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Chapter 1: General Introduction 

 

The ubiquitin-proteasome system 

Protein degradation is essential for cellular homeostasis and thus for cell survival. Having a 

regulated protein degradation machinery is crucial to protect functional proteins from 

degradation, to control proteins half-life or to degrade misfolded or damaged proteins 

which can be harmful to the cells. The ubiquitin-proteasome system (UPS) is the main 

degradation pathway in eukaryotes [1, 2]. The UPS marks the proteins for degradation 

with a poly-ubiquitin chain by means of three different enzyme families which work in 

cascade [3] to first identify the substrate and then attach to it a poly-ubiquitin chain 

(figure 1). Ubiquitin itself is a small protein (76 amino acids) that is mostly used as a post-

translational modification (PTM) as effected in a cascade of reactions executed by three 

different types of enzyme families known as E1, E2 and E3 (figure 1). In this process, an 

isopeptidic linkage is produced starting from lysine side chain amines and the C-terminal 

carboxylate of ubiquitin. Ubiquitination of proteins can regulate the substrate cellular 

localization, control its degradation and plays a role in protein-protein interactions. All 

these cellular processes are regulated by a variety of ubiquitin modifications. Protein 

substrates can be modified with a single ubiquitin molecule or with a poly-ubiquitin chain. 

Ubiquitin has seven different lysine residues through which they can be linked to each 

other to build a poly-ubiquitin chain. These chains can be linear, branched or mixed with 

other ubiquitin-like molecules. The best-characterized poly-ubiquitin chains are so far the 

lysine 63- and lysine 48-linked chains while for the other types little is known. Lysine 48 

(K48)-linked poly-ubiquitinated proteins are directed towards the proteasome where they 

are processed into small oligopeptide fragments. The majority of these peptides are 

further recycled into single amino acids by different peptidases, but a small fraction 

(estimated to be about 1%) of the peptides generated by the proteasome and partially 

processed by downstream aminopeptidases are presented on MHC-class I molecules for 

presentation to the immune system. CD8-positive cytotoxic T cells have developed to 

recognize peptide-loaded MHC class I molecules and to discriminate between self-

peptides and foreign peptides. In this fashion, the UBP plays an important role in 

immunity and assists in reporting on, for instance, viral infections. 
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Figure 1. Schematic representation of the UPS. Ubiquitin is transferred from an E1 ubiquitin 

transferase to an E2 transferase. This E2-Ub complex binds and transfers the ubiquitin to a protein 

substrate, which is bound to an E3 enzyme. This last step is repeated (not necessarily by the same 

pair of enzymes) to build a poly-ubiquitin chain on the substrate, which targets the protein for 

proteasome degradation. Proteasomes degrade proteins into smaller peptide fragments while the 

ubiquitin moieties are released and recycled. The generated peptides are further degraded into single 

amino acids by aminopeptidases. About 1% of the peptides are loaded onto MHC-class I molecules 

for antigen presentation on the cellular membrane. 

The proteasome is a large protein complex of around 2.5 MDa. It consists of a barrel-

shaped core particle, termed 20S, and a small variety of regulatory particles (RP) of which 

the most common is the 19S RP [4]. The 19S RP binds to one and potentially both sides of 

the 20S, and triggers an opening to the inside where the catalytic sites are situated. The 

ubiquitinated substrates are recognized by the 19S RP, which unfold and translocate them 

into the 20S inner chamber for degradation. The protein will be cleaved into small 

peptides, which vary between 3 and 15 amino acids in length. The 19S subunit Rpn11 

shows deubiquitylating (DUB) activity, which cleaves the bond between the substrate and 

the poly-ubiquitin chain; this chain will be recycled into single ubiquitin molecules by 

other DUBs [5]. The 20S proteasome consist of 14 pairs of alpha and beta subunits, which 

are stacked in rings, being the two alpha rings (each of 7 subunits) on the outer site of the 

barrel with the two beta rings on the inside. In prokaryotes all seven beta subunits have a 

catalytic activity which does not differ between subunits, but in eukaryotes only three of 

the seven beta subunits remain catalytically active, namely β1, β2 and β5. These subunits 

show differences in their substrate specificity, with β1 cutting preferably the C-terminal of 

acidic amino acids, β2 after basic ones and β5 rather after bulky or uncharged amino acids 

[4]. In organisms that have evolved an immune system, the UPS has increased its 

capability of generating different peptides from a single protein by expressing 
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immunoproteasomes 20S particles, where the active subunits of the constitutively 

expressed proteasome (constitutive proteasome, active subunits termed β1c, β2c and 

β5c) have been replaced by their immunoproteasomes counterparts, β1i, β2i and β5i. 

These subunits have slightly different cleavage pattern compared to their constitutive 

counterparts, which has increased the rate of generating peptides suitable for antigen 

presentation [6, 7]. Having 6 different subunits has expanded the possible pool of 

proteasomes, since all subunit combinations can be expected, giving rise to hybrids 

proteasomes in which both immunoproteasome and constitutive proteasome subunits are 

assembled into the same 20S particle.  

 

Proteasome inhibitors and multiple myeloma 

It was thought that disruption of the proteasome was not an option in drug development 

due to its major role in cellular protein homeostasis. But the discovery of epoxomicin, a 

broad-spectrum proteasome inhibitor (PI) synthetized by bacteria to fight against fungi 

infections, which caused cellular apoptosis and the posterior evidence that the UPS 

regulates cell cycle progression and NFkB signaling, boosted the idea of the UPS blockade 

as a suitable antineoplastic strategy [8, 9]. Since then major efforts have been made to 

contribute to this hypothesis, and today two proteasome inhibitors (bortezomib and 

carfilzomib) have been approved by the FDA for the treatment of mantle cell lymphoma 

and specifically multiple myeloma (MM) [10, 11]. Currently PIs are being tested in clinical 

trials alone or in combination with other drugs against a variety of human diseases 

including breast cancer, arteriosclerosis and Alzheimer’s disease. 

In the case of MM patients, PIs have evolved from last resort therapy to being the 

principal treatment. Its phenotype may explain why especially this specific type of cancer 

is sensitive against proteasome inhibition. MM is a hematopoietic cancer affecting mainly 

plasma cells, which are fully differentiated B-cells responsible for antibody production. 

MM plasma cells have a high protein synthesis rate due to the large amount of a single 

class of antibodies generated for secretion. This high synthesis rate is coupled to a strict 

quality control check, where misfolded proteins need to be quickly degraded to avoid 

accumulation or aggregation of misfolded or damaged proteins, which can be detrimental 

to the cell survival. The proteasome is one of the main players in this quality control 

system. This difference in protein synthesis rate opens a therapeutic window for the 

treatment of MM with proteasome inhibitors. The success in extending patients lifespan is 

clear but PIs are not a cure, and patients always relapse after a certain amount of years. 

An acquired resistance against proteasome inhibitors is the main drawback in finding an 
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effective cure. The mechanisms behind the development of adaption are not completely 

understood [4, 12, 13]. Some studies with PI resistant cell lines suggest that point 

mutations in the pocket of the β5 subunit, which is the main target of bortezomib and 

carfilzomib, impede the proper binding of the inhibitors within the active site pocket 

destabilizing the interaction [14]. Although these cell lines mimic the resistance found in 

patients, no mutations in the β5 subunit have been found in patients with relapse or 

refractory myeloma [15, 16]. This suggests that different mechanisms may drive the 

acquisition of resistance. Most of the secreted proteins, such as immunoglobulin, are 

synthetized in the endoplasmic reticulum (ER). Misfolded or damaged proteins located in 

the ER are degraded through the ER associated degradation (ERAD) pathway in which the 

proteasome is the main protease in charge of their degradation [17]. If the ERAD pathway 

capacity to deplete the ER-stress produced by the accumulation of misfolded proteins is 

exceeded, the UPR will be triggered, which through different synergistic mechanisms will 

alleviate the ER-stress (figure 2 and Chapter 2 of this thesis) [18]. These mechanisms are 

characterized by an increase in the cellular oxidative folding machinery, an enhancement 

of the proteasome activity together with autophagy activation and a lower protein 

synthesis rate. If the UPR activation is not enough to compensate ER-stress, the cell will 

become apoptotic and die [19]. It is the current view that this is the actual way of action of 

PI for inducing cell death and also the reason why cancerous plasma cells are especially 

sensitive against this treatment since they are overproducing immunoglobulin for 

secretion and it is already provoking a basal ER-stress [20]. Recent studies suggest that a 

modulation of the ER and its associated unfolded protein response (UPR) could be the 

reason for the adaptation against PIs [20-22]. 
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Figure 2. Schematic representation of ER-stress. Proteins need to be properly folded and in some 

cases modified prior secretion. This process takes place mainly in the ER. ERAD (1) tags misfolded 

proteins with poly-ubiquitin chains for proteasomal degradation. If these misfolded or damaged 

proteins start to accumulate in the ER lumen, the unfolded protein response (UPR) will be triggered 

(2). The UPR will increase the ERAD capacity and the folding machinery of the ER and at the same 

time will slow down general protein synthesis in the cell. If UPR activation is not enough for 

alleviating the stress caused by accumulation of misfolded proteins, cells will enter apoptosis and die 

(3). 

 

Activity-based protein profiling (ABPP) 

Enzymes are dynamic proteins or protein complexes acting as catalysts in biological 

reactions. They can be very selective, having a small subset of substrates, or much 

broader, where they can react with a large variety of substrates. Enzyme activity needs to 

be tightly regulated, so that only the necessary reactions depending on the cellular needs 

take place. This can be done with activators, inhibitors, regulatory particles, in some cases 

by posttranslational modifications (PTMs) or even by keeping the enzyme in a specific 

cellular compartment where it can only access substrates, which are in the same 

compartment.  

Measuring enzyme activity has always been of great interest for researchers both for 

fundamental reasons, to expand the knowledge of enzymatic reactions or signaling 

pathways, and for applied biomedical reasons. Some diseases are directly related to an 

altered enzyme activity and therefore modulating the activity of some enzymes can be 

used as treatment against diseases, as is demonstrated in the case of MM by the 

inhibition of the proteasome. Proteasome activity has been measured mostly by means of 
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quenched fluorogenic substrates, which become fluorescent after being processed by the 

proteasome. These substrates allow distinguishing between the three different active sites 

of the proteasome, β1, β2 and β5, but do not permit the differentiation between the 

constitutive proteasome and immunoproteasome subunits. In the last 15 years a new 

method for measuring enzyme activities has been developed, termed activity based 

protein profiling (ABPP) [23-25]. This technique makes use of tagged inhibitors, called 

activity-based probes (ABPs), which create a covalent and irreversible bond with the 

catalytic active site of the enzyme allowing its direct measurement. By means of 

fluorescent-tagged ABPs the separation and quantification of the 6 different proteasome 

activities was achieved [26, 27]. ABPP was also used to demonstrate the activity of a new 

proteasome active subunit, the β5t, which is exclusively expressed in the thymus [28]. 

ABPs can be used to identify and quantify enzyme activities on gel when bearing a 

fluorescent tag or for enzyme affinity purification if tagged with an affinity handle such as 

a biotin moiety. ABPs consist of three parts, an electrophilic trap or warhead, a linker or 

enzyme targeting moiety and a tag. The warhead is the chemical entity, mostly a 

nucleophile, which reacts with the active site of the target enzyme creating a covalent 

bond between the ABP and the enzyme. The linker or backbone is used for enzyme 

targeting thus making the ABP specific against a single or a broader range or enzymes. This 

backbone in most cases mimics the enzyme substrate structure or the one of natural 

compounds found to bind the target enzyme. In some cases the presence of a tag can 

interfere with the selectivity or potency of the probe and when using it on living cells also 

to its cellular localization. To avoid these possible caveats the tag can be replaced by a bio-

orthogonal handle, generating two-step ABPs [29, 30]. Bio-orthogonal tags are small 

chemical moieties which are chemically inert under physiological conditions and are able 

to perform a reaction with another chemical entity under these conditions without 

interfering with the surrounding [31]. Azide or alkyne groups are the most popular 

bioorthogonal tags due to their small size, comprising just few atoms, and their highly 

selective reactions. All these different features are what make ABPP a broadly used 

technique in the study of a large variety of enzymes. It has been shown to be a robust and 

reliable concept, which allows quantification of the enzymatic activity or the enrichment 

of the target enzyme. 

 

Aim and outline of this thesis 

The work described in the first part of this thesis (Chapters 3 and 4) is focused on 

expanding the knowledge about proteasome activity-based probes by in depth 
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characterization. The use of ABPP and mass spectrometry (MS) in the elucidation of the 

resistance mechanisms which confer resistance towards proteasome inhibitors in multiple 

myeloma samples is presented in Chapter 5. 

Chapter 2 comprises a literature overview, which covers in more detail the link between 

the proteasome, proteasome inhibitors and multiple myeloma. The possible adaptation 

mechanisms will also be briefly discussed with a focus on the UPR and the redox 

machinery of the cell. 

First part of Chapter 3 presents an overview of two-step proteasome ABPP strategies 

reported in literature performing different bio-orthogonal reactions. The second part of 

this chapter describes the characterization of a broad-spectrum ABP and the 

determination of the unlabeled proteasome fraction after probe exposure. 

Chapter 4 describes a screen of 7 different ABPs in mouse and zebrafish tissue extracts. 

Chapter 5 provides a study on the mechanisms of adaptation towards proteasome 

inhibitors in multiple myeloma samples by a combination of ABPP and MS-based 

proteomics.  

Chapter 6 is a summary of the whole thesis and the future prospects for the different 

chapters. 
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Chapter 2: Towards Understanding Induction of Oxidative 

Stress and Apoptosis by Proteasome Inhibitors* 

 

Introduction 

The ubiquitin-proteasome system (UPS) is the major cytosolic and nuclear protein 

turnover machinery [1, 2]. Ubiquitylated proteins are recognized and processed to 

produce small- and medium size oligopeptides that are further processed by 

aminopeptidases to deliver amino acids for reuse in protein synthesis. The UPS ensures 

controlled protein turnover by the time-dependent targeting and degradation of its 

substrates and in this fashion determines the half-life of each cytosolic and nuclear 

protein. The UPS also partakes in the degradation of misfolded and dislocated proteins 

from the ER and therefore plays a major role in the cellular response to ER stress, and is 

responsible for the removal of proteins damaged by oxidative stress [3, 4]. Part of the 

peptide pool produced by proteasomes and further trimmed by downstream 

aminopeptidases are transported to the luminal side of the endoplasmic reticulum, where 

they are loaded onto major histocompatibility complex class I (MHCI) molecules for 

presentation at the outer cell surface to the immune system [5-8]. CD4+ cytotoxic T-cells 

discriminate between self peptides and foreign peptides presented in this fashion and by 

processing virally encoded proteins for MHCI mediated antigen presentation proteasomes 

contribute to the detection and eradication of virally infected cells.  

Proteasomes are expressed almost ubiquitously throughout the kingdoms of life 

(Eubacteria generally do not contain proteasomes except some actinomycetes and 

mycobacteria). Although proteasomes have evolved over time, the overall layout of the 

inner proteolytic assemblies, called 20S core particles (CP), has remained remarkably 

conserved. 20S proteasomes are C2-symmetric barrel-like structures that consist of four 

rings of seven protein subunits each, arranged in an αββα fashion with two outer α rings 

and two inner β rings. In 1995, the crystal structure of the archaeal 20S proteasome was 

solved [9]. In prokaryotes the α-subunits are identical and the same holds true for the β-

subunits. In 1997 the crystal structure of the yeast 20S proteasome was solved [10] and in 

2002 the structure for mammalian 20S was determined [11]. In eukaryotes both α-

subunits and β-subunits have diverged such that, though the overall C2-symmetrical 

geometry is maintained, the seven α-subunits in each α ring are unique, as is the case for 

the seven β-subunits. In prokaryotes each β-subunit is catalytically active. In yeast and all 

                                                            
*
Antioxid. Redox Signal., 2014 Dec; 21(17): p. 2419-2443 
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other eukaryotes however, each β ring contains only three β-subunits with enzymatic 

activity (β1, β2 and β5). Thus eukaryotes lack enzymatic activity of β3, β4, β6 and β7 but 

this loss is offset by a diverged substrate specificity of the remaining subunits. Of these, β1 

is also known as ‘caspase-like’ because it recognises and processes substrates having 

acidic residues at position 1 (P1 – the amino acid occupying in the proteasome active site 

the position containing the scissile amide bond). The β2-subunit cuts preferentially C-

terminal of basic amino acids and is therefore also referred to as ‘trypsin-like’, whereas β5 

prefers hydrophobic residues and is referred to as ‘chymotrypsin-like’. 

Proteasome subunits are only catalytically active when part of a 20S core particle. The 

assembly of 20S particles have been subject to intensive studies leading to detailed insight 

into the various consecutive steps by which these superstructures are formed [12, 13]. 

The proteasome-assembling chaperones (PAC) 1-4 form heterodimers that direct the α 

ring assembly. Once seven α-subunits are assembled into one ring, the β-subunits are 

incorporated. UMP1 is essential for correct assembly of the β-subunits. Their precursor 

peptides (β-propeptides) are essential for proper β ring formation. The β7-subunit is the 

last subunit incorporated into the ring, forming one half of a 20S proteasome. Assembly of 

a core 20S particle from two halves is guided by the C-terminal tail of the β7-subunits, 

which acts as a chaperone. Finally, CP maturation is accomplished by intramolecular 

clevage of the propeptide of the inactive subunits to generate the active site [12-14]. 

Experimental data suggests that the N-terminus of the α-subunits in the α-rings form a 

gate that closes the pore of the catalytic chamber, restricting the access of substrates. As a 

consequence, the 20S core particle alone shows a basal catalytic activity, which is 

enhanced when bound to regulatory particles (RP) [14].  

