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Abstract The vehicle routing problem is a classical

combinatorial optimization problem. This work is about a

variant of the vehicle routing problem with dynamically

changing orders and time windows. In real-world applica-

tions often the demands change during operation time. New

orders occur and others are canceled. In this case new

schedules need to be generated on-the-fly. Online opti-

mization algorithms for dynamical vehicle routing address

this problem but so far they do not consider time windows.

Moreover, to match the scenarios found in real-world

problems adaptations of benchmarks are required. In this

paper, a practical problem is modeled based on the pro-

cedure of daily routing of a delivery company. New orders

by customers are introduced dynamically during the

working day and need to be integrated into the schedule. A

multiple ant colony algorithm combined with powerful

local search procedures is proposed to solve the dynamic

vehicle routing problem with time windows. The perfor-

mance is tested on a new benchmark based on simulations

of a working day. The problems are taken from Solomon’s

benchmarks but a certain percentage of the orders are only

revealed to the algorithm during operation time. Different

versions of the MACS algorithm are tested and a high

performing variant is identified. Finally, the algorithm is

tested in situ: In a field study, the algorithm schedules a

fleet of cars for a surveillance company. We compare the

performance of the algorithm to that of the procedure used

by the company and we summarize insights gained from

the implementation of the real-world study. The results

show that the multiple ant colony algorithm can get a much

better solution on the academic benchmark problem and

also can be integrated in a real-world environment.

Keywords Ant colony optimization � Vehicle routing

problem � Dynamic vehicle routing problem with time

windows � Pilot study

1 Introduction

The vehicle routing problem (VRP) is a combinatorial

optimization problem which has been studied for a long

time in the literatures, such as Bianchi et al. (2009),

Marinakis et al. (2010), Xiao et al. (2012), Pillac et al.

(2013) and Yang et al. (2015). The aim of this problem is

to deliver orders from depot to customers using a fleet of

vehicles. Here we look at a practically important variant of

this problem where new events (demands, orders) are

dynamically introduced during operation time and cars

have to serve customers at times within given time win-

dows. So far the problems of dynamical events and time

windows have only been looked at in isolation, but in this

paper we will propose and analyze an algorithm that can

deal with dynamicity and time windows.

A conference version van Veen et al. (2013) containing the

theoretical part of this paper appeared under the title ‘‘Ant Colony

Algorithms for the Dynamic Vehicle Routing Problem with Time

Windows’’ in the conference IWINAC 2013.
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Since the VRP problem already in its most basic variant

is NP hard it seems unlikely that efficient exact solvers for

larger instances can be built and one has to rely on

heuristics and meta-heuristics for finding good solutions.

Among these heuristic methods, problem specific heuris-

tics, including savings heuristic, local search meta-heuris-

tics, and approaches from natural computing such as ant

colony optimization are common approaches for solving

this problem. Yet, the most powerful solvers today com-

bine several of these methods and could be termed hybrid

solvers.

In this article a hybrid solver is developed. In the global

search architecture it uses an ant colony optimization sys-

tem, whereas in its initialization and search operators it

uses problem specific construction and local search meth-

ods. More specifically, the multi ant colony system

(MACS) is introduced to solve the real-world dynamic

vehicle routing problem. MACS was first proposed by

Gambardella et al. (1999) which used two ant colonies to

search the best solution for the vehicle routing problem in

order to improve the performance of ant colonies. In this

algorithm, the first colony minimizes the number of vehi-

cles while the second one minimizes the travel cost. van

Veen et al. (2013) generate a dynamic vehicle routing

problem with time windows (DVRPTW) benchmark based

on the static Solomon benchmark and adjust the MACS to

this dynamic problem. This article extends upon this con-

ference paper by providing a more in-depth discussion and

motivation of the approach and benchmark designs. More

importantly, we add results from a real-world pilot study

provided by a Dutch mobile surveillance company.

This paper is organized as follows: The problem is

formally described in Sect. 2. Related work is summarized

in Sect. 3. Section 4 describes the MACS algorithm and

how it is adapted to the dynamical vehicle routing problem

with time windows. Section 5 introduces a benchmark for

this problem class and describes the performance of the

algorithm on the benchmark and also includes results on

static benchmarks for validation. The real-world study, set

up in Rotterdam, is described in Sect. 6 and we summarize

the experiences gained from the case study. Section 7

reviews the main results of this article. Finally, Sect. 8

summarizes the work of this article and suggests directions

for relevant future research.

2 Problem description

2.1 Static vehicle routing problem

The classical VRP formulation was first defined by Dantzig

and Ramser (1959). In classical VRP, a fleet of vehicles

seek to visit all orders of the customers at minimum travel

cost. This problem is an NP-hard problem and the well

known traveling salesman problem (TSP) is a special case.

Next, we will look at the capacitated VRP (CVRP), where

each vehicle has a maximal capacity. It can be modeled by

introducing a weighted digraph G ¼ ðV ;AÞ, where V ¼
fv0; v1; . . .; vNg is a vertex set representing the customers

and A ¼ fðvi; vjÞ; i 6¼ jg is an arc set, where ðvi; vjÞ repre-
sents the path from customer i to customer j. Vertex v0
represents the depot which has M vehicles, and vertices

(v1; . . .; vM) denote the customers that need to be served.

Each vehicle has a maximal capacity Q and each customer

vi is associated with a demand qi of goods to be delivered

(the demand q0 ¼ 0 is associated to the depot v0), a time

window ½ei; li� from the earliest starting time to the latest

starting time for the service, and the duration (time) of a

service si. Each arc ðvi; vjÞ has a non-negative value weight
representing its traveling cost cij. There are N customers

and M vehicles. The goal is to minimize the traveling cost.

Formally, the CVRP can be defined as a mathematical

programming problem with binary decision variables

(cf. Christofides et al. 1981; Cordeau et al. 2001). Let

nijk ¼ 1, if vehicle k visits customer xj immediately after

visiting customer xi, and nijk ¼ 0 otherwise. Now, the

mathematical programming problem reads:

minimize z ¼
XN

i¼0

XN

j¼0

cij
XM

k¼1

nijk

 !
; ð1Þ

subject to

XN

i¼0

XM

k¼1

nijk ¼ 1; j ¼ 1; . . .;N; ð2aÞ

XN

i¼0

nipk �
XN

j¼0

npjk ¼ 0; k ¼ 1; . . .;M; p ¼ 0; . . .;N;

ð2bÞ

XN

i¼1

qi
XN

j¼0

nijk

 !
�Q; k ¼ 1; . . .;M; ð2cÞ

XN

i¼0

XN

j¼0

cijnijk þ
XN

i¼1

si
XN

j¼0

nijk

 !
� T ; k ¼ 1; . . .;M;

ð2dÞ
XN

j¼1

n0jk ¼ 1; k ¼ 1; . . .;M;

nijk 2 f0; 1g for all i, j, k

ð2eÞ

Here, the constraints of the formulation can be explained

as the constraints of VRPs. In detail the constraint equa-

tions above are motivated as follows.

Eq. 2a: Each customer must be visited exactly once.

Z. Yang et al.

123



Eq. 2b: If a vehicle visits a customer, it must also depart

from it.

Eq. 2c: The total quantity in each vehicle is less or equal

to the maximal capacity Q.

