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Making the hydrogen evolution reaction in polymer
electrolyte membrane electrolysers even faster
Jakub Tymoczko1,2, Federico Calle-Vallejo3, Wolfgang Schuhmann1,2 & Aliaksandr S. Bandarenka1,4,5

Although the hydrogen evolution reaction (HER) is one of the fastest electrocatalytic reac-

tions, modern polymer electrolyte membrane (PEM) electrolysers require larger platinum

loadings (B0.5–1.0 mg cm� 2) than those in PEM fuel cell anodes and cathodes altogether

(B0.5 mg cm� 2). Thus, catalyst optimization would help in substantially reducing the costs

for hydrogen production using this technology. Here we show that the activity of plati-

num(111) electrodes towards HER is significantly enhanced with just monolayer amounts of

copper. Positioning copper atoms into the subsurface layer of platinum weakens the surface

binding of adsorbed H-intermediates and provides a twofold activity increase, surpassing the

highest specific HER activities reported for acidic media under similar conditions, to the best

of our knowledge. These improvements are rationalized using a simple model based on

structure-sensitive hydrogen adsorption at platinum and copper-modified platinum surfaces.

This model also solves a long-lasting puzzle in electrocatalysis, namely why polycrystalline

platinum electrodes are more active than platinum(111) for the HER.
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H
eterogeneous redox reactions at electrified interfaces are
of growing importance in contemporary science and
technology1–3, as they determine the performance of

several electrochemical devices for future sustainable provision,
storage and redistribution of renewable energy4–7. In particular,
the efficiency of electrolysers and fuel cells largely depends on
their electrode/electrolyte interfaces and catalytic properties8–11.

In this context, hydrogen (H2) production from water is an
important electrocatalytic process due to its dual impact: it is a
good model catalytic system12–15 for the evaluation of new
material design methodologies and it is significant for future
energy provision and storage16–19. In spite of numerous
achievements18, only B4% of H2 produced comes from water
electrolysis20. The main impediments to a wider utilization of
water electrolysis are the high energy losses in electrolysers due
to the insufficient activity of state-of-the-art electrodes.
Considering the global hydrogen production of B15 trillion
moles per year (2011)21 and average prices (2016) in the United
States and Europe of B0.1 Euro per kWh (refs 22,23), the
electricity costs to produce just 4% of H2 using polymer
electrolyte membrane (PEM) electrolysers would exceed B6
billion Euros. Compared with these expenses for electricity, the
material costs (noble-metal catalysts, supports and so on) are
relatively small. For instance, decreasing the operating voltage of
PEM electrolysers from presently B2.0 (ref. 18) by 0.1 V using
improved hydrogen and oxygen evolution electrocatalysts could
decrease the electricity expenses for electrolysis by B0.3 billion
Euros. Assuming a current density in state-of-the-art PEM
electrolysers of 1 A cm� 2 (ref. 18) and catalyst loadings of
1 mg cm� 2 for anodes and cathodes18, only the reduction in
electricity expenses exceeds B10 times the whole price of
platinum (with the amounts, which are equivalent to B0.5% of
its annual production) or iridium (B30% of its annual
production, correspondingly) catalysts necessary to
electrochemically produce the above-mentioned amount of
hydrogen annually. In other words, a B20 mV decrease in the
operating voltage of PEM electrolysers corresponds to the price
of noble-metal catalysts needed to produce 4% of H2

electrochemically. Although the long-term goal is to replace
scarce electrocatalysts with more abundant and similarly active
analogues, fundamental and application-related issues require
further optimization of state-of-the-art hydrogen evolution
reaction (HER) and oxygen evolution reaction electrocatalysts18.

Here we show that incorporating (sub)monolayer amounts
of copper (Cu) to platinum (Pt) enhances the catalytic activity
B2 times at low overpotentials, surpassing the highest HER-
specific activities reported under similar conditions. These
results are rationalized in terms of a structure-sensitive analysis
of hydrogen adsorption on Pt- and Cu-modified Pt surfaces that
also explains why polycrystalline Pt is more active than Pt(111)
towards the HER.

