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The elucidation of the DNA structure by Watson and Crick marked the 
beginning of a new era in biological sciences [1]. This structure revealed that 
the basis of heredity lies in the arrangement of just four nucleotides: adenine, 
thymine, guanine and cytosine. This digital feature of DNA engendered a new 
view of biology as an information science.  The discovery of the DNA structure 
spawned the field of molecular biology to investigate the molecular genetic 
basis of life. The central dogma of molecular biology put forth by Francis Crick 
in 1958 holds that genes - ordered sequences of nucleotides along the DNA 
molecule - are transcribed into messenger RNAs which are then translated 
into polypeptide chains [2]. This directional transfer of information 
reinforced the notion that life can be interpreted as a molecular process 
regulated by genetic information.  

The reductionist method of dissecting biological systems into their 
constituent parts has provided a wealth of information pertaining to 
molecular and cellular processes. However, in recent years the limits of the 
reductionist approach have become increasingly evident. Under question is 
not the value of these investigations, but rather that life can be fully 
understood at the molecular and genetic level applying the reductionist 
approach. Biological systems are extremely complex [3], are composed of 
many intricately connected components and have emergent properties, i.e. 
the whole is much more than the sum of the parts [4]. Recent developments 
in high throughput data measurement, processing and storage have exposed 
the limitations of hypothesis-driven research. It appears nearly impossible to 
manipulate a single component of a biological system, without 
simultaneously affecting many other components.  

Exactly fifty years after the discovery of the structure of DNA, another 
epochal event took place in biological research: the sequence of the human 
genome was completed, which provided a genetic blueprint of a human 
being [5]. It is now possible for researchers to simultaneously investigate all 
genes. Faced with massive data, the hypothesis driven approach to science, 
while still valid, is increasingly being seen as one of two approaches. 
Discovery science, based on inductive reasoning that uncovers important 
rules through careful observations, is being embraced as a second approach, 
to make sense of the data deluge in the post-genomic era. 

OMICS-Revolution  

Technological advancements in the biological sciences have facilitated a 
paradigm shift from exclusively hypothesis-driven to hypothesis- and data-
driven scientific exploration. In contrast to hypothesis-driven research, a  



3 

 
Figure 1 OMICs data. The components and process of information flow in 
biological systems is depicted on the left and the OMIC technologies to 
measure the components are shown on the right side of the figure. 

 

data-driven approach allows rapid evaluation of additional hypotheses 
followed by refining candidates into a smaller set of testable hypothesis. The 
data rich environment necessary for such exploration is in large part driven 
by high-throughput “OMICS” experiments, as shown in Figure 1, which 
routinely generate “genome-wide” data. High-throughput “OMICS” 
technologies include methods to identify and quantify DNA and RNA 
(genomics), proteins (proteomics), metabolites (metabolomics) and other 
biologically relevant entities.  

Data analyses 
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Statistical Analysis 

A wide spectrum of analytic techniques has been proposed to analyze high-
throughput omics data. Application of univariate statistical tests, for 
example, t-tests and ANOVA, is a common approach to assess group wise 
differences. However, the high dimensionality of a typical omics dataset 
poses a serious challenge to the validity of univariate tests. An omics 
approach often leads to high dimensional and low-sample size data settings 
where the number of variables measured (e.g., mRNA, proteins, metabolites) 
exceeds the number of samples by far. Application of univariate tests to such 
datasets may result in a high number of false positives, known as the multiple 
testing problem. Moreover, the predominant approach of p-value correction 
to account for these false positive (eg., Benjamini and Hochberg’s false 
discovery rate (FDR), Bonferroni correction) may be a bit too conservative 
and are associated with significant losses in statistical power. As an 
alternative, multivariate statistical techniques, for example principal 
component analysis (PCA) and partial least squares regression (PLS) are being 
employed for integration and interpretation of omics datasets [6]. Often, 
several distinct approaches to investigate the same dataset are needed to 
come to a proper interpretation.  

Pathway Analysis 

Even as data generation is proceeding at an unprecedented pace, translation 
of this data into actionable biological insight remains a critical challenge. To 
address this issue, pathway analysis that combines analytical tools and a 
priori biological knowledge is increasingly being recognized as an important 
strategy to gain a deeper and broader understanding of biological 
underpinnings of experimental observations. Pathway-based approaches 
examine test statistics for a group of genes in contrast to single-marker 
analysis [7]. The ‘group of genes’ is an expert defined set that is functionally 
related to the phenotype. The term ‘pathway’ in a pathway analysis is usually 
referring to a set of functionally related genes participating in a common 
biological process. An important example of pathway analysis is Gene Set 
Enrichment Analysis (GSEA) [8]that was initially proposed for microarray 
analysis and has subsequently been modified and applied to GWAS data [7].  
The goal of GSEA and other pathway-based methods is to examine the 
behaviour of gene sets rather than single genes across the biological 
conditions investigated.  

The resources of prior knowledge that are commonly used in pathway 
analysis include controlled vocabularies like Gene Ontology [9], manually 
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curated gene sets from MSigDB [8]  and the pathway databases like KEGG 
[10], BioCyc [11] and REACTOME [12]. However, biological data resources in 
general and pathway databases in particular have low consensus [13] that 
mandates interrogation and integration of multiple databases in order to 
ensure comprehensive data collection. Crowd sourcing efforts in building 
pathway databases such as WikiPathways [14] address this problem through 
a community resource that allows contributions from users towards building 
pathways in addition to integration of publicly available data and 
customization of information content. 

Integration of heterogeneous and disparate data resources remains a key 
bioinformatics challenge. Recent developments in workflow technologies in 
general and scientific workflow tools like Taverna [15] and Galaxy [16] in 
particular, have facilitated an easy interface for integration of disparate 
biological data resources. In addition these technologies make data analysis 
routines reusable and reproducible. A closely associated concept to scientific 
workflows is the idea of the Semantic Web. The latter is an extension of the 
Web built on standards laid out by the World Wide Web consortium (W3C) 
(www.w3.org). Semantic Web facilitates the integration of heterogonous 
data on the World Wide Web by making the semantics of the data explicit 
through formal ontologies [17]. The inclusion of semantic web technologies 
into scientific workflows enables in silico experimentation and is increasingly 
being recognized as a promising platform for integrative biology [18]. 

This thesis combines statistical and bioinformatic techniques to extract 
greater value from high-throughput datasets than is possible using traditional 
data analysis and interpretation approaches. This work is in line with the 
paradigm of e-science, in that the overarching research theme is to promote 
scientific discovery through analysis of data over distributed environments. 
More specifically, we demonstrate the utility of scientific workflows in 
facilitating knowledge discovery in high-throughput datasets like Genome-
Wide Association Studies (GWAS), Next-Generation Sequencing (NGS) and 
microarray datasets.  

Biological problem 
The metabolic syndrome (MetS) is defined as a cluster of metabolic 
abnormalities including central obesity, hypertension, hyperglycemia and 
dyslipidemia [19]. It is associated with increased risk of type 2 diabetes, 
cardiovascular disease and stroke. The increasing prevalence of MetS is 
driven by the obesity epidemic and poses a serious health problem 
worldwide. Effective prevention and intervention requires improved 
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understanding of factors that contribute to MetS. It is now understood that 
the syndrome results from a complex interplay of environmental and genetic 
components. Epidemiological studies have shown that social and lifestyle 
issues like physical inactivity, western-style diet and age increase the risk for 
MetS. On the other hand, family and twin studies indicate that the genetic 
component also plays an important role.  

From 2007 on, Genome-Wide Association studies (GWAS) have helped 
identify common genetic variants associated with obesity and other 
metabolic syndrome traits [20]. However, the cumulative contribution of 
common variants, as accounted for by GWAS, to the heritability of these 
traits is quite modest. In addition, the biological context of candidate genes 
detected by means of GWAS frequently remains unclear. Often, the assigned 
gene is located at a significant distance from the associated variant and 
causality between gene and variant is not known. To gain additional insight 
in the relation between genetic variants, metabolic traits and outcome, 
GWAS analysis of metabolite levels has recently sparked interest. These 
intermediate phenotypes generally demonstrate larger effect sizes and 
potentially point at pathways relevant to disease [21]. Metabolite GWAS 
results are proving to be excellent starting points for functional studies as 
well as bioinformatics and systems biology approaches to unravel novel 
biochemical pathways underlying complex traits like type 2 diabetes and 
related disorders. In this thesis, we explore pathway and network analysis of 
high-throughput datasets to gain further mechanistic insight into complex 
traits like type 2 diabetes. 

OUTLINE OF THE THESIS 
The aim of the present thesis is to identify biomarkers in genomic, 
proteomic and metabolomics datasets using novel bioinformatic 
techniques. In Chapter 2 we demonstrate the utility of automated 
exploitation of background knowledge present in pathway databases for 
the analysis of GWAS datasets of metabolomics phenotypes. This research 
work explores a strategy to identify novel and biologically relevant SNP-
metabolite pairs in Genome-Wide Association Studies (GWAS) of metabolite 
profiles. We demonstrate the utility of an automated workflow approach 
that utilizes prior knowledge of biochemical pathways present in databases 
like KEGG and BioCyc to generate a smaller SNP set relevant to the 
metabolite. In addition to reporting novel loci, this chapter presents the 
opportunities and challenges in the analysis of GWAS of metabolomic 
phenotypes.  
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Encapsulating all aspects of an in silico analysis and communicating it to the 
scientific community is a key challenge in a computational experiment. 
Chapter 3 explores the utility of semantic web technologies in the 
preservation of computational experiments. More specifically, the chapter 
discusses the Research Object (RO) model, where a research object is defined 
as a resource that aggregates other resources, e.g. datasets, software, 
spreadsheets, text, etc. The RO model was applied to a study where the goal 
was to facilitate the interpretation of the results of a GWAS of metabolite 
profiles. 

Obesity is a growing world-wide epidemic and is associated with decreased 
life expectancy due to associated metabolic and cardiovascular disorders. 
The expanded adipose tissue is thought to serve as the pathogenic link 
between obesity and type-2 diabetes. While a majority of obese individuals 
develop insulin resistance and type-2 diabetes (T2DM), some remain 
metabolically healthy or Normal Glucose Tolerant (NGT). Chapter 4 presents 
a study designed to investigate the role of the adipose tissue in development 
of T2DM in severely obese subjects by performing RNA-Sequencing of the 
subcutaneous (SAT) and visceral adipose tissue (VAT) samples. We 
demonstrate a bioinformatic network-based approach that helped identify 
an important biochemical feature in the pathophysiology of type 2 diabetes 
in obese individuals. Chapter 5 addresses the issue of Allelic imbalance which 
is the uneven expression of a transcript from its two allelic copies in 
heterozygous individuals. A growing number of studies have shown that a 
genetic variation in non-coding regions of the genome has important 
consequences for phenotypic variation. The objective of this study was to 
identify, from a panel of known diabetes and obesity susceptible loci, as 
reported by published GWA studies, the subset of genes that are under the 
control of cis-regulatory elements. RNA-Seq data from the SAT and VAT of 
T2DM and NGT subjects mentioned in the earlier chapter was utilized to 
determine if there was a tissue-specific allelic imbalance in known obesity 
associated loci. The bioinformatic and statistical investigation helped identify 
a novel locus that displays a differential allele-specific expression between 
the two tissues. 

Chapter 6 and Chapter 7 demonstrate the utility of pathway analysis in 
extracting biological meaning from proteomic and microarray datasets. 
Chapter 6 pertains to studies in obese T2DM patients subjected to Very low 
calorie diets (VLCD) with and without exercise programs that lead to major 
metabolic improvements in these subjects. Proteomic analysis using blood 
samples from these subjects was used to uncover novel biomarkers for these 
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interventions. In addition to statistical analysis, we employed text mining and 
pathway-based approaches to gain an understanding of intervention-specific 
biomarkers. In Chapter 7 pathway analysis is applied to microarray data 
obtained from adipose tissue of mice treated with or without niacin. The 
conclusion from the bioinformatics and statistical analysis was used to guide 
in vivo and in vitro investigation into biochemical feature of prolonged niacin 
treatment in mice.  

In Chapter 8, we present a global review of the current status of metabolomic 
GWAS (mGWAS) and sketch future directions towards enhanced 
interpretation of these studies. Finally, Chapter 9 provides a general 
discussion of topics mentioned in chapters 4-7. 
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Abstract 
Background: Genome-wide association studies (GWAS) have identified many 
common single nucleotide polymorphisms (SNPs) that associate with clinical 
phenotypes, but these SNPs usually explain just a small part of the heritability 
and have relatively modest effect sizes. In contrast, SNPs that associate with 
metabolite levels generally explain a higher percentage of the genetic 
variation and demonstrate larger effect sizes. Still, the discovery of SNPs 
associated with metabolite levels is challenging since testing all metabolites 
measured in typical metabolomics studies with all SNPs comes with a severe 
multiple testing penalty. We have developed an automated workflow 
approach that utilizes prior knowledge of biochemical pathways present in 
databases like KEGG and BioCyc to generate a smaller SNP set relevant to the 
metabolite. This paper explores the opportunities and challenges in the 
analysis of GWAS of metabolomic phenotypes and provides novel insights 
into the genetic basis of metabolic variation through the re-analysis of 
published GWAS datasets. 

Results: Re-analysis of the published GWAS dataset from Illig et al (Nature 
Genetics, 2010) using a pathway-based workflow 
(http://www.myexperiment.org/packs/319.html), confirmed previously 
identified hits and identified a new locus of human metabolic individuality, 
associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine / 
glycine ratios in blood. Replication in an independent GWAS dataset of 
phospholipids (Demirkan et al, PLoS Genetics, 2012) identified two novel loci 
supported by additional literature evidence: GPAM (Glycerol-3 phosphate 
acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the 
workflow approach provided novel insight into the affected pathways and 
relevance of some of these gene-metabolite pairs in disease development 
and progression. 

Conclusions: We demonstrate the utility of automated exploitation of 
background knowledge present in pathway databases for the analysis of 
GWAS datasets of metabolomic phenotypes. We report novel loci and 
potential biochemical mechanisms that contribute to our understanding of 
the genetic basis of metabolic variation and its relationship to disease 
development and progression. 

Background 
GWAS have resulted in the identification of novel genetic loci associated with 
a variety of diseases and clinical phenotypes. However, a disease or clinical 
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phenotype is the end point of the behaviour of numerous genes and 
pathways in addition to environmental influences. This at least partly 
explains the general observation that the effect size of genetic association 
with clinical phenotypes is rather small. Spurred by recent technological 
developments in the field of metabolomics, interest in genome wide 
association studies with metabolite levels in blood [1,2,3,4] is gathering 
momentum. Metabolites are intermediate phenotypes, entities that lie 
between genes and clinical end points [5,6]. Due to their proximity to an 
enzyme/gene, metabolites may offer greater effect sizes for GWAS than 
clinical phenotypes [7]. Moreover, the pathways in which the metabolite 
plays a role may provide insight into the underlying biological mechanism 
responsible for the development of the associated disease.  

Typically, in metabolomics GWAS, hundreds of metabolites are tested for 
genetic association. However, association of all SNPs with all measured 
metabolites comes with considerable multiple testing problems. Recent 
publications have also shown that testing ratios of metabolites for genetic 
association results in much larger effect sizes; however this further 
exacerbates the multiple testing problem which precludes genuine SNP-
metabolite pairs from reaching genome-wide significance. Several 
approaches like gene based tests [8,9] and pathway analysis [10] have been 
proposed to overcome this limitation of inadequate statistical power in 
GWAS. All these approaches have been suggested in the context of GWAS 
with clinical phenotypes but genetic association with metabolites presents 
its own set of unique opportunities and challenges. Herewith, we explore the 
utility of background knowledge present in metabolic pathway databases to 
increase the power in identification of metabolite Quantitative Trait Loci 
(mQTL).  

Our approach involves selective testing of SNPs near genes in pathways 
supposedly relevant to the metabolite levels, as a way to reduce the multiple 
testing burden in GWAS. Background knowledge pertaining to a metabolite 
is retrieved through systematic interrogation of metabolic pathway 
databases which describe biochemical pathways, reactions, and enzymes 
relevant to human metabolism. Several pathway databases have been 
created by groups around the world, while the intent of these efforts remains 
the elucidation of biological mechanism, the databases however, differ quite 
significantly in their content, size, user accessibility, download formats and 
most importantly availability and type of web services for machine-enabled 
interrogation of the database [11]. In this publication, as a proof of principle, 
we have chosen to focus on two important metabolic pathway databases,  
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Figure 1 The database interrogation schemes. The two interrogation 
schemes: pathway scheme (A) and reaction scheme (B) are shown. The blue color 
indicates the intermediate steps to filter out certain pathways/compounds from 
the two schemes to avoid non-specific connections. 

 

KEGG [12] and BioCyc [13].   KEGG is an integrated database resource of 
seventeen databases which provide system, genomic and chemical 
information. The pathway database consists of both metabolic and non- 
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Figure 2 Strategy to find biologically relevant SNP-metabolite pairs in 
published GWAS datasets. Background knowledge pertaining to a 
metabolite is collected from the pathway databases KEGG and BioCyc in an 
automated fashion to generate a gene/SNP set relevant to the synthesis 
and degradation of the metabolite. 

 

metabolic pathways and is constructed by a team of curators based on 
information available in the literature.  BioCyc is a collection of 
pathway/genome databases that describe the genome and metabolic 
pathways of several organisms. The database that describes human genomes 
and pathways, HumanCyc was interrogated in this study. In our approach, for 
every metabolite under consideration, genes acting in the vicinity of the 
metabolite are determined using knowledge present in databases mentioned 
above. We thus generate an integrated set of genes that represent entities 
with influence over the metabolite. A workflow management system called 
Taverna [14] was used to generate these gene sets and the SNPs associated 
with these genes. The workflows that were designed for this purpose have 



16 

been submitted to a workflow repository at 
http://www.myexperiment.org/packs/319.html [15]. 

A previously published metabolomics dataset by Illig et al 2010 [2] was 
analyzed to evaluate the sensitivity of the method in picking true positives 
and to identify novel SNP-metabolite pairs that had hitherto been obscured 
in the GWA list given the stringent threshold for significance. In addition to 
validating a novel bioinformatics workflow analysis tool, we identified a new 
locus of human metabolic individuality, Aldehyde dehydrogenase family1 L1 
(ALDH1L1). This locus was found associated with serine/glycine ratios, a 
metabolic trait that functionally matches the gene function. 

Candidate genes identified through the analysis of Illig et al dataset were 
taken up for replication in a separate study published by Demirkan et al [4]. 
We report GPAM (Glycerol-3 phosphate acyltransferase) and CBS 
(Cystathionine beta-synthase) as novel loci associated with 
phosphatidylcholine moieties.  

Results 
Our approach can be divided into three stages: (i) Generate a non-redundant 
gene set for every metabolite considered using knowledge in pathway 
databases like KEGG and BioCyc applying interrogation schemes as shown in 
Fig 1 and outlined below. (ii) For every gene in the set, generate the set of 
SNPs within the gene and 50 kb flanking sequences, and create a SNP set for 
each metabolite (iii) Match SNPs generated for a metabolite with the GWAS 
for the same metabolite and store the matches with the p-values reported 
for the association (Fig 2). 

Analysis strategy of databases and Interrogation schemes 

To retrieve a prioritized list of candidate genes associated with metabolite 
levels, gene sets were generated for each metabolite through the pathway 
scheme and the reaction scheme [Fig 1A and 1B] for the KEGG and BioCyc 
databases (see Method). The pathway scheme generates a list of genes that 
participate in pathways relevant to the synthesis or degradation of the 
metabolite. In the reaction scheme, the metabolite is used as a seed node 
and shells of reactions around the metabolite are explored. The list of genes 
that catalyse the reactions are retrieved and form the gene set for the given 
metabolite. For every gene set, a corresponding SNP set is generated by 
retrieving SNPs within the flanking 50 kb of every gene. In the final step, the 
SNP set for a metabolite is matched with the GWAS dataset for the same 
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Figure 3 Gene set overlap for the KEGG and BioCyc databases. The Venn 
diagram depicts the overlap between the non-redundant gene set for 
KEGG and the BioCyc metabolic pathway database. These genes 
correspond to the combined set from the pathway and reaction 
interrogation schemes. The total number of unique genes that our method 
yields is 1246. 

metabolite. At this stage, the sensitivity of the method is evaluated and 
potential novel discoveries are explored.  

Results for each of three classes of metabolites (14 amino acids, 1 carnitine 
and 2 lipids) are shown in Table 1. For example, for glycine, interrogation of 
the KEGG database identified 173 and 432 genes using the pathway and 
reaction schemes respectively, whereas the corresponding numbers of genes 
were 90 and 192 for the BioCyc database. The union of all the four 
interrogation schemes results in a gene set consisting of 523 genes relevant 
to glycine metabolism (Table 1). For all the three classes of metabolites, 1246 
unique genes were found, 640 are common to KEGG and BioCyc, the number 
of genes unique to each of the two databases are 379 and 227 respectively 
(Fig. 3).  

Statistical Threshold 

The number of unique SNPs generated for each of the metabolites is shown 
in Table 1. For aggregated metabolites like phosphatidylcholines, 
sphingomyelins and carnitines the size of the unique SNP set is multiplied by  
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Table 2 Performance of the database:interrogation schemes in GWAS 
dataset analysis 
Database: 
interrogation scheme 

Size of 
gene set1 

Top hits from Illig et al. study 
identified by the method2 

Sensitivity3 

BioCyc pathway 399 ACADL, ACADM, ACSL1, CPS1, FADS1, 0.53 
BioCyc reaction 806 ACADM, ACADS, ACSL1, CPS1, FADS1, 0.47 
KEGG pathway 703 ACADL, ACADM, ACADS, ACSL1, CPS1, 0.67 
KEGG reaction 768 ACADL, ACADM, ACADS, ACSL1, CPS1, 0.53 
Pooled set 1246 ACADL, ACADM, ACADS, ACSL1, CPS1, 0.67 

Snapshot of the matches between our method and the association data from the Illig et al. 2010 study 
for each of the database:interrogation scheme. 1corresponds to the unique set of genes generated for 
all the metabolites for the given database:interrogation scheme. 2corresponds to the top hits in the 
Illig et al. publication that were present in the gene set for the given database:interrogation scheme. 
3Sensitivity is a measure of the actual positives that have been captured by our method and is equal to 
the ratio of the number of top hits identified by the method over the total number of top hits in the 
Illig et al. publication which is 15. 

 

the number of metabolites that fall within each class to yield the total 
number of tests. For example, the size of the unique SNP set for carnitine is 
11,239; this is multiplied by the number of carnitines which is 41, to yield a 
total number of 460,799 tests for these compounds, as shown in the last 
column of Table 1. The sum of all SNPs derived from our set of metabolites is 
3,835,543. The multiple testing threshold for metabolite concentrations 
using a Bonferroni correction at a nominal p-value of 0.05 is 1.3E-08 
(0.05/3,835,543). In contrast, the p-value threshold for significant association 
of SNPs with the same metabolite concentrations in the Illig et al study would 
be 5.96E-10 (0.05/162*517,840). This represents a reduction of the multiple 
testing burden by about two orders of magnitude, regardless of the 
dependency between the SNPs or metabolites.  

It has been demonstrated that GWAS of metabolite ratios offer robust 
statistical associations and point to biological mechanisms related to the 
interconversion of metabolite pairs. To investigate the association of SNPs 
with metabolite ratios, we generated the union of SNP sets for all 
combinations of metabolites (Table S3). In the case of aggregated 
metabolites like the lipids and carnitines, the union of the SNP set is 
multiplied by the number of compounds that fall within each class. For 
example, the union of the SNP set for arginine and carnitine is 20,000, this is 
multiplied by 41 to yield the total number of 820,000 tests for this group of 
ratios. The number of tests for ratios of compounds within classes  such as 
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phosphatidylcholines  is equal to the size of the unique SNP set multiplied by 
the number of combinations, n*(n-1)/2, which in this case would be 
92*91/2=4186. In choosing combinations of ratios, we have assumed that 
the association p-value for a linear regression model using a metabolite ratio 
of A/B is equivalent to that computed using it’s reciprocal, B/A. The evidence 
for lack of independence of a ratio and its reciprocal is provided by the Illig et 
al study where a comparison of associations computed using untransformed 
and log-scaled ratios did not detect significant differences. This implies that 
we may consider the p-values computed using A/B and B/A to be 
approximately equal. 

The sum of the number of tests for all ratios is 423,645,558 as shown in Table 
S3. The multiple testing threshold for the ratios using Bonferroni correction 
at nominal p-value of 0.05 is 1.18E-10. This represents a multiple threshold 
reduction by two orders of magnitude over the genome-wide threshold 
estimated by Illig et al which is 3.63E-12. 

Proof of principle: Sensitivity 

The sensitivity of the method was evaluated based on its ability to identify 
the top hits in the previously published Illig et al genome-wide association 
study. The overall sensitivity of the method as well as the interrogation 
specific breakdown is shown in Table 2. For example, for the BioCyc pathway 
scheme the size of the unique gene set generated for all the metabolites is 
shown to be 399. The number of genes that are among the 15 top hits in the 
Illig et al study for this database:interrogation scheme is 8 which results in a 
sensitivity measure of 0.53. A metabolite specific breakdown of each of these 
schemes and the genes with a p-value cut-off of 1E-02 is shown in 
supplementary table S5. Overall, combining the results from the four 
database:interrogation schemes helped identify 10 of the 15 top associations 
(67% sensitivity) published by Illig et al.  

Novel Discovery in the Illig et al dataset 

Analysis of the first stage or the “discovery stage” dataset of 1029 samples 
from the Illig et al dataset yielded several associations with p-values 
indicative for association, but that did not meet the significance threshold 
applied by Illig et al. Associations with p-value less than 1E-02 were evaluated 
in the combined “replication stage” dataset with 1809 samples. Analysis of 
SNPs in the ALDH1L1 (aldehyde dehydrogenase family 1 L1) gene locus 
lowered the p-value of association with serine/glycine ratio from 4.83E-09 in 
the discovery dataset to 5.13E-12 in the combined dataset. This is well below  
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Table 3 Replication of candidate genes in the Demirkan et al. dataset 
Gene Trait SNP 

from 
p-
value1

 

SNP from 
the 

p-
value2

 

Combined 
p-value3

 

dataset et al. dataset 
ADCY8 PC ae C40:6 rs11786743 4.03E-05 rs913819 6.73E-04 2.15E-07 

CBS*
 PC ae C40:6 rs2839631 5.67E-06 rs378376 5.17E-04 2.90E-08 

CNR1 PC ae C38:2 rs10485168 2.42E-04 rs9359765 4.61E-04 7.54E-07 

GPAM*
 PC ae C34:3 rs2246253 1.25E-04 rs2419603 1.76E-04 1.56E-07 

HSD17B12 PC aa C34:4 rs2862999 2.66E-05 rs11037685 6.13E-04 1.35E-07 

MBOAT1 PC ae C40:6 rs9465673 1.11E-04 rs694094 4.47E-04 3.53E-07 

PECR PC aa C38:0 rs3770536 5.55E-04 rs3770562 9.43E-05 3.79E-07 

PLCB1 PC aa C30:0 rs6056188 9.55E-06 rs17363114 1.96E-03 2.06E-07 

TECR PC aa C32:0 rs7252966 1.69E-05 rs7254215 2.09E-03 3.57E-07 

Top hits from the meta-analysis of candidate genes identified in the Illig et al. study and replicated in 
the Demirkan et al. dataset. 1,2,3p-value of association of the SNP with  the trait in the Illig et al.,  
Demirkan  et al. and combined  p-value  respectively.  *indicates genes for which further evidence was 
found. 
 

our threshold of 1.18E-10, but above the threshold to be applied when 
considering all associations between SNPs and metabolite ratios. 
Furthermore, the original publication did not select this association for 
replication because of the threshold set in the first stage of the analysis. This 
is an example of the method pointing to potential true positives in a genome-
wide scan and the association of ALDH1L1 with the trait is being reported as 
a novel discovery.  

Statistical threshold in the replication study 

The analysis of the Illig et al dataset identified several biologically relevant 
candidate genes with p-values less than 1E-02. A list of 56 of these genes 
associated with phosphatidylcholines and sphingomyelins were investigated 
in an independent study in the GWAS dataset of phospholipids published by 
Demirkan et al. The number of matches between the two datasets was: 56 
phosphatidylcholines and 6 sphingomyelins. Demirkan et al also performed 
GWAS for within class molar proportions for these moieties. We took these 
into consideration in addition to the GWAS of absolute concentrations. 
Therefore, the total number of metabolites and proportions investigated in 
the Demirkan et al GWAS dataset was 124. A principal component analysis 
based on the method proposed by Li et al [16] was performed on this set of 
metabolites resulting in 51 effectively independent variables. As we 
considered 2413 independent SNPs in the candidate loci for these 
metabolites, the statistical threshold, applying Bonferroni correction at a 
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nominal p-value of 0.05, for the replication study was 4.06E-07 
(0.05/2413*51).  

Novel discoveries in the replication study 

Table 3 shows the top hits in the meta-analysis of candidate genes identified 
in the Illig et al dataset for replication. The meta-analysis was performed 
using Stouffer’s Z-score based method of combining p-values [17]. Since the 
SNPs in the loci replicated in the Demirkan et al dataset had relatively low r2 

values with the SNPs reported in the Illig et al dataset, we could not perform 
a traditional meta-analysis where strict linkage disequilibrium criteria are 
applied. Therefore, we combined the lowest p-value per gene and sought 
additional supporting evidence for potential allelic heterogeneity (see 
Discussion). As mentioned earlier, the p-value threshold for the replication 
study is set at 4.06E-07. SNPs in the vicinity of the genes CBS, GPAM, ADCY8, 
CNR1, HSD17B12, MBOAT1, PECR, PLCB1 and TECR pass this threshold. 

Discussion 
Genome wide association studies with metabolites as phenotypes have 
identified several loci that explain human metabolic individuality. However, 
the large metabolite panel being tested results in a severe multiple testing 
burden that precludes genuine SNP-metabolite pairs from consideration 
when they fail to reach the stringent threshold for statistical significance. Our 
method aims to address this problem by selectively testing genes that 
operate in reactions and pathways relevant to the metabolite. The goal is to 
reduce the severity of the multiple testing burden and identify potential true 
positives in the list of genome-wide associations. Taverna, a workflow 
management system was used to generate the SNP-metabolite pairs. We 
have deposited the workflows at a repository called myexperiment.org, 
making it easier for the scientific community to interpret, repeat and 
reproduce the result. The sensitivity of the method, defined as retrieval of 
previously identified associations, is high, as evident from the proof of 
principle study carried out on the genome scan published by Illig et al. 
Replication studies on some of the promising SNP-metabolite pairs identified 
by the method pointed to a novel and statistically significant association at 
the ALDH1L1 locus with serine/glycine ratios. Additional replication studies 
of phosphatidylcholines and sphingomyelins uncovered significant gene-wise 
associations with CBS, GPAM, ADCY8, CNR1, HSD17B12, MBOAT1, PECR, 
PLCB1 and TECR.  

Databases, interrogation schemes and software tool 
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The pathway databases have technical and conceptual differences [11] that 
mandate interrogation of multiple databases and integration of the results.   
Interpretation of these results requires a close coordination between 
biologists and computer scientists. Workflow management systems in 
general and Taverna [Supplementary section, S2] in particular is an example 
of a software tool that is intuitive enough for the biologist, while at the same 
time offering the flexibility for exploring the algorithmic aspects for the 
computer scientist [18]. In using Taverna as a software tool and depositing 
the workflows in the repository myexperiment.org, we have attempted to 
make the method and the rationale transparent to users, thus facilitating its 
retrieval, reuse and reproduction by other independent scientists [19].  

Sensitivity of the method 

As a sensitivity measure of our method, we evaluated its ability to pick the 
top hits in the Illig et al publication [2]. Some 60% of the top associations 
were identified successfully. A similar analysis of GWAS dataset published by 
Suhre et al [3] yielded a sensitivity of 54 % (20 out of 37 hits) (data not 
shown). However, 4 of the “misses” in the Suhre et al dataset were peptide 
fragments that do not have an entry in the pathway databases, which is a 
prerequisite for our method to work.  

We interpret the high sensitivity of our method in three ways; first it 
reinforces the rationale that GWAS with metabolomic phenotypes provides 
a functional approach to the study of human genetic variation [1]. In other 
words, the known function of the associated gene and the biochemical 
characteristics of the affected metabolite support each other in ways that 
lends itself to a narrative on the underlying biological mechanism. Second, 
while the pathway databases have a long way to go in achieving a 
comprehensive annotation and delineation of biological processes, they, 
however, are a good resource of information in so far as the top hits in a 
GWAS with metabolomic phenotypes are concerned. Only two out of the 15 
top hits in the study by Illig et al were genes with unknown functions 
(PLEKHH1, SYNE2), and two others were hitherto uncharacterized solute 
transporters (SLC16A9, SLC22A4). Third, a good sensitivity measure is a 
validation of our method and reflects its comprehensive data collection 
ability through integration of disparate data sources and utilization of 
appropriate interrogation strategies.  

Novel Discoveries 
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Figure 4 Role of ALDH1L1 in the cytosolic one-carbon pool metabolism. A 
simplified schematic of the one-carbon pool metabolism in the cytosol is 
depicted. ALDH1L1: Aldehyde Dehydrogenase 1 Family, Member L1; THF: 
tetrahydrofolate; SHMT: Serine hydrxymethyltransferase. 

 

Our analysis of the GWAS dataset of the Illig et al publication based on the 
first step of the “discovery design” yielded several interesting associations 
that had not been reported among the top hits in the publication. We 
selected a few of the promising associations for replication in the combined 
dataset of 1809 subjects. One of the genes, Aldehyde dehydrogenase family 
1 L1 (ALDH1L1) was found associated with the ratio of serine/glycine with a 
p-value of 5.13E-12 in the combined set of 1809 subjects. ALDH1L1 also 
known as 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH, FDH) 
catalyzes the NADP+ dependent oxidation of 10-formyltetrahydrofolate to 
CO2 and tetrahydrofolate (THF) [20] as shown in Figure 4. It plays an 
important role in folate metabolism [21, 22, 23, 24, 25]. Among other 
functions, ALDH1L1 has been known to deplete cellular 10-
formyltetrahydrofolate pool resulting in a loss of de novo purine biosynthesis 
[23], maintain cellular folate concentrations by regulating the availability of 
THF [22], but most importantly, it has been shown to compete with the 
enzyme serine hydroxymethyl transferase (SHMT) for the 
polyglutamyltetrahydrofolates [25] . The latter enzyme catalyzes the 
conversion of serine to glycine as shown in Fig 4. It has also been shown that 
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glycine to serine inter-conversion by SHMT accounts for approximately 41% 
of whole body glycine flux inclusive of both mitochondrial and cytoplasmic 
processes [26].  

To further investigate the potential of our approach to uncover novel genetic 
associations, we extended the analysis to an additional independent GWAS 
dataset [4]. Candidate genes identified in the Illig et al dataset in association 
with phosphatidylcholines and sphingomyelins were considered for 
replication in the dataset provided by Demirkan et al [4]. We discuss here 
two novel findings for which additional evidence was obtained.  

SNPs near glycerol-3 phosphate acyltransferase (GPAM) are associated with 
PC ae C34:3 moieties in the Illig et al and Demirkan et al datasets with p-
values of 1.25E-04 and 1.75E-04, respectively, with a meta-analysis p-value 
of 1.56E-07. GPAM encodes a mitochondrial protein that esterifies the acyl 
group from acyl-coA to the sn-1 position of glycerol-3-phosphate. It is a rate-
limiting enzyme that catalyzes the initial step in the biosynthesis of 
triacylglycerols and phospholipids [27]. A recent study showed that in breast 
cancer, GPAM expression is strongly correlated with survival rates, clinico-
pathological features as well as metabolomic and lipidomic profiles [28]. 
Interestingly, the study identified the metabolite PC C34:3 as the most 
significantly altered metabolite with respect to GPAM expression in breast 
cancer patients. This suggests that, for this particular example, genetic 
control is primarily at the level of gene expression, with secondary effects on 
enzyme levels and metabolic conversion rates. The example also highlights 
the potential influence of genetic variation of metabolic pathways on 
disease.  

A large number of genes identified by our method in the context of 
phospholipids participate in fatty acid metabolism and are therefore likely to 
affect the levels of groups of phosphatidylcholines and sphingomyelins. For 
example, GPAM esterifies the acyl group from acyl-ACP to the sn-1 position 
of glycerol-3-phosphate, and is therefore relevant to both acyl-acyl and acyl-
alkyl moieties. The lowest p-value of association, at this locus, with a 
phosphatidylcholine moiety in the Illig et al study is with PC ae C36:3, while 
in the Demirkan et al study it is PC aa C36:3. Since both associations make 
biological sense, future work should incorporate joint modelling of suitable 
phospholipid moieties to help identify loci that are biologically relevant but 
fail to reach the statistical threshold in GWAS analysis. We have reported 
such best case associations for phosphatidylcholines in Table S6.  
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SNPs near Cystathionine beta-synthase (CBS) are associated with PC ae C40:6 
moieties in the Illig et al and Demirkan et al datasets with p-values of 5.67E-
06 and 5.17E-04, respectively, with a meta-analysis p-value of 2.9E-08. 
Mutations in CBS cause hyperhomocysteinemia [29], which is marked by 
elevated levels of homocysteine. Several studies have associated altered 
phosphatidylcholine biosynthesis with hyperhomocysteinemia/CBS 
deficiency [30,31,32,33]. In one of the studies [30], phosphatidylcholine 
levels and the activity of the enzyme lecithin-cholesterol acyltransferase 
(LCAT) were significantly lower in CBS deficient mice than in wild type mice. 
While there is considerable literature evidence for the role of CBS in 
phosphatidylcholine metabolism, the stringent p-value threshold obscures 
this association in the list of GWAS results.  

The low r2 values for significant SNPs in GPAM, CBS and other loci between 
the Illig et al and Demirkan et al datasets could be explained by allelic 
heterogeneity. The latter is a phenomenon where multiple alleles from one 
gene influence a trait. However, in some cases it may be that the two 
apparently independent SNPs are tagging a third SNP [34]. This may be the 
case for the two SNPs (rs2839631, rs378376) near CBS which have an r2 of 
0.067 and are associated with C40:6 phosphatidylcholines in both the 
datasets. However, both SNPs are in LD with cis-eQTLs in the region (for 
example, rs719037, r2 ~ 0.4). This is suggestive of the SNPs exerting their 
effect through the expression levels of the CBS enzyme, as was suggested for 
GPAM. Apparent allelic heterogeneity may preclude identification in a 
standard meta-analysis, but would justify further investigation of 
independent or dependent signals at loci showing this phenomenon.  

Challenges and future direction 

In general, our effort was directed at exploring the utility of machine-enabled 
interrogation of metabolic pathway databases in prioritizing SNP-metabolite 
associations in a GWAS dataset. While the method’s sensitivity and ability to 
make novel discovery are encouraging, considerable progress needs to be 
made in metabolite disambiguation to achieve a relevant and comprehensive 
gene set for a given metabolite. This problem is particularly acute for 
phospholipids like phosphatidylcholines and sphingomyelins and various 
forms of the fatty acid transporters of L-carnitine. For example, the 
metabolomics technology used in the Illig et al study differentiated more 
than 90 forms of phosphatidylcholines based on alkyl or acyl bonds and single 
or double bonds on the side chains.  However, the pathway databases do not 
yet contain information for the complex structures. This forces users to 
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analyze these metabolites at a higher aggregation level. Another issue that 
requires attention is the bias introduced in selecting genes for inclusion in 
the gene set. We have formulated simple rules for interrogation 
[supplementary section, S1] that facilitates unbiased generation of gene sets 
for any given metabolite.  

Another challenge arises due to the high correlation between metabolites, 
particularly the phospholipids like phosphatidylcholines and sphingomyelins. 
These moieties are associated with loci relevant to fatty acid metabolism. 
While the variation at these loci effects the levels of fatty acids and thereby 
the phospholipid pool, to a large extent, these loci are not specific for any 
particular phospholipid moiety. As a result, several loci exhibit a pleiotropic 
effect for biologically related metabolic phenotypes in general and 
phospholipids in particular [Shown in supplementary table S7] We have 
demonstrated that background knowledge and evidence-based approach is 
ideally suited to identify such candidate genes, however future work should 
focus on statistical methodologies with sufficient power to detect such 
pleiotropic loci in GWAS of intermediate phenotypes. In summary, future 
work includes integration of more pathway databases, metabolite 
disambiguation, consideration of allelic heterogeneity and multivariate 
statistical techniques that take into account the high degree of correlation 
between the metabolites. 

Methods 
GWAS data set for proof of principle studies  

The GWAS dataset published by Illig et al 2010 [2] was used to evaluate the 
validity of the method. Illig et al employed a two-stage discovery design in 
the KORA F4 population cohort with 1029 male and female individuals in the 
first stage and 780 individuals in the second stage. Loci with p-value of 
association <10-7 for metabolite concentrations and p-value < 10-9 for 
concentration ratios were taken up for the second stage independent testing 
in 780 individuals. The joint p-values of association for all the 1809 individuals 
were then computed and 15 loci were reported whose strength of 
association increased after the second stage of the discovery process. The 
authors note that “although this approach is less well powered than a full 
genome-wide joint analysis, it reflects the historical way in which [they] 
selected SNPs for follow-up“. This means that if we can identify potential true 
positives using the 1029 samples, we can validate them in the full dataset, 
since this has not been done in the Illig et al. study for all hits with p-value > 
10-7 for metabolite concentrations and p-value > 10-9 for concentration ratios. 



28 

Therefore, the GWAS dataset based on 1029 samples was analyzed for our 
proof of principle studies. Additionally, to evaluate novel associations 
identified by the method in the discovery stage dataset, the strength of the 
signal was assessed in the combined GWAS dataset for 1809 subjects. 

GWAS dataset for follow-up studies 

Candidate loci identified in the Illig et al dataset by our method were taken 
up for follow-up studies in the dataset published by Demirkan et al. The latter 
conducted a meta-analysis of GWAS on plasma levels of ceramides, 
phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, 
phosphatidylethanolamines and plasmalogens in five European populations: 
the Erasmus Rucphen Family (ERF) study, conducted in the Netherlands, (2) 
the MICROS study from the Tyrol region in Italy, (3) the Northern Swedish 
Population Health Survey (NSPHS) in 

Norrbotten, Sweden, (4) the Orkney Complex Disease Study (ORCADES) in 
Scotland, and (5) the CROAS (CROATIA_Vis) study conducted on Vis Island, 
Croatia. Broadly, the metabolite overlap between the Illig et al dataset and 
Demirkan A et al dataset was confined to the class of phosphatidylcholines, 
lysophosphatidylcholines and sphingomyelins. More specifically, the overlap 
represented 62 phospholipid moieties. Also, 56 candidate genes were 
identified for follow up in the Illig et al dataset. We choose to focus on SNPs 
in the flanking 50 kb region of these genes for the follow-up study in the 
Demirkan A et al dataset. 

Metabolites considered for the generation of gene sets 

Gene sets are defined as entities that participate in pathways and reactions 
relevant to the metabolite and hence hold the potential to influence its 
levels. The goal was to generate gene sets for the compounds that were 
measured in the Illig et al 2010 publication: 14 amino acids (Arginine, 
Glutamine, Glycine, Histidine, Methionine, Ornithine, Phenylalanine, Proline,    
Serine, Threonine, Tryptophan, Tyrosine, Valine, and Leucine), 41 Carnitines, 
92 Phosphatidylcholines and 15 Sphingomyelins. In addition to the 
metabolites mentioned above, Illig et al also measured Hexose. We did not 
consider this metabolite for investigation because pathway information 
surrounding hexose is lacking. While metabolites like glucose and fructose 
could have been considered as proxies, we did not pursue this because of the 
enormous size of the resulting gene set, combined with a lack of confidence 
in the relevance of many of these genes to the metabolite measured by the 
metabolomics platform.  
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Pathway databases and interrogation schemes 

The metabolic pathway databases KEGG (release 63) [12] and BioCyc (version 
16) [13] were accessed for retrieving background knowledge surrounding 
metabolites. Two interrogation schemes were employed: pathway scheme 
and reaction scheme (Fig 1). In a pathway scheme, for a given metabolite, all 
the pathways that it participates in are determined followed by the retrieval 
of all the genes that participate in these pathways (Fig 1A). In a reaction 
scheme, given a metabolite, all the reactions that it is part of and the 
compounds that participate in these reactions are determined. The 
compounds obtained at this point are subjected to the same strategy as in 
the previous step in that all the reactions that these compounds participate 
in are determined. This can be visualized as expanding by a radius of 2 steps 
in the reaction space of every metabolite.  Finally, the enzymes that drive all 
these reactions are determined (Fig 1B). As an intermediate step certain 
compounds were filtered out in order to avoid non-specific connections. The 
details about the filtration step and the compounds that were filtered are 
provided in the supplementary material, S4. In all there are four schemes: 
kegg:pathway, kegg:reaction, biocyc:pathway, and biocyc:reaction. The set 
of non-redundant genes combined from all the schemes then forms the gene 
set for any given metabolite.  