Eq. 2d: The total traveling time of each vehicle is less or

equal to a given time T.

Eq. 2e: Each vehicle must be used exactly once.

In this work we are going to consider the vehicle routing

problem with time windows in which to serve the customers

(CVRPTW). Additional constraints are needed for model-

ing time windows. In this case the start serving time ti to

vertex vi is between the time windows ½ei; li�.

2.2 Dynamic vehicle routing problem

In the real world, most of the delivery problems are

dynamic vehicle routing problems. Psaraftis (1995) pointed

out the difference between static VRPs and dynamic VRPs.

In the static VRPs, the information of the orders is known

in advance. While in dynamic problems, some of the orders

are given initially and an initial schedule is generated. But

new orders are dynamically received when the vehicles

have started executing the routes and the route has to be

rearranged in order to serve these new orders. The chal-

lenge is whether the algorithm can give a high quality

solution quickly when the new event happens.

To be able to solve a dynamic problem we first have to

simulate a form of dynamicity. Kilby et al. (1998) have

described a method to do this, which is also used by

Montemanni et al. (2005). They proposed to partition the

working day into time slices and solve problems incre-

mentally. The notion of a working day of Twd seconds is

introduced, which will be simulated by the algorithm. Not

all nodes are available to the algorithm at the beginning. A

subset of all nodes are given an available time at which

they will become available. This percentage determines the

degree of dynamicity of the problem. At the beginning of

the day a tentative tour is created with a-priori available

nodes. The working day is divided into nts time slices of

length tts :¼ Twd=nts. At each time slice the solution is

updated. This allows us to split up the dynamic problem

into nts static problems, which can be solved consecutively.

The goal in DVRPTW is similar to that of static VRPs,

except that some customers and their time windows are

unknown a-priori and parts of the solutions might already

have been committed.

In our approach the previous solution and the pher-

omone distribution of the ant colony optimization algo-

rithm is used as initialization to the optimization in a time

slice, because we expect the new solution not to be entirely

different from the previous one. A different approach

would be to restart the algorithm from scratch every time a

node becomes available. However, this strategy is too time

consuming for algorithms used in real time operation and

on typical hardware used by logistics service providers.

3 Related work

In general VRP and VRPTW are NP hard problems and

they generalize the NP-complete traveling salesman prob-

lem. Therefore heuristic algorithms are widely used in

order to solve the vehicle routing problem. Classical

examples are the nearest neighbor heuristic by Flood

(1956) and the savings algorithm that was developed by

Clarke and Wright (1964) based on the savings concept

which repeatedly combines two customers on the same

route. Early advances were achieved by Shaw (1998) using

large neighborhood search.

Nowadays, the use of meta-heuristics becomes more and

more popular. Semet and Taillard (1993) presented a tabu

search for finding a good solution for the vehicle routing

problem. Baker and Ayechew (2003) combined the genetic

algorithm and neighborhood search methods which can

give a reasonable results for this problem. Gambardella

et al. (1999) introduced ant colony optimization which can

use artificial ant colonies to construct a shortest route.

In contrast to a large multitude of available static VRP

solvers, there are only a few algorithms which can tackle

dynamic VRPs. In principle, most of the algorithms

described above can be adapted to solve the dynamic

VRPs. But in order to deal efficiently with the dynamics of

this problem, the algorithm should also have some mech-

anisms that promote reusing learned features of the prob-

lem from previous solutions. As indicated in Eyckelhof and

Snoek (2002), some bio-mimetic ant-colony optimization

algorithm seems to support dynamic adaptations of deliv-

ery routes well. For instance, in ant colony optimization

virtual pheromone trails are created to indicate good

directions if solutions only need to be changed partially.

Ant colony optimization (ACO) is a meta-heuristic

algorithm based on the natural behavior of the ant colony

which was proposed by Dorigo (1992) in his Ph.D. thesis.

More recently, it has been employed in a number of com-

binatorial optimization problems, such as scheduling prob-

lems in Xiao et al. (2013), Chen and Zhang (2013), routing

problems in Balaprakash et al. (2009), Toth and Vigo

(2014), assignment problems in Dorigo and Stützle (2010),

D’Acierno et al. (2012), set problems in Ren et al. (2010),

Jovanovic and Tuba (2013) and so on. Moreover, ACO can

be easily combined with local search heuristics and route

construction algorithms. The flexibility of ACO and its good

performance in static vehicle routing problem make it an

attractive paradigm for the dynamic vehicle routing problem.
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Ant-based methods were first proposed with the ant

system method in Colorni et al. (1991). These methods

simulate a population of ants which use pheromones to

communicate with each other and collectively are able to

solve complex path-finding problems—a phenomenon

called stigmergy. For the VRPTW problem, an ant-based

method was proposed by Gambardella et al. (1999). They

showed that good results can be achieved by running one

ant colony for optimizing the number of vehicles and one

ant colony for minimizing route cost and term their method

multi ant colony system (MACS). The paradigm of ant

algorithms fits well to dynamic problems in Guntsch and

Middendorf (2002) including TSP in Eyckelhof and Snoek

(2002) and special types of VRP problem, where vehicles

do not have to return to the depot which can be seen in

Montemanni et al. (2005). In our article we will extend

multi ant colony optimization to problems with time win-

dows and we will call our new method MACS-DVRPTW.

There exist some previous studies on usingmeta-heuristics

other than ant colony algorithms on DVRPTW. Gendreau

et al. (1999) propose to use tabu search, but, as opposed to

standard benchmarks for MACS-VRPTW, developed their

approach for problems with soft time windows.

4 Algorithm

In order to solve this problem, it is natural to extend the state-

of-the-art ant algorithm forVRPTWto the dynamical case. To

our best knowledge, the multi-colony approach described in

Gambardella et al. (1999) is the best ant algorithm for the

VRPTW with a description that allows to reproduce results,

and it shows a good performance on standard benchmark

problems by Solomon. Here wewill directly describe our new

dynamic version of this algorithm and indicate changes.

The central part of the algorithm is the controller. It reads

the benchmark data, initializes data structures, builds an

initial solution and starts the ACS-TIME colony and ACS-

VEI colony. The ACS-TIME colony tries to minimize

traveling cost given a fixed number of vehicles, theACS-VEI

colony seeks to minimize the number of vehicles. Priority of

the algorithm is on reducing the number of vehicles. Given

solutions with the same number of vehicles, those solutions

are preferred that use less time. TheACS-VEI colony restarts

the ACS-TIME colony whenever a solution is found that can

serve the demand with a smaller number of vehicles.

The nearest neighbor heuristic in Flood (1956) is used to

find initial solutions of vehicle routing problems. But for the

VRPs with time windows, it is difficult to get a feasible

solution by using this method. So it has to be adjusted in two

ways. First the constraints on time windows have to be

checked to make sure no infeasible tours are created.

Besides, a limit on the number of vehicles is passed to the

function. Therefore, a more appropriate algorithm is needed

to generate the initial solution. Because of these limitations,

it is not always possible to return a tour that incorporates all

nodes. In that case a tour with less nodes is returned.