In vertebrates, specific tissues express the interferon-gamma-inducible 

immunoproteasomes. In these particles the catalytic β subunits of the constitutive 

proteasome are replaced by β1i, β2i and β5i respectively [15, 16], The 

immunoproteasome 20S core particle are assembled de novo and cannot derive from 

subunit exchange starting from constitutive proteasome 20S particles, as proposed earlier 

[17, 18]. Immunoproteasomes have a slightly different substrate preference compared to 

constitutive proteasomes and this difference in cleavage correlates with MHC Class I 

peptide bonding specificity, which is a very important feature in immunology [6]. Recently 

the crystal structure of the mouse immunoproteasome at 2.9 Ǻ resolution was solved this 

structure revealed some differences between the immunoproteasome and constitutive 

proteasome active sites, thus underscoring that the substrate specificity is slightly 

different [19]. 
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In 2007, Murata et al. discovered a new protein with an overall sequence highly similar to 

β5 and β5i, suggesting that this protein may belong to the same protein family although of 

a larger size [20]. This protein, named β5t, is expressed specifically in thymic cortical 

epithelial cells, where it substitutes β5i, in immunoproteasomes [21]. This resulting 20S 

core particle has been dubbed the thymoproteasome and ensuing studies suggested a 

specific role for thymoproteasomes in positive T-cell selection. In 2010, our group showed 

by means of activity-based protein profiling that β5t is catalytically active. The inhibitor 

profile resulting from a competitive activity-based protein profiling assay performed on 

thymoproteasomes moreover suggests that the β5t active site pocket is more hydrophilic 

than β5 and β5i [22]. This altered inhibitor preference may reflect an altered substrate 

preference as well, which in turn may help explaining the role of β5t in positive T cell 

selection. 

Next to the three distinct 20S proteasome core particles (constitutive proteasome, 

immunoproteasome and thymoproteasome), a number of hybrid or ‘intermediate’ 20S 

particles have been discovered in the past decade [23-28]. These particles may contain 

mixtures of constitutive proteasome and immunoproteasome active sites. Although to 

date only intermediate proteasomes have been identified that contain one (β5i) or two 

(β1i and β5i) of the three inducible catalytic subunits of the immunoproteasome, it may 

well be that more, and more complex intermediate proteasomes exist, adding to the 

complexity of the 20S core particle (20S-CP) family and its contribution to protein turnover 

and antigen presentation. 

Figure 1. Schematic representation of the eukaryotic constitutive proteasome. Cross section of the 

20S core particle containing the β1, β2 and β5 active subunits that confer the caspase-like, tryptic-

like and chymotryptic-like activity. Attachment of one 19S regulatory particle to the 20S core yields 

the 26S proteasome and two 19S caps with one 20S yields the 30S proteasome particle. In immune 
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competent tissues the active subunits can be replaced by their immunologic counter parts β1i, β2i 

and β5i forming the immunoproteasome. Replacement of β5i by the thymus specific β5t makes the 

thymoproteasome.  

20S core particles are capable of degrading peptides and small, or unfolded proteins but 

their physiological role is limited. To become fully functional, 20S particles associate with 

one or two of a number of regulatory caps [29]. Of these, the 19S cap is the most studied 

and the most important complex to associate with constitutive proteasome 20S core 

particles. 19S caps bind to the α-rings of a mature 20S thus giving rise to 26S proteasomes 

(one 19S cap associated) or 30S proteasomes (one 19S cap at both ends of the 20S barrel, 

Figure 1). 19S caps regulate 20S mediated protein turnover in an ATP-dependent fashion 

by identifying and binding polyubiquitinated proteins, unfolding the substrates, and 

translocating these into the 20S catalytic chamber. 19S caps are assembled from 19 

subunits, which can be divided in two subcomplexes: the lid and the base. The base is 

composed of 10 different proteins, 4 non ATPases and 6 AAA+ ATPases that form a 

hetero-hexameric ring, which in presence of ATP, binds the α-rings of the 20S facilitating 

the opening of the gate [30]. The base promotes the unfolding of the substrate, opens the 

pore to permit the entrance of the targeted substrates into the 20S inner chamber and 

translocates these. Of the 4 non-ATPases proteins, two are ubiquitin receptors and the 

other two can bind to the ubiquitin shuttle proteins Rad23, Ddi1 and Dsk2 [30]. The lid is 

situated on top of the base and contains 9 non-ATPases proteins. Its main function is to 

recognize and bind polyubiquitinated substrates and deubiquitylate these. The lid subunit 

Rpn 11 is the only deubiquitinating enzyme (DUB) incorporated into the 26S proteasome. 

Two additional DUBs, Usp14 and Uch37, are described as proteasome-associated proteins, 

however their precise binding position to the 26S is unknown [31]. 

Apart from the 19S caps, other proteasome activators have been found such as the PA28 

protein family and PA200. These regulatory particles activate the proteasome in an ATP-

independent manner in contrast to the 19S cap. The PA28 complex, also known as 11S, 

has 3 isoforms in higher eukaryotes, called PA28α, β and γ. PA28α and PA28β form a 

heteroheptamer, while the PA28γ, which is mainly found in the nucleus forms a 

homoheptamer [32]. Both complexes bind to the α rings and promote gate opening. Some 

studies have been reported that reveal the involvement of 11S activators in the 

production of peptides for antigen presentation through MHC class I complexes. However 

some cells and tissues which are not involved in the immune system, do express the 11S 

regulatory particles. 11S particles may also be part of hybrid proteasomes, with a 19S cap 

on one end and an 11S activator on the other [32]. The monomeric activator PA200 

(Blm10 in yeast) can partially open the gate of the 20S-CP, thus helping substrate entry in 

the proteolytic chamber. Although the 20S-CP is expressed in all eukaryotes, plants and 
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yeasts only contain PA200/Blm10 and do not have any of the PA28 isoforms. The function 

of the PA200 is poorly understood, but some studies point towards its involvement in the 

degradation of specific substrates [14]. 

Proteasome inhibitors 

Many different proteasome inhibitors (PIs) have been described over the past decades. PIs 

are derived both from natural sources and through organic synthesis. Both covalent 

reversible, covalent irreversible and non-covalent inhibitors are known. PIs have been 

reviewed extensively before [33-35], thus we will here focus mainly on site-selective 

inhibitors, for which we provide both a qualitative (different types of inhibitors) and a 

quantitative (potency and subunit selectivity) analysis. Figure 2 shows five classes of 

covalent inhibitors and their inhibition mechanisms. The first class is represented by the 

peptide aldehydes, with MG-132 as its most widely used member. Aldehydes form 

covalent, reversible bonds within proteasome active sites, and inactivate catalytic 

activities by hemiacetal formation with the N-terminal threonine of the proteasome 

subunits. A major drawback of aldehydes is their cross reactivity towards cysteine and 

serine proteases [35]. A well-known class of electrophilic traps is the family of 

epoxyketones. Inhibitors containing the epoxyketone moiety are highly selective for the 

proteasome, and no off targets have been found to date [36]. The structure of epoxomicin 

co-crystallized in yeast proteasomes reveals the molecular basis for this specificity. A 

morpholine ring is formed between the active site threonine and the epoxyketone, in 

which both the γ-hydroxyl and the free amine of the N-terminal threonine participate [37]. 

Another class of PIs are the boronic acids, with Bortezomib as the most renowned 

example [38]. Bortezomib (Velcade, PS-341) has been approved for the treatment of 

multiple myeloma (MM) patients [39]. Boronates form tetrahedral adducts with active site 

threonines, which are stabilized by hydrogen bonding [40]. Vinyl sulfones were initially 

used as cysteine protease inhibitors, but were also found to be potent PI’s [41, 42]. Vinyl 

sulfones are more readily synthesised than epoxyketones and have been used in many 

peptide inhibitors and activity based probes. Vinyl sulfones form a covalent adduct by 

conjugate addition of the hydroxyl-group of the active site threonine [43]. The last class of 

PIs discussed here are β-lactones, which form a covalent and relatively stable adduct to 

the proteasome by the attack of the catalytic threonine to the lactone, thereby forming a 

ester bond. In case of Marizomib (salinosporamide A, NPI-0052), the nucleophilic 

displacement of the chloride by the hydroxyl results in the formation of a tetrahydrofuran 

ring, which further stabilizes the adduct [44]. 
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Figure 2. Chemical structures of covalently binding proteasome inhibitors and the reaction 

mechanism of the electrophilic trap with the N-terminal active site threonine of the proteasome. 

MG132 is an example of an aldehyde warhead, Epoxomicin contains an epoxyketone, Bortezomib 

bears a boronic acid, ZL3VS holds a vinylsulfone and Marizomib is an example of β-lactone warhead. 

 

Proteasome inhibitors as drugs and clinical candidates 

Figure 3 shows the molecular structure of several PIs currently used in the clinic or that 

are studied as clinical candidates. Bortezomib was the first PI approved by the FDA for the 

treatment of multiple myeloma (MM) and refractory mantle cell lymphoma (MCL). Based 

on the great success of Bortezomib [45], other proteasome inhibitors have entered clinical 

trials, and Carfilzomib was recently approved for the treatment of MM. Unfortunately, 
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patients treated with Bortezomib often develop resistance against the drug. The 

mechanisms behind Bortezomib resistance are poorly understood, but recent studies in 

cell lines indicated three main pathways by which cells can acquire resistance to PIs: 1) by 

upregulation of proteasome subunits, 2) by mutations in the β5 subunit or 3) by 

upregulation of efflux pumps [46], although other mechanisms such as PI-resistant NF-kB 

activity, upregulation of chaperones such as Hsp27, Gp78 and Hsp90, overexpression of 

anti-apoptotic proteins like Bcl2 and XIAP or activation of autophagy can confer resistance 

to Bortezomib [47]. 

Two other boronates are currently under clinical investigation. These are Delanzomib 

(CEP-18770) and Ixazomib citrate (MLN-9708). Delanzomib was developed as an orally 

available analogue of Bortezomib (administered intravenously [48]). Delanzomib showed 

promising results in toxicity studies and is currently under Phase I-II clinical investigations 

[49]. MLN-9708, another orally bioavailable boronate currently in Phase III trials 

(http://clinicaltrials.gov, Newly Diagnosed Multiple Myeloma NCT01850524; Relapsed 

and/or Refractory Multiple Myeloma NCT01564537; Relapsed or Refractory Systemic Light 

Chain (AL) Amyloidosis NCT01659658), has improved properties compared to Bortezomib, 

such as slower off rate, large volume of distribution, improved pharmacodynamics and 

pharmacokinetics and antitumor activity. Importantly, MLN-9708 also shows activity in 

solid tumors [50]. Peptide epoxyketones have entered clinical trials as well and Carfilzomib 

was recently approved for the treatment of MM. Carfilzomib causes higher inhibition of 

chymotrypsin-like activity (88%) at maximal tolerated dose than Bortezomib (70%) and 

also higher partial response rates than Bortezomib [51]. In addition, side effects are 

reduced upon treatment with Carfilzomib compared to Bortezomib, which may be due to 

a lower number of off targets thanks to the proteasome-specific electrophilic trap 

represented by the epoxyketone [52, 53]. Extensive medicinal chemistry studies led to the 

development of the orally bioavailable epoxyketone ONX-0912, which is currently in 

Phase I clinical studies for the treatment of MM [54]. Finally, the β-lactone, Marizomib, is 

under clinical investigation for the treatment of MM, leukemia, lymphomas and solid 

tumors. Marizomib is the most potent of all PIs under clinical investigations and inhibits 

not only β5 but also β1 and β2 [55].  
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Figure 3. Chemical structures of drugs (blue) or drug candidates (red) based on proteasome 

inhibitors. 

Current research aims at novel therapeutic applications of inhibitors/modulators of the 

ubiquitin proteasome system in cancer and other diseases which emphasizes the 

increasing importance of these compounds for the clinic. In this issue some of these topics 

will be discussed such as the design of small-molecule noncompetitive regulators that 

target proteasome function by allostery and dynamics [56], the design of small-molecule 

noncompetitive neddylation regulators for targeted anti-cancer therapy with less 

anticipated cytotoxicity compared to PIs [57], how impairment of the UPS is implicated in 

the pathogenesis of a wide variety of neurodegenerative disorders [58], the impact of 

proteasome inhibition and the potential prognostic value of proteasome activities in heart 

diseases [59] and in atherosclerosis [60] and why the proteasome is a promising 

therapeutic target to combat malignant tumour growth in the lung [61]. 

 

Activity based probes 

In the past decades, various activity based probes (ABPs) for the proteasome β-subunits 

have been developed. Generally, ABPs consist out of three parts: 1. The electrophilic trap 

(‘warhead’), which covalently modifies the active site threonine of the β-subunit; 2. A 

recognition element, providing recognition by β-subunits; and 3. A reporter group, such as 

a radiolabel, biotin or fluorophore. The first activity-based proteasome probe reported is 

[3H]-lactacystin [62, 63], which was used to establish binding of lactacystin to all 
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proteasome β-subunits in a 2D-gel electrophoresis experiment. The natural product 

epoxomicin, which was found to exhibit antitumor effects, was found to target the 

proteasome by using biotin-epoxomicin as a probe, followed by detection of 

luminescence upon treatment with avidin-horseradish peroxidase [64, 65]. 125I-NIP-L3VS 

was used to prove that vinyl sulfones not only target cysteine proteases, but also 

covalently bind to proteasome β-subunits [41]. All β-subunit were visualized by NLVS in a 

2D-gel electrophoresis experiment using autoradiography detection of 125I.  More recently, 
125I-NIP-L3VS was used to screen for inhibitors of the proteasome by incubation of cellular 

extracts with a potential inhibitor, followed by labelling of residual proteasome activity by 
125I-NIP-L3VS. Next, the samples were resolved on SDS-PAGE and inhibition of a 

proteasome β-subunit is reflected by a decrease in intensity of the corresponding band 

[66].  

Figure 4. Schematic workflow of a competitive activity-based proteasome profiling (ABPP) 

experiment. After exposure to Bortezomib the residual proteasome activity was determined with two 

subunit specific ABPs for β1 (BODIPY-NC-001) and β5 (BODIPY-NC-005-vs), while the pan-reactive 

ABP (BODIPY-epoxomicin) will label residual β2 subunit activity. Proteins were resolved by SDS-PAGE 

and band intensity can be quantified after scanning the gel. In this example a relatively insensitive 

cell line was tested hence the high Bortezomib concentrations used. 

In the last years, various fluorescent ABPs for the proteasome subunits have been 

developed. The first such probe developed is the weakly fluorescent dansyl-Ahx3-L3-VS 

[67], which was followed by the BODIPY TMR containing MV151 [68] and Bodipy-FL-Ahx3-

L3-VS [69]. Using pan-reactive fluorescent probes MV151 and BODIPY-epoxomicin [70], all 
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subunits of both the constitutive and immunoproteasome can be visualized by fluorescent 

scanning, directly after resolving cellular extracts that have been incubated with the 

probes on SDS-PAGE. Figure 4 shows a schematic overview of the work-flow used for 

activity-based proteasome profiling. Visualization of proteasome activity by fluorescent 

ABP is straight forward, time efficient and provides higher resolution compared to either 

biotinylated or radiolabelled probes. MV151 and BODIPY-epoxomicin can be used both in 

living cells and in cell extracts [68, 70]. Next to ABPs that target all subunits, β-subunit 

specific ABPs have been developed. Based on NC-001, BODIPY-NC-001 shows highly 

specific labelling of both β1c and β1i, without labelling of the other subunits. The same 

applies to BODIPY-NC-005-vs, which is based on NC-005-mvs, which only labels β5c and 

β5i subunits [70]. However, generating a fluorescent ABP for β2 proved to be more 

difficult: attachment of a BODIPY fluorophore to LU112 yielded a compound that also 

labels β5 [71]. Therefore a two steps labelling using N3-NC-002 has to be used to 

specifically label β2 subunits [72]. UK101-B660 and UK101-Fluor, both based on the β1i 

selective inhibitor UK101, are used to selectively label β1i, both in cell extracts and in 

living cells [73]. Interestingly, the fluorophore is not attached to the N-terminus of the 

inhibitor, but to the P2 substituent, since the S2 pocket is rather large and solvent 

exposed, allowing for the introduction of bulky substituents. In general the proteasome 

ABPs can be used to quantify relative proteasome activity, to perform competitive activity 

based protein profiling (ABPP) to test the inhibition profile of potentially new inhibitors 

and as imaging probes according to the scheme in figure 4 [74]. 

 

Molecular mechanisms of proteasome inhibitors-induced apoptosis 

Review of clinical, preclinical and biochemical literature on the use of PIs in organisms, 

tissues and cells shows several corroborative observations: PIs induce cell cycle arrest and 

caspase mediated apoptosis that somehow affects oncogenically transformed cells more 

than healthy tissues [75]. This suggests that proteasome inhibition impacts stronger on 

fast proliferating tissues [76] and that PIs are remarkably “clean” in their mode of action 

by specifically targeting only the active subunits of the proteasome [36, 77]. Having said 

so, a plethora of exceptions to this dogma have become known. For instance, PIs do show 

adverse effects in the clinic, indicating that healthy tissues are affected, the anti-

neoplastic effects are limited to the treatment of several fast proliferative myeloma types 

of cancers but is less effective against quiescent cells or solid tumours and transformed 

cells evolve resistance to PI treatments [78]. Work in cell cultures showed that 

prerequisite of PIs for apoptosis induction is that they should deactivate at least two out 

of the three active proteasome subunits with potencies that eliminate >50% of the 
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subunits activity [79, 80]. It has been observed that multiple myeloma cells showing 

increased proteasome stress (balance between poly- and free ubiquitin) with the 

proteasome workload exceeding the proteasome capacity to process substrates are more 

sensitive to PI induced apoptosis [81]. Next to this, tremendous scientific efforts have 

been undertaken in the past decade to unravel the molecular mechanisms of PI-induced 

apoptosis. It is remarkable that proteasomes – major factors in protein homeostasis in 

every cell type – are in fact valid therapeutic targets and a detailed understanding in the 

mode of action of clinical proteasome drugs in effecting apoptosis may give invaluable 

information for designing future drugs. What makes understanding the mechanisms of 

apoptosis induction by PIs even more complicated is that the knowledge of the cell 

biological basis evolved alongside the development of more specific PIs leading to several 

controversies in the literature. On top of this, the above mentioned cellular effects of PIs 

may induce both cell protective and cell death pathways simultaneously, stressing the 

need to understand the kinetics and the cross-talk between the different effects.  

