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Abstract. This article studies a tri-objective formulation of the inventory routing problem, extending the recently studied bi-
objective formulation. As compared to distance cost and inventory cost, which were discussed in previous work, it also considers
stockout cost as a third objective. Demand is modeled as a Poisson random variable. State-of-the-art evolutionary multi-objective
optimization algorithms and a new method based on swarm intelligence are used to compute approximation of the 3-D Pareto
front. A bench-mark previously used in bi-objective inventory routing is extended by incorporating a uncertain demand model
with an expected value that equals the average demand of the original benchmark. The results provide insights into the shape of the
optimal trade-off surface. Based on this the dependences between different objectives are clarified and discussed. Moreover, the
performances of the four different algorithmic methods are compared and due to the consistency in the results, it can be concluded
that a near optimal approximation to the Pareto front can be found for problems of practically relevant size.
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1. Introduction

The Inventory routing problem (IRP) is a very im-
portant problem in logistics, especially for the ven-
dor managed inventory (VMI) replenishment [36,38].
Many companies are looking for a win-win strategy
for the supplier and customers by integrating inventory
management, vehicle routing and delivery strategies
[13]. This paper considers a finite horizon tri-objective
stochastic IRP with a single supplier and multiple geo-
graphically distributed customers. In this problem, each
customer has a uncertain demand each day for a single
product. The customers are replenished from the cen-
tral supplier by a fleet of homogeneous vehicles with
limited capacity. The goal is to find a delivery strat-
egy and routing schedule that can simultaneously mini-
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mize three objectives: routing cost, inventory cost and
stockout cost.

Many variants of IRP have been developed since the
first pioneer paper of inventory routing thirty years ago
[19]. The IRP was regarded as an extension of the vehi-
cle routing problem (VRP) in the early papers, and only
the routing cost was considered, while the inventory
levels were regarded as fixed constraints that had to be
high enough to satisfy the stochastic period demand of
customers [7]. Burns et al. integrated inventory cost as
another objective and analyzed the trade-offs between
inventory cost and routing cost with finite time horizon
[12,25]. But the time horizon can also be infinite which
can be seen in [3,29]. To simplify the problem, direct
routing is adopted, which means one vehicle replen-
ishes only one customer in each period [6,29,38]. How-
ever, most real world problems are not using direct rout-
ing. Recent studies focused on the problem in which
one vehicle is able to serve several customers each
time [8,21]. During the execution of inventory routing



a stockout may occur. This can be avoided by adding
a back-logging strategy in case customers are willing
to wait till the next delivery day [15,17]. Stockout is
not permitted in most IRP with deterministic demand
[2,13,31]. However, when the demand of customers is
stochastic, it is impossible to avoid the stockout [33].
Hence, expected stockout should be regarded as the
third objective to be minimized of the inventory routing
problem.

The inventory routing problem with two objectives
has been approached in different methods ranging from
exact algorithms to metaheuristics algorithms. Archetti
et al. implemented a branch-and-cut algorithm for a
small scale single vehicle IRP with a short time hori-
zon [5]. Solyali et al. improved the branch-and-cut al-
gorithm to an extended small scale single vehicle IRP
using a strong formulation [53]. In this extension, each
customer has an external dynamic demand and is con-
trolled by a deterministic order-up-to-level policy. Re-
cently, this algorithm has already been implemented
to solve larger scale IRP with multiple vehicles [1,20].
However, exact algorithms are only able to solve the
small scale IRP within limited time. In order to obtain
high quality solutions for large scale IRP problems,
metaheuristics algorithms are implemented in the cur-
rent research. Zhao et al. proposed a variable neigh-
borhood search for the IRP in a three echelon logistics
system [57]. A tabu search algorithm combined with ad
hoc designed mixed integer programming models was
applied by Archetti et al. for an IRP in discrete time [4].
Ribeiro et al. introduced an iterative local search algo-
rithm to solve the IRP with stochastic and deterministic
demand [46]. They decomposed the IRP into an each
day VRP, and the iterative local search algorithm was
used to find a good feasible of the VRP. Salvesbergh
et al. combined an improved branch-and-cut algorithm
and greedy heuristic which is used to solve the IRP
with continuous moves [49]. A hybrid genetic algo-
rithm was developed for a finite horizon, multi-periods,
multi-products and many-to-one distribution IRP by
Moin et al. [42]. The authors used an allocation first
and route second strategy to construct a solution. New
crossover and mutation operators and new presentations
are introduced in order to adapt the algorithm to the
IRP. However, these papers all focus on bi-objective
IRP. The thri-objective IRP has not been studied well
yet. A modified ant colony algorithm was developed
for multi-item inventory routing problem with demand
uncertainty [33]. They proposed a new pheromone up-
dating rule which could integrate the stockout cost. But
they integrate three objectives problem into a single

objective problem by giving a tradeoff weights to each
objective. Geiger et al. developed a local search strat-
egy by modifying deliver frequencies which generated
a Pareto front approximation for the bi-objective in-
ventory routing problem [31]. They also proposed 14
benchmark instances with certain demand.