Software used to generate gene and SNP sets 

Taverna version 2.4 [14], a workflow management system was used to 
generate metabolite specific gene sets as well as for the generation of SNPs 
present in the 50kb flanking region of each gene. Taverna allows users access 
to remote data resources like KEGG, BioCyc, Ensembl, NCBI etc and data 
management systems like Biomart through implementation of web services. 
Each component in a workflow is responsible for a particular function and 
many such components need to be chained together in a pipeline to create a 
workflow that performs a certain task. The pipeline depicted in Fig 1 is 
implemented in a Taverna workflow through appropriate linking of remote 
web services and local scripts. Web services are software systems that 
facilitate machine to machine interaction over a network. Taverna allows the 
inclusion of different kinds of web services like Web Services Description 
Language (WSDL) and REpresentational State Transfer (REST). The services 
provided by the KEGG database were implemented using the REST services 
made available in the Taverna workbench. The BioCyc database was accessed 
through the REST interface using the BioVelo language. The latter is a query 
language designed to let the users write precise queries against the 
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pathway/genome databases, available at BioCyc, to retrieve pathways, 
reactions, compounds, genes etc.   All the workflows were designed following 
best practices for workflow design [35]. 

Workflow accessibility 

To facilitate retrieval and reproducibility, the workflows have been deposited in 
a repository at http://www.myexperiment.org/packs/319.html. While the 
focus of this paper was on a specific set of metabolites; using appropriate 
identifiers from the KEGG or BioCyc database users will be able to generate 
gene sets for other metabolites.   To generate a gene set for any metabolite 
using the KEGG or BioCyc database, users have to input the metabolite 
identifier for that database and the output is a text file containing the entrez 
gene identifiers. For example, to generate a gene set for the metabolite 
Arginine, for either the pathway or reaction scheme using the KEGG 
database, users input the KEGG identifier for Arginine: C00062. Similarly, to 
obtain a gene set using the BioCyc database, the input for the same 
metabolite is “L-arginine”.  The workflows may also be repurposed to suit 
other objectives, for example, to filter out non-specific connections, we 
remove hub metabolites like ATP, NADP and other entities like co-enzymes; 
however, users may change the filtration criteria if they find it too stringent 
for their objectives. A detailed tutorial on how to access and run these 
workflows is provided in the supplementary section, S2. 
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Supplementary section 
S1.  

Rules to generate Metabolite-Gene sets: 

1. Metabolic pathway databases accessed via Taverna workflows: 
KEGG, Biocyc 

2. Interrogation Scheme:  

a. Pathway Scheme (KEGG:Pathway and Biocyc:Pathway): Given a 
metabolite determine all the pathways it participates in and pull all the 
genes that participate in these pathways (Fig 2A). 

i. For KEGG consider only metabolic pathways. 
ii. Phosphatidylcholine and sphingomyelins contain fatty acids 

in their side chains. Genes that are involved in fatty acid 
metabolism alter the levels of phospholipids. Previously 
published GWAS datasets have shown that most of the 
significant genes associated with phospholipids, for example 
FADS1, are involved in fatty acid metabolism. To incorporate 
such genes we ran the pathway and the reaction scheme on 
various fatty acids and incorporated them into the gene set 
for phosphatidylcholines and sphingomyelins. For the 
biocyc:pathway scheme, gene set for phosphatidylcholine 
and sphingomyelin contained genes generated for: 
arachidonate, a fatty acid, laurate, linoleate, a lipid, a long 
chain fatty acid, octanoate, oleate, palmitate, a 2,3,4 
saturated fatty acid and stearate. Similarly, for the 
kegg:pathway scheme the gene sets for the following 
compounds were included in the set for phosphatidylcholine 
and sphingomyelin: arachidonic acid (C00219) and palmitic 
acid (C00249). The choice of fatty acids was based on 
whether pathway information was available for the 
compounds for the database being considered. 

iii. Biocyc:Pathway for carnitines included the following 
compounds: L-Carnitines, Palmitoylcarnitine, L-
Ocatnoylcarnitine, O-acetylcarnitine, butanoyl-CoA, 
decanoyl-CoA, lauroyl-CoA, myristoyl-CoA,octanoyl-CoA, 
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palmitoyl-CoA, and stearoyl-CoA. The rationale behind this 
inclusion is provided below in the “Reaction Scheme”. 

b. Reaction Scheme (KEGG:Reaction and Biocyc:Reaction): Given a 
compound find all the reactions and the compounds that participate in 
these reactions. The reactions that these compounds participate in and 
the enzymes that drive these reactions are determined (Fig 2B). 

i. Compounds that make too general connections are filtered out. 
List of filtered compounds for Kegg and Biocyc database 
interrogation provided. 

ii. For the biocyc:reaction scheme gene sets for the following 
compounds were included in the set for phosphatidylcholine and 
sphingomyelin: (9Z)-12,13-dihydroxyoctadeca-9-enoate, 
octanoate, laurate, decanoate, stearate, palmitate, oleate, 
myristate, linoleate, arachidonate, arachidate, a long-chain fatty 
acid, a fatty acid, a phospholipid, and a lipid. For the 
kegg:reaction scheme the following fatty acids were included for 
the purpose of generating a gene set for phosphatidylcholines 
and sphingomyelins: arachidonic acid (C00219), linoleic acid 
(C01595), palmitic acid (C00249) and stearic acid (C01530). The 
choice of fatty acids was based on whether reaction information 
was available for the compounds for the database being 
considered. 

iii. Biocyc compounds are structured as classes. We have 
established the following rules for interrogation: 

a. In general for amino acids we do not consider the super class 
and we don’t have to deal with child terms. 

b. Phosphatidylcholine and Sphingomyelin, are considered as 
“class” terms. Sphingomyelin does not have child terms, 
phosphatidylcholine does have child terms but the reactions 
in the database are not considered at the level of the latter. 
For both phosphatidylcholine and sphingomyelin the parent 
terms (a phosphoglyceride and a sphingolipid respectively) 
are not considered for interrogation. 
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c. For carnitines, we combine results for the L-carnitine, L-
Octanoylcarnitine,L-palmitoylcarnitine, O-acetylcarnitine 
(these are the only carnitines present in the database, there 
is considerable overlap in terms of genes returned for the 
four compounds). Two of the compounds returned for these 
interrogations: palmitoyl-CoA and octanoyl-CoA are 
instances of “a 2,3,4 saturated fatty acid” and since some of 
the reactions are given at the level of the parent class, we 
have also included “a 2,3,4 saturated fatty acid” in the 
Biocyc:Reaction interrogation scheme. 

The various instances of “a 2,3,4 saturated fatty acid” are: butanoyl-
CoA,decanoyl-CoA,lauroyl-CoA,myristoyl-CoA,octanoyl-CoA,palmitoyl-
CoA,stearoyl-CoA. These are all the acyl fatty acids that are transported by 
carnitine for mitochondrial fatty acid beta oxidation. The corresponding 
esters were all measured by Illig et al, therefore it was decided to consider all 
the above instances of “a 2,3,4 saturated fatty acid” to generate the gene set 
for Carnitine. 

In a nutshell then, we have four schemes that yield genes that operate in the 
vicinity of a given metabolite: Kegg:Pathway, Kegg:Reaction, Biocyc:Pathway, 
Biocyc:Reaction. As an example, Kegg:Pathway means employing the pathway 
scheme as mentioned above on the Kegg database. Table 1 displays the yield of 
genes for each database:interrogation scheme. The gene set for a metabolite is the 
integration of all the genes coming out of the four schemes into a non-redundant 
set as shown in the last column of Table 1 in the publication. The sum of all such 
non-redundant set equals 4801 genes. The total number of unique genes that 
came out of all the schemes and all the metabolites is 1246 with the number of 
unique genes from Kegg being 379 and those from Biocyc being 227 and 640 genes 
present in both databases (Fig 3 of the publication). 
 
 
S2 
Taverna workflow management system 
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Workflow management system is a software environment designed to compose 
and execute a series of computational or data manipulation steps. Taverna 
workbench is an example of a workflow management system that provides a 
desktop environment for accomplishing bioinformatic tasks. Taverna allows users 
access to data sources and analysis tools made available by institutions like NCBI, 
DDBJ, EBI etc through web services. In addition to making available third-party 
services, Taverna offers a suite of shim services that run on the local computer and 
are essentially used for data manipulation.  
A Taverna workflow is a directed acyclic graph consisting of components (web or 
shim services) having various functionalities chained together appropriately to 
perform a useful task. Figure 1 shows a snapshot of the Taverna workbench that 
consists of three panels: a service panel at the top left that makes available third-
party services and also a few local services that are included by default, the panel 
on the right showing the workflow diagram is a space where workflows can be 
created by pulling services from the left panel in a drag and drop fashion. Existing 
workflows can be opened in the workflow canvas using the open tab. Later in this 
section, a tutorial on how to open workflows stored on myExperiments.org is 
provided. The panel in the bottom left is known as the workflow explorer which 
depicts the workflow in a tree like fashion and allows editing of properties of the 
components of the workflow. 
Downloading the Taverna workflow management system 

Fig 1 Snapshot of the Taverna workbench which consists of three panels 
as pointed to in the figure 
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Instructions for downloading Taverna can be found at: 
http://www.taverna.org.uk/download/ 
The tutorials to learn about features and how to run Taverna are available at the Taverna 
web site: http://www.taverna.org.uk/documentation/taverna-2-x/quick-start-guide/ 
  
Tutorial: Download workflow from myExperiment.org, learn more about workflow 
functionality and run the workflows  
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Alternate way: The workflows may be downloaded from: 
http://www.myexperiment.org/packs/319.html and run in Taverna. 
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S3: SNP set generated for ratios of metabolites 

Metabolite Ratio Union Set1 Number of tests2 

Arginine/Carnitine 20000 820000 

Arginine/Glutamine 20340 20340 

Arginine/Glycine 26234 26234 

Arginine/Histidine 14743 14743 

Arginine/Leucine 13133 13133 

Arginine/Methionine 18982 18982 

Arginine/Ornithine 14049 14049 

Arginine/Phenylalanine 14577 14577 

Arginine/Phosphatidylcholine 44228 4068976 

Arginine/Proline 11897 11897 

Arginine/Serine 23269 23269 

Arginine/Sphingomyelin 33739 506085 

Arginine/Threonine 12362 12362 

Arginine/Tryptophan 16681 16681 

Arginine/Tyrosine 15865 15865 

Arginine/Valine 15865 15865 

Carnitine/Glutamine 23428 960548 

Carnitine/Glycine 27500 1127500 

Carnitine/Histidine 16172 663052 

Carnitine/Leucine 13595 557395 

Carnitine/Methionine 20612 845092 

Carnitine/Ornithine 19817 812497 

Carnitine/Phenylalanine 17971 736811 

Carnitine/Phosphatidylcholine 37658 142045976 

Carnitine/Proline 14282 585562 

Carnitine/Serine 23453 961573 

Carnitine/Sphingomyelin 27892 17153580 

Carnitine/Threonine 13388 548908 

Carnitine/Tryptophan 19031 780271 

Carnitine/Tyrosine 17279 708439 

Carnitine/Valine 17279 708439 

Glutamine/Glycine 28589 28589 

Glutamine/Histidine 19521 19521 

Glutamine/Leucine 17644 17644 
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Glutamine/Methionine 23790 23790 

Glutamine/Ornithine 19818 19818 

Glutamine/Phenylalanine 17948 17948 

Glutamine/Phosphatidylcholine 46176 4248192 

Glutamine/Proline 17411 17411 

Glutamine/Serine 27052 27052 

Glutamine/Sphingomyelin 35706 535590 

Glutamine/Threonine 17943 17943 

Glutamine/Tryptophan 21007 21007 

Glutamine/Tyrosine 19595 19595 

Glutamine/Valine 19595 19595 

Glycine/Histidine 23648 23648 

Glycine/Leucine 23462 23462 

Glycine/Methionine 24339 24339 

Glycine/Ornithine 24918 24918 

Glycine/Phenylalanine 25261 25261 

Glycine/Phosphatidylcholine 46133 4244236 

Glycine/Proline 23758 23758 

Glycine/Serine 28932 28932 

Glycine/Sphingomyelin 38072 571080 

Glycine/Threonine 22578 22578 

Glycine/Tryptophan 24651 24651 

Glycine/Tyrosine 25633 25633 

Glycine/Valine 25633 25633 

Histidine/Leucine 8881 8881 

Histidine/Methionine 13622 13622 

Histidine/Ornithine 14270 14270 

Histidine/Phenylalanine 12238 12238 

Histidine/Phosphatidylcholine 38491 3541172 

Histidine/Proline 9457 9457 

Histidine/Serine 21504 21504 

Histidine/Sphingomyelin 29802 447030 

Histidine/Threonine 9257 9257 

Histidine/Tryptophan 12229 12229 

Histidine/Tyrosine 13034 13034 

Histidine/Valine 13034 13034 

Leucine/Methionine 13718 13718 
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Leucine/Ornithine 12389 12389 

Leucine/Phenylalanine 10449 10449 

Leucine/Phosphatidylcholine 37936 3490112 

Leucine/Proline 7614 7614 

Leucine/Serine 19786 19786 

Leucine/Sphingomyelin 27194 407910 

Leucine/Threonine 7201 7201 

Leucine/Tryptophan 12209 12209 

Leucine/Tyrosine 9862 9862 

Leucine/Valine 9862 9862 

Methionine/Ornithine 18044 18044 

Methionine/Phenylalanine 16695 16695 

Methionine/Phosphatidylcholine 41910 3855720 

Methionine/Proline 14314 14314 

Methionine/Serine 23487 23487 

Methionine/Sphingomyelin 33290 499350 

Methionine/Threonine 13097 13097 

Methionine/Tryptophan 16107 16107 

Methionine/Tyrosine 17375 17375 

Methionine/Valine 17375 17375 

Ornithine/Phenylalanine 13651 13651 

Ornithine/Phosphatidylcholine 42666 3925272 

Ornithine/Proline 11728 11728 

Ornithine/Serine 23324 23324 

Ornithine/Sphingomyelin 32150 482250 

Ornithine/Threonine 11974 11974 

Ornithine/Tryptophan 16502 16502 

Ornithine/Tyrosine 14655 14655 

Ornithine/Valine 14655 14655 

Phenylalanine/Phosphatidylcholine 41835 3848820 

Phenylalanine/Proline 11052 11052 

Phenylalanine/Serine 21438 21438 

Phenylalanine/Sphingomyelin 31347 470205 

Phenylalanine/Threonine 10338 10338 

Phenylalanine/Tryptophan 13228 13228 

Phenylalanine/Tyrosine 12489 12489 

Phenylalanine/Valine 12489 12489 



44 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 is the union of the SNP set generated for the metabolites in the numerator and 
denominator of the corresponding ratio. 2 In the case of aggregated compounds, the SNP set 
is multiplied by the number of compounds present in that class. 
 
S4 
Compounds filtered for the Kegg:Reaction Scheme 

Phosphatidylcholine/Proline 38810 3570520 

Phosphatidylcholine/Serine 42395 3900340 

Phosphatidylcholine/Sphingomyelin 34731 47928780 

Phosphatidylcholine/Threonine 35955 3307860 

Phosphatidylcholine/Tryptophan 41184 3788928 

Phosphatidylcholine/Tyrosine 41940 3858480 

Phosphatidylcholine/Valine 41940 3858480 

Proline/Serine 20006 20006 

Proline/Sphingomyelin 28006 420090 

Proline/Threonine 7155 7155 

Proline/Tryptophan 13016 13016 

Proline/Tyrosine 11811 11811 

Proline/Valine 11811 11811 

Serine/Sphingomyelin 31738 476070 

Serine/Threonine 16657 16657 

Serine/Tryptophan 22076 22076 

Serine/Tyrosine 22311 22311 

Serine/Valine 22311 22311 

Sphingomyelin/Threonine 25277 379155 

Sphingomyelin/Tryptophan 32681 490215 

Sphingomyelin/Tyrosine 31476 472140 

Sphingomyelin/Valine 31476 472140 

Threonine/Tryptophan 11676 11676 

Threonine/Tyrosine 11305 11305 

Threonine/Valine 11305 11305 

Tryptophan/Tyrosine 15561 15561 

Tryptophan/Valine 15561 15561 

Tyrosine/Valine 9633 9633 

Carnitine/Carnitine 11239 9215980 

Phosphatidylcholine/Phosphatidylcholine 31676 132595736 

Sphingomyelin/Sphingomyelin 21290 2235450 

Total 2969397 423645558 
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cpd:C00001 H2O; Water 
cpd:C00002 ATP; Adenosine 5'-triphosphate 
cpd:C00003 NAD+; NAD; Nicotinamide adenine dinucleotide; DPN; 
Diphosphopyridine nucleotide; Nadide 
cpd:C00004 NADH; DPNH; Reduced nicotinamide adenine dinucleotide 
cpd:C00005 NADPH; TPNH; Reduced nicotinamide adenine dinucleotide 
phosphate 
cpd:C00006 NADP+; NADP; Nicotinamide adenine dinucleotide phosphate; 
beta-Nicotinamide adenine dinucleotide phosphate; TPN; 
Triphosphopyridine nucleotide 
cpd:C00007 Oxygen; O2 
cpd:C00008 ADP; Adenosine 5'-diphosphate 
cpd:C00009 Orthophosphate; Phosphate; Phosphoric acid; Orthophosphoric 
acid 
cpd:C00010 CoA; Coenzyme A; CoA-SH 
cpd:C00011 CO2; Carbon dioxide 
cpd:C00012 Peptide 
cpd:C00013 Diphosphate; Diphosphoric acid; Pyrophosphate; 
Pyrophosphoric acid; PPi 
cpd:C00014 NH3; Ammonia 
cpd:C00015 UDP; Uridine 5'-diphosphate 
cpd:C00016 FAD; Flavin adenine dinucleotide 
cpd:C00019 S-Adenosyl-L-methionine; S-Adenosylmethionine; AdoMet; SAM 
cpd:C00020 AMP; Adenosine 5'-monophosphate; Adenylic acid; Adenylate; 
5'-AMP; 5'-Adenylic acid; 5'-Adenosine monophosphate; Adenosine 5'-
phosphate 
cpd:C00024 Acetyl-CoA; Acetyl coenzyme A 
cpd:C00027 Hydrogen peroxide; H2O2; Oxydol 
cpd:C00028 Acceptor; Hydrogen-acceptor; A; Oxidized donor 
cpd:C00030 Reduced acceptor; AH2; Hydrogen-donor; Donor 
cpd:C00033 Acetate; Acetic acid; Ethanoic acid 
cpd:C00035 GDP; Guanosine 5'-diphosphate; Guanosine diphosphate 
cpd:C00040 Acyl-CoA; Acyl coenzyme A 
cpd:C00044 GTP; Guanosine 5'-triphosphate 
cpd:C00046 RNA; RNAn; RNAn+1; RNA(linear); (Ribonucleotide)n; 
(Ribonucleotide)m; (Ribonucleotide)n+m; Ribonucleic acid 
cpd:C00055 CMP; Cytidine-5'-monophosphate; Cytidylic acid 
cpd:C00063 CTP; Cytidine 5'-triphosphate; Cytidine triphosphate 
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cpd:C00067 Formaldehyde; Methanal; Oxomethane; Oxomethylene; 
Methylene oxide; Formalin 
cpd:C00075 UTP; Uridine 5'-triphosphate; Uridine triphosphate 
cpd:C00080 H+; Hydron 
cpd:C00084 Acetaldehyde; Ethanal 
cpd:C00086 Urea; Carbamide 
cpd:C00091 Succinyl-CoA; Succinyl coenzyme A 
cpd:C00105 UMP; Uridylic acid; Uridine monophosphate; Uridine 5'-
monophosphate; 5'Uridylic acid 
cpd:C00106 Uracil 
cpd:C00112 CDP; Cytidine 5'-diphosphate; Cytidine diphosphate 
cpd:C00125 Ferricytochrome c; Cytochrome c3+ 
cpd:C00126 Ferrocytochrome c; Cytochrome c2+; Reduced cytochrome c 
cpd:C00131 dATP; 2'-Deoxyadenosine 5'-triphosphate; Deoxyadenosine 5'-
triphosphate; Deoxyadenosine triphosphate 
cpd:C00144 GMP; Guanosine 5'-phosphate; Guanosine monophosphate; 
Guanosine 5'-monophosphate; Guanylic acid 
cpd:C00147 Adenine; 6-Aminopurine 
cpd:C00151 L-Amino acid; L-2-Amino acid 
cpd:C00161 2-Oxo acid; 2-Oxocarboxylate 
cpd:C00162 Fatty acid 
cpd:C00177 Cyanide; Prussiate; CN-; Cyano 
cpd:C00212 Adenosine 
cpd:C00178 Thymine; 5-Methyluracil 
cpd:C00206 dADP; 2'-Deoxyadenosine 5'-diphosphate 
cpd:C00214 Thymidine; Deoxythymidine 
cpd:C00239 dCMP; Deoxycytidylic acid; Deoxycytidine monophosphate; 
Deoxycytidylate; 2'-Deoxycytidine 5'-monophosphate 
cpd:C00240 rRNA; Ribosomal RNA 
cpd:C00227 Acetyl phosphate 
cpd:C00242 Guanine; 2-Amino-6-hydroxypurine 
cpd:C00286 dGTP; 2'-Deoxyguanosine 5'-triphosphate; Deoxyguanosine 5'-
triphosphate; Deoxyguanosine triphosphate 
cpd:C00288 HCO3-; Bicarbonate; Hydrogencarbonate; Acid carbonate 
cpd:C00299 Uridine 
cpd:C00330 Deoxyguanosine; 2'-Deoxyguanosine 
cpd:C00360 dAMP; 2'-Deoxyadenosine 5'-phosphate; 2'-Deoxyadenosine 5'-
monophosphate; Deoxyadenylic acid; Deoxyadenosine monophosphate 
cpd:C00361 dGDP; 2'-Deoxyguanosine 5'-diphosphate 
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cpd:C00362 dGMP; 2'-Deoxyguanosine 5'-monophosphate; 2'-
Deoxyguanosine 5'-phosphate; Deoxyguanylic acid; Deoxyguanosine 
monophosphate 
cpd:C00363 dTDP; Deoxythymidine 5'-diphosphate 
cpd:C00364 dTMP; Thymidine 5'-phosphate; Deoxythymidine 5'-phosphate; 
Thymidylic acid; 5'-Thymidylic acid; Thymidine monophosphate; 
Deoxythymidylic acid; Thymidylate 
cpd:C00365 dUMP; Deoxyuridylic acid; Deoxyuridine monophosphate; 
Deoxyuridine 5'-phosphate; 2'-Deoxyuridine 5'-phosphate 
cpd:C00380 Cytosine 
cpd:C00387 Guanosine 
cpd:C00458 dCTP; Deoxycytidine 5'-triphosphate; Deoxycytidine 
triphosphate; 2'-Deoxycytidine 5'-triphosphate 
cpd:C00459 dTTP; Deoxythymidine triphosphate; Deoxythymidine 5'-
triphosphate; TTP 
cpd:C00460 dUTP; 2'-Deoxyuridine 5'-triphosphate 
cpd:C00475 Cytidine 
cpd:C00512 S-Benzoate coenzyme A; Benzoyl-CoA 
cpd:C00526 Deoxyuridine; 2-Deoxyuridine; 2'-Deoxyuridine 
cpd:C00533 Nitric oxide; NO; Nitrogen monoxide 
cpd:C00559 Deoxyadenosine; 2'-Deoxyadenosine 
cpd:C00575 3',5'-Cyclic AMP; Cyclic adenylic acid; Cyclic AMP; Adenosine 
3',5'-phosphate; Adenosine 3',5'-cyclic phosphate; cAMP 
cpd:C00698 Cl-; Chloride; Chloride ion 
cpd:C00705 dCDP; 2'-Deoxycytidine diphosphate; 2'-Deoxycytidine 5'-
diphosphate 
cpd:C00821 DNA adenine 
cpd:C00856 DNA cytosine; Cytosine (in DNA) 
cpd:C00881 Deoxycytidine; 2'-Deoxycytidine 
cpd:C00941 3',5'-Cyclic CMP; Cytidine 3',5'-cyclic monophosphate 
cpd:C00942 3',5'-Cyclic GMP; Guanosine 3',5'-cyclic monophosphate; 
Guanosine 3',5'-cyclic phosphate; Cyclic GMP; cGMP 
cpd:C00943 3',5'-Cyclic IMP; Inosine 3',5'-cyclic monophosphate 
cpd:C00968 3',5'-Cyclic dAMP 
cpd:C01021 Aromatic amino acid; Aromatic L-amino acid 
cpd:C01346 dUDP; 2'-Deoxyuridine 5'-diphosphate 
cpd:C01352 FADH2 
cpd:C01642 tRNA(Gly) 
cpd:C01647 tRNA(Met) 
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cpd:C01764 tRNA containing uridine at position 54; tRNA UpsiC 
cpd:C01794 Choloyl-CoA; 3alpha,7alpha,12alpha-Trihydroxy-5beta-
cholanoyl-CoA; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholan-24-one-CoA 
cpd:C01977 tRNA guanine 
cpd:C02353 2',3'-Cyclic AMP 
cpd:C02354 2',3'-Cyclic CMP 
cpd:C02355 2',3'-Cyclic UMP 
cpd:C02412 Glycyl-tRNA(Gly) 
cpd:C02430 L-Methionyl-tRNA; L-Methionyl-tRNA(Met) 
cpd:C02507 3',5'-Cyclic dGMP 
cpd:C03110 DNA N4-methylcytosine 
cpd:C03391 DNA 6-methylaminopurine 
cpd:C03446 tRNA containing ribothymidine at position 54; tRNA TpsiC 
cpd:C03395 Fatty acid methyl ester 
cpd:C04152 rRNA containing N1-methylguanine 
cpd:C04153 rRNA containing N2-methylguanine 
cpd:C04154 rRNA containing N6-methyladenine; rRNA(N6-methyladenine) 
cpd:C04156 tRNA containing N1-methyladenine 
cpd:C04157 tRNA containing N1-methylguanine 
cpd:C04158 tRNA containing N2-methylguanine 
cpd:C04159 tRNA containing N6-methyladenine 
cpd:C04160 tRNA containing N7-methylguanine 
cpd:C04268 dTDP-4-amino-4,6-dideoxy-D-glucose 
cpd:C04545 tRNA containing 2'-O-methylguanosine 
cpd:C04728 tRNA containing 5-methylaminomethyl-2-thiouridylate; tRNA 
containing mnm5s2U 
cpd:C04779 rRNA containing a single residue of 2'-O-methyladenosine 
cpd:C05167 alpha-Amino acid 
cpd:C05198 5'-Deoxyadenosine 
cpd:C05337 Chenodeoxycholoyl-CoA; 3alpha,7alpha-Dihydroxy-5beta-
cholanoyl-CoA 
cpd:C05338 4-Hydroxyphenylacetyl-CoA 
cpd:C05777 Coenzyme F430; Factor F430 
cpd:C05359 e-; Electron 
cpd:C06194 2',3'-Cyclic GMP 
cpd:C11378 Ubiquinone-10; Ubidecarenone; Coenzyme Q10 
cpd:C15670 Heme A 
cpd:C15672 Heme O 
cpd:C15817 Heme C 
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cpd:C11478 tRNA containing 5-aminomethyl-2-thiouridine; tRNA containing 
nm5s2U 
cpd:C17023 Sulfur donor; S-donor 
cpd:C17322 tRNA containing 2-thiouridine; tRNA containing s2U 
cpd:C17323 tRNA containing 5-carboxymethylaminomethyl-2-thiouridine; 
tRNA containing cnm5s2U 
cpd:C17324 tRNA adenine 
cpd:C19637 Coenzyme M; 2,2'-Dithiodiethanesulfonic acid 
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Abstract  
Background 

One of the main challenges for biomedical research lies in the computer-
assisted integrative study of large and increasingly complex combinations of 
data in order to understand molecular mechanisms. The preservation of the 
materials and methods of such computational experiments with clear 
annotations is essential for understanding an experiment, and this is 
increasingly recognized in the bioinformatics community. Our assumption is 
that offering means of digital, structured aggregation and annotation of the 
objects of an experiment will provide necessary meta-data for a scientist to 
understand and recreate the results of an experiment. To support this we 
explored a model for the semantic description of a workflow-centric 
Research Object (RO), where an RO is defined as a resource that aggregates 
other resources, e.g., datasets, software, spreadsheets, text, etc. We applied 
this model to a case study where we analysed human metabolite variation by 
workflows.   

Results 

We present the application of the workflow-centric RO model for our 
bioinformatics case study. A set of workflows were produced following 
recently defined Best Practices for workflow design. By modelling the 
experiment as an RO, we were able to automatically query the experiment 
and answer questions such as “which particular data was input to a particular 
workflow to test a particular hypothesis?”, and “which particular conclusions 
were drawn from a particular workflow?”.   

Conclusions 

Applying a workflow-centric RO model to aggregate and annotate the 
resources used in a bioinformatics experiment, allowed us to retrieve the 
conclusions of the experiment in the context of the driving hypothesis, the 
executed workflows and their input data. The RO model is an extendable 
reference model that can be used by other systems as well. 

Background 
One of the main challenges for biomedical research lies in the integrative 
study of large and increasingly complex combinations of data in order to 
understand molecular mechanisms, for instance to explain the onset and 
progression of human diseases. Computer-assisted method- ology is needed 
to perform these studies, posing new challenges for upholding scientific 
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quality standards for the reproducibility of science. The aim of this paper is 
to describe how the research data, methods and metadata related to a 
workflow-centric computational experiment can be aggregated and 
annotated using standard Semantic Web technologies, with the purpose of 
helping scientists performing such experiments in meeting requirements for 
understanding, sharing, reuse and repurposing. 

The workflow paradigm is gaining ground in bioinformatics as the technology 
of choice for recording the steps of computational experiments [1-4]. It 
allows scientists to delineate the steps of a complex analysis and expose this 
to peers using workflow design and execution tools such as Taverna [5], and 
Galaxy [6], and workflow sharing platforms such as myExperiment [7] and 
crowdLabs [8]. In a typical workflow, data outputs are generated from data 
inputs via a set of (potentially distributed) computational tasks that are 
coordinated following a workflow definition. However, workflows do not 
provide a complete solution for aggregating all data and all meta-data that 
are necessary for understanding the full context of an experiment. 
Consequently, scientists often find it difficult (or impossible) to reuse or 
repurpose existing workflows for their own analyses [9]. In fact, insufficient 
meta-data has been listed as one of the main causes of workflow decay in a 
recent study of Taverna workflows on myExperiment [9]. Workflow decay is 
the term used when the ability to re-execute a workflow after its inception 
has been compromised. 

We will be able to better understand scientific workflows if we are able to 
capture more relevant data and meta-data about them; including the 
purpose and context of the experiment, sample input and output datasets, 
and the provenance of workflow executions. Moreover, if we wish to publish 
and exchange these resources as a unit, we need a mechanism for 
aggregation and annotation that would work in a broad scientific community. 
Semantic Web technology seems a logic choice of technology, given its focus 
on capturing the meaning of data in a machine readable format that is 
extendable and supports interoperability. It allows defining a Web-accessible 
reference model for the annotation of the aggregation and the aggregated 
resources that is independent of how data are stored in repositories. 
Examples of other efforts where Semantic Web technology has been used for 
the biomedical data integration includes the Semantic Enrichment of the 
Scientific Literature (SESL) [10] and Open   PHACTS [11] projects. We applied 
the recently developed Research Object (RO) family of tools and ontologies 
[12,13] to preserve the scientific  assets  and  their  annotation  related to a 
computational experiment. The concept of the RO was first proposed as an 
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abstraction for sharing research investigation results [14]. Later, the potential 
role for ROs in facilitating not only the sharing but also the reuse of results, 
in order to increase the reproducibility of these results, was envisioned [15]. 
Narrowing down to workflow- centric ROs, preservation aspects were 
explored in [16], and their properties as first class citizen structures that 
aggregate resources in a principled manner in [13]. We also showed the 
principle of describing a (text mining) workflow experiment and its results by 
Web Ontology Language (OWL) ontologies [17]. The OWL ontologies were 
custom built, which we argue is now an unnecessary bottleneck for exchange 
and interoperability. These studies all contributed to the understanding and 
implementation of the concept of an RO, but the data used were preliminary, 
and the studies were focused on describing workflows with related datasets 
and provenance information, rather  than  from the viewpoint of describing 
a scientific experiment of which workflows are a component. 

A workflow-centric RO is defined as a resource that aggregates other 
resources, such as workflow(s), provenance, other objects and annotations. 
Consequently, an RO represents the method of analysis and all its associated 
materials and meta-data [13,15], distinguishing it from other work mainly 
focusing on provenance of research data [18,19]. Existing Semantic Web 
frameworks are used, such as (i) the Object Exchange and Reuse (ORE) model 
[20]; (ii) the Annotation Ontology (AO) [21]; and (iii) the W3C-recommended 
provenance exchange models [22]. ORE defines the standards for the 
description and exchange of aggregations of Web resources and provides the 
basis for the RO ontologies. AO is a general model for annotating resources 
and is used to describe the RO and its constituent resources as well as the 
relationships between them. The W3C provenance exchange models enable 
the interchange of provenance information on the Web, and the Provenance 
Ontology (PROV-O) forms the basis for recording the provenance of scientific 
workflow executions and their results. 

In addition, we used the minimal information model “Minim”, also in 
Semantic Web format, to specify which elements in an RO we consider “must 
haves”, “should haves” and “could haves” according to user-defined 
requirements [23]. A checklist service subsequently queries the Minim 
annotations as an aid to make sufficiently complete ROs [24]. The idea of 
using a checklist to perform quality assessment is inspired by related checklist 
based approaches in bioinformatics, such as the Minimum Information for 
Biological and Biomedical Information (MIBBI)-style models [25]. 

Case study: genome wide association studies 
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As real-world example we aggregate and describe the research data, 
methods and metadata of a computational experiment in the context of 
studies of genetic   variation in human metabolism. Given the potential of 
genetic variation data in extending our understanding of genetic diseases, 
drug development and treatment, it is crucial that the steps leading to new 
biological insights can be properly recorded and understood. Moreover, 
bioinformatics approaches typically involve aggregation of disparate online 
resources into complex data parsing pipelines. This makes this a fitting test 
case for an instantiated RO. The biological goal of the experiment is to aid in 
the interpretation of the results of a Genome-Wide Association Study 
(GWAS) by relating metabolic traits to the Single Nucleotide Polymorphisms 
(SNPs) that were identified by the GWAS. GWA studies have successfully 
identified genomic regions that dispose individuals to diseases (see for 
example [26], for a review see [27]). However, the underlying biological 
mechanisms often remain elusive, which led the research community to 
evince interest in genetic association studies of metabolites levels in blood 
(see for example [28-30]). The motivation is that the biochemical 
characteristics of the metabolite and the functional nature of affected genes 
can be combined to unravel biological mechanisms and gain functional 
insight into the aetiology of a disease. Our specific experiment involves 
mining curated pathway databases and a specific text mining method called 
concept profile matching [31,32]. 

In this paper we describe the current state of RO ontologies and tools for the 
aggregation and annotation of a computational experiment that we 
developed to elucidate the genetic basis for human metabolic variation. 

Methods 
We performed our experiment using workflows developed in the open 
source Taverna Workflow Management System version 2.4 [5]. To improve 
the understanding of the experiment, we have added the following 
additional resources to the RO, using the  RO-enabled  myExperiment  [33]: 
1) the hypothesis or research question (what the experiment was designed 
to test); 2) a workflow-like sketch of the overall experiment (the overall data 
flow and workflow aims); 3) one or more workflows encapsulating the 
computational method; 4) input data (a record of the data that were used to 
reach the conclusions  of an experiment);  5) provenance of workflow runs 
(the data lineage paths built from the workflow outputs to the originating 
inputs); 6) the results (a compilation of output data from workflow runs); 7) 
the conclusions (interpretation of the results from the workflows against the 
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original hypothesis). Such an RO was then stored in the RO Digital Library 
[34]. RO completeness evaluation   is checked   from   myExperiment   with   
a tool implementing the Minim model [24].  Detailed description of the 
method follows. 

Workflow development 

We developed three workflows for interpreting SNP- metabolite associations 
from a previously published genome-wide association study, using pathways  
from the KEGG metabolic pathway database [35] and Gene Ontology (GO) 
[36] biological process associations from text mining of PubMed. To 
understand an association of a SNP with a metabolite, researchers would like 
to know the gene in the vicinity of the SNP that is affected by the 
polymorphism. Then, researchers examine the functional nature of the gene 
and evaluate if it makes sense given the biochemical characteristics of the 
metabolite with which it is associated. This typically involves interrogation of 
biochemical pathway databases and mining existing literature. We would like 
to evaluate the utility of background knowledge present in the databases and 
literature in facilitating a biological interpretation of the statistically 
significant SNP-metabolite pairs. We do this by first determining the genes 
closest to the SNPs, and then reporting the pathways that these genes 
participate in. We implemented two main workflows for our experiment. The 
first one mines the manually curated KEGG database of metabolic pathway 
and gene associations that are available via the KEGG REST Services [37]. The 
second workflow mines the text-mining based database of associations 
between GO biological processes and genes behind the Anni 2.1 tool [31] that 
are available via the concept profile mining Web services [38]. We also 
created a workflow to list all possible concept sets in the concept profile 
database, to encourage reuse of the concept profile-based workflow for 
matching against other concept sets than GO biological processes. The 
workflows were developed following the 10 Best Practices for workflow 
design [39]. The Best Practices were developed to encourage re-use and 
prevent workflow decay, and briefly consists of the following   steps: 

1) Make a sketch workflow to help design the overall data flow and 
workflow aims, and to identify the tools and data resources required at each 
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stage. The sketch could be created using for example flowchart symbols or 
empty beanshells in Taverna. 

2) Use modules, i.e. implement all executable components as separate, 
runnable workflows to make it easier for other scientists to reuse parts of a 
workflow at a later date. 

3) Think about the output. A workflow has the potential to produce 
masses of data that need to be visualized and managed properly. Also, 
workflows can be used to integrate and visualise data as well as for analysing 
it, so one should consider how the results will be presented easily to the user. 

4) Provide input and output examples to show the format of input 
required for the workflow and the type of output that should be produced. 
This is crucial for the understanding, validation, and maintenance of the 
workflow. 

5) Annotate, i.e. choose meaningful names for the workflow title, 
inputs, outputs, and for the processes that constitute the workflow as well as 
for the interconnections between the components, so that annotations are 
not only a collection of static  tags but capture the dynamics of the  workflow. 
Accurately describing what individual services do, what data they consume 
and produce, and the aims of the workflow are all essential for use and reuse. 

6) Make it executable from outside the local environment by for 
example using remote Web services, or platform independent code/plugins. 
Workflows are more reusable if they can   be executed from anywhere. If 
there is need to use local services, library or tools, then the workflow should 
be annotated in order to define its dependencies. 

7) Choose services carefully. Some services are more reliable or more 
stable than others, and examining which are the most popular can assist with 
this process. 

8) Reuse existing workflows by for example searching collaborative 
platforms such as myExperiment for workflows using the same Web service. 
If a workflow has been tried, tested and published, then reusing it can save a 
significant amount of time and resource. 

9) Test and validate by defining test cases and implementing validation 
mechanisms in order to understand the limitations of workflows, and to 
monitor changes to underlying services. 

10) Advertise and maintain by publishing the workflow on for example 
myExperiment, and performing frequent testing of the workflow and 
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monitoring of the services used. Others can only reuse it if it is accessible and 
if it is updated when required, due to changes in underlying services. 

The RO core model 

The RO model [12,13] aims at  capturing  the elements that are relevant for 
interpreting and preserving the results of scientific investigations, including 
the hypothesis investigated by the scientists, the data artefacts used and 
generated, as well as the methods and experiments employed during the 
investigation. As well as these elements, to allow third parties to understand 
the content of the RO, the RO model caters for annotations that describe the 
elements encapsulated by the ROs, as well as the RO as a whole.  Therefore, 
two main constructs are at the heart of the RO model, namely aggregation 
and annotation. The work reported on in this article uses version 0.1 of the 
RO model, which is documented online [12]. 

Following myExperiment packs [7], ROs use the ORE model [20] to represent 
aggregation. Using ORE, an RO is defined as a resource that aggregates other 
resources, e.g., datasets, software, spreadsheets, text, etc. Specifically, the 
RO extends ORE to define three new concepts: i) ro: ResearchObject is a sub-
class of ore:Aggregation which represents an aggregation  of  resources.  ii) 
ro:Resource is a sub-class of ore:AggregatedResource representing a 
resource that is aggregated within an RO. iii) ro:Manifest is a sub-class of 
ore:ResourceMap, representing a resource that is used to describe the RO. 

To support the annotation of ROs, their constituent resources, as well as their 
relationship, we use the Annotation Ontology [21]. Several types of 
annotations are supported by the Annotation Ontology, e.g., comments, 
textual annotations (classic tags) and semantic annotations, which relate 
elements of the ROs to concepts from underlying domain ontologies. We 
make use of the following Annotation Ontology terms: i) ao:Annotation, 
which acts as a handle for the annotation. ii) ao:annotatesResource, which 
represents the resource(s)/RO(s) subjects to annotation. iii) ao:body, which 
describes the target of the annotation. The body of the annotation takes the 
form of a set of Resource Description Framework (RDF) statements. Note that 
it is planned for later revisions of the RO model to use the successor of AO, 
the W3C Community Open Annotation Data Model (OA) [40]. For our 
purposes, OA annotations follows a very similar structure using oa: 
Annotation, oa:hasTarget  and oa:hasBody. 

Support for workflow-centric ROs 
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A special kind of ROs that are supported by the model is what we call 
workflow-centric ROs, which, as indicated by the name, refer to those ROs 
that contain resources that are workflow specifications. The structure of the 
workflow in ROs is detailed using the wfdesc vocabulary [41], and is defined 
as a graph in which the nodes refers to steps in the workflow, which we call 
wfdesc:Process, and the edges representing data flow dependencies, 
wfdesc:DataLink, which is a link between the output and input parameters 
(wfdesc:Parameter) of the processes that compose the workflow. As well as 
the description of the workflow, workflow centric ROs support the 
specification of the workflow runs, wfprov:WorkflowRun, that are obtained 
as a result of enacting workflows. A workflow run is specified using the 
wfprov ontology [42], which  captures information about the input used to 
feed the workflow execution, the output results of the workflow run, as well 
as the constituent process runs, wfprov: ProcessRun,  of  the  workflow  run,  
which  are  obtained by invoking the workflow processes, and the input and 
outputs  of  those  process runs. 

Support for domain-specific information 

A key aspect of the RO model design is the freedom to use any vocabulary. 
This allows for inclusion of very domain-specific information about the RO if 
that serves the desired purpose of the user. We defined new terms under the 
name space roterms [43]. These new terms serve two main purposes. They 
are used to specify annotations that are, to our knowledge, not catered for 
by existing ontologies, e.g., the classes roterms:Hypothesis and 
roterms:Conclusion to annotate the hypothesis and conclusions part of an 
RO, and the property roterms: exampleValue to annotate an example value 
for a given input or output parameter given as an roterms:WorkflowValue 
instance. The roterms are also used to specify shortcuts that make the 
ontology easy to use and more accessible. For example, 
roterms:inputSelected associates a wfdesc:WorkflowDefinition to an 
ro:Resource to state that a file is meant to be used with a given workflow 
definition, without specifying at which input port or in which workflow run. 

