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UNIRATIONALITY OF DEL PEZZO SURFACES OF DEGREE TWO OVER
FINITE FIELDS

DINO FESTI, RONALD VAN LUIJK

ABSTRACT. We prove that every del Pezzo surface of degree two over a finite field is unirational,
building on the work of Manin and an extension by Salgado, Testa, and Varilly-Alvarado, who
had proved this for all but three surfaces. Over general fields of characteristic not equal to two,
we state sufficient conditions for a del Pezzo surface of degree two to be unirational.

1. INTRODUCTION

A del Pezzo surface is a smooth, projective, geometrically integral surface X of which the
anticanonical divisor —Kx is ample. We define the degree of a del Pezzo surface X as the self
intersection number of Kx, that is, deg X = K%. If k is an algebraically closed field, then every
del Pezzo surface of degree d over k is isomorphic to P! x P! (with d = 8), or to P? blown up in
9 — d points in general position.

Over arbitrary fields, the situation is more complicated and del Pezzo surfaces need not be
birationally equivalent with P?. We therefore look at the weaker notion of unirationality. We say
that a variety X of dimension n over a field k is unirational if there exists a dominant rational
map P --» X, defined over k. We prove the following theorem.

Theorem 1.1. FEvery del Pezzo surface of degree 2 over a finite field is unirational.

The analog for higher degree holds over any field. Works of B. Segre, Yu. Manin, J. Kollar,
M. Pieropan, and A. Knecht prove that every del Pezzo surface of degree d > 3, defined over any
field k, is unirational, provided that the set X (k) of rational points is non-empty. For references,
see [Seg43, Seghl]| for k = Q and d = 3, see [Man86, Theorem 29.4 and 30.1] for d > 3 with the
extra assumption for d € {3,4} that k has enough elements. See [Kol02, Theorem 1.1] for d = 3
and a general ground field. The earliest reference we could find for d = 4 and a general ground field
is [Piel2, Proposition 5.19]. Independently, for d = 4, [Knel5, Theorem 2.1] covers all finite fields.
Since all del Pezzo surfaces over finite fields have a rational point (see [Man86, Corollary 27.1.1]),
this implies that every del Pezzo surface of degree at least 3 over a finite field is unirational.

Most of the work to prove Theorem 1.1 was already done. Building on work by Manin (see
[Man86, Theorem 29.4]), C. Salgado, D. Testa, and A. Vérilly-Alvarado prove that all del Pezzo
surfaces of degree 2 over a finite field are unirational, except possibly for three isomorphism classes
of surfaces (see [STVA14, Theorem 1]). In Section 3, we will present the three difficult surfaces
and show that these are also unirational, thus proving Theorem 1.1.

Before that, in Section 2, we will recall the basics about del Pezzo surfaces of degree 2, including
the fact that the linear system associated to the anti-canonical divisor induces a finite morphism
to P? of degree 2. We call this morphism the anti-canonical morphism associated to X. This
allows us to state the second main theorem.

Theorem 1.2. Suppose k is a field of characteristic not equal to 2. Let X be a del Pezzo surface
of degree 2 over k, and let m: X — P? be its anti-canonical morphism. Assume that X has a
k-rational point, say P. Let C C P? be a geometrically integral curve over k of degree d > 2 and
suppose that w(P) is a point of multiplicity d — 1 on C. Suppose, moreover, that C intersects
the branch locus B of the morphism w with even multiplicity everywhere. Then the following
statements hold.
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(1) If w(P) is not contained in B, then X is unirational.

(2) If w(P) is contained in B, and it is an ordinary singular point on C and we have d € {3,4},
then there exists a field extension £ of k of degree at most 2 for which the preimage m=(Cy)
is birationally equivalent with P}; for each such field ¢, the surface X, is unirational.