Multi-objective optimization problems become a hot
topic in the recent years [14,36,40]. The goal in this
paper is to reduce three different cost factors simul-
taneously - routing cost, inventory cost and stockout
cost. Whereas the first is related to the economical and
ecological aspect of the problem (fuel consumption),
the latter is related to the quality of service that needs
to be optimized, the last one indicates the lost sale that
should be minimized. The goal of this study is to com-
pare two different, though closely related, strategies for
computing the Pareto optimal front of this problem.

Many algorithms have been implemented to solve
multi-objective optimization problems [16,48,51,58].
In this study, four multi-objective optimization algo-
rithms are compared to solve the tri-objective inven-
tory routing problem with uncertain demand in logis-
tics. These are two state-of-the-art evolutionary multi-
objective optimization methods, namely NSGA-II and
SMS-EMOA. Moreover, an extension of a state of the
art bi-objective inventory routing method by Huber,
Geiger and Sevaux [34] for two objectives (inventory
and routing cost) is developed to the tri-objective prob-
lem. Since the hypervolume indicator is a good measure
for the quality of the Pareto front and particle swarms
algorithms works well in optimization problems. In this
paper we also propose a new hypervolume indicator
based particle swarm optimizer called multi-objective
optimization cooperative particle swarms (MOCOPS).

The paper is structured as follows: In Section 2 of
this paper the inventory routing problem is defined and
preliminaries from literature are described. Section 3
demonstrates the structure of the solver and provides a
detailed description of the four algorithms. In section 4,
the results on the benchmark problems are discussed
and the performance of the proposed algorithms is com-
pared. Finally, Section 5 concludes the work with a
summarizing discussion.

2. Problem definition and preliminaries

2.1. Problem definition

In general, a multi-objective optimization problem is
a problem with two or more objective functions to be



optimized simultaneously. Such problems are defined
as:

f1(x)→ min, · · · , fm(x)→min (1)

subject to

g1(x) ≤ 0, · · · ,gk(x)≤ 0 (2)

x ∈ X (3)

Here x is an element in decision space X , that is the
space of all possible alternative solutions. fi(x) is the
ith function of the m objective functions and gi(x) is the
ith function of the k constraint functions. The search
spaces could be continuous or discrete. In this article,
the search space is a discrete one and the focus is on
problems with three objective functions.

The multi-objective IRP with uncertain demand can
be described as follows. In this problem, products are
repeatedly delivered from a single supplier to a set
of n geographically dispersed customers over a given
planning horizon T (in days). On different days, each
customer consumes a stochastic amount of the product.
Moreover, customers maintain a local inventory with a
maximum inventory level. The supplier has to service
all customers with a fleet of homogeneous vehicles with
an equal maximal capacity. The objective in [31] was to
minimize the total inventory cost and the total routing
cost during the planning period. Here, it is extended to a
tri-objective problem that also states expected stockout
cost as an objective function.

Formally, the problem is set up as described in [31]:
There are n customers and at most one vehicle with ca-
pacity C per customer. Deliveries cannot be split in the
model, namely a customer can be visited at most once
by a vehicle per day. Each customer i ∈ {1, · · · ,n} has
a maximum inventory level denoted with Qi. For each
customer i ∈ {1, · · · ,n} and time t ∈ {1, · · · ,T} (denot-
ing an index for the days), Li,t denotes the inventory
level, qi,t is the shipping quantity, di,t is the demand to
be satisfied. At day 1 the values of Li,t are set to some
pre-defined initial inventory level. The inventory levels
are then updated according to the equation given by
Geiger and Sevaux [31].

The stockout cost of this problem can be computed as
Si,t = max{0,di,t −Li,t−1−qi,t}. A positive Si,t means
that there are not enough products available at time t for
customer i. In [31], positive Si,t were avoided altogether
by considering them as strict constraints. However, if
demands are stochastic meaning they are not known
beforehand, stockout cost cannot be avoided.

A solution candidate is represented by a tuple of
delivery frequencies (π1, ...,πn) with πi ∈ {1, · · · ,T}
for i = 1, · · · ,n. For each customer it determines how
often it is visited by a vehicle. For instance, πi = 1
means a day-to-day delivery for customer i, πi = 2
indicates that on every second day a delivery takes
place, and so forth. The required shipping quantities
are then determined by

qi,t = min

{(
t−1+πi

∑
`=t

di,`

)
−Li,t−1, Qi−Li,t−1, C

}

The two objectives which were stated in [31] are
defined as:

f1 =
T

∑
t=1

n

∑
i=1

Li,t →min (4)

f2 =
T

∑
t=1

V RPt(q1,t , . . . ,qn,t)→min (5)

where Eq. 4 describes the total inventory cost and Eq.
5 represents the total cost for the routing. The latter is
determined by solving for each day a vehicle routing
problem V RPt(q1,t, · · · ,qn,t) with the given shipping
quantities (q1,t, · · · ,qn,t) for day t (they are determined
by the frequencies).