Results
General considerations. According to the current understanding,
the HER (as well as hydrogen oxidation reaction, HOR)
mechanisms involve adsorbed hydrogen (denoted *H) at the
electrode surface. As stated by the Sabatier principle24, the
optimal catalytic surface should bind reaction intermediates
neither too weak nor too strong. This qualitative rule can be
converted to a quantitative tool using calculated or measured
adsorption energies for the relevant reaction intermediates at
specific active sites on the surface. Figure 1 shows theoretical
adsorption energies and experimental activity data for HER at
pure metal surfaces25. As can be seen from Fig. 1, the trends in
the measured HER can be fairly explained using the hydrogen

binding energy as a ‘descriptor’, DEH, estimated via density
functional theory (DFT) calculations, as reported by Nørskov
et al.25

Although exact DEH values depend on the surface coverage of
hydrogen12, a straightforward outcome of this approach is that
the optimum electrocatalytic sites for the HER should bind
*H slightly weaker (B0.09 eV) than Pd, Rh or Pt. In principle, the
electronic properties of metal surfaces can be modulated by
different means. One of the common ways to do this is to prepare
bulk alloys, where the bulk crystal composition and structure
influence the properties of the surfaces and, hence, their catalytic
activity through strain and ligand effects26–28. An alternative way
is to modify the properties of the topmost layer at the surface by
selectively positioning atomic layers of solute metals directly at
the surface to form either overlayers29, surface or subsurface
alloys. An example of the latter approach is shown in Fig. 2.

Electrochemical performance. Figure 2 shows cyclic voltammo-
grams (CVs) taken in Ar-saturated 0.1 M HClO4 electrolytes for
the unmodified Pt(111), the Cu overlayer on Pt(111), the
Cu-Pt(111) near-surface alloys (NSAs) and surface alloys (SAs)
within the regions of their electrochemical stability. In the CVs,
the potential region between B0.4 and 0.07 V corresponds to
hydrogen adsorption/desorption before the formation of H2 at
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Figure 1 | Trends in hydrogen evolution reaction activity. Experimental
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metal surfaces as a function of the calculated *H chemisorption energy,

DEH. The result of a simple theoretical kinetic model is also shown as a

dotted line. Original data are taken from ref. 25.

100 H-adsorption /
desorption

region SA

Pt(111)

Cu overlayer

0 r.p.m
Ar-saturated
0.1 M HCIO4

50

–50

–100

0.2 0.4 0.6 0.8 1.0

NSA

E vs RHE / V

j /
 μ

A
 c

m
–2

0
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more negative potentials. Notably, the position of the Cu atomic
layer significantly changes the hydrogen binding energy. For
example, the SA apparently binds *H stronger than Pt(111), as
revealed by the corresponding CVs between B0.2 and B0.4 V
(Fig. 2). In contrast, positioning the Cu atoms into the second
layer (1 ML Cu initially deposited) weakens *H binding compared
with unmodified Pt(111). In addition, the Cu pseudomorphic
overlayer (POL) does not adsorb hydrogen species at these
potentials (Fig. 2).

Experimentally observable changes in DEH are mainly due to
ligand effects, as Cu and Pt have dissimilar valence configurations
(s1d10 versus s1d9) and the differences in the lattice constants are
not negligible (3.61 versus 3.92 Å). These differences have a direct
impact on the kinetics of reactions that involve adsorbed
hydrogen species as reaction intermediates, in particular for the
HER. For example, the SA, which binds hydrogen species
stronger than Pt(111), would also probably be less active for
both HER and HOR: this corresponds to the left part of the
volcano plot in Fig. 1 and more negative DEH values, relative to
Pt. On the other hand, the Cu overlayer is ‘too noble’ for the
hydrogen species to be active towards HER. This corresponds to
the right part of the volcano in Fig. 1, far from the optimum
towards more positive DEH values. In contrast, one can expect
that the NSA would probably be more active than Pt(111): its
surface binds hydrogen species slightly weaker than Pt, which
corresponds to the direction towards the theoretical maximum in
Fig. 1. In Fig. 3, we confirm all these expectations.

