptibility is enhanced independent of the time-of-day in both visual and motor 

cortex.

MATERIALS AND METHODS  

Animals 

Male wild-type (‘WT’) and homozygous Cacna1a FHM1 R192Q knock-in (‘R192Q’) (van den 

Maagdenberg et al 2004) were used that were backcrossed for at least 6 generations with C57BL/6J 

mice. Prior to experiments, animals were maintained under a 12-hr light/12-hr dark regime unless 

specifically mentioned. Standard mouse chow and water were available ad libitum. All experiments 

were approved by the Animal Experiments Committee of Leiden University Medical Center and 

Massachusetts General Hospital Subcommittee on Research Animal Care. 

EEG recordings in freely behaving mice

The weight of mice at surgery was 31.2±2.7 gr and 28.4±2.3 gr (p=0.43, Student’s t-test, N=10; 

WT and R192Q mice, respectively); the age was 145±19 days and 161±75 days, (p=0.51, Student’s 

t-test, N=10; WT and R192Q mice, respectively). Under isoflurane anesthesia (1.5%), 7 electrodes 

were stereotactically implanted at the following coordinates (in mm relative to bregma): a pair of 

Platinum (Pt) electrodes 3.5 posterior/2.0 lateral/0.8 ventral from dura (right visual cortex); a pair of 

Pt electrodes 1.5 anterior/1.5 lateral/0.8 ventral from dura (right motor cortex); a Silver (Ag) ball-

tip electrode 3.5 posterior/2.0 lateral on the dura (left visual cortex); an Ag ball-tip electrode and 

an Ag-AgCl ball-tip electrode were placed above cerebellum that served as reference and ground 

electrodes, respectively (Figure 1A). Electrodes were attached to the skull using dental cement 

(Optibond FL, Kerr, Orange, CA, USA). After a recovery period of 7 days, animals were placed in 

a shielded recording cage and connected to the recording hardware through a counterbalanced, low-

torque custom-built electrical commutator. Epidural and intracortical EEG signals were pre-amplified 

3x and were fed into separate amplifiers for DC-EEG and AC-EEG. For DC-EEG, signals were low-

pass filtered (500 Hz) and amplified 10x. For AC-EEG, signals were band-pass filtered (0.05 Hz to 

500 Hz) and amplified 1200x. Signals were digitized (Power 1401, CED, Cambridge, UK) at a rate 

of 1000 Hz for DC-EEG and 5000 Hz for AC-EEG. In addition, signals from paired intracortical Pt 

electrodes were used for detection of multi-unit activity (MUA) by amplifying them differentially 

(36000x), band-pass filtering them (500 Hz to 5000 Hz) and digitizing them at 25000 Hz. Alongside 

the EEG and MUA recordings, locomotor activity was recorded using a passive infrared custom-built 

motion detection sensor and drinking activity was recorded with a custom-built beam-break sensor in 

front of the drinking bottle.
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CSD induction with intracortical KCl infusion

To assess whether our recording technique is able to accurately detect cortical spreading depression, 

we performed a set of experiments in which we induced CSD using reverse microdialysis with 500 mM 

KCl. For these experiments, surgery was performed as described above, with two modifications: 1) the 

posterior pair of intracortical Pt electrodes in the right hemisphere was placed in the somatosensory 

cortex (1.5 posterior/1.5 lateral/0.8 ventral from dura) and 2) a guide cannula (Brainlink, Groningen, 

the Netherlands) was placed in a cranial window over the visual cortex (3.5 posterior/2.0 lateral/

terminating on dura) (Figure 2D). After the recovery period, recordings were started as described 

above. On day two of the recording, a microdialysis probe (Brainlink, Groningen, the Netherlands) 

was placed in the guide cannula with the 1 mm membrane extending from dura to a depth of 1 

mm below dura. Microdialysis perfusion with minimal perfusion fluid (140.3 mM Na+, 2.7 mM K+, 

1.2 mM Ca2+, 1.0 mM Mg2+, and 147.7 mM Cl-) was started at a flow rate of 1 µL/min using a 

microperfusion syringe pump (Harvard Apparatus Inc, South Natick, MA, USA). On day 4 of the 

recording, the perfusion fluid was changed to modified minimal perfusion fluid containing 500 mM 

of KCl (500 mM K+, 1.2 mM Ca2, 1.0 mM Mg2+, 504.4 mM Cl- in MilliQ water) during a 30-min time 

window to induce CSD events.

EEG data analysis, scoring of vigilance states and spontaneous CSD detection

For spectral analysis of EEG data, 24 hr of recorded EEG was used that was obtained after at least 

24 hr of habituation of the animal to the recording cage. Data were obtained from the second (N=3 

WT mice and N=2 R192Q) or third day of recording (N=7 WT and N=8 R192Q). Comparison of 

power spectra from the first 4 recording days for N=3 WT and N=3 R192Q mice indicated stable EEG 

power spectra with little variability across recording days for both WT and R192Q mice: Intraclass 

Correlation Coefficient (Bartko 1966) was higher than 0.9 for visual cortex and motor cortex vigilance 

state-specific power spectra, for all animals over the first 4 recording days. For the 4 R192Q mice in 

which spontaneous CSD were observed, EEG analysis was performed on a 24-hr slot during which 

no CSD was observed, which was the second recording day for two R192Q mice (21 hr after first and 

only CSD; 27 hr after first CSD, 7 hr before second CSD) and third recording day for the other two 

R192Q mice (before occurrence of first CSD for both animals).

Signals from the visual and motor cortex were low-pass filtered at 100 Hz and down-sampled to 

200 Hz (Spike2 V7, CED, Cambridge, UK). Power spectra were computed using a Fast Fourier 

Transform (FFT) routine (Hanning window, 0.25 Hz resolution) for each 4-sec epoch of the 24 hr of 

recording. Epochs containing movement or technical artifacts (typified e.g., by large irregular and 

often high-frequency waveforms associated with movement in case of movement artifacts, or by 

irregular clipping of signals or 50 Hz or high-frequency noise) were excluded from further analysis. 

The overall spectral composition of network activity in the motor and visual cortex was quantified 

by averaging the power spectral density per cortical region over the entire recording for each animal. 

For the comparison across genotypes, the total power was calculated for 5 defined spectral bands: 
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delta (δ, 0.75-5Hz), theta (θ, 5-10Hz), alpha (α, 10-15Hz), beta (β, 15-30Hz), and gamma (γ, 30-45 

Hz). As the spectral composition of mouse cortical network activity varies across vigilance states, 

we also performed a vigilance-state-specific comparison of EEG power spectral composition. For 

this analysis, only spectra were selected from epochs with clearly defined vigilance states (i.e., active 

waking, REM sleep and non-REM sleep) that were determined by applying an automated algorithm 

for defining vigilance state per 4-sec epoch on the basis of the recorded behavioral activity and the 

spectral composition of the visual cortex EEG signal. In the algorithm, epochs with locomotor or 

drinking activity were classified as active waking (19.6 ± 4.8% for WT, 15.8 ± 6.8% for R192Q; 

Student’s t-test, p=0.17). The first 10 epochs following cessation of behavioral activity were classified 

as passive waking (15.1 ± 2.9% for WT, 16.3 ± 3.4% for R192Q; Student’s t-test, p=0.40) (Fisher et al 

2012). Remaining epochs were classified as sleeping (64.6 ± 6.5% for WT, 67.1 ± 8.8% for R192Q; 

Student’s t-test, p=0.49) and further subdivided into non-REM sleep or REM sleep on the basis of the 

visual cortex EEG power spectrum: epochs with strong delta activity (>2x average delta power) were 

classified as non-REM sleep (30.9 ± 3.8% for WT, 28.5 ± 4.2% for R192Q; Student’s t-test, p=0.20). 

Epochs with high theta (>average theta power) and low delta (< average delta power) activity were 

classified as REM sleep (12.3 ± 2.7% for WT, 13.0 ± 4.3% for R192Q; Student’s t-test, p=0.69). Sleep 

epochs not fulfilling the above criteria were left unclassified. 

The occurrence of spontaneous CSD events was detected on the basis of the following criteria: 1) the 

presence of a transient negative DC-shift in the DC-EEG signal with an amplitude of 5 mV or more 

that was detected on multiple recording sites within 60 sec from the first occurrence, 2) a depression 

of AC-EEG amplitude coinciding with the start of the DC-shift and, if MUA signal was available, 

3) multi-unit activity silencing coinciding with the start of the DC-shift. Events were scored as CSD 

when criterion 1 was met together with either criterion 2 or 3, or all 3 criteria together.

Effect of time-of-day on CSD susceptibility 

WT and R192Q mice were randomly assigned to a ‘light’ or a ‘dark’ group and acclimatized to the 

following shifted light/dark regimes for at least 2 weeks before follow-up procedures. Mice in the 

‘light’ group were kept with ‘lights on’ from 08.30 am until 20.30 pm; mice in the dark group were 

kept with lights on from 20.30 pm until 08.30 am All experiments started around 08.15 am, so that 

mice from the light group just started the light (resting) period at the start of experiment, while mice 

from the dark group just started the dark (active) period. At least 4 days before the CSD experiment a 

blood sample (~20 µL) was collected by a small tail cut to determine baseline corticosterone plasma 

levels. Plasma was obtained after centrifugation for 10 min at 4000 rpm at 4oC, temporarily placed on 

dry ice and stored until used at -80oC. Corticosterone plasma levels were determined using a RIA kit 

according to manufacturer guidelines (MP Biomedicals Inc., Santa Ana, CA, USA) (Sarabdjitsingh 

et al 2010).

CSD frequency recordings were carried out under full physiological control as previously described 
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(Shyti et al 2015). Physiological parameters were maintained within the following ranges; blood 

pressure: 70-120 mmHg, pCO
2
: 30-40 mmHg, pO

2
: 80-140 mmHg and pH: 7.30-7.40. The weight 

of mice at surgery was 25.9±1.2 gr; N=5 for WT and 25.1±1.2 gr; N=5 for R192Q of the ‘light’ 

group (Student’s t-test, p=0.3) and 25.8±1.3 gr; N=7 for WT and 24.4±1.9 gr; N=5 for R192Q mice 

of the ‘dark ‘group (Student’s t-test, p=0.2). The age of the mice at surgery was 122.8±13.0 days; 

N=5 for WT and 123.0±14.0 days; N=5 for R192Q mice of the ‘light’ group (Student’s t-test, p=0.1) 

and 106.6±13.6 days; N=7 for WT and 106.0±7.9 days; N=5 for R192Q mice of the ‘dark ‘group 

(Student’s t-test, p=0.4). 

For CSD measurements, mice were intubated, muscle paralyzed with an i.p. injection of 0.04 mg/kg 

body weight pancuronium and mechanically ventilated (SAR-830, CWE Inc, Ardmore, PA, USA). 

Mice were maintained under 1% isoflurane anesthesia in 20-30% O
2
 and 70% N

2
O. Blood gas values 

and mean arterial blood pressure were measured via a catheter in the femoral artery and a blood 

gas analyser (RapidLab248, Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA). During 

the experiment, ventilation parameters were adjusted when necessary to maintain physiological 

parameters within normal range. Experiments were only included for analysis when physiological 

parameters were within normal range. Core body temperature was maintained at 37oC using a heating 

pad (Stoelting, Wood Dale, IL, USA). The mouse was fixed in a stereotaxic frame (David Kopf 

Instruments, Tujunga, CA. USA) and a midline incision of ~2.5 cm was made over the top of the 

head, the skin was retracted to expose the skull, and the periosteum was removed with cotton-tipped 

applicator sticks. Two craniotomy windows were prepared at the following coordinates (in mm with 

respect to Bregma): 3.5 mm posterior/2.0 mm lateral (visual cortex) and 1.5 mm anterior/1.5 mm 

lateral (motor cortex). Care was taken to keep the dura intact to minimize trauma to the underlying 

brain tissue. At the recording site a sharp glass capillary electrode (FHC Inc., Bowdoin, ME, USA) 

filled with 150 mM NaCl was advanced through the dura to a depth of 300 µm. After insertion of the 

electrode, a drop of mineral oil (~ 5 µL) was applied to the recording site to prevent drying of the 

cortical tissue. DC-potential signals were measured with respect to an Ag/AgCl reference electrode 

placed subcutaneously at the neck and amplified 10x (Molecular Devices, Sunnyvale, CA, USA). The 

DC signal was low-pass filtered at 4 Hz and digitized at 100–200 Hz using PowerLab 16/30 hardware 

(AD Instruments, Inc., Colorado Springs, CO, USA). Data were recorded and analyzed off-line using 

LabChart Pro (AD Instruments). Due to the time needed for surgical preparation, CSD frequency 

measurements started around 09.00 am. 

Regional differences in CSD susceptibility 

The surgery with full physiological monitoring and control for determining regional differences in 

CSD susceptibility was performed as described above. The weight of mice at surgery was 26.0±1.3 

gr; N=13 and 24.7±1.9 gr; N=16 for WT and R192Q mice (Student’s t-test, p=0.1), respectively. The 

age of mice at surgery was 77.1±20.4 days; N=13 and 88.6±18.7 days; N=16 for WT and R192Q 

mice (Student’s t-test, p=0.1), respectively. To determine the CSD induction threshold, a cotton 
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pellet (Interguide Dental Supply, Burlingame, CA, USA) soaked in solution with an increasing K+ 

concentration was placed on the dura for 3 min to measure either motor (from bregma: 1.5 mm 

anterior/1.5 mm lateral or visual (from bregma: 3.5 mm posterior/2 mm lateral) cortex CSD threshold. 

K+ concentrations were prepared with 7.5 mM increments, starting at 5 mM, with total osmolarity 

kept at 300 mOsmol with NaCl. Upon successful induction of a CSD event, the induction site was 

rinsed thoroughly with 150 mM NaCl. 

Subsequently, two additional cranial windows were prepared in the opposite hemisphere in the same 

mouse at the same motor and visual cortex locations as described above to measure CSD threshold 

in the opposite direction: e.g., motor cortex CSD threshold was measured on the contralateral side 

in case the visual cortex threshold had been measured first in the other hemisphere or vice versa 

(Figure 4C). After CSD threshold assessments in both hemispheres, CSD frequency was measured 

in the same hemisphere and location as used for the last CSD threshold measurement by continuous 

application of a cotton pellet soaked in 1 M KCl on the dura for 30 min (with refreshment of the pellet 

after 15 min). Only reversible DC deflections with amplitudes larger than 5 mV were considered a 

CSD event and included in the CSD characteristics analysis.

Nissl and GFAP staining

At the end of the longitudinal EEG/MUA recordings, brains were histologically processed for 

verification of electrode location and possible inflammatory reaction. Mice were transcardially perfused 

with 1x PBS and 4% paraformaldehyde (PFA), the brain removed and post-fixated in 4% PFA for at 

least 2 hr. Subsequently, brains were cryoprotected in consecutive steps of 10.5% (overnight), 10.5% 

(overnight) and 30% (overnight) sucrose and embedded in 11% gelatin/10% sucrose. Brains were 

sectioned sagittally at 40 μm using a cryotome (Leica microsystems, Wetzlar, Germany). Sections 

were washed for 2 hr in 10% fetal calf serum (FCS) to block endogenous peroxidase activity followed 

by incubation for 72 hr in primary rabbit polyclonal anti-GFAP antibody (DAKO Cytomation, 

Copenhagen, Denmark) diluted 1:30000 in 2% FCS and 0.5% TX100. Sections were next treated for 

2 hr in the avidin-biotin peroxidase complex (Vectastain ABC peroxidase kit, Vector Laboratories 

Inc., Burlingame, CA, USA), washed once in 0.1 M Tris-HCl and allowed to react in a solution of 

0.02% 3,39-diaminobenzidene (DAB) in 0.1 M Tris-HCl and 35% H
2
O

2 
for 10 min. Sections were 

washed in MilliQ, dehydrated in graded alcohol, cleared in xylene, and coverslipped using permount 

mounting medium (Thermo Fisher Scientific, Waltham, MA, USA). For Nissl staining, sections were 

immersed into cresyl violet solution for 3 min followed by consecutive dehydration steps in MilliQ, 

50% EtOH, 96% EtOH, 100% EtOH and xylene.

Statistical analysis

For skewed parameters corresponding non-parametric tests were used. For comparison of EEG power 

in the different spectral bands between genotypes, cortical areas and vigilances states, we used Mann-

Whitney U-test with false discovery rate correction (FDR; Benjamini-Hochberg method) to control 
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for multiple testing. To test whether EEG characteristics varied between different recording days, 

we calculated the Intraclass Correlation Coefficient (Bartko 1966). Mann-Whitney U-test was also 

used for comparison of CSD threshold between genotypes and comparison of corticosterone plasma 

levels between light and dark phases, and Wilcoxon signed ranked test for regional CSD threshold 

comparisons among mice of the same genotype. CSD frequency data were compared using one-

way ANOVA followed by Bonferroni correction. Data are presented as median (CSD threshold, 

corticosterone plasma values and power spectra) or mean±SD (CSD frequency).  

RESULTS   

EEG spectra of freely behaving R192Q mice display increased gamma power in both 
visual and motor cortex

To assess effects of the R192Q mutation on neuronal network activity, we recorded longitudinal intra-

cortical EEG from the Pt electrodes in the right hemisphere in 10 freely behaving male R192Q and 

10 WT mice (Figure 1A-C). Comparison of 24-hr EEG power spectra from the first 4 recording days 

of N=3 WT and N=3 R192Q mice revealed that EEG power spectra were stable across recording 

days with little variability for both R192Q and WT mice (Intraclass Correlation Coefficient > 0.9 for 

vigilance state specific power spectra, for all animals over the first 4 recording days, for both visual 

and motor cortex), allowing us to combine data from different days across mice. For comparison 

between R192Q and WT mice, EEG spectral composition was analyzed from 24 hr EEG recorded 

on either the second or third day of the recording session (see Materials and Methods), both for the 

total 24-hr window as well as for separate vigilance states such as active waking, REM and non-REM 

sleep. The approximate distribution of vigilance states during the 24 hr periods, as determined from 

the movement sensor and EEG power (see Materials and Methods), is shown in Table 2. No significant 

differences were observed between R192Q and WT mice regarding the times spent across vigilance 

states. The total 24-hr EEG power of all frequency bands (0.75-45Hz) did not differ between genotypes 

in visual or motor cortex (p>0.05). In the motor cortex, but not in the visual cortex, we observed that 

both for the 24-hr average as well as during REM sleep and non-REM sleep, power in the delta band 

(δ, 0.75-5 Hz) was significantly lower in R192Q than in WT mice (Figure 1E). In the visual cortex and 

the motor cortex, power in the gamma band (γ, 30-45 Hz) was significantly higher in R192Q than in 

WT mice, both for the 24-hr average and for the separate vigilance states (Figure 1F).  

Power in the theta band was not different in the visual cortex but was significantly reduced in the 

motor cortex in the 24-hr average during REM sleep and during non-REM sleep. Power in the alpha 

band was significantly higher in the visual cortex in the 24-hr average and during REM sleep but 

significantly lower in R192Q mice in motor cortex during non-REM sleep. Power in the beta band 

was significantly higher in the visual cortex of R192Q mice in the 24-hr average and during REM 

sleep, non-REM sleep and waking. Beta power was also significantly higher in motor cortex in R192Q 

mice during waking.
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To control for variation in absolute power among individual mice, which can be due to differences in 

the depth of intracortical EEG electrodes, we next determined the contribution of relative EEG power 

for the different frequency bands in relation to total EEG power for the overall 24-hr average as well 

as per vigilance state. For visual cortex recordings of R192Q mice, the relative contribution of delta 

band activity to the total EEG power was decreased during REM and non-REM sleep, whereas the 

Figure 1. EEG spectral composition shows enhanced power in higher frequency bands in R192Q mutant mice. 
(A) Schematic depicting electrode locations used for simultaneous recording of intracortical DC-EEG and multi-unit 
activity from the visual and motor cortex in freely behaving FHM1 R192Q and WT mice. (B) Photomicrograph of sagittal 
section (Nissl counterstaining) showing histological verification of electrode tracks in middle to deep layers of the motor 
and visual cortex. (C) Example traces of visual cortex EEG during active waking, REM and non-REM sleep stages in WT 
and R192Q mice. (D) Averaged 24-hr EEG power spectra from the right hemisphere reveal an overall increased gamma 
band activity in the visual cortex and motor cortex of R192Q mice (N=10) compared with WT (N=10); δ:0.75-5 Hz, θ:5-
10 Hz, α:10-15 Hz, β:15-30 Hz, γ:30-45 Hz. (E) Analysis of delta band activity across specific vigilance states reveal 
reduced delta power in the motor cortex of R192Q mice during REM and non-REM sleep. (F) In contrast, gamma band 
activity shows significantly higher power in R192Q mice for all vigilance states in both visual cortex and motor cortex. 
*corrected p-value <0.05, **corrected p-value <0.01; Mann-Whitney U-test followed by false discovery rate correction 
(FDR), Benjamini-Hochberg method.



063

contribution of beta and gamma band was increased in R192Q compared with WT for all vigilance 

states. The relative contribution of theta and alpha band activity to total EEG power for the visual 

cortex was comparable between genotypes during active waking and REM sleep, but enhanced for 

the alpha band activity in R192Q animals during non-REM sleep. For the motor cortex, during active 

waking and REM sleep, the relative contribution of delta band activity to total EEG power in the 

motor cortex was decreased in R192Q compared with WT mice. Similar as for the visual cortex, the 

contribution of beta and gamma band activity to total EEG power was increased for the motor cortex 

in R192Q compared with WT animals for all vigilance states (Table 1).  

Table 1. Relative EEG power from visual and motor cortex in freely behaving R192Q and WT mice

Visual cortex
δ (0.75-5) Ηz θ (5-10) Hz α (10-15) Hz β (15-30) Hz γ (30-45) Hz

R192Q WT R192Q WT R192Q WT R192Q WT R192Q WT

24-hr average 45.9 
[31.8,56.9]

55.4 
[41.9,66.9]

29.8 
[23.8,38.8]

25.0 
[20.9,34.9]

9.4 
[7.6,12.0]

6.9 
[5.0,10.5]

8.1 
[6.9,10.3]

5.7 
[4.0,8.0]

4.7 
[2.8,6.1]

2.6 
[1.8,4.4]

Active waking 21.2 
[15.7,31.7]

29.5 
[17.5,39.8]

39.1 
[30.8,50.8]

37.5 
[28.2,47.7]

9.6 
[7.6,11.2]

10.8 
[7.0,14.0]

11.1 
[9.8,13.0]

10.0 
[9.1,11.6]

9.2 
[6.7,16.6]

6.7 
[5.7,9.0]

REM 20.5 
[14.1,27.6]

30.1 
[18.3,35.7]

48.1 
[41.6,56.5]

44.0 
[36.8,56.6]

9.5 
[8.7,12.3]

9.1 
[8.7,10.3]

10.1 
[8.4,11.3]

7.8 
[7.0,10.6]

6.1 
[4.8,10.1]

4.4 
[3.1,6.9]

non-REM 60.8 
[43.6,70.2]

69.1 
[53.5,78.2]

22.2 
[16.9,33.7]

19.0 
[15.1,27.3]

8.1 
[6.2,11.9]

5.3 
[3.4,10.1]

5.9 
[4.6,8.3]

3.8 
[2.3,6.7]

2.1 
[1.3,2.8]

1.0 
[0.6,1.9]

Motor cortex
δ (0.75-5) Ηz θ (5-10) Hz α (10-15) Hz β (15-30) Hz γ (30-45) Hz

R192Q WT R192Q WT R192Q WT R192Q WT R192Q WT

24-hr average 57.8 
[46.6,65.9]

65.5 
54.0,68.2]

22.4 
[18.5,28.2]

22.5 
[20.2,29.0]

6.5 
[4.5,9.5]

5.6 
[4.6,7.6]

6.7 
[4.8,8.5]

4.4 
[3.4,5.4]

3.0 
[2.4,4.0]

1.4 
[1.1,2.1]

Active waking 39.8 
[30.2,42.9]

46.0 
[33.4,52.1]

28.9 
[23.4,33.9]

29.6 
[26.7,39.3]

6.8 
[5.7,10.9]

7.0 
[6.3,9.1]

10.0 
[8.5,11.2]

7.1 
[5.5,8.7]

7.0 
[5.5,9.6]

4.0 
[2.9,5.6]

REM 43.9 
[24.3,52.1]

53.8 
[42.3,59.5]

29.3 
[24.3,45.3]

29.5 
[27.2,37.1]

7.2 
[5.9,9.6]

6.9 
[5.4,8.3]

8.4 
[6.7,10.6]

5.4 
[3.8,7.0]

4.7 
[3.9,5.5]

2.1 
[1.5,2.8]

non-REM 69.4 
[58.5,75.6]

73.0 
[63.5,75.6]

18.0 
[15.5,23.0]

18.9 
[16.1,24.0]

5.8 
[3.8,8.7]

4.9 
[4.0,7.1]

5.2 
[3.3,6.8]

3.6 
[2.5,4.3]

1.6 
[1.0,2.2]

0.7 
[0.6,1.1]

Table 1. Data are presented as medians with [min, max values]. Power/frequency band was quantified as percentage of 
the total power across bands for N=10 R192Q and N=10 WT mice. R192Q mice had a significantly reduced relative delta 
power compared with WT. This was the case in the visual cortex for the 24-hr average as well as the separate vigilance 
states, and in the motor cortex for active waking and REM sleep. In contrast, R192Q mice had a significantly increased 
relative power  in the theta and alpha power in the visual cortex for the 24-hr average and non-REM sleep state, and for 
beta and gamma power for the 24-hr average and for all the separate vigilant states. Beta and gamma power in motor cortex 
were enhanced in R192Q mice for the 24-hr average as well as for all separate vigilant states. Comparable changes in 
gamma and delta power described for other transgenic mouse models have been linked to enhanced neuronal excitability 
(Joho et al 1999, Lau et al 2000). Mann-Whitney U-test followed by false discovery rate correction (FDR),Benjamini-
Hochberg method.
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Figure 2. Detection of spontaneous and induced CSD in freely behaving mice using a novel combination of 
intracortical DC-EEG and Multi-Unit Activity (MUA) recording. (A) Experimental setup with example recordings 
showing spontaneous CSD events in 2 homozygous R192Q mice. Pre-amplified signals from bipolar Pt electrode pairs in 
the right cortex are split into multiple channels that are individually amplified and filtered to obtain a DC-EEG (0-500 Hz) 
channel, an AC-EEG (0.1-500 Hz) channel and a multi-unit activity (MUA, 500-5000 Hz) channel for the right motor 
cortex and right visual cortex. A single epidural ball-tip electrode placed on the left visual cortex that yields a DC-EEG 
and an AC-EEG channel but no MUA. During 7 days of recording we detected spreading depolarization coinciding with 
AC-EEG and MUA suppression in 4 out of 11 homozygous R192Q mice and 0 out of 10 WT mice. In the panel example, 
the CSD wave appears first in the right visual cortex, then spreads to the right motor cortex and then appears in the left 
visual cortex. In the example of the bottom panel, the CSD wave first appears in the left visual cortex and then spreads 
to the right visual cortex and reaches the right motor cortex last. (B) Time course of the observed CSD events in the 4 
R192Q animals. In animal 1, 5 CSD events were detected, 3 of which were bilateral (including the example depicted 
in A). In all events in this animal, the CSD wave first appeared in the right visual cortex. In animal 2 (panel example in 
A), the CSD wave first appeared in the left visual cortex. In animal 3, the start of the negative DC-shift and MUA/EEG 
silencing was observed within 10 sec from each other in all 3 locations. In animal 4, the start of the negative DC-shift 
and MUA/EEG silencing was observed within 10 sec from each other in all 3 locations in the first two events. For the 
3rd and 4th event, the CSD wave started in the left visual cortex and subsequently appeared in the right visual cortex and 
right motor cortex. (C) Distribution of CSD events over the 24 hr light-dark cycle. Seven out of 13 CSD events occurred 
during the light phase (between 6 am and 6 pm) whereas 6 out of 13 events happened during the dark phase. (D) To 
confirm the accuracy of our CSD detection methodology, we performed a separate experiment in which we induced 
CSD in the visual cortex of freely behaving WT mice by performing reverse microdialysis with a 500 mM KCl solution 
through a microdialysis probe placed in the V1 visual cortex. Using the same intra-cortical bipolar electrodes as in A, we 
recorded DC-EEG, AC-EEG and MUA at two locations ipsilateral to the microdialysis probe. Shortly after starting the 
microdialysis with 500 mM KCl, A transient negative DC-shift coinciding with EEG silencing and MUA suppression 
appeared first in the somatosensory S1 cortex and then spread to the M1 motor cortex.
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R192Q mice exhibit spontaneous CSD events

Notably, during the longitudinal EEG recordings in freely moving mice, we observed a total of 13 

spontaneous events resembling CSD in 4 of the 10 recorded R192Q mice (Figure 2A), while no such 

events were observed in the 10 recorded WT mice. In addition to the intracortical electrodes in the 

right visual and motor cortex that were used for EEG analysis, an epidural Ag electrode placed on 

the left visual cortex was used for CSD detection. The events were characterized as CSD on the basis 

of the occurrence of a transient negative DC-shift exceeding 5 mV, accompanied by a suppression of 

neuronal multi-unit activity (MUA), and dampening of EEG amplitude, that spread throughout the 

cortex across the different electrode locations (Figure 2A). Figure 2B shows the order of appearance 

of the CSD events at the different cortical locations. For 9 events from 3 mice, CSD events were 

observed first in the visual cortex. Of those, 5 events (from 1 R192Q mouse) were first detected 

in the right visual cortex before reaching the right motor cortex, followed by the left visual cortex. 