The vehicle routing problem is defined in the stan-
dard way: Given a set of n customers and a depot, it is
required to visit each customer exactly once and deliver
the quantity qi to customer i. Multiple vehicles can be
used and each vehicle has the same capacity. One vehi-
cle must start from a depot and return to it. The number
of vehicles is flexible, and therefore the constraints can
always be satisfied. For a formal problem description,
see [54]. The routing cost is proportional to the total
distance of all tours.

Finally, stockout cost is defined by computing the
total stockout in the scenario as:

f3 =
T

∑
t=1

n

∑
i=1

Si,t →min (6)

Therefore, this problem can be defined as a multi-
objective optimization problem.

2.2. Multi-objective optimization

Miettinen [41] distinguishes the a-priori and a-
posteriori methods for multi-objective optimization. In
the a-priori approach, first an aggregating utility func-
tions are defined and then the optimization is carried out.



In the a-posteriori approach a set of non-dominated so-
lutions is computed and presented to the decision maker
for selection and trade-off assessment. In this work, the
a-posteriori approach is applied and algorithms are pro-
posed to compute approximations to the non-dominated
set (or Pareto front) of the multi-objective optimization
problem.

In order to introduce a preorder on the search space,
the usual Pareto dominance relation is used . A point
x(1) ∈X is said to (Pareto) dominate a point x(2) ∈X ,
if and only if for all objective function values x(1) is
not worse than x(2), and x(1) is strictly better than x(2)
in at least one objective function value. The set of non
dominated solutions in X will be called the efficient
set X ∗ and its image set PF = {f(x)| x ∈ X ∗} is
commonly termed the Pareto front.

A performance indicator for how well a Pareto front
is covered is the hypervolume indicator of a population.
The hypervolume indicator defined in this way is a
standard indicator in Pareto optimization and it has
been shown by Zitzler et al. [59] that it has favorable
properties compared to all other indicators when the
goal is to obtain a well distributed approximation of the
Pareto front. It is defined by the size of the dominated
subspace in the objective space:

HV ({x(1), . . . ,x(n)}) = λ

(
n⋃

i=1

[
f(x(i)),r

])
(7)

Here λ denotes the Lebesgue measure in dimension m.
r is the reference point of this problem. It is assumed
that the objective function vectors f(x(i)) dominate r,
so that the orthogonal ranges

[
f(x(i)),r

]
⊂ Rm are well

defined for i = 1, . . . ,n.
Informally, the hypervolume indicator can be defined

as a measure for the size of the set of dominated objec-
tive vectors, for which there exists a solution x ∈X
that is either better or equal to the objective vector. To
make this measure finite, the measured set is cut from
above by a reference point. Increasing the hypervolume
indicator means therefore to increase the amount of
available options.

In Figure 1, it can be seen a projection of some pop-
ulation of 5 points to the objective space for some hy-
pothetical function . The points x(1), x(2), x(3), and x(4)
are non-dominated and the point x(5) is dominated. For
each point the dominated part of the reference space is
indicated by a gray shaded box surrounded by a dark
gray line. The hypervolume indicator of this population
and reference point r equals the size of the entire gray

shaded area. In this article algorithms are compared
which seek to maximize the hypervolume indicator over
the set of all subsets of X of size n. The algorithms
produce a sequence of so called approximation sets
that gradually converges to a diverse approximation
of the Pareto front with maximal hypervolume indica-
tor. Indicator-based multi-objective optimization (IMO)
seek to improve the performance indicator of a solution
set and by doing so achieve a good approximation to a
Pareto front.

Fig. 1. Projection of a population to the objective space.

3. Multi-objective optimization algorithms

Next we will introduce the four algorithms that will
be used for solving the three objective inventory rout-
ing problem. All algorithms are population-based meta-
heuristics, that is metaheuristics that maintain a popu-
lation of search points. They aim to move the points
closer to and across the Pareto front.

We will start with the introduction of the two IMO
methods, namely the SMS-EMOA and MOCOPS. The
SMS-EMOA is an evolutionary algorithm and the MO-
COPS is a swarm based algorithm. In mathematical pro-
gramming, evolutionary algorithms and particle swarm
algorithms, different terminologies are used. An ap-
proximation set (to the efficient set) in mathematical
programming is called a population of individuals in
evolutionary algorithms and a swarm of particles in
swarm algorithms. Iterations of an iterative search algo-
rithm correspond to generations in evolutionary algo-



Table 1
Terminology in set-oriented optimization.