The new initial Ranking Time Windows Based Nearest

Neighbor algorithm is proposed to generate the initial solu-

tion for the DVRPTW. By adding the sorted earliest arrival

time of the orders to exact nv tours one by one, this algorithm

can take the timewindows and vehicles number constrains in

advance. This way there is a higher chance to get a feasible

solution with better fitness value. Algorithm 1 describes the

initialization. It proceeds as follows: Firstly, the list of cus-

tomers is sorted by increasing values of earliest arrive times.

Then, nv tours are created, each of which corresponds to one

vehicle. For each customer node find the tour with smallest

distance among all those tours in which the node can be

inserted without violating constraints. Following this pro-

cedure, the nodes are iteratively added in the node list.

Finally, the resulting solution is returned.

Algorithm 1 Initial algorithm
1: Let L denote the set of n customers. Sort them by in-

creasing values of earliest arrive times ei . If the nodes
have the same ei, arrange them by increasing values of
the latest arrive times li.

2: Let T denote the list of tours, where nv is the length of
the list. Initially, each tour in T has only a single node
which is the vehicle at the depot.

3: i ← 0
4: while i is smaller than n do
5: TabuList ← ∅;
6: while node i is not added to a tour do
7: for j ∈ {1, . . . , nv} \ TabuList do
8: Calculate the distances dij between li and node

tj ,
9: where tj denotes the last node of tour j.
10: Find the index (= minIndex) of the tour that has

the shortest distance to li:
11: minIndex :=

argminj∈{1,...,nv}\TabuList{distance(li, tj)}.
12: if node i can be added to tour minIndex then
13: Add node i to the end of tour minIndex.
14: else
15: TabuList ← TabuList ∪ {j}.
16: i ← i + 1.

return T

After initialization, a timer is started that keeps track of

t, the used CPU time in seconds. Then the algorithm will

run on line during the working day which ends at some

point in time denoted with Twd. Let T
� denote the currently

optimal solution. Then, at the start of each time slice the

controller checks if any new customer nodes became

available during the last time slice. If so, these new nodes

are inserted using the InsertMissingNodes method, in order

to update T�. Thereafter, some of the nodes are changed to

the status committed. The position of committed nodes in
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the tour cannot be changed anymore. If vi is the last

committed node of a vehicle in the tentative solution, vj is

the next node and tij is travel time from node vi to node vj,

then vj is committed if ej � tij\t þ tts. When the necessary

commitments have been made the two ant colony systems

(ACS) are started. If a new time slice starts, the colonies

are stopped and the controller repeats its loop.

The pseudo-code of the controller can be seen in Algo-

rithm 2. ACS contains two colonies, each one of which tries

to improve on a different objective of the problem. TheACS-

VEI colony searches for a solution that uses less vehicles

than T�. The ACS-TIME colony searches for a solution with

a smaller traveling cost than the cost inT�while using atmost

asmany vehicles as the best solution so far, i.e.T�. A solution

with less vehicles has a higher priority than a solution with a

smaller distance. Once a feasible solution is found by ACS-

VEI, the controller restarts.

Algorithm 2 Controller
1: Set time t = 0; Set available nodes n

2: T ∗ ← NearestNeighbor(n); τ0 ← 1/(n · length of T ∗);
3: Start measuring CPU time t
4: Start ACS-TIME(vehicles in T ∗) in new thread
5: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
6: repeat
7: while Colonies are active and time step is not over do
8: Wait until a solution T is found
9: if Vehicles in T < vehicles in T ∗ then
10: Stop threads
11: T ∗ ← T
12: if time-step is over then
13: if new nodes are available or new part of T ∗ will

be defined then
14: Stop threads
15: Update available nodes n
16: Insert new nodes into T ∗
17: Commit necessary nodes in T ∗

18: if colonies have been stopped then
19: Start ACS-TIME(vehicles in T ∗) in new thread
20: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
21: until t ≥ Twd

22: return T ∗

There are a few differences between the two colonies.

ACS-VEI keeps track of the best solution found by the col-

ony (TVEI), which does not necessarily incorporate all nodes.

As TVEI also contributes to the pheromone trails it helps

ACS-VEI to find a solution that covers all nodes with less

vehicles. ACS-VEI does not use local search methods. In

contrast, ACS-TIME does not workwith infeasible solutions

and it performs a local searchmethod calledCross Exchange

in Taillard et al. (1997) which is shown in Fig. 1.

A constraint on the maximum number of vehicles that

can be used is given as an argument to each colony. During

the construction of a tour this number may not be excee-

ded. This may lead to infeasible solutions that do not

incorporate all nodes. If a solution is not feasible it can

never be send to the controller. Both colonies work on

separate pheromone matrices and send their best solutions

to the controller. Pseudo-codes for ACS-VEI and ACS-

TIME can be found in Algorithm 3 and 4, respectively.

Algorithm 3 ACS-VEI(nv)
1: Input: nv is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:
4: Initialize pheromones to τ0
5: Initialize INi to 0 for i = 1, . . . , N

6: Comment: Here INi is a counter for how many times
7: the customer node i has not been added to the solution.
8:
9: TVEI ← NearestNeighbor(nv)
10: repeat
11: for all ants k do
12: Tk ← ConstructTour(k, IN)
13: for all nodes i /∈ Tk do
14: INi = INi + 1
15: Local pheromone update on edges of Tk using

Equation 4
16: Tk ← InsertMissingNodes(k)
17:
18: Find ant l with most visited nodes
19: if number of nodes in T l > number of nodes in TVEI

then
20: TVEI ← T l

21: Reset IN to 0
22: if TVEI contains n nodes (meaning it is feasible)

then
23: return TVEI to controller
24:
25: Global pheromone update with T ∗ and Equation 5
26: Global pheromone update with TVEI and Equation 5
27: until controller sends stop signal

Algorithm 5 describes the construction of a tour by

means of artificial ants. A tour starts at a randomly chosen

depot copy. When constructing a new tour, the committed

Algorithm 4 ACS-TIME(v)
1: Input: nv is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:
4: Initialize pheromones to τ0
5:
6: repeat
7: for all ants k do
8: Tk ← ConstructTour(k, 0)
9: Local pheromone update on edges of Tk using

Equation 4
10: Tk ← InsertMissingNodes(k)
11: if Tk is a feasible tour then
12: Tk ← LocalSearch(k)
13:
14: Find feasible ant l with smallest tour length
15: if length of T l < length of T ∗ then
16: T ∗ ← T l

17: return T ∗ to controller
18:
19: Global pheromone update with T ∗ and Equation 5
20: until controller sends stop signal
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parts of T� which cannot be changed any more have to be

incorporated first. Then the tour is iteratively extended with

available neighborhood nodes. There are many ways to

define the topology structure of neighborhood nodes. In the

paper, the neighborhood nodes are defined as all the

available nodes that have not been committed and visited

yet. The neighborhood nodes set N k
i contains all available

nodes which have not been committed and visited for ant k

situated at node i. Inaccessible nodes due to capacity or

time window constraints are excluded from N k
i . In order to

decide which node to chose, the probabilistic transition

rules by Dorigo and Gambardella (1997) are applied. For

ant k positioned at node vi, the probability pkj ðviÞ of

choosing vj as its next node is given by the following

transition rule:

pkj ðviÞ ¼

argmax
j2N i

f½sij�a � ½gij�bg if q� q0 and j 2 N k
i

½sij�a � ½gij�bP
m2N k

i
½sim�a � ½gim�b

if q[ q0 and j 2 N k
i

0 if j 62 N k
i

8
>>>>><

>>>>>:

ð3Þ

with sij being the pheromone level on edge (i, j), gij the
heuristic desirability of edge (i, j), a the influence of s on

the probabilistic value, b the influence of g on the proba-

bilistic value, N k
i the set of nodes that can be visited by ant

k positioned at node vi, and sij; gij; a; b� 0. Moreover q

denotes a random number between 0 and 1 and q0 2 ½0; 1� a
threshold.

