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Abstract

Introduction

Individuals with systolic heart failure are at risk of ventricular arrhythmias and all-cause mor-

tality. Little is known regarding the mechanisms underlying these events. We sought to bet-

ter understand if oxylipins, a diverse class of lipid metabolites derived from the oxidation of

polyunsaturated fatty acids, were associated with these outcomes in recipients of primary

prevention implantable cardioverter defibrillators (ICDs).

Methods

Among 479 individuals from the PROSE-ICD study, baseline serum were analyzed and

quantitatively profiled for 35 known biologically relevant oxylipin metabolites. Associations

with ICD shocks for ventricular arrhythmias and all-cause mortality were evaluated using

Cox proportional hazards models.

Results

Six oxylipins, 17,18-DiHETE (HR = 0.83, 95% CI 0.70 to 0.99 per SD change in oxylipin

level), 19,20-DiHDPA (HR = 0.79, 95% CI 0.63 to 0.98), 5,6-DiHETrE (HR = 0.73, 95% CI

0.58 to 0.91), 8,9-DiHETrE (HR = 0.76, 95% CI 0.62 to 0.95), 9,10-DiHOME (HR = 0.81,

95% CI 0.65 to 1.00), and PGF1α (HR = 1.33, 95% CI 1.04 to 1.71) were associated with the

risk of appropriate ICD shock after multivariate adjustment for clinical factors. Additionally, 4

oxylipin-to-precursor ratios, 15S-HEPE / FA (20:5-ω3), 17,18-DiHETE / FA (20:5-ω3),

19,20-DiHDPA / FA (20:5-ω3), and 5S-HEPE / FA (20:5-ω3) were positively associated

with the risk of all-cause mortality.
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Conclusion

In a prospective cohort of patients with primary prevention ICDs, we identified several novel

oxylipin markers that were associated with appropriate shock and mortality using metabolic

profiling techniques. These findings may provide new insight into the potential biologic path-

ways leading to adverse events in this patient population.

Introduction
In the US, approximately 3 million people have heart failure with reduced ejection fraction and
are potentially eligible for implantation of a defibrillator (ICD) for primary prevention of sud-
den cardiac death (SCD) [1–2]. However, among primary prevention ICD patients, only a frac-
tion receive appropriate ICD shocks prior to death [3–4], highlighting the limited specificity of
current risk stratification techniques and incomplete understanding of biological processes
that trigger ventricular arrhythmias. Efforts aimed to identify serum-based protein biomarkers
for prediction of appropriate ICD shocks and all-cause mortality have demonstrated only mod-
est prognostic power [5–8]. Hence, there is substantial interest in identifying novel risk factors
and prognostic markers to improve current risk prediction, disease prevention, and to guide
more effective therapeutic strategies.

The metabolic milieu of cardiomyocytes, both from normal and diseased hearts, contributes
to the generation of arrhythmias associated with SCD [9–11]. Recent advancement in the meta-
bolic profiling technique allows high-throughput quantitative assessment of thousands of
small-molecule metabolites found in the serum [12], and has been used to identify novel bio-
markers in several disease processes including coronary heart disease and diabetes [13–14].
Several cross-sectional studies have also applied metabolic profiling in heart failure patients in
whom metabolic alterations have been reported [15–16]. However, the clinical value of meta-
bolic profiling in predicting future adverse events (e.g., ventricular arrhythmias and/or mortal-
ity) in these patients is largely unexplored.

Oxylipins, a diverse class of lipid metabolites derived from the oxidation of polyunsaturated
fatty acids, are potent endogenous signaling molecules involved in the regulation of various
metabolic processes such as inflammation, thrombosis, lipid management, blood pressure reg-
ulation, and hemostasis [17–19]. In an effort to explore the role of oxylipin metabolites in pre-
dicting the risk of ventricular arrhythmias and all-cause mortality, we performed metabolic
profiling of baseline sera from a prospective cohort of systolic heart failure patients undergoing
ICD implantation for primary prevention of SCD. The aim was to identify novel biomarkers
that might serve as new predictors of adverse events and to gain additional insights into the
pathophysiology of disease in this patient population.