Evolutionary Swarm Mathematical
Optimization Optimization Programming

Population Swarm Approximation set
Individual Particle Decision vector
Generation Position update Iteration

rithms and position updates in swarm algorithms. The
terminology is summarized in Table 1.

In this article, both SMS-EMOA and MOCOPS aim
to maximize the hypervolume indicator of a population
of solutions and thereby create a diversified set on the
Pareto front. SMS-EMOA is an evolutionary algorithm
with single point replacement selection scheme (steady
state selection), and MOCOPS is a swarm based algo-
rithms where each point in the population is viewed
as a search agent that seeks to improve its individual
contribution to the hypervolume indicator. The struc-
ture of the solvers for inventory routing problem can be
seen in Figure 2. The procedure starts with initialize the
population. Based on the delivery frequencies given by
the initialization, customers are assigned to be serviced
at a certain day. For each day, how much quantity of
products should be delivered would be decided which
construct a classical vehicle routing problem. After the
evaluation of one solution is done, the hypervolume
contribution of each customer is calculated. Then, the
population is updated according the hypervolume con-
tribution of each customer. This loop is reiterated until
a user defined termination criterion is reached.

3.1. Initialization procedure

In order to make the population evenly spread in the
search space, a special initialization procedure is im-
plemented which can be seen in [31]. First, solutions
are initialized by given an identical delivery periods
starting with 1 and increasing in step of 1 until no non-
dominated alternatives can be added to the population
anymore. For example, if there are 3 customers to be
served with a max period of 3, then the initial delivery
periods are π= { [1,1,1,1], [2,2,2,2], [3,3,3,3]}. The de-
livery periods are randomly set to j or j+1, which can
fill the gaps between the purely identical delivery pe-
riod solutions. The initial delivery periods with size of
8 solutions would be π= { [1,1,1,1], [2,2,2,2], [3,3,3,3],
[2,1,1,1], [2,2,2,1], [2,2,3,1], [3,3,2,2], [3,2,2,3]}. It will
be decided based on the delivery frequencies, when and

how many of the products should be delivered. For each
period, a classical vehicle routing problem is defined.

Since the vehicle routing problem is an NP-hard prob-
lem [37,55], it is really time-consuming to solve this
problem repeatedly. Therefore, the classical savings al-
gorithm [18] is applied to construct of the solution of
the vehicle routing problem. This algorithm is very fast
and known to find good solutions on a wide range of
problems. A number of heuristic approaches such as
genetic algorithm and ant colony algorithm are able
to improve the performance of VRP [24,28,30,51,52].
However, these algorithms are not chosen in this article
because they are really time consuming.

3.2. Evolutionary algorithm: SMS-EMOA

In this SMS-EMOA points can be removed and new
points might appear in the course of evolution [9,26].
Viewing as stochastic systems, it is a branching process,
with ‘birth events’ creating a new branch, and ‘death
events’ terminating a branch.

The SMS-EMOA is otherwise very similar to the
swarm-based algorithm, as it bases the decisions on hy-
pervolume contributions of points. Given a population
P, the hypervolume contribution ∆H(x) is defined as:
∆HV (x) = HV (P)−HV (P\{x})

For visualization of a population with 3-D objective
vectors, see Figure 3. An asymptotically optimal algo-
rithm for computing all hypervolume contributions in a
population of 3-D vectors has been discovered by Em-
merich and Fonseca [27]. The running time complexity
is O(|P|log|P|), here |P| is the size of Pareto front set,
and this step is therefore up to a constant factor as fast
as computing the hypervolume of a population.

The simple version of SMS-EMOA that was used in
our experiments is outlined in Algorithm 1. After initial-
izing a population, in each iteration, first a new solution
is created by mutating an existing solution (Mutate(.)).
Then it is added to the population. Subsequently, the
hypervolume contributions of all population members
are computed and those with the least contribution are
determined. A randomly chosen ‘least hypervolume
contributor’ is then discarded from the population. Due
to the last step the population size is kept constant and
there is a selection pres-sure towards sets which cover
more hypervolume.

3.3. Multi-objective cooperative particle swarm

As opposed to the evolutionary algorithm, multi-
objective optimization cooperative particle swarms
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Fig. 2. The structure of multi-objective optimization algorithm for inventory routing problem

Fig. 3. Left: Hypervolume dominated by a set of 3-D objective vectors.
Right: Hypervolume contributions of these vectors.

(MOCOPS) is a randomized search heuristics where
a swarm of particles moves gradually towards a
hypervolume-maximizing solution set driven by ran-
domized modification operators and interaction be-
tween the particles. It could be described as a multi-
trajectory stochastic flow. It is related to particle swarm
optimization algorithms (PSO) that have been sug-
gested for other search problems in the literature
[10,47].