Three CSD events (from 2 different R192Q mice) were first observed in the left visual cortex before 

being detected at the right visual cortex and, subsequently, right motor cortex. For 4 events in 2 mice, 

CSD events were observed in all 3 recording locations near simultaneously (2- to 13-sec time delay).  

The spontaneous CSD events occurred at different times of the day. Specifically, 5 out of the 13 

spontaneous CSD events occurred during the dark (active) period whereas 7 events occurred during 

the light (resting) period and 1 event occurred during the transition from light to dark (Figure 2C). 

The amplitude of the CSD events was 12.2 ± 4.6 mV, with duration of 32.1 ± 7.3 sec for the right 

visual cortex (N=9), and 19.9 ± 8.8 mV with a duration of 30.7 ± 6.9 sec for the right motor cortex 

(N=13). We validated our methodology for CSD detection in freely behaving mice by experimentally 

inducing CSD in the visual cortex using micro-infusion of 500 mM KCl solution. Electrophysiological 

characteristics of evoked CSD events were comparable to spontaneous CSD events with a transient 

spreading negative DC-shift exceeding 5 mV accompanied by neuronal silencing (evidenced from 

suppression of MUA) and dampening of EEG amplitude (Figure 2D). 

Relation of spontaneous CSD occurrence with EEG spectral changes and vigilance state 

Following the spreading transient DC-shift of about 30-sec duration as indicated above, we observed 

a secondary, longer-lasting negative DC-shift in all animals (Figure 3A). The secondary negative DC-

shift had comparable or even larger amplitude as the first shift (17.3 +/- 5.4 mV for right visual cortex; 

23.1 +/- 8.0 mV for right motor cortex) and duration of 20 to 40 min. During the secondary DC-shift, 

animals were inactive as determined from the movement sensor, and EEG was characterized by 

high amplitude delta activity (Figure 3B; 140 +/- 28% power in the delta band in the visual cortex 

between 10 and 30 min after CSD onset compared to the 24-hr average delta power during non REM 

sleep; paired samples t-test, p=0.008). In contrast, power in higher EEG frequency bands and MUA 

was reduced compared to baseline for up to 60 min after the CSD (Figure 3A and B). Outside the 

60-min time window after CSD, the EEG spectra of the R192Q mice with CSD events (N=4) did 

not show overt differences with the EEG spectra of the N=6 R192Q mice in which no CSD events 



067

were observed. Vigilance state analysis revealed that the occurrence of CSD events was not limited 

to a specific vigilance state prior to the CSD. CSD was preceded by waking for 4 events, by non-

REM sleep for 5 events and by REM sleep for 4 events. During a CSD event however, in all cases 

(9 out of 13) where an animal was sleeping prior to the CSD, the animal woke up and displayed 

locomotor activity. All animals displayed locomotor activity for a period of 1 to 10 min after the start 

Figure 3. Impact of CSD on cortical network activity and vigilance state. (A) Representative time course of MUA 
and EEG spectral composition in relation to bi-phasic DC-EEG shift. In line with previous reports on induced CSD under 
anaesthesia (Chang et al 2010), DC-EEG (top trace, red) in freely behaving R192Q mice showed a biphasic negative 
DC shift during spontaneous CSD in which the spreading negative depolarization wave (lasting  32.1 +/- 7.3 sec) is 
followed by secondary negative DC shift lasting 20 to 40 min. Following a short MUA burst when the front of the CSD 
wave reaches the recording electrode, neuronal activity is rapidly suppressed after which it gradually recovers to baseline 
levels over the course of 30 to 60 min. The time-frequency plot shows the frequency-dependent impact of CSD on EEG 
power. Red indicates high power and dark blue indicates low power. Note the prominent delta activity from 5 to 30 min 
after CSD. (B) Averaged time course (averaged from all CSD events in the 4 animals with spontaneous CSD, weighted so 
each animal has an equal contribution to the overall average) of vigilance state, visual cortex EEG power in the different 
frequency bands and MUA from 60 min before until 60 min after the start of CSD (time 0, vertical dashed line). Note 
that post-CSD, delta activity (0.75-5Hz) rapidly recovers to baseline levels (indicated by horizontal dashed lines) and 
increases to 140 +/- 28% of 24 hr average delta power during non-REM sleep between 10 and 30 min after CSD onset. In 
contrast, power in higher EEG frequency bands is not elevated post-CSD but instead recovers gradually to baseline in a 
comparable time frame as MUA. (C) Staining for GFAP revealed comparable levels of astrocyte activation surrounding 
the electrode in WT animals and in R192Q with and without spontaneous CSD events.
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of CSD, after which they went into a non-REM like sleep state characterized by high amplitude delta 

oscillations for a period of 20 to 40 min. 

To investigate whether the observed spontaneous CSD events in R192Q mice may relate to a genotype-

specific tissue inflammatory response, we compared Nissl and glial fibrillary acidic protein (GFAP) 

stained sections from N=4 R192Q mice in which CSD events were observed with those of N=4 WT 

and N=4 R192Q mice without CSD events (Figure 3C). Around electrode tracks, enhanced GFAP 

staining was observed for all animals, with no overt differences between groups. For none of the 

recorded animals, including the R192Q mice that displayed spontaneous CSD events, signs of tissue 

damage or bleeding were observed that could relate to inflammatory responses or an infarct.

Table 2. Distribution of vigilance states over 24-hr of EEG recording in freely behaving WT and 
R192Q mice.  

Vigilance states WT average 
(N=10)

R192Q average 
(N=10)

p-value 
(t-test)

% active waking 19.1 ± 4.3 15.2 ± 7.5 0.17

% NREM 31.3 ± 3.4 29.9 ± 4.1 0.20

% REM 12.3 ± 2.9 12.7 ± 4.0 0.69

% passive waking 15.1 ± 2.5 15.5 ± 3.2 0.40

% sleeping 65.0 ± 5.7 68.7 ± 9.9 0.49

% unclassified sleeping epochs 21.5 ± 6.0 26.1 ± 8.2 0.20

% drinking 0.9 ± 0.4 0.7 ± 0.6 0.87

% artefacts 0.8 ± 0.8 0.3 ± 0.5 0.09

Anesthetized R192Q mice kept under full physiological control display enhanced visual 
cortex CSD frequency compared with WT, both at the start of the light and the start of 
the dark period

In freely behaving R192Q mice, CSD events occurred both during the dark and during the light 

period, with a slight majority (7 out of 13) events occurring during the light period. To specifically 

address whether CSD susceptibility may differ in relation to the light compared with the dark period, 

we compared the frequency of KCl-induced CSD at the beginning of the light and dark periods. 

Experiments were performed under isoflurane anesthesia, under continuous physiological monitoring 

Table 2. Data are presented as mean±SD. R192Q (Ν=10) and WT (Ν=10) mice spent a comparable fraction of time 
across different vigilance states for the analyzed 24-hr EEG windows. Numbers indicate the % of total time spent in a 
specific vigilance state, determined from 4 sec bins from the analyzed 24-hr window. See Materials and Methods for 
details and definitions of vigilance states.
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Figure 4. FHM1 R192Q mice display enhanced CSD susceptibility in both visual and motor cortex, independent of 
the time-of-day. (A left) In R192Q (light; N=5; *p=0.0001, dark; N=5; *p=0.002) mice, visual cortex CSD frequency is 
increased compared with WT (light; N=5, dark; N=7) with no difference between the start of the light and start of the dark 
period within the same genotype. (A right) CSD frequency is increased in both the visual (*p=0.005) and motor cortex 
(*p=0.01) of R192Q (visual; N=6, motor; N=8) mice compared with WT (visual; N=6, motor; N=6). (B) Representative 
DC-potential traces from CSD frequency recordings from WT and R1912Q mice in the visual and motor cortices. (C left) 
Schematic depicts the KCl application sites and electrode locations for the visual and motor cortex CSD susceptibility 
assessments. (C right) CSD threshold is reduced in both visual (*p=0.01; in line with previous work; van den Maagdenberg 
et al 2004) and motor cortex (*p=0.04) of R192Q (visual; N=16, motor; N=16) compared with WT (visual; N=13, motor; 
N=14) mice. (D) Representative DC-potential traces of CSD threshold assessment. Data are presented as mean ± SD, 
except for CSD threshold data that are presented as medians. Statistical differences were determined by one-way ANOVA 
followed by Bonferroni correction (for CSD frequency) and Mann-Whitney U-test (for CSD threshold).
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and control in animals that were accustomed to either regular or shifted day-night regimes. Under 

these conditions, KCl-induced CSD frequency, assessed in the visual cortex, was compared for R192Q 

and WT mice at the start of the light and at the start of the dark period. Visual cortex CSD frequency 

was enhanced in R192Q compared with WT mice at the start of the light period (R192Q, 15.7±2.4 

CSD/hr, N=5 vs WT, 8.6±2.5 CSD/hr, N=5; p=0.0001, one-way ANOVA Bonferroni correction), 

and also at the start of the dark period (R192Q, 14.5±1.3 CSD/hr, N=5 vs WT, 9.5±1.5 CSD/hr, 

N=7; p=0.002, one-way ANOVA Bonferroni correction) (Figure 4A). However, within-genotype 

comparisons revealed similar CSD susceptibility measures for the start of the light (p=1, one-way 

ANOVA Bonferroni correction) as well as the start of the dark period (p=1, one-way ANOVA 

Bonferroni correction), suggesting that the enhanced CSD susceptibility of R192Q compared with 

WT mice is uniform throughout the day. 

To ensure that the mice were in the correct periods after the shifted day-night regimes, corticosterone 

plasma levels were measured and their motor activity monitored. As expected for nocturnal animals, 

we found higher corticosterone plasma levels in mice of the dark group compared with mice of 

the light group (Maywood et al 2007). In particular, R192Q mice of the dark group had higher 

corticosterone levels compared with R192Q mice of the light group (R192Q dark, 206.8±90.2 ng/

mL, N=11 vs R192Q light, 14.4±10.6 ng/mL, N=11; p=0.0001, Mann-Whitney U-test). The results 

were similar for WT mice (WT dark, 135.9±32.6 ng/mL, N=14 vs WT light, 17.7±17.5 ng/mL, N=9; 

p=0.001, Mann-Whitney U-test). There were no differences in corticosterone levels among light and 

dark groups between R192Q and WT mice (R192Q dark vs WT dark, p=0.09; R192Q light vs WT 

light, p=0.2, Mann-Whitney U-test).

Anesthetized R192Q mice kept under full physiological control display enhanced CSD 
susceptibility in both visual and motor cortex in R192Q compared with WT mice. 

We observed that in the majority of cases, spontaneous CSD events in R192Q mice appeared first 

in the visual cortex, then in the motor cortex, suggesting that the events had originated in the visual 

cortex. We, therefore, determined whether CSD susceptibility would be different for visual compared 

with motor cortex by measuring the threshold and frequency of KCl-induced CSD at both locations 

in anesthetized R192Q and WT mice under full physiological control. CSD threshold was lower 

(p=0.001, Mann-Whitney U-test) in the visual cortex of R192Q compared with WT mice in line 

with earlier findings (van den Maagdenberg et al 2004). Notably, R192Q mice had a lower CSD 

threshold also in the motor cortex compared with WT (p=0.043, Mann-Whitney U-test). However, 

within-genotype comparisons revealed similar CSD thresholds for the visual compared with motor 

cortex in both WT and R192Q mice (Figure 4C). R192Q mice displayed higher CSD frequency 

values in the visual cortex compared with WT (R192Q, 16±3.4 CSD/hr, N=6 vs WT, 9.9±1.1 CSD/

hr, N=6; p=0.005, one-way ANOVA Bonferroni correction), in agreement with previous findings 

(Eikermann-Haerter et al 2009). Again, also in the motor cortex, R192Q mice displayed higher CSD 

susceptibility as shown by higher frequency values compared with WT (R192Q, 14.9±3.3 CSD/hr, 
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N=8 vs 9.9±2 CSD/hr, N=6; p=0.01, Mann-Whitney U-test; Figure 4A). Therefore, with 2 different 

but complementary methods for assessing CSD susceptibility, R192Q mice displayed enhanced CSD 

susceptibility compared with WT in both the visual and motor the cortex, but did not show a more 

prominent CSD susceptibility in the visual cortex. 

Table 3. Physiological parameters and CSD amplitude and duration values of R192Q and WT 
mice from CSD threshold and CSD frequency measurements

CSD threshold N pH pCO
2 

(mmHg)
pO

2 

(mmHg)
MABP 

(mmHg)
Amplitude 

(mV)
Duration 

(sec)

R192Q motor 16 7.39 ± 0.05 30.4 ± 5.4 128.6 ± 29.0 91.6 ± 13.7 22.3 ± 6.9 50.9 ± 36.9

R192Q visual 16 7.42 ± 0.04 28.7 ± 3.9 131.8 ± 24.8 91.9 ± 11.4 25.3 ± 5.4‡ 51.5 ± 17.6

WT motor 14 7.41 ± 0.04 29.9 ± 3.4 137.2 ± 23.6 91.3 ± 16.7 18.8 ± 4.9 30.4 ± 8.6

WT visual 13 7.41 ± 0.04 31.1 ± 4.5 135.5 ± 26.5 94.2 ± 16.0 25.4 ± 3.3† 41.0 ± 9.1

CSD frequency
R192Q motor 8 7.36 ± 0.06 31.5 ± 6.4 110.4 ± 20.9 82.5 ± 12.6 17.8 ± 5.8 29.3 ± 15.0

R192Q visual 6 7.38 ± 0.03 31.8 ± 4.2 114.4 ± 10.5 83.6 ± 9.6 20.7 ± 5.2 34.6 ± 9.9

WT motor 6 7.40 ± 0.03 30.2 ± 3.8 124.2 ± 18.0 91.5 ± 13.2 12.8 ± 3.4 21.0 ± 7.3

WT visual 6 7.39 ± 0.03 32.0 ± 4.0 124.6 ± 28.8 84.1 ± 13.2 22.8 ± 3.2§ 27.8 ± 5.8

R192Q light 5 7.37 ± 0.02 31.2 ± 6.1 112.2 ± 15.4 84.4 ± 11.2 20.8 ± 2.4 25.4 ± 7.6

R192Q dark 5 7.40 ± 0.03 31.5 ± 2.2 128.9 ± 14.6 85.7 ± 9.0 22.4 ± 2.6 29.9 ± 12.2

WT light 5 7.39 ± 0.03 30.3 ± 2.6 120.7 ± 6.5 87.7 ± 7.0 21.5 ± 1.8 21.4 ± 4.4

WT dark 7 7.40 ± 0.03 32.0 ± 3.0 118.1 ± 9.8 90.5 ± 12.4 23.6 ± 3.3 39.9 ± 13.1*

WT dark 7 7.40 ± 0.03 32.0 ± 3.0 118.1 ± 9.8 90.5 ± 12.4 23.6 ± 3.3 39.9 ± 13.1*

DISCUSSION  

In this study we combined cortical electrophysiological recordings in freely behaving and anesthetized 

FHM1 R192Q mutant mice to study the effects of FHM1 mutations on cortical network excitability 

and CSD susceptibility. Analysis of long-term intracortical DC-EEG and MUA recordings in freely 

behaving mice revealed increased power in the EEG gamma frequency band for both visual and motor 

cortex in R192Q compared with WT mice. In addition, power in the delta band was reduced for R192Q 

Table 3. Values are shown as mean±SD. CSD duration was measured at half-maximal amplitude. Mice were physiologically 
monitored (via femoral artery catheterization) and controlled by mechanical ventilation. Physiological parameters were 
maintained within normal range by adjusting ventilation parameters. There were no significant differences between groups 
except for a smaller CSD amplitude in WT motor compared with WT visual (†p=0.01) and R192Q visual (‡p=0.01 for 
both comparisons, one-way ANOVA, Bonferroni correction) for CSD threshold and smaller CSD amplitude in WT motor 
compared with WT visual (§p=0.008, one-way ANOVA, Bonferroni correction) for CSD frequency. For time-of-day CSD 
frequency measurements there was a longer CSD duration in WT dark compared with WT light group (*p=0.04, one-way 
ANOVA, Bonferroni correction). MABP, mean arterial blood pressure.
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mice in motor cortex during REM and non-REM sleep. Spontaneous CSD events were observed in 

a subset of R192Q, but never in WT mice. The occurrence of CSD events in freely behaving R192Q 

mice did not show an apparent correlation to the time-of-day. For the majority of events the CSD 

was observed first in the visual cortex. Parallel DC-recordings performed under anesthesia showed 

enhanced visual cortex CSD frequency in R192Q mice compared with WT both at the start of the 

light and at the start of the dark period. CSD susceptibility was enhanced to a comparable extent 

for both visual and motor cortex in R192Q mice compared with WT. Taken together, our findings 

indicate that the FHM1 R192Q mutation results in measurable alterations in cortical network activity 

patterns under freely behaving conditions in both visual and motor cortex that may contribute to the 

episodic occurrence of CSD. 

Neuronal hyperexcitability has been proposed as an underlying mechanism for increased susceptibility 

to migraine attacks (Welch et al 1990, Vikelis and Mitsikostas 2007, Aurora & Wilkinson 2007). In 

agreement with this, the gain-of-function FHM1 R192Q mutation results in increased calcium entry 

into pre-synaptic terminals with concomitant increased glutamate release into the synaptic cleft (Tottene 

et al 2002, van den Maagdenberg et al 2004, Tottene et al 2009), with apparent little effect on inhibitory 

neurotransmission (Tottene et al 2009, Vecchia et al 2014). Our present data indicate that these synaptic 

changes infer significant changes in cortical network activity patterns and predispose the cortex for 

occurrence of spontaneous CSD events, adding translational value to the FHM1 mouse model. 

The spontaneous CSD events showed DC and neuronal activity changes similar to those of induced 

CSD events (Somjen 2001). Specifically, the spontaneous CSD events showed a characteristic DC-

EEG negative deflection coinciding with a peak in neuronal activity, immediately followed by a 

near-complete suppression of neuronal activity which gradually increase to pre-CSD levels. To our 

knowledge, the detection of spontaneous CSD events in freely behaving mice is the first report of 

such events in an animal model. From our recordings, we did not identify factors that may have 

triggered the spontaneous occurrence of CSD. One possibility that cannot be excluded is that abrupt 

movements of the mouse might have caused friction of the intracortical electrodes, triggering a 

mechanically-induced CSD. This, however, seems rather unlikely since there was no correlation 

between the occurrence of CSD and mouse movements as detected by the movement sensor. In fact, 

most CSD events were preceded by sleep. It can also not be excluded that an enhanced inflammatory 

response around the intracortical electrodes may have contributed to the occurrence of the CSD 

events, since FHM1 R192Q were shown to exhibit a pronounced pro-inflammatory phenotype, at 

least in trigeminal ganglia neurons (Franceschini et al 2013). Histological analysis of GFAP staining, 

however, did not reveal overt genotypic differences in tissue reaction to implanted electrodes between 

R192Q mice that experienced CSD events and those that did not, nor between R192Q and WT mice. 

Although we cannot exclude that the presence of electrodes in the cortex contributed to occurrence 

of spontaneous CSD events via some other mechanism, at present, we lack the technical means to 

reliably detect CSD non-invasively e.g., via stable through-the-skull DC-EEG recordings. 
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The spontaneous occurrence of CSD events in R192Q mice suggests that such events are initiated 

by physiological fluctuations in brain activity. Although diurnal and seasonal alterations in neuronal 

excitability have been reported (Herzog 2007, Farajnia et al 2014), our data did not indicate a 

particularly enhanced CSD susceptibility in relation to certain times of the day. The overall EEG 

spectral changes that we observed, in particular enhanced power in the EEG gamma frequency band, 

are in line with the concept of cortical hyperexcitability. A correlation between enhanced EEG gamma 

power and decreased delta power with neuronal hyperexcitability is supported by earlier findings in 

mice deficient of K
V
3.1 voltage-gated K+ channels. K

V
3.1 voltage-gated channels are expressed in 

cortical GABAergic interneurons that are thought to enhance release of GABA from interneurons 

(Perney et al 1992, Kanemasa et al 1995). Hence, loss of K
V
3.1 function is expected to yield 

hyperexcitability. Indeed 24-hr EEG recordings in K
V
3.1 deficient mice revealed increased gamma 

and reduced delta EEG power (Joho et al 1999). These findings indicate that in the context of neuronal 

ion channel mutations that promote cortical hyperexcitability, as is the case for the R192Q mutation, 

EEG gamma power is increased whereas delta power may be decreased. Spectral changes in R192Q 

mice were most pronounced for the EEG gamma band, which showed enhanced power across cortical 

regions and vigilance states. Notably, in transgenic mice lacking functional Ca
V
2.1 Ca2+ channels, 

i.e., displaying an opposite effect at the cellular level to the gain-of-function effect of the R192Q 

mutation, a substantial reduction in gamma EEG power was observed (Llinas et al 2007). In general, 

gamma oscillations in neuronal networks are linked to enhanced glutamatergic neurotransmission 

as illustrated by studies on the generation of gamma oscillations in the hippocampus (Whittington 

et al 1995, Martin 2001, Herrmann & Demiralp 2005). The association of cortical gamma activity 

with hyperexcitability is further exemplified by enhanced gamma oscillatory activity during seizure 

initiation and chronification in epilepsy, a disorder characterized by enhanced neuronal network 

excitability (Parra et al 2003, Tolner et al 2005).  

The question remains whether these findings in R192Q mice have relevance for the understanding 

of migraine in patients. Early EEG studies in migraine patients have not shown uniform EEG power 

changes, neither between (interictal) or during (ictal) attacks (Lauritzen et al 1981). More recent 

reports indicate enhanced interictal theta band activity (Bjørk et al 2011), and fluctuations in alpha 

band power (de Tommaso 1998) as well as slowing down of EEG activity in relation to upcoming 

attacks (Bjørk et al 2011). Furthermore, a loss of EEG complexity indicative of enhanced EEG 

synchrony has been reported for migraineurs (Strenge et al 2001). In this context, enhancement of 

EEG gamma power may be interpreted as an enhancement of cortical network synchrony. Notably, 

for visual evoked potential responses, enhanced EEG gamma power has been reported for visual 

evoked potential responses in migraineurs (Coppola et al 2007), which was proposed to be related 

to a putative functional disconnection of the thalamus to the cortex. In animal models, Ca
V
2.1 Ca2+ 

channels were shown to play a key role in generation of thalamocortical oscillatory activity (Llinas 

et al 2007), suggesting that the enhanced EEG gamma power in FHM1 mice may involve altered 

thalamocortical function. Given the reported integration of visual and nociceptive inputs at the level 



074Chapter 3

of the thalamus in rodents (Noseda et al 2010, Noseda et al 2014), it is tempting to speculate that a 

combination of sensory triggers and overall (genetically) enhanced cortical excitability may contribute 

to cyclic occurrence of CSD events. 

The majority of observed spontaneous CSD waves appeared first in the visual cortex and then in 

motor cortex suggesting that the visual cortex might be particularly susceptible to CSD initiation. 

Our data in anesthetized mice, however, did not reveal a difference in threshold or frequency for KCl-

induced CSD between the visual and motor cortex. If indeed spontaneous CSD waves are more readily 

inititated in the visual cortex, intrinsic changes in the level of neuronal activity in the visual cortex 

or relative differences in potassium and glutamate buffering capacities between cortical regions may 

play a role. As we cannot determine the exact point-of-origin of the CSD waves in our experiments, it 

remains a possibility that CSD waves are initiated in a cortical or even subcortical brain area outside 

of the visual and motor cortex location. The near-simultaneous occurrence of some CSD events at 

both visual and motor cortex sites is in line with this idea. Clinical studies indicate that auras can be 

“silent” and become apparent only when invading the visual cortex (Hansen et al 2013). 

The presence of increased gamma power at the cortical network level suggests an elevated baseline 

cortical network excitability in the migraine susceptible brain. On top of such baseline hyperexcitability, 

physiological cycles in neuronal activity together with effects of external stimuli may occasionally 

create the conditions where the threshold for initiation of CSD is exceeded in specific brain regions.  

The spontaneous occurrence of CSD events in FHM1 mice marks the first evidence for episodic 

neuronal abnormalities in an animal model for migraine, which allows studying mechanisms of CSD 

and the migraine aura phase in patients.
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ABSTRACT

Stress is a putative migraine trigger, but the pathogenic mechanisms involved are unknown. Stress 

and stress hormones increase neuronal excitability by enhancing glutamatergic neurotransmission, 

but inhibitory effects have also been reported. We hypothesise that an acute rise in stress hormones, 

such as corticosteroids which are released after stress, increase neuronal excitability and thereby 

may increase susceptibility to cortical spreading depression (CSD), the mechanism underlying 

the migraine aura. Here we investigated effects of acute restraint stress and of the stress hormone 

corticosterone on CSD susceptibility as surrogate migraine marker, in a transgenic mouse model 

of familial hemiplegic migraine type 1 (FHM1), which displays increased glutamatergic cortical 

neurotransmission and increased propensity for CSD. We found that 20-min and 3-hr restraint stress 

did not influence CSD susceptibility in mutant or wild-type mice, despite elevated levels of plasma 

corticosterone. By contrast, subcutaneous administration of 20 mg/kg corticosterone increased CSD 

frequency exclusively in mutant mice, while corticosterone plasma levels were similarly elevated 

in mutants and wild-types. The effect of corticosterone on CSD frequency was normalized by pre-

administration of the glucocorticoid receptor (GR) antagonist mifepristone. These findings suggest 

that corticosteroid-induced GR activation can enhance susceptibility to CSD in genetically susceptible 

individuals, and may predispose to attacks of migraine. Although corticosterone levels rise also 

during acute stress, the latter likely triggers a spatiotemporally more complex biological response 

with multiple positive and negative modulators which may not be adequately modeled by exogenous 

administration of corticosterone alone. 
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INTRODUCTION  

Migraine is a common disabling brain disorder typically characterised by recurring attacks of severe 

head pain and associated symptoms of autonomic and neurological dysfunction (Goadsby et al 

2002, IHCD 2004). In one-third of patients, attacks are associated with neurological aura symptoms 

(Launer et al 1999). Migraine auras are likely caused by cortical spreading depression (CSD) that is 

defined as a slowly spreading cortical wave of neuronal and glial depolarization (Lauritzen 1994). 

Hyperexcitability of the cortex has been described in migraine patients (Aurora and Wilkinson 2007) 

compared to healthy controls, but much less is known how migraine attacks come about. It is still 

unclear whether acute stress is in fact one of the trigger factors for attacks, although often reported 

by patients (Sauro and Becker 2009, Hauge et al 2011). Moreover, it is unknown how hormones that 

are released upon stress may precipitate attacks (Borsook et al 2012). 

Corticosteroid hormones (cortisol in humans and corticosterone in rodents), which are released in 

high amounts after stress, act by binding to mineralocorticoid (MR) and glucocorticoid receptors 

(GR) and are known to increase neuronal excitability (Popoli et al 2011, Joels et al 2012). Unlike 

MRs, GRs are quite abundantly expressed in several layers of the cerebral cortex, and GR pathways 

are known to mediate excitatory effects of stress hormones on neurotransmission, particularly after 

acute stress (Joels and Baram 2009). It is therefore plausible that possible effects of stress hormones 

on cortical excitability in the migraine brain are GR mediated.