Materials and Methods

Study Population, Data Collection and Follow-Up
The Prospective Observational Study of Implantable Cardioverter-Defibrillators (PROSE-ICD)
is a multicenter study of systolic heart failure patients receiving a primary prevention ICD.
Enrollment was conducted at four United States clinical centers from 2003 to 2013 [20]. Details
of the study design have been described previously [20–21]. Among the 1,189 participants
enrolled in the PROSE-ICD study, sufficient baseline blood sera for metabolic profiling of oxy-
lipins were available in 479 subjects. This study was approved by the Johns Hopkins
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Investigational Review Board (IRB) and all participants provided IRB-approved written
informed consent.

At enrollment, all participants underwent a comprehensive medical history, cardiovascular
examination, and fasting blood collection [20]. Peripheral blood is collected and allowed to
stand at room temperature for 1 hour to minimize the variance in the time from collection to
processing. Blood in nonanticoagulated tubes is centrifuged at 1500 rpm for 5 minutes. The
serum is then transferred into tubes containing 200 to 500 μL aliquots, frozen in liquid nitrogen
and stored at −80°C.

After enrollment, patients were evaluated (either in person or by phone) every 6 months
and after any patient-perceived ICD shock. For this analysis, patients were followed for events
through June 1, 2015. The primary endpoint was appropriate ICD shock defined as a shock
delivered for rapid ventricular tachyarrhythmias. The secondary endpoint was all-cause mor-
tality, which was obtained by next-of-kin phone interviews and National Death Index queries.
Arrhythmic events were adjudicated by two cardiac electrophysiologists blinded to patient
information. Disagreements were reconciled by a third electrophysiologist.

Metabolic Profiling
Methodologies for oxylipin analysis have been previously described [22]. For oxylipin analysis,
250 μL aliquots were taken. After thawing on ice, the samples were treated immediately with
antioxidants (0.2 mg BHT/EDTA) and spiked with internal standards (ISTDs). Samples were
analyzed by liquid chromatography (Agilent 1260, San Jose, CA) coupled to electrospray ioni-
zation on a triple quadrupole mass spectrometer (Agilent 6460, San Jose, CA). To detect the
individual oxylipins, multiple reaction monitoring (MRM) in negative ion mode was per-
formed with individually optimized fragmentor voltage and collision energies (Optimizer
application, MassHunter, Agilent). MRM transitions were achieved by flow injection of pure
standards and the optimizer application and were compared to literature when available for
the certain compounds. Peak determination and peak area integration was performed with
Mass Hunter Quan (Agilent, Version B.04.00) while auto-integration was manually inspected
and corrected if necessary. The obtained peak areas of targets were corrected by appropriate
internal standards and calculated response ratios (i.e., peak area of oxylipin target / peak area
of ISTD; unit free) were used throughout the analysis.

Statistics
Metabolites with levels below the lower limits of detection were imputed with a value of the
lower limit of detection (for the given compound) divided by 2. Metabolites with a significant
amount of missing values (>25%) were excluded from the analysis. Due to the skewed distribu-
tion of the oxylipins, values were log-transformed to approximate a normal distribution and
subsequently standardized to have a mean of 0 and standard deviation of 1. For each oxylipin,
we also calculated the oxylipin-to-precursor ratio as the ratio may provide information above
and beyond their individual components (for example, the ratios may serve as a proxy for the
activity of conversion enzymes). Similar to oxylipins, all oxylipin-to-precursor ratios were also
log-transformed and standardized to have a mean of 0 and standard deviation of 1.