In conventional PSO algorithms, the swarm is driven
by a leader, who is the currently best individual in a
population, and by local memories of particles of their
so-far best positions. In single-objective optimization
such processes will typically converge to local, or some-
times even to global optima. In multi-objective opti-

Algorithm 1 S-Metric Selection Evolutionary Algo-
rithm (SMS-EMOA)∗

Input initial population P0
while termination criterion is not reached do

t← t +1
x(s): Random select on individual from the popu-
lation
xold = x(s)
xnew = Mutate(xold)
P← Pt ∪{xnew}
{Determine the (set of) least hypervolume contrib-
utors}
L ← argminx∈P ∆HV (x)
Chose randomly a solution x(s) in L
P← Pt \{x(s)}

end while
(∗Simple version with random selection among dominated solutions.)

mization such an approach could be easily used to find
a single point on the Pareto front, but is not well suited
to distribute points across the Pareto front, because
the particles all strive to resemble the leader which is
counter-productive when searching for a diverse set of
solutions. To a certain extent this can be compensated
by assigning local leaders, but this makes the algorithm
quite complicated and adds parameters to the algorithm
(i.e., number of leaders).

In multi-objective optimization there is no definition
of a best solution and thus there is no obvious choice



for a leader individual. However, one could for instance
form subpopulations or use local metrics. The use of
traditional PSO for multi-objective opti-mization prob-
lems has been addressed already in the literature, both
in the context of general multi-objective optimization
[22] and for finding Pareto fronts that maximize the hy-
pervolume indicator [43,44,45]. Both approaches lead
to algorithms pro-duce good approximations to Pareto
fronts. The ver-sion of multi-objective particle swarm
optimization used in this article resembles closely [43],
but it is using a simplified leader free selection and
variation scheme.

For the cooperative particle swarm algorithm, the fol-
lowing properties distinguish it from previous swarm-
based approaches:

– Leader-free: The particles in the population coop-
erate in covering the Pareto front, instead of com-
peting with each other. There is thus no leader in
the swarm; each particle strives to contribute to
the global performance of the swarm.

– Indicator-based: The algorithm seeks to maximize
a unary performance indicator. Here the hypervol-
ume indicator is used.

The new approach is deliberately kept very simple.
This is for two reasons: Firstly we want to demonstrate
that only a few essential components are needed to steer
a swarm towards a Pareto front. Secondly, simplicity
will make the algorithms easier accessible to a rigorous
theoretical analysis.

Here we term this approach multi-objective optimiza-
tion cooperative particle swarms. The particles in the
swarm strive to contribute as much as possible to the
team performance of the population. In doing so, they
seek to contribute in different ways to the goal of cov-
ering the Pareto front.

In the traditional PSO algorithms a swarm will thus
lead to unity, whereas in multi-objective optimization
you need diversification to adequately approach the
Pareto set. In trivial situations where the objectives are
not conflicting, no diversification is needed. In this case,
the problem can easily be restated as single-objective
problems instead. The pseudo-code for the proposed
MOCOPS algorithm is given in Algorithm 2. It starts
with randomly initializing a set of particles. Then, in
each iteration of the algorithm, a particle is randomly
selected and a small random variation of this particle is
generated by adding a random perturbation (Mutate(.)).

If the fitness contribution of the mutated particle rel-
ative to the population is better than for the original
position then the particle will move to the new posi-

tion: Firstly, it will be tested which one of the two
positions leads to a better hypervolume indicator of
the population. Secondly, if both positions are equally
good (which will typically occur for dominated solu-
tions), the point that has a better value in the aggre-
gated linear objective function with equal weights is
considered. Note that if one solution is dominated by
the other solution it will also be considered better in the
latter comparison (because of positive equal weighting).
Therefore, eventually all solutions will strive towards
the non-dominated front and then their hypervolume
contribution will be considered. The cycle continues
with picking a random particle again. Care must be
taken to ensure~xnew ∈ S (e.g. by rejecting infeasible
vectors).

Algorithm 2 Multi-objective Optimization by Cooper-
ative Swarms (MOCOPS)

Input initial population P0
while termination criterion is not reached do

t← t +1
x(s): Random select on individual from the popu-
lation
xold = x(s)
P→ Pt \{x(s)}
{Try to improve position of particle x(s)}
xnew = Mutate(xold)
if HV (P∪{xnew})> HV (P∪{xold}) then

Pt = P∪{xnew}
else if HV (P∪{xnew})< HV (P∪{xold}) then

Pt = P∪{xold}
else if f1(xnew) + f2(xnew) < f1(xold) + f2(xold)
then

Pt = P∪{xnew}
else

Pt = P∪{xold}
end if

end while
Return Pt

One iteration of the bi-objective MOCOPS algo-
rithm can be performed with a time complexity in
O(|P|log|P|). Here |P| is the size of the Pareto front set.
This can be achieved by using a dimension sweep algo-
rithm and an AVL tree [27]. However, by implementing
the algorithm as an online algorithm, that is using incre-
mental update steps, we can compute a single iteration
with time complexity in O(log|P|) (amortized over the
number of iterations) [35]. This algorithm dynamically
updates the AVL tree keeping non-dominated points



sorted in the first coordinate. Fast - linear time - hy-
pervolume update schemes are also known for three
objective functions [32]. The computational complexity
is expected to grow exponentially in the number of ob-
jective functions [11]. For this reason the scheme does
probably not lend itself very well for many-objective
optimization.