At low overpotentials, a Cu-Pt(111) POL does not show
noticeable HER activities (Fig. 3). The SA is less active than
Pt(111), as expected. Finally, the voltammogram for the NSA
(1 ML Cu initially deposited) in Fig. 3 reveals a substantially
higher hydrogen evolution activity as compared with that for
Pt(111). It is noteworthy that the results presented in Fig. 3
correspond to measurements in Ar-saturated electrolytes, as these
are the simplest tests to derive activity trends with minimal
influence of complex experimental factors (those are especially
important for overlayers, when the electrolyte is saturated with
electroactive species such as H2 or CO)30. In the following, we
focus on a more detailed electrochemical characterization of the
active NSA electrodes.

Figure 4 shows typical rotating disk electrodes (RDE)
voltammograms recorded in H2-saturated 0.1 M HClO4 for
Pt(111) and NSA electrodes. The NSA surface is more active
than unmodified Pt for both HER and HOR. As those reactions
involve the same intermediates, the same DEH descriptor can be
used to explain this fact. Although we do not use iR correction
to avoid additional errors in this particular case (see ref. 30)
and rather compare the model surfaces under the same
conditions, it is still possible to approximately estimate the
‘apparent’ exchange current density, i0, at very low over-
potentials close to 0.0 V reversible hydrogen electrode (RHE)15.
This value reflects the intrinsic activity of materials and can be
used to compare different electrocatalysts reported by different
research groups. The estimated i0 values are at least
B1.5 mA cm� 2 for Pt(111) and B3.0 mA cm� 2 for the NSA.
Notably, the apparent exchange current density for Pt(111) is
higher than that reported in a very detailed investigation
performed by Markovic et al.15 for low-index Pt(hkl) single-
crystal surfaces measured in H2SO4 at the same pH value. We
hypothesize that this is due to a difference in the exact
experimental protocols, as discussed recently in detail in ref. 30.
Nevertheless, this fact additionally prevents misinterpretation of
the NSA activity results, as those are compared with already very
active reference Pt surfaces.

0

–1

–2

–3

NSA

Pt(111)

900 r.p.m
Ar-saturated
0.1 M HCIO4

H2 evolution
SA

Cu overlayer

–0.05 0.05 0.10
E vs RHE / V

j /
 m

A
 c

m
–2

0.00

Figure 3 | RDE voltammetry in Ar-saturated 0.1 M HClO4. The RDE

voltammograms for Cu overlayer, Pt(111), SA and NSA (1 ML Cu initially

deposited) electrodes show the correlation between the HER activity of the

electrodes and the position of the Cu atomic layers relative to the topmost

Pt layer. The negative currents start before 0.0 V RHE, because the

electrolyte is saturated with the inert gas. dE/dt¼ 10 mVs� 1.

1.0

Pt(111)

NSA
0.5

0.0

–0.5

lo
g 

(⏐
j⏐

 / 
m

A
 c

m
–2

)

E vs RHE / mV

–1.0

–1.5
–0.06 –0.04 –0.02 0.00

E vs RHE / V

–0.05

NSA

1,600 r.p.m., H2 saturated
0.1 M HCIO4

H2 evolution

Pt(111)

H2 oxidation

–10

–8

–6

–4

j /
 m

A
 c

m
–2 –2

2

0

0.050.00 0.10 0.15

a

b

Figure 4 | RDE voltammetry in H2-saturated HClO4. (a) RDE

voltammograms of the Cu-Pt(111) NSA (1 ML Cu initially deposited)

compared with the unmodified Pt(111) electrode. dE/dt¼ 10 mVs� 1.

(b) Logarithmic plot of the currents related to hydrogen evolution for the

NSA and Pt(111).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10990 ARTICLE

NATURE COMMUNICATIONS | 7:10990 | DOI: 10.1038/ncomms10990 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


If the so-called Tafel plot is used (Fig. 4b), the slopes of the
curves for the NSA and Pt(111) samples at each electrode
potential are rather similar, suggesting that there are no
significant changes in the HER mechanism among these two
surfaces.

Table 1 compares the activities for the HER/HOR at room
temperature for active model surfaces, as summarized in refs
15,18,31 and measured in this work. In addition, as can be seen
from Table 1, typical values for the apparent exchange current
densities of Pt nanoparticles (averaged among values used by
different groups), even at elevated temperatures and in real
devices, are approximately three times lower than that for the
NSA sample.