Minim model for checklist evaluation 

When building an RO in myExperiment users are provided with a mechanism 
of quality insurance by our so-called checklist evaluation tool, which is built 
upon the Minim checklist ontology [23,44]  and  defined using Web Ontology 
Language. Its basic function is to assess that all required information and  
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Figure 1 An overview of the Minim model. An overview of the four 
components: a constraint, a model, a requirement, and a rule. 

 

descriptions about the aggregated resources are present and complete. 
Additionally, according to explicit requirements defined in a checklist, the 
tool can also assess the accessibility of those resources aggregated in an RO, 
in order to increase the trust on the understanding of the RO.  The Minim 
model has four key components, as illustrated by Figure 1: 1) a Constraint, 
which associates a model (checklist) to use with an RO, for a specific 
assessment purpose, e.g. reviewing an RO containing sufficient information 
before being shared; 2) a Model, which enumerates of the set of 
requirements to be considered, which may be declared at levels of MUST, 
SHOULD or MAY be satisfied for the model as a whole; 3) a Requirement, 
which is the key part for expressing the concrete quality requirements  to  an 
RO, for example, the presence of certain information about an experiment, 
or liveness (accessibility) of a data server; 4) a Rule, which can be a 
SoftwareRequirementRule, to specify the software to be present in the 
operating environment, a ContentMatchRequirementRule, to specify the 
presence of certain pattern in the  assessed data, or a DataRequirementRule, 
for specifying data resource to be aggregated in an RO. 
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Figure 2 - Screenshots from myExperiment illustrating the process of creating 
a Research Object placeholder. Before pressing the “create” button the user 
can enter a title and description (A), while pressing the “create” button will 
result in a placeholder Research Object with an identifier (B). 

 

RO digital library 

While myExperiment acts mainly as front-end to users, the RO Digital Library 
[34] acts as a back-end, with two complementary storage components: a 
digital repository to keep the content, as a triple store to manage the meta-
data content. The ROs in the repository can be accessed via a Restful API [45] 
or via a public SPARQL endpoint [46]. All the ROs created in the 
myExperiment. org are also submitted to the RO Digital  Library. 

Workflow-centric RO creation process 

Below we describe the steps that we conducted when creating the RO for our 
case study in an “RO-enabled” version of myExperiment [33]. The populated  



66 

 
Figure 3 - Workflow sketch. A workflow sketch showing that our experiment follows 
two paths to interpret genome wide association study results: matching with 
concept profiles and matching with KEGG pathways. 

 

RO is intended to contain all the information required to re- run the 
experiment, or understand the results presented, or both. 

Creating an RO 

The action of creating an RO consists of generating the container for the 
items that will be aggregated, and getting a resolvable identifier for it. In 
myExperiment the action of creating an RO is similar to creating a pack. We 
filled in a title and description of the RO at the point of creation and got a 
confirmation that the RO had been created and had been assigned a 
resolvable identifier in the RO Digital Library (Figure 2). 

Adding the experiment sketch 

Using a popular office presentation tool, we made an experiment sketch and 
saved it as a PNG image. We then uploaded the image to the pack, selecting 
the type “Sketch”. As a result, the image gets stored in the Digital Library and 
aggregated in the RO. In addition, an annotation was added to the RO to 
specify that the image is of type “Sketch”. A miniature version of the sketch 
is shown within the myExperiment pack (Figure 3). 

Adding the hypothesis 

To specify the hypothesis, we created a text file that describes the 
hypothesis, and then upload it to the pack as type “Hypothesis”. The file gets 
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stored in the Digital Library and aggregated in the RO, this time annotated to 
be of type “Hypothesis”. 

Adding workflows 

We saved the workflow definitions to files and uploaded them to the pack as 
type “Workflow”. MyExperiment then automatically performed a workflow-
to-RDF transformation in order to extract the workflow structure according 
to the RO model, which includes user descriptions and metadata created 
within the Taverna workbench. The descriptions and the extracted structure 
gets stored in the RO Digital Library and associated with the workflow files as 
annotations. 

Adding the workflow input file 

The data values were stored in files that were then uploaded into the pack as 
“Example inputs”. Such files gets stored in the RO Digital Library and 
aggregated in the RO, and as “Example inputs”. 

Adding the workflow provenance 

Using the Taverna-Prov [47] extension to Taverna, we exported the workflow 
run provenance to a file that we uploaded to the pack as type “Workflow 
run”. Similar to other resources, the provenance file gets stored in the digital 
library with the type “Workflow run”, however as the file is in the form of 
RDF according to the wfprov [42] and W3C PROV-O [22] ontologies; it is also 
integrated into the RDF store of the digital library and available for later 
querying. 

Adding the results 

We made a compilation of the different workflow outputs to a result file in 
table format, uploaded to the pack as type “Results”. The file gets stored in 
the digital library and aggregated in the RO, annotated to be of the type 
“Results”. 

Adding the conclusions 

To specify the hypothesis, we created a text file that describes the 
hypothesis, and then uploaded it to    the pack as type “Hypothesis”. The file 
gets stored in the digital library and aggregated in the RO, annotated to be of 
type “Conclusions”. 
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Figure 4 - Screenshot of the results from the second check with the checklist 
evaluation service. The results from checklist evaluation service show that 
the Research Object satisfies the defined checklist for a Research 
Object.Intermediate step:  checklist evaluation 

 

 

 

Figure 5 - Screenshot of the relationships in the RO in myExperiment. The 
relationships between example inputs and workflows in the Research Object 
have been defined in myExperiment.At this point we checked how far we 
were from satisfying the Minim model, and were informed by the tool that 
the RO now fully satisfies the checklist (Figure 4). 
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Figure 6 - Taverna workflow diagram for the KEGG workflow. Blue boxes are 
workflow inputs, brown boxes are scripts, grey boxes are constant values, 
green boxes are Web services, purple boxes are Taverna internal services, 
and pink boxes are nested workflows. 

 

Annotating and linking the resources 

We linked the example input file to the workflows that used the file by the 
property “Input_selected” (Figure 5). In this particular case, both workflows 
have the same inputs but they need to be configured in different ways. This 
is described in the workflow description field in Taverna. 

Results 
The RO for our experiment is the container for the items that we wished to 
aggregate. In terms of RDF, we first instantiated an ro:ResearchObject in an 
RO-enabled version of myExperiment [33]. We thereby obtained a unique 
and resolvable Uniform Resource Identifier (URI) from the RO store that 
underlies this version of myExperiment. In our experimental setup this was  
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Figure 7 - Taverna workflow diagram for the concept profile mining 
workflow. Blue boxes are workflow inputs, purple boxes are Taverna internal 
services, and pink boxes are nested workflows. 
 

 

 

 

 

 
Figure 8 Taverna workflow annotation example. An example of an annotation of 
the purpose of a nested workflow in Taverna. 
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http:// sandbox.wf4ever-project.org/rodl/ROs/Pack405/. It is accessible 
from myExperiment [48]. Each of the subsequent items in the RO was 
aggregated as an ro:Resource, indicating that the item is considered a 
constituent member of the RO from the point of view of the scientist (the 
creator of the RO). 

Aggregated resources 

We aggregated the following items: 1) the hypothesis (roterms:Hypothesis): 
we hypothesized that SNPs can   be functionally annotated using metabolic 
pathway information complemented by text mining, and that this will lead to 
formulating new hypotheses regarding the role of genomic variation in 
biological processes; 2) the sketch (roterms:Sketch) shows that our 
experiment follows two paths to interpret SNP data: matching with concept 
profiles and matching with Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways (Figure 3); 3) the workflows (wfdesc:Workflow): Figure 6 
shows the workflow diagram for the KEGG workflow  and  Figure  7 shows 
the workflow diagram for the concept profile matching workflow. In Taverna, 
we aimed to provide sufficient annotation  of  the  inputs,  outputs  and  the  
functions  of each part of the workflow to ensure a clear interpretation and 
to ensure that scientists know how to replay the workflows using the same 
input data, or re-run them with their own data. We provided textual 
descriptions in Taverna of each step of the workflow, in particular to indicate 
their purpose within the workflow (Figure   8); 

4) the input data (roterms:exampleValue) that we aggregated in our RO was 
a list of example SNPs derived from the chosen GWAS [28]; 5) the workflow 
run provenance (roterms:WorkflowRunBundle): a ZIP archive that contains 
the intermediate values of the workflow run, together with its provenance 
trace expressed using wfprov:WorkflowRun and subsequent terms from the 
wfprov ontology. We thus stored process information from the input of the 
workflow execution to its output results, including the information for each 
constituent process run in the workflow run, modelled as 
wfprov:ProcessRun. The run data is: 3 zip files containing 2090 intermediate  
values  as  separate files totalling 9.7 MiB, in addition to 5 MiB of provenance 
traces; 6) the results (roterms:Result) were compiled from the different 
workflow outputs to one results file (see result document in the RO [49] 
Additional file 1). For 15 SNPs it lists the associated gene name, the biological 
annotation from the GWAS publication, the associated KEGG   pathway,   and   
the   most   strongly    associated biological process according to concept 
profile matching. Our workflows were able to compute a biological  
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Figure 9 Simplified diagram showing part of the Research Object for our 
experiment. The Research Object contains the items that were aggregated by the 
“Research Object-enabled” version of myExperiment. Shown is the part of the RDF 
graph that aggregates and annotates the KEGG pathway mining workflow. 

 

annotation from KEGG for 10 out of 15 SNPs and 15 from mining PubMed. All 
KEGG annotations and most text mining annotations corresponded to the 
annotations by Illig et al [28]. An important result of the text mining workflow 
was the SNP-annotation “rs7156144stimulation of tumor necrosis factor 
production”, which represents a hypothetical relation that to our knowledge 
was not reported before; 7) the conclusions (roterms: Conclusion): we 
concluded that our KEGG and text mining workflows were successful in 
retrieving biological annotations for significant SNPs from a GWAS 
experiment, and predicting novel annotations. 

As an example of our instantiated RO, Figure 9 provides a simplified view of 
the RDF graph that aggregates and annotates the KEGG mining workflow. It 
shows the result of uploading our Taverna workflow to myExperiment, as it 
initiated an automatic transformation from a Taverna    2 t2flow file to a 
Taverna 3 workflow bundle, while extracting the workflow structure and user  
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Table 1 RO items checklist. RO items for a workflow-based experiment 
annotated with the appropriate term from the Minim vocabulary. 

Research Object item Requirement RO ontology term 
Hypothesis or Research 
question 

Should roterms:Hypothesis/ 
roterms:ResearchQuestion 

Workflow sketch Should roterms:Sketch 
One or more workflows Must wfdesc:Workflow 
Web services of the 
workflow 

Must wfdesc:Process 

Example input data Must roterms:exampleValue 
Provenance of workflow 
runs 

Must wfprov:WorkflowRun 

Example results Must roterms:Result 
Conclusions Must roterms:Conclusion 

 

 

descriptions in terms of the wfdesc model [41]. The resulting RDF document 
was aggregated in the RO and used as the annotation body of a 
ao:Annotation on the workflow, thus creating a link between the aggregated 
workflow file and its description in RDF. The Annotation Ontology uses 
named graphs for semantic annotation bodies. In the downloadable ZIP 
archive of an RO each named graph is available as a separate RDF document, 
which can be useful in current RDF triple stores that do not yet fully support 
named graphs. The other workflows were aggregated and annotated in the 
same way. The RO model further uses common Dublin Core vocabulary terms 
[50] for basic metadata such as creator, title, and description. 

In some cases we manually inserted specified relations between the RO 
resources via the myExperiment user interface. An example is the link 
between input data and the appropriate workflow for cases when an RO has 
multiple workflows and multiple example inputs. In our case, both workflows 
have the same inputs, but they need to be configured in different ways. This 
was described in the workflow description field in Taverna which becomes 
available from an annotation body in the workflow upload process. 

Checking for completeness of an RO: application of the Minim model 

We also applied Semantic Web technology for checking the completeness of 
our RO. We implemented a checklist for the items that we consider essential 
or desirable for understanding a workflow-based experiment by annotating 
the corresponding parts of the RO model with the appropriate term from the 
Minim vocabulary (Table 1).  
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Thus, some parts were annotated as “MUST have” with the property 
minim:hasMustRequirement (e.g. at least one workflow definition), and 
others as “SHOULD have” with the property minim:hasShouldRequirement 
(e.g. the overall sketch of the experiment). The complete checklist document 
can be found online in RDF format [51] and in a format based on the 
spreadsheet description of the workflow [52]. We subsequently used a 
checklist service that evaluates if an RO is complete by executing SPARQL 
queries on the Minim mappings. The overall result is a summary of the 
requirement levels associated with the individual items; e.g. a missing MUST 
requirement is a more serious omission than a missing SHOULD (or COULD) 
requirement. We justified the less strict requirements for some items to 
accommodate cases when an RO is used to publish a method as such. We 
found that treating the requirement levels as mutually exclusive (hence not 
sub properties) simplifies the implementation of checklist evaluation, and in 
particular the generation of results when a checklist item is not    satisfied. 

Discussion 
In this paper we explored the application of the Semantic Web encoded RO 
model to provide a container data model for preserving sufficient 
information for researchers to understand a computational experiment. We 
found that the model indeed allowed us to aggregate the necessary material 
together with sufficient annotation (both for machines and humans). 
Moreover, mapping of selected RO model artefacts to the Minim vocabulary 
allowed us to check if the RO was complete according to our own predefined 
criteria. The checklist service can be configured to accommodate different 
criteria. Research groups may have different views on what is essential, but 
also libraries or publishers may define their own standards, enabling partial 
automation of the process of checking a submission against specific 
instructions to authors. Furthermore, the service can be run routinely to 
check for workflow decay, in particular decay related to references that go 
missing. 

In using the RO model, we sought to meet requirements for sharing, reuse 
and repurposing, as well as interoperability and reproducibility. This fits with 
current trends to enhance reproducibility and transparency of science (e.g. 
see [53-55]). Reproducibility in computational science has been defined as a 
spectrum [55], where a computational experiment that is described only by 
a publication is not seen as reproducible, while adding code, data, and finally 
the linked data and execution data will move the experiment towards full 
replication. Adhering to this definition, our RO-enabled computational  
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Figure 10 Screenshot showing a SPARQL query and its results. Query to obtain a 
reference to the data that was used as input to our workflows and the conclusions 
that we drew from evaluating the workflow results. 

 

experiment comes close to fulfilling the ultimate golden standard of full 
replication, but falls short because it has not been analyzed using 
independently collected data. The benefit offered by    the RO in terms of 
reproducibility is that it provides a context (RO) within which an evaluation 
of reproducibility can be performed. It does this by providing an enumerated 
and closed set of resources that are part of the experiment concerned, and 
by providing descriptive metadata (annotations) that may be specific to that 
context. This is not necessarily the complete solution to reproducible 
research, but at least an incremental step in that direction. We have used 
RDF as the underlying data model for exchanging ROs. One of advantages is 
the ability to query the data, which becomes clear when we want to answer 
questions about the experiment, such as: 1) which conclusions were drawn 
from a given   workflow? 2) Which workflow (run) supports a particular 
conclusion and which datasets did it use as inputs?; 3) Which different 
workflows used the same dataset X as input?; 4) Who can be credited for 
creating workflows that use GWAS data? The answers for the first two 
questions can readily be found using a simple SPARQL [56] query. Figure 10 
shows the SPARQL query and the results as returned by the SPARQL endpoint 
of the RO Digital Library. Note that in our case we got two result rows, one 
for each of the workflows that were used to confirm the hypothesis. We 
emphasize that queries could also be constructed to answer more elaborate 
questions such as question 3 and 4. Without adding any complexity to the 
query or the infrastructure, it is possible to query over the entire repository 
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of research objects. This effectively integrates all meta-data of any workflow-
based experiment that was uploaded to the RO Digital Library via 
myExperiment. When more ROs have become available that use the same 
annotations as described in this paper, then we can start sharing queries that 
can act as templates. We did not explore further formalization in terms of 
rejecting or accepting hypotheses, since formulating such a hypothesis model 
properly would be very domain specific, such as current efforts in 
neuromedicine [57]. However, the RO model does not exclude the possibility 
to do so. 

Applying the RO model in genomic working environments  

An important criterion for our evaluation of the RO model and tools is that it 
should support researchers in preparing their digital methods and results for 
publication. We have shown that the RO model can be applied in an existing 
framework for sharing computational workflows (myExperiment). We used 
Taverna to create our workflows, and the wf4ever toolkit [58], including 
dLibra  [59]  that  was  extended  with  a  triple  store    as a back end to store 
the  ROs.  The RO features of the test version of myExperiment that we used 
are   currently under development for migration to the production version of 
myExperiment [60]. Creating an RO in the test version of myExperiment is not 
any different to a user than the action of creating a pack, completely hiding 
the creation of RDF objects under the hood. The difference lies in the support 
of the RO model, which allows the user to add data associated with a 
computational experiment in a structured way (a sketch representing the 
experimental setup, the hypothesis document, result files, etc.), and 
metadata in the form of annotations. Every piece of data in an RO can be 
annotated, either in a structured or machine-generated way like the 
automatic annotation of a wfdesc description of a workflow as provided by 
the workflow-to-RDF transformation service, or manually by the user at the 
time of resource upload, such as the annotation of an experiment overview 
as “Sketch”. Since RO descriptions are currently not a pre-requisite to 
publishing workflow results in journal, we hope that this support and 
streamlining of the annotation process will act as an incentive for scientists 
to start using the RO technology. 

The representation of an RO in myExperiment as presented in this paper 
should be seen as a proof-of-concept. Crucial elements of a computational 
experiment are handled, but there is room for improvement. For example, 
the hypothesis and conclusions are at the moment only shown as 
downloadable text files and the content and provenance of a workflow run is 
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not shown to the user. We found that more tooling is needed to make 
practical use of the provenance trace. It is detailed and focus is on data 
lineage, rather than the biological meaning of the recorded steps. 
Nevertheless, we regard this raw workflow data as highly valuable as the true 
record of what exactly was executed. It allows introspection of the data 
lineage, such as which service was invoked with exactly which data. By 
providing this proof-of-concept and the RO model as a reference model, we 
hope to stimulate developers of other genomic working environments such 
as Galaxy [6] and Genome Space [61] to start implementing the RO model as 
well, thus enabling scientists to share their investigation  results as a 
complete knowledge package. Similarly, workflow systems use different 
workflow languages [62,63], and by presenting the workflow-to-RDF 
transformation service that handles the t2flow serialization format to 
transform a workflow to an RO, we hope to encourage systems that use other 
workflow languages to develop similar services to transform their workflows 
to ROs. This would allow for a higher-level understanding of workflow-based 
experiments regardless of the type of workflow system used. 

It should be noted that although our ROs fully capture the individual data 
items of individual steps within workflow runs, this approach is not applicable 
to all scientific workflows. In fact, we have since further developed the 
provenance support for Taverna so that larger pieces of data are only 
recorded as URI references and not bundled within the ZIP file. The Taverna 
workflow system already supports working with such references; however 
many bioinformatics Web services still only support working directly with 
values. When dealing with references, the workflow run data only capture 
the URI and its metadata, and full access to the run data therefore would also 
depend on the continued availability (or mirroring) of those referenced 
resources, and their consistency would therefore later need to be verified 
against metadata  such as byte size and Secure Hash Algorithm checksums. 

Generalization to other domains 

We acknowledge that apart from enabling the structured aggregation and 
annotation of digital ROs technically, scientists appreciate guidelines and 
Best Practices for producing high quality ROs. In fact, the minimal 
requirements for a complete RO that we implemented via the Minim model, 
were inspired by the 10 Best Practices that we defined for creating workflows 
[39]. An RO may be evaluated using different checklists for different 
purposes. A checklist description is published as linked data, and may be 
included in the RO, though we anticipate more common use will be for it to 
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be published separately in a community web site. In our work to date, we 
have used checklist definitions published via Github (e.g. [64]), and are 
looking to create a collection of example checklist definitions to seed creation 
of checklists for different domains or purposes [65]. We envision that 
instructions to authors of ROs may differ between research communities, 
and publishers who wish to adopt RO technology for digital submissions may 
develop their own ‘Instructions to Authors’ for ROs. This could be 
implemented by different mappings of the Minim model. 

Related work 

The RO model was implemented as a Semantic Web model to provide a 
general, domain-agnostic reference that can be extended by domain specific 
ontologies. For instance, while the RO model offers terms pertaining   to 
experimental science such as “hypothesis” and “conclusion”, extensions to 
existing models that also cover this area and are already in use in the life 
science domain could be considered. It is beyond the scope of this article to 
exhaustively review related ontologies and associated tools, but we wish to 
mention six that in our view are prime candidates to augment the RO family 
of ontologies and tools. The first is the Ontology for Biomedical Investigations 
(OBI) that aims to represent all phases of experimental processes, such as 
study designs, protocols, instrumentation, biological material, collected data 
and analyses performed on that data [66]. OBI is used for the ontological 
representation of the results of the Investigation-Study-Assay (ISA) metadata 
tools [67] that is the next on our list of candidates. ISA, developed by the ISA 
commons community, facilitates curation, management, and reuse of omics 
datasets in a variety of life science domains [68]. It puts spreadsheets at the 
heart of its tooling, making it highly popular for study capture in the omics 
domain [69]. The third candidate is the ontology for scientific experiments 
EXPO [70]. EXPO is defined by OWL-DL axioms and is grounded in upper 
ontologies. Its coverage of experiment terms is good, but we are unsure 
about its uptake by the community. Perhaps unfortunate for a number of 
good ontologies, we consider this an important criterion for interoperability. 
Four and five on our list relate to the annotation of Web Services (or 
bioinformatics operations in general): the EMBRACE Data and Methods 
(EDAM) ontology encompasses over 2200 terms for  annotating tool or 
workflow functions, types of data and  identifiers, application domains and 
data formats [71]. It is developed and maintained by the European 
Bioinformatics Institute and has been adopted for annotation of for instance 
the European Molecular Biology Open Software Suite. The myGrid-BioMoby 
ontology served as a starting point for the development of EDAM. This will 
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facilitate the adoption of EDAM by for instance BioCatalogue,org and service-
oriented tools such as Taverna, which would further broaden its user base 
and thereby its use for inter- operability. The Semantic Automated Discovery 
and Integration (SADI) framework [72] takes semantic annotation of Web 
Services one step further. A SADI Web Service describes itself in terms of OWL 
classes, and produces and consumes instances of OWL classes. This enables 
instant annotation in a machine readable format when a workflow is built 
from SADI services. In addition,   via a SADI registry suggestions can be made 
about which services to connect to which. SADI has clear advantages as an 
annotation framework. However, not all bioinformatics services are available 
as SADI services, while the conversion is not trivial without training in 
Semantic Web modelling. Therefore, SADI and RO frameworks could be 
strongly complementary for workflows that use a heterogeneous mix of 
service types. This would be further facilitated when both are linked to 
common ontologies such as EDAM. Finally, we highlight the recent 
development of models for microattribution and nanopublication that aim to 
provide a means of getting credit for individual assertions and making these 
available in a machine readable format [73-75]. Taking nanopublications as 
an example, we could “nanopublish” specific results from our experiment, 
such as the text mining-based association that we found between the SNP 
“rs7156144” and the biological process “stimulation of tumor necrosis factor 
production”. In addition to an assertion, a nanopublication consists of 
provenance meta-data (to ensure trust in the assertion) and publication 
information (providing attribution to authors and curators). Nanopublication 
and RO complement each other in two ways. On the one hand, 
nanopublications can be used to publish and expose valuable results from 
workflows and included in the RO aggregate. On the other hand, an RO could 
be referenced as part of the provenance of a nanopublication, serving as a 
record of the method that led to assertion of the nanopublication. Similar to 
the nanopublication and microattribution models, the Biotea and Elsevier 
Smart Content Initiative data  models also aim to model scientific results, but 
are focused on encapsulating a collection of information that are related to 
the results reported in publications [76,77]. The relationship between an RO 
and these datasets is not much different from an RO with a nanopublication 
statement. An RO can be referenced by, e.g. the Biotea dataset, by its URI, 
which can provide detailed experimental information or provenance 
information about the results described by the Biotea dataset. In the 
meanwhile, an RO can also reference a Biotea dataset or an Elsevier linked    
dataset. 
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Summarizing, the RO model provides a general framework with terms for 
aggregating and annotating the components of digital research experiments, 
by which it can complement related frameworks that are already used in the 
life science domain such as EXPO, OBI, ISA, EDAM, SADI and nanopublication. 
We observe that models are partly complementary and partly overlapping in 
scope. Therefore, we stimulate collaboration towards the development of 
complementarity frameworks. For instance, we initiated an investigation of 
the combination of ISA, RO, and Nanopublication as a basis for general 
guidelines for publishing digital research artefacts (Manuscript in 
preparation). 

Uptake by the research community 

Beyond the RO presented in this paper, the RO model has been used to 
generate ROs within the domains of musicology [78] and astronomy using 
AstroTaverna [79]. In addition, we recently explored how an RO could be 
referenced as part of the provenance of nanopublications of genes that are 
differentially expressed in Huntington’s Disease (HD) with certain genomic 
regions [80,81]. The results from the in silico analysis of the differentially 
expressed genes were obtained from a Taverna data integration workflow 
and the RO itself was stored in the Digital Library. Using the PROV-O ontology, 
the nanopublication provenance was modelled to link to the workflow 
description in the RO. Since the RO was mostly automatically generated by 
the procedure described in this paper, the nanopublication refers to detailed 
provenance information without requiring additional modelling effort. To 
encourage further uptake by the research community we have developed the 
Web resource ResearchObject.org [82]. ResearchObject.org lists example 
ROs [83], presents the ongoing activities of the open RO community, and 
gathers knowledge about related developments and   adoptions. 

Conclusions 
Applying the workflow-centric RO model and associated models such as 
Minim provides a digital method to increase the understanding of 
bioinformatics experiments. Crucial meta-data related to the experiment is 
preserved in a Digital Library by structured aggregation and anno- tation of 
hypothesis, input data, workflows, workflow runs, results, and conclusions. 
The Semantic Web representation provides a reference model for life 
scientists who perform computational analyses and for systems that support 
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this, and can complement related annotation frameworks that are already in 
use in the life science domain. 
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ABSTRACT 
Aims/Hypothesis  

Not all obese individuals develop type-2 diabetes. Why some obese 
individuals remain normal glucose tolerant (NGT) is not well understood. We 
hypothesize that the biochemical mechanisms that underlie the function of 
adipose tissue can help explain the difference between obese individuals 
with NGT and those with type 2 diabetes.  

Methods  

RNA-sequencing was used to analyse the transcriptome of samples extracted 
from visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) of 
obese women with NGT or type 2 diabetes who were undergoing bariatric 
surgery. The gene expression data was analysed by bioinformatic 
visualization and statistical analyses techniques. 

Results 

A network-based approach to distinguish obese individuals with NGT from 
obese individuals with type 2 diabetes identified acetyl-CoA metabolic 
network down-regulation as an important feature in the pathophysiology of 
obese individuals with type 2 diabetes. In general, genes within two reaction 
steps of acetyl-CoA were found to be down-regulated in the VAT and SAT of 
individuals with type 2 diabetes. Upon weight loss and amelioration of 
metabolic abnormalities three months following bariatric surgery, the 
expression level of these genes recovered to levels seen in NGT individuals. 
We report four novel genes associated with type-2 diabetes and recovery 
upon weight loss: acetyl-CoA acetyltransferase 1 (ACAT1), acetyl-CoA 
carboxylase alpha (ACACA), aldehyde dehydrogenase 6 family, member A1 
(ALDH6A1) and methylenetetrahydrofolate dehydrogenase (MTHFD1). 

Conclusion/Interpretation  

Down-regulation of the acetyl-CoA network in VAT and SAT is an important 
feature in the pathophysiology of type 2 diabetes in obese individuals. 
ACAT1, ACACA, ALDH6A1 and MTHFD1 represent novel biomarkers in 
adipose tissue associated with type 2 diabetes in obese individuals. 

INTRODUCTION 
Obesity is associated with increased risk of premature death and has reached 
epidemic proportions in modern societies [1]. Obesity results in decreased 
life expectancy due to associated metabolic and cardiovascular disorders, as 
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well as several types of cancer [2, 3]. A majority of obese individuals develop 
insulin resistance and type-2 diabetes. However, approximately 10-25% of 
these individuals seem to remain insulin sensitive and metabolically 
“healthy” [4]. Studies have shown that the expanded adipose tissue serves as 
an important pathogenic site in the development of type 2 diabetes [5]. 
Furthermore, the prevalence of metabolically “healthy” obese has been 
attributed to a normal adipose tissue function [5]. A criterion for 
distinguishing the obese subtypes is of crucial importance to develop 
appropriate intervention and prevention strategies for these individuals [6]. 
Most studies have focussed on developing risk scores based on blood 
pressure, lipid levels, glucose homeostasis, and inflammatory parameters to 
distinguish the metabolically “healthy” from the metabolically abnormal [7, 
8]. However, the biological mechanisms underlying the phenotypic 
differences observed among obese individuals are not fully understood. In 
view of the central role of adipose tissue in the manifestation of obesity 
pathology, we investigated gene expression and biochemical pathway 
profiles in visceral adipose tissue (VAT) and subcutaneous adipose tissue 
(SAT) in a human cohort comprised of very obese individuals (BMI>40 kg/m2) 
who had normal glucose tolerance (NGT) or who had  type-2 diabetes. 

Whole genome expression profiling of both SAT and VAT presents an 
opportunity to study the development of disease in the adipose tissue depots 
and to delineate biological processes explaining the dysregulation of 
metabolism in these tissues. Earlier studies used microarray analyses to 
compare gene expression profiles in the SAT and VAT of obese individuals 
and found co-regulation of immune and metabolic genes with insulin 
resistance and metabolic syndrome [9-11]. We have employed next-
generation RNA sequencing technology as it offers extensive coverage, 
precise quantitation of transcripts, and a large dynamic range [12-14].  

The current study applied bioinformatic visualization and statistical analyses 
techniques to the gene expression data and showed dysregulated acetyl-CoA 
metabolism as a distinguishing feature of obese individuals with type 2 
diabetes. Multiple genes in the immediate vicinity of the acetyl-CoA reaction 
network were down-regulated in diabetic obese individuals. To ascertain if 
the down-regulation of these genes was correlated to health status, we 
studied expression levels of these genes before and three months after 
bariatric surgery associated with significant weight loss and improvement of 
morbidity.  
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RESEARCH DESIGN AND METHODS 
Participants 

The study group consisted of 17 obese women with NGT (with normal fasting 
glucose levels) and 15 obese women with type 2 diabetes (classified 
according to WHO standards). The groups were matched for age, weight and 
BMI (Table 1). All the women had been morbidly obese (BMI>40 kg/m2) for 
at least five years. Participants who reported the use of weight loss 
medications within 90 days prior to enrolment in the study were excluded. 
Body weight of all participants had been stable for at least 3 months prior to 
inclusion. The participants were investigated in the morning after an 
overnight fast. A venous blood sample was taken for the determination of 
plasma glucose (by the routine chemistry laboratory at the hospital) and 
insulin (by IRMA; Medgenix, Fleurus, Belgium). Thereafter, SAT was obtained 
from the parumbilical region by needle aspiration under local anesthesia 
using lidocaine. Around four weeks after the first examination all individuals 
underwent bariatric surgery (gastric bypass/banding). Within 1h after 
opening the abdominal wall adipose tissue specimens were taken from the 
epigastric region of the abdominal wall (SAT) and from the major omentum 
(VAT). One piece of these adipose tissues was immediately put in RNA-later 
(Ambion®, Life Technologies, Bleiswijk, The Netherlands) and subsequently 
stored at -80°C. Another piece of adipose tissue was used for the isolation of 
adipocytes using collagenase treatment, as described [15]. Three months 
after the operation, the participants were investigated again after an 
overnight fast. Plasma glucose and insulin was determined and another SAT 
needle biopsy was taken. The participants were not calorie restricted in the 
period prior to the bariatric surgery.The study was approved by the Ethics 
Committee of Leiden University. All participants gave informed consent to 
participate in the study. 

Medication 

For obvious reasons we could not restrict to obese participants not using any 
type of medication. All participants were allowed to use cholesterol lowering 
statins and antihypertensive medication. The use of drugs such as statins and 
antihypertensive drugs was slightly higher in the diabetic participants. At 
baseline, statins were used by 60% of patients with type 2 diabetes and 18% 
of patients with NGT. Of the diabetic patients 75% used anti-hypertensives 
against 40% in individuals with NGT. A substantial proportion of patients with 
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type 2 diabetes received treatment with metformin (n=9; 60%) or 
sulfonylurea derivatives (n=4; 25%).  

Table 2 Top  25  genes  up-  or  downregulated  in  VAT  of diabetic  individuals 

Gene Coefficient NGT vs T2DM p- value NGT vs T2DM Adjusted p-value NGT vs T2DM 

ALDH6A1 -0.670 1.49E-06 0.005502
C14orf45 -0.462 1.59E-06 0.005502

ECHS1 -0.521 1.48E-06 0.005502

IRS1 -0.601 3.41E-07 0.005502

STBD1 -0.615 6.74E-07 0.005502

IARS2 -0.311 2.73E-06 0.006958

NAT8L -0.745 2.81E-06 0.006958

AIFM2 -0.452 3.24E-06 0.007013

ATPAF1 -0.349 3.71E-06 0.007141

ACAD9 -0.311 8.28E-06 0.010501

GPI -0.285 8.25E-06 0.010501

HADH -0.575 8.49E-06 0.010501

HSPD1 -0.299 7.74E-06 0.010501

MTHFD1 -0.423 6.16E-06 0.010501

ACACA -0.560 9.14E-06 0.010554

MAP3K15 -0.433 1.19E-05 0.012882

HK2 -0.712 1.32E-05 0.01298

PARVG 0.654 1.5E-05 0.01298

PDHA1 -0.375 1.48E-05 0.01298

PRKAR2B -0.716 1.39E-05 0.01298

ACAT1 -0.406 1.81E-05 0.012994

ATP9A -0.400 2.1E-05 0.012994

CEBPA -0.566 1.97E-05 0.012994

DARS2 -0.379 1.64E-05 0.012994

NXPH4 -1.002 1.89E-05 0.012994

Coefficient NGT vs T2DM: log fold change of NGT vs T2DM; a negative value reflects downregulation 
whereas a positive value reflects upregulation of the gene in type 2 diabetic individuals 

For the complete list of up- or downregulated genes in VAT of type 2 diabetic individuals see ESM Table 
2 

The adjusted p value NGT vs T2DM is the p value after Benjamini– Hochberg FDR correction 
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Table 3 Top 25 genes up-  or  downregulated  in  SAT  of diabetic  individuals 

Gene Coefficient NGT vs T2DM p- value NGT vs T2DM Adjusted p-value NGT vs T2DM 

DHTKD1 -0.39953 3.38E-06 0.027658
DPEP2 0.941324 3.63E-06 0.027658

S100A11 0.389024 4.79E-06 0.027658

IRS1 -0.64306 7.26E-06 0.027696

BIVM -0.32809 8E-06 0.027696

CRABP2 0.889426 1.15E-05 0.033234

PXMP2 -0.46718 1.65E-05 0.03571

LSP1 0.826079 1.53E-05 0.03571

RNF14 -0.29276 2.01E-05 0.038745

FXYD5 0.508216 3E-05 0.041435

TYROBP 0.789776 2.74E-05 0.041435

CYBA 0.573909 2.8E-05 0.041435

THNSL1 -0.48462 3.11E-05 0.041435

ALDH6A1 -0.59541 5.12E-05 0.042281

C14orf45 -0.39723 0.000107 0.042281

HADH -0.45138 0.000145 0.042281

MTHFD1 -0.3727 7.95E-05 0.042281

MAP3K15 -0.39465 9.36E-05 0.042281

SLC2A4 -0.73171 0.000105 0.042281

ME1 -0.45845 9.99E-05 0.042281

LDHD -0.53027 9.59E-05 0.042281

FAN1 -0.26323 5.17E-05 0.042281

TMEM218 -0.39528 0.000128 0.042281

EEPD1 -0.45794 0.000156 0.042281

IL2RG 0.835802 0.000114 0.042281

Coefficient NGT vs T2DM: log fold change of NGT vs T2DM; a negative value reflects downregulation 
whereas a positive value reflects upregulation of the gene in type 2 diabetic individuals 

The adjusted p value NGT vs T2DM is the p value after Benjamini– Hochberg FDR correction 
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Isolation of RNA 

Total RNA was isolated using the Nucleospin RNA kit (Macherey-Nagel, 
Düren, Germany) according to the instructions of the manufacturer. The 
quality of each mRNA sample was examined using the Agilent 2100 
Bioanalyzer (Santa Clara, CA). All RNA samples had a RIN value >7.  

RNA Deep Sequencing 

RNA (fifty μg) of the adipose tissue samples obtained during bariatric surgery 
were used for RNA deep sequencing which was performed at the Beijing 
Genomics Institute (BGI) using RNA-Seq (Transcriptome) sequencing on the 
HiSeq2000 with 90 nucleotide long Paired End reads, resulting in a minimum 
of 3Gb clean data per sample. The reads were aligned to the Human 
reference genome build 19 (hg19) to obtain a histogram of coverage per exon 
and the associated count data (ESM Methods 1). Differential expression 
analysis was done on exon, gene and transcript levels as described in ESM 
Methods 1. 

Bioinformatic analysis 

The bioinformatic analysis was performed as described in ESM Methods 2. 

Quantitative Real Time PCR for comparison of pre and post-surgery gene 
expression data for select members of acetyl-CoA gene set 

The RNA of the needle biopsies obtained pre and post bariatric surgery as 
well as the RNA obtained from the adipocytes during bariatric surgery were 
used for quantitative real-time PCR (See ESM Methods 3). 

RESULTS 
Characteristics of participants at baseline and three months post-bariatric 
surgery 

Characteristics of the participants are shown in Table 1. At baseline fasting 
glucose, HbA1c and triglyceride levels were significantly higher in individuals 
with type 2 diabetes than in those with NGT. Three months post-surgery, 
individuals with NGT and type 2 diabetes showed the same weight-reduction. 
Fasting glucose, HbA1c and triglyceride levels were significantly reduced in 
the diabetic individuals and similar to levels in the individuals with NGT. 

Gene expression analysis 

We utilized RNA-sequencing to analyse the transcriptome of samples 
extracted from VAT and SAT of 32 (15 with type 2 diabetes, 17 with NGT)  
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Figure 1 Downregulation of the acetyl-CoA gene network in type 2 
diabetes. Forty-two genes that are among the top differentially expressed 
genes in VAT are also members of the acetyl-CoA gene set. The genes 
within the inner circle act directly on acetyl-CoA while the genes in the 
outer circle participate one reaction step away from acetyl-CoA. All the 
genes were downregulated in VAT. *Also contributes to ketone body 
metabolism. TCA, tricarboxylic acid cycle 

 

obese female individuals undergoing bariatric surgery (Table 1). We first 
determined whether the overall gene expression profiles differed between 
obese women with type 2 diabetes and those with NGT and applied the 
global test [16] on all expressed genes. The global test on VAT and SAT yielded 
a p-value of 3.7E-03 and 9.4E-04 respectively indicating a significant 
association of gene expression with health status.  

Gene-level analysis with the limma package in R identified 168 genes 
differentially expressed in VAT (p<0.05, after Benjamin-Hochberg FDR 
correction) between obese individuals with NGT and those with type 2 
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diabetes (Table 2 and ESM Table 2). Applying the same method on SAT 
yielded 121 genes that were significantly differentially expressed between 
obese individuals with NGT and those with type 2 diabetes (Table 3). There 
was an overlap of 24 of the differentially expressed genes between the two 
tissues.  

Bioinformatic analysis to identify sub-networks in gene expression data 

We further investigated biological mechanisms underlying the differential 
health status among the participants. Statistically significant differentially 
expressed genes (p<0.05 after FDR correction) in VAT and SAT were used as 
an input to a pathway-based over-representation analysis tool made 
available by ConsensusPathDB (http://cpdb.molgen.mpg.de/, accessed 14 
January 2013). This analysis of genes from VAT identified pathways relevant 
to carbon, amino acid and fatty acid metabolism (ESM Table 3). A similar 
analysis strategy for SAT identified pathways relevant to several bacterial 
infections, regulation of actin cytoskeleton and Fc-Gamma R-mediated 
phagocytosis (ESM Table 4). The overlap between significant (q-value<0.05) 
pathways identified for the two tissues is limited to insulin-signalling, 
branched-chain amino acid degradation and pyruvate metabolism. 
Furthermore, to determine if significantly differentially expressed genes in 
each of the two tissues operate in close proximity in network space, we 
utilized “Network neighbourhood-based entity sets” (NEST) a software tool 
made available by ConsensusPathDB. ESM Table 5 shows the result for an 
input of top differentially expressed genes in VAT (168 genes, p<0.05 after 
multiple test correction). This analysis indicated that the differentially 
expressed genes in VAT operate in a network neighbourhood at the 
intersection of carbohydrate, amino acid and fatty acid metabolism. 
Importantly, a majority of the genes mapped onto these pathways were 
present in close proximity in network space to acetyl-CoA metabolism (Figure 
1). A similar approach using NEST with the significant hits from SAT did not 
yield any statistically significant sets. 

The acetyl-CoA metabolic network is down-regulated in diabetic obese 
individuals 

The enriched network neighbourhood-based sets described above hinted at 
the possibility of acetyl-CoA metabolic network being a common feature of 
the statistically significant differentially expressed genes in VAT. To evaluate 
if genes within two reaction steps of acetyl-CoA metabolism were 
significantly represented among the top hits in VAT, a gene-set was 
generated using the Taverna workflow management system and the KEGG 
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pathway database (ESM Methods 4). This approach involved finding all the 
genes that participate within a radius of 2 steps in the reaction space 
surrounding acetyl-CoA. This algorithm was implemented in Taverna and the 
pathway information present in the KEGG database was used to generate the 
gene set. The total number of genes in the acetyl-CoA set is 419.  

We then performed statistical tests to determine if members of the acetyl-
CoA gene set were significantly represented among top hits in VAT. The 
number of genes among the 168 top hits in VAT that are also members of the 
acetyl-CoA gene set is 42 (ESM Table 2), ten times more than expected by 
chance (p=1E-63, permutation test), indicating that the presence of the 
members of acetyl-CoA gene set among the top hits due to chance alone is 
negligible. All these 42 genes were down regulated in VAT of obese 
individuals with type 2 diabetes (ESM Table 2). Additionally, the global test 
to evaluate the acetyl-CoA gene set as a predictor of health status in VAT and 
SAT yielded a p-value of 2.4E-02 and 8.4E-03 respectively. The network-
neighbourhood test did not yield a significant set for SAT, yet the acetyl-CoA 
gene set is more significant in SAT than in VAT because most of the genes in 
the acetyl-CoA gene set are borderline significant in SAT. These genes fail to 
make the cut-off necessary to be included for network neighbourhood tests. 
However, the global test takes into account the p-value of all the entities in 
the gene set, and since most genes have modest p-values in SAT, the overall 
p-value generated for the acetyl-CoA gene set in that tissue type is lower than 
we would expect by examining the network neighbourhood of the most 
significant genes. In conclusion, genes in the acetyl-coA reaction network 
displayed a general down-regulation in both VAT and SAT of individuals with 
type 2 diabetes.  

Analysis at the transcript or exon level 

We investigated possible differential splicing events, comparing obese 
individuals with NGT and type 2 diabetes, for the 42 genes in the acetyl-CoA 
gene set. To do so, we analysed differences at the 1) transcript level, 2) 
expression level of individual exons. Of the 42 genes, there were 16 genes 
with multiple annotated transcripts. All of the transcript variants were 
significantly down-regulated in the individuals with type 2 diabetes as 
compared with the individuals with NGT (data not shown). 