The main tool for the proof of both theorems is Lemma 3.2 (that is, [STVA14, Theorem 17]),
which states that, outside characteristic 2, a del Pezzo surface of degree 2 is unirational if it contains
a rational curve. We prove Theorem 1.2 in Section 4 by showing that, under the hypotheses of
Theorem 1.2, the pull-back of the curve C' to X contains a rational component. Manin’s original
construction, and the generalisation by Salgado, Testa, and Varilly-Alvarado, produces a rational
curve that corresponds to case (1) of Theorem 1.2, with 4 — d equal to the number of exceptional
curves that P lies on. In particular, their construction requires a point on the del Pezzo surface
that does not map to the branch locus of the anti-canonical morphism. The three remaining
surfaces do not have such a point: for each of them, all the rational points lie on the ramification
locus. For these surfaces, we use case (2) of Theorem 1.2 (see Remark 4.1) to prove unirationality.
Here we benefit from the fact that if k is a finite field, then any curve that becomes birationally
equivalent with P! over an extension of k, already is birationally equivalent with P! over k itself.

For interesting examples and more details about the proof of Theorem 1.2, Manin’s construction,
as well as a generalisation of Theorem 1.2, we refer the reader to an extended version of this paper
[EvL14].

The authors would like to thank Bjorn Poonen, Damiano Testa and Anthony Vérilly-Alvarado
for useful conversations.

2. DEL PEZZO SURFACES OF DEGREE TWO

The statements in this section are well known and we will use them freely. Let X be a del
Pezzo surface of degree 2 over a field k with canonical divisor Kx. The Riemann-Roch spaces
L(—Kx) and £(—2K x) have dimension 3 and 7, respectively. Let x,y, z be generators of £L(—Kx)
and choose an element w € L(—2Kx) that is not contained in the image of the natural map
Sym? L(~Kx) — L£L(—2Kx). Then X embeds into the weighted projective space P = P(1,1,1,2)
with coordinates x,y, z, and w. We will identify X with its image in [P, which is a smooth surface
of degree 4. Conversely, every smooth surface of degree 4 in P is a del Pezzo surface of degree 2.
There are homogeneous polynomials f,g € k[z,y, z] of degrees 2 and 4, respectively, such that
X C Pis given by

(1) w? + fw = g.

If the characteristic of k is not 2, then after completing the square on the left-hand side, we may
assume f = 0. For more details and proofs of these facts, see [Kol96, Section I11.3, Theorem III.3.5]
and [Man86, Section IV.24].

The restriction to X of the 2-uple embedding P — P® corresponds to the complete linear system
| — 2K x|. Every hyperplane section of X C P is linearly equivalent with —Kx. The projection
P --» P? onto the first three coordinates restricts to a finite, separable morphism 7x: X — P2
of degree 2, which corresponds to the complete linear system | — K x|. This is the anti-canonical
morphism mentioned in the introduction.

The morphism 7x is ramified above the branch locus Bx C P? given by f2 +4g = 0. If the
characteristic of k is not 2, then By is a smooth curve. We denote the ramification locus 7= (Bx)
of mx by Rx. As for every double cover, the morphism 7x induces an involution tx: X — X
that sends a point P € X to the unique second point in the fiber 73" (7x (P)), or to P itself if mx
is ramified at P. If X is clear from the context, then we sometimes leave out the subscripts and
write m,¢, B, and R for mx,tx, Bx, and Rx, respectively.

3. PROOF OF THE FIRST MAIN THEOREM

Set k; = ko = F3 and k3 = Fg. Let v € k3 denote an element satisfying 42 = v + 1. Note
that 7 is not a square in k3. For i € {1,2,3}, we define the surface X; in P = P(1,1, 1,2) with
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coordinates z,y, 2z, w over k; by
X1 —w? = (22 + )% +yPr -y,
Xo: —w? = 2t + 932 —y2?,
Xy yw? = 2t + ¢y + 21

These surfaces are smooth, so they are del Pezzo surfaces of degree 2. C. Salgado, D. Testa, and
A. Virilly-Alvarado proved the following result.