On first glance MOCOPS and SMS-EMOA look sim-
ilar. However, there is an important difference. The dif-
ference is given by the stochastic dynamics of the two
algorithms. The SMS-EMOA is a branching process -
a single (parent) point can generate multiple offspring
over time or it might also disappear without ever pro-
ducing an offspring. In MOCOPS a point is either pre-
served or replaced by a better neighboring point (lo-
cal move). In this sense the dynamics of MOCOPS is
simpler, but it is less likely in MOCOPS to abandon
subspaces entirely, as it might occur in SMS-EMOA.

3.4. NSGA-II

NSGA-II is a classical multi-objective algorithm pro-
posed by Deb et al. [23]. In each iteration, the tourna-
ment selection, recombination and mutation operator
are used to generate the offspring. Then a fast nondom-
inated sorting method and crowding distance as a sec-
ondary ranking order are applied to select the popu-
lation for the next generation which can maintain the
diversity of the population. Since in the IRP the solu-
tion is an integer vector, the operators are adapted to a
perturbation in order to implement NSGA-II.

3.5. HGS14

In addition, we extended the state-of-the-art decom-
position based bi-objective optimization algorithm for
bi-objective inventory routing by Huber, Geiger, and Se-
vaux (HGS14) to the 3-D case [34]. They use the same
initialization procedure as described in this paper. All
nondominated initial solutions are added to an archive.
Then, in the improvement procedure, a set of reference
points are selected. To select the representatives of solu-
tions, the objectives of solutions are normalized and the
solutions that minimize the distance to these reference
points are selected from the archive in each iteration.
For each reference point the nearest neighbor in the
Chebychev distance is selected from the archive and
then improved by local search, also minimizing this
Chebychev distance. New solutions will be added to
the archive and the dominated solutions in the archive
are deleted. Then new reference points are selected are

determined based on the new nondominated set, and the
procedure is repeated. The process is terminated after
a prescribed number of steps. The local searches are
exhaustive and use as local search operator increment
or decrement of a single vector position by 1.

A main extension is the reference points selection
methods from 2-D to 3-D. A regular pattern is used to
distribute the reference point on the boundaries of a sim-
plex which dominates the current Pareto front. Suppose
the space in each dimension is divided into n intervals.
Then the value of each dimension the reference points
should belong to the set s = {si|si = i/n, i = 0, · · · ,n}.
Then the reference points set can be defined as R =

{−→r |∀i ∈ {1,2,3} : ri ∈ s∧∃ j ∈ {1,2,3} : r j = 0}. For
instance, for n = 3, we construct the reference points
by the base pattern {(0,0,0); (0,0,1/3); (0,0,2/3); (0,0,1);
(0,1/3,0); (0,1/3,1/3); (0,1/3,2/3); (0,2/3,0); (0,2/3,1/3);
(0,1,0); (1/3,0,0); (1/3,0,1/3); (1/3,0,2/3); (1/3,1/3,0);
(1/3,2/3,0); (2/3,0,0); (2/3,0,1/3); (2/3,1/3,0); (1,0,0)}.
This example of the reference points can be seen in
Figure 4 and is used in the studies for this paper. The
base pattern is rescaled by multiplying each component
of a base-vector by the maximal value for that dimen-
sion in the current Pareto front approximation. Note
that, NSGA-III also use the concept of reference points.
However, they use the reference plane to select them
[50].

Fig. 4. An example of refenence points selected on 3-D method



4. Computing results

4.1. Test instances

The test benchmark instances are proposed by Se-
vaux et al. [31], which are available from http:
//logistik.hsu-hh.de/IRP. The concept of
multi-period demand is added to the classical VRP
benchmark data. They generated a total of T = 30 peri-
ods demand of all customers. In each period, the given
demand range from −25% to 25% around the average
demand. The number of customers for problem GS-01,
GS-02, GS-03, GS-04 and GS-05 are 55, 75, 100, 150
and 200, respectively. In this article, an extension is
made to generate the uncertain demand. The period
demand of each customer is given as a random number
with a Poisson distribution whose expected value is µ ,
the average period demand which is given in Sevaux’s
benchmark. For a typical value of µ , that is µ = 20, the
probability density function of this Poisson distribution
can be seen in Figure 5.