Besides its role of guarding the cellular amino acid homeostasis by degrading damaged or 

misfolded proteins, the UPS is instrumental for defining the repertoire of peptides used 

for antigen presentation of every cell and is vital for regulating signal transduction 

molecules that decide between cell survival and cell death both in the cytoplasm and the 

nucleus [36, 82]. Proteasome inhibition has been reported to have numerous effects on 

cells [82, 83], including the following: 1) Cell cycle arrest by activation of G2/M 

checkpoints, 2) Perturbation of cyto-protective and pro-death signaling transduction 

pathways, 3) ER stress and Ca2+ release, 4) Oxidative stress by Reactive Oxygen Species 

(ROS) production, 5) Depolarization of mitochondrial potential, and as a consequence of 

these effects, apoptosis. Also in patients, cell death is caused by non-cell autonomous 

mechanisms such as inhibition of IL6 secretion, inhibition of VEGF secretion and 

angiogenesis [77, 78].  

In the mid 90’s, the discovery that the UPS regulates cell cycle progression [84] and NFkB 

signalling [85] combined with early observations that PIs induce apoptosis [76], sparked 

the idea that the proteasome might be a suitable anti-neoplastic target that should be 

targeted with specific inhibitors [86]. Cell cycle progression is driven by oscillations in the 

activity of cyclin-dependent kinase (CDK) complexes with cyclins. CDK is activated by 

cyclins (short-lived regulatory proteins that undergo fast degradation at exit from cell 

cycle) and inhibited by p21 (WAF1/CIP1) or p27 (KIP1) proteins at the G2/M and G1/S 

transitions, respectively [84]. Cell cycle dependent phosphatases (CDC25A-C) antagonize 

the CDK complex kinase activity to ensure strict control of the cell cycle and fidelity of 

proliferation. Levels of all proteins engaged in this pathway is tightly controlled by the UPS 

and intervention via PIs disrupts the cell cycle accompanied by observations of p53 
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stabilization, decrease in NFkB level and accumulation of CDK complex activators and 

inhibitors, in different cell types both in cell culture as in animal models [36, 86-88]. It is 

not clear why cells arrest at the G2/M and not at the G1/S checkpoint but this might be 

explained by cell cycle dependent life-time of the p27 protein [89] or by the inability of the 

UPS to degrade cohesion complexes that hold together sister chromatids prior to mitosis 

[90]. It is also not clear how cells induce apoptosis under prolonged G2/M arrest. 

Investigations focused on the elevated levels of the tumour suppressor protein p53 as 

signalling molecule in this. The p53 protein is a short-lived sensor of DNA damage and 

oncogene activation, and in non-stressed p53 levels are maintained at low concentration 

via ubiquitination by the specific E3 ligase MDM2 [91]. Stress and DNA damage sensing 

kinase pathways (MAPK and ATM) mediated p53 phosphorylation [92] prevents its 

degradation and activates the transcription factor function of p53 that drives the 

expression of pro-apoptotic genes like Bax [93]. Early investigations showed a 

controversial role for the tumour suppressor gene p53 upon PI exposure where apoptosis 

was p53 dependent [94], p53 independent [95, 96] or showed mixed effects [87] 

indicating that forced accumulation of p53 might not be an universal pathway for PI 

induced apoptosis.  

The nuclear factor-kB (NFkB) family is an ubiquitously expressed group of transcription 

factors essential for leukocyte differentiation that drive a strong pro-survival program 

encompassing the synthesis of growth factors such as interleukin-6 (IL-6), cell adhesion 

molecules (E-selectin), detoxifiers (COX2 cyclooxygenase-2, NOS nitric oxide synthase) and 

anti-apoptotic factors (Bcl-2) in response to noxious stimuli including (oxidative) stress, 

bacterial/viral antigens, inflammation and UV radiation [36]. NFkB is sequestered in the 

cytoplasm by its inhibitory binding partner (IkB), which after receptor activation is 

phosphorylated, poly-ubiquitinated and degraded via the UPS allowing the free NFkB to 

translocates to the nucleus and activate transcription [85, 97]. Reports from the Anderson 

lab [87, 98, 99] revealed the elevated NFkB activity in hematopoietic cancers, which 

justifies the rationale of using PIs to inhibit this pathway for malignant cell survival. Of 

particular interest is their analysis of the gene expression profile in a MM cell line exposed 

to Bortezomib at concentrations that induce cell cycle arrest and apoptosis [98]. Data 

showed the expected down regulation of survival pathways and anti-apoptotic proteins as 

well as up-regulation of cell death signals via the canonical mitochondrial release of 

cytochrome C and caspase 9 activation but also via the Jun kinase and death 

receptor/caspase 8 dependent apoptotic pathway.  Expression of the 26S proteasome 

complex genes was found elevated and surprisingly protein folding chaperones like heat 

shock protein 70 went up indicating activation of a stress response. It was reported 
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previously that NFkB inhibition might not be enough to induce cell death in MM cells 

[100], a finding supported by studies on carcinoma cells [101] and myeloma cells [102]. 

In 2003, three studies, with partially overlapping observations, of PI induced apoptosis 

appeared. The combined results suggest that a) disruption of the unfolded protein 

response leads to apoptosis [103], b) generation of reactive oxygen species (ROS) and 

mitochondrial dysfunction triggers apoptosis [104] and c) induction of the pro-apoptotic 

Jun kinase pathway together with ROS kills leukemic cells [105]. Accumulation of 

polyubiquitinated and improperly folded proteins is an undisputed result of proteasome 

activity inhibition that imposes an unfolded protein burden on the ER [102, 106]. The ER is 

the cell organelle that serves functions in lipid metabolism, regulated Ca2+ storage and 

chiefly, the assembly, folding and post-translational modification of newly synthesized 

proteins [107]. Misfolded proteins are retained in the ER and retrotranslocated into the 

cytosol for proteasome based degradation, a process called ER-associated degradation 

(ERAD) [8]. PIs can block ERAD, leading to protein accumulation in the ER, which activates 

the cytoprotective phase of the Unfolded Protein Response (UPR), but also cause cytosolic 

accumulation of misfolded proteins in the nucleus and cytosol and the heat-shock 

response in the cytosol. The UPR consists of three branches activated by distinct sensors: 

the rapidly induced PERK (double-stranded RNA-activated protein kinase (PKR)-like ER 

kinase), the evolutionarily conserved IRE-1 (inositol requiring enzyme 1) and the ATF6 

(activating transcription factor 6), recently reviewed by Hetz [108]. The three sensors are 

transmembrane proteins that contain a luminal ER domain that interacts and senses 

unfolded proteins and a cytosolic part that conveys the signal to the nucleus in order to 

modulate gene expression programs. The initial signals from the UPR as conveyed by PERK 

result in a general slowdown in protein synthesis for immediate alleviation of the ER 

protein burden. IRE-1 in turn induces the synthesis of lipids, ERAD proteins and 

chaperones to increase the ER protein processing capacity and ATF6 induces the synthesis 

of ER-resident protein folding chaperones such as BiP (member of the heat shock protein 

HSP70 family [109]. Interestingly, the UPR seems to be activated in two waves: a first 

acute signalling through PERK, IRE-1 and an autophagy signal aimed mainly at repressing 

protein synthesis, followed by a second wave of IRE-1, ATF6 and PERK signalling to 

accommodate and equip the ER for facing up to a stress situation [108]. However, in the 

case of sustained ERAD block and protein burden, the IRE-1 and AFT6 signals decline while 

the PERK signalling persists and eventually leads to apoptosis induction via the 

eIF2α/ATF4/CHOP pathway [110].   

The question how a basically cytoprotective pathway like the UPR, can also drive a cell’s 

commitment to apoptosis has just recently been elucidated [111] and it might be 

physiologically relevant for host defence against the intracellular organisms 
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Mycobacterium tuberculosis [112]. PERK-mediated phosphorylation of the ubiquitous 

translation initiating factor eIF2α leads to its inactivation and thereby to global inhibition 

of mRNA translation but specifically induces ATF4 (activating transcription factor 4) 

translation [113]. ATF4 drives the expression of another transcription factor, CHOP 

(C/EBP-homologous protein), which has pro-apoptotic effects by repressing transcription 

of the anti-apoptotic Bcl-2 protein, induction of TRAIL-R2 death receptors that activate 

caspase 8 mediated apoptosis, cytotoxic Jun kinase activation and elevation in ROS by 

upregulating the ERO1α (ER oxidase 1α) that promotes disulfide bond formation in newly 

translated proteins. [110] The recent mechanism proposed by the Kaufman lab [111] 

states that immediately after an insult eIF2α phosphorylation slows down translation and 

subsequent induction of ATF4/CHOP and their downstream gene targets function to 

restore protein synthesis. In case protein synthesis increases before proteostasis 

equilibrium is achieved, ERO1α activity continues to increase the ROS levels driving the 

cell in a pro-apoptotic state that will lead to cell death.  

Dissection of the timing of activation, the sequence of events and the magnitude of the 

signal induced by the three UPR branches discussed above has been performed both in 

cell lines [114] and in tissues of UPR gene defective mice [113] using ER specific inhibitors 

of protein folding and trafficking like thapsigargin (Tg) and tunicamycin (Tm). Although ER 

stress induction by PIs is undisputed in the literature, the nature of a PI effect on the three 

UPR branches is less clear. At one end of the spectrum Bortezomib induced apoptosis by 

disrupting the IRE1 signalling in myeloma cells [103] or by inhibiting PERK and eIF2α 

phosphorylation but activating the ER resident caspase 4 mediated apoptosis in pancreatic 

cells [115]. These observations can be explained from the mechanism detailed above: 

although IRE1 signalling seemed disrupted [103], the paper showed a clear accumulation 

of CHOP that can drive apoptosis. In pancreatic cells CHOP and eIF2α activities were found 

[115] which according to the Kauffmann model [111] of ER-stress-induced transcription 

regulation increase protein synthesis leading to apoptosis. At the other side of the 

spectrum, PIs were found to induce apoptosis via the PERK/ATF4/CHOP terminal UPR in 

multiple myeloma [102] and head and neck squamous cell carcinoma cells [101]. 

Interestingly, PI induced UPR via PERK can also activate the expression of cytoprotective 

elements like the anti-apoptotic Mcl-1 protein [116] and the Nrf2 (nuclear factor-erythroid 

2–related factor 2)  transcription factor. Moreover, accumulating evidence points towards 

the existence of an ER-mediated apoptotic cascade proceeding via the ER-resident caspase 

4 activation [117-119] besides the two canonical apoptosis pathways regulated by death 

receptors via caspase 8 and mitochondrial damage in conjunction with capsase 9. 

A second mechanism of PI induced apoptosis that has been the subject of intense scrutiny 

comes from the observation that PIs cause intracellular ROS levels to steadily rise inducing 
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an oxidative state that pushes the cell towards cell death. Anti-oxidants like vitamin C, N-

acetylcysteine and gluthathione are able to quench the ROS molecules and prevent 

apoptotic death [120] except in one study that found that vitamin C can complex to 

Bortezomib preventing it from inhibiting the proteasome [121]. Although studies with PIs 

equipped with structurally unrelated warheads to Bortezomib [122, 123] show 

cytoprotective effects upon antioxidant treatment, the results of antioxidant studies 

should be interpreted carefully.  

Cells robustly maintain their reduction/oxidation (redox) homeostasis in a reducing state 

to prevent oxidative damage or degradation of vital bio-molecules [124]. This “reductive 

field” regulates levels of ROS molecules providing them a physiological function as 

signalling molecules for differentiation, cell cycle progression, growth arrest and 

apoptosis. ROS molecules such as the superoxide anion (O2
●-) hydroxyl radical (OH●), 

hydrogen peroxide (H2O2) and several other organic radicals are either side products of 

electron transport chains in the mitochondrial respiration cycle, of enzymatic metabolism 

(for instance, p450 cytochrome) or function as signalling molecules produced by the 

NADPH oxidases (NOX) family [125]. From the atoms necessary for life, sulphur is easily 

oxidized and sulphur containing amino acids like methionine and cysteine are prone to 

react with ROS. Cysteine is the main nucleophile in the active site of most phosphatises 

[126], ubiquitin chain E1,E2,E3 ubiquitin ligases and their antagonists deubiquitinating 

enzymes [127] which are essential enzymes for the post-translational control of vital 

pathways in the cell. Evidence accumulates that ROS can exert both physiological and 

pathological effects by oxidizing active cysteines and that a plethora of regulatory proteins 

(NFkB, p53, pyruvate kinase, ATM, amongst others) have evolved ROS sensing 

propensities by strategically incorporating cysteine residues that upon reacting with ROS 

influence the activity of the protein [128].  

ROS are continuously produced by leakage of electrons in the mitochondrial respiratory 

chain, in the ER by the activity of the ERO1α flavoenzyme needed for disulfide bond 

formation of newly translated proteins, in phagosomes for host defense against 

microorganisms and by NOXs at the cytosol side of the plasma membrane upon 

recruitment by major signalling receptors to participate via ROS production to the 

amplification of their signalling cascades in growth and proliferation (e.g. neuronal growth 

factor, NGF), immune response (e.g. toll like receptors, TLR) and apoptosis (e.g. tumor 

necrosis factor α ,TNFα) [129]. Although the first evaluations that PI induced ROS is 

necessary for apoptosis were performed in solid-tumour model systems [101, 104], the PI 

effects in hematopoietic malignancies like mantle cell lymphoma [96], leukemia cells [123] 

and MM [130, 131] showed to be more robust. Mitochondria, and ER-stress induced ROS 

[101], were indicated as source of ROS generation because all studies found a decrease of 
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the mitochondrial membrane potential (Δψm) that is indicative of mitochondrial damage 

leading to leakage of ROS in the cytoplasm. Mitochondria received most attention because 

they are both a ROS producer and a convergence point for ROS induced apoptosis which 

upon damage release cytochrome C that together with Apaf-1 and pro-caspase 9 form the 

canonical apoptosome system that activates executioner caspases to induce cell death 

[120]. Treatment with anti-oxidants reduced the ROS levels and the apoptotic events, 

indicating that ROS play an essential role in PI induced apoptosis. However, the use of 

organelle specific ROS reporters would be advisable for the future for more precise 

determination of the ROS source.  

Interestingly, differences in apoptosis induction pathways were found between different 

PIs with Bortezomib mainly functioning through the mitochondria/caspase 9 pathway 

[101, 104, 130] and NPI-0052 mainly through the FADD (Fas associated death 

domain)/caspase 8 pathway [123, 130]. Bortezomib has been shown to repress the cyto-

protective Bcl-2 protein [130] leading to release of the pro-apoptotic Bax protein which 

together with Bak injures the mitochondria [132]. Activation of the FADD is more difficult 

to explain but it might proceed via JNK signalling or terminal UPR response to ER stress 

[110]. It should be mentioned that the proapoptotic  Bak and Bax proteins also reside in 

the ER and are suggested to regulate Ca2+ storage and apoptotic events [133]. Release of 

Ca2+ in the cytoplasm can trigger apoptosis by activating the Ca2+ dependent CaMKII that 

signals to downstream apoptotic pathways [134]. Alternative mechanisms of Bortezomib 

induced apoptosis are the stabilization of the pro-apoptotic protein NOXA in 

medulloblastoma independently of p53 activity [135] or p53 dependent in mantle cell 

lymphoma [96]. Both were ROS dependent and function because NOXA binds to and 

displaces the anti-apoptotic Mcl-1 from a complex with Bak [136], which upon release 

binds to Bax promoting mitochondrial injury. As an exception, PI induced but ROS 

independent apoptosis was found in colon cancer models to proceed by p53 stabilization, 

driving the expression of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) 

that in turn promoted Bax activated apoptosis [83].  Evidence is accumulating that the ER 

plays a central role in PI mediated apoptosis by release of Ca2+ in the cytoplasm, UPR 

signalling and via an ER resident caspase 4 pathway [117-119] that gets activated upon ER 

stress. Recent work shows that caspase 4 is recruited to the ER by transmembrane protein 

214 (TMEM214), which was essential for ER stress-induced pro-caspase-4 activation and 

apoptosis [119]. Taken together, a logic interpretation is that ROS report upon the stress 

state and integrity of an organelle like the ER or the mitochondrium and in some cases, 

excessive ROS production might be a symptom of their injury. 

The onset of apoptosis by PIs has been linked to activation of intracellular stress sensing 

kinase cascades like the MAPK (mitogen-activated protein kinase) pathways, which 
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physiologically govern cell proliferation, stress response and survival [137]. Of the three 

MAPK modules, the Jun-N-terminal kinase (JNK) and p38 MAPK branches are associated 

with induction of apoptosis while the extracellular signal-regulating kinase (ERK) is 

cytoprotective [138]. PIs appear to induce apoptosis in MM cells in part by suppressing 

ERK and activating JNK [105, 137, 139], which was accompanied with increased ROS 

production. It remains unclear whether ROS production led to JNK activation and ERK 

repression or merely a symptom of damaged mitochondria after action of Bax-Bak 

membrane destabilizing complexes. Interestingly, caspase 8 activation was found to take 

place [105, 137] indicating that the extracellular death receptor pathway was activated. 

Studies of ER stress and JNK activation showed that the IRE1 branch of UPR binds to TRAF2 

(TNF receptor associated factor 2) an adaptor protein of the TNFα receptor and via a 

kinase signalling cascade can activate JNK [140]. Recent studies, reviewed by David Ron 

[110], show that both IRE1 and the PERK branches of the UPR can activate the pro-

apoptotic JNK pathway or directly interact with mitochondrial membrane permeabilizing 

factors which link the ER stress effects of PIs with the four known pathways of apoptosis 

induction via the extrinsic caspase 8, the mitochondrial caspase 9, the ER resident caspase 

4 and the Ca2+ dependent CaMKII. Lately, Bortezomib has been used in clinical 

experiments with organ transplantation as an agent to deplete healthy plasma cells that 

produce donor-specific anti-human leukocyte antigen antibodies (DSAs), responsible for 

graft rejection (reviewed by the Woodle group [141]). Although the mechanism of cell 

death is not known, this work suggests that some of the mechanisms discussed above are 

also at play in healthy tissues.   