To further evaluate the activity of the Cu-Pt(111) NSA with
respect to the best known catalysts and additionally account for
possible artefacts caused by the formation of the non-conducting
H2 gas phase at the electrode surface during the cathodic/anodic
scans, we compare chronoamperograms (current versus time
curves taken at a certain potential) for the most active surfaces
reported up to date in Fig. 5.

Figure 5 compares the activity of the Cu-Pt(111) NSA
(1 ML Cu initially deposited) with polycrystalline Pt and PdOL

deposited on Pt(111). First, the activity for all samples remains
practically unchanged, as well as their basic CVs, indicating that
the differences in activities are not due to artefacts caused by

generation of the non-conducting gas phase. Notably, the
activity of the Cu-Pt(111) NSA (1 ML Cu initially deposited) is
reproducibly better than any other reported state-of-the-art
electrocatalysts including polycrystalline Pt32, which has been
suggested as one of the most active surface towards HER.

We performed additional benchmark measurements using
polycrystalline Pt samples including iR correction. The activity
results show that our polycrystalline samples possess exactly the
same activity towards HER/HOR as reported by Sheng et al.32 in
their detailed study of the activities of polycrystalline Pt30,33.

Furthermore, the influence of the subsurface concentration of
Cu in Cu-Pt(111) and Cu-Pt(pc) NSAs has been tested by varying
the amount of Cu initially deposited (Fig. 6a). Interestingly, the
activity of the Cu-Pt(111) NSA sample with 1 ML Cu deposited
initially remains the most active one. Attempts to introduce even
more Cu into the subsurface region through a two-stage
deposition/annealing procedure leads to a decrease in the activity
(marked with ‘*’ in Fig. 6a). All active samples evaluated in this
work are compared in Fig. 6b.

Notably, the Cu-Pt(111) NSA samples demonstrated good
stabilities towards H-induced segregation and anodic corrosion
after 5,000 cycles between 0.05 and 1.0 V (versus RHE), as
reported recently34. This additionally suggests that modification
of just the subsurface region of HER electrocatalysts is a

Table 1 | Activities for the HER/HOR at room temperature.

Electrode i0,apparent (mA cm� 2)* Source

Pt(111) B0.45 ref. 15
Pt(100) B0.6
Pt(110) B0.98
PdOL/PtRu(111) B2.0 refs 29,31
PdOL/Pt(111) B2.0
Pt(111) B1.5 This work
Cu-Pt(111) NSA (1 ML Cu
initially deposited)

B3.0 This work

Pt (nanoparticles) B1.0 (at 80 �C) ref. 18

HER, hydrogen evolution reaction; HOR, hydrogen oxidation reaction.
*At pH 1, without iR correction, as reported in the literature.
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promising approach to enhance not only their catalytic activity
but also their stability.

Computational. Finally, we rationalize our most important
experimental findings based on the computational results as
shown in Fig. 7. Figure 7a contains the trends in hydrogen
adsorption for pure Pt(111) and CuPt(111) NSAs and SAs.
Clearly, subsurface Cu at all concentrations has the same net
effect of weakening the adsorption energies of atomic hydrogen,
whereas surface Cu has the opposite effect in line with previous
results35. DFT calculations confirm that hydrogen atoms are
indeed bound more weakly at NSAs and more strongly at SAs.

To assess the structural sensitivity of the HER, we have tested
the adsorption of *H at various sites apart from the hollow sites at
(111) terraces usually considered in computational models25.
Figure 7b shows the differences in adsorption energies of *H
with respect to Pt(111) on numerous sites at Pt surfaces and
NSAs with 1 ML Cu in the subsurface. The trends are described as
a function of the generalized coordination numbers (CN)
of the active sites36,37. In simple terms, generalized coordi-
nation numbers are a weighted average of the conventional

coordination numbers. The weights are the coordination
numbers of the nearest neighbours of the active sites. The
various sites considered in this study and the way of estimating
their generalized coordination numbers are provided in
Supplementary Table 1.

