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ABSTRACT Autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) are evaluated for
clinical use in chronic obstructive pulmonary disease (COPD) patients, but it is unclear whether COPD
affects BM-MSCs.

To investigate this, BM-MSCs from nine COPD patients and nine non-COPD age-matched controls were
compared with regard to immunophenotype, growth and differentiation potential, and migration capacity.
Other functional assays included the response to pro-inflammatory stimuli and inducers of the nuclear
factor (erythroid derived 2)-like 2 antioxidant response element (Nrf2-ARE) pathway, and effects on NCI-
H292 airway epithelial cells.

No significant differences were observed in terms of morphology, proliferation and migration, except for
increased adipocyte differentiation potential in the COPD group. Both groups were comparable regarding
mRNA expression of growth factors and inflammatory mediators, and in their potential to induce mRNA
expression of epidermal growth factor receptor ligands in NCI-H292 airway epithelial cells. MSCs from
COPD patients secreted more interleukin-6 in response to pro-inflammatory stimuli. Activation of the Nrf2-
ARE pathway resulted in a comparable induction of mRNA expression of four target genes, but the
expression of the NAD(P)H:quinone oxidoreductase 1 gene NQO1 was lower in MSCs from COPD patients.

The observation that MSCs from COPD patients are phenotypically and functionally comparable to
those from non-COPD controls implies that autologous MSCs can be considered for use in the setting of
clinical trials as a treatment for COPD.
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Introduction
Mesenchymal stromal cells (MCSs) are defined as plastic adherent cells with the capacity to self-renew and
differentiate into multiple lineages of the mesenchyme [1]. Importantly, it has been shown that MSCs
stimulate recovery of damaged tissue via paracrine effects, potentiation of cell growth and wound healing,
suppression of apoptosis, and possibly induction of endogenous progenitor cell potential [2]. In addition
to their regenerative potential, MSCs have pleiotropic effects on several immune cells and can contribute
to immune responses by modifying the inflammatory environment [3].

In light of these regenerative and immunomodulatory properties of MSCs, interest has arisen in the
clinical application of MSCs as a treatment for chronic obstructive pulmonary disease (COPD). COPD is a
heterogeneous disease, defined by persistent airflow limitation that is usually progressive. Mechanisms that
contribute to COPD development include exaggerated inflammatory responses to inhaled noxious gases,
imbalance between proteinases and proteinase inhibitors, and excessive oxidative stress [4]. On a cellular
level, an imbalance of cell death and replenishment of structural cells ultimately results in tissue damage.

In COPD, MSC-based treatments have already been used in the context of clinical trials investigating both
allogeneic [5] and autologous MSCs [6]. A concern when using MSCs is that donor-related factors might
affect the therapeutic potential of MSCs. This is conceivable in MSCs from COPD patients, since COPD is
considered to have a systemic component [7]. Indeed, in a preliminary report by JAHN et al. [8], functional
differences between MSCs from COPD and control patients were observed. Alternatively, it has been
hypothesised that altered MSC function contributes to the development of COPD [9].

Since autologous MSCs are currently used in clinical trials to evaluate their ability to induce (favourable)
responses in lung tissue, it is relevant to know whether MSCs from COPD patients have similar properties
and potential as MSCs from healthy donors. In this study this was investigated using in vitro cultures of
bone marrow-derived MSCs (BM-MSCs) from COPD patients and age-matched non-COPD controls. We
compared the MSC (immuno)phenotype and several functional parameters, including differentiation and
migration, response to pro-inflammatory stimuli and inducers of the nuclear factor (erythroid derived 2)-like
2 antioxidant response element (Nrf2-ARE) pathway, and regenerative effects on airway epithelial cells.

Materials and methods
A more detailed description of the methods used for this study is provided in the supplementary material.

Patients and ethical considerations
BM-MSCs were obtained from COPD patients participating in a clinical trial to evaluate BM-MSCs for
severe emphysema (ClinicalTrials.gov: NCT01306513) and from non-COPD controls [6].