Fig. 1 Examples of 2-opt edge replacements. Squares represent depots, circles represent nodes. a Demonstrates a move with edges from

different tours. b Is an example of a move within a single tour. c Shows the process of cross exchange

Algorithm 5 ConstructTour(k, IN)
1: Input: k is the ant for which we construct a tour
2: Input: IN is an array containing the number of times that

nodes have not been incorporated in tours
3: Given: N k

i is a set of neighboring nodes including the
depot duplicates that are reachable by ant k in node i

4:
5: Current vehicle x ← 0
6: Select a random depot duplicate i

7: Tk ← 〈i〉 � Add vehicle i to end of Tk

8: current timek ← 0
9: loadk ← 0
10: for all committed node vi of the xth vehicle of T ∗ do
11: Tk ← 〈i〉
12: current timek ← delivery timei + service timei
13: loadk ← loadk + qi

14:
15: repeat
16: for all j ∈ N k

i do � The part below is taken from
Dorigo and Gambardella (1997)

17: delivery timej ← max(current timek + tij , ej)
18: delta timeij ← delivery timej− current timek
19: urgencyij ← delta timeij × (lj− current timek)
20: urgencyij ← max(1.0, (urgencyij− INj))
21: ηij ← 1.0/ urgencyij
22:
23: Pick node j using Equation 3
24: Tk ← 〈j〉
25: current timek ← delivery timej+ service timej
26: loadk ← loadk + qj
27: if j is a depot copy then
28: current timek ← 0
29: loadk ← 0
30: x ← x + 1
31: for all committed nodes vi of the xth vehicle of T ∗

do
32: Tk ← 〈i〉
33: current timek ← delivery timei + service timei
34: loadk ← loadk + qi

35: i ← j
36: until N k

i = {}
37:
38: return Tk
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During the ConstructTour process of ACS-VEI, the IN

array is used to give greater priority to nodes that are not

included in previously generated tours. The array counts

the successive number of times that node vj was not

incorporated in constructed solutions. This count is then

used to increase the attractiveness gij. The IN array is only

available to ACS-VEI and is reset when the colony is

restarted or when it finds a solution that improves TVEI.

ACS-TIME does not use the IN array, which is equal to

setting all values in the array to zero.

The local pheromone update rule from Dorigo and

Gambardella (1997) is used to decrease pheromone levels

on edges that are traversed by ants and it will be briefly

described next. Each time an ant has traversed an edge

(i, j), it applies Eq. (4).

sij ¼ ð1� qÞ � sij þ q � s0 ð4Þ

By decreasing pheromones on edges that are already

traveled on, there is a bigger chance that other ants will use

different edges. This increases exploration and should

avoid too early stagnation of the search.

The global pheromone update rule is given in Eq. (5).

To increase exploitation, pheromones are only evaporated

and deposited on edges that belong to the best solution

found so far and Dsij is multiplied by the pheromone decay

parameter q.

sij ¼ ð1� qÞ � sij þ q �
Xm

k¼1

Dskij ; 8ði; jÞ 2 T�

and Dskij ¼ 1=L�
ð5Þ

where T� is the best tour found so far and L� is the length of
T�.

Gambardella et al. (1999) has shown that the MACS is

very efficient in solving static vehicle routing problems

with time windows. Here we are going to test and bench-

mark the extended algorithm for dynamic vehicle routing

problems with time windows.

5 Benchmark on simulated data

The Solomon benchmark is a classical benmark for static

VRP in Solomon (1987). It provides 6 categories of scal-

able VRPTW problems: C1, C2, R1, R2, RC1 and RC2.

The C stands for problems with clustered nodes, the R

problems have randomly placed nodes and RC problems

have both. In problems of type 1, only a few nodes can be

serviced by a single vehicle. But in problems of type 2,

many nodes can be serviced by the same vehicle.

In order to make this a dynamic problem set we apply a

method proposed by Gendreau et al. (1999) for a VRP

problem, to the more comprehensive benchmark by Solo-

mon on VRPTW. A certain percentage of nodes is only

revealed during the working day. A dynamicity of X%

means that each node has a probability of X% to get a non-

zero available time. The available time means the time

when the order is revealed. It is generated on the interval

½0; ei�, where ei ¼ minðei; ti�1Þ. Here, ti�1 is the departure

time from vi’s predecessor in the best known solution.

These best solutions are taken from the results of a static

MACS-VRPTW implementation (see Table 1)—for the

detailed schedules we refer to the support material avail-

able on http://natcomp.liacs.nl/index.php?page=code. By

generating available times on this interval, optimal solution

can still be attained, enabling comparisons with MACS-

VRPTW. Table 2 shows the average results and standard

deviation change with the dynamicity levels.

The implementation was executed ten runs on a Intel Core

i5, 3.2 GHz CPU with 4 GB of RAM memory. The con-

troller stops after 100 s of CPU time. The following default

parameters are set according to the literature:m ¼ 10, a ¼ 1,

b ¼ 1, q0 ¼ 0:9, q ¼ 0:1 (cf. Gambardella et al. 1999),

Twd ¼ 100 s, and nts ¼ 50 (cf. Montemanni et al. 2005).

To the best of our knowledge, there is no other algo-

rithms which have been implemented to solve this problem.

In this paper, four variants of the algorithm are generated in

order to improve the performance of the algorithm. Four

variants of the algorithms were as follows: (1) default

settings as described above, (2) spending 20 CPU seconds

before the starting of the working day to construct an

improved initial solution (IIS), (3) with pheromone

Table 1 Comparison of results reported for the original MACS-

VRPTW in Gambardella et al. (1999) and our implementation for the

Solomon benchmark

Gambardella Avg Best

C1

Dist 828.40 828.67 828.37

Vei 10.00 10.00 10.00

C2

Dist 593.19 591.00 589.85

Vei 3.00 3.00 3.00

R1

Dist 1214.80 1226.05 1216.70

Vei 12.55 12.52 12.33

R2

Dist 971.97 992.49 949.69

Vei 3.05 3.00 3.00

RC1

Dist 1395.47 1381.20 1362.58

Vei 12.46 12.25 12.00

RC2

Dist 1191.87 1165.51 1146.89

Vei 3.38 3.35 3.25
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preservation (WPP) in Montemanni et al. (2005)

(sij ¼ soldij ð1� qÞ þ qs0), q ¼ 0:3, and (4) min–max pher-

omone update in Stützle and Hoos (1997). For MMAS, we

set q ¼ 0:8. The values used are: smax ¼ 1=ðqT�Þ,
smin ¼ smax=ð2 � AvailableNodes Þ, s0 ¼ smax. These are

updated every time a new improvement of T� is found.