Earlier we generated transgenic knock-in mice with an R192Q missense Ca
V
2.1 (P/Q-type) Ca2+ channel 

mutation (van den Maagdenberg et al 2004), identified in patients with Familial Hemiplegic Migraine 

type 1 (FHM1; Ophoff et al 1996); these mice are considered a relevant model of migraine. We have 

shown that the enhanced susceptibility to CSD in mutant animals (van den Maagdenberg et al 2004, 

Eikermann-Haerter et al 2009) was caused by increased cortical glutamatergic neurotransmission 

(Tottene et al 2009). In the present study, we used CSD as a migraine-relevant readout for stress-

induced changes in cortical hyperexcitability in the FHM1 R192Q mouse model. We investigated 

whether acute moderate or severe restraint stress may further enhance CSD susceptibility in R192Q 

mice and whether corticosteroid activation of GR pathways has comparable effects. Our findings 

provide insight into the mechanisms by which corticosteroids could contribute to triggering migraine 

attacks via influencing CSD susceptibility.

MATERIALS AND METHODS

Animals

Male homozygous Cacna1a FHM1 R192Q knock-in (“R192Q”) and wild type (“WT”) mice of 

2-4 months were used. The knock-in mice were generated as previously described by introducing 

the human FHM1 pathogenic R192Q mutation in the orthologous mouse Cacna1a gene using a 

gene targeting approach (van den Maagdenberg et al 2004). Mice were assigned to the different 
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experimental groups: (1) 20-min restraint, (2) 3-hr restraint, (3) untreated, (4) corticosterone, (5) 

vehicle, (6) mifepristone + vehicle or (7) mifepristone + corticosterone. For each of these experimental 

paradigms, WT and R192Q mice were tested, separately. For most experimental groups, a sample size 

of 8 animals was used per genotype, except for the WT untreated (N=10), WT 20-min restraint (N=7) 

and the R192Q corticosterone+THDOC group (N=6). All experiments were approved by the Animal 

Experiment Ethics Committee of Leiden University Medical Center.

Assessment of corticosterone plasma levels

Mice were habituated to single housing for at least 4 days after which baseline blood samples from 

the tail (20 µL) were collected at 10:00 am four days before follow-up procedures. Corticosterone 

plasma levels were determined by a commercial radioactive immunoassay (MP Biomedicals Inc., 

Costa Mesa, CA) according to manufacturer’s instructions (Sarabdjitsingh et al 2010).

Restraint stress paradigms

Restraint stress experiments were performed in R192Q and WT mice using a single restraint paradigm 

(Sarabdjitsingh et al 2012) starting between 10:00 and 10:30 am. Mice were restraint in custom made 

Plexiglas cylinders (3 cm diameter) (1) for a single period of 20 min (moderate restraint) and then 

returned to the home cage for nearly 3 hr, after which they were prepared for CSD surgery, or (2) for 

3 hr (severe restraint), after which they were immediately prepared for CSD surgery. Blood samples 

for corticosterone plasma measurements were collected prior to the start of CSD surgery (i.e., 3 hr 

after the end of the 20-min restraint or immediately after the 3-hr restraint procedure) and at the end 

of CSD recordings. The immediate effect of moderate restraint stress on corticosterone plasma levels 

(Table 1) was determined in separate groups of R192Q and WT mice by collecting blood samples 

from the tail 30 min after the end of the 20-min restraint period. In pilot studies, a separate group of 

animals was weighed (“handled controls”) after which blood samples were collected from the tail 30 

min later. Since these handled controls showed slightly elevated levels of plasma corticosterone (data 

not shown), untreated mice were used as controls for the CSD experiments in restraint mice.

Corticosterone, mifepristone and tetrahydrodeoxycorticosterone injections

On the day of the CSD experiment, corticosterone (Sigma-Aldrich, St. Louis, MO; 20 mg/kg, in 

arachidonic oil) or vehicle was subcutaneously injected between 10:00 and 10:30 am when endogenous 

corticosterone levels are low (Table 1) after which the mouse was returned to its home cage. A tail blood 

sample was collected 3 hr after corticosterone or vehicle injection just before surgical preparation. 

Surgery for CSD measurements started 3 hr after corticosterone or vehicle injection. Mifepristone (10 

mg/kg; RU486, Sigma-Aldrich) diluted in 1,2-propanediol was injected subcutaneously 50 min prior 

to corticosterone/vehicle injection. Tetrahydrodeoxycorticosterone (THDOC; Sigma-Aldrich) was first 

diluted in 45% hydroxypropyl-β-cyclodextrin (Sigma-Aldrich) in distilled water before further dilution 

in 0.9% saline, and was injected intraperitoneally at 20 mg/kg shortly after the start of surgery for CSD 

measurements, approximately 3 hr after corticosterone (20 mg/kg subcutaneously) injection.  
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Table 1. Corticosterone plasma levels in WT and R192Q mice at baseline, after a 20-min and 
3-hr restraint stress paradigm.

Time Baseline 30 min 3 hr Post-CSD

WT 14.3 [6,38] 
(N=11)

R192Q 15.7 [6,96] 
(N=9)

WT 
20 min restraint

110# [81,147] 
(N=4)

59 [14,76] 
(N=6)

231 [164,271]
(N=5)

R192Q 
20 min restraint

165# [123,212] 
(N=5)

27 [6,76] 
(N=8)

260 [232,338]
(N=8)

WT 
3 hr restraint

372# [251,556] 
(N=8)

253 [155,401]
(N=8)

R192Q 
3 hr restraint

349# [232,621] 
(N=8)

195 [165,694]
(N=8)

CSD recordings under physiological control

CSD susceptibility measurements were performed as described in detail elsewhere (Eikermann-

Haerter et al., 2009), under 1% isoflurane anesthesia in 20% O
2 
/ 80% N

2
O with full physiological 

control (i.e., using a femoral artery lead for continuous blood pressure monitoring and blood sampling, 

and tracheotomy for artificial ventilation). Arterial blood gases (pCO
2
, pO

2
) and pH were measured at 

the start and end of CSD recordings and were maintained within normal limits by adjusting ventilation 

when necessary (Table 3). For CSD susceptibility measurements, the mouse was transferred into a 

stereotactic frame after which the skull was exposed and 2 burr holes were prepared over the right 

hemisphere for (1) CSD recording from the motor cortex (0.5 mm anterior from bregma; 2 mm 

lateral) and (2) CSD induction on the occipital cortex (3.5 mm posterior, 2 mm lateral). CSD was 

induced by application of a cotton ball soaked in 300 mM KCl on the occipital cortex for 30 min 

while DC-potential recordings were made from the motor cortex (Figure 1). Data were sampled 

Table 1. Values are corticosterone plasma levels in ng/mL, shown as medians with [minimum, maximum] values; group 
sizes are indicated in italics. Corticosterone plasma levels were determined from tail blood. Blood samples were collected 
from R192Q and WT mice at baseline, 30 min and 3 hr after 20-min restraint stress and immediately after 3-hr restraint 
stress. Pairwise comparisons were made using Mann-Whitney U-test corrected for multiple testing (adjusted p-value 
0.008). Significant differences compared to baseline are indicated with # . Note that 3 hr after 20-min restraint stress 
corticosterone plasma values had decreased to baseline levels, as indicated by the lack of a significant difference between 
baseline and the 30 min after 20-min restraint samples. There were no differences between R192Q and WT corticosterone 
plasma levels at any of the time-points.
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(200 Hz), amplified (10x) and low-pass filtered at 4 Hz and analyzed offline using LabChart (AD 

Instruments, Colorado Springs, CO). 

Statistical analysis

Data are presented as median (corticosterone plasma data and CSD latency) or mean ± SD. Statistics 

were calculated using SPSS (version 17; SPSS Inc., Chicago, IL).  Effects of moderate (20 min) 

and severe (3 hr) restraint stress on CSD frequency (Figure 1) as well as the effect of genotype 

and corticosterone treatment on CSD frequency (Figures 2A, B) were tested with two-way ANOVA 

and post hoc Bonferroni correction. The effect of corticosterone and THDOC in R192Q mice was 

tested with one-way ANOVA and post hoc Bonferroni in comparison to the R192Q corticosterone 

and R192Q vehicle groups only. Systemic physiological data and CSD amplitude and duration (Table 

3) were compared among groups using one-way ANOVA and Bonferroni correction. For skewed 

parameters (corticosterone plasma data and CSD latency), corresponding non-parametric tests were 

used (Kruskal-Wallis, followed by Mann-Whitney U-test). Significance was set at 0.05 and corrected 

for multiple testing where applicable. 

RESULTS 

Acute restraint stress does not influence CSD frequency in FHM1 R192Q and WT mice

We investigated whether an acute moderate or severe stressor influences CSD susceptibility in FHM1 

mice, by using a single-restraint stress paradigm of 20 min or 3 hr duration in separate groups of R192Q 

and WT mice, with untreated mice as controls. Plasma corticosterone levels that were determined 30 

min after the end of a moderate stressor (20-min restraint) were elevated compared to baseline in 

both R192Q and WT mice, with no difference between genotypes. Shortly before the start of the CSD 

experiments, i.e., 3 hr after the end of the 20-min restraint period, corticosterone plasma levels had 

normalized to baseline values in both R192Q and WT mice (Table 1). We observed no effect of the 

20-min restraint procedure on CSD frequency in R192Q mice (R192Q untreated, 16.6±1.9 CSD/hr, 

N=8 vs R192Q 20-min restraint, 16.7±3.5 CSD/hr, N=8) nor in WT mice (WT untreated, 10.0±1.9 

CSD/hr, N=10 vs WT 20-min restraint, 10.0±1.1 CSD/hr, N=7; Figure 1). CSD latency (min) was 

reduced in R192Q untreated compared to WT untreated mice but was not influenced by the 20-min 

restraint procedure (Table 3).  

In contrast to 20 min restraint stress, a more severe 3 hr restraint stress caused increased corticosterone 

plasma levels compared to baseline levels just prior to CSD measurements (Table 1). In both R192Q 

and WT, this severe stressor resulted in corticosterone plasma levels close to those obtained after 

corticosterone injection (Table 2). As with the 20-min paradigm, 3 hr restraint stress did not influence 

CSD frequency compared to untreated controls in R192Q mice (R192Q untreated, 16.6±1.9 CSD/hr, 

N=8 vs R192Q 3-hr restraint 17.1±2.4 CSD/hr, N=8) or WT (WT untreated, 10.0±1.9 CSD/hr, N=10 

vs WT 3-hr restraint, 9.7±2.5 CSD/hr, N=8; Figure 1). CSD latency (Table 3) was also not influenced 

by the restraint procedure compared to untreated mice.
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Figure 1. Moderate or severe restraint stress does not influence CSD susceptibility in FHM1 R192Q mice. (A) 
Schematic of the CSD induction site (KCl application) on the occipital cortex and DC-recording site in the motor cortex. 
(B) Specimen recordings showing CSD events measured in untreated and 3 hr restraint groups of WT and R192Q mice, 
illustrating comparable CSD frequencies in untreated compared to the 3-hr restraint animals. Scale bar applies to all 
traces. (C) Bar diagram (mean ± SD) showing CSD frequency (number of CSD/hr) results from CSD recordings carried 
out 4 hr after a 20 min (moderate) and 1 hr after a 3 hr (severe) restraint stress in WT and R192Q mice (WT untreated 
N=10; R192Q untreated N=8; WT 20 min restraint N=6; R192Q 20 min restraint N=8; WT 3 hr restraint N=8; R192Q 3 
hr restraint N=8). Moderate or severe restraint stress did not influence CSD susceptibility in R192Q or WT mice (2-way 
ANOVA), suggesting that other neurosteroids released during stress may counteract effects of corticosterone on CSD 
susceptibility in R192Q mice. CSD frequency was increased in R192Q mice compared to WT mice in all treatment 
groups (untreated †p=0.000; 20 min restraint ‡p=0.000; 3 hr restraint §p=0.000).
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Figure 2. Corticosterone enhances CSD susceptibility in FHM1 R192Q mutant mice via glucocorticoid receptor 
activation. (A) Specimen recordings showing CSD events measured in the different treatment groups of WT and R192Q 
mice, illustrating enhanced CSD frequency in R192Q mice that were subcutaneously injected 4 hr earlier with 20 mg/kg 
corticosterone (CORT). Scale bar applies to all traces. (B) Bar diagram (mean ± SD) showing CSD frequency (number 
of CSD/hr) results from R192Q and WT mice in the different treatment groups (N=8 mice/group; except for mifepristone 
pretreated mice injected with vehicle, MIF-VEH which are N=7 mice/group). Corticosterone administration enhanced 
CSD frequency in R192Q mice only (*p=0.02 vs R192Q VEH), an effect that was prevented by pre-administration of the GR 
antagonist mifepristone (*p=0.004 vs R192Q CORT). There was a significant main effect on CSD frequency of genotype, 
corticosterone treatment and the interaction between genotype and treatment. Note the higher CSD frequency in the 
R192Q vehicle group compared to WT vehicle-injected mice (†p=0.025), in line with earlier findings from unchallenged 
R192Q and WT mice (Eikermann-Haerter et al 2009), as well as the higher CSD frequency for R192Q compared to WT 
mice for the CORT treated (‡p=0.000), MIF-VEH treated (§p= 0.000) and MIF-CORT treated mice (8p= 0.003). 
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After both the 20-min and 3-hr restraint procedure, CSD duration (sec) and amplitude (mV), as well 

as systemic physiological parameters (i.e., blood pressure, pH, pCO
2
, pO

2
) were similar to values 

from untreated animals except for a higher pCO
2
 (mm Hg) value in WT untreated compared to 

R192Q 3-hr restraint mice and a lower MABP (mm Hg) in R192Q 3-hr restraint compared to WT 

3-hr restraint mice (Table 3).  

Table 2. Corticosterone plasma levels in WT and R192Q mice in the CORT, VEH and MIF 
treatment groups before and after CSD experiments

Time 3 hr Post-CSD

WT 
VEH

33.0 [13,210] 
(N=7)

158.9 [140,175] 
(N=8)

R192Q 
VEH

54.4 [9,90] 
(N=6)

195.9* [163,339] 
(N=8)

WT 
CORT

466.7# [233,1055] 
(N=5)

215.4# [183,339] 
(N=8)

R192Q 
CORT

522.8# [407,668] 
(N=4)

301.1# [211,562] 
(N=8)

WT 
MIF-CORT

1306.2# [699,1600] 
(N=7)

609.6 [227,1057] 
(N=8)

R192Q 
MIF-CORT

1017.3# [755,1648] 
(N=8)

521.0 [240,739] 
(N=8)

WT 
MIF-VEH

332.4 [300,354] 
(N=7)

226.4 [199,288] 
(N=7)

R192Q 
MIF-VEH

326.3 [58,348] 
(N=7)

286.8 [282,354] 
(N=7)

Table 2. Values are corticosterone plasma levels in ng/mL, shown as medians with [minimum, maximum] values; group 
sizes are indicated in italics. Corticosterone plasma levels were determined from tail blood. Blood samples were collected 
from R192Q and WT mice at 3 hr after a single subcutaneous administration of 20 mg/kg corticosterone (CORT) or vehicle 
(VEH), with or without pretreatment with the GR antagonist mifepristone (MIF). Post-CSD samples were taken at the 
end of CSD recordings under isoflurane anesthesia. Group comparisons were done with Kruskal-Wallis test: χ2=51.942, 
p=0.000. Pairwise comparisons were made using a Mann-Whitney U-test, corrected for multiple testing (p=0.005). 
Significant increases compared to baseline (see Table 1) are indicated by # (Mann-Whitney U-test). For corticosterone-
injected animals, corticosterone plasma levels were comparable between R192Q and WT mice in the different treatment 
groups, including at the end of the experiment, except for post-CSD levels of vehicle-injected mice which showed slightly 
higher corticosterone plasma levels for R192Q compared to WT mice (*p=0.0013 Mann-Whitney U-test). Both for 
corticosterone and vehicle-injected animals, there was no correlation between corticosterone plasma levels at the end of 
surgery and CSD frequency (Spearman’s ρ=0.192, p=0.224). 
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Corticosterone administration increases CSD frequency exclusively in FHM1 R192Q 
mice via GR activation

We next investigated the acute effect of the stress hormone corticosterone on CSD susceptibility, 

by administering a dose of 20 mg/kg corticosterone in the morning 3 hr before surgery was started 

to determine CSD frequency in R192Q and WT mice. Corticosterone plasma levels at baseline and 

after injection of corticosterone were comparable between R192Q and WT mice. In both genotypes, 

corticosterone injection resulted in strongly elevated corticosterone plasma levels, while no significant 

plasma corticosterone increase was observed after injection of vehicle (Table 2).

We observed a significant main effect on CSD frequency of genotype (F[1,54]=105,98; p=0.000), 

corticosterone treatment (F[3,54]=5,22; p=0.003), and the interaction between genotype and 

corticosterone treatment (F[3, 54]=3.39; p=0.024). Post-hoc testing revealed that corticosterone 

injection resulted in a significantly increased CSD frequency in R192Q mice (19.9±2.3 CSD/hr; N=8) 

compared to vehicle (15.6±3.8 CSD/hr; N=8; p=0.02), while there was no effect of corticosterone in WT 

mice (WT corticosterone, 10.7±2.1 CSD/hr; N=8; WT vehicle, 11.4±2.9 CSD/hr; N=8; Figure 2A, B).

To investigate a possible role of GR activation on the observed corticosterone effects in R192Q mice, 

the GR antagonist mifepristone (10 mg/kg) was injected 50 min prior to corticosterone injection. 

Mifepristone pre-treatment normalized CSD frequency in R192Q mice (15.0±1.0 CSD/hr; N=8) to 

the level of vehicle-controls (15.6±3.8 CSD/hr; N=8; Figure 2B). Mifepristone did not influence 

CSD frequency in vehicle-injected R192Q mice (15.6±2 CSD/hr; N=7), vehicle-injected WT mice 

(8.9 ±1.2 CSD/hr; N=7), or corticosterone-injected WT mice (9.9±2.1 CSD/hr; N=8). Since the CSD 

frequencies of mice in the combined mifepristone with vehicle group were comparable to those 

in the vehicle-control group, no separate controls for mifepristone injection were included. CSD 

duration (sec), amplitude (mV), latency (min) and physiological parameters were not influenced by 

corticosterone, vehicle or mifepristone injection (Table 3). 

To investigate whether neurosteroids as a stress mediator may counteract effects of corticosterone 

on CSD frequency, we administered tetrahydrodeoxycorticosterone (THDOC), a neurosteroid with 

anticonvulsant properties (Kokate et al 1994, Kokate et al 1996, Reddy and Rogawski 2002) that is 

synthesized from corticosterone precursor 11-deoxycorticosterone (Kaminski and Rogawski 2011), at 

a dosage of 20 mg/kg, 40 min prior to CSD measurements in an additional group of R192Q mice (N=6) 

that received a 20 mg/kg corticosterone injection 3 hr earlier. In these mice, corticosterone plasma 

levels 3 hr after corticosterone injection were strongly elevated (781.3±312.0 ng/mL). The additional 

administration of THDOC did not change CSD frequency (18.8±3.1 CSD/hr; N=6) compared to that 

observed for the group of R192Q mice injected with corticosterone alone (see above and Figure 2, 

19.9±2.3 CSD/hr; N=8; p=1).
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Table 3. Systemic physiological parameters and CSD characteristics in WT and R192Q mice in 
the different treatment groups

Groups N pH pCO
2 

(mm Hg)
pO

2 

(mmHg)
MABP 

(mmHg)
CSD 

Amplitude 
(mV)

CSD 
Duration 

(sec)

CSD 
Latency 

(min)

WT untreated 10 7.38±0.03 32.4±1.73† 120.5±12.3 83.9±13.1 16.9±4.1 30.4±9.2
1.3 

[1.2-1.5]

R192Q untreated 8 7.39±0.02 31.2±1.6 128.9±11.5 89.8±6.6 20±2.8 21.7±6.2
0.8§ 

[0.5-1.2]

WT 
20 min restraint

6 7.39±0.02 32.1±1.9 136.3±19.6 92.6±6.2 18.0±3.3 21.1±4.5
1.3 

[1.2-1.4]

R192Q 
20 min restraint

8 7.38±0.03 31.7±1.2 129.6±15.1 90.7±3.8 19.6±3.9 22.6±3.82
1.0 

[0.2-1.2]

WT 
3hr restraint

8 7.37±0.01 30.0±2.0 123.7±13.5 80.1±3.5‡ 14.9±2.9 26.4±5.8
1.2 

[1.1-2.0]

R192Q 
3hr restraint

8 7.36±0.01 29.8±1.5 128.5±17.6 93.7±4.5 17.1±1.7 31.1±6.9
1.0 

[0.5-2.5]

WT VEH 8 7.37±0.01 33.9±2.5 127.9±15.1 80.5±6.0 21.7±3.3 23.9±6.0
1.4 

[1.3-2.4]

R192Q VEH 8 7.36±0.03 32.2±4.0 119.7±14.3 82.2±7.8 22.6±1.7 22.3±4.0
1.1# 

[1.0-1.4]

WT CORT 8 7.35±0.01 35.5±2.0 127.9±13.1 85.7±6.8 21.2±4.8 22.9±8.6
1.5 

[1.2-2.1]

R192Q CORT 8 7.33±0.01* 31.9±4.1 128.2±19.5 82.1±5.5 21.1±1.9 21.6±2.2
1.2# 

[1.0-1.3]

WT 
MIF-VEH

7 7.35±0.02 33.8±3.1 127.7±9 76.1±5.4 18.7±4.3 29.3±5.8
1.4 

[1.3-4.5]

R192Q 
MIF-VEH

7 7.37±0.02 32.7±3 135.6±23.3 84.8.9±7.2 20.1±2.2 26.4±6.3
1.0# 

[0.5-1.0]

WT 
MIF-CORT

8 7.36±0.02 32.3±3.1 132.8±09.2 79.0±8.0 23.6±2.8 24.5±5.0
1.4 

[1.3-2.1]

R192Q 
MIF-CORT

8 7.36±0.03 32.3±3.2 127.2±21.4 80.2±7.0 21.0±3.0 25.9±7.3
1.2  

[1.1-2.3]

Table 3. Values shown are mean ± SD. Because CSD latency values (min) were not normally distributed and variances 
were unequal, these are shown as median with [minimum, maximum] values. Physiological parameters during CSD 
frequency recordings were kept within physiological ranges. In the restraint stress treated mice there were no significant 
differences in physiological parameters except for a slightly higher pCO

2
 value (mm Hg) for WT untreated (indicated by 

†) compared to R192Q 3-hr restraint (p=0.028) and a lower MABP (mean arterial blood pressure; mm Hg) in WT 3-hr 
restraint (indicated by ‡) compared to R192Q 3-hr restraint (p=0.013). R192Q untreated mice had a reduced CSD latency 
compared to WT untreated mice (§p=0.009). In the corticosterone injection experiments, there was a slightly lower blood 
pH in the R192Q CORT group compared to WT VEH (*p=0.03) and R192Q MIF-VEH (p=0.01). Note that lower pH, if 
effective in the brain, would reduce rather than enhance neuronal excitability. Except for MIF-CORT groups (p=0.08), 
R192Q mice showed a reduced CSD latency compared to WT across all treatment groups (significance indicated by #; 
CORT p=0.003, VEH p=0.005 and MIF-VEH p=0.0006). 
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DISCUSSION  

	Transgenic FHM1 R192Q knock-in mice display an increased susceptibility to experimentally 

induced CSD (van den Maagdenberg et al 2004, Eikermann-Haerter et al 2009) that can be explained 

by an enhanced cortical glutamate release (Tottene et al 2009). The enhanced CSD susceptibility 

serves as a measure of excitability and surrogate migraine marker. Stress and stress hormones 

can also cause direct changes in glutamatergic neurotransmission, leading to increased neuronal 

excitability (Popoli et al 2011), but it is not known if this can explain why acute stress may enhance 

propensity to migraine attacks. Our data show that acute restraint stress does not influence CSD 

frequency in R192Q or WT mice, despite elevated plasma corticosterone levels. Administration of 

the stress hormone corticosterone, however, increases CSD frequency within 3-4 hr in R192Q mice 

and not in WT mice, without affecting blood pressure or blood-gas parameters. The corticosterone-

induced increased CSD susceptibility in R192Q mice was prevented by pre-administration of the GR 

antagonist mifepristone. These findings illustrate that corticosterone-induced GR pathway activation 

can enhance susceptibility to CSD in genetically susceptible individuals and may predispose to 

attacks of migraine. Although corticosterone levels rise during acute stress, the latter likely triggers a 

spatiotemporally more complex biological response with multiple positive and negative modulators 

(Joels and Baram 2009), which may not be adequately modeled by exogenous administration of 

corticosterone alone.

The absence of a CSD effect after a 20 min moderate restraint may be related to the fact that 

corticosterone plasma levels were only transiently increased with this paradigm and had returned to 

baseline values shortly before start of the CSD experiment. The 3 hr restraint paradigm however did 

not influence CSD susceptibility either, in both R192Q and WT mice, despite corticosterone plasma 

levels that were elevated to a similar extent as observed after 20 mg/kg corticosterone injection. It is 

possible that the biokinetics of corticosterone in case of restraint stress do not mimic those achieved 

by external corticosterone administration since plasma levels do not necessarily reflect effects at the 

cortical or cellular level. In addition, in case of an acute stress paradigm apart from corticosterone 

other stress mediators, such as neurosteroids like THDOC and allopregnanolone (Purdy et al 1991, 

Zimmerberg and Brown 1998) and the neuropeptide corticotropin-releasing hormone (CRH; Vale et al 

1981), are known to be elevated which could have interfered with the effect of corticosterone on CSD. 

Although THDOC and allopregnanolone have been shown to modulate the physiological response 

to stress by promoting GABAergic inhibitory neurotransmission (Bitran et al 1995, Stromberg et 

al 2005) and can suppress hyperexcitability in mouse seizure models (Kokate et al 1994, Kokate 

et al 1996, Reddy and Rogawski 2002), the administration of THDOC  to R192Q mice that were 

earlier injected with corticosterone did not seem to affect the corticosterone-induced increase in CSD 

frequency in our study. This outcome is not entirely surprising, since GABAergic agonists in general 

do not suppress CSD susceptibility (van Harreveld and Stamm 1953, Brand et al 1998, Kitahara et al 

2001). Possibly, suppressed release of the endogenous stress hormone CRH in the aftermath of stress 
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may contribute to the lack of change in CSD frequency upon restraint stress; this would fit with the 

notion that high levels of CRH generally excitatory actions (Blank et al 2003). 

The exact mechanisms by which corticosterone influences CSD susceptibility in FHM1 mice are 

unknown, but the involvement of GR suggests interaction at the level of excitatory glutamatergic 

neurotransmission. GR activation by stress or corticosterone has been shown to influence 

glutamatergic neurotransmission mainly by increasing postsynaptic glutamate responses (Karst and 

Joels 2005, Yuen et al 2009) and L-type Ca2+ currents (Chameau et al 2007). The FHM1 R192Q 

gain-of-function mutation leads to increased Ca2+ influx pre-synaptically, resulting in increased 

glutamate release (Tottene et al 2009, van den Maagdenberg et al 2004). When corticosterone is 

administered to FHM1 R192Q mice, an additive effect of GR activation and the FHM1 Ca
V
2.1 gain-

of-function on glutamatergic transmission might cause even higher CSD frequencies than achieved 

by either condition alone. In WT mice, that lack the genetically increased level of glutamatergic 

neurotransmission, corticosterone apparently does not have sufficient effect by itself to influence 

CSD susceptibility. 

The finding that mifepristone pre-treatment prevented the corticosterone-induced increase in CSD 

frequency in R192Q mice indicates that the corticosterone effect on CSD susceptibility is specific and 

mediated by activation of GR pathways. The corticosterone effect emerged in the time-period related 

to delayed effects mainly involving GR, and not MR, actions (de Kloet et al 2005, Joels and Baram 

2009, Joels et al 2012). Observations that mifepristone is generally ineffective in blocking membrane-

receptor–mediated events (Di et al 2003, Liu et al 2007, Zhang et al 2012), make it plausible that the 

observed GR mediated effects on CSD in R192Q mice were genomically mediated, although non-

genomic actions cannot be ruled out.

In conclusion, this study showed that an acute stressor does not influence CSD susceptibility in our 

FHM1 mouse migraine model, while acute administration of corticosterone specifically enhances 

CSD susceptibility in FHM1 mutants and not in WT. This could reflect the fact that both the FHM1 

mutation and corticosterone, via GR activation, exert their effect at the level of glutamatergic 

neurotransmission, thus providing a possible mechanistic underpinning of their interaction. It can 

be hypothesised that susceptible individuals may be protected against migraine in cases of acute 

stress as long as other stress-induced factors counteract GR-mediated actions of corticosteroids on 

glutamatergic transmission. This protection may fall short when a disbalance between corticosteroids 

and such other stress hormones occurs. Future work should reveal the complex interplay of 

corticosterone with other stress mediators in the context of acute stress and CSD susceptibility, as 

well as mechanisms underlying effects of chronic stress (Borsook et al 2012), as opposed to acute 

stress, on migraine characteristics. 
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ABSTRACT

MALDI mass spectrometry can simultaneously measure hundreds of biomolecules directly 

from tissue. Using essentially the same technique but different sample preparation strategies, 

metabolites, lipids, peptides and proteins can be analyzed. Spatially correlated analysis, imaging 

MS, enables the distributions of these biomolecular ions to be simultaneously measured in tissues. 