Two noteworthy features of hydrogen atom adsorption on Pt
and Cu-Pt NSAs are captured in Fig. 7b. First, sites with
coordination lower than Pt(111) bind *H more strongly, whereas
those with larger coordination bind more weakly. Second,
*H adsorption on Cu-Pt NSAs is systematically weaker than on
their counterparts at pure Pt, regardless of surface coordination.

Figure 7c contains the HER volcano-type activity plot built
following the model by Nørskov et al.25 (see also Fig. 1 and
Supplementary Methods). The plot reflects simultaneously the
effect of geometric coordination and Cu content on the HER
activity. First of all, highly coordinated defects on pure Pt are
substantially more active than sites at Pt(111), which justifies the
fact that polycrystalline Pt is more active than Pt(111) for the
HER (see Supplementary Methods for further experimental
evidence). Undercoordinated defects, however, are less active
than (111) terraces. On the other hand, Cu-Pt(111) NSAs are
highly active and both overcoordinated and undercoordinated
defects decrease their activity, which explains why (111) NSAs are
more active than the polycrystalline ones. Finally, SAs are not
active in view of their strong *H adsorption energies. Therefore,
structure- and composition-sensitive experimental trends for
the HER in acidic media are well captured by the trends in
*H adsorption energies. In turn, these energies are substantially
influenced by the surface coordination of the active sites and the
presence of Cu.

Discussion
We have provided experimental and theoretical evidence to claim
that selective positioning of Cu atomic layers modifies the
adsorption properties of platinum electrodes for the electrochemical
hydrogen evolution, accelerating one of the fastest electrocatalytic
reactions known to date. Using predominantly the ligand effect,
submonolayer amounts of Cu atoms in the second atomic layer
induce a twofold increase in the electrocatalytic activity of Pt(111).
This makes them the most active electrocatalysts ever reported for
the HER in acidic media under comparable conditions, to the best
of our knowledge. Further efforts to improve the performance of
nanoparticle materials for the cathodes in PEM electrolysers may
use this rationale based on the purposeful and delicate location of
submonolayer amounts of foreign metals at surfaces.

Methods
Electrode preparation. Details relating to the electrode surface preparation and
characterization are given in Supplementary Figs 1–13. The relative position of Cu
atomic layers at the surface was controlled as described elsewhere35,38,39. Briefly, to
form a copper POL or deposit submonolayer amounts of it, underpotential
deposition was performed from a solution containing 2 mM Cu2þ in 0.1 M HClO4.
The Cu-Pt(111) NSAs, where Cu atoms are preferentially located in the subsurface
layer, were obtained by short annealing of the overlayer (B2 min) at 400 �C in
Ar/H2 atmosphere containing 5% of H2 in Ar (6.0, AirLiquide, Germany). Cu-
Pt(111) SAs, where Cu atoms are located in the first atomic layer of the Pt host,
were subsequently obtained by annealing the NSAs in Ar/CO atmosphere
(0.1% CO in Ar, B2 min at 400 �C). The preparation procedures result in
single-crystalline samples of Pt(111), Cu-Pt(111) NSAs and SAs, which were
atomically smooth.

Activity measurements. Electrolytes containing 0.1 M HClO4 (Merck Suprapur,
Germany) were used for activity measurements. A mercury–mercury sulfate
reference electrode was kept in a separate compartment and separated from the
working electrolyte with an ionically conducting ceramic insert. A polycrystalline
Pt wire was used as counter electrode. All potentials are referred to the RHE scale.
A SP-300 potentiostat (Bio-Logic, France) was used to control the electrochemical
measurements. Electrochemical experiments including the activity measurements
were performed using a specifically designed electrochemical cell for the
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preparation and in-situ electrochemical characterization of single-crystal alloy
electrodes, previously described in ref. 40. Measurements with RDE were
performed using a Pine RDE 710 instrument (USA).

DFT calculations. Full details of the DFT calculations, the assessment of
adsorption energies, the model for estimating the current densities and the
computation of generalized coordination numbers are provided in Supplementary
Methods section with additional explanations illustrated in Supplementary Fig. 14
and Supplementary Table 1.
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