Average results for IIS and MMAS are almost identical

to the original results. The reason for this seems to be that

although the initial solution is greatly improved, it is more

difficult to insert new nodes into the current best solution.

Tables 3 and 4 show results for different types of problems

in more detail. WPP improves distance results for 10 %

dynamicity and MMAS for 50 % dynamicity, both for the

price of slightly more vehicles. Another finding is that for

10 % dynamicity solution quality declines by up to 20 %

and for 50 % by up to 50 %.

From a practical approach it can be stated that for a

small dynamicity of 10 % at most 1 additional vehicle is

needed as compared to scheduling the same amount of

static orders, and in many cases the same number of

vehicles suffice. For 50 % dynamicity the number of

vehicles increases almost always by one vehicle and can in

some cases even increase by two vehicles.

6 Case study

This section will explain the details of the case study. First the

test case which was used for the pilots will be discussed. Then

the initially implemented algorithm is described. Finally, the

execution of real-world pilots will be discussed, including the

intermediate revisions of the algorithms that were motivated

by problems encountered in real-world testing.

6.1 Test case

To show that the method can be successfully applied in

practice, a field study (with real drivers and vehicles) was

Table 2 Average results and standard deviations (SD) for 10 runs

and 56 problems of different MACS-DVRPTW variants and

dynamicity levels (Dyn)

Dyn 0 % 10 % 20 % 30 % 40 % 50 %

Normal

Vei 7.39 7.91 8.37 8.79 9.03 9.32

Dist 1046.06 1095.1 1131 1180.36 1217 1241.32

SD 21.72 28.95 29.59 34.84 36.73 38.09

IIS

Vei 7.35 7.93 8.38 8.78 9.02 9.36

Dist 1035.86 1087.06 1131 1177.96 1212 1236.36

SD 20.14 28.39 31.13 34.37 37.12 39.64

WPP

Vei 7.35 7.93 8.39 8.79 9.04 9.34

Dist 1043.13 1087.98 1128 1175.14 1210 1235.9

SD 20.22 26.11 26.52 35.32 37.80 38.52

MMAS

Vei 7.40 7.95 8.43 8.88 9.08 9.34

Dist 1050.06 1093.66 1134 1183.02 1212 1235.9

SD 22.29 31.66 36.00 34.59 39.64 39.06

Table 3 Averaged results of six

Solomon categories using

different variants in 10 %

dynamicity

10 % Static DVRP, default DVRP, 0.3 WPP DVRP, IIS DVRP, MMAS Decline (%)

C1

Dist 828.67 944.10 947.04 943.10 954.55 13.81

Vei 10.00 10.85 10.87 10.88 10.87 8.50

C2

Dist 591.00 632.80 629.20 628.28 632.31 6.31

Vei 3.00 3.67 3.67 3.68 3.68 22.33

R1

Dist 1226.05 1282.79 1270.34 1267.84 1283.23 3.41

Vei 12.52 13.10 13.17 13.19 13.25 4.63

R2

Dist 992.49 1038.10 1023.40 1022.65 1013.80 2.15

Vei 3.00 3.52 3.55 3.54 3.54 17.33

RC1

Dist 1381.20 1450.76 1438.17 1446.80 1458.08 4.12

Vei 12.25 12.75 12.80 12.80 12.82 4.08

RC2

Dist 1165.51 1222.05 1219.73 1213.70 1219.99 4.13

Vei 3.35 3.61 3.56 3.51 3.57 4.78

The bold font is for the best for each problem
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conducted. The pilot study was carried out with the Dutch

security company Trigion (http://trigion.nl) on a scenario

that resembles a typical working day in mobile surveil-

lance. Every day this security company has between 300

and 400 planned jobs in the Rotterdam area. These planned

jobs include surveillance, security checks, and the opening

or closing of buildings, among others. There are strict

contracts about the time windows and tasks which are

included in such a job. Also, the average service time for

each job is known. The deviation, along with a typical

minimum and maximum service time is also well-known.

These numbers are all derived from historical data. There is

an average of about 45 incidents (or alarms) per day within

the same region. However, this amount can vary from 30 to

110 incidents. These incidents can for instance be fire

alarms, burglary alarms or technical problems. They appear

during the day and cannot be predicted. Some predictions

can be made, i.e. most alarms occur in the evening and on

industrial terrains, but their exact times and other proper-

ties are not known beforehand. Therefore, this business

case is perfect for implementing a DVRPTW. This

DVRPTW has an average dynamicity of 11.6 %.

To use the business case as a practical real-world

testing case for a DVRPTW algorithm, the case needed to

be scaled down. For 400 incidents a few dozens of

vehicles would be needed. A pilot of this size would be

outside of our scope, because of finances, time and

complexity. Therefore, a test case of five vehicles was

created with four vehicles for static jobs from the same

depot and the same day. All the jobs have addresses close

to each other. This resembles the problem for a smaller

area with a single depot. These 4 vehicles had to cover a

total workload of 48 jobs. Also, one incident vehicle from

the same area and day was selected, covering nine inci-

dents. This gives us a dynamicity of 15.8 %, ð9=ð48þ 9ÞÞ
which is relatively high compared to the average of

11.6 % in the real-world business case. This was done on

purpose to make a challenging test case. The 57 orders

were made anonymous by selecting an address up to two

streets away from the initial address. Due to the small

perturbation radius this still makes a realistic test case.

The time windows of the jobs within the test case all took

place within a 6 h time-frame, in the evening. To get a

general view of the addresses in the test case, the map

with all customers is shown in Fig. 2. A characteristic of

this problem is that the concentration of orders is con-

centrated higher in two central parts than in peripheral

parts of the urban agglomeration.

In the pilot study each customer (or job) i has the fol-

lowing properties:

• A location. This is an address. The travel time, cost or

distance dij between two jobs i and j can be calculated

by a navigation (web)service, such as Google Maps.

• A service time si. The time it takes to complete the job.

The service time is not always known a-priori. Some-

times a job takes unexpectedly long or short (e.g. when

a burglary alarm turns out to be a false alarm).

• A time window ½ei; li�. The security company is

contractually obliged to visit within this time frame.

Table 4 Averaged results of six

Solomon categories using

different variants in 50 %

dynamicity

50 % Static DVRP, default DVRP, 0.3 WPP DVRP, IIS DVRP, MMAS Decline (%)

C1

Dist 828.67 1175.86 1166.81 1167.09 1179.03 40.81

Vei 10.00 12.31 12.46 12.48 12.40 23.10

C2

Dist 591.00 756.48 761.60 751.26 740.36 25.27

Vei 3.00 4.92 4.96 4.91 4.87 62.33

R1

Dist 1226.05 1367.20 1361.35 1364.57 1378.01 11.04

Vei 12.52 14.33 14.25 14.35 14.42 13.82

R2

Dist 992.49 1146.55 1138.83 1145.02 1111.33 11.97

Vei 3.00 4.53 4.50 4.46 4.62 48.67

RC1

Dist 1381.20 1581.72 1571.06 1580.63 1586.22 13.75

Vei 12.25 14.26 14.21 14.23 14.37 16.00

RC2

Dist 1165.51 1420.15 1415.77 1409.61 1386.35 18.95

Vei 3.35 5.60 5.70 5.73 5.78 67.16

The bold font is for the best for each problem
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Most time windows have an interval of multiple hours,

some less than an hour. An incident time window is

either 30 or 45 min.