A key advantage of imaging MS is that it can annotate tissues based on their MS profiles and thereby 

distinguish biomolecularly distinct regions even if they were unexpected or are not distinct using 

established histological and histochemical methods e.g., neuropeptide and metabolite changes 

following transient electrophysiological events such as cortical spreading depression (CSD), which 

are spreading events of massive neuronal and glial depolarisations that occur in one hemisphere of 

the brain and do not pass to the other hemisphere, enabling the contralateral hemisphere to act as 

an internal control. A proof-of-principle imaging MS study, including 2D and 3D datasets, revealed 

substantial metabolite and neuropeptide changes immediately following CSD events which were absent 

in the protein imaging datasets. The large high dimensionality 3D datasets make even rudimentary 

contralateral comparisons difficult to visualize. Instead non-negative matrix factorization (NNMF), 

a multivariate factorization tool that is adept at highlighting latent features, such as MS signatures 

associated with CSD events, was applied to the 3D datasets. NNMF confirmed that the protein dataset did 

not contain substantial contralateral differences, while these were present in the neuropeptide dataset. 
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 INTRODUCTION

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) can generate bio

molecular profiles directly from tissue that contain hundreds of distinct biomolecular ions (Chaurand 

et al 2004). Spatially-correlated analysis, imaging MS, can simultaneously record the distribution of 

each of these ions in heterogeneous tissue samples (Cornett et al 2007, McDonnell & Heeren 2007). 

There is growing evidence that imaging is having an impact in disease detection and investigation 

(McDonnell et al 2010, Schwamborn & Caprioli 2010). By combining imaging MS with histology the 

differential MS profiles found in specific histopathological entities can be used to identify candidate 

biomarkers (Cazares et al 2009). 

A major advantage of imaging MS is that it can annotate tissues based on their MS profiles and thereby 

distinguish biomolecularly distinct regions even if they are not distinct using established histological 

and histochemical methods (Mathur et al 2009). Imaging MS-based molecular histology has been 

used to differentiate histologically overlapping/identical tumors, identify patient subgroups (Willems 

et al 2010), reveal intratumor heterogeneity that may indicate clonal development (Deininger et al 

2008, Jones et al 2011, Willems et al 2010) and uncovered evidence of early infiltration at tumor 

interface zones (Kang et al 2010, Oppenheimer et al 2010). These capabilities offer enormous potential 

to investigate the biomolecular changes that take place prior to, or without, morphological change, 

or for which a molecular specific stain is unavailable. This may be especially true for metabolic 

and neuropeptide changes following transient events, for instance for neurological diseases such as 

migraine or epilepsy that are defined by their episodic nature, and which may lack histopathological 

features and stains for specific metabolites/neuropeptides.   

In many neurological diseases the pathophysiology is not entirely known and would benefit from 

systematic investigations of the biomolecular differences between diseased and healthy tissue. 

Information of such biomolecular differences can guide the search for reliable biomarkers in 

neurological diseases that are currently lacking.

Cortical Spreading Depression (CSD) is a self-propagating wave of intense neuronal and glial cell 

depolarization that occurs in one hemisphere of the cerebral cortex which is followed by a marked 

neuronal silencing (Leao 1944, Somjen 2001), which in humans is associated with for instance the 

aura phase during migraine attacks (Hadjikhani et al 2001, Lauritzen 1994). Apart from migraine, 

spreading depression can occur in brain tissue in relation to ischemic insults or seizures (Dreier et al 

2012, Lauritzen et al 2011, Somjen 2001). CSD can be easily induced experimentally in animals by 

local stimulation of the cortex by current injection or by topical application of a high concentration of 

K+ on the brain surface (Lauritzen 1994, Somjen 2001). When induced in one hemisphere, CSD does 

not cross to the other hemisphere (Eikermann-Haerter et al 2009, Somjen 2001). Previous studies 

have described a number of neuropeptides and metabolites that are transiently released after CSD 

such as changes in lactate (Scheller et al 1996) and glutamate (Fabricius et al 1993). However the 
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spatial distributions of these peptides and metabolites, and the evolution of their spatiotemporal 

signatures, have not been established. 

Here we report the results of a proof-of-principle imaging MS study of the biomolecular changes 

following CSD, including metabolites, neuropeptides and proteins. CSD was unilaterally induced, 

enabling the contralateral hemisphere to be used as an internal control, as introduced by Andrén and 

workers for Parkinson’s disease research (Nilsson et al 2007, Sköld et al 2006) and recently used by 

(Hanreider et al. 2011). A SHAM-operated mouse, in which Na+ instead of K+ is applied to the brain 

surface and which does not result in CSD events, is included to control for possible changes related 

to the surgical procedures.

METHODS

CSD Experiments

Two male C57Bl/6 mice of 3 months of age were used. In one animal 7 CSDs were evoked by repeated 

application of 1 M KCl onto the right visual cortex with a 5-min interval. The other animal received 

SHAM treatment by repeated application of 1 M NaCl which does not induce CSDs. CSD induction 

and monitoring was carried out by topical KCl application as described previously (Eikermann-

Haerter et al 2011) with some modifications. In short, surgery was carried out using 1.5% isoflurane 

anesthesia in surgical air. After preparing a cranial window above the occipital cortex of the right 

hemisphere (ca. 3.5 mm posterior, 2 mm lateral from bregma) 7 CSD were evoked with a 5-min 

interval between two successive applications. For this, a cotton ball soaked in 1 M KCl was placed 

for 30 sec on the dura overlaying the occipital cortex followed by a wash with 150 mM NaCl. The 

CSDs were monitored by recording cortical DC-potential changes via a glass microelectrode placed 

in the frontal sensorimotor cortex (0.5 mm anterior, 2 mm lateral from bregma; depth 300 μm). 

Immediately after the 7th CSD the mouse was decapitated, the brain was removed and flash-frozen 

on dry ice in less than 1 min and stored at -80 °C. The SHAM-treated mouse underwent the same 

procedure with NaCl application instead of KCl.

Imaging MS Data Acquisition

For the MALDI imaging MS experiments 12 μm thick tissue sections were cut at -20 °C and thaw-

mounted onto conductive glass slides (Delta Technologies, Stillwater, MN, USA). The tissues were 

then slowly brought to room temperature in a desiccator and prepared for MALDI analysis.

Peptide imaging

A uniform coating of α-cyano-4-hydroxycinnamic acid (CHCA) was added using an ImagePrep 

device (Bruker Daltonics, Bremen, Germany) and a solution of 10 mg/ml CHCA in 70:30 AcN: 

0.1% TFA(aq.). MALDI imaging MS was then performed using an UltrafleXtreme MALDI-ToF/

ToF (Bruker Daltonics), 100 mm pixel size, and 800 laser shots per pixel (50 laser shots per position 

of a random walk within each pixel). Data acquisition, preprocessing (smoothing and baseline 
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subtraction of each pixel’s MALDI mass spectrum), and data visualization were performed using 

the Flex software suite (FlexControl 3.3, FlexAnalysis 3.3, FlexImaging 2.1). The SavitskyGolay 

algorithm was used for mass spectral smoothing (width 0.02 m/z, 2 cycles) and the TopHat algorithm 

used for baseline subtraction.

Protein imaging

The tissues were washed in isopropanol and sinapinic acid (SA) matrix added using the ImagePrep 

device and a solution of 20 mg/ml SA in 70% isopropanol: 0.1% TFA(aq.). MALDI Imaging MS 

experiments were then performed using an Autoflex III MALDI-ToF (Bruker Daltonics), 100 mm 

pixel size, and 600 laser shots per pixel (50 laser shots per position of a random walk within each 

pixel). Data acquisition, preprocessing and data visualization were performed using the Flex software 

suite (FlexControl 3.0, FlexAnalysis 3.0, FlexImaging 2.1). The Gaussian algorithm was used for 

mass spectral smoothing (width 2 m/z, 4 cycles) and a ConvexHullV3 for baseline subtraction.

Metabolite Imaging

A uniform coating of 9-aminoacridine was added using the ImagePrep and a solution of 10 mg/

ml 9-aminoacridine 7:3 MeOH:H
2
O. Metabolite imaging MS experiments were performed using an 

UltrafleXtreme MALDI-ToF/ToF in negative-ion mode, a 100 mm pixel size with 500 laser shots per 

pixel (100 laser shots per position of a random walk within each pixel). Data acquisition, preprocessing 

and data visualization were performed using the Flex software suite (FlexControl 3.3, FlexImaging 

2.1, FlexAnalysis 3.3). The SavitskyGolay algorithm was used for mass spectral smoothing (width 

0.005 m/z, 2 cycles) and the TopHat algorithm for baseline subtraction.

After the imaging MS experiments the remaining matrix was removed and the tissues stained with 

Hematoxylin & Eosin (H&E) (Schwamborn et al 2007). High resolution optical images of the H&E 

strained tissues were then aligned to the imaging MS datasets. 

3D Imaging MS Reconstruction

Approximately 20 coronal tissue sections, sampled in 200 mm steps – covering a region in between 

the CDS induction and CSD recording sites, between 0.5 mm anterior and 3.5 mm posterior from 

bregma - were analyzed to create 3D imaging MS datasets of the biomolecular changes that occur 

between the occipital cortex (where the CSDs were initiated) and the sensorimotor cortex (location 

of the recording site of cortical DC-potential changes related to CSD). The 3D imaging MS dataset 

was reconstructed from the serial 2D imaging MS datasets by first aligning each individual tissue 

section’s imaging MS dataset to an optical image of the H&E stained tissue, and then aligning the 

serial sections on the basis of their histology. The coordinates of the pixels in each tissue’s imaging 

MS dataset were then converted into the aligned 3D space.

In order to efficiently analyze the full 3D imaging MS datasets automated feature identification and 

extraction was used to reduce the imaging MS data to the MS features with a S/N>5. First an automated 

feature identification routine was applied to each tissue section’s imaging MS dataset (McDonnell et 
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al 2010). The peak-lists obtained from each tissue were then collated into a final 3D-project peak 

list, which was then used to extract all MS features (S/N>5) from every tissue’s imaging MS dataset. 

Thus the final reduced 3D imaging dataset contains the coordinates of each pixel, a peak list of all 

MS peaks with a S/N>5, and the intensity of each of the peaks in every pixel. 

To identify regions of the 3D imaging MS datasets containing similar MS profiles Non-Negative 

Matrix Factorization (NNMF) was applied to the reduced 3D imaging MS dataset using the David 

Ross’s (University of Toronto: http://www.cs.toronto.edu/~dross/) implementation of Lee & Seung's 

Non-Negative Matrix Factorization algorithm (Lee & Seung 1999). The number of iterations was set 

to 100 and typically resulted in a stable solution. NNMF decomposes the data into a sum of additive 

non-negative components (explicit requirement, scores and loadings must be non-negative) (Lee & 

Seung 1999). 3D score plots of NNMF were obtained by projecting each pixel’s NNMF score onto 

its pixel coordinates.

RESULTS AND DISCUSSION

The non-targeted nature of imaging MS led us to investigate whether it could be used to investigate 

the chemical and spatial extent of the disturbances that follow CSD, evoked in one hemisphere 

leaving the other contralateral hemisphere as an internal control. Seven CSD, spaced 5 min apart, 

were evoked in one hemisphere of C57Bl/6 mice, after which the animals were immediately sacrificed 

and the brains removed and flash frozen (< 1 min postmortem time). 

MALDI Imaging MS is able to analyze different molecular classes using essentially the same technique 

but different sample preparation strategies, and in which the mass spectrometer is optimized for the 

mass range of the molecular class of interest. Figure 1 shows examples of metabolite, neuropeptide 

and protein imaging MS results obtained after CSD. The mean average mass spectrum, displaying 

which peaks were detected, and a selection of MS images is displayed for each molecular class. CSD 

was invoked in the right hemisphere of each tissue section. 

Each peak in the average mass spectra corresponds to a distinct biomolecular ion, the spatial 

distribution of which is contained in the imaging MS datasets. It is evident that a large number of 

metabolite, peptide and protein ions were obtained, and that marked changes in the distributions 

of specific metabolites and peptides were present in the ipsilateral hemisphere in which CSD was 

induced. Contralateral differences were evident in cortical structures, but less so in the subcortical 

structures far away from the cortex in any of the datasets, e.g., the peptide ion detected at m/z 1635.

Figure 2 shows 3D MS images of proteins following CSD, as well as a schematic of the alignment 

procedure. Coronal tissue sections spaced 200 μm through the middle region of the cortex of the mouse 

brain, in between the sites of CSD induction and CSD recording - were analyzed. The placement of 

the thin tissue sections on the conductive glass slides for the MALDI imaging MS experiments leads 

to significant variability in placement and orientation. The tissues were first approximately aligned 

by aligning their midpoints and rotating the tissues into a common orientation. The relative tissue 

positions were then fine adjusted on the basis of their anatomical structure (as revealed by H&E 
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staining). The offsets and rotations applied to each tissue section was then transposed into the imaging 

MS coordinate system and used to create the 3D imaging MS datasets.

The 3D imaging MS data demonstrate the high reproducibility of the MALDI imaging MS protocol. 

The visualization of 3D datasets has been performed using a thresholded surface rendering function 

– if the intensity of the peak is below threshold then that voxel (3D pixel) is set to transparent; if 

the intensity is above threshold then the intensity is set to 1. A smoothed surface is then fitted to the 

voxels containing the peak of interest. The advantage of such a surface rendering is that it efficiently 

depicts the 3D locations containing the MS peak, the disadvantage is that it does not communicate 

the relative intensity of the MS peak within the surface enclosed area. Caprioli and coworkers have 

used single color gradients (Andersson et al 2008) and heat maps (Sinha et al 2008) to depict relative 

concentrations in relatively simple 3D structures, but these are less suited to the highly structured 

surfaces such as those shown in Figure 2.     

3D imaging MS datasets consist of a many individual 2D imaging MS datasets (of tissue sections), 

each of which contains a very large number of mass spectra and discrete MS peaks. It was found that 

even a rudimentary contralateral comparison of the CSD hemisphere relative to the control hemisphere 

was complicated by the large number of peaks and tissue sections, making it difficult to visualize 

specific molecular features. Instead the multivariate factorization technique non-negative matrix 

factorization (Lee & Seung 1999) (NNMF) was used to summarize the latent molecular classes, each 

defined by specific MS profiles, which were found in the 3D imaging MS dataset, as shown in Figure 

3. NNMF of the 3D protein imaging MS dataset distinguished multiple distinct regions of the mouse 

brain but differences between the ipsi- and contralateral side were not detected.

The NNMF calculation was performed using an NVidia Tesla C2070 Graphical Processing Unit to 

provide the high processing speed necessary to analyze these very large datasets (Jones et al 2012). 

The corrected Akaike information criterion was used to estimate the number of classes present in the 

dataset, as has been reported previously (Hanselmann et al 2008). Increasing the number of factors 

could generate latent class images that included apparent contralateral differences but were prone 

to over-fitting of the data; the Akaike information criterion guards against over-fitting of the data by 

increasing the cost of models with increased parameter space – the NNMF factor analysis that led to 

contralateral differences were significantly disfavored by the Akaike information criterion. 

Figure 4 shows 3D imaging MSI images of neuropeptides obtained from an animal after CSD. The 

peptide at m/z 2273 shows no ipsi vs contralateral differences in the cortex, and only very minor 

differences in subcortical regions. In contrast the peptide at m/z 2220 shows differences between the 

ipsi- and contralateral sides in the cortex.

The triggering of CSD waves involves a surgical procedure; a cotton ball soaked in 1 M KCl is 

applied topically on the dura overlying the visual cortex through a cranial window, followed by 

a wash with NaCl. CSDs were monitored using a microelectrode placed in the frontal cortex. To 

differentiate changes due to the surgical procedure, but not CSD, 3D analysis of SHAM-operated 



106Chapter 5

Figure 1. MALDI imaging MS datasets of metabolites (top), peptides (middle) and proteins (bottom) after cortical 
spreading depression in wild type mice. Figures on the left show example images with the 2D distribution of different 
metabolites, peptides or proteins. *indicates CSD side. The metabolite dataset was recorded in negative ion mode with 
a reflectron ToF and using 9-aminoacridine as the matrix. The peptide dataset was recorded in positive ion mode with 
a reflectron ToF and using α-cyano-4-hydroxycinnamic acid as the matrix. The protein dataset was recorded in positive 
ion mode in linear ToF mode using sinapinic acid as the matrix. CSD was invoked in the right hemisphere of each tissue. 
Contralateral differences are evident in both the metabolite and peptide datasets but not in the protein dataset. Assignments 
of the metabolite peaks based on previous MALDI imaging MS of metabolites using the same matrix [36,42]:- m/z 89, 
lactate; m/z 132, aspartate; m/z 146, glutamate; m/z 346, adenosine monophosphate; m/z 386, dCDP; m/z 426 adenosine 
diphosphate.

proteins (SA matrix)

peptides (CHCA matrix)

metabolites (9 - AA matrix)
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animals was also performed. The SHAM animals underwent an identical procedure except KCl was 

replaced with NaCl, which does not induce CSD. Figure 5 shows examples of 3D distributions that 

are unchanged between sham and CSD, as well as peptides that were detected at higher levels only in 

the CSD hemisphere of the KCl-treated animal.

Changes in protein content have previously been detected following CSD (Kawahara et al 1999, 

Obrenovitcha et al 2002) but have involved longer intervals between CSD induction and animal 

sacrifice, thus allowing sufficient time for the expression of new proteins. The very short time delay 

(45-60 min) in the current experiments limits significant expression of new proteins in response to 

CSD. The changes after CSD observed for neuropeptides are consistent with the vesicular release of 

neuropeptides from (sub)cellular vesicles and presynaptic terminals after depolarization of neuronal 

membranes during initiation of CSD.

These results represent a proof-of-concept study that forms the foundation for a larger study on the 

consequences of CSD, for instance in relation to migraine, which will involve multiple animals 

in each group and multiple genotypes. The proof of concept is essential as all previous imaging 

MS studies have focused on biomolecular changes associated with either distinct histopathological 

entities or with known, irreversible changes e.g., cell death in the CA3 layer of the hippocampus 

following kainate induced seizures (Sugiura et al 2011). The CSD results represent the first example 

of imaging MS being used to reveal transient biomolecular changes. The 3D analysis demonstrates the 

high reproducibility that can be obtained, within a single animal, and the recent biomarker discovery 

experiments provide ample evidence of the inter-patient/animal reproducibility that may be attained 

Figure 2. Top row: preliminary alignment procedure for generation of 3D imaging MS datasets. Each tissue is first 
centered and then aligned to a common orientation. Fine alignment of the tissues is then performed on the basis of their 
anatomical structure, and the final transformation applied to each tissue’s imaging MS dataset. Bottom row. Examples of 
3D protein imaging MS datasets of a wild-type mouse brain following CSD.

rotate to
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Figure 3. Non-negative matrix factorization of the 3D protein imaging MS dataset of a mouse brain following CSD did 
not reveal cortical contralateral differences. Note: factor 3 revealed background signals of the target slide and so is not 
included here. 
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Figure 4. Example of 3D peptide imaging MS datasets of a wild-type mouse brain following CSD. The peptide ion 
detected at m/z 2273 was primarily detected far away from the cortical spreading depression, consequently no contralateral 
differences are observed. In contrast the peptide ion detected at m/z 2220 is located in the cortex and displays significant 
contralateral differences following CSD. A blown-up 3D figure is also provides to display the results of each tissue 
section’s individual imaging MS dataset.

Figure 5. Exclusion matrix of 3D peptide imaging MS data for highlighting peptide ions related to CDS. Left hand side; 
peptide ions not specific to CSD are observed in the sham and CSD operated mouse, and do not exhibit contralateral 
differences. Right hand side; CSD associated peptide ions are detected at higher  levels in the CSD animal and CSD 
hemisphere.
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(Meding et al 2012).

Since its introduction by Crecelius et al. (Crecelius et al 2005) 3D MALDI imaging MS experiments 

have grown in popularity, but at a much slower pace than 2D imaging MS experiments owing to the 

much greater demands placed on experimental reproducibility and data handling (Seeley & Caprioli 

2012). Andersson et al. have published an experimental workflow (Andersson et al 2008), and 

alignment procedures have been reported to combine 3D imaging MS with 3D magnetic resonance 

imaging (Sinha et al 2008) and 3D optical imaging techniques (Chughtai et al 2012). These studies 

have focused on reproducing the histo-architectures of the tissues, such as mouse or crustacean brain 

architecture (Andersson et al 2008, Crecelius et al 2005, Chen et al 2009) and localizing tumors 

(Sinha et al 2008). 

CONCLUSION

The results reported here represent the first 3D MALDI imaging MS that explicitly targets biomolecular 

changes that are not associated with distinct morphological features, and which includes the first 

multivariate analysis of 3D MALDI imaging MS datasets. The 2D and 3D imaging MS investigations 

revealed metabolite and peptide disturbances immediately following CSD in wild-type mice, but 

the analogous protein datasets did not show similar profound changes. The short time between CSD 

and animal sacrifice is insufficient for appreciable protein synthesis in response to CSD; metabolic 

pathways are able to respond much more rapidly to changing conditions and increased neuropeptide 

signals are consistent with peptide release from (sub)cellular vesicles following depolarization 

associated with CSD. These results indicate that the molecular histology capabilities of MALDI 

imaging MS may be used to reveal spatial extent of transient biomolecular disturbances that do not 

results in morphological change.
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ABSTRACT

Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic 

mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial 

hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry 

imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice 

to study the biomolecular changes following CSD in the brain. Ninety six coronal brain sections 

from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain 

Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions 

could be compared. A number of metabolites and peptides showed substantial changes in the brain 

associated with CSD. Among those, different mass spectral features showed significant (Student's 

t-test, p < 0.05) changes in the cortex, 146 and 377 Da; and in the thalamus, 1820 and 1834 Da, of 

the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD-and genotype-specific 

molecular changes in the brain of FHM1 transgenic mice that may further our understanding about 

the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI 

datasets to a common reference atlas for large-scale MSI investigations.

Chapter 6
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INTRODUCTION

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-

free technique capable of analyzing hundreds of biomolecular ions directly from tissue in a spatially 

correlated manner (Caprioli et al 1997). Main factors contributing to the increasing popularity of this 

technology include the ability to (1) analyze a large range of molecular classes (proteins, peptides, 

lipids, metabolites, pharmaceuticals); (2) reveal disease-related biomolecular changes in highly 

localized regions; and (3) unravel changes that are invisible to established histopathological methods 

(McDonnell &Heeren 2007, McDonnell et al 2012, Norris & Caprioli 2013). 

MSI has been applied to a multitude of tissues from various tumor tissues (Balluff et al 2011, 

McDonnell et al 2010) to plant tissues (Kaspar et al 2011), but rodent brain (Henrieder et al 2013, 

Shariatgorji et al 2014) is still the most frequently analyzed tissue type because of its widespread 

availability and use in neurological research (Hafezparast et al 2002). For instance, MALDI-MSI has 

been used to visualize spatiotemporal disturbances in rodent models of seizure (Sugiura et al 2011), 

stroke (Miura et al 2010), Alzheimer’s disease (Rohner et al 2005, Stoeckli et al 2006) and Parkinson’s 

disease (Ljungdahl et al 2011, Nilsson et al 2007, Pierson et al 2004). These studies demonstrate the 

potential of MSI for neurological research, and which have been further validated by studies using 

small animal cohorts (Henrieder et al 2013). The application of MSI to preclinical investigations 

of neurological disorders requires considerable multidisciplinary capabilities: MSI, statistics and 

knowledge of brain anatomy. The latter aspect is exacerbated by the high degree of variation in brain 

region size that exists between animals (Hager et al 2012) and the variability introduced during tissue 

sectioning and mounting. We recently demonstrated how MSI data could be automatically aligned to 

the Allen Brain Atlas, which allows the analyst to ensure all tissue sections of animals are obtained 

from a similar region of the mouse brain and to extract the mass spectral signatures from identical 

brain regions (Abdelmoula et al 2014). Here we demonstrate how this registration pipeline enables 

larger-scale preclinical investigations of neurological disorders. This first demonstration of such a 

cohort studied and analyzed by MSI concerns migraine.

Migraine is a common, severe episodic brain disorder that is characterized by attacks of severe 

unilateral throbbing headache associated with nausea, vomiting, photo- and phonophobia (Goadsby 

et al 2002, ICHD 2004). An aura, which consists of transient neurological symptoms, including 

visual and sensory disturbances, can accompany a migraine attack in one-third of patients. The aura 

is caused by cortical spreading depression (CSD), a slow, self-propagating wave of neuronal and 

glial cell depolarization in the cerebral cortex of one hemisphere followed by neuronal depression 

(Hadjikhani et al 2001, Lauritzen 1994, Pietrobon & Moskowitz 2013). CSD causes a temporary 

dramatic failure of brain homeostasis, efflux of neurotransmitters, and changes in metabolism. Several 

metabolites, such as labile phosphate compounds (ATP, ADP, AMP, their cyclic analogues, cGMP, 

and phosphocreatine) and glycolytic metabolites (lactate, pyruvate, glucose and glycogen) have been 

associated with CSD (Selman et al 2004). 
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In 2012 Jones et al. (Jones et al 2012) reported a proof-of-concept MALDI-MSI investigation of the 

biomolecular changes in C57BL/6J wild-type (WT) mouse brain following CSD. The study included 

2D- and 3D-MSI datasets, including an exclusion matrix to highlight apparent CSD-related changes, 

but omitted any form of statistical analysis because of the small number of animals involved in the 

study. Accordingly, the results obtained provided limited information regarding the biological aspects 

and changes associated with CSD. Here we report, for the first time, the application of MSI to a large 

scale animal cohort of a neurological disease, in particular CSD as the neurobiological correlate of 

the migraine aura. To this end, we make use of a relevant mouse model of migraine, (i.e., knock-in 

transgenic mice carrying the pathogenic human R192Q missense mutation in the Cacna1a gene that 

encodes the α
1
 subunit of voltage-gated neuronal Ca

V
2.1 Ca2+ channels (Ferrari et al 2015, van den 

Maagdenberg et al 2004). Ca
V
2.1 Ca2+ channels with a R192Q-mutated α

1
 subunit cause familial 

hemiplegic migraine type 1 (FHM1) (Ophoff et al 1996), a monogenic subtype of migraine with aura 

characterized by a prominent transient hemiparesis during the aura (ICHD 2004). FHM1 R192Q 

mice exhibit an increased propensity to CSD, most likely because of an enhanced glutamatergic 

neurotransmission (Eikermann-Haerter et al 2009, Ferrari et al 2015, Tottene et al 2009, van den 

Maagdenberg et al 2004). In addition, unlike in WT mice, CSD waves can reach subcortical areas 

in R192Q mice, which correlate with the clinical phenotype (Eikermann-Haerter et al 2011). We 

hypothesized that CSD could induce the expression of different biomolecular profiles in the brains 

of R192Q mice compared with wild-type. We measured and compared the biomolecular profiles of 

both mouse strains at specific cortical and subcortical brain regions and were able to show different 

consequences of CSD on the brains of R192Q and wild-type mice. 

MATERIALS AND METHODS

Animals

Male 2-to 4-month-old transgenic FHM1 R192Q mice (carrying the human pathogenic missense 

mutation R192Q) and corresponding non-transgenic wild-type (WT) mice were used. Transgenic 

mice were generated by introducing the human pathogenic mutation in the mouse Cacna1a gene using 

a gene targeting approach, as described in (van den Maagdenberg et al 2004). All mice were kept in 

a normal 12:12 light/dark regime and food and water were available ad libitum. The 32 animals used 

in this study were divided into different groups according to the experimental conditions: WT-Naïve 

(5 animals); WT-Sham (6 animals); WT-CSD (5 animals); R192Q-Naïve (5 animals); R192Q-Sham 

(6 animals); R192Q-CSD (5 animals). All experiments were approved by the Animal Experiment 

Ethics Committee of Leiden University Medical Center. 