Theorem 3.1. Let X be a del Pezzo surface of degree 2 over a finite field. If X is not isomorphic
to X1, X2, and X3, then X is unirational.

Proof. See [STVAI14, Theorem 1]. O

We will use the following lemma to prove the complementary statement, namely that X7, Xo,
and X3 are unirational as well.

Lemma 3.2. Let X be a del Pezzo surface of degree 2 over a field k. Suppose that p: P! — X
is a monconstant morphism; if the characteristic of k is 2 and the image of p is contained in the
ramification divisor Ry, then assume also that the field k is perfect. Then X is unirational.

Proof. See [STVA14, Theorem 17]. O

For i € {1,2,3}, we define a morphism p;: P* — X; by extending the map Al(t) — X; given
by
t= (a(t) sy (t) : 2i(2)  wit)),

where
zi(t) = 2(t* - 1), wo(t) = t(t* + 1)(t* — 1), w3(t) = (1 + 1)(° —7°),
yi(t) = 2(t* = 1)%, ya(t) = —t, ys(t) = (t' = (> +7°),
21 (t) =8 — 12 + 1, 2o(t) =3 + 1, z3(t) = (t* + ) — ),
wi(t) =t =)+ D3+ 1), wao(t) =22+ 1) = 1),  ws(t) =+*({t5 - 1)(* + 7).

It is easy to check for each i that the morphism p; is well defined, that is, the polynomials
i, Vi, zi, and w; satisfy the equation of X;, and that p; is non-constant.

Theorem 3.3. The del Pezzo surfaces X1, Xo, and X3 are unirational.

Proof. By Lemma 3.2, the existence of p1, p2, and p3 implies that X, X5, and X3 are unirational.
O

Proof of Theorem 1.1. This follows from Theorems 3.1 and 3.3. O

4. PROOF OF THE SECOND MAIN THEOREM

If C is a plane curve with an ordinary singularity Q and C' is the normalisation of C, then we
can think of the points of C' above Q as corresponding with the branches of C' through Q. The
intersection multiplicity of C' with another plane curve B at @ is then the sum of the intersection
multiplicities of B with all the branches of C' through . This point of view is used in the
following proof. For more technical details about this approach, see the extended version of this
paper [FvL14].

Proof of Theorem 1.2. Let +: X — X denote the involution associated to the double cover 7. Set
Q = 7(P). Projection away from the point Q € C C P? yields a birational map C' --» P! whose
inverse ¥: P! — C can be identified with the normalisation map of C. The map ¥ restricts to
an isomorphism P! \ 971(Q) — C \ {Q}, and C is smooth away from Q. Let D = 7~ 1(C) be
the inverse image of C' under 7, and let D be its normalisation. Then 7 induces a double cover
7: D — PL
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Let S € P! be a point and set T = 9(S) € C. The curve B is given locally around T by the
vanishing of a rational function on P? that is regular at 7. We let h denote the image of such a
function in the local ring O¢ 1 of T'in C.

If T'# @, then T is a smooth point of C, so the ring Oc, 7 = Op1 g is a discrete valuation ring.
In this case, the valuation of h equals the intersection multiplicity of B and C' at T', which is even.
Since the characteristic of £ is not 2, this implies that adjoining a square root of h to O¢ r yields
an unramified extension, so the morphism 7: D — P! is not ramified above S when T' # Q.

Suppose that @ is not contained in B. Then for T' = @, the element h is a unit in the local ring
Oc¢,r, and therefore also in the ring extension Op: g. Hence, as before, since the characteristic
of k is not 2, this implies that the morphism 7 is not ramified above S. This means that 7 is
unramified. Since IP% has no nontrivial unramified covers, this means that the curve D, and hence
the curve D C X, splits into two components over some quadratic extension ¢ of k. Exactly one
of the components of D contains the rational point P and the other component contains ¢(P).
This implies that the Galois group Gal(¢/k) sends each component to itself, so these components
are defined over k. Each maps isomorphically to C, so X contains a curve that is birationally
equivalent to P! and therefore X is unirational by Lemma 3.2. This proves (1).