• A priority p, ranging from 1 to 4. 1 and 2 for incidents,

3 and 4 for static jobs, 1 being the highest priority, e.g.

a fire alarm. Some customers have more expensive fees

for tardiness and thus have a higher priority.

• An availability time or occurrence time. All static jobs

are available at t ¼ 0. Incidents will become available

during the day. The availability time of an incident is

equal to its time window start time ei, because incidents

can always be visited as soon as they become available,

in contrast to static jobs.

The jobs which are known a-priori will be referred to as

static jobs. Static jobs have an average service time of

25 min, ranging from 1 min for a short check to 8 h for a

surveillance. The dynamically assigned jobs are referred to

as incidents. Incidents have an average service time of 16

and a half minute, but their total range is from only a few

seconds (false alarm) up to multiple hours in case of a bur-

glary arrest. However, usually an incident takes 10–30 min.

Locations are usually clustered in business areas.

6.2 Gaps and adaption

At the moment there is almost no dynamicity implemented

in the baseline algorithm used in the business case. All jobs

which are known a-priori, the static jobs, are scheduled by a

state-of-the-art static VRPTW algorithm. The exact algo-

rithm is unknown to us, as it is confidential. Also, a number

of vehicles is always on stand-by. Their job is solely to react

to any incoming incidents. Incidents are assigned by a (hu-

man) coordinator. In most cases an incident will go to the

closest stand-by vehicle. In very rare cases, an incident will

be picked up by a static job vehicle. The coordinator might

need to do some manual rescheduling in this case.

This approach has some disadvantages:

1. The response to incidents might be too late if all

incident vehicles are busy at the same time.

2. It takes time for the coordinator to plan all the

incidents. Especially when multiple incidents come in

at once and routes need to be rescheduled.

3. On a quiet day (a day with less than average incidents),

the incident vehicles will be idle most of the time. This

results in unnecessary labor time and bored employees.

Possible advantages of such an approach are:

1. Static job vehicle drivers know exactly what they have

to do all day. This can make them more efficient and/or

confident.

2. Incident vehicle drivers can specialize themselves in

handling incidents. Training costs could be cheaper as

apposed to a dynamic solution where all employees

should be able to respond to any type of customer.

Fig. 2 All jobs of the pilot study displayed on a map. Blue static jobs. Red incidents
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In order to test the MACS algorithm, trail 1 is imple-

mented to find the gaps between the theory benchmark

problem and the real-world problem. The conclusions

drawn from the first pilot were used to improve the

implementation of the algorithm. A list was made of each

required improvement and these were implemented itera-

tively. The most important revisions were:

1. Balancing of the vehicles. During the pilot some

vehicles were very busy, while others had hardly any

work (i.e. 25 and 2 jobs respectively). This can be seen

in the results section, (Sect. 7) where Fig. 3b shows a

vehicle with a significantly high amount of orders

during the entire pilot. This fact resulted in the busy

vehicles being late. Balancing also helps to give some

buffer time, in case an incident has to be handled.

Balancing was achieved by giving the vehicles a

maximum amount of orders during initialization in the

nearest neighbor algorithm. This maximum was cho-

sen as n=ðnv � 1Þ, where nv is the maximum of

vehicles can be used in the pilot.

2. When a driver is already performing a job or driving

towards a job, he/she should not be interrupted. I.e. this

job should not be reassigned to another driver.

3. At the moment of recalculating the routes, it is

important to keep track of the current time and the

current position of the vehicles to check if any vehicles

will be late. It might be necessary to reschedule in

order to prevent tardiness.

4. The vehicle speed used in planning was assumed too

high initially, since most of the pilot took place in an

urban area. It was reduced to 30 km/h.

Also the controller was changed to be adjusted to the

real-world situation. The controller of the implemented

algorithm is displayed in Algorithm 6. The adjustments to

this controller are:

1. The algorithm is not constantly searching for better

routes. This is because the amount of changes to driver

schedules should be minimized to avoid confusing the

drivers. The cost of a small change would possibly be

greater than its gain.The algorithm is not actively

calculating after updating the schedules and before a

new incident is introduced.

2. The number of iterations used by the ant colonies was

set to 5000. This number was found to produce

acceptable results within a minute. A short total

calculation time was necessary to update routes as

quickly as possible after an incident occurred. This

number might need to be changed when the test case is

scaled up or down.

3. The first job of a vehicle will always be locked on the

first position of its route. This is so the driver never

loses a job he/she is already performing. Also, when a

driver started driving towards a customer, this cus-

tomer should not be rescheduled to another driver.

Algorithm 6 The controller of the final implementa-
tion of the MACS-DVRPTW algorithm.
1: Set time t = 0
2: T ∗ ← NearestNeighbor
3: while not terminate initial calculation do
4: Start ACS-TIME with nv = nv of T ∗
5: Start ACS-VEI with nv = nv of T ∗ − 1
6: Wait until a solution T is found
7: if If nv of T < nv of T ∗ then
8: Stop colonies
9: T ∗ ← T

10: Stop colonies
11: Update routes
12: Start execution of problem solution
13: while execution of DVRPTW is not over do
14: Wait for new incident
15: Lock current task of each vehicle
16: for each missing node do
17: Calculate cost of each possible insertion in each

route in T ∗
18: Insert node where cost is lowest
19: Get current time and vehicle locations
20: if routes are feasible then
21: return T ∗ as default solution and broadcast update

to drivers
22: else
23: Start ACS-VEI with nv = nv of T ∗
24: Wait until a feasible solution T ∗ is found
25: return T ∗ as default solution and broadcast update

to drivers
26: Stop colonies
27: Start ACS-TIME with nv = nv of T ∗
28: Wait until MaxTime is reached
29: if T ∗ is much better than the default solution then
30: return T ∗ and broadcast update to drivers
31: Stop colonies
32: Update routes

Other important adjustments to the algorithm were:

1. High priority is given to returning as fast as possible a

feasible solution. This is why directly after finishing

the direct insertion method already a solution can be

returned to the controller; If there is no feasible

solution available ACS-VEI is used first, as it searches

with priority for feasible solutions.

2. ACS-TIME is used to find improvements of feasible

solutions after having found a default feasible solution.

Only if it succeeds to find a much better solution (a

threshold is used here) this new solution will be

returned and broadcast as an update to the drivers.

3. If the colony is trying to add missing nodes to an

infeasible route, the highest priorities will be added

first, if possible. The missing nodes are sorted by

priority.
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4. Feasibility of a route is based on the current location of

the vehicles, which can be viewed as starting positions

or depots when introducing an incident. Feasibility is

also based on the time at the moment of calculation.

Therefore, past time windows will not be considered

anymore. By considering time and vehicle locations,

more accurate schedules can be made when introduc-

ing a new incident while vehicles are driving towards a

job. The feasibility check is based on the time and

location which are retrieved.

5. Driving speed is by default 30 km/h, which is a good

average speed for urban areas, allowing for some

buffer time. Also in many areas the max speed is

30 km/h by law.

6. The nearest neighbor heuristic intends to distribute the

jobs relatively even across the vehicles. This will give

a balanced initial solution for the ACO pheromone

initialization. Recall that, this is achieved by giving

each vehicle a maximum of n=ðnv � 1Þ jobs.