Fig. 5. The specific probability density function of the demand

4.2. Parameter settings

All four algorithms are tested on the bi-objective
and tri-objective inventory routing problem. The mat-
lab code is made available via http://natcomp.
liacs.nl/index.php?page=code. The algo-
rithm setup was as follows: For the mutation integer mu-
tation with geometrical distribution is used [39] and if
interval boundaries are exceeded, they are set to bound-
ary. The vehicle routing was done with the parameter-

Table 2
The reference points used in different instances

Instances reference points

GS-01 (233100,72070.43,20895)
GS-02 (409200,108925.70,36949)
GS-03 (437400,149682.68,39494)
GS-04 (670500,220815.05,60500)
GS-05 (955800,288252.24,86207)

free savings heuristics. All other problem data was cho-
sen according to [31]. The runs were conducted for
5000 evaluations of the objective functions.

For the hypervolume indicator, the reference point
R = (r1,r2,r3) was used. In order to determine a refer-
ence point, an upper bound for all objective function
values was required: For the first objective (inventory
cost) r1, the assumption is that all inventories are al-
ways at their maximum allowed level. For the second
objective (routing cost) r2, the assumption is in every
day each customer is severed with one vehicle. Finally,
for the third objective (stockout cost) r3, the assumption
is no deliveries would take place. The reference points
used in different test instances can be seen in Table 2.

For the population based algorithm, population size
is a sensitive parameter that should be carefully treated.
In this article, the parameter tuning is done by changing
the population size from 10 to 100 with an interval of 10.
In Figure 6, it can be seen that the hypervolume values
increase with the population before 80 and then drop
gradually. The results show that the best population size
should be set to 80. Note that large populations cause
longer computing time, due to resource sharing.

4.3. Biobjective IRP experiment

The first comparison is on the bi-objective problem.
Figure 7 shows the result of the comparison. Clearly the
results of both algorithms seem to be very similar. The
most left point appears as an isolated solution around
(0.5,1.6). The delivery frequencies for all customers
are 1, which means every day all customers are served.
Moving further right by holding more inventories would
make a big reduction of routing cost. However, after in-
ventory cost reaching 5, the inventory cost would not in-
crease so much any more, because maximum inventory
levels are reached. The results also show that NSGA-II,
SMS-EMOA, MOCOPS can get similar results in bi-
objective inventory routing problem. HGS14 per-forms
a little better in the problem.



Fig. 6. Left: The hypervolume indicator of MOCOPS changes with population sizes. Right: The hypervolume indicator of SMS-EMOA changes
with population sizes.

Fig. 7. Pareto front approximations of the bicriteria problem obtained with different algorithms.

4.4. IRP with uncertain demand experiments

In this experiment, all four algorithms are executed
10 times on 5 test instances with the number of cus-
tomers varying from 50 to 200. Since Sevaux et al. only
provided results of bi-objective IRP, there is no existing
results that can be used as a comparison on this prob-
lem. Therefore, these two algorithms are compared to
each other, which provide some preliminary insights
into the Pareto optimal front of the IRP with uncertain
demand.

In order to visualize Pareto front approximations
in the 3-D case, attainment surface plots are used.
The attainment-surface separates the dominated sub-
space (grey volume) from the non-dominated subspace.
Using the same notation than in Section 3.2 it can
be defined as the set of points that are only weakly
dominated by some points in Pareto front set P, i.e.
{y|∃y′ ∈ P : y′ ≤ y∧¬∃y′′ ∈ P : y′′ < y}, where ‘≤’ de-
notes the weak componentwise order and ‘<’ denotes
the strict componentwise order. In order to more accu-
rately assess the quality of single points we also pro-



vided the three projections as a scatter plot. An example
of 3D visualization of Pareto-front generated by these
two algorithms on problem GS-01 can be seen in Fig-
ure 8 and Figure 9. Other results are shown in Figure 10
and Figure 11.

As we can see, SMS-EMOA and MOCOPS produced
very similar results, which could be interpreted as an
indication that a good approximation to the hypervol-
ume maximal front was obtained. The interpretation of
3-D results is more involved, as three trade-offs need
to be taken into account: Firstly, from the projection
to Routing cost and Inventory cost we obtain a similar
set of non-dominated solutions, in the 2-D projection,
to the 2-D study, which means there is a clear conflict
between the inventory cost and routing cost. Then, from
the projection of routing cost and stockout cost, it can
be seen that there is also a correlation between them. In
order to decrease the stockout cost, the decision mak-
ers could try to make the delivery frequency smaller,
which would increase the routing cost. The stockout
cost would reach the optima at the point where the rout-
ing cost is around 10000. The maximal inventory levels
are often reached in this case. The relation between
stockout cost and inventory cost is special. It is either
possible to improve stockout cost by increasing the rout-
ing cost, or by increasing the inventory cost. For very
low high values of the π vector, routing costs will be
low but the demands of customers cannot be satisfied.
This will eventually increase the stockout cost. There is
also a weak decrease of the stockout cost with growing
inventory costs before the inventory reaches a value of
ca. 30000. Then the stockout cost grows rapidly with
increasing inventory cost. These points have a high in-
ventory cost and a high stockout cost. The reason why
they are still non-dominated is that they have a small
routing cost. The infrequent delivery, causes the raise
of stockout costs.