At the exon level, we did not identify any exon that deviated significantly 
from the overall gene expression pattern and did not obtain any evidence for 
alternative splicing between individuals with NGT and those with type 2 
diabetes (data not shown). 
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Figure 2 Gene expression of acetyl-CoA network genes in VAT and SAT. Box 
plots of normalised gene expression profiles (relative units [RU]: log2-scale) 
of a few representative genes, ACAT1 (a), ALDH6A1 (b), ACACA (c), MTHFD1 
(d), in the acetyl-CoA reaction network that are downregulated (*adjusted 
p value <0.05 for indicated comparison) in both VAT and SAT of obese 
individuals with type 2 diabetes (grey bars) compared with NGT (black bars). 
The whiskers in the boxplots represent the upper and lower limits of the 
data. T2DM, type 2 diabetes 

 

Down-regulation of genes in the acetyl-CoA reaction network recovers after 
weight loss 
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Figure 3 Gene expression of acetyl-CoA network genes in obese 
individuals with type 2 diabetes are normalised after bariatric surgery. 
Box plots of expression levels of four representative genes, ACAT1 (a), 
ALDH6A1 (b), ACACA (c), MTHFD1 (d) (as determined by quantitative PCR, 
corrected for housekeeping gene, linear scale: relative units [RU]), in type 
2 diabetes and NGT before (black bars) and after bariatric surgery (grey 
bars). T2DM, type 2 diabetes. *p<0.05 (mixed-model-analysis). The 
whiskers in the boxplots represent the upper and lower limits of the data. 

 

Among the 24 genes that overlapped between the statistically significant top 
hits in VAT and SAT, 9 genes are members of the acetyl-CoA gene set (ACACA, 
ALDH6A1, MTHFD1, HADH, ME1, PC, LDHD, DHTKD1, and GNPAT). The gene 
expression profile of all the 9 genes from the RNA-Seq experiments shows a  
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Figure 4 Gene expression of acetyl-CoA network genes in adipocytes. 
Adipocytes were isolated from SAT and VAT of individuals with type 2 diabetes 
(grey bars) and NGT (black bars). Gene expression of four representative 
genes, ACAT1 (a), ALDH6A1 (b), ACACA (c), MTHFD1 (d), was measured using 
quantitative PCR, corrected for housekeeping gene expression and plotted on 
a linear scale (RU). The whiskers in the boxplots represent the upper and lower 
limits of the data. T2DM, type 2 diabetes. *p<0.05 (t test) NGT vs T2DM 

 

consistent down-regulation among individuals with type 2 diabetes in both 
adipose tissues. The boxplot depicting the expression levels in each of the 
tissues for both health types is shown for some of the acetyl-CoA genes in 
Figure 2.  

To ascertain whether the down-regulation of the acetyl-CoA genes was 
correlated to type 2 diabetes, we compared the pre and post-surgery (3 
months after) expression levels of these genes in SAT by qPCR. At this time 
the majority of diabetic obese women had a significantly improved metabolic 
health status as evidenced by lower fasting glucose levels (Table 1). We 
observed a statistically significant up-regulation of acetyl-CoA carboxylase 
alpha (ACACA) (p=9.3E-03), aldehyde dehydrogenase 6 family, member A1 
(ALDH6A1) (p=4.1E-05) and methylenetetrahydrofolate dehydrogenase 
(MTHFD1) (p=4.7E-02) post-surgery in individuals with type 2 diabetes when 
compared with the changes in expression level observed in individuals with 
NGT (Fig 3). Also acetyl-CoA acetyltransferase 1 (ACAT1) which is at the 
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intersection of the acetyl-CoA network (Fig 1) was up-regulated post-surgery 
in type 2 diabetes (p=2.3E-03). Three other genes, encoding dehydrogenase 
E1 and transketolase domain (DHTKD1), lactate dehydrogenase (LDHD) and 
pyruvate carboxylase (PC) displayed a similar up-regulation post-surgery 
among individuals with type 2 diabetes but did not reach the statistical p-
value threshold of 0.05. This indicates that the improved health status of 
diabetic individuals post-surgery is associated with a reversal of the 
disturbance in the acetyl-CoA metabolic network.  

Gene expression of acetyl-CoA network in isolated adipocytes 

As adipose tissue not only consists of adipocytes but is a mixture of cells, 
including endothelial cells and leukocytes we determined whether the down-
regulation of the acetyl-CoA network in diabetic individuals specifically takes 
place in the adipocytes of the diabetic individuals. Indeed isolated adipocytes 
of diabetic individuals showed reduced gene expression levels for ALDH6A1, 
ACAT1 and MTHFD1 (Figure 4). 

DISCUSSION 
We have performed an in depth comparison of gene expression in SAT and 
VAT of severely obese women with and without type 2 diabetes. Network 
analyses revealed that the acetyl-CoA network was dysregulated in type 2 
diabetes and that specific genes directly associated with acetyl-CoA 
metabolism were down-regulated in both VAT and SAT. Importantly, upon 
weight loss and amelioration of metabolic abnormalities, the expression of 
these genes in SAT recovered to the corresponding level among NGT women. 
These results imply that down-regulation of the acetyl-CoA network in VAT 
and SAT is a marker for the metabolic dysregulation characteristic of type 2 
diabetes and, moreover, that it is reversible. 

Network-based approaches have emerged as a powerful tool to unravel the 
mechanisms underlying complex traits [17-19]. Biological networks consist of 
molecular entities called nodes and functional interconnections between 
them called edges. An important property of these networks is that they are 
“scale-free” in that some nodes called “hubs” are connected to a 
substantially large number of other nodes and therefore considered essential 
for maintaining the integrity of the cell [18]. In general, these systems are 
robust against random mutations but are vulnerable to attacks against the 
hub [17]. Acetyl-CoA is a key hub metabolite of the metabolic network and 
plays a critical role in maintaining cellular homeostasis [20]. Previous studies 
have implicated branched-chain amino acid degradation (BCAD) [21], fatty-
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acid oxidation [22, 23], and citrate cycle [22, 23] dysregulation as a 
characteristic feature of type 2 diabetes and related traits. In this study, in 
addition to confirming the previous findings, we argue that the acetyl-CoA 
reaction network is a unifying principle and that its dysregulation 
distinguishes between obese women with type 2 diabetes and those with 
NGT. 

Acetyl-CoA lies at the crossroads of glycolysis, citrate cycle, ketogenesis, lipid 
synthesis, amino acid and fatty acid metabolism, suggesting that the 
metabolite may play a key role as an energy sensor in the cell [20]. Carbon 
skeletons of sugars, amino acids and fatty acids are degraded to the acetyl 
group to form acetyl-CoA that enters the citric acid cycle for energy 
generation. In addition, it is known to modulate gene expression through its 
role as a co-factor of histone acetyl-transferases (HAT) which enable the 
transcription of genes through histone acetylation at chromatin structures 
[24]. Cai et al argue that the primordial role of protein acetylation could have 
been to enable a cell to modulate gene expression/protein function in tune 
with the carbon source availability [25]. In other words, the acetyl-CoA is 
likely to serve as a fundamental and widely conserved gauge of metabolic 
state. A disturbance in this gauge may contribute to metabolic diseases such 
as type 2 diabetes as a consequence of altered cell metabolism and 
transcriptional regulation. 

We report four genes associated with type 2 diabetes and recovery in the SAT 
of obese individuals: ACAT1, ACACA, ALDH6A1 and MTHFD1. These genes all 
participate in the immediate vicinity of acetyl-CoA metabolism and are 
known hotspots of human metabolism, with ACAT1, ALDH6A1 and ACACA 
recorded among inborn errors of metabolism (IEM) (OMIM: 203750, 614105 
613933 respectively). IEMs are congenital metabolic defects arising due to 
single or multiple enzyme deficiencies. Recently [26], IEMs have been 
mapped onto a mathematical reconstruction of human metabolism [27]. 
Analyses of IEMs in the context of network topology led to the observation 
that the IEMs are adjacent to each other with acetyl-CoA acting as the central 
metabolite. This clearly suggests that the vicinity of acetyl-CoA in the network 
topology is a hub where abnormalities in individual genes potentially 
accumulate and upon reaching a certain risk threshold lead to the 
manifestation of disease.  

The genes reported in this study function at critical decision points in cellular 
biochemical pathways as illustrated by ACAT1. The latter enzyme mediates 
the reversible conversion of 2 molecules of acetyl-CoA to acetoacetyl-CoA 
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[28]. This enzyme catalyzes the final step in branched-chain amino acid and 
fatty acid degradation pathways and the acetyl-CoA produced here is used as 
an input for the citric acid cycle (http://www.genome.jp/dbget-
bin/www_bget?hsa:38). When energetics favors the production of 
acetoacetyl-CoA in this reaction step, the metabolite is used for ketone body 
synthesis [28]. ACAT1 also mediates the first step in the mevalonate pathway 
whose end-product Farnesyl-PP is a precursor for cholesterol among other 
several important metabolites (http://www.genome.jp/dbget-
bin/www_bget?hsa:38). Therefore, the ACAT1 enzyme is strategically placed 
at the intersection of important cellular pathways that respond to the energy 
status of the cell.  

Intriguingly, additional genetic evidence for a role of ACAT1 in type 2 diabetes 
is provided by a genome-wide association study (GWAS) in a UK prospective 
diabetes study that investigated the glycemic response to metformin and 
reported a Single Nucleotide Polymorphism (SNP), rs11212617, associated 
with metformin success [29]. Based on the proximity to the polymorphism, 
the study concluded ATM (ataxia telangiectasia mutated) as the causal gene 
that plays a role in metformin success and that the variation at this gene 
alters the glycemic response to metformin. However, re-analyzing the 
polymorphism rs11212617, we found that the polymorphism is in fact an 
eQTL for the nearby ACAT1 gene and not ATM. The confirmation for this eQTL 
is provided by two independent studies; Zeller et al who studied the 
monocyte transcriptome to determine eQTLs of relevance to human disease 
[31] (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) and the data from the 
GEUVADIS consortium [31, 32], where the SNP was found to be an eQTL for 
ACAT1 (nominal p-value=1.1e-6). This means that the variation in the 
expression level of ACAT1 alters the glycemic response to metformin and 
therefore plays a role in the success of metformin treatment. Furthermore, 
this clearly suggests that ACAT1 plays a role in type 2 diabetes. Individuals 
with the polymorphism that alters its expression level may represent a sub-
type among individuals with type 2 diabetes, perhaps with different response 
to metformin. 

There were differences in the usage of medication between obese women 
NGT and type 2 diabetes, especially in the usage of metformin, which was not 
used by any of the NGT women and by 60% of the women with type 2 
diabetes. As metformin acts on enzymes within the acetyl-coA network and 
affects lipid and glucose metabolism, the usage of metformin may have 
confounded our results, but we have not found any evidence for this: 1) 
There was no difference in gene expression of ACAT1, ALDH6A1, ACACA and 
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MTHFD1 between metformin and no metformin users (ESM Fig. 1). 2) When 
metformin users were excluded from the comparison between individuals 
with NGT and those with type 2 diabetes, there was still a down-regulation 
of ACAT1, ALDH6A1, ACACA and MTHFD1 in the women with type 2 diabetes 
(ESM Fig. 2). 

Our cohort consisted of severely obese women. We do not know whether 
the observed differences were a consequence of the metabolic defects that 
occur in type 2 diabetes (i.e. hyperglycemia) or represented the underlying 
etiology of type 2 diabetes. However, a previous study that used microarrays 
to analyse gene expression in adipose tissue showed that during the 
progression from the lean to the obese state and then further towards the 
metabolic syndrome the genes involved in metabolic processing were 
gradually down-regulated [10]. These data suggest that the down-regulation 
of metabolic pathways underlie the pathology of type 2 diabetes.  

Previous studies have postulated that low-grade inflammation of the adipose 
tissue plays an important role in the development of insulin resistance [33-
36]. For example, a recent study in monozygotic twins discordant for obesity 
showed that SAT transcript profile in the metabolically healthy obese is 
characterized by the maintenance of mitochondrial function and absence of 
inflammation [35]. This is in line with the results in our study, where we 
observe an inverse correlation pattern of differential expression of genes that 
are down-regulated in metabolic and up-regulated in inflammatory pathways 
in VAT and SAT of individuals with type 2 diabetes.  

In summary, our results demonstrate that the acetyl-CoA network is 
dysregulated in VAT and SAT of obese women with type 2 diabetes. We find 
significant down-regulation of several genes in the immediate vicinity of 
acetyl-CoA and report a statistically significant recovery for 4 genes after 
amelioration of the metabolic abnormalities in SAT. Further research into the 
causal role of down-regulation of the acetyl-CoA network in type 2 diabetes 
should indicate whether direct intervention in the acetyl-CoA network will 
provide novel therapeutic approaches. 
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Supplementary Section 
ESM Methods 1: Methods describing RNA deep sequencing, Alignment 
and Gene annotation and Differential Gene Expression Analysis 

RNA Deep Sequencing 

The experimental pipeline followed by BGI consisted of enriching mRNA 
with the help of oligo(dT) beads. Fragmentation buffer was added to 
generate short mRNA fragments. Taking these short fragments as templates, 
random hexamer primers were used to synthesize the first strand cDNA. 
The second strand cDNA was synthesized using buffer, dNTPs, RNase H and 
DNA polymerase I. Short fragments were purified with QiaQuick PCR 
extraction kit and resolved with EB-buffer for end reparation and adding 
poly(A). The short fragments were then connected with sequencing adaptors. 
Suitable fragments were then selected for amplification by PCR. 

Alignment and gene annotation 

After assessing the quality of the raw data using FastQC, version: 0.9.3 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),  we  aligned  
the  reads  to  the     Human reference genome build 19 (hg19, GRCh37) using 
GSNAP [1] with the novel splicing option (-N1) enabled. The aligned data was 
further converted to a sorted BAM file using SAMTools, version: 0.1.18 [2]. 
For the quantification of the number of nucleotides that were mapped per 
exon, we used BEDTools,   version:   2.13.2  [3]   in  conjunction  with  an  in-
house   program   (https://git.lumc.nl/lgtc-bioinformatics/ngs-
misc/blob/master/src/hist2count.py) to obtain a histogram of coverage per 
exon and the associated count data. Gene annotation (RefSeq version v54) 
was retrieved from the UCSC (http://genome.ucsc.edu/cgi-
bin/hgTables?db=hg19, retrieved July 9, 2012). 

Differential Gene Expression 

Differential expression analysis was done on exon, gene and transcript 
levels. For exon level analyses, we summed the coverage values of all 
nucleotides in an exon for all unique exons annotated in Ensembl. For 
transcript and gene level analysis, the coverage in all exonic regions of a 
transcript gene were summed. Only genes expressed in 75% or more of the 
samples were retained in the statistical analysis as a filter for low abundant 
genes. To account for differences in number or reads per sample, count 
data were normalized with the TMM function from the edgeR package [4]. 
Data were log-transformed with the voom function from the limma-package 
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[5]. Weights from the voom transformation were taken into subsequent 
linear models. A hierarchical linear model was fit with the voom transformed 
expression data as dependent variables and health status and tissue as the 
independent variables, using the lmFit function from the limma package. P-
values were corrected for multiple testing using Benjamini-Hochberg false 
discovery rate. Entrez Gene identifiers were retrieved using the biomaRt 
package v2.12.0 in R. 

ESM Methods 2: Bioinformatic analysis to identify sub-networks in gene 
expression data  

Bioinformatic visualization tools 

Over-representation analysis tools made available by ConsensusPathDB 
(http://cpdb.molgen.mpg.de/) were used to investigate the relationship 
among top differentially expressed genes in VAT and SAT. To determine if 
significantly differentially expressed genes in each of the two tissues 
operate in close proximity in network space, we utilized “Network 
neighbourhood-based entity sets” (NEST). 

Acetyl-CoA gene set generation 

The Taverna version 2.4 [6] workflow management system was used to 
generate the gene set for acetyl-CoA. We employed a reaction scheme [7] 
that can be visualized as expanding by a radius of 2 steps in the reaction 
space of acetyl-CoA. Specifically in this scheme, the reactions that acetyl-
CoA is part of and the compounds that participate in these reactions is 
determined using information present in the KEGG-database [release 63] 
[8]. As an intermediate step certain compounds like ATP, ADP, NADP, 
NADPH were filtered out in order to avoid non-specific connections. 

Global test 

Global test is a statistical method to determine if global expression 
pattern of a group of genes is significantly related to the phenotype of 
interest. The global test is available as an R-package at 
http://www.bioconductor.org/packages/2.13/bioc/html/globaltest.html. 
The voom-transformed gene expression data as mentioned earlier was used 
to determine the association of all the genes as well as to evaluate the 
association of the acetyl-CoA gene set with T2DM. 

ESM Methods 3: Quantitative Real Time PCR for comparison of pre and 
post-surgery gene expression data for select members of acetyl-CoA gene 
set 
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The RNA of the needle biopsies obtained pre and post bariatric surgery as well 
as the RNA obtained from the adipocytes during bariatric surgery were used 
for quantitative real-time PCR. Six hundred ng of total RNA was reverse-
transcribed with iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) and 
obtained cDNA was purified with Nucleospin Extract II kit (Macherey-Nagel). 
Real-Time PCR was carried out on the IQ5 PCR machine (Biorad) using the 
Sensimix SYBR Green RT-PCR mix (Quantace, London, UK) and QuantiTect 
SYBR Green RT-PCR mix (Qiagen, Valencia, CA). mRNA levels were calculated 
and normalized to mRNA levels of the housekeeping gene LRP10 using Bio-
Rad CFX Manager 3.0 software (Bio-Rad). Primer sequences are listed in 
ESM Table 1. 

ESM Methods 4: Reaction Scheme implemented in Taverna, a workflow 
management system. 

Genes within two reaction steps of acetyl coA are identified in the KEGG 
pathway database. These form the gene set for acetyl coA metabolism. The 
method is shown in the workflow below and further discussed in Dharuri et 
al[7].

 

 

 



 

114 

 

Ace  c  

Ge  re c   ce  c  
r c te    

Ge  c m   r c te  
 re c  e  R  C  

COMPO D  

Ge  re c   member  f C  
r c te   

Ge  e me   dr ve he 
reac     

Ge  gene  c rre g  ese 
enz mes   

G  T 



 

115 

 

 

 

 ESM Table 1: Sequences of primers used in the qPCR 

Gene Fw primer Rv primer Annealing 
Temperature 

LRP10 CAGACTGTCACCATCAGGTTC GAGAGGGGAGCGTAGGGTTA 60 

ACACA TTTAAGGGGTGAAGAGGGTGC CCAGAAAGACCTAGCCCTCAAG 56 

ACAT1 CAATTGGGATGTCTGGAGC TAGCATGGCAGAAGCACCTC 58 

ALDH6A1 GTGCTTCTGGGCAGTAGAG TCACCTTGGAAGAAACCTGC 58 

MTHFD1 AGGTGTCCCTACAGGCTTCA GCATTGTGCTCATCGTTCCT 61 
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ESM Table 3: KEGG Pathway over-representation analysis among significantly 
differentially expressed genes in the VAT 

 

Significantly differentially expressed genes in the VAT were mapped onto the 
KEGG pathway for over- representation analysis using the software tool made 
available by ConsensusPathDB. ‘Pathway names’ contains the names of the 
significant pathways, ‘set size’ is the number of genes in the pathway, ‘candidates 
contained’ is the number of genes in the input that are members of the 
pathway. The p- value is calculated according to the hypergeometric test based 
on the number of genes present in both the predefined set and list of significant 
genes from VAT provided as input. The p-values are corrected for multiple 
testing using false discovery rate and are shown as q-values above. The results 
provided in the table above are for a q-value cut-off of < 0.05. 
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Significantly differentially expressed genes in the SAT were mapped onto the KEGG pathway for 
over- representation analysis using the software tool made available by ConsensusPathDB. 
‘Pathway  names’ contains the names of the significant pathways, ‘set size’ is the number of genes 
in the pathway, ‘candidates contained’ is the number of genes in the input that are members of the
pathway. The p-value is calculated according to the hypergeometric test based on the number of 
genes present in both the predefined set and list of significant genes from SAT provided as input. 
The p-values are corrected for multiple testing using false discovery rate and are shown as q-values
above. The results provided in the table above are for a q-value cut-off of < 0.05. 

ESM Table 4: KEGG Pathway over-representation analysis among significantly differentially
expressed genes in the SAT 
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ESM Table 5: Top 15 Enriched Network-based Sets (NESTs) for an input of top hits from the 
visceral adipose tissue differentially expressed between diabetic and healthy subjects. 
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Abstract 
Background: Obesity is associated with reduced life expectancy due to 
increased rates of cardiovascular diseases and type-2 diabetes. Studies have 
shown that visceral adipose tissue plays a more critical role than the 
subcutaneous adipose tissue in the development of insulin resistance and the 
metabolic syndrome. This has been attributed to functional differences 
between the two tissues. However, the molecular basis for these intra-depot 
differences and inter-individual differences in the functioning of the two 
tissues is mostly lacking. Next generation RNA-sequencing technology has 
made it possible to quantify gene expression but also to call haplotypes of an 
individual based on heterozygosity of expressed loci. So called allele-specific 
expression studies help to understand the cis-regulatory basis of variation in 
gene expression. Here, we investigate the hypothesis that cis-regulatory 
variants differentially affect gene expression in visceral and subcutaneous 
adipose tissue. To this end, we investigated differential allele-specific 
expression between visceral and subcutaneous adipose tissue of very obese 
individuals (BMI>40) with and without type 2 diabetes mellitus with the aim 
of identifying regulatory variants that could explain the pathophysiological 
differences observed in the two tissues. 

Results: A protocol to identify “high-confidence” heterozygous sites yielded 
a total of 1115 SNPs in the RNA-sequencing data obtained from the two 
tissues. A quasi-binomial test at each heterozygous site identified a 
polymorphism, rs1049174 in the KLRK1 gene, in the Natural Killer complex 
region, with a significant differential allele-specific expression between 
visceral and subcutaneous adipose tissue. The allelic imbalance for KLRK1 
was highest in subcutaneous adipose tissue. Individuals homozygous for the 
alternative allele demonstrated lower expression than heterozygous 
individuals. Interestingly, the expression of KLRK1 was higher in the visceral 
adipose tissues of very obese individuals with type 2 diabetes mellitus, in 
particular in heterozygous individuals, when compared to NGT individuals. 

Conclusion: The differential allele-specific expression of KLRK1 (NKGD2) 
between visceral and subcutaneous adipose tissue and the increased 
expression of KLRK1 in visceral adipose tissue of very obese individuals with 
type 2 diabetes provides evidence for a role of KLRK1 (NKGD2) in the 
susceptibility to type 2 diabetes.  
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Introduction 
Obesity has reached epidemic proportions in modern societies [1] and results 
in reduced life expectancy due to associated metabolic and cardiovascular 
disorders, as well as several types of cancer [2, 3]. The central role of the 
expanded adipose tissue in obesity-related complications like type-2 
diabetes and coronary artery disease has been well documented [4]. In 
addition, there is clear evidence for functional differences between the 
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) [5, 6] in 
its involvement in the disease. Studies have shown that the VAT secretes 
more and a larger variety of pro-inflammatory cytokines called 
adipocytokines than SAT. These adipocytokines induce insulin resistance and 
endothelial dysfunction. This is thought to explain that, in comparison to SAT, 
the VAT has a stronger association with obesity related complications like 
type 2 diabetes (T2D) and cardiovascular disorders. In a previous study, we 
investigated gene expression differences between VAT and SAT that could 
help explain the differences between normal glucose tolerant (NGT) 
individuals and individuals with type-2 diabetes in a study cohort of very 
obese individuals (BMI > 40 kg/m2) [7]. We analyzed RNA-sequencing data 
obtained from the VAT and SAT obtaining during bariatric surgery. This study 
confirmed large differences between VAT and SAT gene expression profiles, 
identified a distinct diabetes signature in VAT, with larger aberrations in the 
expression of metabolic genes. However, the molecular origin of the 
differences in function between VAT and SAT are still mostly unknown.  

In the present study, we investigated to what extent genetic variation plays 
a role in functional differences between VAT and SAT. RNA-sequencing offers 
a unique opportunity to study this. In individuals heterozygous for an 
expressed SNP, there are paired observations of the expression of both 
alleles. The uneven expression of the two allelic copies of a transcript is 
commonly known as allelic imbalance (AI) or allele specific expression (ASE) 
and can be identified from the read counts for the two alleles. ASE likely 
represents a difference in the genetic regulation of gene expression at the 
locus, and may help to explain genetic associations between the locus and 
the phenotype. The analysis of ASE allows for the analysis of the genetic 
component of gene expression in much smaller numbers of individuals than 
in traditional expression quantitative trait loci (eQTL) studies, where the 
genetic variation is usually only a minor contributor to the total degree of 
variation in gene expression between individuals [8]. However, it should be 
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realized that AI may not be purely genetic, but also caused by epigenetic 
factors [9, 10].  

Recent studies have shown that genetic variants associated with disease 
susceptibility may regulate gene expression in a tissue-dependent manner 
[11, 12], and that differences in regulation between tissues are reflected by 
differences in ASE [13, 14]. These differences may be a result of the 
differential expression of tissue-specific transcription or other regulatory 
factors. Here, we studied the differential ASE between VAT and SAT to find 
clues on the differences in genetic regulation of gene expression between the 
two tissues, and their relation to the type 2 diabetes (T2D) phenotype. By 
focusing on the differences in ASE between the tissues, we were not affected 
by the reference bias that may result in false positive identifications of ASE 
events, because the reference bias would be similar for the two tissues. In 
order to reduce the search space, we zoomed in on a panel of SNPs 
downloaded from the Genome Wide Association Studies (GWAS) catalog 
[15], aiming for a further functional characterization of these GWAS hits. 
Therefore, our objective is to identify from a panel of known genome-wide 
association hits the subset of common variants that are under the control of 
cis-regulatory elements and to assess the consequence of such variants on 
the T2D phenotype. We identified a single nucleotide polymorphism (SNP) 
rs1049174, in the 3’ untranslated region (3’ UTR) in KLRK1 (Killer cell lectin 
like receptor subfamily K, family member 1) gene that displays a significant 
differential allelic expression between VAT and SAT, and for which expression 
is different between individuals with normal glucose tolerance (NGT) and 
T2D.  

Material and Methods 
Subjects 

The subjects (all with BMI >40), isolation and characterization of 
subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), isolation 
of adipose tissue RNA and deep sequencing have been extensively described 
previously [7, 16]. In short, the study group consisted of 17 obese women 
with normal glucose tolerance and 15 obese women with type 2 diabetes 
classified according to WHO standards based on fasting glucose levels. The 
groups were matched for age, BMI and waist circumference. All individuals 
underwent bariatric surgery (gastric bypass or banding), during which 
procedure a piece of VAT and SAT were obtained.  RNA was isolated using a 
standard kit.  
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Figure 1: Strategy for identification of relevant SNPs and determination of 
allele-specific expression in VAT and SAT. 
 



134 

Deep sequencing and bioinformatics analysis of RNA 

RNA Deep Sequencing was performed on mRNA enriched using oligo(dT) 
beads at the Beijing Genomics Institute (BGI, Beijing, China). The sequencing 
was done using IlluminaHiSeq 2000 with 90-nucleotide long Paired-end 
reads, resulting in a minimum of 3GB clean data per sample. The reads were 
aligned to the Human reference genome build 19 (hg19) to obtain a 
histogram of coverage per exon and the associated count data. Further 
details related to alignment and gene annotation can be obtained in our 
previous publication [7]. SNPs were called in each sample individually using 
SNVMix2 version 0.12.2-rc1 [SNVMix] with default settings. SNPs called in 
both VAT and SAT samples from the same subject were extracted (around 5 
million SNPs per subject). 

SNP selection criteria 

The protocol for selection of heterozygous sites in the VAT and SAT is shown 
in Figure 1. In the first step, chromosomal positions were selected whose 
confidence score for a heterozygous genotype estimated by SNVMix2 was 
determined to be greater than 99% in at least 8 of the 32 individuals in each 
of SAT and VAT. Next, only positions that had designated “rsids” as 
determined by the ENSEMBL database (www.ensembl.org) served as further 
filtration criteria. The genome-wide association study (GWAS) catalogue was 
downloaded and the proxies for the SNPs were determined using Broad 
Institutes “SNAP” web portal (http://www.broadinstitute.org/mpg/snap/). 
The criteria to select proxies were the following: r2>0.8 in population panel 
of Caucasian and European origin (CEU). SNP datasets from 1000 Genomes 
Pilot 1 as well as HapMap were used to identify relevant proxies to SNPs from 
the GWAS catalogue. The “rsids” within our study cohort as described above 
were matched with the GWAS catalogue and its proxies and the intersection 
of these sets was taken up for investigating differential ASE in the VAT and 
SAT. For each of these positions, individual level reference and alternate 
allele counts were extracted. Therefore, for each position determined by the 
filter criteria described above, we created a table of reference and alternate 
allele counts in the two tissues for individuals that had passed the criteria for 
the selection of the SNP. 

Statistical analysis 

To determine differential ASE between the VAT and SAT, a quasi-binomial 
test was performed at each heterozygous site identified by the SNP selection 
protocol. In a quasi-binomial test, an additional overdispersion parameter ϕ 
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is incorporated in the variance for binomial distribution:  variance = ϕnp(1-p) 
where n and p are defined in this study as the total number of counts and 
probability of identifying an alternate allele respectively. The additional 
parameter accounts for overdispersion caused due to biological or 
measurement variation between subjects. This test is a post hoc adjustment 
to the variance of a binomial model which generally results in inflated 
standard errors and consequently a more conservative test result. The quasi-
binomial model was implemented using the glm function in the R 
programming language and specifying family=quasibinomial. The protocol 
for selecting heterozygous sites yielded a total of 1115 SNPs in the RNA-Seq 
data. Broad institute’s web portal, SNPsnap [17] was used to determine the 
number of independent SNPs in this set. For the 648 independent tests 
determined by SNPsnap, multiple testing threshold for statistical significance 
was established using Bonferroni correction.  

RESULTS 
Significant allelic imbalance between the two tissues observed at 
rs1049174 chr12:10525365) 

To identify common SNPs displaying a difference in allelic expression 
between SAT and VAT, only SNPs were evaluated associated with relevant 
traits in GWAS studies or in close LD (r2 > 0.8) with these SNPs. 1115 SNPs 
were identified in the RNA-Seq data that were heterozygous in at least 8 
individuals with at least 10 times coverage. This set consisted of 648 
independent SNPs, as determined by SNPsnap. The multiple testing threshold 
using a Bonferroni correction at a nominal p-value of 0.05 for 648 
independent SNPs is 0.05/648 = 7.71e-05. A quasi-binomial test used to 
determine differential allelic expression between the two tissues identified 
one significant hit, rs1049174 (chr12:10525365), with a p-value of 4.21e-05. 
As shown in Figure 2, the proportion of the alternative allele (C) of rs1049174 
is significantly lower in the SAT. 

The alternative allele of rs1049174 is associated with lower expression of 
KLRK1 in SAT 

The SNP, rs1049174 is in the 3' UTR region of KLRK1 Killer cell lectin like 
receptor subfamily K, family member 1 (KLRK1) gene that codes for the 
NKG2D protein that is a receptor on natural killer and other inflammatory 
cells. To determine the effect of the genotype on the expression of the KLRK1 
gene, we evaluated the expression of the gene for individuals who were 
homozygous and heterozygous for the alternative allele as our initial  
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evaluation did not include individuals who were homozygous for the 
reference allele. As shown in Fig 3, the alternative allele is associated with 
lower expression of KLRK1. This difference is statistically significant in the SAT 
(p-value: 0.009), and a similar trend is observed in the VAT. 

KLRK1 is significantly differentially expressed in VAT between T2DM and 
NGT subjects  

We have previously reported gene expression analysis of RNA-Seq data from 
the transcriptome extracted from SAT and VAT of these subjects [7]. Gene-
level analysis with the limma package in R had identified 168 genes 
differentially expressed in VAT (p-value < 0.05 after Benjamin-Hochberg FDR 
correction) between obese individuals with NGT and those with type 2 
diabetes. The same method on SAT yielded 121 genes that were differentially  

                                    
Figure 3 Gene expression profile of the KLRK1 in the SAT and VAT for 
homozygous alternative allele and heterozygous individuals at 
chr12:10525365 (rs1049174). Boxplot of normalized gene expression 
profile (relative units [RU]: log2-scale) of KLRK1 for obese heterozygous 
(black) and homozygous alternative (gray) individuals ( * adjusted p value 
< 0.05 for indicated comparison). 
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expressed between NGT and type 2 diabetes subjects. KLRK1, with an 
adjusted p-value of 0.03, is among the 168 genes differentially expressed in 
the VAT based on health status and is significantly up-regulated among type 
2 diabetes subjects (Figure 4). While it is not among the top hits in the SAT, 
its expression profile as shown in Fig 4 is indicative of an association between 
gene expression and diabetes status. 

Individuals heterozygous for rs1049174 are significantly enriched for T2DM 

The SNP rs1049174 is in Hardy-Weinberg equilibrium in the Dutch population 
[18] with an expected frequency for heterozygous individuals is 0.408. In our 
study, among the 15 T2DM subjects, 11 are heterozygous and 4 are 
alternative homozygous individuals (2pq=0.465); a binomial test was 
performed to test a null hypothesis of finding 11 heterozygous individuals, by 
chance out of a total of 15 when the expected frequency is 0.408. This yielded 

                                 
Figure 4 Gene expression profile of the KLRK1 in the SAT and VAT. 
Boxplot of normalized gene expression profile (relative units [RU]: log2-
scale) of KLRK1 for obese NGT (black) and T2DM (gray) individuals ( * 
adjusted p value < 0.05 for indicated comparison). 
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a p-value of 0.011, which suggests that heterozygous individuals are 
significantly enriched among T2DM subjects. The frequency of homozygous 
and heterozygous in 17 NGT subjects was not different 2pq=0.39) from the 
expected frequency. 

Discussion 
The visceral adipose tissue is metabolically and functionally distinct from the 
subcutaneous adipose tissue and these differences are thought to play a role 
in obesity related complications like type 2 diabetes. Previous efforts have 
focused on differential gene expression profile in order to elucidate 
mechanisms that serve as the basis for functional differences seen in the two 
tissues. In this study, we examined differential allele-specific expression with 
the aim of identifying genetic variants that regulate gene expression and 
contribute to the differences in VAT and SAT. To decrease the multiple testing 
burden and to zoom in on clinically relevant loci, we restricted the search 
space to known GWAS hits and their proxies and detected significant allelic 
imbalance at chr12:10525365. 

Chr12:10525365 (rs1049174) is in the 3' UTR region of (Killer cell lectin like 
receptor subfamily K, family member 1 (KLRK1) gene that codes for the 
NKG2D protein, a receptor on the natural killer cells, CD8+ αβ T cells, γδ T 
cells, and activated macrophages [19, 20]. In addition to significant 
differential ASE, we observed that the alternate allele (C) at this locus is 
associated with lower expression of the KLRK1 gene. Interestingly, 
independent studies have pointed to the genetic control exerted by this 
locus. For example, Veyrieras JB et al [21] have reported that the 
polymorphism, rs1049174 is an eQTL for KLRK1. Additionally, in the BBMRI-
BIOS study we verified that the polymorphism is an eQTL for the read-
through transcript, KLRC4-KLRK1 that codes for the KLRK1 gene (BIOS 
consortium, manuscript in preparation). Furthermore, a case-control study 
[22] to identify genetic factors associated with natural cytotoxic activity 
reported two NKG2D haplotypes: high natural killer (HNK1) activity and low 
natural killer (LNK1) activity that could be assessed based on 5 SNPs in tight 
linkage disequilibrium in the noncoding region of the gene. Interestingly, 
rs1049174 (G/C) is one of the SNPs; the genotype CC is associated with LNK1 
and GG with HNK1. Furthermore, investigations in this study eliminated the 
possibility of “as-yet undiscovered” SNPs in the coding region, thus implying 
that the SNPs may be involved in the transcriptional regulation of the KLRK1 
gene and affect its expression levels.  



140 

Results from this and earlier studies confirm the role of SNP rs1049174 in 
immune function; from immunosurveillance in cancer [23] to improving 
immunity and outcomes among subjects receiving bone marrow 
transplantation [24]. Furthermore, rs1049174 was included in the SNP set 
based on its proximity (r2>0.8) to the GWAS hit, rs2617170 a SNP that has 
been associated with the Behcet’s syndrome. The latter is a chronic disorder 
involving inflammation of the blood vessels throughout the body. Taken 
together, these results point to the control of the variant on gene expression 
and consequently on immune/inflammation response. The latter is of 
particular interest to us given its implications in obesity related complications 
like type 2 diabetes. The expression of KLRK1 was significantly correlated with 
the expression of CD3, CD8 and CD14, immune cell markers for T-cell, 
Cytotoxic T-cells and macrophages. This suggests that the expression of 
KLRK1 is linked to the activity of multiple immune cells. The higher expression 
in VAT compared to SAT reflects the higher inflammatory activity in VAT 
among type 2 diabetes subjects.  

In our previous study we had observed that approximately 8,000 genes were 
differentially expressed between VAT and SAT. KLRK1 was one of the genes 
that were significantly higher expressed in VAT than in SAT. The fact that we 
found several thousand genes differentially expressed between the two 
tissues and only one gene displaying differential ASE bears some explanation. 
First, our search space was restricted to known GWAS hits. Furthermore, we 
employed strict filter criteria for selection of SNPs. Second, the regulation of 
the expression for the vast majority of genes may be largely similar for both 
alleles. 

We observed a statistically significant enrichment of heterozygous 
individuals among T2DM subjects and no such association between the 
alternate homozygous and disease status. However, replication in an 
independent study [25] did not point to enrichment of heterozygous 
individuals among obese T2DM individuals. However, due to the lack of 
statistical power in our study as well as the replication cohort further 
investigation is required to understand the influence of the genotype at this 
locus on obesity related complications. While we could not replicate the role 
of this polymorphism in T2DM, this study identified rs1049174 as a cis-eQTL 
for yet another set of genes (KLRC1, KLRC2, KLRC3) in the NK gene complex 
region on chromosome 12. It is likely that the complexity of the genomic 
region and the uncertainty in the assignment of RNA-seq reads or microarray 
probes to the different (read-through) transcripts originating from this locus 
contributes to the lack of congruence between studies. 
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In conclusion, our investigation into allele-specific expression between 
visceral and subcutaneous adipose tissue points to a variant in the NK gene 
complex region of chromosome 12. This study provides evidence for a role of 
KLRK1 (NKGD2) in the susceptibility to type-2 diabetes among very obese 
individuals.  
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Abstract 

Very low calorie diets (VLCD) with and without exercise programs lead to 
major metabolic improvements in obese type 2 diabetes patients. The 
mechanisms underlying these improvements have so far not been 
elucidated fully. To further investigate the mechanisms of a VLCD with or 
without exercise and to uncover possible biomarkers associated with these 
interventions, blood samples were collected from 27 obese type 2 diabetes 
patients before and after a 16-week VLCD (Modifast ,450 kcal/day). 
Thirteen of these patients followed an exercise program in addition to the 
VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. 
Proteomic analysis was performed using mass spectrometry (MS) and 
targeted multiple reaction monitoring (MRM) and a large scale isobaric tags 
for relative and absolute quantitation (iTRAQ) approach. After the 16-week 
VLCD, there was a significant decrease in body weight and HbA1c in all 
patients, without differences between the two intervention groups. 
Targeted MRM analysis revealed differences in several proteins, which 
could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-
associated (complement C3), and diet- associated markers (apolipoproteins, 
especially apolipoprotein A-IV). To further investigate the effects of 
exercise, large scale iTRAQ analysis was performed. 

However, no proteins were found showing an exercise effect. Thus, in this 
study, specific proteins were found to be differentially expressed in type 2 
diabetes patients versus controls and before and after a VLCD. These 
proteins are potential disease state and intervention specific biomarkers. 

Trial Registration: Controlled-Trials.com  ISRCTN76920690 

Introduction 

The incidence of insulin resistant states, such as the metabolic syndrome 
and type 2 diabetes (T2DM), has increased dramatically in recent years [1, 
2]. T2DM is a chronic multifactorial disease characterized by insulin 
resistance of the liver, skeletal muscle and adipose tissue and the 
progressive failure of pancreatic b-cells [3, 4]. Furthermore, research has 
shown that T2DM is associated with inflammation, oxidative stress and 
vascular dysfunction [3, 5]. 

Over 80% of T2DM patients is overweight or obese [6, 7], nevertheless 
T2DM develops in only about one-third of obese, insulin-resistant    
individuals. 
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Simultaneously, some 30% of obese (BMI.30) individuals seem metabolically 
healthy. Whether these patients are protected from, or merely have a 
delayed risk for developing T2DM is not known [8, 9]. Because of the 
contribution of obesity to insulin resistance, it is essential for obese T2DM 
patients to reduce body weight. The most fundamental aspect of the 
treatment of obesity is life-style change, i.e. reduction of caloric intake and 
increase of physical activity. Very low calorie diets (VLCD) have been shown 
to lead to a substantial amount of weight loss and subsequently result in 
major metabolic improvements in obese T2DM patients [10]. Recently, we 
have shown that a 16-week VLCD in T2DM patients leads to a decrease in 
pericardial fat volume and an increase in quality of life (QoL) [11, 12]. In 
addition, adding an exercise program to the VLCD in these patients has 
been shown to have moderate additional favorable effects [13]. 

In the past decade large scale proteome analysis, also referred to as 
‘proteomics’, has been used to identify new biomarkers for the risk 
prediction of various diseases, such as cancer, Alzheimer’s disease, 
cardiovascular disease and diabetes. Proteomics can also be used to further 
elucidate disease mechanism and molecular processes and to investigate 
the response of the body to interventions [14, 15]. In diabetes research, 
proteomics have been analysed in various bodily fluids, cell-lines and 
tissues, such as blood, urine, saliva, semen, vitreous fluid, b- cells, 
adipocytes, hepatocytes and skeletal muscle [16–22]. However, most of the 
proteomics studies are cross-sectional and there are currently no studies on 
proteomic analysis in obese T2DM patients before and after a diet, the 
hallmark of their treatment. 

To gain more insight into the pathophysiology of type 2 diabetes we 
performed plasma proteomics on the obese T2DM patients, before and 
after a VLCD with or without exercise, for which clinical and metabolic 
improvements after the VLCD were published before. [11–13, 23–25] 
Furthermore, we compared these T2DM patients before and after the diet 
with obese and lean controls. Because of the drastic weight loss and major 
improvements in glycemic control after such a diet, we hypothesized that 
differences in proteins can be found that might be involved in the 
development of, and recovery from, T2DM. By comparing the patients to 
controls, we aim to uncover proteins differentially expressed in T2DM 
patients as compared to lean and obese controls, and changes in these 
differences after the intervention. In addition, by comparing the groups 
with and without exercise, we aim to uncover possible biomarkers 
associated with the additional favorable effects of adding an exercise  
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Figure 1 Participant flowchart 

program to the VLCD. Firstly, we conducted a targeted MRM analysis of 13 
abundant proteins hypothesized to be associated with T2DM and obesity, 
including apolipoproteins and markers of inflammation and coagulation. 
Subsequently, we performed a large scale iTRAQ analysis in samples of the 
T2DM patients before and after the diet to uncover differences between 
the VLCD with and without exercise groups also for less abundant proteins. 

Materials and Methods 

Patients  

The protocol of this study has been described previously [13]. In short, 
twenty- seven (14 men, 13 women) T2DM patients were included in the  
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study (Figure 1). Diabetes duration was 8.9±0.8 years (mean ±SEM) and 
patients were obese with an average BMI of 37.2±0.9 kg/m2. All patients 
were on insulin therapy (average insulin dose 82±11 units/day) with or 
without additional oral glucose-lowering medication. Smoking, recent 
weight change (past 3 months), a history of cardiovascular disease or any 
other chronic disease were reasons for   exclusion. 

Two control subjects were recruited via advertisements for every T2DM 
patient, one lean and one obese subject. Control subjects were matched for 
gender, age, race and geographical area. In addition, obese control subjects 
were matched for BMI as well. Clinical characteristics are shown in Table 1. 