To identify associations of each oxylipin and oxylipin-precursor ratio with the study end-
points, we used the Cox proportional hazards regression to calculate the hazard ratios (HR)
associated with every standard deviation (SD) change in the log-transformed oxylipin level.
For all analyses, we used two models with covariates added sequentially. The first model was
adjusted for age, sex, race, and enrollment center. The second model was further adjusted for
ejection fraction, NYHA class, cardiomyopathy etiology, atrial fibrillation, diabetes,
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hypertension, and CKD. We also performed sensitivity analyses further adjusting for ECG
markers (QRS, QTc) and medications (aspirin, ACE-I/ARB, beta-blocker, diuretics, and aldo-
sterone antagonist), and found no significant differences in the results (data not shown). Since
the nature of this analysis is largely exploratory, nominal p-values from the Cox regression
models were reported. STATA version 12 (StataCorp LP, College Station, Texas) was used for
all analyses.

Results
The average age of participants at baseline was 60.1 ± 12.8 years. Men comprised of 72.9% of
the study population and 62.6% were Caucasians (Table 1). After a median follow-up of 6.3
years, 69 participants experienced an appropriate ICD shock (incidence rate 3.1 per 100 per-
son-years), and 161 participants died (incidence rate 5.5 per 100 person-years). The majority
of participants who died did not experience an appropriate ICD shock (135 out of 161, 84%).
Participants who had an appropriate shock during follow-up were less likely to be hypertensive
(Table 1). Participants who died were more likely to be older, male, Caucasian, and to have

Table 1. Baseline characteristics of participants, by appropriate ICD shock.

Characteristic Total No appropriate ICD shock Appropriate ICD shock p-value

(n = 479) (n = 410) (n = 69)

Age (year) 60.1 ± 12.8 60.2 ± 12.9 59.6 ± 12.5 0.74

Sex 0.17

Male 349 (72.9) 294 (71.7) 55 (79.7)

Female 130 (27.1) 116 (28.3) 14 (20.3)

Race 0.06

White 300 (62.6) 249 (60.7) 51 (73.9)

Black 166 (34.7) 148 (36.1) 18 (26.1)

Other 13 (2.7) 13 (3.2) 0 (0.0)

Ejection fraction (%) 21.9 ± 7.5 21.9 ± 7.5 22.1 ± 7.3 0.86

NYHA class 0.87

Class I 70 (14.6) 59 (14.4) 11 (15.9)

Class II 192 (40.1) 167 (40.7) 25 (36.2)

Class III 216 (45.1) 183 (44.6) 33 (47.8)

Class IV 1 (0.2) 1 (0.2) 0 (0.0)

Cardiomyopathy etiology 0.27

Non-ischemic 217 (45.3) 190 (46.3) 27 (39.1)

Ischemic 262 (54.7) 220 (53.7) 42 (60.9)

Atrial fibrillation 119 (24.8) 104 (25.4) 15 (21.7) 0.52

Diabetes 154 (32.2) 132 (32.2) 22 (31.9) 0.96

Hypertension 289 (60.3) 258 (62.9) 31 (44.9) 0.01

Chronic kidney disease 136 (28.4) 121 (29.5) 15 (21.7) 0.25

Medications

Aspirin 318 (66.4) 273 (66.6) 45 (65.2) 0.82

ACE-I / ARB 349 (72.9) 299 (72.9) 50 (72.5) 0.94

Beta blocker 429 (89.6) 370 (90.2) 59 (85.5) 0.23

Diuretics 333 (69.5) 290 (70.7) 43 (62.3) 0.16

Aldosterone antagonist 122 (25.5) 110 (26.8) 12 (17.4) 0.10

Values are number (%) or mean ± SD

doi:10.1371/journal.pone.0157035.t001
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NYHA Class III symptoms, ischemic cardiomyopathy, and higher burden of comorbidities
including atrial fibrillation, diabetes, hypertension, and chronic kidney disease (Table 2).