Groups were matched for age (mean±SD: 53.1±6.4 years for COPD versus 48.8±4.5 years for non-COPD,
p=0.12) and sex (both groups three males out of nine). The control group included one Asian donor, all
others were Caucasian. COPD donors had forced expiratory volume in 1 s <40% predicted, emphysema on
computed tomography scan and had quit smoking at least 6 months prior to bone marrow aspiration.
Controls had no known pulmonary disease and were never-smokers (the smoking history of three controls
could not be traced). The use of MSCs for pre-clinical research was approved by the Medical Ethical
Committee of the Leiden University Medical Center and donors consented to the possible use of their
MSCs for this purpose.

MSC cultures and characterisation
MSC isolation from bone marrow and expansion in vitro was done following a previously published
protocol [10], monitoring expansion rates during initial cultures. MSC immunophenotype was confirmed
by fluorescence-activated cell sorter (FACS) analysis, differentiation potential was quantified by measuring
adipocyte, osteoblast and calcium staining intensity of differentiated MSCs, and migration was assessed
using electric cell-substrate impedance sensing (ECIS).

MSCs at passage 3 or 4 were used for experiments, after overnight incubation in serum-free medium.

Stimuli
Cigarette smoke extract (CSE) and sulforaphane (SFN) were used to induce the Nrf2-ARE pathway
[11–13]. Tumour necrosis factor (TNF)-α and interleukin (IL)-1β (Peprotech, Rocky Hill, NJ, USA) at
20 ng·mL−1 were used as pro-inflammatory stimuli to evaluate immune modulatory properties and growth
factor induction. MSC conditioned medium (MSC-CM) was generated by culturing MSCs during 24 h in
serum-free medium or in serum-free medium supplemented with TNF-α/IL-1β and was used to stimulate
NCI-H292 airway epithelial cells.
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Quantitative real-time PCR and ELISA
MSCs were stimulated during 6 h for quantitative real-time PCR analysis or during 24 h for ELISAs.
NCI-H292 airway epithelial cells were incubated during 9 h with MSC-CM to assess induction of mRNA
expression of epidermal growth factor receptor (EGFR) ligands.

Following RNA extraction and cDNA synthesis, quantitative real-time PCR was performed in triplicate using
primers for target genes (supplementary table E1) and relative gene expression compared with reference genes
was calculated according to the standard curve method, with housekeeping genes selected based on geNorm
software [14], i.e. β2-microglobulin (B2M) and ribosomal protein S29 (RPS29) for MSCs and ATP synthase
subunit β (ATP5B) and ribosomal protein L13A (RPL13A) for NCI-H292 airway epithelial cells.

IL-6 (Sanquin, Amsterdam, The Netherlands) and IL-8 (R&D Systems, Minneapolis, MN, USA) secretion
was measured using ELISA, following the manufacturer’s protocol. Optical density values were measured
with a microplate reader.

Statistical analysis
Data analysis and composition of the figures were done using Prism 6.0 (GraphPad, La Jolla, CA, USA)
and SPSS 20 (IBM, Armonk, NY, USA). Statistical analysis was performed using the Mann–Whitney
U-test for analysis of differences between subject groups or the Wilcoxon matched-pairs signed-rank test
for paired observations to compare conditions within groups. Differences were considered statistically
significant at p<0.05.

Results
BM-MSCs from COPD patients have the same (immuno)phenotype as non-COPD controls, but have
a stronger potential towards adipocyte differentiation
BM-MSCs from COPD patients and non-COPD controls were morphologically similar, displaying the
characteristic spindle-shaped appearance (figure 1a). No differences were observed in immunophenotype
(figure 1b), and all MSCs could be differentiated into adipocytes and osteoblasts, confirming their MSC
phenotype. MSCs from COPD donors showed a significantly higher potential to differentiate into
adipocytes than MSCs from non-COPD donors (figure 1c). No significant differences were observed in
osteoblast differentiation and mineralisation potential. In six patients (four in the non-COPD group, two in
the COPD group), no data were obtained for osteoblast differentiation, mineralisation or both, due to
ruptures and subsequent detachment of the monolayer, caused by contractility of cells at the periphery of
the well during differentiation.