 

Resistance to proteasome inhibitors 

PIs ability to overcome the resistance to classic anticancer therapies brought about a wave 

of initial enthusiasm [87]. However, PI resistant tumour clones appeared that employ 

various mechanisms of protection including upregulating proteasome synthesis (80), drug 

efflux pumps such as Pgp [142], and PI metabolizing enzymes [78]. Interestingly, PI 

induced UPR via PERK can also activate the expression of cytoprotective elements such as 

the anti-apoptotic Mcl-1 protein [116] and the Nrf2 (nuclear factor-erythroid 2–related 

factor 2)  transcription factor.  Nrf2 phosphorylation liberates it from its inhibitor Kelch-

like ECH-associated protein 1 (KEAP1), driving the expression of some 200 genes involved 

in oxidative stress/redox signalling [143] which can ensue resistance to PI treatment. 

 Constitutive activation of Nrf2 is emerging as a prominent molecular feature in many 

tumour types [144] and Nrf2 phosphorylation likely restores the redox balance in 
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oxidatively stressed tumours and clears electrophilic xenobiotics. Elevated Nrf2 levels in 

acute myeloma leukaemia [145] correlated with reduced ROS levels and sensitivity for 

Bortezomib treatment and it has been shown that Nrf2  and Nrf1 [146, 147] also 

upregulate the expression of proteasome genes that increases the capacity to remove 

damaged proteins and scavenge PIs [148]. Other mechanism of PI resistance in human 

myelomonocytic THP1 cells were an Ala49Thr mutation in the highly conserved binding 

pocket of the β5 subunit accompanied by overexpression of the PSMB5 gene [149]. 

Another study of induced Bortezomib adaptation in leukaemia and myeloma cells showed 

increased expression of functional β5, β2 and β1 subunits, 11S activator caps, alongside 

reduced protein biosynthesis and transcription of chaperones [150]. 

Aggresome formation [115], upregulation of chaperones HSP27 and HSP70 [115] and 

autophagy are also pathways that convey resistance to PIs. Autophagy meditates the 

breakdown of insoluble protein aggregates and aggresomes in the cytosol through 

encasing it in a double-layered membrane that are lately fused with the lysosome for 

degradation into its constitutive components [151]. Autophagy can take over the 

processing of proteasome substrates, mitigating cellular stress and ultimately apoptosis 

and cell death. The link between autophagy and the proteasome is still uncertain but 

evidence is pointing towards ER-stress mediated autophagy [152, 153]. However, the role 

of autophagy in PI induced apoptosis is controversial as some studies suggest that 

autophagy is a mechanism of resistance to PIs [152, 153] while others suggest that 

autophagy might enhance PI lethality perhaps depending  on the cell type and the cell 

state being either normal or oncogenicaly transformed [154-156]. An intriguing study in 

yeast proteasomes showed that S-glutathiolation, a post-translational modification, 

controls the 20S gate opening. The 20S CP itself might be under redox control as the 

activity of S-glutathiolation on two discrete cysteine residues of the α5 subunits that 

control 20S gate opening proved to open the gate, increasing the protein processing 

power of the proteasome [157]. 

It should be noted that the mechanistic knowledge discussed here comes from studies in 

different cell culture models, primary cell cultures and animals. Immortal cell cultures 

often have disturbed genetic patterns that might not reflect the defects encountered 

during oncogenesis in vivo, so they might react differently to PI stress. The un-

physiologically high glucose concentrations in cell culture media might be taken into 

account as well; it affects the cell metabolism and may influence the PI response.  There 

are clear differences in PI response between tissues, as hematopoietic cells show fast 

activation of terminal UPR, intensified ROS production, mitochondrial damage and onset 

of apoptosis. In contrary, adherent growing neuronal, epithelial or fibroblast cell models 

or the ones closer to normal tissues like MEFs (mouse embryonic fibroblasts) show a 
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higher tolerance to PI requiring higher PI dosing, more delayed apoptotic responses, less 

ROS induction and apoptosis onset via other pathways than the mitochondrial. This might 

be in part explained by the composition of the proteasome in the cell, either constitutive 

or immune proteasome which is often overlooked in studies but it is not unimportant 

because PIs have different affinities for constitutive and immune proteasome. 

Physiological details like the total proteasome concentration in the cell, the presence of 

efflux pumps and perhaps the shape of the cell might matter. In a spherical cell 

mitochondria might be closer to the ER thus ROS species emanating from the stressed ER 

[109] might reach other organelles faster by diffusion and affect a larger area than in the 

case of a polarized and elongated cell where the signalling gradient might be more diffuse 

giving the cell more time to take counteractive actions by activating defence mechanisms 

like anti-oxidant or anti-apoptotic factors production.  It has been postulated that 

secretory cells like B-cell that produce large quantities of antibodies or β-cells from 

pancreatic islets endowed with the production of insulin poses an intrinsically stressed ER 

that activates a terminal UPR earlier than other cell types [78]. Poor oxygen transport into 

solid tumours might render the cells hypoxic, which activates the HIF1α (hypoxia induced 

factor) that in turn can activate Nrf2 to drive ROS quenching genes [128] making these 

cells less vulnerable to PI induced ROS.   

In conclusion, this review illustrates that many genes and cellular events are involved in PI-

induced apoptosis. Global systems biology approaches may be used to identify the gene 

partners, their regulation, post-translational modification and kinetics in order to establish 

which pathway is chiefly responsible for induction of apoptosis. A cell’s decision to commit 

to apoptosis might be a convergence of signals from several pathways underscoring the 

need for system wide analysis. Moreover, ROS and Ca2+ levels should also be determined 

because these factors have important regulatory and signalling function. First of all, the 

concentration, constitution and activity of the proteasome in a given cell population 

should be determined [74]. Second, global mass spectrometry driven proteomics studies 

can be used to determine the protein concentrations of as much as possible proteins in 

order to see which pathways are up or down regulated. Third, analysis of the 

transcriptome is necessary to determine the response at the level of gene transcription. 

Fourth, these measurements should be performed at several time points after PI 

treatment to determine the kinetics of different pathway responses. With the advent of 

superior MS methods and machines, determination of PTM status of proteins has become 

increasingly feasible as in the case of kinases [158] and phosphatases [126] activities. An 

interesting method to probe the reactivity of cysteine side chains has been recently 

launched [159] which might be instrumental for determination of the oxidation state of 

proteins, an important PTM to be scored when dealing with ROS induced phenomena. 
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This technique uses a smart adaptation of the general alkylation principle of cysteines by 

iodoacetamide combined with global activity based profiling, to determine the hyper 

reactive cysteines in the proteome suggested to play a role in the catalytic site of enzymes 

or function as ROS sensors (see Figure 5). Combination of these techniques might provide 

us with a clearer picture of the course of events during PI induced apoptosis and will 

surely afford novel start points for therapy. 

Figure 5. Basic scheme of two-step ABPP coupled with isotope labeling which allows quantification of 

the cysteine reactivity status. 

The global picture emerges that under physiological conditions, the cell is kept in a 

reductive state in order to prevent oxidative damage of essential bio-molecules like DNA, 

RNA, proteins and lipids. Blocking the proteasome in the nucleus, cytoplasm and in the 

ERAD leads to arrest of NFkB signalling, increased p53 levels, cell cycle arrest, ER stress 

inducing some form of UPR signalling, possible ER-resident caspase 4 activation and 

elevated production of ROS. Release of Ca2+ from the ER, depletion of glutathione pools 

and signalling via the JNK pathway injure the mitochondria impairing the oxidative 

phosphorylation energy pathway which further increases ROS production pushing the cell 

in an oxidative phase. If protein synthesis continues, ROS production will further damage 

the mitochondria induce cytochrome C release and activation of caspase 9 that, in 
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conjunction with caspase 8 activation via upregulation of death receptor signalling, 

mediate the onset of cell death by apoptosis (Figure 6). 

Figure 6. Global picture of our view of the cell behavior after PI exposure. Under physiological 

conditions, proteins assigned for degradation are cleared by the ubiquitin proteasome system. Acute 

proteasome inhibition leads to adverse effects on cells: cell cycle arrest in the G2/M phase 

checkpoint, ER stress, activation of the UPR system and accumulation of polyubiquitinated proteins 

that in some cases are cleared via autophagy. Sustained proteasome inhibition leads to release of 

ROS, mitochondrial injury, DNA damage, activation of cell death pathways and onset of apoptosis. 
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Chapter 3: An Overview of Direct and Two-Step Activity-Based 

Proteasome Profiling Strategies 

 

Introduction 

Activity-based protein profiling (ABPP) is a chemical proteomics technique used for 

identification and quantitative comparison of enzymatic activities. ABPP is widely applied 

to study a broad range of enzyme families in vitro, in situ in cell cultures and sometimes 

also in vivo in animal models [1]. ABPP has some advantages compared to other 

proteomics techniques. Experiments are robust, fast and simple. In case of cell permeable 

activity-based probes (ABPs), imaging of living cells or in animal models makes its 

applications broader by allowing localization and dynamic studies of the target enzymes 

[2, 3]. 

However, ABPP has also some limitations. The covalent bond between the probe and the 

target enzyme does not allow the recovering of enzymatic activity in a sample treated 

with ABP. The ABPP platform makes absolute quantification challenging and only relative 

quantification is possible by comparing the test samples to control ones. Another possible 

disadvantage of one step ABPP is that the reporter tag is normally a large moiety, which 

might affect the probe properties, like cell-permeability, selectivity, affinity or 

bioavailability. To overcome these problems a new strategy has become increasingly 

popular in the last years, termed two-step ABPP. In this approach the ABP reporter tag has 

been replaced by a ligation handle, which will be coupled with the reporter group after 

the attachment of the probe to its target enzyme. This tactic allows researchers to decide 

in every condition which reporter group to use depending on the desired method of 

analysis [4]. The reaction between the ABP ligation handle and the reporter group needs 

to be fast and selective, with ideally no side reactions.  

Bioorthogonal chemistry is suitable for two-step ABPP since it allows the performance of 

selective chemical modifications in complex biological samples it [5]. The term 

bioorthogonal stands for a chemoselective reaction that ideally can take place in the 

aqueous environment of a biological system without any side reaction. Nowadays many 

bioorthogonal reactions are reported in literature, which differ in tag size, selectivity and 

biocompatibility as well as in reaction rates, making the choice an important decision [6]. 

Ideally the tag would be a small biocompatible chemical moiety that is able to perform a 

selective reaction with a non-bioavailable reagent, which should also be biocompatible. 

The ideal tag should also have a relative small size minimizing its interference with the 
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target environment. Alkynes and azide groups have emerged as favorites due their 

dimensions, just comprising few atoms. The most used bioorthogonal reactions used in 

proteasome two-step ABPP include the Staudinger-Bertozzi ligation in which an azide-

containing ABP is reacted with a phosphine reagent equipped tag, the copper(I)-catalyzed 

click reaction between an azide and an alkyne, the copper-free strain-promoted azide-

alkyne cycloaddition and the inverse-electron-demand Diels-Alder reaction of tetrazine 

with strained alkenes [7-10]. Each of these bioorthogonal reactions has its intrinsic 

advantages and disadvantages. The Staudinger-Bertozzi ligation is selective but the use of 

the large phosphine moiety may give problems especially in native conditions where the 

ABP is found inside an enzyme pocket. The copper(I)-catalyzed click reaction is a versatile 

ligation but the need for copper salts does not recommend its application in living cells 

due to its high toxicity. The copper-free cycloaddition is a fast and efficient ligation 

method but due to the relatively high reactivity of the tags, often gives off-target 

reactions. The inverse-electron-demand Diels-Alder reaction is very selective under native 

conditions probably being the most versatile reaction. The first part of this chapter shows 

a literature overview of the methodology used in two-step ABPP of the proteasome. The 

labeling of the different proteasome active sites using the Staudinger-Bertozzi ligation, 

copper-free cycloaddition and a tandem ligation strategy is described. The second part of 

this chapter is a case study of the residual activity of the proteasome after ABP labeling in 

human and mouse cell extracts. 

 

Two-step ABPP overview 

In the first report on two-step proteasome ABPP published in 2003, the proteasome 

subunits could be successfully labeled by means of the Staudinger-Bertozzi ligation [11]. A 

broad spectrum azide-containing ABP was incubated either in living cells or cell lysates and 

posteriorly subjected to Staudinger ligation under denaturing conditions. The ability of the 

probe to cross the cellular membrane in situ, efficiently bind and thus inhibit the 

proteasome is proven by the accumulation of a green fluorescent protein (GFP) fused to 

an ubiquitin chain, which targets it for degradation via the proteasome. This study shows 

that the incorporation of an azide group in an ABP has no influence in its selectivity 

towards proteasome both in situ and in vitro. 
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Figure 1. ABPs and ligation handles used in the different here presented studies. 1: biotin-BODIPY-

epoxomicin; 2: azido-BODIPY-epoxomicin; biotin-cyclooctyne derivatives 3: Dibenzocyclooctynol 

(DIBO); 4: Bicyvlenonyne (BCN); 5: Monofluorinated cyclooctyne (MFCO); 6: biotin-phosphine; 7: pan-

reactive alkyne-epoxomicin; 8: β5/β5i selective norbonene-equipped vinyl sulfone; 9: β1/β1i selective 

azide-equipped epoxyketone; 10: Tetrazine-Bodipy-TMR; 11: Azido-Bodipy; 12: MVB003 (BODIPY-

TMR epoxomicin); 13: LWA300 (BODIPY-FL epoxomicin). 

Figure 2. [12] A) Fluorescent readout and B) streptavidin blot of labeled cell lysates. HeLa cells were 

exposed to 2 for 2 hours, excess reagents was removed prior incubation with two-step reagents 3-6 

for 4 hours. Cells were lysed and resolved by SDS-PAGE. 

In a later study the copper-free click ligation with three different cyclooctynes (figure 1, 

compounds 3, 4 and 5) was tested for two-step proteasome ABPP and compared to the 

Staudinger-Bertozzi ligation with compound 6 [12]. The use of the azide-bearing 

fluorescent ABP 2 allows observation the probe in two different ways, by biotin read-out 

after biorthogonal ligations and by a shift of the modified proteasome subunits in the 
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fluorescent image due to the incorporated biorthogonal reagents size (figure 2, lane 1 

compared to the rest). Comparing both biorthogonal reactions performance, the 

Staudinger-Bertozzi ligation turned out to be more specific, although longer reaction times 

are needed, than the copper-free click cycloadditions due to the high background found 

and the low signal intensity of the different cyclooctynes (figure 2B). The results obtained 

for the different ligations in situ demonstrate the applicability of these ligation techniques 

in the labeling of proteasomes in living cells. 

Figure 3. Schematic workflow of the triple ligation strategy involving a copper(I)-catalyzed click 

ligation, Staudinger-Bertozzi ligation and tetrazine ligation. 

The use of subunit selective proteasome probes in a two-step proteasome ABPP setup 

was used to test orthogonality between the different ligation reactions and to develop a 

strategy, which selectively labels each subunit with a different readout-tag [13]. In figure 3 

a schematic workflow of the triple ligation strategy used by Willems and coworkers is 

shown. The chemical tools used in this strategy are shown in figure 1. The three active 

proteasome subunits were labeled with a different tag via one of the different ligation 

reactions. The β5-subunit selective norbornene-tagged ABP 8 together with the β1-

selective azide-functionalized ABP 9 were incubated with HEK293T lysate. After exposure 

to ABP 8 and 9, panreactive ABP 7 was added, which due to the fact that the β5 and β1 

sites were already blocked, could only label the free β2-subunits. This addition sequence 

allows to selective tag the β5-subunits with a norbornene, the β1-subunits with an azide 

and the β2-subunits with an alkyne. Next, the cell extracts were incubated with tetrazine 

10 and phosphine 6 for 1h. Reagent excess was removed before performing the copper(I)-

catalyzed click ligation for an extra hour with azide 11. The washing step before the click 

reactions is required to remove both the excess of tetrazine and phosphine, which might 

react with the cooper catalyst and the azide ABP, respectively. By using two different 

fluorophores and a biotin tag, the proteasome subunits labeled by the different ligation 

techniques can be visualized. As it can be seen in figure 4, the triple ligation strategy 

successfully labels the different proteasome subunits in a selective manner. The results 

obtained by the separate bioorthogonal reactions (last 3 lanes in fig. 4) are comparable to 

those of the simultaneous triple ligation, showing the value of the triple ligation strategy. 
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Figure 4. [13] Anti-biotin blots and in-gel fluorescent imaging to visualize the proteasome labeling 

patterns in each single reaction and for the simultaneous triple ligation.  

 

Determination of the unlabeled free proteasome fraction 

The second part of this chapter describes the evaluation in human and mouse cell lines of 

residual proteasome activity after exposure to pan-reactive ABP 12. Next the optimal 

labeling conditions for probe 12 in the mouse B-lymphocyte cell line B3/25 were 

determined. Incubation of B3/25 lysate with varying concentrations of ABP 12 for one 

hour (figure 5B) shows that above 0.5 µM the plateau phase is observed and that an 

increase in probe concentration does not result in a rise of signal but in a higher 

background. Figure 5A shows that although after one hour of incubation the maximum 

labeling is not reached, an extra exposure of 30 minutes results in only a small increase in 

signal percentage (around 10%). But again, in this case the signal to background ratio is 

compromised, indicating that 90 min incubation is not a recommendable labeling time. 

ABP 12 optimal labeling conditions were determined to be 0.5 µM for one hour-exposure 

in lysate and 4 hours incubation with 4 µM probe end concentration for in situ labeling for 

both mouse and human cell lines. Figures 5 C&D show that the fluorescent signal of the 

proteasome-bound ABP 12 is directly proportional to the amount of protein loaded on 

SDS-PAGE in both lysate and living cells exposures. The high R-square values in both 

graphs illustrate the applicability of ABPP for relative quantification purposes in mouse 

samples. 
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Figure 5. A) Incubation time of ABP 12 up to 90 minutes in murine B3/25 cell line lysate. B) Lysate 

was incubated for 1 hour with different probe concentrations. Calibration curves for ABP 12 C) in 

lysate and D) in living cells. 