Six oxylipins, 17,18-DiHETE (HR = 0.83, 95% CI 0.70 to 0.99 per SD change in log-trans-
formed oxylipin level), 19,20-DiHDPA (HR = 0.79, 95% CI 0.63 to 0.98), 5,6-DiHETrE
(HR = 0.73, 95% CI 0.58 to 0.91), 8,9-DiHETrE (HR = 0.76, 95% CI 0.62 to 0.95),
9,10-DiHOME (HR = 0.81, 95% CI 0.65 to 1.00), and PGF1α (HR = 1.33, 95% CI 1.04 to 1.71)
were associated with the risk of appropriate ICD shock after adjusting for age, sex, race, enroll-
ment center, smoking status, body mass index, ejection fraction, NYHA class, atrial fibrillation,
diabetes, hypertension, and chronic kidney disease (Fig 1). None of the oxylipins was signifi-
cantly associated with the risk of all-cause mortality.

We found similar patterns of associations between oxylipin-precursor ratios and the risk of
appropriate shocks for the oxylipins mentioned above (Fig 2). Additionally, 4 oxylipin-to-pre-
cursor ratios, 15S-HEPE / FA(20:5- ω3) (HR = 1.28, 95% CI 1.06 to 1.55), 17,18-DiHETE / FA
(20:5-ω3) (HR = 1.24, 95% CI 1.05 to 1.46), 19,20-DiHDPA / FA (20:5-ω3) (HR = 1.27, 95% CI
1.06 to 1.51), and 5S-HEPE / FA(20:5- ω3) (HR = 1.21, 95% CI 1.02 to 1.44), were positively
associated with the risk of all-cause mortality.

Table 2. Baseline characteristics of participants, by all-causemortality.

Characteristic Alive Dead p-value

(n = 318) (n = 161)

Age (year) 57.1 ± 12.2 66.1 ± 12.0 <0.001

Sex 0.001

Male 216 (67.9) 133 (82.6)

Female 102 (32.1) 28 (17.4)

Race 0.01

White 184 (57.9) 116 (72.0)

Black 125 (39.3) 41 (25.5)

Other 9 (2.8) 4 (2.5)

Ejection fraction (%) 22.1 ± 7.7 21.6 ± 7.2 0.51

NHYA class 0.01

Class I 57 (17.9) 13 (8.1)

Class II 132 (41.5) 60 (37.3)

Class III 128 (40.3) 88 (54.7)

Class IV 1 (0.3) 0 (0.0)

Cardiomyopathy etiology <0.001

Non-ischemic 167 (52.5) 50 (31.1)

Ischemic 151 (47.5) 111 (68.9)

Atrial fibrillation 59 (18.6) 60 (37.3) <0.001

Diabetes 82 (25.8) 72 (44.7) <0.001

Hypertension 181 (56.9) 108 (67.1) 0.03

Chronic kidney disease 63 (19.8) 73 (45.3) <0.001

Medications

Aspirin 205 (64.5) 113 (70.2) 0.21

ACE-I / ARB 226 (71.1) 123 (76.4) 0.22

Beta blocker 288 (90.6) 141 (87.6) 0.31

Diuretics 214 (67.3) 119 (73.9) 0.14

Aldosterone antagonist 77 (24.2) 45 (28.0) 0.38

Values are number (%) or mean ± SD

doi:10.1371/journal.pone.0157035.t002
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Discussion
Using metabolic profiling, we identified 6 oxylipins (17,18-DiHETE, 19,20-DiHDPA,
5,6-DiHETrE, 8,9-DiHETrE, 9,10-DiHOME and PGF1α) that were associated with the risk for
appropriate ICD shocks in a prospective cohort of primary prevention ICD patients, suggesting
a role as novel markers of ventricular arrhythmias. Additionally, the ratios of 4 oxylipins to
their precursors were positively associated with all-cause mortality. These associations
remained true even after adjustment for several demographic variables.