Ethics statement 

This study was conducted in accordance with the Declaration of Helsinki. 
The study protocol was approved by the local ethics committee (Commissie 
Medische Ethiek, Leiden University Medical Center) and written informed 
consent was obtained from all subjects. The study was registered under 
ISRCTN76920690 (http://www.controlled-trials.com/isrctn/). The study was 
conducted between 2006 and 2009. The proteomics analysis was 
performed in 2010–2011. The proteomic analysis was not planned when 
the study was approved by the ethics committee, but was added later. The 
proteomics protocol is described in detail below. 

Study design  

All T2DM patients followed a VLCD for a period of 16 weeks. We randomly 
assigned 13 of the 27 patients to simultaneously follow an exercise 
program.  All patients were provided with the same instruction forms and 
were all willing to be randomized to either intervention. We then assigned 
the first 13 fit candidates to the VLCD with exercise intervention. The 
following fit candidates were assigned to the VLCD-only intervention. The 
patients were not aware of the randomization order. Patients were studied 
before and after the VLCD intervention. Oral glucose-lowering medication 
was discontinued three weeks before the start of the study and insulin 
therapy was stopped the day before. During the 16-week intervention 
period, all glucose-lowering medication, including insulin, remained 
discontinued. 

VLCD 

The VLCD consisted of three sachets of Modifast (Nutrition & Sante´, 
Antwerp, Belgium), containing a total of 450 kcal per day. It provides about 
50 to 60 grams of carbohydrate, 50 grams of protein, 7 to 9 grams of lipid, 
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10 grams of dietary fibers and all necessary vitamins and micronutrients. 
During the whole intervention period, patients visited the outpatient clinic 
weekly for measurement of body weight, to check glucoregulation and to 
confirm compliance with the diet. 

Exercise program 

Thirteen of the 27 T2DM patients simultaneously participated in an exercise 
program. This program comprised a minimum of 4 days training at home for 
30 min at 70% of maximum aerobic capacity on a cyclo-ergometer. 
Furthermore, patients participated in a weekly one-hour aerobic exercise 
training under supervision of a physiotherapist. Compliance was assessed 
by reading the heart rate monitor worn during exercise sessions both at 
home and in the hospital (Polar S610 itm, Polar Electro Oy, Finland). 
Patients in the VLCD-only group were instructed to maintain their normal 
pattern of physical activity during the study. 

Anthropometric and laboratory measurements 

At baseline and after the 16-week intervention period patients were studied 
after an overnight fast and after 2 days without any exercise. All T2DM 
patients completed the 16-week VLCD and no patients were lost to follow-
up. The lean and obese control subjects were studied only once. 

Height, weight, BMI and waist circumference were measured according to 
the World Health Organization recommendations. Blood pressure was 
measured with an Omron 705IT blood pressure device (Omron Matsusaka 
Co., Ltd., Japan) and recorded within the limits of 1 mmHg. Fat mass was 
assessed by bioelectrical impedance analysis (BIA, Bodystat 1500 MDD, 
Bodystat Ltd., Douglas, Isle of Man, United Kingdom). Blood samples were 
drawn for the measurement of fasting plasma levels of glucose, insulin, 
hemoglobin A1c (HbA1c), total cholesterol (TC), high density lipoprotein 
(HDL)-cholesterol, low density lipoprotein (LDL)-cholesterol and 
triglycerides  (TG). 

Proteomics measurements 

Targeted protein assays through multiple reaction monitoring (MRM) 

Ten μL of plasma aliquots were processed in 1.5-mL screw cap tubes. One 
hundred ninety five μL of 100 mM TEAB/2M urea/10% acetonitrile/1% n-
octyl- glucoside/10 mM TCEP was added to the plasma samples. Samples   
were incubated at room temperature for one hour for complete reduction. 
Four μL of 0.5 M iodoacetamide (Sigma-Aldrich) was added and alkylation  
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was completed for 30 minutes at room temperature. Forty μL of each 
aliquot of reduced/alkylated plasma sample was digested with 12 μg 
sequencing grade trypsin. Digestion was stopped after overnight incubation 
at room temperature by adding 45 μL of 2 M urea/1% formic acid. To 
monitor LC/MS instrument trending, 0.3 μg fibrinopeptide A standard 
(AnaSpec, Fremont, CA) was spiked into each sample vial. Twenty μL of 
digested samples were injected for quantitative analysis. 

LC-MRM analysis was performed on 4000QTrap instrument (AB/SCIEX, 
Concord, ON) interfaced with a U3000 HPLC system (Dionex, Sunnyvale, 
CA). Peptides were separated on a Targa C18 (5 mm) 15061.0 mm column 
(Higgins Analytical, Mountain View, CA) utilizing a 200- μL /min flow rate. 
Peptides were eluted carried out over a 21-min gradient from 2% B to 32%B 
(A: 5% acetonitrile, 0.1% formic acid, B: 95% acetonitrile, 0.1% formic acid). 
The HPLC column compartment was kept at 50˚C during analysis. 

Two peptides and two fragments from each were carefully selected to 
represent the target proteins to be assayed. Thirteen target proteins were 
analyzed: apolipoproteins A-I, A-IV, B100, C-III, E, Beta-2-glycoprotein 1 
alpha-I- antitrypsin, complement C3, fibrinogen alpha, beta, gamma chains, 
alpha-1-acid glycoprotein and transthyretin. Accession numbers of these 
proteins are given in Table 2, while Table S2 in File S1 shows the used 
peptide sequences. 

Specimens from all T2DM and control subjects (114 samples) were analyzed 
in three acquisition batches. Primary samples (following every four) were 
interleaved with QC reference samples. MRM signals (ion intensities of 
fragments) from the primary samples were normalized to the median signal 
from the same fragments in the QC samples. This accurate relative 
quantification could be achieved without the need of using isotope labeled 
peptide standards. MRM signals were integrated using the Multiquant v1.1 
software tool (AB/SCIEX). 

iTRAQ  Discovery Proteomics 

Proteomic analysis was carried out by utilizing the 8-plex iTRAQ reagent for 
relative quantification [26]. In this workflow a single 2D LC-MS/MS 
experiment is used for the quantification of peptides (and proteins) from up 
to eight samples. Eight-plex experiments were configured to profile six 
primary samples and two replicates of reference (QC) sample that was 
created by combining a fraction of the primary samples. By normalizing 
peptide measurements from the primary samples to those in the QC 
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samples it is feasible to compare large numbers of primary samples 
analyzed in different experiments. The study - 54 primary samples, 18 
reference QC samples - consisted of nine such iTRAQ experiments. 

One hundred μL plasma samples were delipidated by diluting with 400 μL 
1XPBS (Sigma-Aldrich, St. Louis, MO) and 250 μL tetrachloroethylene 
(Sigma- Aldrich), vortexing thoroughly and spinning at 14,000 rpm for 10 
minutes at 4˚C. The resulting top aqueous phase was transferred to a new 
tube for further processing. 

Abundant proteins were removed from delipidated plasma in two stages 
utilizing IgY14 5-mL and Supermix 2-mL columns (Sigma) on a Vision   HPLC 
Workstation (Applied Biosystems, Foster City, CA) as described earlier [27]. 
The protein fraction corresponding to the depletion flow-through was 
recovered on a Poros R1 reversed-phase column, eluted with 95% 
acetonitrile and dried down in a SpeedVac. Only this fraction was used for 
discovery proteomics. Dried protein fractions were re-suspended in 22 μL 2 
M urea, 1 M TEAB, 1% n-octyl-glucoside buffer (pH 8.5) and reduced with 5 
mM TCEP for one hour at room temperature. Reduced samples were 
alkylated by adding 1 μL 84 mM iodoacetamide and incubating in the dark 
for 30 minutes at room temperature. Trypsin digestion was completed 
overnight at a 1:10 enzyme/substrate ratio (w/w) at room temperature by 
adding 5 μL 1 mg/mL sequencing grade trypsin (Promega, Madison, WI) in 4 
mM N-acetyl cysteine (to quench remaining iodoacetamide). Digested 
samples were labeled by the 8-plex iTRAQ reagents following the 
manufacturer’s protocols (Applied Biosystems) using an amount of digest 
pool containing approximately 40 μg material. Primary samples were 
labeled with the reagents yielding the m/z 114, 115, 116, 118, 119, 121 
reporter fragments in the MS/MS scans. QC samples (replicates from the 
reference pool) were labeled with the 113 and 117 reagents. iTRAQ labeling 
was quenched by the addition of 1 M ammonium bicarbonate. 

Eight samples were combined to an iTRAQ mix, desalted, and fractionated 
by strong cation exchange (SCX) chromatography using a Poly Sulfoethyl   
Strong Cation Exchange Column (PolyLC, Columbia, MD) on an Agilent 1200 
instrument (Agilent, Santa Clara, CA). Peptides were collected into nine SCX 
fractions through eluting with a gradient of 10 mM KH2PO4 to 10 mM 
KH2PO4/ 1M KCl at pH 3.5. SCX fractions dried and re-suspended in 50 μL 
95:5:0.1 water- acetonitrile-trifluoroacetic acid (TFA) (Buffer A for HPLC). 
Reversed-phase separation was performed on a Dionex U3000 HPLC 
(Dionex, Sunnyvale, CA) with a 60-min gradient from 5% solvent B (10% 
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H2O/90% ACN/0.1% TFA) to 38% B. Eleven-second HPLC fractions were 
collected onto MALDI plates through a Probot fraction collector (Dionex). 
MALDI matrix and mass calibration standard were co-infused with a syringe 
pump at 2-μL/min flow rate. MALDI plates were analyzed on an AB4800 
mass spectrometer (Applied Biosystems/MDS SCIEX, Concord, ON, Canada) 
utilizing internally developed scripts for MS/MS precursor selection that 
was optimized to select and measure a reproducible set of peptides from 
each iTRAQ  mix. 

Peptide quantification was carried out by calculating the average iTRAQ ion 
intensity ratios relative to the m/z 113 and 117 peaks. Protein ratios were 
determined as the medians of all peptide ratios matching to the same 
protein. Peptide mappings are shown in Table S5 in File S1. Peptide 
sequences were identified from MS/MS fragmentation spectra using the 
Mascot search engine (Matrix Science, UK) the IPI sequence database (v3.72 
of human sequences). For peptide matching trypsin specificity was used 
with up to two missed cleavage sites. iTRAQ modification, cysteine-
alkylation, methionine oxidation, asparagine deamidation, and N-terminal 
pyro-Gly and pyro-cmc formation were considered as variable 
modifications. Precursor ion mass tolerance was 50 ppm and fragment ion 
tolerance was 0.4 Da. Peptide matches were validated by an internally 
developed procedure with an estimated rate of false peptide identification 
of less than 1%, as explained by Juhasz et al [27]. Once all the study samples 
were analyzed, the complete set of identified peptides was re-mapped to a 
minimum, non-redundant protein set through an internally developed 
procedure.  During this process proteins that had unique peptides matching 
to them were kept separate from protein groups that shared peptides. 
Measured values of protein expression were normalized using a procedure 
based on Vandesompele et al [28]. 

Assays 

Plasma glucose, TC, HDL-cholesterol and TG concentrations were analyzed 
as previously described [13] with a fully automated P-800 module (Roche, 
Almere, The Netherlands). Serum insulin was measured with an 
immunoradiometric assay (Biosource, Nivelles, Belgium). HbA1c was 
detected with a semi-automated HPLC machine Primus Ultra 2 (Kordia, 
Leiden, The Netherlands). 

Statistics 
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The data of the two intervention groups, i.e., both the clinical data and 
protein expression levels measured from the MRM as well as iTRAQ 
platforms, were studied using a linear mixed effect model for repeated 
measures in order to study the influence of the VLCD and the additional 
exercise program. The model was fitted by Maximum Likelihood (ML). The 
initial model included the random patient effects to account for the 
correlation between 2 repeated measures within the same patient, and age, 
gender, treatment and time as fixed effects, for each outcome variable 
separately. The model was tested for significance of each individual factor 
and the interaction effect of time and treatment. On doing so, it was found 
that the effects of age and gender were not significant. The final model 
consisted of the random patient effects, the fixed treatment and time 
effects, and the interaction between treatment and time. The influence of 
the VLCD was tested by studying the effect of time on the model and the 
additional influence of exercise with VLCD was tested by studying the effect 
of treatment and time interaction on the model. The p values for each of 
the tests are reported. 

Differences between all groups in the clinical dataset as well as in the MRM 
dataset, i.e., two intervention groups and the lean and obese control 
groups, were analysed using t-tests, where paired t-tests were used when 
comparing two time points for the same group and independent t-tests for 
all other comparisons. 

Adjustment for multiple hypothesis testing has been performed in all 
proteomics analyses using the Benjamini-Hochberg (BH) method (unless 
otherwise stated in the text). A significance level of p=0.05 was used (unless 
otherwise stated in the text). Data are presented as mean ±SEM. The 
statistical analyses were conducted using the free software R version 2.10.1 
with the lme4 and multcomp libraries [29–31]. 

Results 

Effect on body weight and  glucoregulation 

Anthropometric and laboratory results were published previously. [11–13, 
23–25] As shown in Table 1, there were no significant differences in clinical 
characteristics, except for systolic blood pressure, between the 
VLCD+exercise and the VLCD-only group at baseline. Furthermore, the 
control groups were well matched with both intervention groups with 
respect to age and gender and for the obese control group with both 
intervention groups at baseline with respect to weight, BMI and waist 



158 

 

circumference. Both control groups had significantly lower levels of glucose, 
insulin and HbA1c. 

After the 16-week VLCD there was a significant decrease in body weight in 
both intervention groups (-27.2±1.9 kg VLCD+exercise; -23.7±1.6 kg VLCD- 
only). Patients also lost a significant amount of fat mass and waist 
circumference. Moreover, the 16-week VLCD resulted in an impressive 
improvement in glycaemic control as shown by a significant decrease in 
HbA1c in both treatment groups (VLCD + exercise 7.8±0.4 vs. 6.3±0.4%; 
VLCD-only 7.8±0.3 vs. ±0.3%), despite the discontinuation of all glucose-
lowering medication. In both treatment groups, plasma TG were 
significantly decreased to near normal values. After the 16-week 
intervention period the VLCD+exercise group had significantly less fat mass 
and a significantly lower total cholesterol level as compared to the VLCD-
only group. There was no significant difference in glucoregulation between 
the groups after the 16-week intervention period (Table 1) 

Targeted MRM analysis 

A total of 15 proteins, including 2 internal control proteins (not shown), 
were quantified using MRM and mass spectrometry in the VLCD groups, 
with and without exercise and before and after the intervention. These 
proteins were also quantified in the obese and lean   controls. 

Intervention effects 

After 16 weeks, there was a significant decrease in concentrations of 
apolipoproteins A-IV, B-100, C-III and E as well as of Complement C3 in both 
intervention groups. These effects were however not significantly different 
between the two intervention groups (see Table S1 in File S1). Since no 
additional influence of exercise with VLCD was observed for any of the 
proteins in the MRM set, the VLCD+exercise and VLCD-only groups were 
combined for further analysis into one group of T2DM patients. Table 2 
shows the full comparison of the combined T2DM group at the two time 
points (T2DM0 and T2DM16, respectively) with the two control groups (lean 
and obese). 

Apolipoprotein A-IV showed the most significant effect of VLCD among all 
proteins considered in the MRM dataset. Apolipoprotein A-IV concentration 
did not differ between both control groups (lean 1.06±0.06 vs. obese 
1.04±0.06 A.U., p=0.90), however, the level for T2DM patients was 
significantly higher (1.33±0.08 A.U.) compared to both control groups 
(p=0.01 for lean and p=0.04 for obese) before the diet, whereas the level 
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for T2DM patients was significantly lower to those of the controls (p=0.002 
for lean and p=0.003 for obese) after the diet. 

Also for apolipoproteins E, C-III and B-100 the concentration levels were 
significantly higher for T2DM patients at baseline compared to the lean 
control group, and VLCD resulted in significant decrease in their 
concentration levels. Contrary to Apolipoprotein A-IV, these decreased 
levels after the diet are not significantly different from the control groups. 

Disease state discriminating proteins 

Obesity associated markers - Only Complement C3 showed a significant 
difference between the lean control group and all three other groups. These 
differences were highly significant for lean against obese (0.85±0.04 vs 
1.08±0.04 A.U., p=0.001) as well as for lean against the T2DM group at 
baseline (0.85±0.04 vs 1.17±0.03 A.U., p,0.001). Upon the VLCD, the 
concentrations of C3 decreased (from 1.17±0.03 to 0.97±0.04 A.U., 
p,0.001), and, although still significantly different (p=0.04), approached the 
concentration in the lean control group. 

 Diabetes associated markers - The fibrinogens alpha, beta and gamma 
chains all showed the same behaviour. Namely, all three showed a 
significantly increased level for T2DM patients as compared to both the lean 
and the obese controls, both at baseline and after 16 weeks of VLCD, 
although these increased levels for T2DM patients at baseline as compared 
to the obese were only just significant (p=0.04 for all three). Moreover, all 
three showed no significant difference between obese and lean (p=0.58 for 
all three) nor between the T2DM patients before and after the diet 
(p>0.12). Transthyretin showed a very similar behaviour as the fibrinogens 
except for the fact that the transthyretin level was lower for T2DM patients 
as compared to the controls. 

Large scale iTRAQ analysis 

A total of 635 proteins were quantified using iTRAQ and mass spectrometry 
in the VLCD groups, with and without exercise and before and after the 
intervention. Only 234 of those proteins could be measured for all 27 
patients on both time- points (i.e., at baseline and after the 16-week VLCD). 
These included two proteins added as internal controls. The data analysis 
was applied on the remaining 232 proteins. 

Exercise associated markers 
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Of the 232 proteins 18 showed a significant exercise effect when 
considering the unadjusted p-value measured by the interaction of 
treatment and time from the model (see Table S3 in File S1). Amongst 
these, for two proteins SHBG and MASP-1, the p-value was lower than 
0.005. For SHBG, the mean of the measurements for VLCD+exercise at 16 
weeks showed a stronger increase from the measurements at baseline 
(VLCD+exercise at 16 weeks: 1.32±0.16 A.U. vs VLCD+exercise at baseline: 
0.69±0.09 A.U.) in comparison to the increase for VLCD-only (VLCD-only at 
16 weeks: 1.04±0.08 A.U. vs VLCD-only at baseline: 0.74±0.05 A.U.). For 
MASP-1, the level for the VLCD+exercise group was decreased after 16 
weeks (VLCD+exercise at 16 weeks: 0.86±0.04 A.U. vs VLCD+exercise at 
baseline: 0.99±0.03 A.U.) whereas the level for the VLCD-only group hardly 
changed (VLCD at 16 weeks: 0.93±0.02 A.U. vs VLCD at baseline: 0.92±0.03 
A.U.). However, on applying the multiple testing correction, none of the 
analytes were found to be significant. 

VLCD associated markers  

Of the 232 proteins, 87 showed a significant VLCD effect, where the effect is 
considered to be statistically significant if the unadjusted p-value from the 
model for the effect of time was less than 0.05 and the Benjamini-
Hochberg-adjusted p- value was less than 0.10. Fourtysix proteins from 
these significant cases were up- regulated after treatment, i.e., the 
measured expression levels were higher after 16 weeks of VLCD than at 
baseline, while the other 41 proteins were down-regulated after 16 weeks 
of VLCD. The top 13 proteins (based on p-value) identified   from iTRAQ 
experiments showing a VLCD effect are shown in Table 3. A list of all 
proteins and their changes after 16 weeks of VLCD are shown in Table S4 in 
File S1. Fourtyfour of the significantly changed proteins could be traced to 
pathways in KEGG, with 17 of them being present in the Complement and 
Coagulation cascade. 

Discussion 

Using a targeted MRM analysis we showed that several proteins differ 
between T2DM patients before and after a VLCD and between T2DM 
patients and lean and obese controls. As shown in Figure 2, these proteins 
can be divided in subgroups based on similar patterns of differences 
between the groups. Thereby a distinction can be made between potential 
biomarkers that are intervention (diet) or disease state (diabetes or obesity) 
associated. 
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Diet associated markers 

The proteins showing a diet effect most evidently in this study were the 
apolipoproteins, especially apolipoprotein A-IV (APOA-IV), as shown in 
Figure 2. APOA-IV is synthesized by the enterocytes of the small intestine   
in response to fat absorption [32, 33]. Although the precise role of APOA-IV 
has not been fully elucidated, studies suggest that it has anti-atherogenic 

Figure 2 Graph representation of group wise comparisons for the proteins in the 
MRM data set. Comparisons between all pairs of the four groups, i.e., the diabetes 
patients at baseline (T2DM0) and after 16 weeks of VLCD (T2DM16) as well as the 
obese and lean control groups, are represented by edges, where the thickness of the 
edge represents the p-value. Groups that hardly can be discerned are thus 
connected by thick edges and located close together, whereas groups that can be 
well distinguished are connected by thin edges and are slightly further distinct. 
Furthermore, the proteins have been clustered into groups (i.e., obesity associated, 
diabetes associated, diet associated, and non- associated) based on similarity in 
patterns of differences between the groups.
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[34] and anti- inflammatory [35] properties and that it serves as a satiety 
factor [32, 36]. 

Interestingly, APOA-IV levels were significantly higher in T2DM patients 
before the diet as compared to controls, which was also found in earlier 
studies [37, 38]. In contrast to our study, some also showed higher APOA-IV 
levels in obese, non- diabetic mice and humans [39, 40], though others did 
not find an association between APOA-IV and BMI [41]. An explanation for 
the higher APOA-IV levels, which is counter-intuitive, has not yet been 
identified. Shen et al. showed that obese mice, although peripheral APOA-IV 
levels were high, have lower APOA-IV levels in the hypothalamus, the site 
where APOA-IV is thought to exert its effect on satiety [39]. It has also been 
hypothesized that the high APOA-IV levels reflect a state of APOA-IV 
resistance [42], as is the case for leptin, which is also been thought to 
regulate APOA-IV [39]. APOA-IV also showed the highest MFC in response to 
the VLCD, resulting in significantly lower APOA-IV levels in T2DM patients 
after the diet than in controls. This decrease was consistently shown in 
100% of the subjects, indicating that a decrease in APOA-IV might be a 
marker for weight loss. On the other hand it is known that APOA-IV levels 
are influenced by changes in dietary fat content [40, 43] and the observed 
decrease might thus be more reflective of the low amount of fat intake and 
caloric restriction during the VLCD. It would be interesting to investigate 
APOA-IV levels in patients back in a eucaloric state to elucidate this further. 
Furthermore, it has been hypothesized that, as APOA-IV serves as a satiety 
factor, lower APOA-IV levels can be a signal for stimulating feeding behavior 
[44]. Low APOA-IV levels may therefore contribute to the difficulties in 
maintaining achieved weight loss over longer periods of time. In this 
context it is interesting that in a study by Culnan et al., using iTRAQ 
proteomic analysis, an increase in APOA-IV levels was shown after weight 
loss induced by Roux-en-Y gastric bypass surgery (RYGB), which is known to 
result in more sustained weight loss as compared to diets [42]. The 
contrasting APOA-IV levels may, however, be explained by the fact that 
those after-surgery levels were measured after a mean follow-up of 19.2 
months post-RYGB, and by the altered anatomy of the small intestine, the 
production site of    APOA-IV. 

Complement C3 - an obesity associated marker 

Accumulating evidence shows that both T2DM and obesity are associated 
with a chronic inflammatory state [3]. Complement C3 (C3) has an 
important role in the immune system and is produced by the liver, adipose 
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tissue and macrophages [45]. Our MRM analysis showed higher 
concentrations of C3 in obese T2DM patients and healthy obese subjects as 
compared to lean controls. This agrees with several other studies, that also 
showed such elevated levels of C3 in patients with obesity [45, 46]. 
Furthermore, a significant decrease in C3 levels was seen after the VLCD, 
whereas no differences were shown between obese subjects with or 
without T2DM, indicating that C3 might be a marker of obesity rather than 
T2DM. However, other studies have demonstrated C3 levels to be increased 
in lean versus obese T2DM patients and to be associated with diabetes 
development independently of body weight [47, 48]. C3 has also proved to 
be higher in young adults with type 1 diabetes and a decrease in HbA1c in 
this group has been associated with a decrease in C3 levels [49]. These data 
indicate that C3 level and changes therein are dependent on the 
pathophysiology of the patient. 

Diabetes-associated markers 

The fibrinogens were found to be elevated in T2DM patients as compared 
to both lean controls and obese controls, before as well as after the diet. 
Furthermore, concentrations did not differ between lean and obese 
controls, suggesting that fibrinogen is more diabetes than obesity 
associated. A high fibrinogen level is thought to reflect a hypercoagulable 
state and is suggested to be a strong independent cardiovascular risk factor 
[50, 51]. Other studies also found high fibrinogen levels in T2DM patients 
[52, 53] and this may contribute to the increased risk of cardiovascular 
events in type 2 diabetes [54, 55]. However, not all studies showed an 
increased fibrinogen level in T2DM patients [56]. After the VLCD we did not 
observe differences in the fibrinogen levels, although weight loss has been 
associated with a decrease in fibrinogen in literature    [57]. 

Another interesting diabetes-associated marker found in this study is 
transthyrethin (TTR). TTR, previously known as pre-albumin, is a carrier 
protein for thyroid hormones and retinol-binding protein and is produced in 
the liver, choroid plexus and pancreatic islets [58]. TTR has been used as a 
biomarker for malnutrition [59–61] and has been shown to decrease in 
response to a VLCD [62– 64]. However, it has been shown by Afolabi et al. 
that after an initial decrease at 5% weight loss, TTR levels returned back to 
baseline upon further weight loss [65]. In our study, where the average 
weight loss is 22%, also no differences were found after the VLCD. 

Exercise effect 
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No significant exercise effect was observed for any of the proteins in the 
MRM analysis. Therefore, we performed a large scale iTRAQ proteomic 
analysis to reveal candidate pathways involved in the additional beneficial 
effects of adding an exercise program that we have shown before [13]. 
Without correcting for multiple testing, concentrations were significantly 
different between the two VLCD groups for a few proteins, of which 
especially sex hormone-binding globulin (SHBG, P04278) and mannose-
binding lectin (MBL)-associated serine protease (MASP-1, P48740) could be 
interesting. MASP-1 is a protease that contributes to the activation of the 
lectin complement pathway [66]. SHBG has been related to exercise before, 
although the influence of exercise on SHBG levels is less clear [67– 70]. 
Moreover, SHBG levels are known to be inversely associated with insulin 
resistance and are thought to predict the risk on T2DM [71]. After 
correction for multiple testing, however, none of the proteins showed 
significant differences between the groups any more. Further research on 
these specific proteins is needed to uncover possible pathways involved in 
the beneficial effects of exercise. 

Strengths and limitations 

The major strength of our study is the VLCD intervention. By studying T2DM 
patients before and after the diet, we showed that several proteins change 
with weight loss and improved glycemic control. By comparing the patients 
to obese and lean controls, these proteins could further be discerned 
between diabetes- associated and obesity-associated markers. 

Limitations of our study are the lack of a control (non-diabetic obese) VLCD 
group as well as the absence of lean and obese control groups in the iTRAQ 
analysis. In addition, because of the many comparisons and the 
consequentially required correction for multiple testing, no significant 
differences were    found using the iTRAQ analysis. The study would benefit 
from quantification of one or more promising candidates by an independent 
complementary technology (e.g. ELISA). This was, however, beyond the 
scope of the current   study. 

In conclusion, using proteomic analysis several potential disease state and 
intervention associated markers were found distinguishing T2DM patients 
from obese and lean controls and showing a VLCD effect. Although no 
specific exercise markers were discovered, the iTRAQ analysis indicated 
some proteins as potential interesting targets for further research. 
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Supplementary Table S2. Parameters for the protein MRM measurements 

Protein Gene 
Symbol Peptide Sequence Transition Q1 (m/z) Q3  

(m/z) 

Apolipoprotein A-I APOA1 
THLAPYSDELR 

MH33+ -> b4+ 434.6 423.3 
MH33+ -> y5+ 434.6 619.3 

ATEHLSTLSEK 
MH33+ -> y3+ 405.9  363.3 
MH33+ -> y92+ 405.9 522.3 

Apolipoprotein A-IV APOA4 
IDQNVEELK 

MH22+ -> y4+ 544.3 518.3 
MH22+ -> y6+ 544.3 731.4 

SLAPYAQDTQEK 
MH22+ -> y92+ 675.8 575.8 
MH22+ -> y102+ 675.8 540.3 

Apolipoprotein B-
100 APOB 

TEVIPPLIENR 
MH22+ -> y7+ 640.8 838.4 
MH22+ -> y72+ 640.8 419.8 

FPEVDVLTK 
MH22+ -> y7+ 524.3 803.5 
MH22+ -> y4+ 524.3 450.8 

Apolipoprotein C-III APOC3 

ADALSSVQESQVAQQA
R 

MH33+ -> b4+ 572.9 672.4 
MH33+ -> y5+ 572.9 800.4 

GWVTDGFSSLK 
MH22+ -> y6+ 598.8 638.4 
MH22+ -> y8+ 598.8 854.4 

Apolipoprotein E APOE 
LAVYQAGAR 

MH22+ -> y6+ 474.8 665.3 
MH22+ -> y7+ 474.8 764.4 

LGPLVEQGR 
MH22+ -> y5+ 484.8 588.3 
MH22+ -> y72+ 484.8 399.7 

Beta-2-glycoprotein 
1 APOH 

ATVVYQGER 
MH22+ -> y6+ 511.8 652.3 
MH22+ -> y7+ 511.8 751.4 

VCPFAGILENGAVR 
MH33+ -> y5+ 501.6 516.3 
MH33+ -> y6+ 501.6 645.3 

Complement C3 C3 
SSLSVPYVIVPLK 

MH22+ -> y3+ 467.9 357.3 
MH22+ -> y5+ 467.9 569.4 

TGLQEVEVK 
MH22+ -> y6+ 501.8 603.3 
MH22+ -> y7+ 501.8 731.4 

Fibrinogen Alpha 
Chain FGA 

NSLFEYQK 
MH22+ -> b3+ 514.8 315.2 
MH22+ -> y5+ 514.8 714.4 

HPDEAAFFDTASTGK 
MH33+ -> y7+ 531.9 621.3 
MH33+ -> y3+ 531.9 679.3 

Fibrinogen Beta 
Chain FGB 

AHYGGFTVQNEANK 
MH22+ -> y5+ 512.6 575.3 
MH22+ -> y6+ 512.6 703.3 

HGTDDGVVWMNWK 
MH33+ -> b7+ 515.8 682.3 
MH33+ -> y6+ 515.8 432.2 

Fibrinogen Gamma 
Chain FGG 

YEASILTHDSSIR 
MH33+ -> b5+ 497.9 564.8 

MH33+ -> y112+ 497.9 600.3 

IHLISTQSAIPYALR 
MH33+ -> b3+ 561.6 364.2 
MH33+ -> y5+ 561.6 619.4 
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Alpha-1-acid 
glycoprotein ORM1 

YVGGQEHFAHLLILR 
MH33+ -> y132+ 584.9 745.9 
MH33+ -> y142+ 584.9 795.5 

NWGLSVYADKPETTK 
MH33+ -> y112+ 570.3 619.8 
MH33+ -> y132+ 570.3 704.9 

Alpha-1-Antitrypsin SERPIN
A1 

LSITGTYDLK 
MH22+ -> y6+ 555.8 696.4 
MH22+ -> y7+ 555.8 797.5 

AVLTIDEK 
MH22+ -> y5+ 444.7 605.3 
MH22+ -> y6+ 444.7 718.4 

Transthyretin TTR 
GSPAINVAVHVFR 

MH33+ -> y112+ 456.3 611.9 
MH33+ -> y132+ 456.3 408.3 

AADDTWEPFASGK 
MH22+ -> y6+ 697.8 606.3 
MH22+ -> y8+ 697.8 921.4 

      
 
Supplementary Table S3. Exercise effect for proteins identified 
from iTRAQ experiments.  
        

  p-value 
adj. p-
value MD 

Complement-activating component of Ra-
reactive factor precursor 0.002 0.337 -0.14 
Isoform 1 of Sex hormone-binding globulin 0.003 0.337 0.34 
Cartilage oligomeric matrix protein 0.013 0.553 -0.11 
Isoform 2 of Inter-alpha-trypsin inhibitor 
heavy chain H4 0.016 0.553 0.10 
Cathepsin D 0.017 0.553 -0.14 
Isoform 1 of CD166 antigen 0.017 0.553 -0.13 
Carboxypeptidase N subunit 2 precursor 0.018 0.553 -0.09 
Apolipoprotein B-100 0.027 0.553 -0.11 
Isoform 1 of Pregnancy zone protein 0.029 0.553 0.22 
Alpha-amylase 2B 0.029 0.553 -0.29 
Ig kappa chain V-IV region 0.030 0.553 -0.37 
Isoform 2 of Vascular non-inflammatory 
molecule 3 0.030 0.553 -0.16 
Immunoglobulin superfamily containing 
leucine-rich repeat protein precursor 0.031 0.553 -0.13 
Complement C5 precursor 0.036 0.557 -0.18 
Cadherin-13 precursor 0.040 0.557 -0.25 
Ig lambda chain V-I region NIG-64 0.041 0.557 -0.34 
Ig kappa chain V-I region CAR 0.041 0.557 -0.25 
Ig lambda chain V-IV region Hil 0.043 0.557 -0.33 
Muscle type neuropilin 1 0.050 0.576 0.09 



176 

 

Isoform 1 of Coagulation factor XI 0.056 0.576 -0.07 
ADP-ribosyl cyclase 2 precursor 0.057 0.576 -0.07 
Complement C5 precursor 0.057 0.576 -0.12 
Cholinesterase precursor 0.060 0.576 -0.08 
Isoform 1 of Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 2 0.061 0.576 -0.13 
apolipoprotein A-IV precursor 0.063 0.576 0.72 
cDNA FLJ55673, highly similar to 
Complement factor B 0.065 0.576 -0.05 
Monocyte differentiation antigen CD14 
precursor 0.069 0.576 0.07 
72 kDa type IV collagenase 0.071 0.576 0.08 
Coagulation factor X precursor 0.073 0.576 -0.07 
Alpha-2-macroglobulin precursor 0.076 0.576 0.19 
Dopamine beta-hydroxylase 0.077 0.576 -0.11 
Isoform 1 of Vitamin K-dependent protein 
Z precursor 0.081 0.579 -0.10 
Alpha-2-macroglobulin precursor 0.082 0.579 0.16 
Isoform 1 of Contactin-1 precursor 0.089 0.585 -0.08 
Carboxypeptidase N catalytic chain 
precursor 0.094 0.585 -0.18 
Inter-alpha-trypsin inhibitor heavy chain H2 0.094 0.585 -0.08 
Ig kappa chain V-I region AU 0.097 0.585 -0.17 
Complement C4-A 0.098 0.585 -0.09 
Isoform 1 of Phosphatidylinositol-glycan-
specific phospholipase D precursor 0.098 0.585 -0.10 
AMBP protein precursor 0.101 0.585 -0.10 
Reticulon-4 receptor-like 2 precursor 0.108 0.601 -0.19 
Apolipoprotein B-100 precursor 0.109 0.601 -0.08 
Isoform 2 of Collagen alpha-1(XVIII) chain 
precursor 0.113 0.605 0.08 
Membrane copper amine oxidase 0.115 0.605 -0.11 
tropomyosin 1 alpha chain isoform 2 0.124 0.637 0.31 
Ig mu heavy chain disease protein 0.126 0.637 -0.33 
Procollagen C-endopeptidase enhancer 1 0.137 0.678 -0.07 
Complement component 6 precursor 0.144 0.683 -0.06 
Retinoic acid receptor responder protein 2 
precursor 0.144 0.683 -0.06 
Cholinesterase precursor 0.176 0.789 -0.07 
Coagulation factor XII precursor 0.181 0.789 -0.10 
Vitamin D-binding protein precursor 0.181 0.789 -0.05 
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immunoglobulin J chain 0.183 0.789 -0.19 
similar to complement component 3 0.186 0.789 -0.18 
Glutathione peroxidase 3 precursor 0.191 0.789 -0.09 
SPARC-like protein 1 0.199 0.789 -0.09 
Hepatocyte growth factor activator 
precursor 0.203 0.789 -0.04 
Leucine-rich alpha-2-glycoprotein 
precursor 0.205 0.789 -0.11 
Transferrin receptor protein 1 0.205 0.789 -0.07 
Isoform 1 of Collagen alpha-3(VI) chain 0.206 0.789 -0.05 
Complement C4-A 0.215 0.789 -0.08 
Xaa-Pro dipeptidase 0.216 0.789 -0.13 
Fructose-bisphosphate aldolase B 0.222 0.789 -0.12 
Vitamin K-dependent protein S 0.230 0.789 0.05 
Alpha-1-antitrypsin 0.234 0.789 0.09 
Isoform 1 of Sulfhydryl oxidase 1 precursor 0.236 0.789 -0.05 
Uncharacterized protein FETUB 0.237 0.789 -0.10 
Complement component C7 0.251 0.789 -0.03 
Intercellular adhesion molecule 1 0.256 0.789 -0.05 
Isoform 2 of Multiple inositol 
polyphosphate phosphatase 1 0.258 0.789 0.04 
Isoform Gamma-B of Fibrinogen gamma 
chain 0.260 0.789 -0.17 
Clusterin precursor 0.262 0.789 0.08 
Transforming growth factor-beta-induced 
protein ig-h3 precursor 0.263 0.789 -0.06 
Vitamin K-dependent protein C 0.265 0.789 0.06 
Apolipoprotein A-II precursor 0.274 0.789 -0.04 
Insulin-like growth factor-binding protein 2 0.274 0.789 0.10 
Serum paraoxonase/arylesterase 1 0.281 0.789 -0.07 
Transforming growth factor-beta-induced 
protein ig-h3 0.288 0.789 -0.05 
Beta-Ala-His dipeptidase 0.288 0.789 -0.07 
Procollagen C-endopeptidase enhancer 1 
precursor 0.290 0.789 -0.05 
Histidine-rich glycoprotein precursor 0.291 0.789 0.04 
Plasma glutamate carboxypeptidase 0.292 0.789 -0.09 
Isoform 3 of Neural cell adhesion molecule 
1 0.296 0.789 -0.05 
Follistatin-related protein 1 0.296 0.789 0.07 
Isoform 1 of Low affinity immunoglobulin 
gamma Fc region receptor II-a 0.302 0.789 0.05 
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Isoform 1 of Vascular cell adhesion protein 
1 precursor 0.304 0.789 0.05 
Isoform 1 of Extracellular matrix protein 1 0.305 0.789 0.07 
Vitronectin precursor 0.306 0.789 0.07 
Dopamine beta-hydroxylase 0.307 0.789 -0.08 
Fibrinogen beta chain precursor 0.311 0.789 -0.21 
Corticosteroid-binding globulin precursor 0.314 0.789 -0.04 
Hemopexin precursor 0.316 0.789 -0.07 
Thrombospondin-4 precursor 0.320 0.789 -0.08 
Uncharacterized protein KLKB1 0.325 0.789 -0.04 
Angiotensinogen 0.326 0.789 0.05 
Fc-gamma receptor IIIb 0.326 0.789 -0.04 
CD5 antigen-like precursor 0.335 0.800 -0.06 
Ig lambda chain V-I region NIG-64 0.345 0.808 -0.09 
Pantetheinase precursor 0.347 0.808 -0.05 
Plastin-2 0.349 0.808 0.06 
Isoform 1 of Fibronectin 0.353 0.808 0.13 
Isoform 2 of Neural cell adhesion molecule 
L1-like protein 0.358 0.808 0.04 
Isoform 1 of Mannan-binding lectin serine 
protease 2 precursor 0.365 0.808 -0.10 
Coagulation factor IX 0.370 0.808 0.05 
alpha-2-glycoprotein 1, zinc 0.370 0.808 0.05 
Complement factor I 0.371 0.808 -0.04 
Ceruloplasmin 0.372 0.808 -0.06 
Isoform XB of Tenascin-X 0.382 0.820 -0.05 
GUGU beta form 0.398 0.847 -0.05 
Afamin precursor 0.410 0.858 -0.05 
Phosphatidylcholine-sterol acyltransferase 
precursor 0.412 0.858 -0.02 
Hepatocyte growth factor-like protein 0.417 0.858 -0.02 
Fibrinogen beta chain precursor 0.418 0.858 -0.15 
Coagulation factor X 0.423 0.860 -0.06 
Serum amyloid P-component precursor 0.429 0.865 0.08 
von Willebrand factor 0.437 0.868 0.03 
Endothelial protein C receptor precursor 0.438 0.868 0.03 
Isoform HMW of Kininogen-1 0.448 0.881 -0.03 
Corticosteroid-binding globulin precursor 0.463 0.886 0.03 
Serotransferrin precursor 0.463 0.886 -0.07 
Gamma-glutamyl hydrolase precursor 0.468 0.886 -0.02 
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Coagulation factor IX precursor 0.472 0.886 0.04 
alpha-2-glycoprotein 1, zinc 0.473 0.886 0.02 
Complement C5 precursor 0.474 0.886 -0.07 
Isoform LAMP-2A of Lysosome-associated 
membrane glycoprotein 2 0.482 0.890 -0.03 
Insulin-like growth factor-binding protein 
complex acid labile chain 0.483 0.890 -0.03 
cDNA FLJ55606, highly similar to Alpha-2-
HS-glycoprotein 0.493 0.901 -0.07 
Plasma serine protease inhibitor precursor 0.510 0.918 -0.05 
Serotransferrin 0.511 0.918 -0.07 
Prothrombin (Fragment) 0.517 0.919 -0.05 
Prothrombin precursor (Fragment) 0.521 0.919 -0.04 
Lumican precursor 0.523 0.919 -0.03 
Pigment epithelium-derived factor 
precursor 0.534 0.932 -0.06 
Peroxiredoxin-1 0.541 0.936 0.08 
Apolipoprotein C-I precursor 0.546 0.936 0.05 
Tetranectin precursor 0.556 0.936 -0.03 
Complement component C7 0.558 0.936 -0.05 
Plasma protease C1 inhibitor 0.559 0.936 0.03 
Selenoprotein P 0.562 0.936 0.02 
Complement component C9 precursor 0.566 0.936 0.05 
Reticulon-4 receptor-like 2 precursor 0.573 0.936 -0.02 
Complement component C8 alpha chain 
precursor 0.574 0.936 -0.02 
Pigment epithelium-derived factor 
precursor 0.577 0.936 -0.04 
Isoform 1 of Gelsolin precursor 0.583 0.938 0.04 
Basement membrane-specific heparan 
sulfate proteoglycan core protein 0.586 0.938 -0.03 
Coagulation factor XIII A chain 0.592 0.941 0.04 
Isoform 1 of Fibrinogen alpha chain 0.602 0.942 -0.08 
Ribonuclease pancreatic precursor 0.606 0.942 -0.03 
Coagulation factor V 0.608 0.942 0.04 
Hemopexin 0.617 0.942 -0.04 
Isoform 1 of C-reactive protein 0.618 0.942 0.13 
Isoform 1 of Isocitrate dehydrogenase 
[NAD] subunit alpha, mitochondrial 0.623 0.942 0.04 
Isoform 2 of Carboxypeptidase B2 0.626 0.942 0.02 
cDNA FLJ55673, highly similar to 
Complement factor B 0.628 0.942 -0.01 
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Apolipoprotein A-IV precursor 0.629 0.942 -0.07 
Protein AMBP 0.636 0.943 -0.04 
Isoform 3 of Mannan-binding lectin serine 
protease 1 0.642 0.943 -0.01 
Cadherin-5 0.644 0.943 0.02 
Plastin-2 0.648 0.943 0.02 
Complement C1s subcomponent 0.650 0.943 -0.02 
Mannose-binding protein C precursor 0.661 0.944 -0.03 
Isoform 1 of Peptidase inhibitor 16 
precursor 0.662 0.944 -0.02 
Alpha-1-acid glycoprotein 2 0.666 0.944 -0.07 
Isoform 1 of N-acetylmuramoyl-L-alanine 
amidase precursor 0.670 0.944 0.07 
Biotinidase 0.677 0.944 -0.01 
4F2 cell-surface antigen heavy chain 0.686 0.944 -0.02 
Leucine-rich alpha-2-glycoprotein 
precursor 0.693 0.944 0.03 
Isoform 1 of Multiple inositol 
polyphosphate phosphatase 1 precursor 0.696 0.944 -0.02 
Isoform 3 of Interleukin-1 receptor 
accessory protein 0.703 0.944 0.01 
Isoform 1 of Carboxypeptidase B2 
precursor 0.707 0.944 -0.02 
Properdin precursor 0.709 0.944 -0.02 
Cystatin-C precursor 0.712 0.944 0.03 
Ceruloplasmin precursor 0.713 0.944 -0.03 
Serpin peptidase inhibitor, clade D 
(Heparin cofactor), member 1 0.716 0.944 -0.05 
Putative uncharacterized protein ALB 0.719 0.944 -0.21 
MAN1A1 protein 0.720 0.944 -0.03 
Thyroxine-binding globulin precursor 0.720 0.944 0.02 
HP protein 0.727 0.944 -0.02 
Complement C1s subcomponent 0.729 0.944 0.03 
Coagulation factor XIII B chain precursor 0.733 0.945 0.02 
Plasma serine protease inhibitor 0.740 0.948 -0.02 
Insulin-like growth factor IA 0.751 0.949 -0.04 
Galectin-3-binding protein 0.752 0.949 -0.02 
Lysozyme C precursor 0.754 0.949 -0.01 
Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA 0.758 0.949 -0.03 
Isoform 1 of Inter-alpha-trypsin inhibitor 
heavy chain H3 0.761 0.949 0.01 
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Kallistatin precursor 0.767 0.951 -0.02 
Protein Z-dependent protease inhibitor 
precursor 0.772 0.951 -0.01 
Apolipoprotein A-I precursor 0.775 0.951 -0.03 
Isoform 1 of Cartilage acidic protein 1 
precursor 0.798 0.959 -0.01 
Serum paraoxonase/arylesterase 1 0.800 0.959 0.02 
Isoform 1 of Attractin 0.801 0.959 -0.01 
Aminopeptidase N 0.805 0.959 -0.01 
Insulin-like growth factor-binding protein 3 0.807 0.959 -0.01 
Inter-alpha-trypsin inhibitor heavy chain H1 
precursor 0.813 0.959 0.01 
30 kDa protein 0.816 0.959 0.01 
Alpha-1-acid glycoprotein 2 precursor 0.816 0.959 -0.03 
HSPA5 protein 0.823 0.959 -0.01 
Complement factor D preproprotein 0.828 0.959 -0.01 
Isoform A of Coagulation factor VII 0.829 0.959 0.01 
Carboxypeptidase N catalytic chain 
precursor 0.831 0.959 -0.02 
Complement component C1q receptor 0.848 0.971 -0.01 
Hemoglobin subunit epsilon 0.850 0.971 -0.03 
Apolipoprotein C-III precursor 0.854 0.971 -0.02 
45 kDa protein 0.865 0.976 0.01 
Apolipoprotein E 0.872 0.976 -0.01 
Complement C1r subcomponent precursor 0.878 0.976 -0.01 
Vasorin precursor 0.881 0.976 0.00 
Complement component C8 beta chain 
precursor 0.882 0.976 -0.02 
Angiogenin precursor 0.887 0.976 -0.01 
Apolipoprotein A-I precursor 0.889 0.976 -0.02 
Antithrombin III variant 0.894 0.976 -0.01 
Carbonic anhydrase 1 0.903 0.976 0.02 
Cadherin-2 0.904 0.976 0.01 
Isoform 1 of Vinculin 0.906 0.976 -0.01 
Complement C1r subcomponent-like 
protein 0.909 0.976 0.01 
Insulin-like growth factor-binding protein 5 0.920 0.976 -0.01 
Isoform 1 of Phosphatidylinositol-glycan-
specific phospholipase D precursor 0.920 0.976 0.01 
Protein AMBP 0.921 0.976 0.01 
Flavin reductase 0.937 0.978 0.01 
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Insulin-like growth factor-binding protein 6 
precursor 0.937 0.978 0.00 
Apolipoprotein A-IV precursor 0.937 0.978 -0.01 
Isoform 2 of Inter-alpha-trypsin inhibitor 
heavy chain H4 0.940 0.978 0.01 
Lumican precursor 0.951 0.985 0.00 
Isoform 1 of Insulin-like growth factor II 0.965 0.986 0.00 
Isoform B of Fibulin-1 0.965 0.986 0.00 
Insulin-like growth factor-binding protein 4 
precursor 0.972 0.986 0.00 
Apolipoprotein C-II precursor 0.972 0.986 0.00 
Alpha-1B-glycoprotein 0.973 0.986 0.00 
Isoform 1 of EGF-containing fibulin-like 
extracellular matrix protein 1 0.982 0.987 0.00 
Isoform 1 of Cell surface glycoprotein 
MUC18 precursor 0.987 0.987 0.00 