In order to remove probe excess when performing the labeling in lysates, samples were 

loaded on a size-exclusion column prior posterior incubation with ABP 13, a Cy2-

fluorescent analog of ABP 12. Figure 6 shows that applying the sample on a size-exclusion 

column directly after addition of ABP 12 allows removal of the unbound ABP (lane D) and 

that subsequent incubation with probe 13 results in almost full labeling of proteasome 

subunits (lane C). The light proteasome band (probably β5/5i) visible in the Cy3-

fluorescent channel (lanes C and D) indicates that ABP 12 reacts very quickly with the 

proteasome subunits highlighting the ABP selectivity against proteasome. Incubation of 

the probe after size-exclusion yields in a small loss of proteasome activity signal compared 

to its exposure before size-exclusion (lanes A vs. B and E vs. F in figure 6). This small loss 

(about 10%) was corrected afterwards with the use of coomassie stain as loading control, 

resulting in a comparable signal for both conditions. No size-exclusion columns were used 

in the unlabeled proteasome fraction determination. Instead, cells were thoroughly 

washed with PBS after incubation with the probe prior lysing and posterior exposure to 

Cy2-fluorescent counter-ABP 13. 
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Figure 6. Gel image showing the different signals for both ABP 12 (top) and ABP 13 (bottom) for the 

free fraction determination. M: Marker. A: 1h ABP 12, size exclusion, 1h ABP 13. B: size exclusion, 1h 

ABP 12. C: ABP 12 short exposure before size exclusion, 1h ABP 13. D: ABP 12 short exposure before 

size exclusion. E: 1h ABP 13, size exclusion. F: size exclusion, ABP 13. 

Table 1 shows the unlabeled proteasome subunits percentage obtained in lysate and living 

cell labeling respectively. Due to the poor separation of the β5/5i/1/1i subunits achieved 

on gel with both ABPs, these subunits were considered as a single moiety and were 

quantified together. The overall non-labeled proteasome fraction in the human cell line by 

probe 12 was found to be around 10% for the different subunits. These residual activity 

percentages were comparable between in vivo and in vitro labeling strategies, with the 

ones found in lysates slightly bigger than those from in vivo labeling. Labeling of mouse 

cells in situ yields in a similar free fraction percentage as the one obtained for human 

living cells (around 5%). Unexpectedly, this fraction increases dramatically (up to 35%) 

when labeling is performed in mouse cellular extracts (figure 6 lane A; table 1). The large 

difference between in vivo and in vitro labeling of mouse samples suggests a systematic 

error during the in vitro experiments performance. 
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Table 1. Free fraction percentage for the human (left) and mouse (right) proteasome subunits after 

1h incubation with ABP 12 in lysate and for 4h exposure in living cells. The values are the average of 

3 replicates. 

 

Discussion 

As it can be appreciated in figure 2A, the used cyclooctynes and phosphine 

concentrations, or the reaction times, were insufficient for complete ABP labeling, 

characterized by a shift in the fluorescent gel image. Despite the copper-free 

cycloadditions were more efficient in terms of reagents concentrations and reaction times 

compared to the Staudinger-Bertozzi reaction, the ligations with the three cyclooctynes 

yielded in a much higher background than the one observed with the Staudinger ligation. 

This suggests that cyclooctyne moieties are able to react with natural biological entities 

and thus are not truly orthogonal. Further investigations are needed in order to decipher 

which proteins react with the cyclooctynes and in which manner. The phosphine reagent 

in the Staudinger-Bertozzi ligation is prone towards oxidation, which is probably the 

explanation for the high reagent concentration. 

The triple ligation strategy [13] shows that it is possible to perform several biorthogonal 

reactions in one test tube. In this strategy though, a buffer exchange between the 

tetrazine and the click ligations is needed to prevent undesired side reactions. All three 

ligation reactions show low or almost no background labeling. Click ligation showed higher 

background labeling than the other two, but much smaller than the background obtained 

in the previously discussed study by the cyclooctynes, indicating that although copper-
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catalyzed click chemistry is not the optimal reaction for its performance in living cells due 

to its Cu(I)-induced toxicity, it still is favorable compared to copper-free cycloaddition in 

terms of background labeling, at least in the case of proteasome two-step ABPP. This 

triple ligation strategy should be also tested under denaturing conditions where, click 

ligation is supposed to have a better performance since most of its background labeling is 

thought to be due to a side reaction between alkyne and reactive cysteine residues, which 

might be less reactive under denaturing conditions. If the tetrazine ligation is also 

successful under these conditions, the tandem ligation strategy may have broader 

applications, allowing researchers to decide at which moment to perform the ligations. 

The low proteasome residual activity percentages and the low standard deviations 

obtained with ABP 12 shows the use of this probe and of ABPP for quantifications 

purposes, because although having a small fraction of proteasomes not labeled with the 

probe, this portion seems to remain constant. The little variations among the different 

proteasome subunits prove that ABP 12 has broad-spectrum activity towards the 

proteasome subunits. The large percentage differences found when exposing the probe to 

mouse cellular extracts compared to living cells suggest the appearance of a systematic 

error, which is supported by the low standard deviations (table 1). This is reinforced by the 

fact that the probe has the same optimal labeling conditions in both organisms and also by 

the high amino acid sequence similarity between the proteasome subunits, thus the 

values were expected to be similar as those found for human proteasome subunits, same 

as it is for the in vivo labeling. Taking a look at the free fractions found in human 

proteasomes, the values between in vivo and in vitro labelings do not differ much, 

although it seems like the in vivo labeling may be slightly more efficient. A plausible 

reason for this may be the capacity of the ABP to access the active-site threonine. 

Biological systems, or like in this case machineries, are tightly regulated and proteasomes 

are not an exception. Although it is known that the 20S core particle itself is already 

catalytically active with some known substrates, most of its substrates are dependent on 

the presence of regulatory particles like the 19S cap or the 11S. These regulatory particles 

trigger a rearrangement of the core particles subunits, which results in the opening of the 

alpha rings allowing the protein substrates to enter the catalytic core. The binding of these 

regulatory particles with the 20S proteasome is not very strong and the lysing and sample 

preparation procedures may be enough to disrupt it. Although the proteasome-directed 

ABPs are known to diffuse through the 20S particle to its inside to react with the active 

sites, the rearrangement of the 20S proteasome when regulatory particles are attached 

might induce holes or cavities permitting a faster diffusion of the probe. Another possible 

explanation would be that the probe gets degraded before it labels all proteasome 

subunits, although this option is less likely due to the ABPs high stability in aqueous 



52 
 

solutions. In both cases, pulse labeling should allow the ABP to efficiently reach and bind 

all different subunits decreasing in this manner the unlabeled proteasome pool. 

 

Conclusion 

The one-step ABP 1 and the two-step ABP 2 used by van der Linden and coworkers [12] 

are a good example of the versatility of ABPP, having in a single probe two different tags, a 

BODIPY for fluorescent read out, and a biotin moiety which can be used as enrichment tag 

or for visualization via Strep-HRP blotting. One-step ABPs are useful tools in proteasome 

enzymology research and may be also applied in the clinic, for example as fluorescent 

indicators of the proteasome activity in a specific tissue or sample but also of its cellular 

location using fluorescent microscopes. ABPP can be used to screen and compare 

proteasome activities in different tissues or organisms (see Chapter 4) but its applications 

can be extended to the study of the different roles proteasomes have in for example 

antigen presentation, or in cellular stress responses (see Chapter 5). ABPP could, in theory 

follow the proteasome half-life, by blocking first all proteasomes with one probe (or 

perhaps better yet just one subunit due to cellular toxicity) and posterior addition of a 

second probe which will only bind the non-occupied newly synthetized proteasomes. 

Being able to follow the localization and activity of different proteasomes in time until 

their destruction and recycling should in principle be achievable by means of proteasome 

ABPP.  

 

Experimental procedures  

Cell culture and probe treatment 
 
Human cell line Amo1 (plasmacytoma) was grown in RPMI-1640 medium. The mouse cell line B3/25 
(myeloma) was grown in IMDM medium. The entire medium was supplemented with 10% fetal calf 
serum and 0.1 mg/mL of streptomycin and penicillin. Both cell lines were grown at 37ºC with 5% CO2 
in a humid incubator. Both cell lines were purchased from ATCC. 
ABP was dissolved in DMSO before use. 1000x stock solution of the desired end concentration of the 
ABP was added to the cell culture to have the DMSO concentration lower than 1% in the culture 
media. Treatments were done for different probe concentrations for 4 hours and for different 
amounts of time with 4 µM probe. Cells were washed couple of times with cold PBS, pelleted and 
stored at -80ºC until its usage. 
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Activity-based protein profiling 
 
Cell pellets were lysed in 3 volumes of lysis buffer (50 mM Tris-HCl pH 7.5, 250 mM sucrose, 5 mM 
MgCl2, 1 mM DTT, 2 mM ATP, 0.025% digitonin and 0.2% NP40), kept on ice for 1 hour and further 
disrupted by 30 seconds sonication. After cold centrifugation at 13.000 g for 10 min, protein 
concentration was measured with the Qubit Protein Assay on the soluble fraction and kept at -80ºC 
until use. Equal amounts of protein were incubated with the desired concentrations of ABP for 1 
hour at 37ºC, resolved by 12.5% SDS-PAGE and scanned with the ChemiDoc™ MP System with the 
Cy3 and Cy2 settings. When specified, prior resolution on gel some samples were loaded on a 30 kDa 
size-exclusion column. The procedure was carried on as suggested by manufacturer. Commassie 
blue staining was used as loading control. All gel images were analyzed by the Image Lab software 
(Bio-Rad). 
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Chapter 4: Comparative Activity-Based Proteasome Profiling in 

Zebrafish and Mice 

 

Introduction 

In the last years, two different proteasome inhibitors (PIs) have been approved for the 

treatment of two hematopoietic cancers, multiple myeloma and mantle cell lymphoma 

[1]. Today proteasome inhibition is being investigated as a potential treatment for 

different diseases including solid tumors, muscle disorders, autoimmune syndromes and 

also in the field of organ transplants [2, 3]. Mammalian tissue can express up to six 

different catalytic proteasome subunits (up to seven in the thymus), which exhibit 

different substrate preferences. These subunits are basically assembled in two different 

proteasomes types, the constitutive proteasome, containing the β1, β2 and β5 subunits, 

and the immunoproteasome, where the constitutive subunits are replaced by their 

counter subunits β1i, β2i and β5i [4]. Bortezomib, the first PI approved in the clinic, shows 

selectivity towards the β5/5i and β1/1i subunits, being able to block them substantially 

while leaving the β2/2i activity almost unchanged. The second PI approved for the 

treatment of multiple myeloma is Carfilzomib, a β5/5i driven inhibitor, which at its 

therapeutic concentration partially also blocks the other proteasome subunits. The fact 

that both clinically accepted PIs show a subunit preference and that full proteasome 

inhibition is not necessary for its therapeutic benefit, has increased the effort of 

developing not only new and more potent inhibitors but also subunit specific inhibitors [5, 

6]. The development of activity-based probes (ABPs) that facilitate the activity 

measurement of individual constitutive and immune subunits was one important step 

forward in the proteasome research field [7-9]. Broad-spectrum ABPs allow the 

simultaneous measurement of all different proteasome activities. Most of these pan-

reactive ABPs do not show complete separation of the different proteasome subunits on 

SDS-PAGE, especially when immunoproteasomes are present. Due to the similar molecular 

weight of the β5/5i and the β1/1i subunits, resolving these subunits by SDS PAGE is 

complicated. Recently, several proteasome subunit specific inhibitors and probes have 

been developed, expanding the possibilities of inhibition using different combinations but 

also in a controlled manner, being possible to decide which subunit to inhibit and to what 

extent [10]. These subunit specific ABPs allow separation and direct activity determination 

of their target subunits. This has increased the knowledge about the different activities 

and substrate preferences of the proteasome active subunits, such as that more bulky, 

hydrophobic amino acids at P1 (first amino acid position after warhead) confer selectivity 
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towards immunoproteasomes, allowing the development of selective 

immunoproteasomes inhibitors [11, 12].  

Figure 1. Structures of the activity-based probes used in this study. ABP 1, Cy5-NC001, is β1/1i 

selective; ABP 2, BODIPY(FL)-LU112, targets β2/2i; ABPs 3 (MVB003) and 4 (LWA300) are both an 

epoxomicin-based ABP with pan-reactive selectivity; probe 5 (LW124) is a β1/1i selective ABP; ABP 6, 

BODIPY(TMR)-NC005, is a β5/5i targeting probe; ABP 7 (MV151) is a broad-spectrum proteasome 

probe. 

Most of the studies with PIs and ABPs have been mainly performed on human 

proteasomes and thus the newly synthetized inhibitors and probes have been chemically 

engineered to selectively target human proteasomes. Only a small fraction of these have 

been tested in other animals, mostly in mice. In this chapter, a pool of broad-spectrum 

and subunit selective ABPs (figure 1) has been screened in different murine organs and in 

zebrafish. Both organisms are broadly used in academic and clinic research, thus testing 

the applicability of these ABPs in these organisms will expand the usefulness of ABPP. 
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Results 

Mice brain and testis, expressing only constitutive proteasomes, and spleen, which 

expresses both immuno- and constitutive proteasomes, were used in order to test the 

ABPs. Zebrafishes are only 1-3 cm and isolating their different organs is tidy and difficult. 

The easiest accessible organ suitable for extraction is the brain. Thus it was decided to 

perform the screen only on zebrafish brains and on full fish extracts. Figures 2 and 3 show 

a representative gel image for each ABP in the different murine and zebrafish tissues, and 

the optimal concentrations determined for each tissue are listed in table 1. 

 

Figure 2. Representative SDS-PAGE gel images for each ABP in the mice tissues screened in this study. 

In the first lane of each gel the pre-stained protein marker was loaded (condition M). Highest 

concentration chosen for each probe was 10 µM (condition H). This concentration was diluted 5-fold 

in each lane ending with the end concentrations for each condition as follows: A: 0.13 nM; B: 0.64 

nM; C: 3.2 nM; D: 16 nM; E: 80 nM; F: 400 nM; G: 2 µM and H: 10 µM.  
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Figure 3. Representative SDS-PAGE images for each ABP in the zebrafish. The ABPs concentrations 

where the following: A: 3 nM; B: 10 nM; C: 30 nM; D: 100 nM; E: 300 nM; F: 1 µM; G: 3 µM and H: 10 

µM. M: protein marker. 

Table 1. Optimal labeling concentrations for each ABP in the different tissues and organisms. 

All probes retain their selectivity towards the proteasome subunits while their optimal 

labeling concentrations are, in general, slightly higher than the ones used in human cell 

lines extracts. β1/1i selective probes 1 and 5 and pan-reactive ABPs 3 and 7 show a similar 

pattern in all different tissues as the one observed in human cell line extracts, a high 

selectivity towards the proteasome and off-targets are only visible at high concentrations. 
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Interestingly, ABP 4, a Cy2-fluorescent analog of probe 3, shows lower overall signal/noise 

ratios compared to ABP 3. This is especially significant in the murine spleen and in the 

zebrafish samples, where the β2/2i bands are hardly visible due to low band intensity 

(figure 2) or high background (figure 3). This high background labeling at high probe 

concentrations in zebrafish brain and extracts is in general obtained with most of the 

probes. ABPs 2 and 6 label efficiently the β2 and β5 subunits, respectively, in all screened 

tissues but murine spleen. For both probes the bands are very weak compared to their 

performance in the other tissues. In the case of ABP 2 the concentrations needed to 

obtain labeling are much higher than the ones used for human proteasome labeling and in 

some cases, like in the spleen (figure 2), at the optimal labeling concentration shows some 

off-target bands. Interestingly, although ABP 6 labels β5 or β5i selectively, the separation 

of these two subunits was poorly achieved on SDS-PAGE (figure 2, spleen), while they 

were proven to separate properly human β5/5i subunits. To check whether this was due 

to poor subunit separation or to the ABP being only able to label one of the subunits, a 

2D-gel electrophoresis was performed. Three distinct stripes can be observed in the 

middle of the 2D-gel (figure 4), two having a bright signal and the third a much lighter one. 

This third stripe seems to run lower than the other two, suggesting that this might be the 

stripe for the labeled β5i subunit and the brighter stripes might correspond to the β5 

subunits. Their position in the gel compared to the marker and their separation is similar 

to the one observed for human subunits (figure 4). 

Figure 4. 2-D SDS-gel image of a mouse cell lysate (A) and a human cell line extract (B), which were 

incubated with ABP 6 at the concentration of 0.5 µM for 1 hour. Sample were loaded on a non-linear 

pH gradient (3-10) strip and resolved on 12.5% SDS-gel after isoelectric focusing. A pre-stained 

marker was added to the SDS-gel (bright band on the right side of the image). As it can be seen in 

both gel images, two isoforms of the β5c subunit are visible (the two left stripes). The β5i subunit can 

be visualized running a slightly lower on the gel than the β5c subunit bands. 

 

 

 



60 
 

Discussion 

All here tested ABPs target selectively the proteasome subunits from both organisms. 

Although losing a bit of potency compared to their performance in human cell lines 

extracts, this difference is very small and all probes maintain a low micromolar 

concentration for optimal labeling (table 1). For some probes, the concentrations needed 

in the murine spleen are slightly higher than the ones in the other murine tissues. This can 

possibly be explained by the fact that this organ expresses both immuno- and constitutive 

proteasomes, and is probable that the total amount of proteasomes is higher than in the 

other tissues where only one type of proteasomes is expressed. Table 2 shows the 

alignment percentage of the mouse and zebrafish subunits with the human ones. The 

largest differences with the human amino acid sequence are found in zebrafish, especially 

for the β1i and the β2i subunits. These differences might explain the probe potency 

variation when used in zebrafish, and the poor resolution found when labeling these 

subunits with the selective β1-directed ABP 1 or the β2-directed ABP 2.  

Table 2. Alignment percentage of the proteasome active subunits amino acid sequence from mouse 

and zebrafish with the human subunits. Identity is showing the percentage of shared amino acids; 

similarity includes the amino acid replacement by another with similar characteristics. 