CSD experiments 

CSD experiments were performed as previously described (Jones et al 2012). In brief, the mice 

were anesthetized with 4% isoflurane in pressurized air (21% O
2 
and 79% N

2
) and mounted on a 

stereotactic frame (David Kopf, Tujunga, CA, USA); 1.5% isoflurane was used for maintenance of 
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the anesthesia. A midline incision was made to expose the skull. Two burr holes were drilled over the 

following coordinates (from bregma): 0.5 mm anterior, 2 mm lateral for DC recordings and 3.5 mm 

posterior, 2 mm lateral for KCl or NaCl application. Seven CSDs were induced by applying a cotton 

ball soaked in 1M KCl (CSD) or NaCl (Sham) for 30 sec followed by extensive saline washing. 

The interval between two successive applications was 5 min. DC-potential signals were measured 

with respect to an Ag/AgCl reference electrode placed subcutaneously in the neck and amplified 

10x (Molecular Devices, Sunnyvale, CA, USA). The DC signal was low-pass filtered at 4 Hz and 

digitized at 100–200 Hz using PowerLab 16/30 hardware (AD Instruments, Inc., Colorado Springs, 

CO, USA). Data were recorded and analyzed off-line using LabChart Pro (AD Instruments).

Sample collection and tissue preparation

Following 7 CSD/Sham events the mice were decapitated 5 min after the last CSD/Sham event, the 

brains quickly removed (within < 2 min), immediately snap-frozen on powdered dry ice and stored at 

-80oC until further processing. Coronal tissue sections, 12-μm thick, were cut at -12°C using a cryostat 

microtome (Leica Microsystems, Wetzlar, Germany), thaw-mounted onto poly-L-lysine coated 

indium-tin-oxide (ITO) glass slides (Bruker Daltonics, Bremen, Germany), and stored at -80°C. In 

order to exclude the effect of electrode insertion and KCl or NaCl application only sections from the 

middle part of the brain (posterior from bregma, in between locations -1.22 and -1.94 mm) were used 

for MSI analysis. For the selection of sections in this part of the brain, the brain was trimmed in 25 

µm slices and individual sections were visually inspected under a microscope and compared with the 

Paxinos Mouse Brain Atlas reference (3rd Edition; ISBN 978-0-12-374244-5) to judge their location 

along the anteroposterior axis, based on histological landmarks. Once the level corresponding to the 

location -1.22 posterior from Bregma was reached, 12µm thick coronal sections were collected for 

the MSI experiments. For each animal, consecutive tissue sections were collected on different ITO 

slides for the analysis of proteins, peptides and metabolites. Each ITO slide contained tissue sections 

from four animals.  A semi-supervised block randomization was used to distribute the sections in a 

random way across and within slides while maximizing the group heterogeneity within a slide. This 

included the position of each sample on the MALDI slides and the measurement order within a slide 

– in order to minimize any potential sources of bias during MSI data acquisition (see Supplementary 

Information for the pseudo-code).

Mass spectrometry imaging

Tissue sections were collected from storage at -80°C and equilibrated to room temperature (RT, 

23°C) for 30 min in a vacuum desiccator. The slides were prepared for MALDI-MSI according to 

the molecular class to be analyzed. For peptide and protein imaging the tissue sections were washed 

as follows: (1) dip in 70% ethanol for 30 sec; (2) dip in 96% ethanol for 30 sec; (3) five short dips 

in deionized water; (4) dip in 70% ethanol for 30 sec; (5) dip in 96% ethanol for 30 sec; and finally 

(6) dried in a vacuum desiccator for 15 min. No washing procedure was applied to the samples used 

for the analysis of metabolites. MALDI matrix was uniformly applied over the brain sections using 
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the SunCollect sprayer (SunChrom, Friedrichsdorf, Germany) according to the analyzed molecular 

class: sinapinic acid (SA; 5 mg/mL in 50% acetonitrile/ 0.3% TFA) was used for proteins; α-cyano-

4-hydroxycinnamic acid (CHCA; 5 mg/mL in 50% acetonitrile/ 0.3% TFA) was used for peptides; 

and 9-aminoacridine (9AA; saturated solution in 70% methanol) was used for metabolites. MSI 

analyses of peptides (600 – 2000 Da) and metabolites (50 – 1000 Da) were performed using an 

UltrafleXtreme MALDI-TOF/TOF (Bruker Daltonics) in the reflectron positive (for peptides) or 

negative (for metabolites) ion mode with 100 µm raster width, 500 laser shots per pixel. MSI of 

proteins (3000 – 20,000 Da) was performed in an Autoflex III MALDI-TOF (Bruker Daltonics) in 

the linear positive ion mode with 100 µm raster width, 500 laser shots per pixel. Data acquisition, pre-

processing and visualization were performed using the flex software package from Bruker Daltonics: 

flexImaging 3.0 was used for experiment definition; flexControl 3.4 was used for data acquisition; and 

flexAnalysis 3.4 was used for on-the-fly mass spectral processing – metabolite/peptide datasets were 

preprocessed using a Gauss smoothing algorithm (width 0.02 m/z, 2 cycles) and a TopHat baseline 

subtraction algorithm; protein MSI spectra were preprocessed identically except the parameters of 

the Gauss smoothing algorithm were adapted for the lower mass resolution (width 2 m/z, 4 cycles).

After the MSI experiments, the matrix was washed off with 70% ethanol and the tissue samples 

stained with cresyl violet (Nissl staining). High-resolution histological images were recorded using 

a Pannoramic MIDI digital slide scanner (3D Histech, Budapest, Hungary). 

Processing and reduction of MSI datasets

High-resolution histological images were co-registered to the MSI data with flexImaging using 

fiducial markers applied at defined positions on each ITO slide with water-based correction fluid 

(Tipp-Ex, Ecolutions, BIC, Clichy, France) before MSI analyses. A list of all mass spectra contained 

within each brain section was extracted into an XML file for further processing in MATLAB R2011a 

(MathWorks, Natick, MA, USA). The preprocessed mass spectra contained in the MSI datasets were 

then read into Matlab. 

Metabolite datasets: the spectra were normalized to their total-ion-count (TIC) on a pixel-by-pixel 

basis and aligned on common peaks that are present in at least 85% of the samples. Peak picking and 

feature extraction was performed using the global base peak mass spectrum (McDonnell et al 2010). 

Briefly, this routine distils the original MSI data into an image cube containing the spatial distribution 

of every detected peak. Finally, a logarithmic-based variance-stabilizing transformation was applied 

to the peak intensities in order to reduce the impact of Poisson noise in the datasets (Keenan et al 

2004, Veselkov et al 2014).

Peptide and protein datasets: except for the logarithmic transformation of peak intensities, which 

was not performed for these datasets, all processing steps were as described above including TIC 

normalization on a pixel-by-pixel basis, with minor modifications in the thresholds used for peak 
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picking to account for the different characteristics of the peptide and protein datasets. 

Image processing and registration to the mouse Allen Brain Atlas

The reduced MSI datasets and the aligned histological images were registered to the mouse Allen Brain 

Atlas (ABA; http://www.brain-map.org/) using our recently developed pipeline (Abdelmoula et al 

2014). In brief, the histological images are first preprocessed to reduce background noise and acquisition 

artifacts. Then the ABA corresponding histological image is selected based on the maximum cord 

length of the hippocampus. Image registration is performed by applying a rigid affine transformation 

(correct for translation, shearing, rotation and scaling), followed by non-linear registration based on a 

B-Spline transform (correct for local deformations). Finally, the transformation matrix used to register 

the sample and ABA histological images is applied to the respective MSI datasets.

Anatomy driven data analysis

The anatomic annotations contained in the ABA were used to define four anatomical regions of 

interest (ROI) in the MSI datasets: cortex (C), striatum (S), hippocampus (H) and thalamus (T). MS 

data were extracted from each ROI from every ABA-aligned MSI dataset for statistical analysis: (1) 

a non-paired Student’s t-test was used for comparisons between independent groups; and (2) a paired 

Student’s t-test was used for comparisons (left vs right hemispheres) within each independent group 

of animals. The Benjamini-Hochberg procedure was used to correct for multiple testing. All statistical 

analyses were done in R (R Foundation for Statistical Computing, Vienna, Austria) and Matlab, in 

which p-values < 0.05 were considered statistically significant.

RESULTS

CSD induction and MSI analysis

Seven CSD events were evoked each with a 5 min interval in the occipital cortex of WT and transgenic 

FHM1 R192Q mice; equivalent Sham experiments utilizing aqueous NaCl instead of aqueous KCl, 

which does not evoke a CSD, were performed in parallel so as to clearly differentiate CSD-related 

from non-CSD-related biomolecular changes. As shown in Table S1 (Supplementary Information), 

there were no significant differences between R192Q and WT mice regarding the CSD characteristics 

and time under anesthesia. All animals were sacrificed 5 min after the last CSD event and the brains 

were immediately removed and frozen on dry ice to limit post-mortem degradation effects. Previous 

studies have indicated that the analysis of metabolites can be significantly impaired by post-mortem 

degradation (Blatherwick et al 2013, Hattori et al 2010, Sugiura et al 2014). These results indicated 

that labile metabolites, such as AMP, ADP and ATP that act as energy reserves in the brain can be used 

as a measure of the post-mortem degradation effects. We measured the AMP/ATP ratios across the 

different mouse brains but found no correlation with the short post-mortem times of these experiments, 

which indicated that any variability associated with the isolation of the mouse brain had a negligible 

effect on the MSI data. 
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Alignment of MSI datasets to a single reference system 

Preclinical studies typically compare a number of animals per test group to guard against the individual 

variation in any animal population. We have analyzed a total of 96 mouse brain sections from 32 

animals from 16 R192Q and 16 WT mice. We registered all histological images and MSI datasets 

to the mouse brain reference atlas contained within the Allen Brain Atlas (Abdelmoula et al 2014) 

in order to (1) reduce the impact of variance attributable to differences in brain region size (Hager 

et al 2012); (2) check if all tissue sections came from a similar region of the brain; and (3) correct 

for any tissue-processing artifacts introduced during the experiment (e.g., folds, tears). The 96 brain 

sections were registered to just 3 of 132 different coronal sections present in the ABA reference atlas, 

corresponding to a tissue-section sampling accuracy between animals of 200 µm, and thus indicating 

we sampled similar regions of the mouse brain. The registration itself was performed with an accuracy 

of less than 30 µm, which is below the spatial resolution used for the MSI measurements (100 µm) 

(see Figure 5, reference Abdelmoula et al 2014). A scheme of the workflow is presented in Figure 1.

Anatomy based data-analysis

The distribution of proteins, peptides and metabolites after CSD and Sham operations was 

investigated across the whole brain and in four particular brain regions that are of relevance to 

migraine pathophysiology (Eikermann-Haerter et al 2011): cortex, striatum, hippocampus and 

thalamus. Electrophysiology measurements indicate that when induced in one hemisphere CSD does 

not cross to the other hemisphere (Eikermann-Haerter et al 2009, Somjen 2001), accordingly the left 

(unaffected) hemisphere was used as control for the CSD/Sham-affected right hemisphere.

Protein datasets

Comparison between right (CSD-affected) and left (control) hemispheres within the R192Q-CSD 

group revealed moderate differences in the distribution of m/z feature 11,302 Da and statistically 

significant differences in the distribution of m/z feature 11,344 Da (p < 0.05, Student’s t-test), as 

shown in Figure 2. In both cases, the ion intensities are lower in the CSD-affected hemisphere (R). 

These changes were not observed in the WT and Sham groups. Poté et al. (Poté et al 2013) have 

previously identified the same molecular features as histone H4 and respective acetylated form while 

analyzing hepatocellular carcinoma. Although their experiment concerned human tissue samples, a 

Basic Local Alignment Search Tool (BLAST) search (in UniProt database) revealed 100% homology 

with murine histone H4. 

Peptide datasets

Intra-group comparison between right (CSD-affected) and left (control) hemispheres showed 

significant differences occurring in the thalamus region for m/z features 1819.96 Da and 1833.96 Da 

(p < 0.05, Student’s t-test) only in R192Q-CSD mice (Figure 3). A decrease in ion intensities was 

observed in the CSD-affected brain hemisphere in both cases. Similarly to the protein dataset, also 

these biomolecular features share the same spatial distribution and are separated by 14 Da, which 
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is compatible with a methylation post-translational modification. Moderate differences were also 

observed in the R192Q mouse brains after CSD, in particular m/z 1713.8 with increased expression 

in the cortex of the CSD-affected hemisphere, and m/z 1754.85 and its K+ adduct m/z 1792.85 with 

decreased expression in the striatum of the CSD hemisphere. No significant biomolecular changes 

were observed for the Sham and Naïve mouse groups.

Metabolite datasets

Intra-group comparisons between control and CSD-affected hemispheres revealed differences 

associated with CSD in WT and R192Q mice (Supplementary Information, Figure S1). Biomolecular 

features present at 89.03 Da showed an increase in signal intensity in the CSD- affected hemisphere, 

whereas m/z features at 146.07 Da, 339.01 Da, 360.97 Da and 376.97 Da presented a decrease in 

intensity in the CSD-affected hemisphere. Interestingly, significant changes were only found in the 

distribution of 2 m/z features for R192Q-CSD mice (p < 0.05, Student’s t-test), particularly m/z 146.07 

Da and 376.97 Da as shown in Figure 4. In order to more confidently assign the m/z features observed 

we performed high-resolution MS analysis by MALDI Fourier transform ion cyclotron resonance 

(FTICR) directly from tissue. Accurate masses were then searched in the metabolite database METLIN 

revealing the presence of glutamate ([M-H]- 146.0459 Da), fructose 1,6-bisphosphate ([M-H]- 338.9888 

Da) and fructose 1,6-bisphosphate K+ adduct ([M+K-2H]- 376.9447 Da) among other isobaric species.

Figure 1. Schematic of workflow developed to analyze the effect of CSD in WT and R192Q mouse brains. Ninety-six 
coronal brain sections were obtained from a total of 32 mouse brains (3 consecutive sections per animal). Proteins, 
peptides and metabolites were independently analyzed by MSI using optimized sample treatment for each molecular class 
as described in the Materials and Methods section. Each section was stained with Nissl reagent after matrix removal and 
the MSI datasets, and histological images were aligned to the Allen Brain Atlas of mouse brain (Abdelmoula et al 2014). 
Automatic anatomical annotation of regions of interest allowed the extraction of MSI data from specific brain regions of 
interest and statistical analysis.
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Figure 2. Protein MSI dataset: differences between CSD (right, R) and control hemisphere (left, L) in R192Q-CSD mouse 

brain. Each image corresponds to the visualization of the average distribution of a particular m/z feature in five mouse brains 

after alignment to the ABA. (*p < 0.05, Student’s t-test). C: cortex, T: thalamus; H: hippocampus, S. Striatum.

Figure 3. Peptide MSI dataset: differences between CSD (right, R) and control hemisphere (left, L) in R192Q-CSD mouse 
brain. Each image corresponds to the visualization of the average distribution of a particular m/z feature in five mouse brains 
after alignment to the ABA. (*p < 0.05, Student’s t-test) C: cortex, T: thalamus; H: hippocampus, S. Striatum.



125

DISCUSSION

MSI is a non-targeted methodology that allows the analysis of different biomolecular classes directly 

from tissue. One of the main advantages of MSI is its ability to unravel biomolecular changes 

independently of histology. This is of particular interest to the study of migraine, a neurological 

disorder characterized by recurrent attacks and lack of clear histopathological features. Many 

metabolites, amino acids and neuropeptides have been measured in the brain during and after CSD 

experiments (Selman et al 2004). However, the effects of CSD are still not fully understood, namely: 

(1) How are the proteome, peptidome and metabolome profiles affected by CSD? (2) How are the 

CSD changes affected by the genetic background of the mice (i.e., a comparison between mice with 

a genetic predisposition to migraine and WT mice)? And (3) does CSD induce biomolecular changes 

in subcortical areas? To answer these questions, we measured and compared the biomolecular profiles 

of FHM1 R192Q and WT mice after CSD induction in the occipital cortex.  

The biomolecular profiles recorded by MSI presented disturbances that may be associated with the 

CSD wave progression only in R192Q mouse brain. Given the short time between CSD induction 

and animal sacrifice, ca. 40 min after the first CSD event, significant changes in protein expression 

level were not expected. Indeed, the only significant change revealed by MSI is associated with a 

post-translational modification in histone H4: acetylated histone H4 (11,344 Da) showed a decreased 

intensity in the cortical region of the CSD-affected hemisphere. Likewise, previous reports showed 

that CSD induction in rats affected methylation levels in the cortex, although this was evident 24 

hr following CSD induction (Passaro et al 2010, Rana et al 2012). Histone modifications, such as 

acetylation, methylation, ubiquitination, and phosphorylation  have an important role in the epigenetic 

regulation of transcription and have been associated with neurological diseases such as Alzheimer’s 

Figure 4. Metabolite MSI dataset: differences between CSD (right, R) and control hemisphere (left, L) in R192Q-CSD mouse 
brain. Each image corresponds to the visualization of the average distribution of a particular m/z feature in five mouse brains 
after alignment to the ABA. (*p < 0.05, Student’s t-test). C: cortex, T: thalamus; H: hippocampus, S. Striatum.
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disease, Huntington’s disease and Parkinson’s disease (Konsoula & Barile 2012). Therefore, the 

effect of CSD on post-translational modification of histones, and consequently on the transcription 

mechanisms, may have relevance to migraine.

It is well known that CSD triggers the release of vasoactive peptides (Colonna et al 1994, Tozzi et 

al 2012). Trigeminal axons that innervate the dural vessels and are activated during CSD release 

calcitonin gene related peptide (CGRP), substance P (SP) and neurokinin-α (NKA), which all are 

potent vasodilators (Bolay et al 2002, Colonna et al 1994, Ho et al 2010, Raddant & Russo 2011, 

Wahl et al 1994). These vasoactive peptides are believed to be mediators of neurogenic inflammation, 

which is thought to be a mechanism relevant to the generation of migraine headache (Bolay et al 

2002). Interestingly, levels of CGRP and SP in the blood of migraine patients were found increased 

between and during attacks (Fusayasu et al 2007, Gallai et al 1995, Goadsby et al 1990). Although 

we did not observe significant changes in any of these compounds, the MSI peptide datasets revealed 

moderate differences in the distributions of a few biomolecular features (1392.75 Da; 1713.80 

Da,1754.85 Da;1871.88 Da) in mouse brain hemispheres affected by CSD, which is in agreement 

with the idea that CSD induction triggers a substantial redistribution of peptides in the extracellular 

space. Additionally, a significant decrease in the intensity of m/z features 1819.96 Da and 1833.92 Da 

was observed only in the thalamus region of R192Q mice. Although the identity of these m/z features 

is currently unknown, their similar distribution and m/z shift consistent with a methylation post-

translational modification indicate that these may be different forms of the same peptide. 

In the peptide datasets, we detected changes in subcortical regions (striatum and thalamus) as a result of 

CSD. This is in agreement with previously published data indicating that CSD induction in the cortex 

may also easily spread to subcortical regions in FHM1 R192Q but not WT mice (Eikermann-Haerter et 

al 2011). Therefore, the differential distribution of peptides in the striatum, thalamus and hippocampus 

identified after CSD might reflect a subcortical spread of CSD waves. Yet, the possibility for a transport 

of peptides released in the cortex to subcortical structures cannot be excluded at this time.   

Several metabolites, such as ATP, ADP, AMP, cGMP, lactate, pyruvate, glucose and glycogen have 

been associated with CSD (Selman et al 2004). In addition, CSD can also trigger the release of 

amino acids and change their brain regional distribution. During single episodes of CSD in rat brain, 

interstitial levels of several amino acids (e.g., alanine, arginine, aspartate, glutamate, glycine) were 

found to be elevated, highlighting the massive changes in biomolecular distribution that occur in 

the brain during episodes of CSD (Fabricius et al 1993). Our MSI metabolite datasets revealed a 

significant decrease in the intensity of m/z feature 146.07 in the cortical region of R192Q mice after 

CSD. Owing to the high number of isobaric molecules in this mass region, it is virtually impossible 

to identify small metabolites directly from tissue with MS/MS analysis. Yet, after high-resolution 

MS analysis and assignment based on previous reports, this biomolecule was assigned as glutamate. 

Glutamate plays a major role in CSD and elevated levels of glutamate and glutamic acids have been 

detected in plasma (Ferrari et al 1990) and cerebrospinal fluid (CSF) (Martinez et al 1993, Peres et 
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al 2004) of migraine patients. Of note, pharmacological targeting of glutamate receptors is currently 

being explored as a potential migraine therapy (Andreou & Goadsby 2009). Glutamate is a well-

known trigger of CSD (Van Harreveld 1959), and during CSD propagation in the cortex there is 

a release of glutamate to the extracellular space (Basarsky et al 1999, Fabricius et al 1993). Given 

the above, the down-regulation of glutamate in cortex of CSD affected brain hemispheres observed 

by MSI analysis may seem contradictory, at first. Previous quantitative proteomics studies in naïve 

FHM1 R192Q mice, however, revealed an up-regulation of major glutamate transporters, EAAT1 and 

EAAT2, when compared to WT mice (Klychnikov et al 2010). These findings, together with the MSI 

results reported here, suggest that a compensatory mechanism in the brain might be in place to clear 

excessive glutamate from the synaptic space by glial cells using glutamate transporters.  

Besides the putative identification of glutamate changes, our MSI data revealed significant differences 

in the spatial localization of m/z 376.96 Da in the R192Q brain after CSD. Database search based on 

high-resolution MS indicated that this molecular feature is probably associated with different forms 

of fructose 1,6-biphosphate, which is a byproduct of fructose and glucose metabolism common to 

all cells. In a previous publication, this m/z feature was also assigned as fructose 1,6-bisphospate by 

MSI in a rat model of ischemic stroke (Miura et al 2010). Interestingly, the distribution of fructose 

1,6-biphosphate and glutamate in the ischemic brain is similar to the distribution observed after CSD 

in both R192Q and WT mice. Recently Eikermann-Haerter et. al. (Eikermann-Haerter et al 2012) 

studied the link between stroke and migraine using the same transgenic FHM1 R192Q mice and 

demonstrated that FHM mutations do not only enhance susceptibility to CSD but also to ischemic 

depolarizations, leading to stroke. Therefore, the MSI results reported here in combination with 

previous work by Miura et al. (Miura et al 2010) seem to suggest that there is indeed a link between 

CSD and stroke events, although more work is required to prove this hypothesis. 

CONCLUSIONS

Here we used MALDI-MSI combined with a newly developed pipeline that allows the automatic 

registration of MS datasets to mouse data contained in the Allen Brain Atlas (Abdelmoula et al 

2014), to investigate the biomolecular distribution in the brain after CSD in a relevant mouse model 

of migraine. Our results revealed that CSD events affect the distribution of metabolites, peptides 

and proteins, not only in the cortex but also in subcortical structures. The finding that changes in 

biomolecules distribution were only evident in R192Q mice that had undergone CSD indicates that 

these changes are both genotype- and CSD-specific. Future work should reveal the identities of 

biomolecules that are affected by CSD events and might provide more in-depth insights in migraine 

pathophysiology. In conclusion, our results show that CSD induction in FHM1 R192Q mice is 

associated with a substantial redistribution of biomolecules in the brain and highlight that MALDI-

MSI can be instrumental in preclinical animal models of disease.
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SUPPLEMENTARY INFORMATION

Table S1. CSD characteristics and average time under anesthesia for the different mouse groups. 

Seven CSD events were evoked by topical application of 1M KCl in the occipital cortex of the right 

hemisphere of the brain with 5 minutes interval (equivalent Sham experiments were performed with 

topical application of 1M NaCl). Significant differences between R192Q and WT mice regarding the 

CSD characteristics and time under anesthesia were not observed.

Group N Amplitude 
(mV)

Duration 
(sec)

Time anesthesia 
(min)

WT-CSD 5 22.9±2.4 44.2±19.4 62.0±6.3

WT-Sham 6 62.0±2.2

R192Q-CSD 5 22.0±1.2 31.2±3.3 61.5±2.9

R192Q-Sham 6 65.1±4.3

Pseudo-code of the semi-supervised block randomization

• s = number of samples

• Define n * m experimental design matrix M

m = maximum number of samples that can be placed on a slide

n = number of slides needed for the project =  ceiling(s/m)

• Sort groups into list L according to amount of samples

• Fill up M iteratively by column

o	 As long as there are empty places in a column, do

 select next group from L 

 draw randomly x samples from the selected group where x <= n

 place the selected samples randomly within the empty positions in the column

 delete already taken samples from the initial sample list

• When done, permute samples within slides
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Figure S1: The effect of CSD on the distribution of a number of metabolites in coronal sections of WT and R192Q mouse 
brain. Seven CSDs (and equivalent Sham experiments) were evoked in the right (R) hemisphere of WT and R192Q 
mouse brain. Twelve μm thick coronal brain sections were homogeneously sprayed with 9AA matrix and analyzed by 
MALDI-TOF-MS in the negative mode. MS-images refer to a single mouse example per experimental group. Lightning 
bolt indicates the hemisphere (right hemisphere) where the CSD event was evoked.

Figure S2: Representative spectra from different MSI datasets. A) Protein dataset – positive linear mode; 2000 – 20 
000 Da. B) Peptide dataseet – positive reflectron mode; 600 – 2000 Da. C) Metabolite dataset – negative reflectron 
mode; 50 – 1000 Da.
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ABSTRACT 

Migraine is a common brain disorder characterized by recurrent attacks of severe headaches and other 

neurological symptoms. In one-third of patients headaches are accompanied by auras, which consist 

of transient visual and sensory disturbances, believed to be caused by cortical spreading depression 

(CSD). CSD is characterized by a wave of neuronal and glial depolarization with concomitant 

changes in metabolite concentrations in the brain and cerebrospinal fluid. It remains unknown whether 

CSD-induced brain metabolic changes can be captured outside the central nervous system, i.e., in 

peripheral fluids. This study investigated plasma metabolic changes in transgenic mice that harbor a 

gene mutation in voltage-gated Ca
V
2.1 Ca2+ channels previously identified in patients with familial 

hemiplegic migraine, a subtype of migraine with aura. The use of a mouse model allows investigation 

of molecular changes occurring shortly after CSD, which is notoriously difficult in patients. Capillary 

electrophoresis - mass spectrometry was used for the analysis of plasma samples to obtain, for the 

first time, a comprehensive view of molecular changes immediately after experimentally induced 

CSD. Multivariate data analysis showed a clear distinction between profiles of transgenic and 

wild-type animals after CSD. Two metabolites considered important for this discrimination were 

tentatively identified as being lysine and its by-product pipecolic acid with additional confidence 

provided by hydrophilic interaction chromatography combined with tandem mass spectrometry. 

The changed metabolites suggest a compensatory increase in GABAergic neurotransmission upon 

enhanced excitatory neurotransmission. These results show that CSD induces metabolic remodeling 

in transgenic migraine mice that can be captured and measured in plasma. 
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INTRODUCTION

Migraine is a common debilitating brain disorder characterized by episodic recurrent attacks of 

severe headaches often accompanied by nausea, vomiting, photophobia, and phonophobia (Goadsby 

et al 2002, ICHD 2004). In one-third of patients attacks are accompanied by transient neurological 

dysfunction called an aura that consists of visual, sensory or aphasic symptoms. Familial hemiplegic 

migraine (FHM), a monogenic subtype of migraine with aura with reversible pronounced motor 

weakness during the aura, is considered a valid model for common forms of migraine (Ferrari et 

al 2015). FHM type 1 is caused by mutations in the CACNA1A gene that encodes the pore-forming 

α
1
 subunit of neuronal Ca

V
2.1 (P/Q-type) voltage-gated calcium channels (de Vries et al 2009, 

Ducros et al 2001, Ophoff et al 1996, van den Maagdenberg et al 2007). The underlying cause of 

the aura is cortical spreading depression (CSD), which consists of a wave of glial and neuronal 

depolarization that slowly propagates through the cortex and is followed by a long-lasting (ca. 1 hr) 

neuronal silencing. Experiments in animals have shown that CSD can activate trigeminovascular 

pathways in the brainstem involved in headache generation (Karatas et al 2013, Zhang et al 2011), 

but such evidence is lacking in humans. CSD leads to a disruption of cellular ionic balance and is 

associated with changes in extracellular levels of ions, neurotransmitters, and metabolites (Davies 

et al 1995, Somjen 2001). Furthermore, it has been shown that a CSD event can change blood-brain 

barrier permeability (Gursoy-Ozdemir et al 2004), which may indicate that CSD events and their 

consequences may be traced beyond the central nervous system (CNS), e.g., in peripheral fluids such 

as blood or urine. Metabolomics appears a logical approach for testing this assumption; indeed, the 

response of an organism to any biological effect is ultimately reflected in alterations of metabolic 

composition of body fluids. Profiling of CSD-induced molecular changes may give relevant molecular 

insight into the pathophysiological mechanisms of migraine and lead to relevant (putative) biomarkers 

for diagnosis, monitoring, or prognosis of migraine events in patients. Surprisingly, even though 

the clinical importance of metabolomics-based studies has been widely demonstrated for various 

neurological disorders, migraine remains a largely unexplored area (Lionetto et al 2013).