Suppose that Q is contained in B and that it is an ordinary singular point on C. Then 9~(Q)
consists of exactly d — 1 points over k, each corresponding to the tangent direction of one of the
d — 1 branches of C' at ). At most one of the tangent directions is tangent to B, so at least d — 2
of the branches intersect B with multiplicity 1. The total intersection multiplicity of B and C
at @ is even. If d is odd, then the contribution (d — 2) - 1 of the d — 2 branches with intersection
multiplicity 1 is odd, so the last branch intersects B with odd multiplicity as well; hence all d — 1
branches intersect B with odd multiplicity, which implies that 7: D — P! is ramified above all
d—1 points above Q. If d is even, then the contribution of the d — 2 branches of C' that intersect B
with multiplicity 1 is even as well, so the last branch intersects B with even multiplicity; as before,
this means that 7 is not ramified above the point in 9¥~1(Q) C P* that corresponds to this last
branch, so 7 is ramified above exactly d — 2 of the d — 1 points above Q. For d € {3, 4}, these two
cases (d odd or even) imply that the map 7: D — P! is ramified at exactly two points, so D is a
geometrically integral curve of genus 0 by the theorem of Riemann-Hurwitz. Indeed, this implies
that there is a field extension £ of k of degree at most 2 for which De, and thus Dy = 77 1(Cy), is
birationally equivalent with P}. For each such field, the surface X, is unirational by Lemma 3.2.
This proves (2). O

Remark 4.1. Let the surfaces X1, X2, X3 and the morphisms p1, p2, p3 be as in the previous section.
Take any i € {1,2,3}. Set A; = p;(P!) and C; = m;(4;), where m; = 7x,: X; — P? is as described
in the previous section. By Remark 2 of [STVA14], the surface X; is minimal, and the Picard
group Pic X is generated by the class of the anticanonical divisor —Kx,. The same remark states
that the linear system | —nKx,| does not contain a geometrically integral curve of geometric genus
zero for n < 3if i € {1,2}, nor for n < 2 if ¢ = 3. For i € {1,2}, the curve A; has degree 8, so
it is contained in the linear system | — 4K x,|. The curve As has degree 6, so it is contained in
the linear system | — 3K x,|. This means that for ¢ € {1,2,3}, the curve 4; has minimal degree
among all rational curves on X;. The restriction of 7; to A; is a double cover A; — C;. The curve
C; C P? has degree 4 for i € {1,2} and degree 3 for i = 3, and C; is given by the vanishing of h;,
with

hy =2t + 2y® + y* — 2?yz — zy®z,

hy =z* — 2%y? — y* + 2%yz + y2°,
hs =x y+zy +xzzfxyz+y227x22 fyzz — 25
For i € {1, 2}, the curve C; has an ordinary triple point Q;, with @1 =(0:0:1), Q2 = (0:1:1).
The curve C5 has an ordinary double point at @3 = (1:1:1). For all ¢, the point Q; lies on the
branch locus B; = By;.
Using the polynomial h;, one can check that the curve C; intersects the branch locus B; with
even multiplicity everywhere. In fact, had we defined C; by the vanishing of h;, then one would
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easily check that C; satisfies the conditions of part (2) of Theorem 1.2. This gives an alternative
proof of unirationality of X; without the need of the explicit morphism p;; here we may use the
fact that if k is a finite field, then any curve that becomes birationally equivalent to P! over an
extension of k, already is birationally equivalent with P! over k. Indeed, in practice we first found
the curves C1, C5, and C3, and then constructed the parametrisations p1, p2, p3, which allow for
the more direct proof that we gave of Theorem 3.3 in the previous section.
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