Angiotensinogen precursor 0.987 0.987 0.00 

MD = mean difference (mean of concentrations for group with exercise minus mean 
for group without exercise) 
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Supplementary Table S4. VLCD effect for proteins identified from 
iTRAQ experiments. 
        

  p-value 
Adj. p-

value MD 
Biotinidase 2.59E-09 6.00E-07 -0.10 
Selenoprotein P 1.56E-08 1.02E-06 0.15 
Insulin-like growth factor-binding protein 2 1.73E-08 1.02E-06 0.36 
Isoform 2 of Inter-alpha-trypsin inhibitor heavy 
chain H4 1.76E-08 1.02E-06 0.18 
Isoform 1 of Sex hormone-binding globulin 3.58E-08 1.66E-06 0.46 
Isoform 3 of Interleukin-1 receptor accessory 
protein 5.27E-08 2.04E-06 0.13 
Afamin precursor 8.02E-07 2.61E-05 -0.18 
Apolipoprotein A-IV precursor 9.00E-07 2.61E-05 -0.45 
Leucine-rich alpha-2-glycoprotein precursor 1.04E-06 2.68E-05 0.20 
Beta-Ala-His dipeptidase 1.44E-06 3.35E-05 -0.21 
Leucine-rich alpha-2-glycoprotein precursor 1.61E-06 3.39E-05 0.25 
Apolipoprotein A-IV precursor 3.03E-06 5.86E-05 -0.43 
Lysozyme C precursor 3.67E-06 6.55E-05 0.11 
Pigment epithelium-derived factor precursor 4.10E-06 6.80E-05 -0.27 
Fructose-bisphosphate aldolase B 1.60E-05 2.48E-04 -0.25 
Cholinesterase precursor 2.30E-05 3.34E-04 -0.13 
Pigment epithelium-derived factor precursor 2.45E-05 3.35E-04 -0.20 
Cathepsin D 3.09E-05 3.99E-04 -0.15 
Protein AMBP 3.29E-05 4.02E-04 -0.13 
Aminopeptidase N 1.01E-04 1.17E-03 0.08 
Isoform 2 of Neural cell adhesion molecule L1-
like protein 1.34E-04 1.48E-03 0.09 
Complement component C9 precursor 1.80E-04 1.90E-03 0.18 
Isoform 1 of EGF-containing fibulin-like 
extracellular matrix protein 1 2.26E-04 2.23E-03 0.10 
Isoform 3 of Mannan-binding lectin serine 
protease 1 2.30E-04 2.23E-03 -0.06 
Coagulation factor X precursor 2.62E-04 2.35E-03 -0.08 
Isoform 1 of Attractin 2.63E-04 2.35E-03 -0.06 
Monocyte differentiation antigen CD14 
precursor 3.02E-04 2.53E-03 0.08 
Isoform 1 of Phosphatidylinositol-glycan-
specific phospholipase D precursor 3.06E-04 2.53E-03 -0.13 
Complement component C8 alpha chain 
precursor 3.67E-04 2.94E-03 0.07 
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Alpha-1-antitrypsin 3.90E-04 3.01E-03 0.15 
alpha-2-glycoprotein 1, zinc 4.25E-04 3.18E-03 0.07 
Pantetheinase precursor 4.88E-04 3.54E-03 -0.10 
Coagulation factor X 5.18E-04 3.64E-03 -0.13 
Isoform 1 of Contactin-1 precursor 6.64E-04 4.53E-03 0.09 
Isoform 2 of Vascular non-inflammatory 
molecule 3 7.75E-04 5.14E-03 -0.15 
Isoform 1 of Vascular cell adhesion protein 1 
precursor 1.02E-03 6.56E-03 0.08 
Isoform 1 of Inter-alpha-trypsin inhibitor heavy 
chain H3 1.13E-03 7.06E-03 0.07 
Protein Z-dependent protease inhibitor 
precursor 1.20E-03 7.31E-03 -0.06 
Transforming growth factor-beta-induced 
protein ig-h3 1.28E-03 7.61E-03 -0.08 
Plastin-2 1.45E-03 8.42E-03 0.08 
Isoform 1 of Isocitrate dehydrogenase [NAD] 
subunit alpha, mitochondrial 1.54E-03 8.73E-03 0.15 
Isoform 2 of Inter-alpha-trypsin inhibitor heavy 
chain H4 1.64E-03 9.04E-03 0.15 
Cartilage oligomeric matrix protein 2.00E-03 1.08E-02 -0.08 
Vitamin K-dependent protein C 2.20E-03 1.16E-02 0.09 
Apolipoprotein C-III precursor 2.74E-03 1.41E-02 -0.17 
Plasma serine protease inhibitor precursor 2.99E-03 1.51E-02 -0.13 
Alpha-2-macroglobulin precursor 3.25E-03 1.59E-02 0.15 
Corticosteroid-binding globulin precursor 3.30E-03 1.59E-02 0.07 
Cystatin-C precursor 3.45E-03 1.61E-02 0.12 
Insulin-like growth factor-binding protein 6 
precursor 3.47E-03 1.61E-02 -0.07 
Corticosteroid-binding globulin precursor 4.06E-03 1.85E-02 0.07 
Isoform 1 of Pregnancy zone protein 4.76E-03 2.13E-02 0.16 
Plastin-2 5.27E-03 2.31E-02 0.09 
Retinoic acid receptor responder protein 2 
precursor 5.60E-03 2.40E-02 -0.07 
HSPA5 protein 5.98E-03 2.46E-02 0.04 
30 kDa protein 6.03E-03 2.46E-02 0.07 
Serum amyloid P-component precursor 6.11E-03 2.46E-02 -0.14 
Isoform 1 of Cartilage acidic protein 1 precursor 6.16E-03 2.46E-02 0.05 
Isoform 1 of Low affinity immunoglobulin 
gamma Fc region receptor II-a 6.38E-03 2.51E-02 -0.06 
Antithrombin III variant 6.63E-03 2.56E-02 0.11 
Isoform 1 of Vinculin 6.78E-03 2.58E-02 0.10 
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Fc-gamma receptor IIIb 6.94E-03 2.60E-02 -0.06 
Coagulation factor XII precursor 7.45E-03 2.74E-02 -0.11 
Muscle type neuropilin 1 8.98E-03 3.25E-02 0.07 
72 kDa type IV collagenase 9.38E-03 3.35E-02 0.06 
Clusterin precursor 1.07E-02 3.77E-02 0.10 
Alpha-2-macroglobulin precursor 1.28E-02 4.42E-02 0.15 
Complement factor I 1.34E-02 4.58E-02 -0.06 
SPARC-like protein 1 1.39E-02 4.68E-02 0.10 
Complement component C1q receptor 1.55E-02 5.06E-02 0.05 
Isoform 1 of Coagulation factor XI 1.55E-02 5.06E-02 -0.05 
apolipoprotein A-IV precursor 1.57E-02 5.06E-02 -0.51 
Histidine-rich glycoprotein precursor 1.75E-02 5.57E-02 0.05 
Isoform 1 of Sulfhydryl oxidase 1 precursor 1.88E-02 5.90E-02 -0.05 
Isoform 1 of C-reactive protein 1.95E-02 6.02E-02 -0.33 
Isoform 1 of Ectonucleotide 
pyrophosphatase/phosphodiesterase family 
member 2 1.97E-02 6.02E-02 -0.09 
Complement-activating component of Ra-
reactive factor precursor 2.00E-02 6.03E-02 -0.06 
Ceruloplasmin 2.39E-02 7.11E-02 0.09 
Intercellular adhesion molecule 1 2.43E-02 7.12E-02 -0.06 
Xaa-Pro dipeptidase 2.45E-02 7.12E-02 -0.13 
Complement C1s subcomponent 2.54E-02 7.21E-02 -0.10 
Apolipoprotein B-100 2.55E-02 7.21E-02 0.06 
Tetranectin precursor 2.98E-02 8.24E-02 0.06 
Isoform 1 of Vitamin K-dependent protein Z 
precursor 2.98E-02 8.24E-02 -0.06 
Cadherin-13 precursor 3.18E-02 8.68E-02 0.14 
Isoform 1 of Phosphatidylinositol-glycan-
specific phospholipase D precursor 3.25E-02 8.78E-02 -0.06 
Thyroxine-binding globulin precursor 3.43E-02 9.15E-02 0.06 

Isoform 1 of Insulin-like growth factor II 3.90E-02 1.03E-01 0.05 
Alpha-1-acid glycoprotein 2 precursor 4.02E-02 1.05E-01 -0.14 
Isoform A of Coagulation factor VII 4.51E-02 1.16E-01 -0.05 
Isoform 1 of Fibrinogen alpha chain 4.68E-02 1.18E-01 0.16 
Fibrinogen beta chain precursor 4.69E-02 1.18E-01 0.19 
Isoform 1 of Carboxypeptidase B2 precursor 4.77E-02 1.18E-01 0.05 
Uncharacterized protein KLKB1 4.80E-02 1.18E-01 -0.04 
Membrane copper amine oxidase 4.98E-02 1.22E-01 -0.07 
Apolipoprotein C-I precursor 5.17E-02 1.25E-01 -0.08 
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Putative uncharacterized protein ALB 5.60E-02 1.34E-01 0.58 
Basement membrane-specific heparan sulfate 
proteoglycan core protein 5.89E-02 1.39E-01 0.05 
Ceruloplasmin precursor 5.92E-02 1.39E-01 0.08 
Vasorin precursor 6.03E-02 1.40E-01 0.03 
HP protein 6.34E-02 1.46E-01 -0.04 
cDNA FLJ55673, highly similar to Complement 
factor B 6.80E-02 1.55E-01 -0.02 
Cholinesterase precursor 7.70E-02 1.73E-01 -0.04 
Insulin-like growth factor IA 8.08E-02 1.80E-01 0.11 
Vitamin D-binding protein precursor 8.85E-02 1.96E-01 0.03 
alpha-2-glycoprotein 1, zinc 9.34E-02 2.03E-01 0.05 
Phosphatidylcholine-sterol acyltransferase 
precursor 9.38E-02 2.03E-01 0.03 
Isoform 1 of CD166 antigen 1.07E-01 2.30E-01 0.05 
Plasma protease C1 inhibitor 1.13E-01 2.40E-01 0.04 
Ig lambda chain V-I region NIG-64 1.17E-01 2.46E-01 -0.14 
Ig lambda chain V-IV region Hil 1.18E-01 2.46E-01 -0.14 
Complement C1s subcomponent 1.22E-01 2.51E-01 -0.03 
Complement C5 precursor 1.22E-01 2.51E-01 -0.08 
Isoform 1 of Mannan-binding lectin serine 
protease 2 precursor 1.40E-01 2.85E-01 -0.08 
Alpha-1-acid glycoprotein 2 1.46E-01 2.94E-01 -0.13 
Prothrombin precursor (Fragment) 1.48E-01 2.94E-01 -0.04 
Complement component 6 precursor 1.49E-01 2.94E-01 0.03 
Plasma serine protease inhibitor 1.49E-01 2.94E-01 -0.04 
Hepatocyte growth factor activator precursor 1.53E-01 2.99E-01 -0.02 
Hemoglobin subunit epsilon 1.56E-01 3.03E-01 0.11 
ADP-ribosyl cyclase 2 precursor 1.59E-01 3.04E-01 0.03 
Hemopexin precursor 1.64E-01 3.11E-01 -0.05 
Gamma-glutamyl hydrolase precursor 1.69E-01 3.19E-01 -0.02 
Isoform Gamma-B of Fibrinogen gamma chain 1.80E-01 3.37E-01 0.11 
Thrombospondin-4 precursor 1.88E-01 3.50E-01 -0.05 
Carbonic anhydrase 1 1.96E-01 3.62E-01 0.13 
Angiotensinogen precursor 1.99E-01 3.64E-01 -0.05 
Cadherin-2 2.02E-01 3.66E-01 0.03 
Ig kappa chain V-IV region 2.07E-01 3.70E-01 -0.11 
Coagulation factor IX 2.07E-01 3.70E-01 0.03 
Isoform 1 of N-acetylmuramoyl-L-alanine 
amidase precursor 2.15E-01 3.81E-01 -0.10 
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Isoform 1 of Fibronectin 2.19E-01 3.84E-01 -0.09 
Serum paraoxonase/arylesterase 1 2.20E-01 3.84E-01 0.04 
MAN1A1 protein 2.34E-01 4.03E-01 -0.06 
Complement C5 precursor 2.35E-01 4.03E-01 -0.04 
Kallistatin precursor 2.43E-01 4.14E-01 -0.04 
45 kDa protein 2.46E-01 4.14E-01 0.03 
Glutathione peroxidase 3 precursor 2.46E-01 4.14E-01 0.04 
Serpin peptidase inhibitor, clade D (Heparin 
cofactor), member 1 2.48E-01 4.15E-01 -0.08 
tropomyosin 1 alpha chain isoform 2 2.56E-01 4.25E-01 0.12 
Isoform 2 of Multiple inositol polyphosphate 
phosphatase 1 2.76E-01 4.45E-01 -0.02 
Isoform 2 of Collagen alpha-1(XVIII) chain 
precursor 2.77E-01 4.45E-01 -0.03 
Apolipoprotein A-I precursor 2.78E-01 4.45E-01 0.05 
Apolipoprotein A-II precursor 2.78E-01 4.45E-01 0.02 
Vitamin K-dependent protein S 2.78E-01 4.45E-01 0.02 
Inter-alpha-trypsin inhibitor heavy chain H1 
precursor 2.85E-01 4.54E-01 0.02 
Complement C1r subcomponent-like protein 2.90E-01 4.57E-01 -0.03 
Carboxypeptidase N subunit 2 precursor 2.94E-01 4.62E-01 -0.02 
Inter-alpha-trypsin inhibitor heavy chain H2 3.00E-01 4.63E-01 0.02 
Carboxypeptidase N catalytic chain precursor 3.00E-01 4.63E-01 -0.06 
Apolipoprotein A-I precursor 3.15E-01 4.85E-01 0.06 
Apolipoprotein C-II precursor 3.41E-01 5.20E-01 -0.04 
Isoform 1 of Cell surface glycoprotein MUC18 
precursor 3.48E-01 5.26E-01 -0.04 
Isoform HMW of Kininogen-1 3.49E-01 5.26E-01 0.02 
Complement component C7 3.53E-01 5.28E-01 -0.04 
Dopamine beta-hydroxylase 3.74E-01 5.57E-01 -0.03 
Complement component C7 3.90E-01 5.77E-01 -0.01 
Fibrinogen beta chain precursor 3.95E-01 5.80E-01 0.09 
Peroxiredoxin-1 4.06E-01 5.92E-01 0.06 
Hemopexin 4.09E-01 5.94E-01 -0.03 
Flavin reductase 4.20E-01 6.05E-01 0.06 
Apolipoprotein B-100 precursor 4.28E-01 6.08E-01 0.02 
cDNA FLJ55673, highly similar to Complement 
factor B 4.32E-01 6.08E-01 -0.01 
Isoform 1 of Extracellular matrix protein 1 4.32E-01 6.08E-01 -0.03 
Isoform 1 of Peptidase inhibitor 16 precursor 4.33E-01 6.08E-01 -0.02 
Prothrombin (Fragment) 4.43E-01 6.20E-01 -0.03 
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CD5 antigen-like precursor 4.55E-01 6.32E-01 0.02 
Coagulation factor XIII B chain precursor 4.61E-01 6.36E-01 -0.02 
Isoform 1 of Collagen alpha-3(VI) chain 4.67E-01 6.41E-01 0.02 
Complement C1r subcomponent precursor 4.73E-01 6.42E-01 -0.02 
Carboxypeptidase N catalytic chain precursor 4.74E-01 6.42E-01 -0.03 
Isoform XB of Tenascin-X 4.76E-01 6.42E-01 -0.02 
Lumican precursor 4.89E-01 6.55E-01 0.02 
Angiogenin precursor 5.06E-01 6.74E-01 -0.02 
Uncharacterized protein FETUB 5.12E-01 6.78E-01 0.03 
Isoform 3 of Neural cell adhesion molecule 1 5.47E-01 7.19E-01 0.01 
Isoform 1 of Gelsolin precursor 5.49E-01 7.19E-01 -0.02 
4F2 cell-surface antigen heavy chain 5.67E-01 7.39E-01 0.02 
Coagulation factor V 5.80E-01 7.50E-01 -0.02 
Complement component C8 beta chain 
precursor 5.83E-01 7.50E-01 -0.04 
Mannose-binding protein C precursor 5.85E-01 7.50E-01 0.02 
Follistatin-related protein 1 5.98E-01 7.62E-01 0.02 
Galectin-3-binding protein 6.09E-01 7.70E-01 -0.02 
Angiotensinogen 6.11E-01 7.70E-01 -0.01 
Serum paraoxonase/arylesterase 1 6.15E-01 7.71E-01 0.02 
Ig kappa chain V-I region CAR 6.30E-01 7.86E-01 -0.03 
Complement factor D preproprotein 6.38E-01 7.92E-01 0.01 
Dopamine beta-hydroxylase 6.64E-01 8.14E-01 -0.02 
Lumican precursor 6.64E-01 8.14E-01 0.01 
Alpha-amylase 2B 6.67E-01 8.14E-01 0.03 
Vitronectin precursor 6.70E-01 8.14E-01 -0.02 
Ig kappa chain V-I region AU 6.75E-01 8.16E-01 -0.02 
cDNA FLJ55606, highly similar to Alpha-2-HS-
glycoprotein 6.87E-01 8.23E-01 0.02 
AMBP protein precursor 6.88E-01 8.23E-01 0.01 
Ig lambda chain V-I region NIG-64 6.91E-01 8.23E-01 -0.02 
Properdin precursor 7.20E-01 8.50E-01 -0.01 
Insulin-like growth factor-binding protein 3 7.22E-01 8.50E-01 -0.01 
Isoform LAMP-2A of Lysosome-associated 
membrane glycoprotein 2 7.26E-01 8.50E-01 0.01 
Isoform 2 of Carboxypeptidase B2 7.42E-01 8.65E-01 0.01 
similar to complement component 3 7.47E-01 8.66E-01 -0.02 
Transforming growth factor-beta-induced 
protein ig-h3 precursor 7.59E-01 8.72E-01 -0.01 
Coagulation factor XIII A chain 7.59E-01 8.72E-01 0.01 
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Cadherin-5 7.72E-01 8.82E-01 -0.01 
Ig mu heavy chain disease protein 7.84E-01 8.86E-01 -0.03 
Plasma glutamate carboxypeptidase 7.85E-01 8.86E-01 0.01 
Serotransferrin 7.87E-01 8.86E-01 -0.01 
Procollagen C-endopeptidase enhancer 1 7.91E-01 8.86E-01 0.01 
Apolipoprotein E 8.27E-01 9.22E-01 0.01 
Complement C4-A 8.30E-01 9.22E-01 0.01 
Procollagen C-endopeptidase enhancer 1 
precursor 8.37E-01 9.25E-01 -0.01 
immunoglobulin J chain 8.48E-01 9.33E-01 0.01 
Ribonuclease pancreatic precursor 8.58E-01 9.39E-01 0.00 
Protein AMBP 8.76E-01 9.50E-01 -0.01 
Insulin-like growth factor-binding protein 4 
precursor 8.76E-01 9.50E-01 0.01 
Reticulon-4 receptor-like 2 precursor 8.92E-01 9.58E-01 0.01 
Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA 8.94E-01 9.58E-01 0.01 
Complement C4-A 8.96E-01 9.58E-01 0.00 
Alpha-1B-glycoprotein 9.01E-01 9.59E-01 0.00 
Complement C5 precursor 9.19E-01 9.74E-01 0.00 
Serotransferrin precursor 9.27E-01 9.77E-01 0.00 
von Willebrand factor 9.34E-01 9.80E-01 0.00 
Reticulon-4 receptor-like 2 precursor 9.41E-01 9.83E-01 0.00 
Hepatocyte growth factor-like protein 9.53E-01 9.91E-01 0.00 
Transferrin receptor protein 1 9.66E-01 9.93E-01 0.00 
Immunoglobulin superfamily containing 
leucine-rich repeat protein precursor 9.68E-01 9.93E-01 0.00 
Insulin-like growth factor-binding protein 5 9.71E-01 9.93E-01 0.00 
Endothelial protein C receptor precursor 9.71E-01 9.93E-01 0.00 
GUGU beta form 9.77E-01 9.94E-01 0.00 
Coagulation factor IX precursor 9.89E-01 9.94E-01 0.00 
Insulin-like growth factor-binding protein 
complex acid labile chain 9.90E-01 9.94E-01 0.00 
Isoform B of Fibulin-1 9.90E-01 9.94E-01 0.00 
Isoform 1 of Multiple inositol polyphosphate 
phosphatase 1 precursor 9.97E-01 9.97E-01 0.00 

MD = mean difference (mean of concentrations after VLCD minus mean at baseline). 
Analytes are considered significant if the p-value is less than 0.05 and the adjusted p-
value is less than 0.1 

 



190 

 

 



191 

Chapter 7: Prolonged niacin treatment leads 

to increased adipose tissue PUFA synthesis 

and an anti-inflammatory lipid and oxylipin 

plasma profile 

 

Mattijs M. Heemskerk* 

Harish K. Dharuri* 

Sjoerd A.A. van den Berg 

Hulda S. Jónasdóttir 

Dick-Paul Kloos 

Martin Giera 

Ko Willems van Dijk 

Vanessa van Harmelen 

 

* Both authors contributed equally 
 

Journal of Lipid Research. 2014; 55(12):2532-40 
  



192 

Abstract 
Prolonged niacin treatment elicits beneficial effects on the plasma lipid and 
lipoprotein profile that are associated with a protective cardiovascular 
disease (CVD) risk profile. Acute niacin treatment inhibits non-esterified fatty 
acid (NEFA) release from adipocytes and stimulates prostaglandin release 
from skin Langerhans cells, but the acute effects diminish upon prolonged 
treatment, while the beneficial effects remain. To gain insight in the 
prolonged effects of niacin on lipid metabolism in adipocytes, we used a 
mouse model with a human-like lipoprotein metabolism and drug response 
(female APOE*3-Leiden.CETP mice) treated with and without niacin for 15 
weeks.  The gene expression profile of gonadal white adipose tissue (gWAT) 
from niacin treated mice showed an up- regulation of the “biosynthesis of 
unsaturated fatty acid (PUFA)” pathway, which was corroborated by qPCR 
and analysis of the FA ratios in gWAT. Also, adipocytes from niacin treated 
mice secreted more of the PUFA docosahexaenoic acid (DHA) ex vivo. This 
resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA 
secretion profile and in plasma of niacin treated mice. Interestingly, the DHA 
metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was 
increased in plasma of niacin treated mice. Both an increased DHA/AA ratio 
and increased 19,20-diHDPA are indicative for an anti-inflammatory profile 
and may indirectly contribute to the atheroprotective lipid and lipoprotein 
profile associated with prolonged niacin treatment. 

Introduction 
Niacin (vitamin B3) treatment reduces cardiovascular disease and 
atherosclerosis development [1]. These beneficial effects are mediated, in 
part, by lowering circulating levels of LDL-cholesterol, VLDL-TG and 
lipoprotein(a) [2] as well as by increasing HDL-cholesterol [3]. In addition, 
prolonged niacin treatment also decreases plasma, adipose tissue and 
vascular inflammation [4, 5], which might contribute to reducing CVD. The 
induction of these beneficial effects after prolonged niacin treatment are in 
striking contrast to the unwanted acute niacin effects. 

Acutely, niacin binds to the inhibitory hydroxycarboxylic acid receptor 2 
(HCA2) (previously known as GPR109A). In adipocytes this leads to an 
inhibition of adipocyte lipolysis followed by an acute reduction of plasma 
non-esterified fatty acid (NEFA) levels. Lowering NEFA levels causes 
metabolic stress [ 6 ,  7 ] , which increases stress hormone levels [8–12] after 
niacin treatment. In the skin Langerhans cells and keratinocytes, acute niacin 
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binding to the HCA2 receptor leads to a release of arachidonic acid (AA) 
and subsequent cyclooxygenase-mediated oxylipin synthesis (mostly 
prostaglandins) causing flushing [13] and a decrease in blood pressure [14]. 
Intriguingly, these acute effects decrease upon prolonged niacin treatment. 
Adipocyte lipolysis normalizes [15, 16] and flushing diminishes [17]. 

The fact that certain acute niacin effects decrease over time whereas the 
beneficial lipid lowering and anti-inflammatory effects remain, suggests 
differences between the induction of intracellular signaling pathways upon 
acute and prolonged niacin treatment. In the current study we set out to 
characterize changes in signaling regulation upon prolonged niacin 
treatment. We specifically investigated effects of niacin on adipose tissue 
as adipose tissue has been shown to be the most affected organ at the 
gene expression level after 7h of niacin treatment [18]. 

We treated mice with 0.3% niacin mixed through the diet and isolated 
gonadal white adipose tissue (gWAT) after 15 weeks of intervention. The 
mice used in this study were female APOE*3-Leiden.CETP mice [19] which-in 
contrast to wild type mice-have a human like lipoprotein profile and 
respond similarly to atheroprotective drugs like niacin [20]. A microarray 
was used to compare gene expression profiles in the adipose tissue. We 
applied bio-informatic and statistical analyses to the gene expression data 
and showed that prolonged niacin treatment led to an increase in the 
unsaturated FA synthesis pathways. To investigate whether PUFA levels 
and possible derivatives thereof (i.e. oxylipins) were functionally affected we 
determined the fatty acid (FA) composition in the adipose tissue by gas 
chromatography mass spectrometry (GC-MS) and measured PUFA and 
oxylipin profiles in plasma by liquid chromatography tandem mass 
spectrometry (LC-MS/MS). 

Materials and methods 
Mouse experiments 

Female APOE*3-Leiden.CETP mice were bred at the Leiden University 
Medical Center. At age 15 ± 1 week, mice were fed a western type diet 
(Diet T with 0.1 g% cholesterol, which consisted of 16 kcal% protein, 43 
kcal% carbohydrate and 41 kcal% fat. AB Diets, Woerden, the Netherlands) 
with or without niacin (0.3 g%, Sigma Aldrich, St Louis, MO, USA). 
Supplementary table SII shows the fatty acid composition of the diet. Body 
weight was registered weekly. Animals were housed in a controlled 
environment (21°C, 40- 50% humidity) with a daily 12h photoperiod (07h00-
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19h00). Food and tap water were available ad libitum during the whole 
experiment. Food intake was determined weekly by weighing the food in 
the cages at t=0 and at t= 1 days. The difference between these time points 
was equal to 24h food intake of the mice. The mice in this study are the same 
as in our previously published study (16). All experiments were performed 
after a 15 week dietary intervention period. All animals (n=14 per group) 
were anaesthetized and sacrificed in the fed state between 08h00 and 9h30 
by cardiac puncture. Organs and plasma were collected and stored at -80°C. 
Fresh gonadal white adipose tissue (gWAT) was harvested and kept in PBS 
with or without niacin. One niacin treated animal did not have sufficient 
gWAT for the analyses. All animal experiments were performed in 
accordance with the regulations of Dutch law on animal welfare. The 
institutional scientific committee and ethics committee for animal 
procedures from the Leiden University Medical Center, Leiden, The 
Netherlands approved the protocols. 

gWAT gene expression analysis 

RNA was isolated from gWAT using the Nucleospin RNA/Protein kit 
(MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany) after which RNA 
quality was assessed by NanoDrop (NanoDrop) and 2100 BioAnalyzer 
(Agilent). All samples had an RNA Integrity Number of >7.5. cRNA was 
synthesized using the TotalPrep RNA Amplification Kit (Ambion, Illumina). 
cRNA levels were normalized to 150ng/μL and loaded onto MouseWG-6 v2.0 
Expression BeadChips by Service XS (Leiden, The Netherlands). Each 
BeadChip contains eight arrays. Hybridization and washing were performed 
according to the Illumina manual. Image analysis and extraction of raw 
expression data was performed with Illumina GenomeStudio v2011.1 gene 
expression software with default settings. 

Lumi [21] module in the R-based Bioconductor package was used to read in 
the combined (average) signal intensities per probe. A variance-stabilizing 
transformation (lumiT) available in the R package was used to stabilize the 
expression variance based on the bead level expression variance and mean 
relations. Expression data were normalized using the function lumiN 
available within the lumi package. We used limma [22] an R-based 
Bioconductor package to calculate the level of differential gene expression. 
In addition to determining significant differentially expressed genes, gene 
set analysis based on KEGG pathway and Gene Ontology was performed 
using the Bioconductor package "GlobalTest" [23]. 

Quantitative PCR 
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RNA was isolated from gWAT and liver using the Nucleospin RNA/Protein kit 
(MACHEREY- NAGEL GmbH & Co. KG, Düren, Germany). Subsequently, 1μg 
of RNA was used for cDNA synthesis by iScript (BioRad, Hercules, CA, USA), 
which was purified by the Nucleospin Gel and PCR clean-up kit (Machery 
Nagel). Real-Time PCR was carried out on the IQ5 PCR machine (BioRad) 
using the Sensimix SYBR Green RT-PCR mix (Quantace, London, UK) and 
QuantiTect SYBR Green RT-PCR mix (Qiagen, Venlo, the Netherlands). Target 
mRNA levels were normalized to Rplp0 & Ppia mRNA levels. Primer 
sequences and PCR conditions can be found in Supplementary table SI. 

gWAT, liver and diet fatty acid composition 

FA composition analysis of gWAT, liver and diet was carried out as described 
recently by Kloos et al. [24]. Briefly: triplicate samples were weighed of 
approximately 10 mg diet or organ from niacin treated and control mice. 1 
mL of water, 3 mL MeOH and 1 mL 10M NaOH were added, the samples 
flushed with argon and hydrolyzed for 1 h at 90 °C. After acidification with 

2 mL of 6M HCl, 10 μL of an internal standard solution ([2H31]palmitic acid 
and ergosterole 10 μg/mL each) was added. The samples were extracted 
twice with 3 mL n-hexane and the combined organic extracts were dried 
under a gentle stream of nitrogen. Dried samples were derivatized using 25 
μL of N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide (Sigma Aldrich, 
Schnelldorf, Germany) for 10 min at 21 °C, subsequently 25 μL of N,O- 
bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane 
(Thermo Scientific, Waltham, MA, USA) and 2.5 μL of pyridine were added 
and the sample was heated for 15 min to 50 °C. Next, 947.5 μL of n- hexane, 
containing 10 μg/mL octadecane (C18) as system monitoring component, 
was added. Samples were analyzed in SIM mode on a Scion TQ GC-MS 
(Bruker, Bremen, Germany) equipped with a 15 m × 0.25   mm × 0.25 mm 
BR5MS column (Bruker). The injection volume was 1 μL, the injector was 
operated in splitless mode at 280 °C and the oven program was as follows: 
90 °C kept constant for 0.5 min, then ramped to 180 °C with 30 °C/min then 
to 250 °C with 10 °C/min then to 266 °C with 2 °C/min and finally to 300 °C 
with 120 °C/min, kept constant for 2 min. Helium (99.9990%, Air Products, 
The Netherlands) was used as carrier gas. For data analysis a total area 
correction was applied and triplicates were averaged. 

Gonadal adipocyte PUFA release assay 

Fresh gonadal adipose tissue was minced and digested in 0.5 g/L collagenase 
type I in HEPES buffer (pH 7.4) with 20 g/L of dialyzed bovine serum albumin  
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Table 1: Differentially expressed gene hits from microarray analysis of gWAT after 
niacin treatment. 

Gene symbol 

 
Gene 
ID 

 
 

Gene name 
Adjusted 
P 

 
Log(fold 
change) 

Pdzk1ip1 67182 PDZK1 interacting protein 1 0.002 1.190 
Orm2 18406 Orosomucoid 2 0.002 0.857 
Orm1 18405 Orosomucoid 1 0.003 0.550 
Elovl6 170439 Elongation of long chain fatty 0.004 1.371 
Lctl 235435 Lactase-like 0.004 1.107 
Rdh11 17252 Retinol dehydrogenase 11 0.007 0.887 

Nudt7 
 

67528 
Nudix (nucleoside diphosphate 
linked moiety X)- type motif 7 

 
0.012 

 
0.537 

Acat2 110460 Acetyl-Coenzyme A 0.013 0.695 
Mup3 17842 Major urinary protein 3 0.013 1.047 
1500017E21Rik 668215 RIKEN cDNA 1500017E21 gene 0.013 0.612 
Clstn3 232370 Calsyntenin 3 0.013 0.607 
Apoc1 11812 Apolipoprotein C-I 0.013 0.523 
Comt 12846 Catechol-O-methyltransferase 0.014 0.536 
Zfp385b 241494 Zinc finger protein 385B 0.014 -0.436 
Tecr 106529 Trans-2,3-enoyl-CoA reductase 0.029 0.498 
G6pdx 14381 Glucose-6-phosphate 0.029 0.454 
Elovl5 68801 Elongation of long chain fatty 0.033 0.405 
Pkm2 18746 Pyruvate kinase, muscle 0.034 0.521 
D430019H16Rik 268595 RIKEN cDNA D430019H16 gene 0.034 -0.505 
Aacs 78894 Acetoacetyl-CoA synthetase 0.035 0.524 
Lpcat3 14792 Lysophosphatidylcholine 0.035 0.504 

Kcnj15 
 

16516 
Potassium inwardly-rectifying 
channel, subfamily J, member 

 
0.035 

 
0.450 

Cyp51 13121 Cytochrome P450, family 51 0.039 0.747 

Aard 
 

239435 
Alanine and arginine rich 
domain containing protein 

 
0.039 

 
-0.547 

Fasn 14104 Fatty acid synthase 0.126 0.487 
Acly 104112 ATP citrate lyase 0.139 0.691 

 

(BSA, fraction V, Sigma Aldrich) for 1 h at 37°C. The disaggregated WAT was 
filtered through a nylon mesh with a pore size of 236 μm. For the isolation of 
mature adipocytes, cells were obtained from the surface of the filtrate and 
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washed several times. Adipocytes (~10,000 cells/mL) were incubated in 
triplicate in a 96 well plate at 37°C in 200μL per well of DMEM/F12 medium 

with 2%w/w BSA with or without niacin 10-6 M) for 2 hours. The adipocyte 
conditioned medium (100 μL) was frozen at -20°C until further analysis. 

Plasma PUFA and oxylipins measurement 

Protein precipitation was performed on adipocyte conditioned medium (80 
μL) or plasma (20 μL) by the addition of methanol (233.6 μL for medium 
and 53.6 μl for plasma) and 6.4 μL of internal standard solution containing 

([2H8]15-HETE, [2H4]PGE2, [2H4]LTB4 and [2H5]DHA, each 50 ng/mL in 
methanol), which was left to equilibrate for 20 minutes at -20°C. The 
samples were spun down for 10 min, 16200g at 4°C. Supernatant (240 μL 
for medium and 30 μL for plasma) was pipetted into a deactivated glass 
insert (Agilent, CA, USA). Plasma supernatant was diluted in 30 μL of H2O, 
while medium supernatant was dried by Speedvac at room temperature. 
The dried medium sample was dissolved in 60 μL 1:2 methanol/H2O. For 
both sample types, 20 μL was injected for LC-MS/MS analysis as described 
previously [25, 26]. 

LC-MS/MS analysis is carried out on a QTrap 6500 mass spectrometer (AB 
Sciex, Nieuwerkerk aan den Ijssel, The Netherlands), coupled to a Dionex 
Ultimate 3000 LC-system including auto-sampler and column oven (Dionex 
part of Thermo, Oberschleiβheim, Germany). The employed column was a 
Kinetex C18 50 × 2.1 mm, 1.7 μm, protected with a C8 pre-column 
(Phenomenex, Utrecht, The Netherlands). H2O (A) and methanol (B) both 
with 0.01% acetic acid were used. The gradient program started at 40% 
eluent B and was kept constant for 1 min, then linearly increased to 45% B 
at 1.1 min, then to 53.5% B at 4 min, to 55% B at 6.5 min, then to 90% B at 
12 min and finally to 100% B at 12.1 min, kept constant for 3 min. The flow 
rate was set to 250.0 μL/min. The MS was operated under the following 
conditions: the collision gas flow was set to medium, the drying temperature 
was 400 ºC, the needle voltage -4500 V, the curtain gas was 30 psi, ion 
source gas 1 was 40 psi and the ion source gas 2 was 30 psi (air was used as 
drying gas and nitrogen as curtain gas). For quantitation, the multiple 
reaction monitoring (MRM) transitions and collision energies (CE) given in 
supplementary table SV were used combined with calibration lines. All 
substances used as standards were from Cayman Chemicals (Ann Arbor, MI, 
USA) if not stated otherwise, except RvE1, RvE2 18S-RvE3 and 18R-RvE3 
(gifts from Dr. Makoto Arita, Tokyo, Japan). Metabolite identification in  
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Table 2: Pathways regulated on gene expression level by niacin in the gWAT 
according to global test. 

KEGG ID KEGG pathway name p-value FDR q-value 
map01040 Biosynthesis of unsaturated fatty 1.81E-05 0.00381 
map00310 Lysine degradation 7.97E-04 0.16654 
map00900 Terpenoid backbone biosynthesis 1.02E-03 0.21273 
map00620 Pyruvate metabolism 1.09E-03 0.22603 
map00100 Steroid biosynthesis 1.32E-03 0.27205 

 

plasma was verified by MS/MS spectral comparison with standards, of which 
leukotriene E4, thromboxane B2 and 19,20-diHDPA are included in the 
supplements (Supplementary figure SIV until SVI). 

Statistics 

Mean values and standard deviations are reported in all figures. The gene 
expression data were statistically analyzed by using the multiple test 
correction method of Benjamin-Hochberg for control of false discovery rate 
(FDR) for both differentially expressed individual genes and for KEGG 
pathways. An adjusted p-value < 0.05 was considered significant. 
Calculations for the lipid measurements were performed in Prism version 6 
(GraphPad Software, La Jolla, USA).  

Multiple t-tests were performed and a 5% FDR value was applied. An F-test 
was applied to test whether linear regression lines were significantly non-
zero. The levels of significance were set at p < 0.05. 

Results 
gWAT gene expression analysis 

Female APOE3.Leiden.CETP mice (n=14 per group) were fed a Western type 
diet (containing 0.1% cholesterol) with and without niacin for 15 weeks. As 
previously published [16], niacin treatment did not lead to differences in 
body weight nor gonadal white adipose tissue weight in these mice. 
However, plasma  lipids, i.e. total cholesterol, triglycerides and phospholipids 
were all decreased [16]. Gene expression analysis generated 24 
differentially expressed genes due to niacin treatment after multiple test 
correction (adjusted p<0.05, see Table 1). The global test was applied to 
identify KEGG pathways affected by niacin treatment. Table 2 depicts the 
top 5 pathways identified by global test, however only “biosynthesis of  
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Table 3: Gene expression level of significant genes in the “Biosynthesis of 
unsaturated fatty acids” pathway and the associated enzymatic 
substrate/product ratio of FAs. 