Performing metabolomics studies in mice poses technical challenges that need to be addressed. For 

instance, non-terminal blood collection provides only minute amounts (i.e., few µL) of plasma, a 

miniaturized analytical workflow is thus mandatory. Capillary electrophoresis hyphenated to mass 

spectrometry (CE-MS) presents numerous advantages, including high-separation efficiency and 

selectivity, as well as low sample and solvent consumption. The feasibility of  CE-MS as an analytical 

method for metabolic profiling of the volume-restricted samples has been shown multiple times; it 

is particularly well-suited for the analysis of polar and ionizable compounds, such as amino acids, 

phosphorylated compounds, tricarboxylic acid cycle intermediates, as well as nucleosides and 

nucleotides in biosamples (Bonvin et al 2012, Hirayama et al 2014, Kohler et al 2013, Kok et al 

2014). The high sensitivity and resolution required for such bioanalytical applications can be reached 

by using online sample preconcentration techniques and a sheathless nanospray ionization interface. 
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A prototype based on a porous sheathless interface, first proposed by Moini (Moini 2007), has been 

successfully used for metabolomics applications (Hirayama et al 2012, Nevedomskaya et al 2010,  

Ramautar et al 2012). This sheathless interface was shown to display a mass-flux sensitive response 

at flow rates lower than 25 nL min-1, suggesting a maximum sensitivity and reduced ion suppression 

at very low flow rates usually observed with CE (Busnel et al 2010). 

In this study, CE-MS was used for metabolic profiling of plasma from a FHM1 transgenic mouse 

model carrying a R192Q missense mutation that was introduced in the CACNA1A gene (van den 

Maagdenberg et al 2004). The mutant mice exhibit migraine-relevant features including an increased 

susceptibility to CSD that is the consequence of enhanced excitatory neurotransmission due to 

hyperactive Ca
V
2.1 channels (Eikermann-Haerter et al 2009, Tottene et al 2009, van den Maagdenberg 

et al). CSD-induced metabolite changes significantly differed between mutants and wild-type (WT) 

control animals. Hydrophilic interaction chromatography (HILIC) combined with tandem mass 

spectrometry (MS/MS) was used for platform-independent and orthogonal confirmation of the 

identity of lysine and pipecolic acid (PA), the two metabolites that were considered important for the 

discrimination of mutant and WT metabolite profiles. Changed levels of lysine and PA may reflect 

a compensatory increase in GABAergic neurotransmission as a consequence of enhanced excitatory 

neurotransmission that is particularly prominent in mutant mice upon CSD. 

MATERIALS AND METHODS

Chemicals

Potassium chloride, sodium chloride, sodium hydroxide, methanol (MeOH), ethanol (EtOH), 

isopropanol (i-PrOH), 28% ammonium hydroxide (m/v), L-lysine monohydrochloride, and L-PA 

were of analytical grade and purchased from Sigma-Aldrich (Schnelldorf, Germany). Water and 

acetonitrile (MeCN) were of LC-MS grade and were obtained from Sigma-Aldrich. Formic and acetic 

acid were of ULC-MS grade and were purchased from Biosolve (Valkenswaard, The Netherlands).

Animals 

Male 2-to 4-months-old FHM1 R192Q and WT control mice were used and genotyped as previously 

described (van den Maagdenberg et al 2004). Mice were kept in a standard 12:12 light dark cycle; 

water and food were available ad libitum. All the animal experiments were approved by the Animal 

Experiment Ethics Committee of Leiden University Medical Centre. 

Induction and recording of  cortical spreading depression 
Mice were anesthetized using 4% isoflurane in pressurized air (20% O

2 
and 80% N

2
) for induction and 

1.5% for maintenance. Mice were placed in a stereotactic frame (David Kopf, Tujunga, CA, USA) 

and a midline incision was made to expose the skull. Two burr holes were drilled with a microdriller 

at the following coordinates from bregma: 3.5 mm posterior and 2 mm lateral for CSD induction in 

the occipital cortex and 0.5 mm anterior and 2 mm lateral for CSD recording in the frontal cortex. 
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CSD events were induced by application of a cotton ball soaked in 1M KCl over the dura for 30 sec, 

immediately removed prior to thorough washing with saline solution. In sham-operated mice, a cotton 

ball soaked in 1M NaCl was applied for 30 sec, immediately removed prior to thorough washing with 

saline solution. This procedure was repeated 7 times each with a 5-min interval for both CSD- and sham-

operated mice. The experimental design, illustrated in Figure S1, included 24 mice, i.e., two groups 

consisting of 12 sham- and 12 CSD-operated mice, each group containing 6 WT and 6 R192Q animals. 

CSD events were measured as DC-potential changes that were recorded at 300 µm depth using a glass 

electrode filled with 150 mM NaCl in the frontal cortex. Data were sampled at 200 Hz, amplified (10x) 

and low-pass-filtered (100 Hz) using a Powerlab (AD Instruments Inc, Colorado Springs, CO, USA). 

Sample collection and preparation

Five minutes after the 7th CSD (in the case of KCl application) or 7th sham (in the case of NaCl 

application), mice were decapitated and a minimum of 40 µL of blood was collected from the trunk in 

heparinized blood collection capillaries (Sarstedt Microvette CB 300, Nümbrecht, Germany). Plasma 

samples were obtained after centrifugation of blood for 10 min with 4000 rpm at 4oC and then snap-

frozen in liquid N
2
 and stored at -80oC. Prior to CE-MS analysis, plasma samples were thawed at room 

temperature. Protein precipitation (PP) was carried out with addition of cold EtOH to the plasma (3:1, 

v/v) followed by vortex agitation. After 20 min, samples were centrifuged for 10 min at 4000 rpm 

prior to the collection of supernatant and its evaporation to dryness. The obtained dried extracts were 

dissolved by addition of 100 mM ammonium acetate at pH 4.0 to a volume corresponding to the 

original one. The prepared samples were randomized prior to CE-MS analysis, which also included 

quality control (QC) samples consisting of a pool of all plasma samples prepared in the same way to 

evaluate the analytical variability of the CE-MS experimental set-up.  

Capillary electrophoresis – mass spectrometry

CE-MS experiments

CE experiments were performed using a PA800 Plus instrument (Beckman Coulter, Brea, CA, USA) 

equipped with a temperature-controlled sample tray, capillary cooling liquid, and a power supply 

able to deliver up to 30 kV. CE separations were carried out with neutrally-coated capillaries (30 

µm i.d.  150 µm o.d.  100 cm) consisting of a bilayer with polyacrylamide as the outer layer and 

the end proximal to the mass analyzer made porous to ion flow, in development and supplied by 

Beckman Coulter at the time of this study. CE was hyphenated to a MaXis 4G UHR-TOF mass 

analyzer (Bruker Daltonics, Bremen, Germany) via a porous CE-electrospray (ESI)-MS sheathless 

interface. The prototype interface set up as well as daily system suitability tests are described in 

details elsewhere (Busnel et al 2010, Heemskerk et al 2012). The background electrolyte (BGE) was 

composed of 10% acetic acid (v/v). Samples were hydrodynamically introduced at 2.5 psi for 65 

sec (corresponding to 3% of the capillary volume, 25 nL) using a transient isotachophoresis (t-ITP) 

online pre-concentration previously described (Heemskerk et al 2012). Separation was carried out in 
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65 min with an applied voltage of 25 kV and a pressure of 2 psi to ensure the ESI spray stability. MS 

acquisition was performed in ESI positive mode over the range 50 to 1500 m/z with an acquisition 

rate of 1 Hz. ESI capillary voltage was set at -1200 V and drying flow rate and temperature at 2 L/

min and 180oC, respectively. A hydro-organic solution of H
2
O/i-PrOH 50:50 (v/v) containing sodium 

formate clusters was infused at the beginning of each analysis to allow for mass recalibration. 

Data analysis

All MS data files were recalibrated based on sodium formate m/z clusters. The CE-MS data files were 

exported in mzxml format and aligned with the in-house developed alignment algorithm msAlign2 

available on www.ms-utils.org/msalign2 (Nevedomskaya et al 2009). Peak picking was performed 

with XCMS package (The Scripp Research Institute, La Jolla, CA, USA) based on the centWave 

algorithm using the following settings: maximal tolerated m/z deviation in consecutive scans, 5 ppm; 

electrophoretic peak width, 5-15 sec; scan range to process, 70-1500 m/z; noise, 15,000; prefilter step, 

at least 3 peaks with intensity >20,000; m/z center of the feature, wMean (intensity weighted mean of 

the feature m/z values); signal-to-noise ratio threshold, 50; minimum difference in m/z for peaks with 

overlapping migration time, 0.05 min; integration method, peak limits found through descent on the 

Mexican hat filtered data; no Gaussian fitted to each peak (Smith et al 2006, Tautenhahn et al 2008). 

Probabilistic Quotient Normalization method was used to account for the dilution of the samples 

(Dieterle et al 2006). Data were mean centered and a square root transformation was used to correct 

for the heteroscedasticity.

Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and 

orthogonal partial least squares discriminant analysis (OPLS-DA) were computed using SIMCA-P+ 

software version 12.0 (Umetrics, Umeå, Sweden). The validity of the PLS-DA model was checked 

using a permutation test containing 200 iterations. Features responsible for the separation between 

classes in OPLS-DA were determined based on the S-plot visualization method and the Variable 

Influence on Projection (VIP) values, which both highlight the importance of the variables for the 

classification. In order to identify the classifiers of interest, rational chemical formulae were generated 

based on the internally calibrated monoisotopic mass within 5 ppm mass error and submitted to 

METLIN Metabolite Search (http://metlin.scripps.edu; Smith et al 2005) and the Human Metabolome 

Database (HMDB, http://www.hmdb.ca; Wishart et al 2009). The confirmation of the identity of 

metabolites of interest was carried out by HILIC-MS/MS.  

Hydrophilic interaction chromatography-tandem mass spectrometry

HILIC-MS/MS experiments were performed with a LC-MS Advance™ UHPLC hyphenated to an 

EVOQ Elite™ Triple Quadrupole (QqQ), both from Bruker Daltonics. Confirmatory analyses were 

carried out with a Luna NH
2
 column (Phenomenex, Utrecht, The Netherlands) of 100 mm  2.00 mm 

i.d., 3 µm, and 100 Å. The mobile phase was composed of a 20 mM ammonium acetate buffer at pH 

9.0 (A) and MeCN (B). The flow rate was set to 600 µL min-1 with the following gradient profile: 95% 
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B for 1 min, 95-5% B for 5 min, and 5% B for 1 min. Equilibration of the column was performed with 

95% B for 5 min. Analyses were carried out at 40oC. MS/MS experiments were performed in positive 

ESI mode with a collision energy of 10 eV and a dwell time of 200 ms. ESI source parameters were: 

an ESI capillary voltage of 4500 V, a cone gas voltage of 20 V, a cone gas temperature of 25 0C, a 

probe gas voltage of 20 V, a probe gas temperature of 300 0C, and a nebulizer gas pressure of 200 

psi. N
2
 was used for collision-induced dissociation at a pressure of 1.5 mTorr. Sample preparation 

included plasma PP prior to solid-phase extraction (SPE). PP was carried out by adding 1.5 mL of 

MeOH to 500 µL of pooled plasma collected from naïve WT control mice and centrifuged at 13000 

rpm for 10 min. The supernatant was collected and basified (ca. pH 12) by adding 2 mL of a mixture 

of NH
4
OH/H

2
0 5:95 (v/v). SPE was performed on precipitated sample with Strata Strong Anion 

Mixed Mode (Strata-X-A, Phenomenex) cartridges containing 100 mg sorbent mass. SPE cartridges 

were first conditioned with 1 mL MeOH and equilibrated with 1 mL of NH
4
OH/H

2
0 5:95 (v/v) prior 

to the loading of basified sample. The first and second washing step were performed with 1 mL of 

NH
4
OH/H

2
0 5:95 (v/v) and 1 mL of MeOH, respectively. Compounds of interest were then eluted 

with 1 mL of a mixture of HCOOH/MeOH 2:98 (v/v). The organic eluate was evaporated to dryness 

and reconstituted in 25 µL of a solution of MeCN/0.1 M HCl 9:1 (v/v). Two µL of this solution were 

eventually injected for subsequent HILIC-MS/MS experiments. 

RESULTS AND DISCUSSION

Plasma metabolic profiling by CE-MS

In order to reach the highest sensitivity and separation efficiency, leading to an enhanced plasma 

metabolic coverage, an integrated CE  nanospray  MS approach was used in combination with t-ITP 

online pre-concentration (Heemskerk et al 2012). The use of neutrally-coated capillaries, which almost 

entirely suppress the electro-osmotic flow (EOF), also allowed for the highest separation efficiencies 

while keeping the CE effluent to very low flow rates (<25 nL min-1) which are necessary to observe 

a mass-flux sensitive detector response (Busnel et al 2010). A typical base peak electropherogram 

obtained with the analysis of precipitated mouse plasma is shown in Figure 1. 

Compared to widely used chromatographic techniques, CE-MS, especially at very low EOF, suffers 

from a poorer migration time repeatability which can affect the statistical data analysis and, eventually, 

the identification of putative compounds of interest. Therefore, most of the available algorithms and 

software packages previously developed for LC-MS and routinely used for non-linear correction of 

retention times are usually not fully adapted to CE-MS data. Prior to subsequent data pre-processing 

and analysis, CE-MS data were thus aligned using a dedicated, in-house, and open source alignment 

tool, msalign2 (Nevedomskaya et al 2009). 

The analytical consistency of the CE-MS workflow was evaluated via analysis of QCs composed of 

a pool of all samples repeatedly analyzed at regular intervals throughout the sequence runs (Dunn et 

al 2012, Naz et al 2014). To this end, a PCA model was built on the whole data set, i.e., 20 samples 
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and all QCs. Four samples, i.e., two from the CSD and two from the sham group, were discarded 

prior to the data analysis as no satisfactory data were acquired due to instrumental issues. As shown 

by the score plot obtained for the first two principal components (covering 50% of the total variation) 

presented in Figure S2, the variation present in the group of mouse samples was much larger than the 

variation between QCs. The analytical variability was thus considered having a negligible influence 

on the data matrix. QCs were then removed from the data set for subsequent data analysis. 

The initial PCA analysis of the entire data set did not show any trend or tendency relevant to the 

experimental design (data not shown). Thus, in order to dissect CSD-triggered differences in the 

metabolic composition of plasma samples of FHM1 R192Q mice in comparison to WT mice, the 

PCA models were built for sham and CSD mice separately (Figure 2). Visual inspection of the PCA 

plots revealed important differences between the models. Figure 2A presents the score-plot of the 

first two principal components for PCA obtained for the combined FHM1 R192Q and WT sham 

group where the samples were randomly distributed. This result was anticipated as no CSD event 

was induced in this group of mice. However, the PCA score plot obtained for the combined FHM1 

R192Q and WT CSD group (Figure 2B) showed a clear trend in sample clustering. Two PLS-DA 

models (i.e., for sham and CSD groups) with WT and FHM1 R192Q mice as class identifiers were 

built to confirm these observations. As expected, the PLS-DA model built on sham samples proved 

to be statistically poor, while the statistical descriptors of the CSD data indicated a solid model ( cum 

= 0.417,  cum = 0.996,  = 0.712). Figure 3A presents the cross-validated score-plot PLS-DA model 

built on CSD data. The metabolites responsible for this classification were highlighted by OPLS-DA 

regression and the derived S-plot (Figure 3B). The S-plot is a visualization method that combines 

the modelled covariance (X-axis) and modelled correlation (Y-axis) from the OPLS-DA on a scatter 

plot, allowing for pinpointing of interesting variables. The variables showing the highest p and p 
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Figure 1: Base peak electropherogram obtained by CE-ESI-MS for the analysis of 25 nL of precipitated mouse plasma. 
See Section 2.5 for experimental conditions. 
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(corr) values are considered the most relevant metabolites for the classification between samples. 

According to the S-plot and Variable Importance on Projection (VIP) values, two metabolites were 

ranked as the most important variables responsible for the separation between FHM1 R192Q and WT 

groups after CSD. The first metabolite (VIP value = 4.1), measured at m/z 130.0860 with a migration 

time of 14.5 min, showed a higher peak area in FHM1 R192Q group relative to WT controls, after 

CSD. Based on the monoisotopic mass, the isotope distribution, the nitrogen rule, the hydrogen/

carbo ratio rule (Kind & Fiehn 2007), as well as research in METLIN Metabolite Search and HMDB 

public databases, this metabolite was tentatively identified as pipecolic acid (C
6
H

11
NO

2
, exact m/z 

130.0863, Δ = 2 ppm), a non-protein imino acid. Another important metabolite responsible for the 

samples classification (VIP values = 1.1 and 2.1 for most abundant and second most abundant isotope, 

respectively), biochemically correlated to PA and detected at m/z 147.1128 with a migration time of 

14.2 min was determined as being lysine (C
6
H

14
N

2
O

2
, exact m/z 147.1128, Δ = 0 ppm), which showed 

a significantly lower peak area in FHM1 R192Q samples compared to WT after CSD. Figure 4 shows 

the box-plots constructed for both metabolites with integrated peak areas, highlighting the significant 

difference observed between FHM1 R192Q and WT plasma after CSD, with significantly higher peak 

areas for PA (Figure 4A) and lower areas for lysine (Figure 4B), respectively, in the FHM1 R192Q 

group compared to WT control. 

A. B. 

Figure 2: PCA score plots with experimental condition as a class identifier. (A) Sham-operated group and (B) CSD-
operated group. Samples are colored according to their phenotype; RQ (red diamonds), plasma from transgenic mice 
carrying the FHM1 R192Q mutation; WT (blue diamonds), plasma from wild-type non-transgenic mice. t-scores 
represent the score vectors for the first (t[1]) and the second (t[2]) principal components after PCA. The first two principal 
components cover 48% and 42%  of the total variability in (A) and (B), respectively. 



146Chapter 7

Confirmatory analysis by HILIC-MS/MS

The use of an orthogonal analytical technique such as liquid chromatography, i.e., based on a different 

mechanism of separation than CE, as well as information on the fragmentation pattern via MS/MS 

experiments provides an additional confidence of the identification of both compounds (Sumner et 

al 2007). Contrary to widely used reversed-phase liquid chromatography, where a poor retention and 

selectivity are usually observed for metabolites analysis, the HILIC chromatographic mode is well-

suited for the analysis of relatively polar compounds (Buszewski & Noga  2012, Hemstrom & Irgum 

2006, Kohler & Guillarme 2014, Rainville et al 2014). 

HILIC-MS/MS experiments were carried out on a QqQ mass analyzer with standard solutions of L-PA 

and L-lysine and naïve WT control mouse plasma. As the basal concentration of PA was observed 

to be relatively low in the plasma of WT mice, a sample preconcentration was necessary to reach 

the sufficient limit of detection for both compounds. The 20-fold preconcentration obtained with the 

developed PP-SPE procedure based on anion-exchange mechanism allowed for the detection of both 

A. B. 

Figure 3: Cross-validated PLS-DA model and S-plot obtained from OPLS-DA regression. (A) Cross-validated PLS-DA 
model built on CSD sub-group with  cum = 0.417,  cum = 0.996, and  = 0.712; samples are colored according to their 
phenotype; RQ (red diamonds), plasma from transgenic mice carrying the FHM1 R192Q mutation; WT (blue diamonds), 
plasma from wild-type non-transgenic mice. (B) S-plot obtained from OPLS-DA model. t-scores represent the cross-
validated score vectors for the first (tcv[1]) and second (tcv[2]) principal components after cross-validated PLS-DA model.
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Figure 4: Box-plots displaying the differences in integrated peak areas observed for the two metabolites of interest after 
CSD events between the transgenic mice carrying the FHM1 R192Q mutation (labelled RQ) and the WT control group 
(labelled WT). Whiskers represent the standard deviation. (A) m/z 130.0860, corresponding to pipecolic acid. (B) m/z 
147.1128, corresponding to lysine.
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Figure 5: Extracted ion chromatograms (EICs) and MS/MS spectra obtained for both compounds for standard solutions 
at 100 µg mL-1 (upper EIC) and the prepared plasma sample (lower EIC). (A) Pipecolic acid, product ion (PR) MS/MS 
experiments on m/z 130. (B) Lysine, PR experiments on m/z 147. See Section 2.6 for experimental conditions. 
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compounds in plasma sample. Product ion scan (PR) mode, i.e., where the first quadrupole of the 

QqQ selects the parent ion(s) then fragmented in the collision cell prior to the detection of fragments 

in the third quadrupole operating in the full-scan mode, was used for MS/MS acquisition. Figure 5 

shows the extracted ion chromatograms (EICs) obtained for PA (Figure 5A) and lysine (Figure 5B) 

in the plasma sample with their respective MS/MS spectra obtained with a collision of energy of 10 

eV. The EICs obtained for m/z 130 and m/z 147 showed similar retention times for both compounds 

in plasma samples and standard solutions, i.e., 3.22 min and 3.61 min for PA and lysine, respectively. 

The identity of the compounds was confirmed by comparing the MS/MS spectra obtained for m/z 130 

and m/z 147 in plasma sample vs standard spectra. The MS/MS spectrum observed for PA in plasma 

showed the molecular ion at m/z 130 as well as a fragment at m/z 84, which corresponds to the loss of 

the carboxyl functional group. The MS/MS spectrum of lysine showed the molecular ion at m/z 147 

as well as fragments at m/z 130 and m/z 84. The fragment at m/z 130 is obtained with the loss of the 

secondary amine prior to cyclization of the molecule into PA (Argirov et al 2005) and, rationally, the 

subsequent loss of the carboxyl group to obtain the fragment at m/z 84. According to the Metabolomics 

Standards Initiative, a definitive (i.e., level 1) compound identification may be obtained by comparing 

two or more orthogonal properties (e.g., retention time, m/z ratio, fragmentation mass spectrum) of 

an authentic chemical standard vs the metabolite(s) of interest (Dunn et al 2013, Gika et al 2014). 

Due to the restricted sample volume available from mice, the orthogonal confirmatory analysis was 

performed on a WT material only. Therefore, additional studies may be required to increase the 

confidence in the identification of PA and lysine, although CE data usually provide a strong context 

for identification of amino acids, and lysine in particular.

Lysine and pipecolic metabolism and biological implications

In animals and humans, L-lysine has been shown to be predominantly metabolized to saccharopine 

(ε--[glutaryl-2]-L-lysine) in peripheral tissues, including liver and kidney, while the brain appears 

to mainly metabolize this amino acid to the intermediate of reaction L-PA. Both pathways lead to 

the formation of α-aminoadipic semialdehyde (α-ASAA), α-aminoadipic acid, and eventually 

acetyl-Co-A. The primary metabolic function of PA in human and mammals, however, is unknown. 

Nevertheless, PA was shown to be associated with several diseases, such as pyridoxine-dependent 

epilepsy, α-ASAA dehydrogenase deficiency, inherited peroxisomal disorders, and chronic liver 

dysfunction (Dalazen et al 2014, Sadilkova et al 2009). 

Peroxisomal disorders are characterized by a defect in peroxisome formation, leading to a deficiency 

or little activity of the peroxisomal PA oxidase, the enzyme responsible for oxidation of PA. A 

significant elevation of L-PA plasma concentration (normal range 0.1-4.0 µmol L-1) is observed and 

used for diagnosis purpose in combination with the determination of plasma very-long-chain fatty 

acids and plasmalogens (Peduto et al 2004, Poll-The & Gardner 2012, Stockler et al 2011). 

Pyridoxine-dependent epilepsy (PDE) is a recessive inherited condition that affects the γ-aminobutyric 

acid (GABA) pathway and is characterized by epileptic seizures that are not controlled with antiepileptic 
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drugs but stop with administration of pharmacological doses of pyridoxine (vitamin B
6
) (Baxter 

2003, Plecko et al 2005, Stockler et al 2011). Due to α-ASAA dehydrogenase deficiency caused by 

pathogenic mutations in the ALDH7A1 gene, elevated levels of α-ASAA are observed in plasma, 

CSF, and urine in patients with PDE. Increased concentrations of L-PA have also been observed in 

plasma (4.3 - 15.3 fold) and CSF (5.6 – 37.2 fold) of patients with PDE (Plecko et al 2000, 2005). 

In vitro experiments revealed that L-PA serves as a modulator of GABAergic neurotransmission by 

stimulating GABA release in the synaptic cleft, decreasing its uptake by the synaptosomes, and/or 

enhancing GABA
A
 receptor response likely by binding to another site on GABA

A
 receptor (Beitz & 

Larson 1985, Bernasconi et al 1986, Charles 1986, Gutierrez et al 1989, Kase et al 1980, Matsumoto 

et al 2003). PDE remains up to now the only paroxysmal episodic disorder for which a correlation 

between plasma PA concentrations and brain events has been shown. 

To the best of our knowledge, this is the first time that the lysine degradation pathway is suggested 

to be involved in migraine pathophysiology. Any relevance for migraine mainly comes from the 

observation that changes in plasma levels of lysine and PA were different in FHM1 R192Q mutant vs 

WT control mice after CSD induction only, and not after sham treatment. The higher level of PA after 

CSD induction in FHM1 R192Q mutant may hypothetically point towards a compensatory mechanism 

to counteract the effect of excessive glutamatergic neurotransmission via an enhancement of inhibitory 

GABAergic synaptic transmission; perhaps to restore the imbalance in cortical excitatory-inhibitory 

transmission that occurs with CSD. In this scenario, increased GABAergic synaptic transmission 

may be an attempt of the brain to restore homeostasis.  Increased GABAergic synaptic transmission 

may be the mere consequence of the excessive glutamatergic neurotransmission and subsequent 

activation of GABAergic neurons, without direct changes at the level of GABAergic transmission. 

Indeed, it has been already shown that the FHM1 R192Q mutation increases excitatory glutamatergic 

neurotransmission while having no effect on inhibitory GABAergic transmission (Tottene et al 2009). 

Enhanced glutamatergic neurotransmission was shown to underlie the increased susceptibility to CSD 

in FHM1 R192Q mutant mice (Tottene et al 2009). Finally, a proteomic analysis of synaptosomes 

from cortical neurons of FHM1 R192Q mutant mice showed compensatory up-regulation of glutamate 

transporters (Klychnikov et al 2010). These features seem to suggest that although GABAergic 

neurotransmission seems not primarily affected in FHM1 R192Q mice, it may kick in as part of the 

consequences of the enhanced excitatory transmission and may be involved in compensatory actions 

attempting to restore brain homeostasis, a hypothesis which would fit the episodic nature of migraine. 

This study also brings out that the mechanisms underlying CSD events can be captured beyond the 

CNS, for instance in plasma. It thus suggests that the investigation of metabolic changes in peripheral 

fluids may provide a useful strategy to monitor pathophysiological effects related to migraine that 

occur in the brain. 
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CONCLUDING REMARKS 

This study investigated the metabolic profiling in the plasma of transgenic migraine mice carrying 

the FHM1 R192Q mutation and WT controls following induction of multiple CSD events. Plasma 

samples collected after CSD induction were analyzed by CE-MS and highlighted significant changes 

in the concentration of two metabolites in FHM1 R192Q mutant that were tentatively identified as 

lysine and PA. The relative changes of PA concentration observed in FHM1 mutants mice compared 

to WT are consistent with the previously shown correlation between PA and inhibitory GABAergic 

neurotransmission, which in theory may serve to counteract the neuronal excitability and promote 

homeostasis recovery upon CSD in FHM1 mutant mice.  Notably, CSD events appear to induce a 

metabolic remodeling in peripheral fluids such as plasma. This opens new perspectives in the discovery 

of putative biomarkers in easily-accessible body fluids to improve the diagnosis and prognosis in 

migraine, as well as in proposing novel biomolecular targets for the development of new therapies. 

Further experiments are required to investigate the longitudinal evolution of the metabolic profile 

underlying CSD in peripheral fluids. 
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SUPPLEMENTARY INFORMATION

1M KCl

1M NaCl

5 min
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KCl
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DC-recording

Figure S1. Illustration of the experimental design. (A) Mouse skull depicting the locations of KCl application (i.e., 
occipital cortex) and DC-potential recordings (i.e., frontal cortex). (B) Induction of 7 CSDs by application of 1M KCl 
with a 5-min interval. At the end of the CSD induction, ca. 40 µL of blood was collected from the mouse trunk. (C) 
Specimen example traces recordings following application of 1M KCl (upper part) and 1M NaCl (lower part) in FHM1 
R192Q and WT mice.