As can be seen in figure 1, ABPs 3 and 4 have the same peptide backbone and only differ 

in their fluorescent tag, BODIPY(TMR) and BODIPY(FL) respectively. In the case of human 

or mice proteasomes this does not influence their output, both sharing a similar optimal 

concentration, although the signal obtained with probe 4 in spleen is lower than in the 

other tissues. In zebrafish this difference increases up to three times. This increase seems 

to be due to the reporting tag of 4. It causes a large background signal, making it hard to 

properly visualize the proteasome bands. This phenomenon of high background noise is 

especially significant for 4 but not for the other ABPs with a BODIPY(FL) fluorescent tag, 

probes 5 and 2. This indicates that is not due to the reporting group but more likely a 
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combination of fluorophore and the inhibitor backbone. Although the three BODIPY(FL)-

bearing ABPs have an acceptable signal to noise ratio in zebrafish, when labeling full fish 

extracts a vague and diffuse band shows around 35 kDa (figure 3). This band is probably an 

endogenous fluorescent protein that can interfere specially with the identification or 

quantification of the β2 subunits due to their close position in the gel. A straightforward 

strategy to avoid this fluorescent protein interfering with the band analysis could be to 

use an ABP with a different fluorescent tag, scanning the gel in a different fluorescent 

channel. Another possibility is to precipitate the proteins, for example by a 

chloroform/methanol precipitation, which might remove the fluorescent molecules. 

Subjecting the sample after ABP exposure to a size-exclusion column might separate all 

small proteins from the large protein complexes like proteasomes, which has been 

successfully proven in the Chapter 3 of this thesis, since ABPs label only active subunits of 

fully assembled proteasomes but not single subunits. 

Another interesting feature in the zebrafish brains and full extracts is the additional band 

or smear that appear between the β2 and the β1/5 subunits when incubating them with 

high concentrations of ABPs 2 or 7 (figure 3). These could be off-targets of the probes, but 

since they are only visible in zebrafish and not on mice or human samples it should be a 

unique zebrafish protein. Another possibility is that these probes also label post-

translationally modified β2 subunits. This theory is supported by the fact that ABP 2 does 

not show a sharp β2/2i band, as it does for mouse, but a wide and diffuse one. This is in 

concordance with PTMs (post-translational modifications), as depending on the type and 

the amount they may influence and vary the molecular weight and charge of the modified 

protein thus shifting its position in the gel. These diffuse or extra bands are only visible 

with these two ABPs but not with the other probes, which also label the β2/2i subunits, 

ABPs 4 and 5. The main difference between these probes and the rest are the warheads, 

ABPs 2 and 7 have a vinyl sulfone warhead while probes 4 and 5 have an epoxyketone. It 

seems that vinyl sulfone probes are the only ones that label and separate these modified 

subunits. Further experiments, like on-gel digest or pull-downs need to be performed in 

order to validate this hypothesis and identify these extra bands. 

Off-targets or high background labeling is only observed when incubating ABPs at high 

concentrations. The high background labeling is mainly observed in zebrafish brains and 

also in extracts but it is not obtained in the murine tissues, suggesting that the probe off-

targets could be larger in zebrafish than in mice. Another explanation for this high 

background labeling could be that the signal to noise ratio is not very large, thus when 

adjusting the image contrast to obtain substantial signal, the background at high probe 

concentration gets also larger due to the ABPs probably just sticking to proteins. Washing 

away the excess of probe after the incubation period might be beneficial to remove the 
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high background due to stickiness of the ABPs and will show how much of this background 

is actual an off-target of the probe, which could be then easily identified by in-gel 

digestion coupled to mass analysis. 

 

Conclusion   

In conclusion, all here used ABPs are suitable for their application in mouse and zebrafish, 

although the probes show less potency in mouse and zebrafish in comparison to human 

proteasome labeling. The largest difference is found in zebrafishes where the optimal 

concentrations are in some cases three times higher than in human and where optimal 

labeling from the immunoproteasome subunits β1i and β2i is compromised (figure 2). The 

low alignment percentage of these subunits between human and zebrafish (table 2) might 

explain the low efficiency of the probes labeling these subunits. This leaves room for 

improvement in generating ABPs that can bind to many species with a comparable 

potency and selectivity, but also in the production of an organism-selective proteasome 

inhibitor or probe. If an organism-selective inhibitor could be developed, it might be a 

plausible treatment against infections for example, thus allowing the targeting of only 

non-host cells, but it could also be beneficial for the food industry plague control by using 

human harmless chemicals to fight the responsible organisms that cause the plague. 

 

Experimental procedures 

Animals and tissues 

Mouse organs were isolated from adult mice. Zebrafish brains were isolated from adult zebrafish 

while full body extracts were obtained from zebrafish larvae.  

Activity-based protein profiling 

Organ tissues were homogenized in 3 volumes of lysis buffer (50 mM Tris-HCl pH 7.5, 250 mM 

sucrose, 5 mM MgCl2, 1 mM DTT, 2 mM ATP, 0.025% digitonin and 0.2% NP40) with a tissue 

homogenizer and further disrupted by 30 seconds sonication. After cold centrifugation at 13.000 

rpm for 10 min, protein concentration was measured with the Qubit Protein Assay on the soluble 

fraction and kept at -80 ºC until use. Zebrafish full body extract supernatants were cold centrifuged 

again at 30.000 g for 60 min to separate the membrane fraction and to pellet cell debris. The protein 

concentration in the soluble fraction was measured as before and stored at -80ºC. Equal amounts of 

protein were incubated with different concentrations of ABP for 1 h at 37ºC, resolved by 12.5% SDS-

PAGE and scanned with the ChemiDoc™ MP System with the Cy2, Cy3 and Cy5 settings. Commassie 
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blue staining was used as loading control. All gel images were analyzed by the Image Lab software 

(Bio-Rad). 

2D-gel electrophoresis 

Before starting the protocol note that the fluorescent probes are light sensitive and every 1-3 hour it 

will lose half of fluorescent intensity in the final result. The samples were kept in the dark or covered 

with aluminium foil as much as possible. 

Some 100 µg protein was taken in 90µL total volume with lysis buffer and 10 µL (10xstock) of probe 

was added. Sample was incubated for 1 h at 37 oC prior precipitation with TCA by adding 25 µL of 

70% TCA and incubating for 0.5 h on ice (Should see the liquid becoming cloudy as the protein 

precipitates out). After cold centrifugation for 5 min at 14000 rpm the supernatant was removed 

and the pellet washed twice with 500 µL ice-cold acetone (if the pellet comes loose during washing 

repeat centrifugation step with acetone). Sample was dried out in a speed vac overnight. Pellet can 

be stored at -20 oC until use. Pellet was solved in 150 µL Urea buffer (30 mM Tris-HCl pH 7.5, 7.7 M 

urea, 2.2 M thiourea and 4% CHAPS) with 3uL Destreak agent (end concentration 0.5%) and 0.75uL 

IPG buffer (3-10) (end concentration 2%) was added freshly to the solution (may take very long to 

dissolve; to speed up the process the solution can be warmed up to 37 oC, vortexed, or sonicated). A 

portion of the solution can be stored to run on normal 12.5% SDS gel if desired. The lane from the 

incubation cassette was filled from the non-tilted edge with the sample. Slowly the strip was put 

onto the lysate (gel side down and make sure there are no bubbles under the strip). 2ml of mineral 

oil was loaded over the top of it to prevent the solution from evaporating. It was incubated between 

24 and 96 h. After rinsing the strip with distilled water it was loaded into the focusing basket with 

the correct orientation and wet Whatman paper was used to separate the strip form the wires. The 

lane was again covered with mineral oil. The following focusing program was used: Step 1, 0.1 min 

50 V; Step 2, 30 min 200 V; Step 3, 30 min 200 V; Step 4 30 min 400 V; Step 5, 30 min 400 V; Step 6, 

30 min 600 V; Step 7, 30 min 600 V; Step 8, 60 min 3500 V; Step 9, 240 min 3500 V; Step 10, 10 min 

200 V; Step 11, up to x hours 200 V. Afterwards the strip was incubated in 2 mL equilibration buffer 

(50 mM Tris-HCl pH 8.8, 6 M urea, 30% glycerol, 20% SDS and bromo phenol blue) with 10 mg/mL 

DTT for 1 h at room temperature prior 1 h incubation with 2mL equilibration buffer  with 25 mg/ml  

iodoacetamide. The strip was loaded on a 12.5% SDS-PAGE gel only consisting of running gel with 

the help of a 1% agarose solution to prevent air bubbles between the strip and the gel. (NOTE: Load 

the strip quickly, and in a diagonal fashion starting with one corner of the strip and then easing the 

rest of the strip in to allow air bubbles to escape. The agarose solution hardens quickly, if the loading 

failed, remove the agarose and try again. A slot in the agarose can be made to be filled up with 

protein marker). The gel was ran at 300 V for 60-75 min (Encase the running container in an ice bath 

to prevent excess of temperature in the gel) 
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Chapter 5: Proteasome Inhibitor-Adapted Myeloma Cells Show 

Proteomic Alterations That Suggest Complex Changes in 

Metabolic Pathways  

 

Introduction 

Proteasome inhibition is an important therapeutic concept in the treatment of multiple 

myeloma (MM), the most frequent hematologic malignancy [1]. Proteasome inhibitors are 

also increasingly used to treat lymphoma and acute leukemia, mostly in clinical trials. Next 

to the first in class, reversible, boronate-type proteasome inhibitor bortezomib and the 

irreversible, epoxyketone-type inhibitor carfilzomib that are currently in clinical use, 

several boronate- and epoxyketone-type proteasome inhibitors are in advanced clinical 

development [2, 3]. The mechanism of action of proteasome inhibition for MM treatment 

exploits the highly developed protein biosynthesis machinery in B-cell derived 

malignancies, including MM. This extraordinarily active biosynthetic route critically relies 

on timely disposal of misfolded and dysfunctional newly synthesized proteins through the 

ER-associated degradation machinery, of which the proteasome is the rate-limiting factor. 

Effective proteasome inhibition disturbs the equilibrium between production and disposal 

of non-functional or misfolded protein, which results in proteotoxic stress and excess 

activation of the unfolded protein response, which triggers apoptosis [4-6]. 

Current proteasome inhibitor-based myeloma treatments offer reliable control of the 

disease during early stages. However, MM treatment is not curative and a majority of MM 

patients will still die from relapsed refractory MM [7]. Understanding the biology of 

proteasome inhibitor resistance in MM, and also in other hematologic malignancies, and 

finding potential therapeutic strategies to overcome this resistance, are key challenges 

towards a more effective use of proteasome inhibition in MM and cancer treatment. 

The proteasome is composed of two pairs of three proteolytically active sites (β1, β2, β5), 

which differ with respect to their substrate specificity. Immune cells, including myeloma, 

may replace these by respective active sites of the immunoproteasome (β1i, β2i, β5i) [8]. 

The β5 activity is the quantitatively most important, rate-limiting individual protease in 

the proteasome, and consequently bortezomib and also carfilzomib were designed to 

target the active center of the β5 subunit. 

Proteasome inhibitor-resistant cells have been generated in situ by continuous exposure 

of cell lines to proteasome inhibiting drugs, and such proteasome inhibitor-adapted cells 
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served as models to understand and potentially overcome proteasome inhibitor 

resistance. Several groups have reported mutations in the PSMB5 gene leading to amino 

acid changes in the β5 active site or the bortezomib-binding pocket, currently considered 

as the most likely mechanism of proteasome inhibitor resistance [9]. However the 

functional relevance of these mutations to impair bortezomib binding and hence 

proteasome inhibition has never been directly demonstrated. In addition, it is unknown 

whether such mutations would also provide resistance against irreversible, epoxyketone-

type next generation inhibitors. 

Extensive analysis of material derived from patients with relapsed-refractory myeloma has 

so far failed to confirm the presence of such PSMB5 mutations [10, 11]. Instead, an 

alternative model for the biological basis of bortezomib resistance in MM has been put 

forward, based on findings from MM cells of bortezomib-resistant patients. In this model, 

bortezomib resistance was the result of complex changes in the activation status of the 

UPR, which were initiated by decreased activity of the IRE1/XBP-1 axis, one of the three 

main regulatory switches that control UPR activity, which in turn is closely connected to 

MM cell differentiation [12, 13]. 

Recently, selective probes for active proteasome subunits that for the first time allow to 

address directly the activity states of all subunits of the constitutive proteasome and the 

immunoproteasome have been developed [14-18]. Using these tools, the functional 

relevance of the most common PSMB5 mutation for proteasome inhibition by bortezomib 

and carfilzomib in resistant MM cells were examined as reported in this chapter. Because 

the here presented results suggest that PSMB5 mutations are dispensable to mediate 

proteasome inhibitor resistance in myeloma cells, a global proteomics analysis is carried 

out to compare IRE1/XBP-1-high, proteasome inhibitor-sensitive MM cells to IRE1/XBP-1 

low, bortezomib- or carfilzomib-resistant subclones to map the complex changes in 

functional protein networks of proteasome inhibitor resistant myeloma cells to ultimately 

suggest new potential therapeutic targets. 

 

Results 

Bortezomib- or carfilzomib-adapted sub-cultures were established from the AMO-1 

myeloma cell line by continuous drug exposure, as described [19]. Because such sub-

cultures do not exhibit uniform cell morphology, as determined by light microscopy, 

limiting dilution experiments were performed to derive single cell-derived, bortezomib- or 

carfilzomib-adapted subclones (AMO-BTZ and AMO-CFZ) as a uniform and reliable basis 
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for further studies. Sequencing of all six proteasome active subunits revealed the presence 

of an A310G mutation leading to a Met45Val change in the S1 pocket of the PSMB5 active 

site in bortezomib-resistant bulk cultures as well as in all single cell-derived clones from 

these cultures (data not shown). In contrast, genetic changes in the PSMB1, PSMB2 and 

PSMB5 genes could be excluded in carfilzomib-adapted AMO cells, as well as in all 

respective single-cell derived clones. The absence of a PSMB5 mutation in AMO-CFZ cells 

demonstrates that point mutations in proteasome genes are not required in proteasome 

inhibitor resistant myeloma cells. 

Figure 1. Activity-based protein profiling for all proteasome subunits in every cell line after 1 h 

exposure to bortezomib (A) or carfilzomib (B) and their proliferation rate after 48 h. 
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Next a set of newly developed activity-based probes (described in Chapter 4 in more 

detail) is used to directly visualize changes in the proteasome-inhibiting on-target activity 

of bortezomib in the respective proteasome inhibitor-adapted MM cells (figure 1a). To this 

end, the proteasome inhibitor-adapted AMO-BTZ and AMO-CFZ cells were grown in the 

absence of proteasome inhibitors for 14 days and consecutively exposed to increasing 

concentrations of either bortezomib or carfilzomib for one hour, followed by removal of 

the drugs, mimicking the pharmacokinetic situation after intravenous (i.v.) administration 

of proteasome inhibitors in the clinic. Cells were subsequently analyzed with proteasome 

activity-specific chemical probes. The IC50 values for β1c and β1i inhibition was found to be 

comparable in AMO-1 and AMO-BTZ cells (table 1), while the IC50 value for β5c was 

approximately threefold lower in AMO-BTZ cells, compared to AMO-1 These data are 

consistent with a PSMB5 mutation hampering binding of bortezomib at the β5c, but not at 

the β1 subunits. Incubation with 250 nM bortezomib, a concentration that matches peak 

bortezomib plasma levels in myeloma patients minutes after i.v. bolus administration, 

resulted in approximately 75% inhibition of β5c/β5i in AMO-1 cells, and only moderately 

less effective inhibition (60-70%) in AMO-BTZ cells. These moderate quantitative 

differences in inhibition of β1/β5-type proteasome activity contrasted with the 

fundamentally different dose response for bortezomib-induced cytotoxicity between both 

cell lines, where the IC50 was 50 nM in AMO-1 cells, while evidence for toxicity was 

essentially lacking even at 1000 nM bortezomib in AMO-BTZ cells. 

Bortezomib inhibited β5/β1 activity in AMO-CFZ cells with similar efficacy, compared to 

AMO-1 control cells, consistent with the absence of mutations in the proteolytically active 

proteasome subunits in AMO-CFZ cells. Strikingly, bortezomib did not induce cytotoxicity 

despite >80% inhibition of active β1c/β1i and β5c/β5i proteasome activities in AMO-CFZ 

cells. The activity of β2c/β2i proteasome subunits is not targeted by bortezomib, and a 

substantial upregulation of β2/β2i activity was seen in AMO-1 cells after bortezomib 

treatment consistent with earlier work, while AMO-BTZ or AMO-CFZ myeloma cells or HL-

60 leukemia cells lacked such β2-activation by bortezomib. 
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Table 1. IC50 values obtained for Bortezomib and Carfilzomib in each cell line after 1 hour exposure. 

The effect of carfilzomib on proteasome activity in adapted and non-adapted AMO cells 

was analyzed in the same way (figure 1b). Carfilzomib was much more selective for β5c/5i 

over β1c/1i and in addition had some β2c/2i-inhibiting activity, both in contrast to 

bortezomib. The pattern and the dose response of inhibition of β2c/2i and β1c/1i were 

identical between AMO-1 and AMO-BTZ cells during carfilzomib treatment, while the IC50 

for β5c/5i was approximately 5 fold higher (10 nM vs. 50 nM) in AMO-1 vs. AMO-BTZ cells, 

suggesting that the PSMB5 A310G mutation affects β5 binding of carfilzomib in a fashion 

comparable to bortezomib. Carfilzomib treatment was significantly less effective in 

proteasome inhibition in AMO-CFZ cells, in contrast to bortezomib in the same cells. 

However, this was not a subunit-selective feature and had the same order of magnitude 

(approximately 5-10 fold lower IC50) also for β1c/1i and β2c/2i proteasome activity, 

suggesting that active drug export may be involved. If equally effective proteasome 

inhibition was achieved in AMO-1 and AMO-CFZ cells (>90% inhibition of β5c/5i, 20% 

inhibition of β1/1i, β2/2i), this resulted in marked (>50%) cytotoxicity in AMO-1 cells, 

whereas no cytotoxicity was observed in AMO-CFZ cells with the same degree of 

proteasome inhibition. 

Together, these results indicate that adaptive resistance to proteasome inhibitors in situ 

can render myeloma cells largely independent from activity of both the constitutive 

proteasome and the immunoproteasome, that this is not specific for a given type of 

proteasome inhibitor, and that also active site mutations are not required to reach 
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adaptive proteasome inhibitor resistance. Complex biological adaptations outside the 

proteasome pathway are thus likely to be involved. 