Gene name 
Sym
bol 

Adjust
ed P 

Fold 
change ratio 

p-
value 

Fold 
change 

Trans-2,3-enoyl-CoA 
reductase Tecr 0.029 

0.498(↑
) General FA elongation 

Elongation of long chain 
fatty acids 6 

Elovl
6 0.004 

1.371(↑
) C16:0 / C18:0 0.416 

-
0.152(↓
) 

        
C16:1n-9 / 
C18:1n-9 0.019 

-
0.370(↓
) 

Elongation of long chain 
fatty acids 5 

Elovl
5 0.033 

0.405(↑
) 

C18:3n-3 / 
C20:3n-3 0.007 

-
0.619(↓
) 

     
C18:4n-3 / 
C20:4n-3 

Sub & prod not 
measured 

     
C18:2n-6 / 
C20:2n-6 0.028 

-
0.540(↓
) 

        
C18:3n-6 / 
C20:3n-6 0.049 

-
0.390(↓
) 

 Elongation of long chain 
fatty acids 5/2 

Elovl
5/   

C20:5n-3 / 
C22:5n-3 0.155 

0.529(↑
) 

  
Elovl
2     

C20:4n-6 / 
C22:4n-6 0.032 

0.387(↑
) 

 

unsaturated fatty acids” remained significant after correction for false 
discovery rate (q<0.05). The differentially expressed genes from Table 1 
were clustered and highlighted according to KEGG pathways. The top-hits 
from the “biosynthesis of unsaturated fatty acids” (Elovl6, Tecr and Elovl5) 
were all specifically involved in FA elongation, not FA desaturation, and 
were all up-regulated. Quantitative PCR measurements of Elovl6 and Elovl5 
in gWAT confirmed up-regulation of mRNA levels of these enzymes after 
niacin treatment (Fig. 1). The rate-limiting desaturase enzyme of PUFA 
synthesis encoded by Fads2 (Fatty acid desaturase 2) showed a trend 
towards increased expression after niacin. 
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Figure 1: Gene expression by qPCR of gWAT and liver tissue isolated from 
unfasted control and niacin treated  mice.  A)  Elovl5,  B)  Elovl6  and  C)  Fads2  
mRNA  levels  expressed  as  fold  change  from control. *p<0.05, **p<0.01, 
***p<0.001 compared to control 

gWAT fatty acid composition and adipocyte PUFA secretion 

To investigate whether the increased mRNA levels of genes in the 
“biosynthesis of unsaturated fatty acids” translated to adipose tissue FA 
metabolism changes, we examined the FA composition of the gWAT by GC-
MS. In the adipose tissue the fractions of the substrates for PUFA synthesis, 
the essential fatty acids α- linolenic acid (ALA, n-3) and linoleic acid (LA, n-
6), were decreased after niacin treatment while their down- stream products 
were not fractionally different (Supplementary figure SI and table SII). As the 
only source of essential FAs was the diet, of which the consumption was 
equal (data not shown), an increased enzymatic processing of essential FAs 
towards down-stream elongated and desaturated PUFAs would be 
plausible. To examine enzymatic processing, we investigated the 
substrate/product ratios for the enzymes in the PUFA synthesis pathway. 
We exclusively found differential elongase ratios and no desaturase ratios 
between control and niacin treatment (data not shown). Furthermore, the 
differential ratios that were decreased were the C18 to C20 elongation 
ratios, while the C20 to C22 ratios were increased indicating a possible 
increase in the metabolism and processing of essential FAs towards down-
stream PUFAs in gWAT from niacin treated mice (Table 3). Given that niacin 
did no elevate the fractional content of the down-stream PUFAs of the 
essential FAs, we studied whether niacin treatment increased PUFA secretion 
from freshly isolated adipocytes. 
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Figure 2: A) PUFA release from ex vivo isolated adipocytes from control and 
niacin treated mice incubated for two hours in DMEM/F12 medium. B) PUFA 
concentration in unfasted plasma of control  and niacin treated mice. Mean±SD, 
n=14 for Control/n=13 for Niacin. *p<0.05 compared to control gWAT after FDR 
correction. P-values listed were before FDR correction. 

Although the fraction of medium chain fatty acids (MCFA, C10:0 / C12:0 / 
C14:0) was also increased in gWAT after niacin, adipocyte release of these 
MCFA was not different (Supplemental figure S VII). Of the PUFAs, both ALA 
and LA were secreted in equal amounts for control and niacin treated 
adipocytes (Figure 2A). Interestingly, down-stream metabolic products of 
the essential n-3 fatty acid ALA, namely EPA (non- significant after FRD 
correction) and DHA, were secreted to a greater extent after niacin 
treatment. 

Liver PUFA biosynthesis gene expression and fatty acid composition 

As adipose tissue and the liver are the main sites of NEFA processing, we also 
examined the effects of prolonged niacin on the liver. We found by using 
qPCR that Elovl5 and Fads2 expression were unaffected by niacin treatment, 
while Elovl6 expression was down-regulated (Figure 1). Liver fatty acid 
composition did not differ between control and niacin treated mice 
(supplementary figure SII and table SIII), neither did the substrate/product 
ratios relevant for PUFA biosynthesis (Data not shown). Although the PUFA 
fractions of the livers from niacin treated mice went in the inverse direction 
as seen in gWAT, this effect was non-significant. 

Plasma PUFAs and oxylipins 
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Figure 3: A) Docosahexaenoic acid over arachidonic acid ratio in adipocyte 
secreted medium and in plasma. B) Oxylipin concentration in plasma of 
control and niacin treated mice. Mean±SD, n=14 per group. *p<0.05 
compared to control gWAT after FDR correction. P-values listed were 
before FDR correction. 

In addition to measuring PUFA levels in adipocyte medium ex vivo we also 
examined PUFA levels in plasma by LC-MS/MS. Niacin reduced circulating 
levels of ALA and tended to increase the levels of its down-stream product 
DHA (Figure 2B and supplementary table SIV, DHA was NS after FRD 
correction). EPA levels were not affected by niacin. We next examined the 
ratio of DHA over AA as a surrogate marker for PUFA associated 
cardiovascular risk [27–29] and found that the ratio was shifted towards 
DHA, both in adipocyte medium and in plasma (Figure 3A). PUFA derived 
oxylipin signaling molecules were also measured in the plasma (Figure 3B 
and supplementary table SIV). Arachidonic acid metabolite prostaglandin D2 
was not affected by niacin treatment, whereas thromboxane B2 levels  
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Figure 4: Schematic overview of the synthesis of poly unsaturated fatty acids and 
the subsequent conversion to a selection of oxylipins. Genes are in italic, 
metabolites in bold and essential FAs are encircled. Metabolites in grey were not 
measured. Based on the review by Guillou et al.[31] 

 

increased (NS after FDR correction). AA metabolite leukotriene E4 decreased 
after niacin treatment (NS after FDR correction), whereas 12- hydroxy 
eicosatetraenoic acid (12-HETE) levels remained unchanged. The n-3 PUFA 
derived diol metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-
diHDPA) produced by cytochrome P450 was significantly increased. Due to 
the increase in DHA levels we investigated the presence of DHA derived 
resolvins [30], which could however not be detected by our approach. 

Discussion 
The current study demonstrates for the first time that prolonged niacin 
treatment results in an up- regulation of the n-3 PUFA synthesis pathway in 
adipose tissue. Gene expression analysis of gWAT showed that our 
hyperlipidemic mouse model responded to niacin by up-regulating genes 
involved in the unsaturated FA biosynthesis. Fatty acid composition analysis 
corroborated the increased PUFA synthesis. A higher degree of n-3 PUFA 
secretion from prolonged niacin treated adipocytes was seen, which was also 
reflected in increased n-3 PUFA plasma levels. Markedly, the plasma levels of 
n-3 PUFA derived oxylipins produced by cytochrome P450 and hydrolyzed by 
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soluble epoxy hydrolases were increased. Oxylipins produced by cytochrome 
P450 from n-3 PUFAs and the n-3 PUFAs themselves suggest a beneficial 
vascular health profile, which might contribute to the prolonged niacin-
induced atheroprotective effect. 

Gene expression analysis of the gonadal white adipose tissue of 
hyperlipidemic mice treated with niacin for 15 weeks demonstrated an up-
regulation of the “biosynthesis of unsaturated fatty acid” pathway, mostly 
by up-regulation of Elovl6, Tecr and Elovl5. All three genes are involved 
in FA elongation, not desaturation (as shown in figure 4 and table 3). This 
discovery was confirmed by qPCR, but also by gWAT FA composition and FA 
ratio analysis, which all pointed towards PUFA elongation. This increase in 
PUFA elongation was seen in adipose tissue, but not in liver tissue, where 
a more inverse trend towards PUFA accumulation could be seen in the fatty 
acid composition. When examining the PUFA secretion of adipocytes 
isolated from these mice, we found that specifically end-products of n-3 
PUFA biosynthesis were secreted to a higher degree, as seen by DHA (C22:6) 
and also by EPA (C20:5) secretion. As the genes involved in PUFA 
biosynthesis are the same for n-3 PUFAs as for n-6 PUFAs, the specificity for 
increased n-3 PUFA secretion was puzzling. It is conceivable that the PUFA 
biosynthesis enzymes have a higher affinity for n-3 PUFAs, as was already 
shown for zebrafish desaturase enzymes [ 3 2 ] . The rat elongase 5 enzyme 
possesses a higher affinity for n-3 substrates than for n-6 substrates [33], 
and the mouse equivalent was found to be up-regulated in our study. 
Selective DHA biosynthesis, unlike AA or EPA, requires partial peroxisomal 
beta oxidation (Figure 4). Although the microarray did not point towards this 
pathway, increased peroxisomal beta oxidation after niacin could lead to 
preferential DHA synthesis. Asides from preferential n-3 PUFA 
biosynthesis, preferential mobilization from adipose tissue would also 
explain an increased n-3 PUFA release. A well-documented phenomenon 
is selective PUFA release from adipocytes [34], exemplified by fasting-
induced preferential n-3 PUFA depletion of adipose tissue triglycerides [35]. 
Our preliminary results also indicate preferential n-3 PUFA release from 
adipocytes when (fasting-induced) lipolysis is stimulated by 8Br-cAMP 
(Supplemental figure S VIIIc). Other potential mechanisms for preferential n-
3 PUFA release might be phospholipid hydrolysis, as it has been previously 
shown that cytosolic PLA2 releases AA and EPA from phospholipids 
whereas the release of DHA from phospholipids requires calcium-
independent PLA2 [36]. Although 99% of the fatty acids are located in the 
triglyceride fraction, the contribution of the 1% fatty acids contained in the 
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phospholipid fraction to n-3 PUFA release cannot be excluded. Additional 
research is required to investigate the underlying mechanisms for the 
preferential n-3 PUFA release after prolonged niacin treatment. 

Adipocyte lipolysis contributes to the free fatty acid pool in the circulation. In 
the plasma of the niacin treated animals, we found a tendency for increased 
levels of the n-3 PUFA DHA in the NEFA pool. Although we do not have direct 
proof, our data suggest that DHA secretion by adipocytes is the main source 
of DHA in the plasma. Interestingly we did not find up-regulation of gene 
expression levels of Elovl5, Elovl6 nor Fads2, or any change in fatty acid 
composition in the livers of the niacin treated mice, indicating that the 
niacin induced PUFA synthesis is selective for adipose tissue. 

The n-3 PUFAs have been reported to confer CVD protective abilities via 
their conversion to anti- inflammatory oxylipins. For example, DHA can be 
converted to the oxylipin 19(20)-epoxy docosapentaenoic acid (19(20)-
EpDPA) by cytochrome P450 (CYP) as can be seen in figure 4. Likewise, the 
n-3 PUFA EPA can be converted to 14(15)-epoxy eicosatetraenoic acid 
(14(15)-EpETE) by CYP. These epoxide metabolites have powerful biological 
effects on cardiovascular health. This was shown by previous studies where 
the epoxide metabolism pathway was genetically manipulated [ 3 7 ] or its 
compounds were pharmacologically elevated [38]. These studies showed 
the importance of epoxy metabolites in resolving inflammation, preserving 
vascular tone and general vascular homeostasis. The biologically active 
19(20)-EpDPA and 14(15)-EpETE can be hydrolyzed by soluble epoxy 
hydrolases (encoded by the Ephx2 gene in mice) to their respective diol 
metabolites 19,20-diHDPA and 14,15-dihydroxy eicosatetraenoic acid 
(14,15-diHETE). The levels of both these diol products were increased in 
plasma of niacin treated animals. The hydrolyzed diol metabolites have a 
far lower biological effect than their epoxide metabolites, but are more 
stable and can be detected in plasma by LC-MS/MS. Although we did not 
directly measure whether the levels of the bioactive epoxy metabolites 
19(20)-EpDPA or 14(15)-EpETE were increased after niacin treatment, we 
found  a positive correlation in plasma between the precursor and diol 
metabolite of 19(20)-EpDPA (DHA and 19,20- diHDPA) in niacin treated mice 
(Supplementary figure SIII). This correlation suggests that the levels of 
19(20)-EpDPA must also have increased after niacin treatment. 

In general, the anti-inflammatory oxylipins such as epoxy metabolites 
produced by CYP (high affinity for n-3 PUFAs), are balanced by the pro-
inflammatory oxylipins such as those produced by cyclooxygenases (COX) 
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and arachidonate lipoxygenases (ALOX) (both with high affinity for n-6 
PUFAs, such as AA) [39]. Prolonged niacin treatment did not dramatically 
affect AA derived oxylipin levels, although there was a tendency towards 
decreased levels of leukotriene E4, a lipoxygenase pathway product 
stimulating inflammation, and towards increased levels of thromboxane B2, 
a cyclooxygenase product stimulating coagulation. 

Acute treatment of mouse adipocytes with niacin did not lead to an increased 
release of DHA or AA, nor a change in the ratio of DHA/AA in the adipocyte 
conditioned medium (Supplemental figure S IX). Acute niacin treatment 
however, is a well-known trigger for AA-derived oxylipin synthesis in the skin. 
Irritative subcutaneous skin flushing is a common acute side-effect of 
niacin, induced by cyclooxygenase product prostaglandin D2 [40] in 
Langerhans cells and keratinocytes. As mentioned above, we did not see an 
increase in pro-inflammatory prostaglandins after prolonged niacin 
treatment. These results are in line with results by Stern et al. [17] and 
suggest tolerance for flushing after prolonged niacin treatment. It is 
possible that the tolerance for flushing after prolonged niacin is mediated 
via n-3 PUFAs as suggested by vanHorn et al. [41]. Whether there is a role for 
anti-inflammatory n-3 PUFA derived oxylipins after acute niacin remains 
unclear. Inceoglu et al. [42] have acutely administered niacin to mice being 
treated with a soluble epoxide hydrolase inhibitor, which resulted in a 
blunted flushing response compared to wild type mice, while acute 
prostaglandin D2 treatment did not blunt flushing. These results support a 
role for cytochrome P450 epoxide metabolites not only after prolonged 
niacin treatment, but also acutely in inhibiting the flushing response by 
niacin. Flushing severity also suggests an important balance between pro- 
and anti-inflammatory oxylipins, which can be modulated by niacin 
treatment. Most likely, the n-6 derived oxylipins prevail during acute niacin 
treatment, while after prolonged niacin treatment the n-3 derived oxylipins 
prevail. 

Plasma DHA/AA ratio has been shown to be a diagnostic marker for PUFA 
associated cardiovascular health [27–29]. In addition to being metabolized 
to anti-inflammatory oxylipins, n-3 PUFA confer their CVD protective abilities 
by direct competition with n-6 PUFAs. Vanhorn et al. [41] have described that 
DHA supplementation increases the DHA/AA ratio in membrane 
phospholipids of Langerhans cells, thereby diminishing the relative 
availability of AA for pro-inflammatory prostaglandin synthesis. As a low n-
3/n-6 ratio is associated with a risk for cardiovascular disease, increasing the 
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ratio by supplementary n-3 PUFAs has been posed as a treatment target [43]. 
In our study, we see that the DHA/AA ratio has increased towards the anti-
inflammatory DHA side without supplementary n-3 PUFAs. We have seen this 
increased DHA/AA ratio in both the ex vivo adipocyte PUFA secretion profile 
and in the in vivo plasma NEFA profile of niacin treated mice. These effects 
of niacin on adipose tissue and plasma PUFAs and oxylipins pose a potential 
contributing mechanism by which niacin treatment reduces cholesterol 
levels and CVD risk. Although we used mice in this study which are human 
like with respect to lipoprotein profile it remains to be investigated whether 
there are changes in the plasma DHA/AA ratio in humans treated with niacin. 

In conclusion, prolonged niacin treatment of our hyperlipidemic mouse 
model with niacin resulted in up-regulation the entire pathway of PUFA 
biosynthesis in gWAT, increased n-3 PUFA secretion from the adipocytes 
and an increased plasma level of n-3 PUFAs and their anti-inflammatory 
oxylipins, which together point towards an atheroprotective plasma profile 
induced by prolonged niacin treatment. 
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Supplementary section 
 

Figure S I : Adipose tissue fatty acid composition of gWAT from APOE*3-
Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and 
without niacin. Mean±SD, N=14 for Control/N=13 for Niacin, *p<0.05 
compared to control gWAT after false discovery rate correction 

 

Figure S II: Liver fatty acid composition from APOE*3-Leiden.CETP mice fed a 
western type diet with 0.1% cholesterol with and without niacin. Fraction of 
total area corrected sum. Mean±SD, N=14 for Control/N=13 for Niacin. *p<0.05 
comparing control gWAT to niacin gWAT after false discovery rate correction. 
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Table S III : Liver fatty acid composition from APOE*3-Leiden.CETP mice fed a 
western type diet with 0.1% cholesterol with and without niacin. Fraction of total 
area corrected sum. Mean±SD, N=14 for Control/N=13 for Niacin. (*)Significant 
finding after false discovery rate correction. 

Control Liver Niacin Liver Control vs 
Niacin 

SFA Average SD Average SD P-value 

C10:0 8,23E-05 4,42E-05 9,74E-05 7,38E-05 0,5248 

C12:0 0,000143 5,17E-05 0,000152 5,92E-05 0,6948 

C14:0 0,003877 0,000907 0,003968 0,001167 0,8245 

C16:0 0,20753 0,013181 0,196168 0,020302 0,0989 

C17:0 0,000625 9,85E-05 0,000565 5,39E-05 0,0739 

C18:0 0,057714 0,014338 0,059939 0,013182 0,6860 

C20:0 0,000262 0,000122 0,000229 6,67E-05 0,4218 

C22:0 0,000147 0,000125 0,000107 3,45E-05 0,2909 

MUFA    

C14:1 9,46E-05 3,57E-05 9,7E-05 2,96E-05 0,8528 

C16:1 0,019737 0,00563 0,020314 0,004366 0,7759 

C17:1 0,00056 0,000161 0,000524 0,000112 0,5268 

C18:1 0,621529 0,018559 0,628717 0,023243 0,3893 

C20:1 0,010283 0,002869 0,009425 0,001852 0,3834 

C22:1 0,000124 8,64E-05 9,79E-05 2,31E-05 0,3213 

PUFA n-3    

ALA C18:3 9,17E-05 4,6E-05 0,00011 3,92E-05 0,2796 

ETA C20:3 0,000388 0,000133 0,000438 0,000173 0,4111 

EPA C20:5 0,00721 0,00204 0,00886 0,002503 0,0763 

DPA C22:5 - - - -  

DHA C22:6 0,000669 0,000237 0,000828 0,000228 0,0945 

PUFA n-6    

LA C18:2 0,019119 0,003479 0,020887 0,003278 0,1973 

C20:2 0,000276 9,29E-05 0,000271 0,000102 0,9115 

C22:2 1,49E-05 2,02E-05 9,08E-06 4,02E-06 0,3334 

C18:3 2,17E-05 1,29E-05 2,69E-05 1,31E-05 0,3204 

C20:3 1,39E-05 7,87E-06 1,19E-05 4,41E-06 0,4437 

AA C20:4 0,008023 0,002318 0,009784 0,002791 0,0916 

AdA C22:4 1,47E-05 3,65E-06 1,69E-05 6,41E-06 0,3014 
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Table S IV: Unfasted plasma PUFA and oxylipin concentrations of APOE*3-Leiden. 
CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. 
Mean±SD, N=14 for Control/N=13 for Niacin. (*)Significant finding after false 
discovery rate correction. 

Control Niacin  Control vs Niacin 

PUFA Average (ng/mL) SD Average (ng/mL) SD  P-value 

ALA 1139,98 69,76 784,61 61,24  (*)0,0007 

EPA 91,51 7,10 82,03 6,51  0,3342 

DPA 1373,47 118,48 1133,20 81,11  0,0996 

DHA 1012,96 52,65 1194,23 52,00  0,0226 

LA 9033,60 427,04 8875,20 273,66  0,7614 

AA 5833,59 417,18 5342,29 192,80  0,2949 

AdA 139,25 11,33 119,86 7,21  0,1608 

Oxylipins       

12-HETE 140,60 100,95 138,77 121,74  0,9666 

Leukotriene E4 0,125 0,020 0,112 0,005  0,0324 

Prostaglandin D2 0,545 0,073 0,528 0,097  0,6066 

Thromboxane B2 3,25 0,95 4,67 2,00  0,0252 

14,15-diHETE 0,247 0,075 0,291 0,127  0,2891 

19,20-diHDPA 0,696 0,131 1,011 0,345  (*)0,0065 
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Figure S III: Correlation between the plasma concentrations of 19,20-
dihydroxydocosapentaenoic acid and docosahexaenoic acid. N=14 mice per 
group, *p<0.05 compared to a slope of zero. 

 

Table S V: Multiple Reaction Monitoring setup for ion transitions of the target 
compounds. Symbols in bold refer to internal standards. RT retention time, Q1 
quadrupole 1 ion selection, Q3 quadrupole 3 ion selection, EP entrance potential, 
CE, collision energy, CCEP collision cell exit potential. HODEs, HOTrEs, HETEs, 
HEPEs, diHETEs and diHDPAs are given without chiral descriptors 

 
Symbol Lipid Maps ID RT 

(min) 
Q1 
(m/z) 

Q3 
(m/z) 

DP 
(Volts) 

EP 
(Volts) 

CE 
(Volts) 

CCEP 
(Volts) 

RvE1 LMFA03070019 4.0 349.1 195.0 -95 -10 -22 -13 
20-hydroxy LTB4 LMFA03020018 4.4 351.1 195.0 -60 -10 -24 -17 
8-iso-PGF2α LMFA03110001 5.1 353.1 193.0 -135 -10 -34 -11 
15-keto-PGE2 LMFA03010030 5.1 349.0 234.9 -65 -10 -20 -13 
TxB2 LMFA03030002 5.2 369.1 169.0 -55 -10 -24 -15 
8-iso-PGE2 LMFA03110003 5.3 351.1 271.0 -5 -10 -24 -19 
13,14-dihydro-15-keto- LMFA03010031 5.6 351.1 235.0 -45 -10 -30 -13 
PGE2-d4 LMFA03010008 5.6 355.1 193.0 -50 -10 -26 -17 
PGE2 LMFA03010003 5.7 351.2 271.1 -50 -10 -22 -21 
PGD2 LMFA03010004 5.8 351.1 233.0 -30 -10 -16 -13 
LXB4 LMFA03040002 6.0 351.1 220.9 -60 -10 -22 -13 
PGF2α LMFA03010002 6.1 353.1 193.0 -80 -10 -34 -11 
RvD2 LMFA04000007 6.2 375.1 277.1 -60 -10 -18 -15 
LXA4 LMFA03040001 6.5 351.1 114.8 -40 -10 -20 -11 
13,14-dihydro-15-keto- LMFA03010027 6.6 353.1 195.0 -110 -10 -32 -11 
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AT-RvD1 LMFA04000074 6.7 375.0 215.0 -50 -10 -26 -11 
RvD1 LMFA04000006 6.7 375.1 215.0 -50 -10 -26 -11 
epi-LXA4 LMFA03040003 6.8 351.1 114.9 -20 -10 -22 -11 
RvE2 LMFA03070036 7.8 333.1 114.9 -35 -10 -18 -15 
18S-RvE3 LMFA03070048 8.8 333.1 245.2 -25 -10 -16 -17 
6-trans-LTB4 LMFA03020013 8.9 335.1 194.9 -105 -10 -22 -11 
8S,15S-diHETE LMFA03060050 8.9 335.1 207.9 -55 -10 -22 -17 
LTD4 LMFA03020006 9.0 495.1 177.0 -70 -10 -28 -19 
6-trans-12-epi-LTB4 LMFA03020014 9.1 335.1 194.9 -80 -10 -22 -25 
10S,17S-diHDHA (PDX) LMFA04000047 9.2 359.1 153.0 -70 -10 -22 -9 
18R-RvE3 LMFA03070049 9.2 333.1 245.0 -55 -10 -18 -23 
7S-MaR1 n.a. 9.3 359.1 249.9 -20 -10 -20 -19 
MaR1 LMFA04000048 9.4 359.2 250.2 -65 -10 -20 -13 
LTB4-d4 LMFA03020030 9.4 339.1 196.9 -70 -10 -22 -19 
LTB4 LMFA03020001 9.4 335.1 195.0 -65 -10 -22 -21 
14,15-diHETE LMFA03060077 9.5 335.1 207.0 -65 -10 -24 -21 
7,17-diHDPA n.a. 9.5 361.1 198.9 -45 -10 -26 -23 
LTE4 LMFA03020002 9.6 438.1 333.1 -55 -10 -26 -15 
19,20-diHDPA LMFA04000043 10.2 361.1 273.0 -55 -10 -22 -15 
9-HOTrE LMFA02000024 10.2 293.0 170.9 -75 -10 -20 -15 
13-HOTrE LMFA02000051 10.3 293.0 195.0 -45 -10 -24 -19 
18-HEPE LMFA03070038 10.4 317.1 259.0 -5 -10 -16 -7 
15-HEPE LMFA03070009 10.5 317.1 219.0 -65 -10 -18 -19 
13-HODE LMFA02000228 10.8 295.0 194.9 -110 -10 -24 -21 
9-HODE LMFA02000188 10.8 295.0 171.0 -130 -10 -22 -7 
15-HETE-d8 LMFA03060080 10.9 327.2 226.0 -85 -10 -18 -11 
15-HETE LMFA03060001 11.0 319.1 219.1 -55 -10 -18 -9 
11-HETE LMFA03060003 11.1 319.1 167.0 -70 -10 -22 -15 
17-HDHA LMFA04000072 11.1 343.1 245.0 -65 -10 -16 -15 
12-HETE LMFA03060007 11.2 319.1 179.0 -65 -10 -20 -23 
8-HETE LMFA03060006 11.2 319.1 154.9 -70 -10 -20 -19 
5-HETE LMFA03060002 11.3 319.1 115.0 -65 -10 -18 -11 
ALA LMFA01030152 12.4 277.0 233.0 -90 -10 -22 -29 
EPA LMFA01030759 12.4 301.0 202.9 -125 -10 -18 -21 
DHA-d5 LMFA01030762 12.4 332.0 288.1 -75 -10 -16 -13 
DHA LMFA01030185 12.7 327.1 229.2 -115 -10 -18 -11 
AA LMFA01030001 12.7 303.0 205.1 -155 -10 -20 -11 
LA LMFA01030120 12.8 279.0 261.0 -115 -10 -28 -13 
DPA n-3 LMFA04000044 13.0 329.1 231.1 -50 -10 -20 -17 
AdA LMFA01030178 13.1 331.1 233.0 -130 -10 -22 -11 
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Figure S IVa: MS/MS of 0.1 ng/mL standard sample at Relative RT 1.016 
(Leukotriene E4) 

 

Figure S IVb: MS/MS spectra of representative sample at Relative RT 1.015 
(Leukotriene E4) 
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Figure S Va: MS/MS spectra of 0.1 ng/mL standard sample at Relative RT 0.925 
(Thromboxane B2) 
 
 

 

Figure S Vb: MS/MS spectra of representative sample at Relative RT 0.927 
(Thromboxane B2) 
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Figure S VIa: MS/MS spectra of 0.1 ng/mL standard sample at Relative RT 1.087 
(19,20-diHDPA) 
 

 

        

 

Figure S VIb: MS/MS spectra of representative sample at Relative RT 1.087 
(19,20-diHDPA) 
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Figure S VII: Release of medium chain saturated fatty acids from adipocytes 
isolated from APOE*3- Leiden. CETP mice fed a western type diet with 0.1% 
cholesterol with and without niacin. Fatty acid release in arbitrary units during a 
2 hour ex vivo basal incubation. Mean±SD, N=14 for Control/N=13 for Niacin. 

 
Figure S VIII: Release of DHA and AA from adipocytes isolated from APOE*3-
Leiden. CETP mice fed a western type diet with 0.1% cholesterol without niacin. 
Fatty acid release in arbitrary units during a 2 hour ex vivo incubation in basal 
and 8Bromo-cAMP stimulated conditions. Mean±SD, N=14 for Control/N=13 for 
Niacin. **** p<0,0001 for Basal vs 8Br-cAMP. 
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Figure S IX: Ratio of DHA/AA released fatty acids from adipocytes isolated from 
APOE*3-Leiden. CETP mice fed a western type diet with 0.1% cholesterol 
without niacin. Fatty acid release in arbitrary units during a 2 hour ex vivo 
incubation under basal and acute niacin conditions. Mean±SD, N=14 for 
Control/N=10 for Acute niacin. 
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Abstract 
Increases in throughput and decreases in costs have facilitated large scale 
metabolomics studies, the simultaneous measurement of large numbers of 
biochemical components in biological samples. Initial large scale studies 
focused on biomarker discovery for disease or disease progression and 
helped to understand biochemical pathways underlying disease. The first 
population-based studies that combined metabolomics and genome wide 
association studies (mGWAS) have increased our understanding of the 
(genetic) regulation of biochemical conversions.  Measurements of 
metabolites as intermediate phenotypes are a potentially very powerful 
approach to uncover how genetic variation affects disease susceptibility and 
progression. However, we still face many hurdles in the interpretation of 
mGWAS data. Due to the composite nature of many metabolites, single 
enzymes may affect the levels of multiple metabolites and, conversely, levels 
of single metabolites may be affected by multiple enzymes. Here, we will 
provide a global review of the current status of mGWAS. We will specifically 
discuss the application of prior biological knowledge present in databases to 
the interpretation of mGWAS results and discuss the potential of 
mathematical models. As the technology continuously improves to detect 
metabolites and to measure genetic variation, it is clear that comprehensive 
systems biology based approaches are required to further our insight in the 
association between genes, metabolites and disease. 

Introduction 
The “inborn errors of metabolism” as defined by Garrod at the beginning of 
the twentieth century depict  the first clearly recognized examples of specific 
genetic defects leading to the accumulation of metabolites in body fluids [1]. 
For example, in alkaptonuria, a genetic defect in the enzyme homogentisate 
1,2-dioxygenase leads to the accumulation of homogentisic acid and its oxide 
alkapton in plasma and urine. Detection of alkapton in urine is relatively 
simple in that exposure of urine from affected patients to air results in black 
discoloration that is readily detected by eye. Alkaptonuria is transmitted as a 
recessive Mendelian trait with near complete penetrance and is an example 
of a rare metabolic disease caused by rare genetic variants [2].  

 Changes in plasma metabolites are also pathogenic hallmarks of 
common metabolic diseases such as type-2 diabetes. The defining metabolic 
marker for type 2 diabetes is glucose, but hyperglycemia co-occurs with 
changes in a variety of additional metabolites including amino acids, lipids 
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and lipoproteins. The high heritability of type 2 diabetes is not explained by 
rare genetic variants segregating in families, but is thought to be caused by a 
variety of, and presumably combination of common genetic variants. This 
paradigm is referred to as “common disease-common variant” hypothesis 
and is pursued in so-called genome wide association studies (GWAS). In 
GWAS, genome wide genotyping platforms measure genotypes for hundred 
thousand to millions of single nucleotide polymorphisms (SNPs) with minor 
allele frequencies (MAF) generally larger than 0.05 and test each of those 
SNPs for association with a specific trait [3]. A large number of GWAS have 
been performed with a variety of both binary traits (e.g. type 2 diabetes) and 
quantitative traits (e.g. fasting glucose levels). These studies have 
successfully uncovered genetic variants that contribute to disease risk and 
also to the variation in quantitative phenotypes [4]. For example, for type-2 
diabetes, thus far, more than 60 risk loci have been identified, giving novel 
insights into the complex pathophysiology of the disease. However, the risk 
attributed to individual SNPs in the vicinity of even the strongest candidate 
gene, transcription factor 7-like 2 (TCF7L2), are relatively modest (odds ratios 
of 1.5-1.7) [5]. Moreover, the combined genetic loci discovered to date 
explain only a small proportion (less than 5%) of the observed heritability of 
type 2 diabetes. Thus, a significant proportion of the observed heritability 
remains to be uncovered [6]. 

 Since a large proportion of the SNPs discovered through GWAS are 
intergenic or lie within the intronic regions of genes, rather than in the 
protein coding sequences, the genetic basis for the association is often not 
obvious. It is possible that the SNPs discovered through GWAS are in linkage 
disequilibrium (LD) with the real causal variant that is not captured by the 
platform. This hypothesis to uncover “missing heritability” is currently being 
tested by many labs using next generation deep sequencing approaches to 
screen the whole genome or whole exome to locate the functional variants. 
Unfortunately, thus far, these approaches have met with relatively limited 
success. This lack of success may be associated with our inability to recognize 
the causative variants among the many detected variants. Alternatively, 
GWAS hits may constitute expression quantitative trait loci (eQTLs) 
influencing the expression level of one or more genes nearby (cis-eQTLs), or 
at a distant physical location (trans-eQTLs) [7, 8]. Recently, a combination of 
RNA and genome sequencing has provided in-depth insight into the relation 
between genetic variation and transcriptome variation and their association 
with functional variation [9].  
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 Whereas it is often difficult to determine the effect of GWAS-
discovered SNPs on nearby or distant genes, it is clear that many different 
genes and loci are involved in the pathogenesis of complex diseases such as 
type 2 diabetes. In addition, it is also clear that environmental factors 
including lifestyle (i.e. diet and physical activity) affect the development of 
diabetes. Therefore, it may be more appropriate to consider common 
metabolic disorders such as diabetes as the outcome of a variety and often 
combination of mild “inborn errors of metabolism” in conjunction with the 
environment. These mild “inborn errors of metabolism” would be reflected 
by differences in the concentrations of metabolites in cells and/or body fluids 
and could provide insight into the “missing heritability”. The terms 
“genetically determined metabotype” (GDM) [10] and “genetically 
influenced metabotype” (GIM) have been coined for this [11]. GIM has been 
defined as relatively prevalent genetic variants that lead to substantial 
modification in the efficiency of metabolic conversions [12]. The combination 
of GIMs in any given individual determines his metabolic individuality and 
thus, in combination with environment and lifestyle, the risk for metabolic 
disorders such as type 2 diabetes. 

Metabolomics measurements 
 The detection of GIMs has been facilitated by technological 
developments in the field of metabolomics, where it is now possible to 
simultaneously measure hundreds of metabolites in large sets of biological 
samples using automated procedures, and at relatively low cost (10s of euros 
per sample). A variety of metabolomics platforms are available, all having 
their own characteristics. Generally speaking, the metabolomics techniques 
can be divided in two types of platforms and two types of approaches. 
Metabolomics platforms based on mass spectrometry (MS) in general require 
extensive sample preparation and are used in-line with gas or liquid 
chromatography (GC-MS and LC-MS). In contrast, nuclear magnetic 
resonance (NMR) based platforms require relatively limited sample 
preparation and the samples can be analyzed without prior separation 
procedures. MS and NMR based platforms can be employed for targeted 
and/or non-targeted approaches. In a targeted approach, the platform is 
optimized for detection of a set of predefined metabolites and absolute or 
relative concentrations are determined using internal standards. In contrast, 
in a non-targeted approach, the platform is optimized to capture global 
snapshots of the test and reference samples and reports the differences. To 
subsequently identify the metabolites underlying the differential signal in the 
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untargeted approach, additional analyses are required that are frequently 
challenging. Therefore, metabolomics datasets from a non-targeted 
approach often contain a large number of ‘unknown’ compounds. The main 
characteristic of all metabolomics platforms is that a subset of compounds 
can be detected based on common chemical properties of these compounds 
rather than their biological relatedness. No single analytical technique exists 
that is suitable for the identification and quantification of all endogenous 
metabolites in a sample. 

Excellent reviews on the possibilities and challenges of the different 
metabolomics platforms and approaches are available [13-15]. In general, 
NMR spectroscopy is highly reproducible and quantitative. However, NMR 
spectroscopy is relatively insensitive and metabolite identification relies on 
specialized and mostly proprietary spectral deconvolution algorithms. These 
algorithms may not always identify the same metabolites and may not always 
base the identification of a specific metabolite on the same spectral signal. In 
contrast, MS based platforms provide highly precise information on 
metabolite mass from which identity can often be inferred. However, 
metabolite quantification requires spiked internal standards. Thus, a 
common challenge in metabolomics on any platform is the reproducibility of 
reported metabolite levels across different laboratories. In addition to these 
platform-specific challenges, additional variability may be caused by 
differences in instrumentation and experimental setup conditions such as 
sample preparation and extraction method, collection protocols, source 
material (plasma, serum, urine, etc), but also sample storage conditions and 
batch effects. These aspects all require careful consideration when 
replicating observations and pooling metabolomics data for meta-analyses. 

Genome wide association studies of metabolomics data 
Since metabolomics data are (semi)quantitative, they are suited for 
metabolomics GWAS (mGWAS), uncovering genetic variants that affect 
metabolite levels. One of the first studies employed an MS-based platform 
that could identify and quantify up to 363 metabolites in 284 individuals [10]. 
The study reported that common SNPs explained up to 12% of the observed 
variance in metabolite levels. Moreover, the study determined that the 
explained variance could be dramatically increased by considering ratios of 
metabolites. This is because analyzing ratios of metabolite concentrations 
potentially reduces the variation in the dataset when the pair of metabolites 
is related to the substrate and product of a given enzymatic reaction. 
Furthermore, where a SNP impacts such a metabolic reaction, consideration 



 

228 

of ratios leads to a dramatic reduction in p-value of association. For example, 
rs174548, a SNP in an intron of the fatty acid delta-5 desaturase 1 (FADS1) 
gene is associated with a phosphatidylcholine moiety, PC C36:4 (36 denotes 
the number of carbons in the side chains and 4 denotes the number of double 
bonds) levels with a p-value of 4.52 × 10-8, slightly above the genome-wide 
threshold. However, association of the same SNP with the ratio of  PC C36:4 
/ PC C36:3 has a p-value of 2.4 × 10-22, a reduction by 14 orders of magnitude. 
The FADS1 enzyme introduces a double bond in long chain polyunsaturated 
fatty acids and the moities PC C36:3 and PC C36:4 are related to the substrate 
and product of this enzymatic reaction. 

A consistent theme that has emerged from mGWAS is that significant SNP-
metabolite associations point to the underlying biological mechanism. This is 
in contrast to GWAS of clinical endpoints where unravelling the underlying 
mechanism is often much more challenging. In addition to FADS1, several 
other associations have shown that the functional nature of the gene 
matches with the biochemical characteristics of the associated metabolite. 
For example, SNPs in the gene GLS2 (glutamine synthase 2) have been found 
associated with glutamine [16, 17].This is a biologically plausible association 
because the enzyme GLS2 catalyses the hydrolysis of glutamine. 
Furthermore, genome-wide hits with unknown gene function offer an 
opportunity to infer novel biological mechanism underlying the SNP-
metabolite association. For example, as a proof of principle, Suhre et al 
experimentally investigated the association of the SNP rs7094971 in the 
solute carrier family 16, member 9 (SLC16A9) with carnitine. The study 
validated that the hitherto uncharacterized protein was indeed a carnitine 
transporter in Xenopus oocytes [17]. This result underscores the utility of 
mGWAS in uncovering novel functions and identifying candidate genes for 
further study. 

Table 1 provides an overview of published mGWAS, their characteristics and 
main findings. It is obvious that the number of highly significant associations 
is overwhelming and that many of these associations have yet to be 
interpreted in their proper pathophysiological context. The heritability of 
small metabolites and amino acids has been reported to vary between 23% 
and 55%. The heritability of lipids and lipoproteins is somewhat higher 
ranging, respectively, from 48% to 62% and 50% to 76% [16]. A recent report 
from a community based cohort indicates that for the majority of 
metabolites, heritability explains > 20 % of inter-individual variation and that 
variation attributable to heritable factors is greater than that attributable to 
clinical factors [18]. The non-heritable proportion of the variation in 
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metabolite levels is likely due to factors such as age, gender, menopause, 
medication, smoking, nutrition and underlying diseases. The relative 
contribution and interplay of each of these factors requires larger mGWAS 
and modeling of gene x environment interactions. 

Challenges associated with mGWAS 
Metabolomics platforms generally yield information on the levels of one to 
several hundreds of metabolites. Consideration of all metabolites results in a 
severe multiple testing burden. This precludes genuine SNP-metabolite pairs 
from being considered when they fail to reach the stringent statistical 
threshold for significance. This problem is further exacerbated when 
considering metabolite ratios. The p-value threshold for a single outcome 
GWAS is determined by the number of independent genomic loci. Due to the 
intricate LD structure of the human genome, this p-value is typically set at p 
< 5 × 10-8. Similar to SNPs in LD, a significant proportion of the metabolites 
are highly correlated to other often similar metabolites and cannot be 
considered as independent. To account for multiple test correction, some 
groups have computed the Bonferroni correction by counting all the 
metabolites [10, 17, 19], while a few other groups have adopted a less 
stringent strategy by taking into account the number of independent 
metabolites as determined by a principle component analysis [20]. A 
standardized approach to deal with the multiple testing issue in mGWAS 
remains to be formulated. Another issue relates to the reporting of novel hits. 
In conventional GWAS, a hit for a specific phenotype is novel if it is 
independent from previously reported SNPs that are associated with the 
phenotype. In mGWAS, some of the hits associate with closely related yet 
non-identical metabolites/phenotypes. In these cases, the association but 
not the SNP is novel.The mGWAS that have been reported so far followed the 
classical GWAS approach to uncover genetic variants affecting metabolites 
and metabolite ratios. The selection of metabolite ratios for GWAS has been 
done based on selected prior knowledge or simply by analyzing all possible 
combinations. For example, Illig et al. analyzed the whole ratio matrix of 163 
metabolites quantified by a commercial targeted array designed to capture a 
selection of sugars, amino-acids, acyl-carnitines and phospholipids. Despite 
the burden of multiple testing inherent to this approach, they still were able 
to capture associations below the significance threshold, particularly for the 
FADS locus [19]. This is likely due to the fact that both the substrate and the 
product of the FADS enzymes were present in the platform, which may not 
be always the case for other metabolites and enzymes. Our group followed a 
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similar approach and performed an mGWAS for phospholipids and 
sphingolipids. To decrease the burden of multiple testing we used the 
proportion of each metabolite within its own class, in addition to its absolute 
concentration and reported additional 6 new loci for these molecules [20]. 
However, these unbiased but naive approaches seem insufficient to fully 
exploit the data generated by the metabolomics platforms. Although 
increasing the sample size will reveal novel genes affecting metabolite levels, 
additional novel approaches that utilize knowledge of biological relatedness 
between the molecules are required to take mGWAS one step further. 

Various genes that have been identified thus far to affect metabolite levels 
have also been identified in GWAS of conventional metabolic traits, such as 
glucose and total plasma lipids. For example, variation in the FADS gene 
cluster is associated with the fatty acid composition of phospholipids, but 
also fasting glucose levels, triglycerides and total cholesterol (table 1 and 
[21]). In addition, the FADS gene cluster has also been associated with the 
intermediary outcome intima media thickness [20]. These data are in 
agreement with the notion that phospholipids are somehow causally 
involved in one of the first steps leading to disturbances in glucose and/or 
lipid metabolism and subsequent cardio-metabolic disease. However, 
numerous hypotheses can be formulated to link phospholipids with cardio-
metabolic disease. These hypotheses include changes in cellular membrane 
properties and thus receptor function, but also changes in lipoprotein surface 
properties and function. Whether any or all of these potential mechanisms 
play a role in the link between the FADS gene cluster and disease remains to 
be determined and experimentally validated. However, detailed insight into 
the specific pathways that are affected by variation in phospholipids is a 
required first step to select the most likely hypotheses. 