Fig 1. Adjusted hazard ratios (HR) and 95% confidence interval (CI) for appropriate shock and all-causemortality associated with each
oxylipin.Models were adjusted for age, sex, race, enrollment center, ejection fraction, NYHA class, cardiomyopathy etiology, atrial fibrillation, diabetes,
hypertension, and chronic kidney disease.

doi:10.1371/journal.pone.0157035.g001
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The metabolic environment represents a collection of downstream products from various
biological processes in which the cardiomyocytes are continuously exposed. Research has
shown that abnormal myocardial metabolic activity and excessive oxidative stress can modu-
late ion channel / transporter dysfunction that predisposes to ventricular arrhythmias and SCD
[11]. The largest body of evidence concerning the role of metabolites in arrhythmogenesis and
SCD comes from the literature on lipid metabolism. Fatty acid levels were positively associated
with SCD in a large observational study [9], and abnormalities in fatty acid metabolism were
associated with sudden unexpected deaths in infants and children [23–24]. In contrast to free
fatty acids and their metabolites, elevation of circulating n-3 poly unsaturated fatty acid

Fig 2. Adjusted hazard ratios (HR) and 95% confidence interval (CI) for appropriate shock and all-causemortality associated with each
oxylipin-to-precursor ratio.Models were adjusted for age, sex, race, enrollment center, ejection fraction, NYHA class, cardiomyopathy etiology, atrial
fibrillation, diabetes, hypertension, and chronic kidney disease.

doi:10.1371/journal.pone.0157035.g002
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(PUFA) levels is associated with a reduction in the risk of SCD in several observational studies
[25–27].

Oxylipins are bioactive metabolites derived from the oxygenation of PUFAs such as arachi-
donic acid (AA), linoleic acid (LA), eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and dihomo-γ-linolenic acid (DGLA) [22]. Different precursor PUFAs are trans-
formed into a variety of oxylipins by three main classes of enzymes: cyclooxygenase (COX),
lipoxygenase (LOX), and cytochrome P450 (CYP450) [22]. Recent advancements in mass spec-
trometry have allowed for quantitative evaluation of approximately 100 oxylipins down to low
nanomolar concentration levels [22]. Leveraging this new lipidomic profiling technique, we
identified several oxylipins that were associated with future risks of ventricular arrhythmias
and mortality. These findings suggest that these oxylipins may serve as novel biomarkers or
therapeutic targets for adverse events in this patient population.

Although the role of many oxylipins in cardiovascular disease is still uncertain, accumulat-
ing evidence suggests that they play an important role in the progression of cardiovascular risk
factors, inflammation, and thrombosis [17, 19, 22]. Five of the 6 oxylipins identified in our
study were metabolites generated through the CYP450 pathway [22]. CYP450 eicosanoids
have been shown to be involved in the regulation of vascular tone, cardiac contractility, cellular
proliferation, and inflammation [28]. CYP450 enzymes convert AA to a family of epoxyeicosa-
trienoic acids including 5(6)-epoxyeicosatrienoic acid [5(6)-EpETrE] and 8(9)-EpETrE [29].
These EpETrEs are potent modulators of vasodilatation, angiogenesis, ion conductance, and
anti-inflammatory and antithrombotic processes [19, 29–30]. Once formed, they are rapidly
metabolized by the soluble epoxide hydrolase (sEH) enzyme to corresponding downstream
dihydroxyeicosatrienoic acids (DiHETrEs) [29]. Indeed, our study found inverse associations
of 5,6-DiHETrE and 8,9-DiHETrE, stable hydrolysis products of the 5(6)-EpETrE and 8(9)-
EpETrE, with the risk of appropriate ICD shock. A study in a mouse model has shown that
5,6-DiHETrE and 8,9-DiHETrE can produce dose-dependent vasodilatation by modulating
the bioavailability of nitric oxide (NO) via endothelial NO synthase [31]. Furthermore, in a
lipidomics study of 16 healthy male volunteers characterizing the temporal changes in periph-
eral blood inflammatory compounds, 5,6-DiHETrE and 8,9-DiHETrE levels were elevated
after treatment with the non-steroidal anti-inflammatory drug ibuprofen, suggesting their
potential role in anti-inflammatory modulation [29]. Similarly, the levels of 5,6-DiHETrE were
increased after intervention with diclofenac in another study of overweight and obese men
[32].