Proliferation and migration potential of MSCs is not affected in MSCs from COPD patients
Proliferation was assessed during expansion following initial isolation from bone marrow. No differences
were observed between groups regarding the time between passages and the number of MSCs harvested
per passage (figure 2a and b). Migration was assessed as the potential of MSCs to cover the surface area of
an electrode using ECIS analysis to measure resistance and capacitance. This showed that the migration
potential of MSCs from COPD patients was similar to that of non-COPD controls (figure 2c).

BM-MSC response to pro-inflammatory stimuli is similar between groups, except for higher IL-6
secretion in MSCs from COPD patients
Previously, MSCs were shown to express growth factors and immune mediators upon exposure to
pro-inflammatory stimuli [15, 16]. We therefore investigated whether this response was preserved in MSCs
from COPD patients. In MSCs from COPD patients as well as non-COPD controls, incubation with
TNF-α and IL-1β resulted in a significant induction of gene expression of amphiregulin (AREG),
heparin-binding epidermal growth factor-like growth factor (HBEGF), fibroblast growth factor 2 (FGF2),
chemokine (C-C motif ) ligand 20 (CCL20), IL-6 (IL6), chemokine (C-X-C motif ) ligand 8 (CXCL8) and
TNF-stimulated gene 6 (TSG6) in both the COPD and non-COPD group (figure 3a). Furthermore, it
increased transforming growth factor-α (TGFA) in the non-COPD group and hepatocyte growth factor
(HGF) in the COPD group (data not shown), and lowered expression of adrenomedullin (ADM1) in both
groups (figure 3a). Between groups, no significant differences were observed. No significant induction was
observed for other genes investigated (supplementary figure E1).

IL-6 and IL-8 protein secretion was measured in medium obtained from TNF-α- and IL-1β-exposed MSCs.
In unstimulated MSCs, IL-8 levels were below the detection limit and IL-6 secretion was comparable
between groups (mean±SEM: 164±27.7 pg·mL−1 for COPD versus 174±31.6 pg·mL−1 for non-COPD,
p=0.34). Upon stimulation with pro-inflammatory cytokines, IL-8 and IL-6 secretion significantly increased
in MSCs from both COPD and non-COPD donors. Differences between groups were observed, as MSCs

ERJ Open Res 2016; 2: 00045-2015 | DOI: 10.1183/23120541.00045-2015 3

COPD | W. BROEKMAN ET AL.



from COPD patients secreted significantly higher amounts of IL-6 and showed a trend towards higher IL-8
secretion (p=0.12) (figure 3b).

Oxidative stress response in MSCs from COPD patients is comparable to that observed in MSCs
from controls
In COPD, insufficient antioxidant response has been implicated in disease pathogenesis [17]. Therefore,
we evaluated the antioxidant response of MSCs from COPD patients, using CSE and SFN to activate the
Nrf2-ARE pathway, and assessed induction of several downstream target genes involved in antioxidant
response [11–13]. In both groups, incubation of MSCs with CSE resulted in a significant induction of
haem oxygenase 1 (HMOX1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and smoke and
cancer-associated long noncoding RNA-1 (SCAL1). For HMOX1 and SCAL1, this induction was dose
dependent. Glutathione peroxidase 2 (GPX2) expression decreased in CSE-exposed MSCs. Induced gene
expression of NQO1 and SCAL1 was generally lower in MSCs from COPD patients, resulting in significant
differences between groups in NQO1 expression at higher concentrations of CSE (figure 4a).