6.3 Pilot experiments

Next, the practical details of the experiments and the

observations that were made will be discussed. To suc-

cessfully implement a DVRP it is crucial to know the

location of the vehicles and their status at the moment of

occurrence of a new job. To achieve this, the DEAL plat-

form which can be seen in Mahr and de Weerdt (2005) was

used. This platform is made for managing workflows in

logistics. All drivers can use a mobile application to update

their status and GPS locations. The DEAL mobile appli-

cation also shows to the drivers and the coordinators the

sequence of jobs and their locations. The ACO algorithm

was implemented as an external algorithm agent which was

able to get an overview of the available jobs and the

available vehicles. When this algorithm agent was trig-

gered, it used ACO to rearrange the routes of the vehicles.

To test how well the algorithm performed in practice,

two teams with five drivers each were hired. Team

Fig. 3 The total amount of jobs during a Pilot 1-Team A, b Pilot 1-Team B, c Pilot 2-Team C and d Pilot S-Team D. The vertical axis shows the

number of orders that need to be served. For each vehicle, this is plotted for the times that a new incident occurred
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A worked according to the solution of the baseline algo-

rithm provided by the security company. For this team four

cars were assigned to static orders in a predetermined

schedule, while one car visited all the incidents. It was used

as a control group for baseline comparison. While Team

B tested the performance of the MACS algorithm. All five

cars were assigned to the static orders. When a new inci-

dent occurred, it would be assigned to one of these running

cars based on the algorithm. In order to get a fair com-

parison between teams, both teams got their jobs assigned

to them through the DEAL mobile application. However,

Team A’s incident driver got a text message each time he

or she was assigned to the new incident as common prac-

tice for the security company. Team B’s drivers were

instructed to be aware of changing routes at all times. Each

time an incident became available, the agent was triggered

to change Team B’s routes. This was done on-the-fly. Both

team started by the time that would enable them to reach

their first address on time, according to the security com-

pany’s planning. Team B’s vehicles all were available for

incidents from the time that they started.

The second pilot experiment consisted of only five dri-

vers, referred to as Team C. This pilot became necessary

because of shortcomings in the new scheduling method that

needed to be corrected. For reasons of cost and practical

feasibility another control group was not included. The first

control group results proved very consistent and there was

no strong need to test these results again, since the situation

was expected to be very similar. Both pilots were con-

ducted on a Friday, during the same time period, with no

large weather differences. However, a small bias was

introduced by an unexpected traffic jam that occurred

during the second pilot. Much like Team B of Pilot 1, the

five cars of Team C were sent out to visit their dynamic

routes, which were determined on-the-fly by the (im-

proved) algorithm agent. This time, there was a bigger

focus on the minimization of labor hours, therefore not all

cars started at the beginning of the pilot. Two cars started

driving at the start of the pilot. Three other cars were given

a customized starting time, based on the start of the time

window of their first planned job.

As mentioned above, during Pilot 2, a traffic jam

occurred which made some orders late and some orders

failed. Because another pilot was not affordable, we deci-

ded to make a virtual Team D to do a simulation pilot (Pilot

S) based on the data obtained in Pilot 2.

7 Results

This section contains and discusses the results of all con-

ducted pilots and of the simulated Team D. First of all, the

performance of the teams will be discussed. After that, the

survey of the drivers’ experience will be summarized.

Finally, the lessons learned on bridging theory and practice

will be summarized in order to help other researchers to

implement their algorithm in the real world.

7.1 Performance assessment

All the data during the pilots was stored which gave us a

good insight into the real-world timing of the algorithm.

For MACS, to perform well on the business case, it is

important that there are as little contract violations as

possible. Therefore, it is important to look at the timeliness

of drivers, since they could arrive too late. It is also pos-

sible that a job is not visited at all, either because the driver

was running too late or because the algorithm saw this as

infeasible. In a very rare occasion (twice) the job was

started before the time window, this is (in our case) due to

human error.

The static jobs for Team A (Control Group in Pilot 1),

Team B (Pilot 1), Team C (Pilot 2) and Team D (Simula-

tion Group in Pilot S)are shown in Table 5. And in Table 6

the incident results can be seen. These results show us that

the control group performed relatively well and stable. No

control group driver arrived too late for either a static event

nor for an incident. The route which was executed by the

control group was based on the planning of the security

company. The company executed this route many times

before the pilot ran.

The first algorithm pilot experienced some problems.

The most important problems are mentioned in Sect. 6.2,

since they were used to improve the implementation before

starting Pilot 2. The problems in Pilot 1 caused a significant

amount of jobs to fail or at least be late. This can be seen in

both Tables 5 and 6. More than one third of the jobs were

not finished in Pilot 1. This is not acceptable for the

business case. An important cause of this tardiness was the

fact that one vehicle was scheduled to have more jobs than

it could handle. Figure 3b shows that vehicle 2 was given

much more orders than the other vehicles. This problem

remained during the entire pilot, even though vehicle 3 was

already finished with its jobs by the time the fifth incident

occurred. This vehicle could have taken on some of the

excess jobs from vehicle 2, but it didn’t.

After making the improvements of Sect. 6.2, Pilot 2 was

conducted. A great improvement compared to Pilot 1 was

observed. In Fig. 3c we can see that the jobs are more

evenly distributed between vehicles and that these total

amounts have a downward slope as time progresses.

Partly because of this even distribution, the timeliness of

Pilot 2 was a lot more acceptable. Only 2 (static) jobs

remained unvisited. Five jobs were too late with a total late

time of 50 min. However, halfway through the pilot, one of
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the drivers got stuck in the traffic jam which was not

present during the control group pilot. Two jobs were

located in the middle of this traffic jam, both with an arrival

time relatively close to the planned arrival times of the

control group (within the same hour). So it is safe to say

that the control group could also have experienced some

delay. Or at the very least we could say that the Pilot 2

driver would have experienced less or no delay if the traffic

jam would have not been present.

In the Pilot S, there is no traffic jam any more. The

results showed that all the jobs were visited and there were

no late nor early jobs. With this, we have more evidence

that the algorithm can succeed in practice, under normal

circumstances.

For the real-world case, the most important metric is the

total labor time. These results are presented in Table 7. The

total labor time needed would be the accumulated driving

times of all cars, including driving from and towards the

depot. The total driving times without driving times to and

from the depots are also shown. This provides an impres-

sion of the on-line performance, excluding the influence of

the starting and finalization strategy. The total time of

Team B and Team C seem to be the shortest, but this is

because jobs were left unfinished. For Team D we see an

reduction in total labor time of 5 % compared to the con-

trol group.

7.2 Drivers experience survey

During this pilot the drivers took some forms with them so

that they could take notes about their jobs, including arrival

times and stress-levels. This was done to gather insights

into the human factor of the implementation. The most

important outcomes of the survey of Pilot 1 were:

1. The changing of routes was experienced as ‘confusing’

by some drivers.

2. A driver felt it was pointless that he had to drive back

and forth from one side of the city to another side and

back again. The experience of the driver was negative

because he did not know the global solution.

3. Most stress was experienced by drivers that were

running late.

4. Most drivers said they felt more confident about the

execution of their tasks because they got a clear

briefing beforehand and because they could contact a

coordinator at all times.