Oxylipins 9,10-DiHOME, 17,18-DiHETE and 19,20-DiHDPA are stable metabolites of LA,
EPA and DHA, respectively, that are produced through the CYP450 pathways [22]. The
actions of these oxylipins are still poorly understood, but some studies have shown that
17,18-EpETE, an intermediate metabolite of 17,18-DiHETE, has concentration-dependent
vasodilatation effects on the pulmonary and cerebral arteries [33–34], has anti-inflammatory
effects in human lung tissue [35], and exert negative chronotropic effects and protects neonatal
rat cardiomyocytes against Ca2+ overload [36]. Additionally, 19,20-EpDPE, an intermediate
metabolite of 19,20-DiHDPA, has been shown to decrease Ca2+ sensitivity in human pulmo-
nary arteries [37]. Our study found inverse associations of 17,18-DiHETE and 19,20-DiHDPA
with the risk of appropriate shock. Interestingly, we also observed positive associations between
the ratios of 17,18-DiHETE and 19,20-DiHDPA to their precursors and all-cause mortality.
These findings may suggest that a higher conversion rate of these oxylipins might be associated
with worse survival, but further experimental and clinical studies are needed to better under-
stand the underlying mechanisms.

PGF1α is a biosynthesis product of DGLA via the COX pathway [22]. In our study, it was
the only oxylipin that was positively associated with the risk of appropriate ICD shocks. Prior
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studies have reported that PGF1α could modulate the contraction and relaxation of vascular
smooth muscle from the arterial strips [38] and increase coronary blood flow and myocardial
contractile force [39]. In an anesthetized dog model, injection of PGF1α intravertebrally caused
an increase of blood pressure and tachycardia, whereas intravenous or intracarotid infusion of
the same dose of PGF1α had no effect. These findings suggest that PGF1α has little direct effect
on heart rate but may affect heart rate indirectly through a reflex stimulation or inhibition on
the sympathetic and vagal nerves [40–41]. Beyond these observations, the exact mechanism
underlying the association between PGF1α and appropriate shock is unknown.

Additionally, we found positive associations between the ratios of 5S-HEPE and 15S-HEPE
to their respective precursors and the risk of mortality. Both 5S-HEPE and 15S-HEPE were
metabolites of EPA via the LOX pathway [22]. These LOX metabolites may have anti-inflam-
matory effects and play an important role in the resolution phase of inflammation [42]. In a
lipidomics study of 5 patients undergoing cardiac surgery, levels of 5-HEPE were increased 24
hours after the surgery compared to before surgery [22]. It has also been shown that individuals
with hyperlipidemia had higher levels of 5-HEPE [18]. Similarly, animal study has demon-
strated the potential anti-inflammatory property of 15-HEPE in inflammatory skin disorders
[42].

Several limitations of our study need to be considered. Since our study was by nature obser-
vational, we could only identify associations but not establish causal links between oxylipins
and outcomes. Although our study included a large cohort of systolic hear failure patients with
primary prevention ICDs, it may be still underpowered to detect associations with outcomes as
relatively few patients experienced these events. Given the nature of our cohort, findings from
this analysis may not be applicable to patients at high risk for sudden death but with preserved
left ventricular function.

Conclusions
In a prospective cohort of patients with primary prevention ICDs, we identified several novel
oxylipin markers that were associated with appropriate shock and all-cause mortality using
metabolic profiling technique. Additional studies are required to confirm these findings in
other patient populations and to better understand the exact mechanisms underlying the asso-
ciations between oxylipins and SCD.
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