Pathway analysis of mGWAS data 
 Pathway analysis is exquisitely suited to increase the statistical power 
to identify biologically plausible loci and simultaneously improve our 
understanding of the underlying biological mechanisms. Pathway-based 
approaches examine test statistics for a group of genes in contrast to single-
marker analysis. The ‘group of genes’ is an expert defined set that is 
functionally related to the phenotype. The utility of this technique to identify 
novel and biologically meaningful loci has already been shown in GWAS with 
clinical endpoints [22-25]. Furthermore, pathway based approaches are 
uniquely suited to mGWAS owing to the abundance of knowledge on 
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proteins involved in metabolite conversion and secretion, as captured in 
various databases of metabolic pathways and reactions.  

The term ‘pathway’ in a pathway analysis is usually referring to a set of 
functionally related genes participating in a common biological process. The 
resources of prior knowledge that are commonly used in pathway analysis 
include controlled vocabularies like Gene Ontology [26], manually curated 
gene sets from MSigDB [27] and the pathway databases like KEGG[28], 
BioCyc[29] and REACTOME [30]. Metabolic pathways offer the ideal 
knowledge resource for pathway analysis in mGWAS due to the direct 
relationship between entities represented in these databases and 
compounds measured on metabolomics platforms. 

Metabolic pathways consist of three tiers of information: 1) metabolites at 
the lowest level; 2) reactions built from metabolites and the enzymes that 
drive these reactions; and 3) pathways built upon reactions [31]. Pathway 
databases like KEGG, BioCyc and Reactome have extended our knowledge of 
human metabolism. However, no single database captures all relevant 
biochemical knowledge and conceptual differences between the databases 
pose a serious challenge to knowledge integration efforts [31, 32]. For 
example, a study [33] published in 2011 found that the consensus among five 
major pathway databases at the level of the genes is 13%, at the level of 
enzyme commission (EC) numbers is 18%, at the level of metabolites is 9% 
and at the level of the reactions is merely 3%. The lack of consensus in 
metabolite specific databases extends to resources like HMDB [34] and 
ChEBI[35] due to differing representation of common metabolites and 
reactions. Three recent efforts namely BKM-react [36], MetRxn [37], and 
MNXref [32] attempt to automate the reconciliation of metabolite and 
reaction information. 

Pathway analysis entails selecting a pre-defined set of genes or pathways to 
test for enrichment. This selection is generally based on the relevance of the 
test set to the phenotype being assessed by the GWAS. The generation of 
gene sets relevant to metabolites requires a systematic interrogation of 
metabolite databases and depends heavily on the accessibility and download 
formats made available by the database. Furthermore, it is important that 
the software developed to generate such gene sets is easy to use. To address 
these issues, we have developed tools to systematically interrogate on-line 
databases using Taverna [38], a workflow-based management system. 
Taverna allows users access to remote data resources like KEGG, BioCyc, 
Ensembl  [39] and NCBI [http://www.ncbi.nlm.nih.gov/] and data 
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management systems like Biomart [40] through implementation of web 
services. To generate a gene set for each of the metabolites measured on a 
metabolomics platform, we designed workflows to interrogate pathway 
databases and retrieve genes from pathways and reactions relevant to the 
metabolite [41]. A corresponding SNP set (SNPs present in ±25 kb flanking 
region of the genes) was generated for each of the metabolites. As a proof of 
principle, we investigated the utility of the reduced and biologically relevant 
SNP set to identify known and novel association from a published GWA 
dataset by Illig et al [19].  The smaller SNP set reduced the multiple-testing 
threshold by around two orders of magnitude. This reduction helped us 
discover novel SNP-metabolite associations in the Illig et al GWAS datasets 
[41]. For example, a SNP in the gene ALDH1L1 (aldehyde dehydrogenase 1 
L1) was found associated with the ratio of serine/glycine. The original study 
missed this association because the p-value cut-off in the discovery stage of 
the study precluded this association from being considered in the replication 
stage. ALDH1L1 is an important component of the one-carbon pool pathway 
and acts upstream of SHMT (serine hydroxy methyl transferase) enzyme that 
mediates the bulk of glycine to serine conversion in the cell. This reaffirms 
the notion that a method that relies on background knowledge present in 
pathway databases has the ability to reduce the multiple test burden and 
thereby facilitate the discovery of true positives in GWAS results. It should be 
noted that assignment of SNPs to genes represents a challenge in itself. It is 
common to include only SNPs in the coding region of the gene or within a 
certain, more or less arbitrary, distance threshold. However, Hong et al [42] 
note that the reliable conversion of SNPs to representative genes is not trivial 
and that positional gene clustering if not corrected for can lead to spurious 
results in a pathway analysis. Properly accounting for LD structure and 
knowledge on eQTLs will help to link SNPs to the right genes. 

Our pathway analysis approach to alleviate the multiple-testing burden 
through selective testing of SNPs can be seen as complementary to 
conventional GWAS analysis. However, pathway analysis can also be used in 
a post-GWAS setting to identify enriched pathways within the identified 
significantly associated SNPs. We have reported [20] a pathway analysis 
designed to identify enriched pathways using web accessible software made 
available by ConsensusPathDB [43]. The latter is a database that integrates 
pathways and interaction resources made available by databases like KEGG, 
BioCyc and Reactome. The study reported the enrichment of the following 
pathways for phospholipid traits: glycerolipid metabolism, chylomicron-
mediated lipid transport, triglyceride biosynthesis and metabolism of lipids 
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and lipoproteins. The list of enriched pathways functionally matches the 
traits, thus reinforcing the importance of pathway analysis in such studies.  

Pathway analysis approaches for GWAS can be categorized based on the type 
of input data and the specific null hypothesis that is being tested [44]. With 
regard to input data, there are two types of approaches; one approach uses 
SNP p-values and the other approach uses the effect sizes derived from SNP 
phenotype data (beta’s) to calculate pathway-level statistics. With regard to 
the null hypothesis being tested, two approaches are available: competitive 
tests and self-contained tests. A competitive test compares the test statistic 
of a gene set to a standard defined by its complement. In contrast, a self-
contained test compares the test statistic of the gene set to a fixed standard 
and does not take into account genes in other gene sets. The issues and 
solutions to SNP-to-gene mapping and tests for gene set enrichment are 
common to all GWAS and we would like to direct the readers to other 
excellent reviews [44-46]. 

Gaussian Graphical Modelling 
Gaussian Graphical Modelling (GGM) is an unbiased and database 
independent approach to reconstruct metabolic networks from large-scale 
metabolomics data sets [47]. GGMs are undirected probabilistic graphical 
models, in which pairwise correlations between metabolites are conditioned 
against the correlations with all other metabolites in the dataset. Krumsiek 
et al. [47] demonstrated that the high partial correlations represent direct 
interactions and that groups of metabolites that score highly in the 
correlation matrix can be attributed to reaction steps in known pathways. As 
indicated earlier, non-targeted metabolomics platforms also quantify many 
‘unknown’ metabolites. This issue was addressed in a recent work by 
Krumsiek et al [48] who demonstrated that unknown metabolites can be 
identified by integrating GGMs with mGWAS results. Their method exploits 
partial correlations between known and unknown metabolites in addition to 
their association to specific loci in order to generate a hypothesis regarding 
the identity of the unknown metabolites. Through experimental validation 
the study provided genetic and biochemical evidence for classification of 
several unknown metabolites. These studies demonstrate that GGMs in 
combination with mGWAS could potentially facilitate metabolite 
classification and also provide a more comprehensive elucidation of enzyme-
metabolite relationship and metabolic pathways. 
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Pleiotropy in mGWAS 
Most metabolomics platforms measure numerous metabolites that are 
highly related and correlated to each other. For example, the Biocrates 
Absolute IDQ© p150 mass-spectrometry based platform measures up to 163 
metabolites belonging to the classes of amino acids, carnitines, and 
phospholipids. Of the phospholipids, 90 different PCs are measured that only 
differ based on alkyl/acyl bonds, number of single/double bonds and length 
of the side chains. Genes that affect the levels or degree of saturation of fatty 
acids also influence the phospholipid pool. Hence, several loci that 
participate in fatty acid metabolism associate with multiple 
phosphatidylcholines [10, 19, 20].  

Pleiotropy, the association of a genotype with multiple phenotypes, 
represents an opportunity to increase the power to identify novel loci and 
gain insight in metabolic pathways. However, GWAS based on univariate 
statistical analysis does not take pleiotropy into account. A few groups have 
developed algorithms and software to exploit the potential of increased 
statistical power using multivariate statistical analysis [49-54]. Ried et al. [49] 
developed a method called “Phenotype Set Enrichment Analysis” (PSEA) for 
the analysis of gene effects on iron-related and blood count traits. The aim 
of PSEA is to test if a predefined set of phenotypes is associated with a gene. 
The advantage of such a joint analysis is two-fold: first, the combined analysis 
of multiple phenotypes can provide insight into the underlying genetic basis 
and second, it leads to improved statistical power in comparison to 
association analysis of single phenotypes. PSEA is based on the idea of gene 
set enrichment analysis for the investigation of phenotype sets. The analysis 
consists of four steps: i) generate a gene-wise test statistic per phenotype; ii) 
determine an enrichment score for each combination of phenotype set and 
gene; iii) a permutation test to determine the enrichment of a phenotype set; 
and iv) determine the statistical significance of the phenotype set and 
account for multiple test correction. In another study, Stephens et al. [50] 
report a unified framework that extensively relies on Bayesian statistics for 
association analysis of multiple related phenotypes. The utility of the method 
is illustrated with an application to a genome-wide association study of blood 
lipid traits from the Global Lipids consortium. To identify novel associations 
the study applied a two-stage process where in the first stage promising SNPs 
were identified by applying univariate and multivariate tests to every SNP 
and in the second stage a Bayesian analysis was performed on the set of 
promising SNPs. The method could identify 18 potentially novel genetic 
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associations that were not identified by the traditional univariate analysis. In 
general, however, a limitation of multivariate algorithms is that they operate 
only for a modest number of phenotypes. Inouye et al [54] report a 
multivariate analysis that utilizes the correlation structure of the 130 
metabolites measured on their NMR platform. An unsupervised algorithm is 
used to identify metabolic networks and in the next step a multivariate test 
of association for each of the networks with the SNP panel is performed. The 
authors report 7 new loci using this method. These results indicate that 
mGWAS analyses profit from a shift from the univariate analysis paradigm to 
joint modeling of phenotypes to improve the power in identification of novel 
loci as well as to improve our understanding of the biological function for 
known loci. 

Towards mechanistic models 
 To completely understand the relations between different 
metabolites in the various tissues and cell types, it is essential to have a full 
description of all relevant metabolic reactions and the involved enzymes and 
transporter proteins. This knowledge can be utilized to develop 
mathematical models that describe the fluxes through the metabolic system. 
Furthermore, these models can then be used to predict how fluxes and 
metabolite levels change as a consequence of genetic variation. This 
modelling approach is generally referred to as ‘bottom-up’ systems biology 
[55].  

Recently, in a global research effort several genome-scale metabolic models 
(GSMMs) have been merged into a consensus model for human metabolism 
[56]. The key difference between this model and pathway databases is that 
GSMMs are represented mathematically and have typically undergone 
additional curation steps that enable mathematical analysis of these models. 
Most importantly, curation consists of 1) ensuring that all reactions are mass 
balanced, 2) filling the gaps in the model such that the network is fully 
connected, and 3) checking that the model is functionally valid, i.e. it has to 
faithfully predict which metabolic conversions an organism (or tissue) is 
capable of. A detailed protocol for the reconstruction and curation of 
organism and tissue-specific GSMMs has recently been described by Thiele 
and Palsson [57].   

Given a fully functional GSMM, its behavior can be analyzed in terms of the 
space of feasible steady state fluxes through the network, using a set of 
techniques commonly referred to as constraint-based analysis (CBA) [58-61]. 
An application of CBA that is of particular interest to metabolic research in  
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Box 1. 
Pathway analysis of mGWAS results. The first step of pathway analysis consists of mapping 
the locus associated with the metabolite level to a set of candidate genes. Candidate gene selection may be 
based on LD, vicinity to the associated locus or the fact that the locus affects the expression of a gene at some 
distance (eQTL). An alternative approach for selecting can- didate genes from mGWAS results is to 
aggregate the p-values of all SNPs that lie close to a gene into a gene-wise p-value and subsequently 
consider significant genes. The next step in- volves integrating the selected genes with knowledge from 
pathway databases and/or metabolic models. Three separate approaches can be distinguished at this 
point: (1) gene set analysis, (2) network or graph analysis and (3) constraint based analysis. (1) Gene set 
analysis employs expert derived gene sets representing biological pathways and processes to de- termine 
whether certain sets are statistically enriched for the selected genes. (2) Network analysis uses the topology 
of a biological network to identify enriched submodules. The most commonly used biological networks are 
Protein–Protein Interaction (PPI) networks and metabolic networks that consist of graphs with edges 
between metabolites and enzymatically catalyzed reactions (represented by squares and circles, 
respectively, in the diagram). (3) Constraint based analysis (CBA) provides a set of mathematical techniques 
that characterize the functional capacity of a metabolic network in terms of the feasible fluxes through the 
network. In contrast to traditional network analysis, CBA takes into account the steady state and 
thermodynamic constraints that are imposed by the set of reactions. That is, internal metabolites may not 
be net produced or consumed and the flux through irreversible reactions must be non-negative [57–61]. 
CBA requires well curated genome scale models such as developed by Thiele et al. [56]. In the diagram the 
Manhattan plot of a GWAS on serine levels is shown, focusing on the locus inside the PHGDH gene that was 
first discovered by Sühre et al. [17]. The enzyme encoded by PHGDH catalyzes the conversion of 3-
phospho-D-glycerate (3PG) to 3-phosphonooxypyruvate. Mapping this gene to the pathway gene sets 
defined in KEGG shows that it occurs in the “glycine, serine and threonine metabolism” pathway 
(rn00260), which provides a direct link to serine. Using network analysis, several possible paths are found 
between the reaction catalyzed by PHGDH and serine that could explain the association between gene and 
metabolite. Finally, CBA gives a more specific result and shows that PHGDH plays a role in serine biosynthesis 



 

240 

humans is to simulate changes in the flux distribution in response to 
perturbations that reflect pathological or drug treated states. Shlomi et al 
[62] and Thiele et al [56] have used this method to predict metabolite 
biomarkers for inborn errors of metabolism. Their approach consisted of 
predicting the variation in metabolite concentrations and comparing this 
variation between the healthy case, in which fluxes could pass through the 
reaction associated with the gene of interest, and the disease case, for which 
this reaction was blocked. Applying this method on the consensus model of 
human metabolism, Thiele et al [56] were able to predict directional changes 
in metabolite biomarkers with an accuracy of 77%. See Box 1 for a 
comprehensive overview of the different approaches to perform pathway 
analyses of mGWAS results. 

Recently, the use of human GSMMs as a scaffold for the integration and 
interpretation of omics data has been pioneered by Lewis et al [63], Jerby 
and Ruppin [64], and Mardinoglu et al [65]. However, GSMMs have not yet 
been used in the analysis and interpretation mGWAS results. The main 
advantage of CBA is that it goes beyond traditional methods of pathway 
analysis where pathways are either represented as pre-defined gene sets or 
as reaction chains that follow from graph-based searches. Therefore, its 
application to the mGWAS setting has great potential for providing true 
mechanistic insight into the links between genetic loci and metabolic 
phenotypes and constitutes a promising direction for future research. 
Ultimately integration of GSMMs with genetic data and expression and 
clinical phenotypes will help unravel disease patho-physiology and identify 
optimal individualized treatment strategies [66, 67]. 

Conclusions 
The first waves of metabolomics and genetic analyses by mGWAS have 
provided a wealth of insight into the genetic basis of metabolic individuality 
and risk factors for common metabolic disorders, even with modest sample 
sizes and conventional and conservative statistical approaches. However, 
true understanding of the interrelation between common metabolic 
disorders, metabolites and genetic variation requires in depth insight into the 
associated pathways and their regulation. One approach to gain this insight 
is to mine available pathway databases using statistical tools and this 
approach has already proven its value in mGWAS. The next step in pathway 
analyses is to include stoichiometric and kinetic parameters and complement 
the statistical analyses with a more comprehensive systems biology bases 
approach using mathematical modelling. GSMMs are a first step towards that 
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direction, but thus far lack quantitative information. Inclusion of quantitative 
data on the  regulation of enzyme activity and reaction kinetics will be vital 
for developing more accurate predictive models [68]. The combined efforts 
of numerous research groups around the world to address these issues will 
pave the way for the application of comprehensive systems biology based 
approaches to gain insight into the genetics of the human metabolome and 
especially its relation to disease. 
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Chapter 9: General Discussion 
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In Chapter 8, the current state of Genome-Wide association studies of 
metabolite profiles was reviewed and this served as a discussion of Chapters 
2 and 3. This chapter provides further perspectives on Chapters 4, 5, 6, and 
7.  

In Chapter 4 we report that the downregulation of acetyl-CoA metabolic 
network is an important feature in the pathophysiology of obese type-2 
diabetes patients. This work is in line with the network medicine paradigm 
that aims to address the problem that a disease is rarely caused by 
malfunction of one individual gene product, but instead depends on multiple 
gene products that interact in a complex network [1–3]. Through a network-
based bioinformatics analysis, we argue that acetyl-CoA metabolic network 
is the unifying principle behind previously implicated pathways such as 
branched-chain amino acid degradation, fatty acid oxidation and citrate cycle 
dysregulation, in the pathophysiology of type-2 diabetes. The vicinity of 
acetyl-coA metabolism represents a hotspot where abnormalities in 
individual genes potentially accumulate and upon reaching a certain risk 
threshold, lead to the manifestation of type-2 diabetes. Furthermore, disease 
heterogeneity may arise when affected individuals contribute different genes 
in this network topography, or variants within these genes, to the 
manifestation of the phenotype.  

Type-2 diabetes is currently believed to be a multifactorial, complex disease. 
While patients may all exhibit similar clinical manifestations like 
hyperglycemia and insulin resistance, the underlying etiology is 
heterogeneous [4]. However, the current disease classification paradigm 
overgeneralizes pathophenotypes, and does not consider individualized 
nuances in disease expression [3]. More importantly, these patients are often 
treated similarly, with little consideration of individual characteristics that 
might affect clinical outcome and therapeutic response. Therefore, there is 
growing recognition that personalized approaches to treating type-2 
diabetes might bring substantial benefits for the patient as well as the 
pharmaceutical companies. The application of network medicine to 
pharmacology and clinical trials paves the way for individualized or 
“precision” medicine.  In the context of our research, the fact that a central 
pathway in energy metabolism is dysregulated as a whole indicates that 
pharmacological treatment of individual targets in this metabolic pathway is 
unlikely to succeed. Chen and Butte [5] point out that the best approach to 
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treating complex disorders such as type-2 diabetes may be to “modulate the 
disease network by targeting multiple components using a designed poly-
pharmacological ligand or a combination of drugs” rather than using single 
target drugs. Furthermore, taking individual nuances in the network into 
consideration in the design of such compounds should pave the way for 
better and effective drugs. Further research into the causal role of 
downregulation of the acetyl-CoA network in type 2 diabetes should indicate 
whether direct intervention in the acetyl-CoA network will provide novel 
therapeutic approaches. 

Chapter 5 explores differential Allele-Specific Expression (ASE) with the aim 
of identifying genetic variants that are associated with or affect gene 
expression and contribute to the functional differences observed in visceral 
and subcutaneous adipose tissues. ASE studies help to understand the cis-
regulatory basis of variation in gene expression. The analysis of ASE allows 
for the analysis of the genetic component of gene expression in much smaller 
numbers of individuals than in traditional expression quantitative trait loci 
(eQTL) studies, where the genetic variation is usually only a minor contributor 
to the total degree of variation in gene expression between individuals [6]. 
However, it should be realized that allelic imbalance may not be purely 
genetic, but also caused by epigenetic factors [7, 8].  In general, ASE is a 
promising technique and has potential for clinical applications. For example, 
it has been used for tumor type classification [9] and cancer diagnosis [10]. 
Another application for ASE is in interrogating gene-environment 
interactions [11]. While environmental factors have been shown to 
substantially affect human disease risk, this interaction has not been well 
characterized in genome wide studies owing to small genetic effect sizes and 
the steep multiple testing burden. By associating risk factors such as diet, 
exercise, lipid levels, drug usage etc with an individual’s allele-specific 
expression, it will be possible to understand and treat type-2 diabetes more 
effectively. 

Very low calorie diets (VLCD) with and without exercise programs lead to 
major metabolic improvements in obese T2DM patients. However, the 
biological mechanisms underlying these improvements have so far not been 
elucidated fully. Chapter 6 describes the effects of VLCD with or without 
exercise in obese T2DM patients through proteomic analysis of plasma 
obtained from these subjects as lean controls. This study shows that 
proteomic analysis reveals many proteins that exhibit significantly different 
levels in type 2 diabetes patients versus controls and before and after a VLCD. 
Although this gives us an insight into the proteins affected by obesity, insulin 
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resistance, T2DM and diet-induced weight loss, further studies are needed to 
establish if these proteins are causally related to these conditions or the 
success of the intervention. Dense longitudinal sampling could potentially 
resolve the issue of causality by providing mechanistic insight into the 
changes occurring in these subjects as a result of VLCD. A recent study [12] 
showed that a differential metabolic adaptation of mice to a high fat diet is 
associated with striking differences in gene expression patterns. After an 
initial state where high fat feeding induces coherent changes in gene 
expression in liver in all mice tested, there is subsequent modification of gene 
expression towards patterns characteristic of each phenotype (obese and 
diabetic, lean and diabetic, lean and non-diabetic). This shows that there is a 
phased response to an intervention and that mechanisms causing insulin 
resistance may vary over time. High fat diet-induced obesity/diabetes in the 
mouse is considered a good model for the pathogenesis of the human 
conditions. Therefore, future studies should consider integrative, 
longitudinal “omic” assessments to monitor intervention specific adaptations 
[13]. 

Prolonged niacin treatment elicits beneficial effects on the plasma lipid and 
lipoprotein profiles that are associated with a beneficial cardiovascular 
disease (CVD) risk profile. However, niacin also elicits unwanted effects which 
include a severe flushing response. In Chapter 7 we explore the prolonged 
effects of niacin on lipid metabolism in adipocytes of a hyperlipidemic mouse 
model. Prolonged niacin treatment resulted in upregulation of the 
biosynthesis of unsaturated fatty acids pathway in gonadal white adipose 
tissue (gWAT), increased n-3 PUFA secretion from the adipocytes, and an 
increased plasma level of n-3 PUFAs and their anti-inflammatory oxylipins, 
which together point towards an atheroprotective plasma profile.   Niacin 
(also known as nicotinic acid or vitamin B3) has been widely used in the 
prevention of cardiovascular disease. However, the majority of patients 
experience the aforementioned flushing response that is characterized by 
severe reddening of the skin, itching, and tingling. Studies have shown that 
the flushing response is due to the vasodilatory effects of prostaglandin D2 
(PGD2) and prostaglandin E2 (PGE2) which are formed by the enzymatic 
action of cyclooxygenase (COX) on arachidonic acid (AA) that is released from 
membrane phospholipids as a result of niacin action. Interestingly, 
schizophrenia is associated with a blunted flush response to niacin and there 
is evidence for the relevance of n-6 PUFA pathway to the phenotype in these 
subjects [14]. Interestingly, both niacin and omega-3 PUFA have shown 
clinical potential for the treatment of psychosis in schizophrenia patients [15, 
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16]. Therefore, a clear mechanistic understanding of the biochemical 
response to these supplements can benefit both CVD and schizophrenia.  

 It should be noted that PUFA supplementation as a preventive strategy for 
CVD has shown mixed results. While a few studies suggested improvements 
of risk factors [17], a more systematic clinical trial showed no improvements 
for CVD endpoints [18]. A recent article reported that the Inuit population in 
Greenland evolved unique genetic adaptations for metabolizing omega-3 and 
other fatty acids [19]. This discovery raises questions about whether omega-
3 fats are really good for everyone despite the recommended guidelines that 
have been in place for several decades. Alternatively, endogenous induction 
of PUFA or modulation of PUFA derived oxylipin profile may be explored as 
therapeutic strategies. However, outside the context of metabolic disease, 
increased PUFA biosynthesis might be harmful due to their potential 
oxidation to lipoperoxide inflammatory triggers. Similarly, modulating PUFA 
conversion to specific oxylipins may have unintended consequences for the 
inflammatory pathways that play an important role in cancer progression. 
Therefore these therapeutic strategies must be explored with caution while 
taking into account the many functions of PUFA metabolites. Future studies 
should explore novel bioinformatics and systems biology approaches to build 
a network model that predicts phenotypic traits and outcomes for various 
perturbations such as niacin and omega-3 PUFA. Furthermore, this model 
must incorporate individual variation in response, to better understand the 
genetic underpinnings of these complex pathways.  
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Summary 

Advances in technology have turned modern biology into a data-intensive 
enterprise. The advent of high-output technologies like Microarrays and 
Next-generation sequencing technologies has resulted in researchers 
grappling not just with huge volumes but also multiple types of data. While 
generation and storage of high-quality data are an important research focus, 
it is increasingly recognized that translating data into actionable information 
and insight is a critical research challenge. To infer reliable conclusions from 
the data, it is often necessary to integrate large amounts of heterogeneous 
data with different formats and semantics. Given the breadth and volume of 
data involved, this goal is best achieved through automated methods and 
tools for data integration and workflow management. This thesis presents 
automated strategies that combine bioinformatics and statistical methods to 
identify novel biomarkers in high-throughput OMICs datasets pertaining to 
the metabolic syndrome and to gain mechanistic insight into the underlying 
biological processes. An underlying theme in this thesis is data-driven 
approaches that generate plausible hypothesis which is followed by 
experimental verification. 

The main findings in each of the chapters are summarized below. 

Genome-wide association studies of metabolite profiles explain a higher 
percentage of genetic variation and have larger effect sizes than clinical 
phenotypes and traits. However, given the large number of metabolites 
measured, these studies come with a large multiple testing penalty. In 
Chapter 2 we present an automated workflow approach that utilizes prior 
knowledge of biochemical pathways present in databases like KEGG and 
BioCyc to generate smaller gene sets relevant to the metabolite. To retrieve 
a prioritized list of candidate genes associated with metabolite levels, gene 
sets were generated for each metabolite by identifying genes that participate 
in pathways and reactions relevant to the synthesis or degradation of the 
metabolite. For every gene set, a corresponding SNP set was generated by 
retrieving SNPs within the flanking 50 kb of every gene. Re-analysis of a 
published GWAS dataset using the metabolite specific SNP sets confirmed 
previously identified hits and identified a new locus of human metabolic 
individuality, associating  Aldehyde dehydrogenase family1 L1 (ALDH1L1) 
with serine / glycine ratios in blood. The workflow paradigm described in 
chapter 2 is gaining ground in bioinformatics as the technology of choice for 
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recording the steps of computational experiments. In a typical workflow, 
data outputs are generated from data inputs via a set of (potentially 
distributed) computational tasks that are coordinated following a workflow 
definition. However, workflows do not provide a complete solution for 
aggregating all data and all meta-data that are necessary for understanding 
the full context of an experiment. Encapsulating all aspects of an in silico 
analysis and communicating it to the scientific community is a key challenge 
in a computational experiment. Chapter 3 explores the utility of semantic 
web technologies in the preservation of computational experiments. 
Semantic web technologies facilitate the integration of heterogonous data 
on the World Wide Web by making the semantics of the data explicit through 
formal ontologies. More specifically, the chapter discusses the Research 
Object (RO) model, where a research object is defined as a resource that 
aggregates other resources, e.g. datasets, software, spreadsheets, text, etc. 
The overarching goal of the RO model is to facilitate transparency and 
reproducibility of scientific studies. The RO model was applied to a study 
where the goal was to facilitate the interpretation of the results of a GWAS 
of metabolite profiles. Applying a workflow-centric RO model to aggregate 
and annotate the resources used in the bioinformatics experiment, allowed 
us to retrieve the conclusions of the experiment in the context of the driving 
hypothesis, the executed workflows and their input data. 

Obesity results in decreased life expectancy due to associated metabolic and 
cardiovascular disorders, as well as several types of cancer. A majority of 
obese individuals develop insulin resistance and type-2 diabetes. However, 
approximately 10-25% of these individuals seem to remain insulin sensitive 
and Normal Glucose Tolerant (NGT). Studies have shown that the expanded 
adipose tissue serves as an important pathogenic site in the development of 
type 2 diabetes. Chapter 4 presents a study designed to investigate the role 
of the adipose tissue in development of T2DM in severely obese subjects, by 
performing RNA-Sequencing of the subcutaneous (SAT) and visceral adipose 
tissue (VAT) samples obtained during bariatric surgery. The sets of expressed 
genes were subjected to a gene network-based approach to distinguish 
obese individuals with NGT from obese individuals with type 2 diabetes. This 
identified acetyl-CoA metabolic network down-regulation as an important 
feature in the pathophysiology of obese individuals with type 2 diabetes. In 
general, genes within two reaction steps of acetyl-CoA were found to be 
down-regulated in the VAT and SAT of individuals with type 2 diabetes. Upon 
weight loss and amelioration of metabolic abnormalities three months 
following bariatric surgery, the expression level of these genes recovered to 



 

261 

levels seen in NGT individuals. We report four novel genes associated with 
type-2 diabetes and recovery upon weight loss: acetyl-CoA acetyltransferase 
1 (ACAT1), acetyl-CoA carboxylase alpha (ACACA), aldehyde dehydrogenase 
6 family, member A1 (ALDH6A1) and methylenetetrahydrofolate 
dehydrogenase (MTHFD1). In addition to confirming earlier findings by other 
groups on the role of branched-chain amino acid degradation, fatty acid 
oxidation and citrate cycle in type-2 diabtes, we show through a network 
analysis that acetyl-CoA metabolism is the unifying principle and that its 
dysregulation distinguishes between obese women with type-2 diabetes and 
those with NGT. 

Next generation RNA-sequencing technology has made it possible to quantify 
gene expression but also to use the sequence itself to identify expressed 
alleles by calling haplotypes of an individual based on heterozygosity of SNPs 
in expressed loci. Allele-specific expression studies help to understand the 
cis-regulatory basis of variation in gene expression. In Chapter 5, we 
investigate the hypothesis that cis-regulatory variants differentially affect 
gene expression in visceral and subcutaneous adipose tissue. We 
investigated differential allele-specific expression between visceral and 
subcutaneous adipose tissue of very obese individuals (BMI>40) with and 
without type 2 diabetes mellitus with the aim of identifying regulatory 
variants that could explain the pathophysiological differences observed in 
the two tissues. The objective of the study was to identify from a panel of 
known genome-wide association hits the subset of common variants that are 
under the control of cis-regulatory elements and to assess the consequence 
of such variants on the T2DM phenotype. We identified a single nucleotide 
polymorphism (SNP) rs1049174, in the 3’ untranslated region (3’ UTR) in 
KLRK1 (Killer cell lectin like receptor subfamily K, family member 1) gene that 
displays a significant differential allelic expression between VAT and SAT, and 
for which expression is different between individuals with normal glucose 
tolerance (NGT) and T2D. The differential allele-specific expression of KLRK1 
between visceral and subcutaneous adipose tissue and the increased 
expression of KLRK1 in visceral adipose tissue of very obese individuals with 
type 2 diabetes provides evidence for a role of KLRK1 in the susceptibility to 
type-2 diabetes. 

Very low calorie diets (VLCD) with and without exercise programs lead to 
major metabolic improvements in obese type 2 diabetes patients. In Chapter 
6, we investigate the mechanisms of a VLCD with or without exercise to 
uncover possible biomarkers associated with these interventions. In the first 
step, targeted multiple reaction monitoring (MRM) analysis was conducted 
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for 13 abundant proteins hypothesized to be associated with T2DM and 
obesity, including apolipoproteins and markers of inflammation and 
coagulation. Subsequently, a large scale isobaric tag for relative and absolute 
quantification (iTRAQ) approach was utilized to uncover differences between 
the VLCD with and without exercise groups for less abundant proteins. Using 
proteomic analysis several potential disease state and intervention 
associated markers were found distinguishing T2DM patients from obese and 
lean controls and showing a VLCD effect. 

In Chapter 7 we explore the prolonged effects of niacin on gene expression 
profile in adipocytes of a hyperlipidemic mouse model. We applied 
bioinformatic and statistical analyses to the gene expression data and 
showed that prolonged niacin treatment led to an increase in the poly 
unsaturated fatty acid (PUFA) synthesis pathways. To investigate whether 
PUFA levels and possible derivatives thereof (i.e. oxylipins) were functionally 
affected, we determined the fatty acid composition in the adipose tissue. 
These analyses revealed increased n-3 PUFA secretion from the adipocytes 
and an increased plasma level of n-3 PUFAs and their anti-inflammatory 
oxylipins. Together with the up-regulation of the PUFA biosynthesis pathway 
in gWAT, this point towards an atheroprotective plasma profile induced by 
prolonged niacin treatment.  

In Chapter 8, we present a global review of the current status of metabolomic 
GWAS (mGWAS). The first waves of metabolomics and genetic analyses by 
mGWAS have provided a wealth of insight into the genetic basis of metabolic 
individuality and risk factors for common metabolic disorders. However, we 
still face many hurdles in the interpretation of mGWAS data. Metabolomics 
platforms generally yield information on the levels of one to several 
hundreds of metabolites. Consideration of all metabolites results in a severe 
multiple testing burden. This precludes genuine SNP-metabolite pairs from 
being considered when they fail to reach the stringent statistical threshold 
for significance. Pathway analysis is exquisitely suited to increase the 
statistical power to identify biologically plausible loci and simultaneously 
improve our understanding of the underlying biological mechanisms. In 
addition, the next step in pathway analysis is to include stoichiometric and 
kinetic parameters and complement the statistical analysis with a more 
comprehensive systems biology based approach using mathematical 
modelling. The application of a priori knowledge present in databases and 
the potential of mathematical models in enhancing the interpretation of 
mGWAS are presented. 
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The thesis concludes with Chapter 9 where future developments in the 
discipline are outlined.  
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Samenvatting 

Technologische vooruitgang heeft de biologie tot een data-intensieve 
wetenschap gemaakt. Met de introductie van high-throughput 
technologieën zoals microarrays en next generation sequencing worstelen 
biomedisch onderzoekers in toenemende mate met grote data volumina en 
verschillende data formats. Naast de generatie en de opslag van data, is de 
grootste uitdaging van de moderne biologie om deze grote hoeveelheden 
data om te zetten in nieuwe biologische inzichten en informatie waar je in de 
praktijk wat mee kunt. Dit vereist nieuwe methoden om heterogene data 
met elkaar te combineren en te integreren. Daarnaast is het noodzakelijk om 
de data en de analyse van de data op een zodanige manier in te richten dat 
de resultaten reproduceerbaar zijn. Dit proefschrift laat zien hoe 
geautomatiseerde strategieën op het gebied van bioinformatica en 
biostatistiek gebruikt kunnen worden om nieuwe biomarkers voor metabool 
syndroom uit high-throughput –omics data te destilleren en om 
mechanistische inzichten te verwerven in de biologische processen die ten 
grondslag liggen aan dit syndroom. Een gerelateerd thema in dit proefschrift 
is dat een data gedreven aanpak kan leiden tot plausibele hypotheses die 
vervolgens experimenteel kunnen worden geverifieerd. 

De belangrijkste bevindingen uit dit proefschrift worden hieronder 
beschreven. 

Genoom-wijde associatie studies (GWAS) van metaboliet profielen laten in 
het algemeen grotere effecten zien dan vergelijkbare studies met klinische 
fenotypes. Genetische variatie verklaart ook een groter deel van de 
interindividuele variatie van metaboliet niveaus dan van conventionele 
klinische parameters. Echter, door het grote aantal metabolieten wat 
doorgaans wordt gemeten krijgen deze studies te maken met een relatief 
zware correctie voor het aantal statistische associatie testen dat wordt 
uitgevoerd (multiple testing correctie). In hoofdstuk 2 presenteren we een 
automatische workflow die beschikbare informatie over metabole routes 
(zoals gedocumenteerd in de KEGG en BioCyc databases) gebruikt om alleen 
de relevante gen-metaboliet combinaties te identificeren en te testen. 
Relevante combinaties zijn gebaseerd op genen waarvan de eiwitproducten 
direct of indirect betrokken zijn bij omzetting of productie van de betreffende 
metaboliet. Her-analyse van reeds gepubliceerde GWAS met specifieke gen-
metaboliet combinaties bevestigde eerder gevonden genetische associaties 
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en leidde tot de ontdekking van een nieuw genetisch locus in het ALDH1L gen 
die de glycine / serine ratio’s in het bloed beïnvloedt.  

De analyse routines die gebruikt zijn in hoofdstuk 2 zijn opgeslagen in 
zogenaamde workflows. Via een workflow worden resultaten gegenereerd 
door het automatisch doorlopen van een aantal gedefinieerde, en mogelijk 
gedistribueerde, stappen. Workflows vormen echter niet een complete 
oplossing voor het aggregeren van alle data en meta-data die nodig is om een 
experiment te omschrijven. Daarom onderzoekt hoofdstuk 3 de 
bruikbaarheid van semantisch web technologieën om computationele 
experimenten voor langere tijd te bewaren. Semantisch web technologieën 
maken het mogelijk om heterogene data op het internet te integreren door 
de data te beschrijven met formele ontologieën. In dit hoofdstuk wordt het 
“Research Object” model toegelicht. Een Research Object is gedefinieerd als 
een entiteit dat andere entiteiten zoals datasets, software, spreadsheets en 
tekst, omvat. Het gebruik van het Research Object model bevordert de 
transparantie en reproduceerbaarheid van wetenschappelijke studies.  Het 
Research Object model is toegepast in een studie waarin de resultaten van 
GWAS voor metaboliet profielen zijn geïnterpreteerd. Het Research Object 
archiveert de conclusies van een bioinformatisch experiment in de context 
van de werkhypothese, de data analyse routines en de uitgangsdata.  

Zwaarlijvigheid (obesitas) resulteert in een verminderde levensverwachting 
als gevolg van het optreden van metabole en cardiovasculaire problemen en 
een verhoogde incidentie van kanker. Een meerderheid van de individuen 
met obesitas ontwikkelt insuline resistentie en type II diabetes. Echter, 10-
25% van deze individuen blijft gevoelig voor insuline en tolerant voor glucose. 
Meerdere wetenschappelijke studies hebben aangetoond dat vetweefsel 
een belangrijke rol speelt in de ontwikkeling van type II diabetes. De rol van 
het vetweefsel in individuen met een extreme vorm van obesitas wordt 
nader bestudeerd in Hoofdstuk 4. Van deze patiënten zijn tijdens een 
maagoperatie monsters verzameld van subcutaan (SC) en visceraal (VC) 
vetweefsel en hierin is genexpressie bepaald door toepassing van RNA-
sequencing.  Gen netwerk analyse is gebruikt om individuen met normale 
glucose tolerantie te onderscheiden van individuen met type 2 diabetes. 
Hierbij werd gevonden dat het acetyl-CoA metabole netwerk minder actief is 
in individuen met type 2 diabetes. Na gewichtsverlies en verbetering in de 
metabole status in de drie maanden na de maagverkleining operatie was ook 
de activiteit van het acetyl-CoA netwerk weer grotendeels genormaliseerd. 
We rapporteren vier nieuwe genen in het vetweeefsel die geassocieerd zijn 
met type 2 diabetes en herstel na gewichtsverlies: acetyl-CoA 



 

267 

acetyltransferase 1 (ACAT1), acetyl-CoA carboxylase alpha (ACACA), aldehyde 
dehydrogenase 6 family, member A1 (ALDH6A1) en 
methylenetetrahydrofolate dehydrogenase (MTHFD1). Hiermee tonen we 
aan dat een verstoord acetyl-CoA metabolisme een belangrijk aspect van 
obesitas met type 2 diabetes vormt, naast eerder gevonden verschillen in 
vertakte keten aminozuur metabolisme, vet oxidatie en een verstoorde 
citroenzuurcyclus.  

RNA-sequencing technologie maakt het niet alleen mogelijk om gen 
expressie te kwantificeren maar ook om onderscheid te maken tussen de 
expressie van de twee chromosomen van een chromosoom paar. Dit gebeurt 
op basis van heterozygote genetische varianten (“single nucleotide 
polymorphisms” of SNPs) die worden afgelezen en geteld tijdens de 
sequencing van RNA. Door toepassing van deze zogenaamde allel-specifieke 
expressie analyse kan meer inzicht worden verkregen in de regulatie van gen 
expressie. In hoofdstuk 5 onderzochten we de hypothese dat genetische 
variatie rond een gen op een van de twee chromosomen tot gevolg heeft dat 
expressie van dat gen anders is tussen SC en VC vetweefsel. Dit zou dan ook 
mede kunnen verklaren waarom het VC een belangrijker rol lijkt te spelen in 
de ontwikkeling van het metabool syndroom dan het SC vet. We gebruikten 
hierbij de data gegenereerd voor hoofdstuk 4. We identificeerden een SNP in 
de 3’ ongetransleerde regio van het KLRK1 (Killer cell lectin like receptor 
subfamily K, family member 1) gen. Dit gen vertoont verschillen in allel-
specifike expressie tussen VC en SC vet en ook verschillen in expressie tussen 
insuline sensitieve en insuline gevoelige individuen. We suggereren daarom 
dat KLRK1 een rol speelt bij de ontwikkeling van type 2 diabetes en dat 
genetische variatie in dit gen de gevoeligheid voor het ontwikkelen van type 
2 diabetes deels kan verklaren.  

Diëten met een heel laag aantal calorieën, gecombineerd met 
bewegingstraining, kunnen belangrijke metabole verbeteringen in type 2 
diabetes patiënten met obesitas bewerkstelligen. In hoofdstuk 6 
onderzochten we de mechanismen die deze verbeteringen veroorzaken en 
biomarkers (moleculaire detectoren) die deze verbeteringen kunnen laten 
zien. In de eerste stap is een massa spectrometrie-gebaseerde methode 
(multiple reaction monitoring, MRM) toegepast om 13 eiwitten te kunnen 
meten die in verband gebracht zijn met type 2 diabetes en obesitas, 
waaronder apolipoproteïnen en ontstekings- en bloedstollingseiwitten. 
Vervolgens is de “isobaric tag for relative and absolute quantification” 
(iTRAQ) methode toegepast om ook eiwitten die in lagere concentraties 
aanwezig zijn,  te kunnen meten. Met behulp van deze proteomics 
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technologieën vonden we verschillende eiwitten die type 2 diabetes 
patiënten konden onderscheiden van zwaarlijvige individuen en individuen 
met normaal gewicht en eiwitten die reageerden op het volgen van een 
calorie-arm dieet.   

In hoofdstuk 7 onderzochten we het effect van langdurige toediening van 
niacine op het gen expressie profiel van adipocyten in een hyperlipidemisch 
muismodel. We pasten bioinformatische en statistische analyses toe op de 
gen expressie data en toonden aan dat langdurige niacine toediening de 
synthese van meervoudig onverzadigde vetzuren verhoogt. Daarnaast 
vonden we aanwijzingen dat de adipocyten een hogere concentratie van 
omega-3 vetzuren en daarvan afgeleide, anti-inflammatoire oxylipines 
uitscheiden. De combinatie van deze bevindingen suggereert dat niacine kan 
beschermen tegen atherosclerose. 

In hoofdstuk 8 presenteren we een globaal overzicht van de stand van 
onderzoek rondom metaboliet GWAS (mGWAS). De eerste mGWAS hebben 
veel nieuwe inzichten verschaft in de genetische basis van interindividuele 
verschillen in metaboliet profielen. Toch moeten nog vele hordes worden 
genomen in dit soort analyses. Analyse op het niveau van complete metabole 
routes in plaats van op het niveau van individuele metabolieten kan de 
interpretatie helpen en zorgen voor een minder strenge multiple testing 
correctie. Een volgende stap in dit soort analyses is om ook stoichiometrische 
en kinetische parameters mee te nemen en meer kwantitatieve modellen te 
ontwikkelen.  

Het proefschrift wordt afgesloten met hoofdstuk 9, waarin de toekomstige 
ontwikkelingen van het vakgebied worden geschetst. 
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