Figure S2. PCA score plot of the whole data set, including mice samples (labelled S, blue diamonds) and quality 
controls (labelled QC, red diamonds). The first two principal components cover 50% of the total variation.
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Migraine is a common brain disorder that is characterized by attacks of severe unilateral headaches 

and associated neurological symptoms. In about one third of patients, attacks are accompanied by an 

aura that is likely caused by cortical spreading depression (CSD). In this thesis, transgenic FHM1 

R192Q mice were used as a relevant migraine model to investigate mechanisms underlying the effects 

of CSD modulating factors, as well as the consequences of CSD (Figure 1). FHM1 mice carry an 

R192Q missense mutation in the α
1
 subunit of voltage-gated Ca

V
2.1 channels (van den Maagdenberg 

et al 2004), which was previously identified in patients with familial hemiplegic migraine (Ophoff et 

al 1996). The experimental approaches and outcomes as described in the chapters of this thesis are 

discussed below, also in relation to relevant literature and with a look forward to future research.

8.1 Should CSD susceptibility measurements be performed in anesthetized 
or in freely behaving mice? 

Technical progress has made it possible to investigate CSD in relation to cortical activity and behavior 

in freely behaving animals. Nevertheless, for certain research questions anesthesia can be the preferred 

regime. Possibilities and caveats of performing experiments under anesthesia and in freely behaving 

animals were investigated in various chapters of this thesis and are discussed in the paragraphs below.  

8.1.1 CSD studies under anesthesia 

Under anesthesia, CSD induction and monitoring are technically easier to control than in the 

longitudinal chronic recordings lasting days-weeks in freely behaving mice. Anesthesia was used 

for experiments where a fixed number of CSD events was induced by topical KCl application 

on the dura to study modulatory factors and consequences of CSD, in Chapters 5, 6 and 7. The 

possibility to precisely time CSD events is a great advantage when administering drugs/modulators, 

as performed for stress modulators in experiments described in Chapter 4. Moreover, when drugs 

are administered under anesthesia, stress and discomfort of the mice is avoided to a large extent. A 

drawback, however, is that anesthetics affect critical parameters of animal physiological status, such 

as blood pressure (BP), blood gases and pH, in particular during long-duration experiments. Changes 

in these parameters are known to affect properties of brain tissue that are relevant to initiate and 

sustain CSD (Somjen 2001). The implementation of physiological monitoring in Chapter 2 yields 

important information on physiological parameters in relation to CSD characteristics, and makes 

possible the exclusion of animals in which physiological parameters are out-of-range. The use of 

physiological control by adjusting breathing patterns by mechanical ventilation is superior to the use 

of monitoring alone in the sense that it ensures a more comparable physiological status between mice; 

especially when experimental designs are used in which anesthesia last longer. Physiological control 

was performed for experiments to assess effects of gender (Chapter 2), diurnal rhythm (Chapter 3) 

and stress hormone (Chapter 4). Physiological control may however influence CSD characteristics 

and can sometimes act as a double-edged sword. By keeping physiological parameters within tight 

ranges, these parameters are kept comparable across experiments. However, if the experimental 
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readout itself depends on differences in physiological parameters, controlling them will logically 

interfere with the experimental outcome. This is illustrated in Chapter 2, in which the increased CSD 

frequency in female compared with male FHM1 R192Q mice, as reported by Eikermann-Haerter et 

al. (Eikermann-Haerter et al 2009b), was only revealed in the presence of physiological control. In an 

opposite way, in Chapter 3, physiological control appeared to mask a putative effect of a difference 

in CSD susceptibility between the visual and motor cortex in mutant mice; an effect that was observed 

only when experiments were performed in an uncontrolled and non-monitored manner (Chapter 2).  
Since anesthetics suppress neuronal activity (Hertle et al 2013), CSD and its characteristics will 

be affected by anesthetics, and in many instances masked. Common anesthetics such as isoflurane, 

which is used in the CSD experiments of this thesis, in particular in combination with N
2
O (used in 

CSD experiments under full physiological control described in Chapters 2, 3 and 4) are known to 

suppress CSD susceptibility (Kudo et al 2013, Takagaki et al 2014). Anesthesia may also directly 

interfere with the experimental intervention, e.g., when studying effects of drugs that influence 

GABAergic function, which is known to be modulated by many anesthetics (Hoffmann et al 2011). 

There seems to be no ideal anesthetic to investigate the susceptibility of CSD.   

8.1.2 CSD studies in freely behaving mice

Studying CSD characteristics in freely behaving mice can overcome some of the disadvantages of 

studies under anesthesia. Since both autonomous and central functions are retained, the physiology 

and brain functions of the mouse are more likely to mimic the situation in patients. With chronic 

implantation of miniaturized electrodes and a counter-balanced EEG/MUA-cable with swivel, it has 

been possible to record both EEG and MUA activity from the cortex with minimal discomfort to 

the mouse for multiple days to weeks (Chapter 3). Such recordings in freely behaving mice enable 

correlations between CSD characteristics and changes in neuronal network activity, vigilance states 

and other behavioral characteristics that are not possible under anesthesia. In rats, a similar awake 

electrophysiology approach has been used to correlate induced events of spreading depression to 

migraine-relevant pain pathways (Fioravanti et al 2011, Tepe et al 2015) and epilepsy (Broberg et al 

2014). Our studies in Chapter 3 show that the freely behaving approach is now also feasible in mice. 

Thus, we could demonstrate the occurrence of spontaneous CSD events in FHM1 R192Q mice, which 

were not observed in WT mice. Studies on spontaneous CSD events in freely behaving mice will 

allow investigating how natural triggers and modulatory factors of migraine (e.g., changes in sleep 

patterns, stress, and light) affect CSD susceptibility, thus enabling better translation of observations 

from and to the clinic. Because recordings are possible for several days to weeks, multiple trigger 

paradigms and modulators can be studied in a single animal. This include the possibility for intra-

individual vehicle controls and assessment of repeatability. 

However, experiments in awake, freely behaving mice have also disadvantages. Chronic electrode 

implantation can cause variation among animals with respect to electrode depth and location. 

Furthermore, an inflammatory response of the brain to chronic electrode implantation (as discussed 
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Figure 1. Overview of key experimental findings in FHM1 R192Q mice described in this thesis.  (Center) FHM1 
R192Q gain-of-function mutation increases neuronal Ca2+ influx via P/Q-type Ca

V
2.1 Ca2+ channels that leads to increased 

release of excitatory neurotransmitters in the synaptic cleft. (A) We established an experimental platform to measure 
CSD susceptibility in anesthetized mice under continuous monitoring and control of critical physiological parameters, 
such as blood pressure and blood gases (Chapter 2). (B) In awake freely moving mice, long-term EEG recordings 
revealed increased cortical excitability and spontaneous CSD events in a subgroup of FHM1 R192Q mice but not in 
WT (Chapter 3). (C) Corticosterone injection in FHM1 R192Q mice increased CSD susceptibility compared to vehicle 
injection, via a GR-mediated mechanism (Chapter 4). (D) CSD induction resulted in changes of metabolite, peptide 
and protein distribution in the cortex and subcortical brain areas that were genotype-and CSD-specific (Chapter 6). 
(E) CSD induction in the cortex of FHM1 R192Q mice triggered an activation of compensatory mechanisms likely to 
restore inhibition/excitation misbalance that occurred following CSD and this could be measured in plasma (Chapter 7).
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in Chapter 3) may affect CSD characteristics (Sukhotinsky et al 2011). Another difficulty with 

experiments in awake mice is that implanted electrodes and the EEG cable may increase levels of 

stress hormones, which can affect CSD characteristics (Chapter 4 and see Section 10.2.3). What 

remains challenging as well is to standardize CSD induction paradigms in freely behaving animals. 

This is illustrated by the KCl infusion paradigm used in Chapter 3, which does not induce a single 

CSD but multiple CSD events with high variability. Due to their larger size, and willingness to be 

handled, it is easier to overcome such problems in rats when an implanted cannula for KCl infusion 

is used (Fioravanti et al 2011, Tepe et al 2015). The strength of an experimental CSD design lies in 

overcoming technical disadvantages by the integration of experimental platforms for the induction 

and monitoring of CSD that either use or do not use anesthesia, as illustrated in Chapter 3. Finally, 

the advent of novel technologies for modulation of neuronal activity, such as optogenetics (Williams 

& Deisseroth 2013), is expected to overcome at least some of the disadvantages thus far associated 

with chronic recordings. This is well illustrated by the recent implementation of optogenetics for 

induction of CSD in freely behaving mice (Tolner et al 2015).

8.2 Factors that modulate CSD susceptibility 

8.2.1 Gender

It is well established that women are more susceptible to migraine than men (Finocchi & Strada 

2014, Lipton et al 2001). The higher frequency of experimentally induced CSD events observed for 

female FHM1 R192Q mice in experiments with physiological control (Chapter 2) is in line with 

previous data (Eikermann-Haerter et al 2009b). A potential underlying mechanism for the higher 

CSD susceptibility in female mice (and the female preponderance of migraine) may be the response 

to female gonadal hormones changes (Borsook et al 2014). It is hypothesized that a sudden drop in 

estradiol level just before the start of menstruation (Somerville 1972a, Somerville 1972b) is involved 

in initiating attacks. This drop may lead to direct enhancement of glutamatergic neuronal excitability 

via up-regulation of NMDA receptor expression, down-regulation of glutamate uptake by astrocytes, 

and increasing the dendritic spine number (Kelly et al 2003, Sato et al 2003, Smith 1989, Woolley et 

al 1997). Vascular changes may also be involved in the effect of female hormones on CSD frequency 

in FHM1 R192Q mice. This is supported by the observation that a gender effect was only noticed 

in mutant mice when mechanical ventilation was performed and thus physiological parameters were 

controlled. A gender effect remained masked in physiologically monitored but not controlled mice 

that had a lower blood pressure (Chapter 2). It is known that mechanical ventilation can reduce brain 

blood volume and blood flow (Milan et al 2009), which in turn may have affected CSD characteristics 

(Ayata 2013). In addition, direct changes in vascular function may occur in relation to gender, since 

estradiol was shown to alter vascular responses to calcitonin gene-related peptide (CGRP) (Gupta et 

al 2007). In this context it is plausible that different neurovascular responses between physiologically 

controlled and uncontrolled experiments in female mice may be the reason that a gender effect on 

CSD frequency was observed only in the presence of physiological control. This gender effect in 
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mutant mice was detected irrespective of the phase in the estrous cycle, as mice were not investigated 

at a specific phase in the cycle (Chapter 2 and Eikermann-Haerter et al 2009b), which suggests 

that the increased CSD susceptibility in female mutant mice may in fact be due to intrinsic brain 

differences between females and males (Borsook et al 2014) and perhaps less to a sudden drop in 

estrogen level during a phase of the cycle.  

8.2.2 Diurnal changes 

Observations that sleep (Holland 2014) and hypothalamic function (Moulton et al 2014) are linked 

to migraine support the idea that attacks may be influenced by diurnal rhythm (Fox & Davis 1998). 

Analysis of 24-hr EEG periods in freely behaving FHM1 R192Q mice in Chapter 3 revealed an 

increased EEG gamma power, which had been related to increased neuronal excitability (Joho et 

al 1999, Lau et al 2000). This finding fits earlier data that excessive neuronal excitability underlies 

the increased susceptibility to CSD in these mutant animals (Tottene et al 2009). The idea of 

hyperexcitability has been proposed as a mechanism underlying migraine attack susceptibility in 

humans (Aurora & Wilkinson 2007). Notably, we could show that a subset of FHM1 R192Q, but 

not WT mice showed spontaneous (i.e., not experimentally-triggered) CSD events. The majority 

of the spontaneous CSD events occurred within 2 hr in the transition from dark-to-light or from 

light-to-dark phases in the animal facility. Paradoxically, results of parallel experiments, performed 

under anesthesia with physiological control, seem to rule out that CSD susceptibility is specifically 

increased at the start of the light or the dark phase. It cannot however be excluded that the anesthesia or 

mechanical ventilation used in the experiments may have caused changes in the animal’s physiology 

that mask a putative diurnal difference in CSD susceptibility. Further studies are needed to assess 

whether, in addition to the overall increase in EEG gamma power, other changes may be detected 

from EEG recordings that are present before or during these diurnal transitions that can be related to 

changes in cortical excitability. 

We hypothesize that diurnal fluctuations in hormones and neurotransmitters that occur around these 

transitions may contribute to changes in neuronal excitability leading to CSD events. It is tempting 

to speculate that the high level of corticosterone that is present at the beginning of the dark period 

(Maywood et al 2007) may correlate with an enhanced CSD susceptibility at that time point. Notably, 

adenosine, a neuromodulator that induces sleep and decreases neuronal excitability (Nehlig et al 

1992), exhibits a diurnal pattern opposite to that of corticosterone, with high levels at the beginning 

of the light period (and low levels at the beginning of the dark period) (Basheer et al 2004). FHM1 

R192Q mice were reported to be less sensitive to exogenous modulation of adenosinergic inhibition 

and exhibit an increase of waking episodes during the dark period (Deboer et al 2013). One can 

therefore rationalize that a reduction in inhibitory adenosinergic response in mutant animals can lead 

to transiently enhanced neuronal excitability leading to enhanced CSD susceptibility, particularly 

when adenosine levels are high, i.e., at the beginning of the light period. 
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8.2.3 Stress 

The majority of migraine patients report stress as a prominent trigger for their migraine attacks 

(Hauge et al 2011), although one might argue that such self-reported information is not very reliable. 

As stress is a complex response of the body and involves multiple neurotransmitters and hormones 

with different dynamics, it is not known which aspects of the body’s stress response, if any at all, may 

bring about migraine attacks. In Chapter 4, we could show that administration of stress hormone 

corticosterone (cortisol in humans) specifically increased CSD frequency in FHM1 R192Q mice 

and that this occurred via a glucocorticoid receptor-mediated mechanism. Given that corticosterone 

had no effect in WT mice, and it is thought to increase glutamatergic neurotransmission (Popoli et 

al 2011), suggest that corticosterone may have further enhanced the already present intrinsically 

enhanced (glutamatergic) excitability in FHM1 mice (Tottene et al 2009). It is tempting to speculate 

that in freely behaving mice, external triggers such as sensory inputs (e.g., light, sound) may cause 

enhanced levels of corticosterone (Ishida et al 2005, Kim et al 2008) and thereby enhanced excitation 

of thalamo-cortical pathways (Noseda et al 2010). The combined sensory input and intrinsically 

enhanced neuronal excitability in FHM1 R192Q mice may result in spontaneous CSD events, as 

described in Chapter 3. 

Effects of natural stressors on CSD susceptibility seem harder to identify since exposure of FHM1 

R192Q mice to mild or even severe restraint stress did not seem to affect CSD susceptibility. In 

Chapter 4, we provide evidence that such lack of an effect is not simply due to suppressive actions 

of neuromodulators such as tetrahydrodeoxycorticosterone, which like corticosterone is released 

during restraint stress. Although corticosterone levels rise both after exogenous administration and as 

a consequence of acute stress, the latter triggers a much more complex response with effects that may 

either enhance or suppress CSD susceptibility. 

It is speculated that in patients the recovery from chronic stress, and not so much from acute stress, 

triggers a migraine attack (Lipton et al 2014). The concept of a ‘rebound’ effect after stress refers to 

the emergence of a stress effect following a period of recovery after chronic exposure to a stressor or 

after chronic glucocorticoid administration. While acute stress has been shown to induce analgesia, 

thus having anti-nociceptive effects, effects of chronic stress or chronically elevated glucocorticoid 

levels appear less predictable (McEwen & Kalia 2010). The direct effect of chronic administration of 

glucocorticoids in rats was an increase in pain threshold (Pinto-Ribeiro et al 2009). This observation is 

in line with studies in chronically stressed patients that suffer from chronic back pain, which reported 

less pain in a series of pain tests in comparison to healthy controls (Clark et al 1986). However, children 

that were chronically stressed due to abdominal pain (Dufton et al 2008) were reported to exhibit an 

increased reaction to a pain test (i.e., hyperalgesia). The variable results of chronic stress studies 

may relate to a rebound-after-stress effect, either because of fluctuations in stress levels in patients 

or because of different time-points after chronic stress at which readout effects were measured. In 

a study in which rats were measured 24 hr following exposure to chronic stress, the pain threshold 
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was shown to be reduced (Gamaro et al 1998). In line with the variable reports of chronic stress 

effects on pain, effects of chronic stress on glutamatergic transmission are also variable with studies 

indicating both enhancement (Kerr et al 1991, Joëls et al 2004, Raudensky & Yamamoto 2007) and 

suppression (Moghaddam 2002, Yuen et al 2012) of glutamatergic transmission following chronic 

stress. The variation in outcome may relate to differences in the studied brain regions, with e.g., the 

prefrontal cortex showing a reduction and hippocampal regions typically showing an enhancement of 

glutamatergic function (Joëls et al 2007, Yuen et al 2012). In these experimental studies on chronic 

stress, measurements were performed directly after the chronic stress paradigm, and did not provide 

information on glucocorticoid levels at the end of the chronic stress paradigm. Taken together, thus 

far, not much is known about mechanisms that could explain a possible rebound effect of (chronic) 

stress on triggering a migraine attack.  

To gain insight into the rebound-after-stress phenomenon, we performed pilot experiments to investigate 

whether a time-delay after chronically elevated corticosterone levels affects CSD susceptibility (Figure 

2). In brief, male WT and FHM1 R192Q mice were implanted with corticosterone or control pellets 

for a time period of 21 days. After the 3-week period, the pellet was removed and CSD frequency was 

tested either directly (on day 21) or 4 or 7 days later, at days 25 or 28 respectively (Figure 2A). High 

corticosterone plasma levels were shown to be maintained for 21 days when corticosterone pellets 

were implanted. After pellet removal at day 21, corticosterone plasma levels were decreased by day 

28 in WT, but not in FHM1 R192Q mice in which corticosterone levels were found to remain high 

(Figure 2B). At none of the chosen time points after the 3-week corticosterone treatment however, 

CSD frequency was different in either WT or FHM1 mice in comparison to the respective frequency 

in naïve WT and FHM1 R192Q mice (Figure 2C, D). These preliminary findings suggest that a chronic 

elevation of systemic corticosterone levels followed by withdrawal is not a sufficient trigger to modulate 

CSD susceptibility. Since corticosterone levels remained elevated for several days after pellet removal 

in FHM1 R192Q mice, the rebound-after-stress paradigm may not have been sufficient to modulate 

CSD susceptibility. One may need to first determine the time point when corticosterone plasma levels 

show the steepest decline, and then assess CSD susceptibility around this transition point. 

In this context, our findings raise an important issue regarding the translation of observations on the 

time-relationship between stress and migraine in humans to the time-line of stress paradigms in mice. 

In humans, a decline in perceived stress was recently shown to correlate with an increased probability 

to experience a migraine attack in the subsequent 6, 12 and 18 hr (Lipton et al 2014). In our study, 

corticosterone plasma levels were still elevated several days after corticosterone pellet removal, more 

so in R192Q mice. Although no information was available on cortisol levels in the human study, it is 

possible that the dynamics of the stress response differs between humans and mice. Alternatively, it 

may be that recovery from chronically elevated levels of glucocorticoids is less relevant as a stress 

factor in migraine, if adaptation occurs in the period of chonic stress or in the period of recovery. In 

an animal model, after 3 weeks of daily restraint, adaptation was shown to occur as evidenced from 
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plasma corticosterone levels that were no longer elevated (Joëls et al 2007). Overall, it is important to 

emphasize the complexity of physiological responses to chronic exposure to stress and glucocorticoids 

(Borsook et al 2012, Maleki et al 2012, Resmini et al 2013), some of which may cause compensatory 

effects at the level of neuronal excitation and CSD susceptibility.

8.3 Insight in migraine pathophysiology from investigating modulators of 
CSD 

Better insight in the modulating effects of e.g., female hormones, diurnal or circadian rhythm and 

stress on CSD susceptibility can give mechanistic insight in the interaction of various neurobiological 

systems relevant to migraine. Enhanced susceptibility to various migraine modulators, e.g., sleep, 

food intake and anxiety, which affect various neurochemical pathways, seem to converge at the level 

of thalamus (Noseda et al 2014). In addition, intrinsic differences in neuronal network excitability 

properties in specific brain regions may render the migraine brain more susceptible to attacks. As an 

example, neuroimaging studies have shown structural and functional alterations in the visual cortex 

of migraineurs (Aurora et al 1999, Granziera et al 2006), which may have relevance to explain the 

clinical observation that the far majority of migraine auras are visual (Eriksen et al 2005). Certain 

experiments in Chapter 2 seem to indicate that in FHM1 R192Q mice the visual cortex is more 

susceptible to CSD than the motor cortex. This difference, however, was only seen when experiments 

were carried out in the absence of physiological monitoring and control. Under other experimental 

conditions cortical regions, as tested for motor and visual cortex in the presence of physiological 

control in Chapter 3, appear equally susceptible to CSD induction, and cannot explain a preference 

for auras being visual. This finding fuels the idea that silent auras’ may exist (Ayata 2010; Denuelle et 

al 2008), i.e., spreading depression waves may affect (and may be initiated in) a cortical (or even non-

cortical) brain region that does not lead to an abnormal visual perception (Hansen et al 2013) and could 

have relevance for migraine without aura patients. Relevant to this idea are also first observations 

made in freely behaving mice in Chapter 3 that indicate that not all spontaneous CSD events are first 

observed in the visual cortex (sometimes they are first seen in the motor cortex), suggesting that a 

CSD may start at different brain locations. 

8.4 CSD-induced changes in biomolecular profiles detected by mass 
spectrometry imaging in the brains of mice 
Mass spectrometry imaging (MSI) is an advanced bioanalytical method that allows the simultaneous 

detection of hundreds of biomolecules from different molecular classes directly from brain tissue 

(McDonnell & Heeren 2007). MSI therefore offers great potential in revealing–in an untargeted 

manner–biomolecular changes in the brain that are related to migraine gene mutations, CSD, 

or migraine-relevant triggers, while preserving spatial information of the distribution of these 

compounds. In Chapter 5, we demonstrated in a proof-of-principle study the applicability of MSI 

by the identification of changes in brain metabolite and peptide profiles upon CSD induction. In 

Chapter 6, we implemented the matrix-assisted laser desorption/ionization (MALDI) MSI approach 
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in a larger study to investigate biomolecular changes in the brain following CSD in FHM1 R192Q 

mice. CSD triggered specific brain changes in metabolite, peptide and protein profiles in FHM1 

R192Q mice, which were not observed in WT brains that underwent the CSD procedure nor in 

WT and FHM1 R192Q brains that underwent a sham procedure (in which no CSDs were evoked). 

Metabolite m/z 146.0593, which was putatively identified as L-glutamate, appeared down-regulated 

in the CSD-affected hemisphere in FHM1 R192Q mice. This finding suggests an increased clearance 

of glutamate by the action of glial cells and glutamate transporters or an adaptation of glutamate 

Figure 2. CSD susceptibility 
upon chronic corticosterone 
exposure. (A) Experimental 
design of chronic corticosterone 
experiments. At least 4 days prior 
to pellet implantation a blood 
sample (BS) was collected from a 
tail cut to measure corticosterone 
levels at baseline. Additional blood 
samples were collected every 
week to measure corticosterone 
plasma levels following pellet 
implantation. The corticosterone 
pellet (50 mg corticosterone/50 
mg cholesterol) was implanted 
subcutaneously in the flank of the 
mouse while it was under brief 
isoflurane anesthesia. Control 
mice were implanted with a pellet 
containing 100 mg cholesterol. 
To maintain stable corticosterone 
release the pellet was replaced at 
day 10. The pellet was removed at 
day 21 and CSD frequency was measured at day 21, day 25, or day 28 to test for possible rebound effects following 
corticosterone pellet removal. (B) No significant differences in corticosterone plasma levels were detected between WT 
and FHM1 R192Q mice. Corticosterone plasma levels in mice implanted with the control pellet were low as expected 
(0, 7, 14, 21 days: WT N=5, R192Q N=4; 28 days: WT N=1, R192Q N=1). In mice implanted with corticosterone 
pellets, corticosterone plasma levels were strongly elevated in the first 14 days and then gradually dropped at day 21 
and even more at day 28. Note the drop at day 28 in corticosterone plasma level (9.5 ng/mL) in the WT mouse below 
the level reported for stressed animals (i.e., 50 ng/mL). In contrast, in FHM1 R192Q mice corticosterone plasma levels 
remained high for 2 of 3 mice with particularly  high corticosterone plasma levels at day 28 (~270 ng/mL; in line with 
values reported for stressed animals (Zalachoras et al 2013) (0, 7, 14, 21 days: WT N=6, R192Q N=8; 28 days: WT 
N=1, R192Q N=3). (C, D) Scatter plots (mean ± SD) depict CSD frequency measured at different time-points in WT 
(C) and FHM1 R192Q (D) mice. There was no significant differences in CSD frequency for WT (p=0.1) and FHM1 
R192Q (p=0.14, one-way ANOVA Bonferroni correction) for any of the days following corticosterone compared to 
control pellet removal. Group sizes are shown on the x-axis. 
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release, in reaction to the intense metabolic and synaptic demand during repeated CSD induction. Such 

compensatory mechanisms in FHM1 R192Q mice might already be in place under naive conditions, 

since cortical synaptosomes from naive FHM1 R192Q mice showed an up-regulation of both major 

glutamate transporters, EAAT1 and EAAT2 (Klychnikov et al 2010). Notably, the same m/z 146.0593 

compound was found down-regulated in the occluded cortical hemisphere in a rat middle cerebral 

artery occlusion model (Miura et al 2010). For the protein dataset, we detected a down-regulation of 

unidentified protein m/z 11343 following CSD in the ipsilateral hemisphere, only in FHM1 R192Q 

mice. The short time between the 7th CSD and sacrification of the mouse 5 min later suggests that this 

mass likely represents a protein modification of an already synthesized protein. In addition, several 

peptides were found to be down- or up-regulated following CSD in mutant mice in cortex and several 

subcortical regions relevant to migraine pathophysiology (i.e., cortex, hippocampus, striatum and 

thalamus). The finding of robust changes in the peptide dataset seem in line with reports showing 

peptide concentration changes associated with both migraine attacks in humans and with CSD 

induction in animals. Relevant peptides include calcitonin gene related peptide (CGRP), substance P 

(SP) and neurokinin A (NKA), of which levels were found to be altered in the cortical extracellular 

space of rodents after CSD (Bolay et al 2002, Colonna et al 1994, Tozzi et al 2012, Wahl et al 1994) 

and in blood plasma of patients (Fusayasu et al 2007, Gallai et al 1995, Goadsby et al 1990). The 

observation of peptide changes in subcortical areas after cortical induction of CSD in our study is 

perhaps not so surprising when considering the spread of CSD waves to subcortical areas, such as 

striatum and hippocampus, as was shown for FHM1 R192Q mice (Eikermann-Haerter et al 2011). 

Future experiments are expected to reveal the identity of the compounds that were differentially 

regulated after CSD. 

8.5 CSD-induced biomolecular changes captured in blood plasma of mice  
Changes in metabolite composition perhaps best reflect the response of an organism to a biological 

change. Relevant biomolecule changes that occur in brain may also be captured in cerebrospinal fluid 

(CSF), and even blood. Experiments in Chapter 7 revealed specific changes, obtained by capillary 

electrophoresis-mass spectrometry (CE-MS), in plasma metabolite profiles of FHM1 R192Q mice 

following CSD. Such changes were not observed in WT mice that underwent the same procedure. 

In particular, a decreased plasma level of lysine and an increased level of pipecolic acid (a by-

product of lysine catabolism) were found. Given the involvement of pipecolic acid in GABA-ergic 

neurotransmission (Gutierrez & Delgado-Coello 1989, Kase et al 1980), the observed changes in 

plasma, if reflecting similar metabolite changes in the brain, may indicate a compensatory response 

to effects of neuronal hyperexcitability in FHM1 R192Q mice. An inhibitory compensatory reaction 

seems in line with the observed down-regulation of L-glutamate following the same CSD induction 

paradigm in the MSI study from Chapter 6. When paralleled with microdialysis studies in freely 

behaving animals (Rogers et al 2013) and studies of plasma (Guldiken et al 2009), urine (Jacobsen et 

al 2013) or CSF (Fonteh et al 2011) obtained from patients, the analysis of CSD-induced changes in 
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plasma or other peripheral body fluids from migraine mice has great potential for migraine biomarker 

identification. 