In order to compare the quality of the Pareto front
approximations of these algorithms, the hypervolume
of all test instances are given in Table 3. The results
show that these four algorithms could get a similar
hypervolume for all test instances. HGS14 works better
in small scale instances such as GS-01 and GS-02. SMS-
EMOA has a good performance on GS-03. However,
the MOCOPS could achieve a better performance in
large scale instance such as GS-04 and GS-05. The
NSGA-II seems to run faster than other algorithms in
most cases. MOCOPS runs faster on GS-02 and GS-03.

5. Conclusion and outlook

In this article the bi-objective inventory routing prob-
lem is extended to a tri-objective inventory rout-ing
problem by introducing stockout cost as a third objec-
tive function. This is important in the context of uncer-
tain demand distributions. It was argued that a Poisson
random variable can be used to model the demand and
resulting stockout costs.

The paper studied four population based metaheuris-
tics to compute the 3-D Pareto front of the tri-objective
inventory routing problem. Two indicator based algo-
rithms for multi-objective optimization were applied to
compute the Pareto fronts, namely NSGA-II, HGS14,
SMS-EMOA and MOCOPS. The NSGA-II and SMS-
EMOA are state-of-the-art evolutionary optimization
method, whereas the MOCOPS was a new, customized
version of a swarm based optimizer. It was shown that,
if time for optimization is limited, the population size
is a crucial control variable and values around a size
of 80 achieve a good performance in realistic settings.
All indicator based algorithms achieved similar results
in various runs and this consensus makes us belief that
they were both able to find near optimal approximation
sets to the Pareto front. On small instances, HGS14
per-formed best and as big instances MOCOPS.

The resulting Pareto front revealed interesting in-
sights into the trade-off between different objectives.
The results confirm that the stockout cost is in conflict
with the distance cost and inventory cost. To reduce
stockout cost one has to either accept higher inventory
costs or higher distance costs. This is ob-served across
several benchmark instances and the 3-D Pareto fronts
have a similar shape for the different benchmark prob-
lems. Hence, we can conclude that there is a some-
thing like a typical (parabolic) Pareto front shape for
a tri-objective vehicle routing problem, and it is pos-
sible to compute these Pareto fronts in practically fea-
sible time. Computation times range from 20 minutes
(50 customers) to 8 hours (200 customers) on a typical
desktop PC.

In the future to allow for real-time optimization, it
will be interesting to further reduce computation time
for large instances, for instance by using more effi-
cient and precise search procedures. Moreover, more
advanced algorithms should be implemented to solve
the subordinated vehicle routing problem, such as ant
colony algorithm and genetic algorithm. Finally, an in-
teresting endeavor will be the study of real world ap-
plications with empirically fitted demand distributions
including pilot experiments.



Fig. 8. Plots of tricriteria MOCOPS for IRP with uncertain demands : Points and dominated subspace (upper left), inventory cost vs. routing cost
(upper right), stockout cost vs. routing cost (lower left),stockout cost vs. inventory cost (lower right).

Fig. 9. Plots of tricriteria SMS-EMOA for IRP with uncertain demands: Points and dominated subspace (upper left), inventory cost vs. routing cost
(upper right), stockout cost vs. routing cost (lower left),stockout cost vs. inventory cost (lower right).



Fig. 10. 3D Plots of tricriteria MOCOPS for IRP with uncertain demands

Fig. 11. 3D Plots of tricriteria SMS-EMOA for IRP with uncertain demands
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Table 3
Hypervolume values and computation time of all problems

NSGA-II HGS2014 SMS-EMOA MOCOPOS

Test Pop HV Std CT HV Std CT HV Std CT HV Std CT
Case Size (1011) (1011) (h) (1011) (1011) (h) (1011) (1011) (h) (1011) (1011) (h)

GS-01 50 2932.14 5.67 0.7 2953.12 5.21 1.2 2952.57 3.60 0.8 2948.96 4.22 0.8
GS-02 75 13640.85 27.25 1.4 13747.60 16.78 2.1 13694.38 21.58 1.5 13728.82 11.55 1.3
GS-03 100 22014.79 22.42 2.2 22088.44 25.91 3.5 22093.473 23.199 2.6 22079.416 25.695 2.1
GS-04 150 76362.16 152.40 4.2 76691.19 47.17 6.8 76587.74 112.64 5.0 76709.02 77.63 4.5
GS-05 200 202419.1 182.13 6.8 203044.0 31.97 9.9 202971.27 209.33 8.1 203093.22 122.26 7.3

title “Multicriteria Inventory Routing by Cooerative
Swarms and Evolutionary Algorithms” in the confer-
ence IWINAC2015 [56]. It contained less benchmark
problems and only two out of four algorithms.
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