5. Most drivers felt the planning was tight, but not too

tight or stressful.

Outcomes 1 and 2 were only relevant for the drivers that

tested the dynamic ACO algorithm (Pilot 1). From the

survey of Pilot 2, also the outcomes 3 and 5 were found.

Furthermore, the following results came out of the survey:

6. Two drivers found that a more frequent refresh of the

job list would be helpful. A forced refresh each time a

route is changed might even be more effective.

7. One driver experienced quite some stress during a

traffic jam.

8. Four drivers already participated in the first trial, and

experienced the second went much smoother. This was

accounted mostly towards the relative absence of

problems, such as disappearing jobs.

The drivers of Pilot 2 were given a form to write down their

arrival times and also their stress, confidence, or certainty

level. Ranges are from 1 to 5, were 1 is ‘(almost) none’ and

5 is ‘a lot’. Stress and confidence level where evaluated

when arriving at a job.

At most times (42/55) stress was 1 (very low) and

confidence was 5 (very high). When stress went up, that

Table 5 The timeliness of the 48 static jobs

Static jobs

Pilot 1 Pilot 1 Pilot 2 Pilot S

Team A Team B Team C Team D

Not visited (#) 0 16 2 0

Not visited (% of total) 0 33.33 4.17 0

Late (#) 0 6 5 0

Late (% of finished) 0 18.75 10.87 0

Late (min) 0 106 50 0

Too early (#) 1 0 1 0

Too early (min) 8 0 3 0

Table 6 The timeliness of the nine incidents for both pilots

Incidents

Pilot 1 Pilot 1 Pilot 2 Pilot S

Team A Team B Team C Team D

Not visited (#) 0 4 0 0

Not visited (% of total) 0 44.44 0 0

Late (#) 0 1 1 0

Late (% of finished) 0 20 11.11 0

Late (min) 0 57 2 0

Table 7 The total driving times, or labor hours, for both pilots and

simulated pilot

Total driving time in hours

Pilot 1 Pilot 1 Pilot 2 Pilot S

Team A Team B Team C Team D

Excluding depot 25:59 19:57 22:57 24:41

Including depot 27:26 21:33 25:05 26:09
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usually meant that the driver’s confidence was low. (7/12)

The drivers experienced stress in the following occasions:

• The driver was running late.

• The driver got stuck in traffic.

• The driver took a wrong turn, delaying his route.

• The driver was not sure if finishing a job outside of the

time window also counted as being late.

The first and the second situations can (partly) be

reduced in their number by making smart algorithms and

adding data on traffic situation. For avoiding the third sit-

uation, training of the drivers and inclusion of buffer time

could be beneficial. The last situation can be easily avoided

by a better briefing of the drivers.

7.3 From theory to practice: lessons learned

Implementing in practice means testing in practice. When

working with real-world cases and data, one cannot simply

implement something and only test on academic bench-

marks. Some general lessons on bringing routing algo-

rithms from theory to practice have been learned and we

condensed them to three key principles:

• Iteration works It is impossible to know all the

functionality of the algorithm implementation and situ-

ations that might occur in practice beforehand. Therefore

it is important to keep in mind that requirements might

change. A real-world test will give a clearer look on the

elements needed. It is however still a good idea to get a

head-start on the requirements by doing simulated

benchmarks. Starting with a thorough analysis of the

business case can also give a good indication of what

particularities require attention. In our first pilot, we

could have avoided some mistakes by better analyzing

the effect of clustering on the job distribution. Handling

of various kinds of constraints is often specific to the real-

world scenario and algorithms will only succeed if they

are flexible enough for adaptation.

• Communication is key Implementing an algorithm in a

real-world environment is not a one man’s job. In our

case we needed at least an optimization algorithm

expert, a logistics systems/workflow manager (DEAL),

a logistics company providing a business case, and a

team of drivers. These experts had to be able to

communicate with each other. Social aspects of the

project as well as business aspects needed to be

addressed, besides technical aspects. While confiden-

tiality issues needed to be respected, at the same time it

was to be made sure that enough insights were gained

from the pilot in order to improve algorithmic methods.

• People are important The customers and drivers should

play an important role in the development of the end

results. After all, they will be using it and if they don’t

understand the algorithm’s instructions they may even

start to ignore them or complain. We found that a clear

briefing and description of tasks and expectations

contributed to the confidence of the drivers. Changing

of routes comes at a psychological cost, as the driver was

already primed (mentally prepared) for another task.

Therefore, the changing of routes should be presented as

transparent as possible so the employee comprehends the

logic of his route sufficiently, i.e. does not doubt the

efficiency of the schedule. It is also important to consider

that an employee needs to feel useful and needs to have

the feeling that he/she is treated fair.

8 Summary and outlook

This work proposed a dynamic algorithm for VRPTW that

allows to integrate neworders during operation in a schedule.

A new algorithm, MACS-DVRPTW, was introduced and

described. It is an extension of the state-of-the-art ant colony

based meta-heuristic MACS-VRPTW for dynamic VRPTW

problems. A dynamic benchmark is created based on the

static Solomon’s benchmark for VRPTW, by revealing some

of the orders only during operation time to the algorithm.

Statistical studies were conducted, showing that MACS-

DVRPTW algorithm performs better than the state of the art

algorithms on the academic benchmarks. In the pilot

experiments adaptations were needed in order to achieve

competitive performance. The new version of the algorithm

performs better than the solution by the company in terms of

total driving time, but it requires still improvement in terms

of real-world constraint handling for special situations such

as traffic jams. And it will also be interesting to compare this

algorithm with other dynamic methods such as Wang et al.

(2010), Lung and Dumitrescu (2010).

Another major finding was that the human factor is

important. In order to account for this in the development

phase, three main principles have crystallized out that we

summarize as: iteration works, communication is key, and

people are important.

In future work these principles need to be more fully

used. Besides optimization also the interaction between

drivers and software seems to play a major role. Here

techniques from transaction management could prove to be

useful, e.g. to design a protocol that makes it possible to

deal with sudden changes of the situation such as traffic

jams and makes regular checks on the feasibility of the

current plan based feedback on the drivers location. A full

integration of the available information from GPS tracking

will however require major adaptation to the design of

scheduling algorithm and it will therefore be left for future

work.

Dynamic vehicle routing with time windows in theory and practice

123



Acknowledgments The authors gratefully acknowledge financial

support by Agentschap NL, The Netherlands within the project

‘Deliver’. Zhiwei Yang acknowledges financial support from China

Scholarship Council (CSC), CSC No. 201206110020 and National

Natural Science Foundation of China, Grant No. 71571185.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creati

vecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

References

Baker BM, Ayechew MA (2003) A genetic algorithm for the vehicle

routing problem. Comput Oper Res 30(5):787–800

Balaprakash P, Birattari M, Stützle T, Yuan Z, Dorigo M (2009)
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Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of

dynamic vehicle routing problems. Eur J Oper Res 225(1):1–11

Psaraftis H (1995) Dynamic vehicle routing: status and prospects.

Ann Oper Res 61:143–164

Ren ZG, Feng ZR, Ke LJ, Zhang ZJ (2010) New ideas for applying

ant colony optimization to the set covering problem. Comput Ind

Eng 58(4):774–784
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