Figure 2. Western blot analysis of UPR-induced apoptotic machinery. 

Next the effects of bortezomib on the UPR-induced apoptotic machinery in AMO-1, AMO-

CFZ and AMO-BTZ cells were compared by Western blot (figure 2). The active version of 

the Nrf1 transcription factor is generated by partial proteolysis through the proteasome 

[20]. Exposure of AMO-1, AMO-BTZ and AMO-CFZ cells to bortezomib abolished 

production of active Nrf1 for approximately 8 hours, functionally confirming that 

proteasome inhibition and blockade of its protein turnover has been achieved in all three 

cell types, independent from the PSMB5 mutation status. Of the three major UPR-

controlling transmembrane regulators IRE-1, PERK and ATF6, it was found that upon 

bortezomib challenge phosphorylation of IRE-1 was triggered within 1-2 hours in all cell 

types, leading to a consecutive increase in the spliced version of XBP1 also in all three cell 

types. Increased expression of PERK is initiated at later time points. Triggering of the UPR-

related apoptotic machinery via ATF4 and CHOP is observed in AMO-1 and AMO-CFZ cells, 

but only poorly in AMO-BTZ cells, and downstream activation of caspase 3 is again less 

prominent in AMO-BTZ cells. Interestingly, bortezomib treatment led to a marked increase 

in PDI expression in AMO-1 cells, as expected, no change in PDI expression was observed 

in AMO-BTZ or AMO-CFZ cells, suggesting adaptive changes in the reducing and protein 

folding machinery of the endoplasmatic reticulum. In summary the data shows that 
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functionally efficient proteasome inhibition is being achieved with bortezomib in 

proteasome inhibitor-adapted cells, independently from the presence or absence of a 

mutation in the PSMB5 gene, and that comparable downstream signaling along the UPR 

apoptotic pathway is initiated, albeit less efficient in AMO-BTZ cells, while no cytotoxicity 

is achieved in proteasome inhibitor-adapted cells. 

Figure 3. UPR sensors screen. RNA quantification of the different UPR sensors and screen on the 

different XBP1 isoforms. 

Quantitative changes in the regulatory machinery of the UPR, namely IRE-1 and the 

product of its activity, sXBP1, result in bortezomib resistance in genetically engineered 

myeloma cells and have also been found in myeloma cells from BTZ-resistant patients. 

Whether such downregulation of the IRE1/XBP1 regulatory axis evolves during the 

adaptation of myeloma cells to proteasome inhibitor treatment was analyzed next. Only 

IRE-1 showed a quantitatively significant difference on mRNA levels in AMO-1 vs. AMO-

BTZ and AMO-CFZ cells, in contrast to ATF6, PERK and elF2a (figure 3). Consistent with 

this, significantly reduced levels of spliced XBP-1 mRNA, the functional result of IRE-1 
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activity, were found. On protein level, IRE1 and sXBP1 were uniformly strongly reduced in 

AMO-BTZ and AMO-CFZ, in contrast to elF2a, ATF6 and PERK. 

In order to unravel the biological complexity of adaptation to PIs, a proteomics approach 

was used to identify proteins with significant changes in expression levels in the adapted 

vs. non-adapted cells. In each experiment, from around 3500 different identified proteins, 

2000 were quantified of which more than 600 were differentially expressed in proteasome 

inhibitor-adapted cell lines, com-pared to the non-adapted controls (using as cut-off a 

statistically significant two-fold change in expression over 3 replicates, figure 4). 

Interestingly, in the bortezomib-adapted leukemia cell line HL60-BTZ, only 300 proteins 

showed significantly changed expression levels, although a similar total number of 

proteins as in the myeloma cell lines was identified and quantified, suggesting a more 

complex adaptation pathway of myeloma cells, compared to leukemia cells, consistent 

with our experience that the adaptation process in situ takes considerably longer in 

myeloma cells. 

Figure 4. Global proteome analysis for differentially expressed proteins. A) Distribution of proteins 

according to their log2 value. B) Histogram plot of the log2 distribution for AMO-BTZ and AMO-CFZ 

of the differentially expressed genes; the solid vertical lines indicate the log2 cut-off. C) Table 1 

showing the average values obtained in each analysis. (ID= found in either of the 3 replicates. 

Q=found in at least 2 out of 3 replicates. Light and heavy peptides are found in each replicate. 

Difference between ID and Q is due to absence of light or heavy peptide in the analysis) D) Protein-

Protein interaction network where red boxes are proteins upregulated and blue boxes are 

downregulated. 
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The differentially expressed proteins were subjected to a protein-protein interaction (PPI) 

search to build a PPI network. This resulted in a highly complex adaptive net-work in 

proteasome inhibitor-resistant myeloma cells that cannot easily be reconciled with a 

single point mutation mediating proteasome inhibitor resistance by interfering with the on 

target activity of the inhibitor. Differentially expressed proteins were subjected to a Gene 

Ontology (GO) analysis, resulting in an average of 30 GO terms for the overexpressed 

proteins and 10 for the downregulated species in all three adapted clones. GO terms 

involving the proteasome were highly enriched in all samples, as expected, in agreement 

with proteasome over-expression. GO terms were then manually grouped into 

functionally related clusters resulting in 5-6 functionally connected groups of differentially 

expressed proteins (table 1). This supervised clustering showed high concordance 

between the different adapted clones and therefore suggested that acquired resistance to 

PI is characterized by a typical, complex pattern of changes in protein expression. 

Table 2. Manually annotated GO (gene ontology) terms. P-values indicate the range of the clustered 

GO terms. Mean fold change is representative for the proteins grouped in each term. 

The functional protein clusters found overexpressed in this analysis were proteins 

involved in protein catabolism, redox control and protein folding, consistent with 

proteotoxic stress induced by proteasome inhibition. Almost all proteasome alpha (PSMA 



74 
 

1,2,3,4,7) and beta (PSMB 1,2,3,4,5,7) subunits were individually detected as significantly 

overexpressed polypeptide species in in both adapted myeloma cells, as expected from 

previous studies, corroborating the sensitivity and specificity of our analysis. Interestingly, 

only the constitutive proteasome active subunits were found upregulated, while the β2i 

subunits were found down-modulated in the bortezomib-adapted cells. 

The adapted clones had higher concentrations of antioxidant and ROS scavenging 

proteins, like NQO1, PRDX1 or SOD1, illustrating an increased importance of redox cycling 

in adapted cells. Adapted cells also expressed increased amounts of proteins involved in 

glutathione regulation, one of the most potent cellular antioxidants. Variations were 

found in the individual proteins up-regulated in a given functional pathway between 

bortezomib-adapted and carfilzomib-adapted clones (e.g., GPX1, one of the major 

enzymes responsible for glutathione peroxidation and thus removal of oxygen peroxide, 

was only overexpressed in AMO-BTZ, but not in AMO-CFZ, while glutathione transferase 1 

(MGST1), which acts by conjugating reduced glutathione to a wide number of exogenous 

and endogenous hydrophobic electrophiles, was only found upregulated in AMO-CFZ, of 

which a variant (MGST3) was found upregulated in AMO-BTZ). However, the upregulation 

of proteins involved in redox pathways overall showed a very consistent pattern between 

AMO-CFZ and AMO-BTZ cells. Of the 16 proteins significantly upregulated in this cluster in 

AMO-CFZ cells, 12 were likewise found upregulated in AMO-BTZ cells, suggesting a central 

role of the redox equilibrium in proteasome inhibitor-adapted myeloma cells. 

 The protein folding/chaperoning capacity of the adapted cells was also markedly 

increased, compared to non-resistant control cells. The heat shock proteins HSP70, HSP90 

and HSP105 were consistently among the top 15 quantitatively most strongly upregulated 

proteins (2.3 fold to 13 fold increase) in the group of proteins involved in 

folding/chaperoning in both adapted cell clones. 

A pattern of uniform downregulation was observed for protein clusters involved in 

transcription/translation, differentiation, apoptosis and structural/cytoskeletal functions. 

Transcription and translation regulation proteins comprised about one fourth of the total 

downregulated protein species. In this group, transcription factors (e.g. GTF2I), histone 

subunits (e.g. HIST1H1B) or DNA/RNA processing enzymes (e.g. TOP2A or DCPS) were 

found, as well as the Ki67 antigen that is involved in RNA biosynthesis and is commonly 

used as a marker for a proliferative cell fraction. The apoptosis protein cluster comprised 

the lowest number of proteins. Both adapted cells markedly downregulated individual key 

proteins involved in apoptosis: AMO-CFZ had decreased expression of BAX, while the 

AMO-BTZ had a lower expression of the CASP10 and DIABLO proteins. BCLAF2, a 

transcriptional repressor, which promotes cell death, was the only protein shared in this 
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group by both adapted clones. Downmodulation of cytoskeleton proteins were indicated 

by CORO1A or CAPG, both modulators of the cytosolic or nuclear structure. The last 

biological cluster found downregulated in this model was the group of proteins involved in 

cell differentiation, which included for example VAV1, involved in the activation of 

Rho/Rac GTPases, or IKZF3, a transcription factor implicated in lymphocyte differentiation. 

The quantitatively largest group of proteins with significantly altered expression levels in 

adapted vs. control cells was the one involved in metabolic regulation. This big cluster 

comprised close to 50 % of all polypeptide species with significant quantitative changes 

identified, suggesting that metabolic homeostasis is a major challenge for myeloma cells 

adapted to proteasome inhibitor treatment. This group of upregulated proteins consisted 

mainly of proteins involved in the respiratory chain (e.g. CYC1 or UQCR1), the generation 

of metabolites (e.g. BLVRA or APOA1BP), glycolysis (e.g. PFKP or PKM) and  amino acid 

(e.g. GOT1 or EEFSEC) or nucleic acids metabolism (e.g. UMPS or BOP1). On the other 

hand, the metabolic regulation category also comprised a significant fraction of proteins 

(30%) that were significantly downregulated. These were in particular proteins involved in 

lipid and cofactor metabolism (e.g. ACST2 or ACLY) as well as proteins involved in 

glycolysis events (e.g. B4GALT3 or NAGK). Interestingly, of the top 25 quantitatively 

downregulated proteins in the metabolism protein cluster, 12 proteins were 

mitochondrial proteins and mostly involved in the biosynthesis of fatty acids (ACSF2, 

ACSF3)  in carfilzomib-adapted cells, and likewise 5 respective mitochondrial proteins 

were found among the top 25 downregulated in bortezomib-adapted cells. 

Likewise, in the transport and signaling protein cluster upregulated and down regulated 

proteins were found, however, there was quantitatively a rough balance between 

upregulated and down-regulated species. The upregulated protein/ion transport and 

signaling group was characterized by upregulation of ion transporters (e.g. ATP1A1 or 

ATP2B4), which allow cations to cross the plasma membrane, and which transfer small 

charged molecules through the mitochondrial outer membrane (STIM1 or VDAC2). Amino 

acid pumps like SLC1A4 or SLC7A5 were also found in this cluster as well as protein 

transporters, for example SEC23A which promotes the transport of proteins from the ER 

to the Golgi complex. Proteins species with decreased protein expression were pumps 

involved in ion transport into the ER (e.g. STIM1 or ATP13A1) and also proteins involved in 

ER signaling (e.g. ERP29 or SRPR), consistent with changes in the ER homeostasis. Other 

signaling molecules with lower expression in the adapted cells included some G-proteins 

(GNAI3 or GNG7) involved in cell division and other signaling pathways or proteins 

implicated in cell adhesion (e.g. CD44, one of the top hits in the quantitative ranking of 

downregulated proteins). 
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A manual search was performed for individual proteins which showed quantitatively 

prominent changes in protein expression levels, at the same time have key functions in 

their pathways that can rationally be explained as compensation mechanism for a lack of 

proteasome function, and that are definitively or at least potentially druggable. The 

quantitatively most significantly upregulated protein was the multidrug resistance protein 

1 (ABCB1, 12 fold upregulated in AMO-ACFZ), suggesting that carfilzomib, a predicted 

substrate of MDR proteins, is quantitatively exported from the extracellular space, limiting 

the intracellular efficacy of proteasome inhibition. ABCB can be targeted with calcium 

channel blockers such as verapamil. Of note, ABCB was not upregulated in AMO-BTZ cells. 

The second most prominent quantitative hit in AMO-CFZ cells was the N-myc 

downstream-regulated gene NDRG1 (>9 fold upregulated in AMO-CFZ, 4.4 fold up-

regulated in AMO-BTZ), a protein that is known as the molecular cause of Charcot–Marie–

Tooth type 4D disease. NDRG1 is a hydrolase related to cell stress and cancer conditions, 

and is strongly upregulated under hypoxic conditions. NADPH dehydrogenase is the 

quantitatively most important reducing enzyme in eukaryotic cells. It was overexpressed 

4-6 fold in AMO-BTZ and AMO-CFZ, respectively, and in addition the enzymes that 

generate NADPH (malate dehydrogenase and enzymes of the pentose phosphate 

pathway) were also overexpressed, high-lighting the crucial functional role of maintaining 

reducing conditions under the selective pressure of proteasome inhibitor treatment. The 

anti-diabetes drug metformin has been shown to suppress the activity of NADPH 

dehydrogenase. The transcription factor IKZF3 is known as an essential transcription factor 

in myeloma, which is targeted by treatment with lenalidomide. IKZF3 was the top 

downregulated protein in the cluster of differentiation-related proteins in AMO-BTZ cells 

it and was also found significantly reduced in AMO-BTZ cells.   

 

Discussion 

It has been postulated that point mutations in the proteasome β5 pocket are sufficient to 

confer proteasome inhibitor resistance. This feature though, was only observed in PI 

adapted cell lines but not in relapsed patients, suggesting that a different adaptation 

mechanism apart from mutations in the β5 subunit might be triggering the resistance 

against proteasome inhibitor induced cytotoxicity. In the adapted cell line AMO-BTZ a 

single point mutation was found in the β5 subunit pocket, and indeed this was causing a 

lower binding affinity for both inhibitors tested in this study, needing higher inhibitor 

concentrations to reach a comparable inhibition rate as the one obtained in the wild type 

AMO-1 cells. In AMO-CFZ cells no mutations were found in any of the active proteasome 

β-subunits. The proteasome inhibition rates for bortezomib and carfilzomib in these cells 
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were comparable with those observed in AMO-1 cells. At high inhibitor concentrations the 

β5/5i subunit activity was almost fully inhibited in all three cell lines, showing that 

proteasome inhibitors are still efficiently blocking proteasome activity even in resistant 

cells and that a comparable downstream signaling among the UPR pathway is initiated. 

However no cytotoxicity is induced in the adapted cell lines even at high inhibitor 

concentrations (1000 nM) while the wild type AMO-1 cells on the other hand experience 

high proteotoxic stress already at 250 nM which induces apoptosis in these cells. When 

analyzing the mRNA levels of the UPR sensors and downstream effectors in all three cell 

lines, it was found that the mRNA levels of the IRE1/XBP1 branch had substantially 

changed which is in concordance with previous observations in patients. This data shows 

that proteasome inhibitor resistance is independent of the type of proteasome inhibitor 

used and that site mutations are not required for adaptation. 

The comparison of protein levels between AMO-1 cells and the adapted subclones shows 

high concordance between the found biological clusters in both resistant cell lines. Most 

of the proteins grouped in each cluster are shared between both resistant clones and the 

ones that are not have a comparable biological function suggesting that resistance is 

characterized by a typical pattern of changes in protein expression. Among the 

upregulated clusters, the proteasome machinery, the redox apparatus and the protein 

folding capacity are in concordance with PI induced proteotoxicity, thus an overexpression 

of these cellular mechanisms is in agreement with a lower sensitivity towards proteasome 

inhibition due to the cellular capacity to couple proteolytic stress. Taking this together 

with the fact that the protein synthesis machinery is downmodulated might explain why 

proteasome inhibition is not a suitable treatment for adapted cells. Adapted cells seem to 

have a lower basal ER-stress due to their lower production of proteins and an increased 

folding and degradation army. The fact that a cluster comprising apoptosis signaling was 

found to be downregulated in adapted cells does support this hypothesis. Having a 

downmodulated cluster covering differentiation proteins gives an additional indication 

towards this theory since plasma cells are fully differentiated B-cells, whose main function 

is to produce immunoglobulins for secretion. This high protein production is increased in 

neoplastic plasma cells and is what makes this cancer suitable for proteasome inhibition 

treatment. Therefore de-differentiation might be beneficial for adaption towards PI. This 

is in agreement with the loss of IRE1/XBP1 expression, which overexpression is 

fundamental for full differentiation into functional antibody producing plasma cells. This 

phenomenon was observed in patients with relapsed or refractory myeloma, where a 

subpopulation of progenitor cells was found to have lower expression levels of IRE1 and 

XBP1 [13] and was conferring resistance towards proteasome inhibitors. 
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Finding that the ion and protein transport into the ER and between this organelle and the 

Golgi apparatus is hampered in the resistant subclones does support the hypothesis of a 

rearrangement in the cellular secretion machinery since secreted proteins are mainly 

synthetized and folded inside the ER and translocated to the Golgi for their transport to 

the extracellular matrix. While this specific transport signaling is downmodulated in 

resistant cells, some ion pumps and amino acid transporters are overexpressed. Having 

enhanced the ion import/export machinery may be beneficial for redox homeostasis being 

able to quickly exchange protons or ions between organelles or with the extracellular 

matrix when dealing with redox stress. Overexpressing pumps to export potentially 

dangerous compounds may influence the intracellular drug efficiency and thus be 

favorable for adaptation. 

About 50% of the proteins found in this study were involved in metabolic regulation 

indicating that metabolic homeostasis is a major challenge for adapted cells. Even having 

in this cluster proteins up- and downregulated, their biological functions are different. In 

the downmodulated group mainly proteins involved in the lipid and cofactor metabolism 

were found while the overexpressed proteins could be grouped into metabolites, amino 

and nucleic acids metabolism, glycolysis and into the respiratory chain machinery. This is 

indicating that tight regulation of the cellular metabolism is necessary for adaptation 

against proteasome inhibition. 