8.6 New knowledge with respect to migraine-relevant pathways 
Events such as CSD trigger intense neurometabolic activity in the brain and are likely to affect the 

body in various ways. Our findings show that CSD induction causes specific changes of biomolecular 

distribution and gene expression in the brain, as well as specific changes in levels of metabolites in 

peripheral body fluid (i.e., plasma). Notably, some of the observed changes after CSD were different 

and/or only seen in FHM1 R192Q mice compared with WT mice, which suggest that these changes 

reflect specific CSD-induced changes relevant to migraine pathophysiology. 

Changes in brain biomolecular distribution, as revealed by MSI, and profiling of metabolites in 

plasma using CE-MS, pointed towards the activation of compensatory mechanisms in FHM1 R192Q 

mice following CSD induction. A reduced m/z value (likely L-glutamate) in the CSD-affected 

hemisphere and an increased plasma level of pipecolic acid (with a presumed function in GABA-

ergic neurotransmission) in FHM1 R192Q mice suggests that the induction of CSD triggers a body 

defense mechanism in order to restore the inhibition/excitation misbalance following CSD events. 

Our experiments cannot determine whether the observed reduction in glutamate is caused by an 

increased clearance of glutamate from glial cells by glutamate transporters, such as EAAT1 and 

EAAT2. The increased expression of EAAT1 and EAAT2 that was seen in the naïve brain of FHM1 

R192Q mice using a proteomics approach on synaptosome preparations (Klychnikov et al 2010), 

provides some support for this scenario. Notably, previous studies in brain slices proposed increased 

glutamatergic neurotransmission as a key underlying mechanism of increased CSD susceptibility in 

FHM1 R192Q mice, whereas GABAergic neurotransmission was considered unaffected by the gene 

mutation (Tottene et al 2009). 

Our results seem to indicate that the body is coping or counteracting the excess glutamatergic 

neurotransmission by: (i) increasing GABAergic neurotransmission, perhaps best reflected by the 

increased plasma level of pipecolic acid, and (ii) removal of excess glutamate  from the synaptic cleft 

possibly by glutamate transporters as shown in Chapter 6. A recent in vitro study on cortical tissue 

from FHM1 R192Q mice showed that the enhanced glutamatergic transmission caused enhanced 

recruitment of inhibitory neuronal networks (Vecchia et al 2014). This is in line with reports on a possible 

compensatory inhibitory response in the cortex of migraine patients (Cosentino et al 2014).
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Table 1.
Migraine-related 

features
FHM1 
R192Q

Reference Remarks

Photophobia Present Chanda et al 2013 Modified elevated plus maze was used 
for behavioural studies; mutant mice 
spent more time in open arms compared 
with brightly illuminated closed safe 
arms.

Hemiplegia Present Eikermann-Haerter 
et al 2009

Hemiplegia was observed and lasted 20 
min or more after recovery from a single 
CSD event induced under anesthesia. 
S218 mutants were more severely 
affected.

CSD susceptibility Increased van den 
Maagdenberg  
et al 2004, 2010, 
Eikermann-Haerter 
et al 2009b, 
Chapters 2 & 3

In Chapters 2 & 3 CSD susceptibility 
(frequency and threshold) was increased 
compared to WT both for experiments with 
and without physiological monitoring or 
control. S218L mice display enhanced 
CSD frequency compared to R192Q 
mutants (Eikermann-Haerter et al 2009b, 
van den Maagdenberg et al 2010).

Female 
preponderance

Present Eikermann-
Haerter et al 2009,  
Chapter 2

In S218L mice CSD frequency is also 
enhanced for female compared to male 
mice. In Chapter 2, gender effect 
on CSD frequency in R192Q mice is 
only observed for experiments with 
physiological monitoring and control.

Neuronal 
hyperexcitability

Present Tottene et al 2009, 
Hullugundi et al 
2014, Vecchia et al. 
2014, Vecchia et al 
2015, Chapter 3

In Tottene et al. and Vecchia et al. (2014) 
cortical slices and neuronal cultures were 
analysed in vitro; Vecchia et al. (2015) 
shows most severe effects in S218L 
homozygous mice; in Hullugundi et al. 
cultured trigeminal ganglia neurons in 
vitro, and in Chapter 3 EEG activity was 
analysed in vivo. 
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Signs of headache Present Langford et al 
2010, Chanda  
et al 2013

In Chanda et al. signs of headache were 
associated with novelty stress; S218L 
mutants showed stronger blink responses 
compared to R192Q mice.

Signs of 
inflammation

Present Franceschini et al 
2013

In Franceschini et al. trigeminal ganglia 
were analyzed

Impaired learning 
and memory

Present Dilekoz et al 2015      R192Q mice exhibited enhanced 
excitatory transmission and LTP in the 
hippocampus but impaired learning and 
memory

Migraine triggers

Stress Effective Chapter 4 Acute administration of corticosterone, 
but not a 3h restraint stress, results in 
enhanced CSD frequency within 3 hrs.

Circadian rhythm 
shift

Effective van Oosterhout  
et al 2008

R192Q mice showed enhanced phase 
resetting to 6-hr advance shifts of the 
light/dark cycle in freely behaving 
electrophysiology studies of EEG and 
SCN activity; no differences between 
mutants and WT mice were observed in 
in vitro recordings of the suprachiasmatic 
nucleus.

8.7 Relevance of FHM1 R192Q mice as a useful animal model to study 
migraine pathophysiology 
Migraine is a brain disorder with symptoms varying considerably between individuals (Goadsby et 

Table 1.  The FHM1 mouse model is a relevant animal model for migraine Summary of experimental findings that 
highlight the relevance of FHM1 R192Q mice as a useful animal model for FHM, and perhaps also for the common 
forms of migraine. FHM1 R192Q mice exhibit key migraine-related features, such as signs of headache, photophobia 
and increased susceptibility to CSD including occurrence of spontaneous CSD. In addition, the FHM1 R192Q mice 
phenotype can be modulated by relevant migraine triggers such as stress hormones or circadian phase shifts. For several 
readouts, as indicated in the remarks, the phenotype was more severe or effects were stronger in FHM1 S218L compared 
to FHM1 R192Q mice.
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al 2002), but there are core features of the disease. A good animal model of a disorder should ideally 

replicate (and allow the investigation) of such core features. The FHM1 R192Q mouse model used 

in this thesis displays various features that seem not only relevant to FHM but also to the common 

forms of migraine (Table 1). 

In brief, FHM1 R192Q mice exhibit:

signs of photophobia and unilateral headache (Chanda et al 2013), which are prominent symptoms 

in migraine patients (ICHD 2004). 

transient hemiplegia following induction of CSD (Eikermann-Haerter et al 2009b), thus  mimicking 

the characteristic motor problems in patients with FHM. 

enhanced CSD susceptibility and spontaneous CSD events, as both FHM1 transgenic mouse models 

exhibit enhanced CSD susceptibility compared to WT. Furthermore, as recorded, in this thesis for 

the first time, in freely behaving mutant mice (Chapter 3), which forms a reassuring translational 

paradigm to mimic the episodic nature of migraine. 

a CSD phenotype in FHM1 R192Q mice that is more pronounced in females, in line with the higher 

propensity of migraine in women; this can be explained by modulation by gender hormones and 

gonadectomy as shown by effects of ovariectomy in females (Eikermann-Haerter et al 2009b, Chapter 
2) and orchiectomy in males (Eikermann-Haerter et al 2009a). 

neuronal hyperexcitability as identified in cortical brain slices (Tottene et al 2009), cortical neuronal 

cultures (Vecchia et al 2014; Vecchia et al 2015) and, in this thesis, at the neuronal network level 

in freely behaving mice (Chapter 3), which is in agreement with the concept that hyperexcitability 

(Aurora & Wilkinson 2007), and possibly dynamic changes in neuronal excitability (Cosentino et al 

2014) underlies migraine.

signs of inflammation, as shown for trigeminal ganglia (Franceschini et al 2013)

signs of impaired learning and memory, which may explain cognitive changes associated with FHM 

and, possibly, common forms of migraine (Dilekoz et al 2015).

enhancement of migraine-relevant readouts in response to triggers of migraine, such as stress (and 

stress hormones) and sudden shifts in circadian rhythms, as shown by increased CSD susceptibility 

to acute corticosterone administration (Chapter 4) and an enhanced circadian adaptation (van 

Oosterhout et al 2008). 

Several of the functional readouts are impacted by allele dosage, and, most importantly, by the type 

of FHM1 mutation: strongest effects of the mutations are observed for S218L homozygous mice in 

comparison to homozygous R192Q mice (Eikermann-Haerter et al 2009b, van den Maagdenberg et al 
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2010, Chanda et al 2013, Vecchia et al 2014, Vecchia et al 2015, Dilekoz et al 2015). The observation 

of a more severe phenotype in S218L compared to R192Q mice is in line with the clinical presentation 

of symptoms in patients (Haan et al 2005, Stam et al 2009), thus underscoring the usefulness of 

FHM1 mice for studying mechanisms of migraine pathophysiology. The finding that effects of FHM1 

mutations can differ among neurons of specific brain regions (Fioretti et al 2011, Inchauspe et al 

2010) and, as shown for cortex, have strong effects on excitatory but not inhibitory neurons (Tottene 

et al 2009, Vecchia et al 2014, Vecchia et al 2015) provides a mechanistic basis for dissecting the role 

of various neuronal networks in migraine pathophysiology. 

8.8 Future perspectives 
An important finding in this thesis is the identification of spontaneous CSD events occurring in 

FHM1 R192Q mice but not WT mice. Future experiments should focus on revealing changes in 

neuronal firing properties and changes of neuronal network properties that precede spontaneous CSD 

events. Revealing such changes will be instrumental for a better understanding of neurobiological 

mechanisms that explain characteristics of CSD and migraine headache, and in combination with the 

identification of biomolecules and disease mechanisms, e.g., using the molecular tools used in this 

thesis, can be exploited to design novel therapies for migraine. 

Whereas our data revealed an increased susceptibility to CSD in FHM1 R192Q mice upon an acute, 

strong elevation in corticosterone plasma levels, we did not see an effect on CSD susceptibility when 

mutant mice were subjected to a single restraint stress (that also increased corticosterone levels) or 

chronically elevated corticosterone levels. These findings seem to indicate corticosterone exerts multiple 

effects on biological systems and that the administration of corticosterone does not faithfully mimic the 

exact consequence to a physiological stressor. In humans, stress has a strong subjective component 

and often consists of small every day stressors, instead of a single major stressor. Perhaps only their 

cumulative effects may sufficiently modulate the threshold for CSD. Clinical data indicate that the “let-

down” of stress can increase the likelihood of a migraine attack (Lipton et al 2014). Future research 

should focus on identifying every day (milder) stressors, which presumably affect factors in addition to 

cortisol, to better understand how stress affects migraine. From a clinical point of view it may still be 

relevant to identify the time point of corticosterone reduction following chronically high corticosterone 

levels (glucocorticoid withdrawal) and assess whether CSD susceptibility is changed at that transition. 

In addition, to stress and corticosterone, future experiments may also address effects of other known 

migraine-relevant trigger factors, such as drugs overuse (e.g., triptans overuse), changes in sleep patterns 

or specific foods, in modulating characteristics of CSD and other migraine-relevant outcomes. 

Finally, the identification of reliable disease biomarkers is important; not only for diagnosis of 

the disease but also for pinpointing potential novel drug targets. Such biomarkers do not exist for 

migraine, yet. The identification, in this thesis, of specific compounds that are differentially regulated 

following CSD induction in an animal model of migraine in peripheral body fluid and brain tissue, 

may have relevance to migraine biomarker discovery. Future research may use these compounds as 
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a starting point to perform a systematic targeted analysis and identify whether similar compounds 

are abnormally regulated during and between migraine attacks in patients. Such targeted approach 

may further our understanding of migraine pathophysiology and may aid in the development of more 

effective treatments for migraine. 
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SUMMARY

The research in this thesis was aimed at identifying and understanding mechanisms underlying 

modulating factors for and consequences of cortical spreading depression (CSD), the pathophysiological 

substrate for migraine aura that occurs in one-third of migraine patients. In this thesis, experimental 

studies on CSD were performed in wild-type (WT) and transgenic migraine mice, which express 

Ca
V
2.1 Ca2+ channels with a mutated α

1
 subunit that contains the R192Q missense mutation. The 

R192Q mutation was previously identified in patients with familial hemiplegic migraine type 1 

(FHM1) and causes gain-of-function effects in terms of neuronal Ca2+ influx, neurotransmission, and 

susceptibility to experimentally induced CSD. Using various experimental strategies, in this thesis, the 

FHM1 R192Q mouse model was used to study pathophysiological mechanisms of the initiation and 

modulation of CSD as well as of neurobiological and molecular changes that accompany CSD events

In Chapter 2 we investigated in what way physiological factors that vary in animals during surgery 

affect readouts of CSD experiments, CSD frequency and threshold. We determined to what extent 

the composition of the gas mixture and the choice of the experimental paradigm, i.e., monitoring 

or controlling physiological parameters pO
2
, pCO

2
, pH and blood pressure, or no monitoring at all, 

affected the CSD readouts in FHM1 R192Q and WT animals. The physiological monitoring paradigm 

entails that physiological parameters are measured in femoral artery blood; the physiological control 

paradigm ensures that variations in physiological parameters are adjusted via subtle changes of 

the breathing condition of the animal by making adjustments in the mechanical ventilation using 

tracheotomy. We showed that physiological control unmasks a gender effect on visual cortex CSD 

susceptibility in R192Q mice that remained hidden when physiological parameters of the animal 

were not controlled. This finding indicates that the CSD readouts appear sensitive to changes in pH, 

pO
2
, pCO

2
 or blood pressure. We could also show that CSD readouts differed between visual versus 

motor cortex and showed a gender difference in R192Q mice, when the experiments were performed 

in the absence of physiological control. All in all, our study demonstrates that parameters of CSD 

susceptibility may be masked or unmasked depending on the experimental paradigm used. Although 

controlling the physiological status of an animal seems the preferred experimental paradigm, it has the 

risk that certain characteristics of CSD susceptibility in mutant mice are missed, when they depend on 

differences in physiological status between R192Q and WT mice. 

A way to overcome the methodological issues related to CSD susceptibility measurements in 

anesthetized animals is to perform recordings of brain activity under freely behaving conditions. 

Therefore, in Chapter 3 we investigated mechanisms underlying CSD susceptibility in freely 

behaving FHM1 R192Q and WT mice. Long-term cortical DC-EEG recordings revealed an increase 

in cortical EEG gamma power in both the visual and motor cortex of R192Q compared with WT 

mice, which suggests that the mutant brain displays an overall enhanced cortical excitability. Notably, 

R192Q mice were found to display spontaneous CSD events, evidenced by characteristic changes in 

patterns of electrical activity, that were never observed in WT mice. Unfortunately, an insufficient 
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number of spontaneous CSD events has been recorded until now to demonstrate whether these events 

occur at a particular time of day, which may be expected considering reports from patients indicating 

a circadian component in the occurrence of their attacks. Parallel CSD frequency recordings carried 

out under anesthesia in the presence of physiological control, at least, did not reveal that the enhanced 

susceptibility of FHM1 R192Q mice for CSD was different between the start of the day and the 

start of the night. Our observations provide evidence that cortical hyperexcitability contributes to the 

enhanced susceptibility to experimentally induced and spontaneous CSD in FHM1 mice. 

Many migraine patients report stress as a prominent factor that brings about their migraine attacks. 

In Chapter 4 we investigated the link between stress and CSD susceptibility, as surrogate for a 

migraine attack. In FHM1 R192Q and WT mice two paradigms were tested: behavioral restraint 

stress and administration of stress hormone corticosterone. Whereas subjecting mice to 20 min or 

even 3 hr restraint stress did not change CSD susceptibility, the administration of a single injection of 

corticosterone increased CSD susceptibility in R192Q mice, but not WT mice. Our finding suggests 

that a sudden rise in stress hormone may lead to a migraine attack when this occurs in the context of a 

brain that is prone to display increased excitatory neurotransmission, like it is the case when specific 

genetic mutations are present. It remains an enigma why natural stress - such as the restraint stress 

paradigm used , in which corticosterone levels also rise, does not cause a change in CSD susceptibility. 

It may be that in response to natural stress a spatiotemporally more complex biological response with 

multiple modulators is needed before an effect on CSD susceptibility can be detected. Also, it may be 

that such a response takes longer than the 3 hr paradigm that was used in this experiment.  

In Chapters 5 and 6 we investigated effects of CSD on biomolecular profiles in brain using various 

mass spectrometry (MS) technologies. MS imaging (MSI) was combined with matrix-assisted laser 

desorption/ionisation (MALDI) for the analysis of brain sections to unravel molecular consequences 

of CSD in the brain of mice while maintaining spatial resolution of these compounds. 

Chapter 5 described the applicability of MALDI MSI in identifying molecular changes in the brains of 

WT mice that were subjected to CSD. CSD-related differences in metabolite and peptide composition 

were observed in the hemisphere in which 7 CSD events had been induced by topical application of 

KCl on the dura. No changes were observed in protein composition, which can be explained by the 

fact that changes in protein expression take longer than the duration of the experiment. Observed 

changes in metabolites and peptides were CSD-related as they were absent in sham controls, in whom 

KCl was replaced by NaCl, which does not induce CSD.

In Chapter 6 we used the applicability of MALDI MSI from Chapter 5 to investigate whether 

migraine-relevant molecular changes had occurred in the brains of FHM1 R192Q after experimentally 

induced CSD. CSD events were associated with various changes in the content of three molecular 

classes (i.e.,  metabolites, peptides and proteins); molecular changes were observed in cortex as well 

as subcortical areas. When in future research the identity of the molecules is revealed, these may 

pinpoint (novel) neurobiological pathways involved in migraine pathophysiology. At the moment, 
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the findings only demonstrate that CSD events in R192Q and WT mice are associated with different 

molecular profiles, shown as differences in m/z values.   

In Chapter 7, MS technology was combined with capillary electrophoresis (CE) to assess changes 

in plasma metabolite composition in FHM1 R192Q and WT mice following experimentally induced 

CSD. We could show that specific metabolite changes can be captured in peripheral body fluid. 

Compared with WT mice, CSD events induced in R192Q mice were associated with a lower level 

of lysine and a higher level of pipecolic acid, the by-product of lysine catabolism. The study holds 

the promise that metabolic changes that occur in the brains of migraine patients may be measured in 

plasma, which is accessible in clinical research. If proven correct, metabolic changes in plasma of 

migraine patients could serve as potential disease biomarkers. 

Chapter 8 provides a general discussion of the main findings in this thesis. 
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NEDERLANDSE SAMENVATTING 

Het onderzoek beschreven in dit proefschrift heeft als doel het identificeren en begrijpen van de 

mechanismen die ten grondslag liggen aan modulerende factoren en gevolgen van het fenomeen 

“cortical spreading depression” (CSD), het pathofysiologische substraat voor migraine aura dat 

optreedt in één derde van de migraine patiënten. Voor dit proefschrift werden experimentele studies 

naar CSD uitgevoerd in wild-type (WT) en transgene migraine muizen, die Ca
V
2.1 Ca2+ kanalen 

tot expressie brengen met een a1 subunit die de R192Q mutatie bevat. Deze R192Q mutatie is in 

het verleden geïdentificeerd bij patiënten met familiaire hemiplegische migraine type 1 (FHM1), 

en veroorzaakt “gain-of-function” effecten met betrekking tot neuronale Ca2+ influx, glutamaterge 

neurotransmissie, en gevoeligheid voor experimenteel geïnduceerde CSD. Met behulp van 

verschillende experimentele strategieën, beschreven in dit proefschrift, werd het FHM1 R192Q 

muismodel gebruikt om pathofysiologische mechanismen van de initiatie en modulatie van CSD te 

bestuderen, evenals de neurobiologische en moleculaire veranderingen die gepaard gaan met CSD.

In hoofdstuk 2 onderzochten we op welke manier de fysiologische factoren die in dieren kunnen 

variëren tijdens de operatie bij gebruik van verschillende experimentele methodologiёn, van invloed 

zijn op de resultaten van CSD experimenten, met name ten aanzien van de frequentie en drempel voor 

het opwekken van CSD. We hebben vastgesteld in welke mate de samenstelling van het gasmengsel 

voor de anesthesie en de keuze van de bewaking van fysiologie tijdens de anesthesie, door middel van 

het controleren van fysiologische parameters zoals pO
2
, pCO

2
, pH en bloeddruk, van invloed zijn op 

CSD parameters in FHM1 R192Q en WT dieren. Voor de fysiologische bewaking werden parameters 

gemeten in arterieel (femoralis) bloed. Het fysiologische controle paradigma verzekert dat variaties 

in fysiologische parameters worden aangepast via subtiele veranderingen in de ademhalingscondities 

van het dier, door aanpassingen in de mechanische ventilatie met behulp van tracheotomie. We 

toonden aan dat het fysiologische controle paradigma een geslachts-specifiek effect bloot legt ten 

aanzien van CSD gevoeligheid in de visuele cortex in R192Q muizen, en dat dit effect niet zichtbaar 

was wanneer de fysiologische parameters van de dieren niet werden gecontroleerd. Deze bevinding 

geeft aan dat CSD parameters gevoelig zijn voor veranderingen in pH, pCO
2
 of bloeddruk. We konden 

ook aantonen dat er verschillen zijn tussen de visuele en de motorische cortex in de CSD resultaten 

en dat er ook een geslachtverschil in R192Q muizen is wanneer de experimenten werden uitgevoerd 

zonder fysiologische controle. Al met al blijkt uit onze studie dat verschillen in CSD gevoeligheid 

aan het licht gebracht of verborgen kunnen worden, afhankelijk van het experimentele paradigma. 

Hoewel het controleren van de fysiologische toestand van een dier de voorkeur heeft, brengt het 

als risico mee dat bepaalde kenmerken van CSD gevoeligheid in mutante muizen worden gemist, 

wanneer deze kenmerken afhankelijk zijn van verschillen in fysiologische toestand tussen R192Q en 

WT muizen tijdens de operatie.

Een manier om de afhankelijkheid van de anesthesie bij CSD gevoeligheidsmetingen in dieren 

te overkomen is om de hersenactiviteit te meten in wakkere dieren. Daarom onderzochten we in 
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hoofdstuk 3 de mechanismen die ten grondslag liggen aan CSD gevoeligheid in wakkere FHM1 

R192Q en WT muizen. Langdurig corticale DC-EEG-opnames onthulden een toename in de 

intensiteit van EEG gamma-band activiteit in zowel de visuele als de motorische cortex van R192Q 

muizen ten opzichte van WT muizen, wat suggereert dat de FHM1 mutatie een versterkte corticale 

prikkelbaarheid veroorzaakt. Ook werden er spontane gevallen van CSD gevonden in R192Q muizen, 

gekenmerkt door veranderingen in de patronen van corticale elektrische activiteit, zulke aanvallen 

werden nooit waargenomen in WT muizen. Helaas zijn er tot nu toe nog onvoldoende spontane CSD 

gebeurtenissen gemeten om aan te tonen of deze gebeurtenissen bij voorkeur op een bepaalde tijd van 

de dag gebeuren, zoals verwacht wordt gezien verslagen van patiënten die wijzen op een circadiane 

component in het optreden van aanvallen. Uit CSD frequentie opnames in dieren onder anesthesie 

met fysiologische controle bleek dat de verhoogde CSD gevoeligheid van FHM1 R192Q muizen niet 

verschillend was tussen het begin van de dag en het begin van de nacht. Onze waarnemingen leveren 

bewijs dat corticale hyperexcitabiliteit bijdraagt ​​aan de verhoogde gevoeligheid voor experimenteel 

geïnduceerde en spontane CSD in FHM1 muizen.

Veel migraine patiënten melden stress als een prominente factor die leidt tot hun migraineaanvallen. 

In hoofdstuk 4 onderzochten we het verband tussen stress en CSD gevoeligheid, als surrogaat voor 

een migraineaanval. In FHM1 R192Q en WT muizen werden twee methoden gebruikt: ‘restraint 

stress’, wat inhoudt dat de muis opgesloten wordt in een kleine ruimte waar hij niet kan bewegen, 

of een injectie met het stress hormoon corticosteron. ‘Restraint stress’ gedurende 20 min of zelfs 

gedurende 3 uur veranderde de CSD gevoeligheid niet, terwijl de toediening van één enkele injectie 

van corticosteron de CSD gevoeligheid in R192Q muizen, maar niet in WT muizen, liet toenemen. 

Onze bevinding suggereert dat een plotselinge stijging van stress hormonen kan leiden tot een 

migraine aanval, wanneer dit gebeurd bij hersenen die gevoelig zijn voor verhoogde excitatoire 

neurotransmissie, bijvoorbeeld als er specifieke genetische mutaties aanwezig zijn. Het blijft een 

raadsel waarom natuurlijke stress - zoals bij de ‘restraint stress’ methode, waarbij corticosteron niveaus 

ook stijgen, niet een verandering in de CSD gevoeligheid veroorzaakt. Het kan zijn dat in reactie op 

natuurlijke stress een spatiotemporeel complexere biologische respons met meerdere modulatoren 

nodig is voordat er een effect op CSD gevoeligheid kan worden gedetecteerd. Ook kan het zijn dat 

een dergelijke reactie langer duurt dan het 3 uur stress paradigma dat werd gebruikt in dit experiment.

In de hoofdstukken 5 en 6 onderzochten we de effecten van CSD op biomoleculaire profielen in de 

hersenen met behulp van verschillende massaspectrometrie (MS) technologieën. MS imaging (MSI) 

werd gecombineerd met matrix-geassisteerde laser desorptie/ionisatie (MALDI) voor het analyseren 

van hersencoupes om de moleculaire gevolgen van CSD in de hersenen van muizen te ontrafelen met 

een hoge spatiële resolutie. 

Hoofdstuk 5 beschrijft de toepassing van MALDI MSI bij het identificeren van moleculaire 

veranderingen in de hersenen van WT muizen die werden onderworpen aan CSD. CSD-gerelateerde 

verschillen in metabolieten- en peptidensamenstelling werden waargenomen in de hersenhelft waarin 
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7 CSD voorvallen waren geïnduceerd door lokale toediening van KCl op de dura mater. Er werden 

geen veranderingen waargenomen in eiwitsamenstelling. Dit kan worden verklaard door het feit dat 

veranderingen in eiwitexpressie later zichtbaar zijn dan de duur van dit experiment. De gevonden 

veranderingen in metabolieten en peptiden waren gerelateerd aan de CSD, omdat zij afwezig waren 

in de controles waar KCl vervangen werd door NaCl, wat geen CSD induceert.

In hoofdstuk 6 hebben we de toepassing van MALDI MSI uit hoofdstuk 5 om te onderzoeken 

of migraine-gerelateerde moleculaire veranderingen in de hersenen van FHM1 R192Q optreden na 

experimenteel geïnduceerde CSD. CSD voorvallen leidden tot diverse veranderingen in de inhoud 

van drie moleculaire groepen (d.w.z. metabolieten, peptiden en proteïnen) in zowel de cortex als 

subcorticale gebieden. Zodra toekomstig onderzoek de identiteit van de moleculaire veranderingen 

onthult, kunnen deze veranderingen nieuwe neurobiologische routes tonen die betrokken zijn bij de 

pathofysiologie van migraine. Op dit moment tonen de gevonden bevindingen aan dat CSD voorvallen 

in R192Q en WT muizen gerelateerd zijn aan verschillende moleculaire profielen, weergegeven als 

verschillen in m/z waarden.

In hoofdstuk 7 werd de MS technologie gecombineerd met capillaire elektroforese  om zo de 

veranderingen in plasmametabolietcompositie in FHM1 R192Q en WT muizen na experimenteel 

geïnduceerde CSD te beoordelen. We konden specifieke veranderingen in metabolieten in perifere 

lichaamsvloeistof aantonen. In vergelijking met WT muizen werden in R192Q muizen geïnduceerde 

CSD voorvallen geassocieerd met een lager niveau van lysine en een hoger niveau van pipecolinezuur, 

een bijproduct van lysine katabolisme. De studie suggereert dat metabolische veranderingen 

die optreden in de hersenen van migrainepatiënten kunnen worden gemeten in plasma, wat deze 

veranderingen toegankelijk maakt voor onderzoekers. Als dit inderdaad zo is, kunnen metabolische 

veranderingen in plasma van migrainepatiënten dienen als potentiële biomarkers.

Hoofdstuk 8 geeft een algemene discussie van de belangrijkste bevindingen in dit proefschrift.
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