From all the different protein clusters found in this study the most potentially druggable 

target groups might be the ion transporters and the redox machinery. It gives the 

impression that the antioxidant capacity of the cells plays a central role in resistant cells 

thus obstructing these mechanisms by blocking ions/proton channels or inhibition of 

reducing enzymes, or even by inducing reactive oxygen species, might be a valuable 

option as alternative or supplementary treatment. 

 

Conclusion 

It has been proven that proteasome inhibitor acquired resistance is independent of point 

mutations in the active proteasome subunits and of the type of proteasome inhibitor used 

and that efficient proteasome blockade is achieved in adapted cells in a comparable 

manner as in wild type cells without experiencing proteotoxic stress. This indicates that 

the adaptation mechanism might be a complex cellular rearrangement rather than a 

simple mutation that disrupts an efficient proteasome inhibition. Having comparable 

results in the complex protein expression changes and also in the pathways affected by 
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these adjustments in this proteomic study for both resistant cell lines, does support this 

hypothesis. This is also in accordance with the recent literature reports with patient 

material were no point mutations have been found and an imbalance in the ER 

homeostasis has been observed. 

The here presented data shows that a complex regulation of cellular homeostasis has 

taken place to couple proteasome inhibition. From all the different pathways found 

affected by this rearrangement, the antioxidant machinery and the ion transporters seem 

to be the best targets for supplementary treatments. It might be wise combining 

proteasome inhibitors with ion channel blockers alone or together with oxidative agents 

or inhibitors of reducing enzymes. This combination of drugs might be a useful tool to 

fight proteasome inhibitor acquired resistance. 

 

Experimental procedures 

Activity-based protein profiling (ABPP) and survival 

Adapted cells were grown for two weeks without the presence of inhibitor before performing the 

experiments. Cells were seeded to an end concentration of 0.5x106 cells/mL and treated with the 

indicated inhibitor concentration. After 1 h of pulse treatment, medium was refreshed and 25000 

cells were seeded in a new dish and grown for extra 48 h to measure the cell proliferation rate. Rest 

of the cells were harvested immediately and subjected to ABPP. Three different activity-based 

probes (ABPs) were used to independently quantify each active subunit of the proteasome. Each 

experiment was performed in triplicate. Fluorescent bands were measured with the ChemiDoc™ MP 

System and quantified using Image Lab software (BioRad). Untreated cells were used as control and 

its band intensity was defined as 100, the rest of the samples were normalized to the control. 

Proliferation assay was performed using the CellTiter-Glo Luminescent Cell Viability Assay kit 

(Promega) and performed as indicated by manufacturer. Each experiment was performed in 

triplicate. 

 

Global Proteomics 

Whole cell lysate was first digested with trypsin and then dimethyl labeled light (wildtype cells) or 

heavy (resistant cells). After labeling the samples were pooled together, subjected to SCX 

fractionation (strong cation exchange) and analyzed by LC/MS. Identification and quantification was 

done by MaxQuant software. A cut off of log2=0.5 was used to identify differentially expressed 

proteins. Each analysis was performed at least in triplicate. Only proteins being identified and 

quantified in at least 2 out of 3 replicates were used for further analysis. The differentially expressed 
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proteins were subset to a protein-protein interaction analysis by the Cytoscape software. The 

Cytoscape app BINGO was used to perform a gene ontology (GO) analysis looking for biological 

processes being overrepresented in the network. The search gave around 20-30 biological processes 

being either up- or downregulated in the resistant cell lines. From these 20-30 terms, a manual 

curation was done in order to cluster these GO terms in more general groups. P-values indicate the 

range of the clustered GO terms. Proteins not classified by the software were manually assigned to 

the different clusters. 
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Chapter 6: Summary and Future Prospects 

 

The work described in this thesis focuses on the characterization of proteasome directed 

activity-based probes (ABPs) as well as on the adaptation mechanisms that make multiple 

myeloma derived cell lines resistant against proteasome inhibitors (PIs). Chapter 1 

comprises a general introduction to the ubiquitin proteasome system (UPS) and to the 

techniques and tools used in this thesis to its study. The UPS is the main pathway for 

cellular protein degradation in eukaryotic cells. In the UPS pathway ubiquitin marks 

proteins destined for destruction by the proteasome, the actual protein degradation 

machinery. Partial inhibition of the proteasome has been approved as a treatment for two 

types of blood cancers (multiple myeloma and mantle cell lymphoma) but in most cases 

patients relapse and become insensitive against proteasome inhibition regimes. 

Chapter 2 presents a literature review and entails an in-depth analysis on the UPS, its 

inhibition and its relation with cellular redox homeostasis. PIs are used in the clinic for 

treatment of hematopoietic malignancies. They induce endoplasmic reticulum (ER) and 

oxidative stress, disruption of signaling pathways, mitochondrial dysfunction and 

eventually cell death caused by apoptosis. PIs designated as clinical candidates include 

natural product derivatives and compounds developed by rational design and feature a 

wide diversity of structural elements. Research in recent years has brought a deepened 

insight into the molecular mechanisms of PI induced apoptosis. However there are some 

paradoxes and controversies in the literature. In chapter 2 the advances and uncertainties, 

in particular on the time course events that makes cells commit to apoptosis are 

discussed. Also some mechanisms of evolved PI resistance are presented, and 

speculations on the difference in sensitivity between cell or tumor types are brought 

forward. 

Increased understanding of the systems biology at mRNA and protein level and the 

kinetics behind the interaction between proteasome inhibitors and cells is imperative. 

Design and synthesis of subunit specific inhibitors for each of the seven known 

proteasome activities and for the enzymes associated to proteasomes will aid in 

unraveling biology of the UPS in relation to ER stress, ROS production and apoptosis and 

will generate leads for therapeutic intervention. 

The first part of Chapter 3 describes different bio-orthogonal strategies to label the 

proteasome subunits by means of two-step activity-based protein profiling (ABPP). 

Because the reporter groups can alter the properties of ABPs, introducing bio-orthogonal 
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handles instead of readout tags allows performing first the proper binding of the ABP to 

the enzyme and a posterior addition of the reporter group in a second reaction. Bio-

orthogonal handles are small chemical moieties which are inert in complex biological 

environments. The bio-orthogonal reactions can be performed both in situ and in vitro. In 

fact, some of the bio-orthogonal ligations can be performed simultaneously. Alkynes and 

cyclooctynes respective ligations show background labeling, which in the case of 

cyclooctynes is very large, suggesting that cyclooctyne ligations are not truly bio-

orthogonal. These extra bands should be analyzed in more detail, for example by in-gel 

digestion coupled to LC-MS analysis or by a pull-down experiment. Finding the biological 

groups that react with these molecules could be beneficial for developing new bio-

orthogonal handles or for inhibitors and probes development. Although the pool of tools 

in bio-orthogonal chemistry has increased considerably in the last decade, there is still 

room for improvement as many chemical reactions might also be suitable thus expanding 

the tools for researchers. Ideally, finding new reactions which are orthogonal between 

them and also with biological samples would be the best. This would increase the tools for 

a simultaneous labeling of different proteins or other constructs. 

The second part of Chapter 3 is a technical study about the capacity of an ABP to label the 

whole pool of active proteasomes from human and murine cell lines both in vitro and in 

situ. The optimal conditions for the labeling are determined, incubation with 0.5 µM for 1 

h in vitro and 4 µM for 4 h in situ. Interestingly these conditions were the same for both 

cell lines studied, namely AMO-1 and B3/25. The unlabeled fraction after labeling with the 

probe was found to be very small (1-10%) in all the cases except for mice cell lysates 

where the percentage increased up to 30%. This large difference between the unlabeled 

proteome in vitro and in situ suggests that it might be caused by a systematic error while 

performing the experiments. The experiments in murine cells need to be repeated in 

order to validate the here obtained results. Performing this screen with different ABPs and 

on different species may give an indication on the specificity and potency of not only the 

probes but also the inhibitors, and could help in the development of new and more potent 

and, perhaps also, organism selective probes and inhibitors. 

Chapter 4 describes a screening of 7 different proteasome-directed ABPs in mouse and 

zebrafish tissue extracts. The ABPs used in this study vary from subunits specific probes to 

broad-spectrum ones. Their application in human samples has been validated previously 

and here it is shown that these are also suitable for their use in mouse and zebrafish, two 

species broadly used in research due to their similarity to human biology. Although all 

ABPs retain their subunit specificity with a low lose in potency (all working in the low 

micromolar range, 0.1-3 µM) in both organisms, some observations can be made. Probe 6, 

a β5-selective probe, does not give a proper separation of the mouse β5 and β5i subunits 



 
 

83 
 

when running on SDS-PAGE as it does with the human counterparts. Only when 

performing a 2D gel electrophoresis the separation and visualization of the two subunits is 

achieved. Possibly replacement of the reported tag by a different fluorophore might allow 

its separation on a regular SDS-PAGE. In the case of zebrafish extracts, the use of 

BODIPY(FL)-bond ABPs is not recommended when labeling the β2 or β2i subunits due to 

an endogenous green fluorescent protein which runs slightly higher than these subunits in 

the gel. The presence of extra bands next to the β2 subunit when labeling zebrafish brains 

or full fish extracts with probes 2 and 7 was not expected, since these bands are not visible 

in human or mouse samples. Further research needs to be done on this, since it could be 

that the probes are allowing the separation of different post-translationally modified β2 

subunits or they could also be off-targets. Probably an in-gel digestion procedure coupled 

to a mass spectrometry analysis will be an appropriate solution to identify those 

unexpected bands. 

The large changes in probe potency in the different organisms tested indicates that there 

might be a window where the probes or inhibitors might be selective towards one 

organism but not another. The development of organism selective proteasome ABPs and 

inhibitors might be beneficial not only for fundamental but also for clinic research. This 

would allow for example the specific proteasome inhibition of the pathogen but not of the 

host in infections. The development of these types of inhibitors might be also useful in the 

food and agriculture industry, where plagues could be avoided by compounds that only 

target the organism causing the plague but not the plant itself and neither individuals who 

might consume these afterwards. 

Chapter 5 reports on the characterization of two PI resistant cell lines by means of ABPP 

and quantitative proteomic techniques. This study shows that adaptation towards 

proteasome inhibition is not only independent from the type of inhibitor but also from 

point mutations in the β5 active site binding pocket, which have been previously reported 

in cell lines studies but not in patients with relapse or refractory myeloma. The significant 

changes in the proteome of two resistant subclones of a multiple myeloma cell line were 

characterized and compared to their progenitor cell line. When combining the identified 

proteins into clusters according to their biological function, both cell lines showed the 

same biological pathways being altered compared to the wild type cells. This, together 

with to the fact that around 50% of the proteins found in the analysis were shared 

between both adapted subclones, is indicating that a complex biological network 

rearrangement is driving the adaptation towards proteasome inhibition induced 

cytotoxicity. The data point towards some potential druggable targets including 

antioxidant enzymes and ion pumps, which blockade might induce apoptosis in the 

adapted cell lines. In figure 1 a model of the obtained results that characterize the 
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resistant adaptation mechanisms is presented. All these different biological process could 

be a suitable target for alternative treatment against PI resistant cells.  

In order to validate these targets and in general the global adaptation mechanisms found 

in our data, this type of analysis should be repeated with different disease-stage cell lines 

and if possible it would be ideal if this is done with patient material. In fact, the global 

procedure of the analysis can be extrapolated and used in the study of any drug resistance 

development in other diseases or even just in the differentiation characterization between 

two cell types. This technique if applied in the clinic could drive towards patient-based 

therapies, by finding the specific and optimal altered signaling pathway to target. 

Figure 1. Model showing the different biological processes inducing proteasome inhibitor resistance 

in our cell lines adaptation model. The size of the different biological bubbles is related to the 

proteins found in each cluster. 
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Figure 2. Proposed model for proteasome inhibition adaptation.  

Fully functional plasma cells are characterized by a high XBP1 and a low Nrf2 expression, 

while their progenitors are characterized by the opposite, a low XBP1 and a high Nrf2 

expression. The high need of plasma cells for protein quality control makes them 

potentially sensitive for proteasome inhibition (figure 2). The malignant plasma cells have 

an increased protein synthesis rate, making them more sensitive against PI induced 

apoptosis. It can be hypothesized that the adaptation results in a loss of XBP1 (actually a 

factor revealed by the presented data) and an increase of the transcription factor Nrf2. 

These changes trigger cellular de-differentiation and thus making the cells insensitive 

against proteasome inhibition. The transcription factor Nrf2 is essential for antioxidant 

response in all cell types, by inducing the expression of antioxidants like NQO1, one of the 

top proteins found overexpressed in the adapted clones. It is also known for the induction 

of constitutive proteasome subunits, another feature found in our analysis. This data is 

suggesting that Nrf2 transcriptional activation or overexpression might trigger the 

response mechanisms, at least in some extend, but this still needs to be validated. To 

check whether Nrf2 is essential for PI adaptation, it could be attempted to develop PI 

resistance in a knocked down cell line. Alternatively, the use of Nrf2 inhibitors or 

activators should also indicate if this transcription factor is needed for the adaptation 

process. 
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Resumen 

 

El trabajo descrito en esta tesis se centra en la caracterización de sondas, conocidas como 

activity-based probes (ABPs), dirigidas hacia el proteasoma y también en los mecanismos 

de adaptación de líneas celulares derivadas de mieloma múltiple resistentes a la inhibición 

del proteasoma. El capítulo 1 es una introducción general al sistema ubiquitino 

proteosómico (UPS) y a las técnicas utilizadas para su estudio. El UPS es la principal ruta 

intracelular de degradación de proteínas en células eucarióticas. En esta ruta, la ubiquitina 

marca las proteínas para ser destruidas por el proteasoma, el aparato degradatorio del 

sistema. La inhibición parcial del proteasoma ha sido aprobada como tratamiento contra 

dos tipos de cáncer sanguíneos (mieloma múltiple y linfoma de células de manto) pero en 

la mayoría de los casos los pacientes recaen y se vuelven insensibles a regímenes de 

inhibición del proteosoma.  

El capítulo 2 presenta una revisión literaria que profundiza en el estudio del UPS, su 

inhibición y la relación que mantiene con la homeostasis redox celular. Los inhibidores del 

proteasoma (PIs) son usados en medicina para el tratamiento de enfermedades 

hematopoyéticas. Éstos inducen estrés de retículo endoplásmico así como estrés redox, 

disrupción de rutas de señalización, disfunción mitocondrial y finalmente muerte celular o 

apoptosis. Los PIs designados como candidatos clínicos incluyen derivados de productos 

naturales así como compuestos desarrollados por diseño racional, lo cual constituye una 

gran variedad de elementos estructurales. En los últimos años se ha aumentado el 

conocimiento de los mecanismos moleculares en la apoptosis inducida por PIs, pero aún 

existen paradojas y controversia en la literatura científica. En este capítulo los avances e 

incertidumbres en la inducción de apoptosis, con especial interés en su desarrollo en el 

tiempo, serán discutidos. Se presentaran algunos posibles mecanismos en el desarrollo de 

resistencia contra PIs y se especulará sobre la diferencia de sensibilidad contra este 

tratamiento entre células o tipos de cáncer.  

La primera parte del capítulo 3 describe diferentes estrategias bio-ortogonales para 

marcar el proteasoma haciendo uso de two-step activity-based protein profiling (ABPP). El 

grupo indicador puede alterar las características de la sonda por lo que su sustitución por 

un compuesto bio-ortogonal permite realizar la unión de la sonda con la enzima primero y 

posteriormente la incorporación del grupo indicador en una segunda reacción. 

Compuestos bio-ortogonales son pequeñas entidades químicas inertes en medios 

biológicos complejos. Las reacciones bio-ortogonales pueden ser llevadas a cabo tanto in 

situ como in vitro, de hecho algunas de ellas pueden ser ejecutadas simultáneamente. La 
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segunda parte del capítulo 3 engloba un estudio técnico sobre la capacidad de las sondas 

(ABP) de marcar completamente todos los proteosomas activos en líneas celulares 

humanas y de ratones tanto in vitro como in situ. Las condiciones óptimas de incubación 

de las sondas obtenidas son 0.5 µM durante 1 hora in vitro y 4 µM durante 4 horas in situ. 

Cabe destacar que estas condiciones de incubación son las mismas en ambas líneas 

celulares estudiadas, AMO-1 y B3/25. La fracción de porteasomas activos sin ser marcada 

por la sondas encontrada es bastante pequeña (1-10%) en todos los casos excepto en 

lisados de ratones donde esta fracción aumenta hasta el 30%. 

En el capítulo 4 un cribado de 7 sondas diferentes del proteasoma es llevado a cabo en 

muestras de ratones y peces cebra. Las sondas utilizadas en este estudio varían desde 

exclusivas para una sola subunidad del proteasoma hasta pan-reactivas con todas las 

subunidades. La aplicación de estas sondas en tejidos humanos había sido validada 

previamente y aquí se demuestra su validez para estudios en ratones o peces cebra, dos 

especies ampliamente utilizadas en investigación debido a su gran similitud con la biología 

humana. Todas las sondas mantienen su selectividad hacia las diferentes subunidades del 

proteasoma en ambos organismos aunque con una pequeña pérdida de potencia, 

manteniéndose en un bajo rango micro molar (0.1-3 µM). 

El capítulo 5 es un estudio sobre la caracterización de dos líneas celulares resistentes a 

inhibidores del proteasoma utilizando ABPP y análisis proteómicos. El estudio demuestra 

que la adaptación a la inhibición del proteasoma es independiente del tipo de inhibidor 

utilizado y de mutaciones puntuales en la subunidad β5, mutaciones que han sido 

anteriormente encontradas en líneas celulares pero no en muestras de pacientes con 

mieloma refractario. Los cambios significantes en el proteoma de dos subclones de 

mieloma resistentes a regímenes de inhibición del porteasoma comparados con su línea 

celular progenitora son caracterizados en este estudio. Al agrupar las proteínas 

identificadas en grupos dependiendo de su función biológica, se demuestra que las rutas 

biológicas alteradas son las mismas en ambas líneas celulares resistentes. Esto, sumado al 

hecho de que alrededor del 50% de las proteínas encontradas en el análisis son comunes 

en ambos subclones, es indicativo de que un complejo cambio en el funcionamiento 

interno de las células es necesario para la adaptación contra la toxicidad inducida por la 

inhibición del proteasoma.  
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