SFN significantly increased all analysed Nrf2-ARE-regulated target genes in non-COPD patients, whereas it
only significantly induced HMOX1 and SCAL1 gene expression in MSCs from COPD patients (figure 4b).
Despite this observation, groups did not significantly differ from each other in their response to SFN.

Regenerative potential of MSCs from COPD patients is comparable to non-COPD controls
MSC-CM from healthy donors induced EGFR ligand expression in NCI-H292 airway epithelial cells [15].
We assessed if MSC-CM from COPD patients has the same regenerative potential by investigating
induction of mRNA expression of EGFR ligands in NCI-H292 airway epithelial cells, following incubation
with MSC-CMCTRL (from MSCs cultured in serum-free medium) or MSC-CMSTIM (from MSCs cultured
in serum-free medium supplemented with TNF-α/IL-1β).
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FIGURE 1 Mesenchymal stromal cell (MSC) phenotype from chronic obstructive pulmonary disease (COPD)
and non-COPD patients. Bone marrow-derived MSCs (BM-MSCs) from COPD and non-COPD patients cultured
in vitro were characterised by fluorescence-activated cell sorter (FACS) analysis and by their potential to
differentiate into mesenchymal lineages. a) Morphology of MSCs from COPD and non-COPD donors: example
of MSC culture. Scale bars=100 μm. b) FACS data. Per antibody, data are shown as mean±SEM. n=9 per group.
c) Differentiation into adipocytes and osteoblasts, and mineralisation potential. Staining intensity of Oil red O,
alkaline phosphatase and Alizarin red (calcium) was quantified on a microplate reader, and per donor optical
density (OD) values were calculated as fold change compared with control (co-cultured undifferentiated
MSCs). Plots represent median, interquartile range, and minimum and maximum values. *: p<0.05, n=9 per
group (except osteoblast/mineralisation: n=6–8 per group).
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Compared with control culture medium, both MSC-CMCTRL as well as MSC-CMSTIM induced gene
expression of the EGFR ligands AREG and HBEGF, and to a lesser extent of TGFA (data not shown), in
NCI-H292 airway epithelial cells. In addition, both MSC-CMCTRL and MSC-CMSTIM induced mRNA
expression of the cell cycle regulator cyclin D1 (CCDN1), which is considered as a marker for cell
proliferation. Compared with MSC-CMCTRL, no significant differences were observed between the COPD
and non-COPD groups in the potential of MSC-CMSTIM to induce EGFR ligands in NCI-H292 airway
epithelial cells, although there were differences in the significance of effects of MSC-CMSTIM from
non-COPD and COPD patients (figure 5).

Discussion
In this study we show that MSCs from patients with COPD are largely comparable in phenotype and
function to MSCs from non-COPD controls. MSCs from COPD patients responded similarly to those
from non-COPD controls for the majority of the investigated parameters, including (immuno)phenotype,
proliferation and migration potential, response to pro-inflammatory stimuli, and effects on airway
epithelial cells. However, we did observe differences in adipocyte differentiation, IL-6 secretion in response
to pro-inflammatory stimuli and induction of gene expression of NQO1 upon stimulation of the Nrf2-ARE
pathway. These observations have important implications for the use of autologous MSCs as a potential
new therapy to treat COPD.

To the best of our knowledge, this is the first study in humans that investigates whether MSCs from
COPD patients are comparable to those from healthy controls. Our observation that underlying COPD
does not appear to affect MSC function is in line with previous observations made in chronic systemic
diseases [18–21]. In contrast, altered MSC function was observed in MSCs from patients with disorders of
the central nervous system [22, 23], and altered MSCs growth and differentiation has been observed in
haematologic diseases [24, 25]. Possibly, these differences might relate to the affected organ of the
underlying disease, which is especially conceivable for diseases originating from the bone marrow.

MSCs secrete a spectrum of soluble factors, including cytokines, chemokines and growth factors [2, 3],
and it was shown that this secretion differs depending on, for instance, site of origin of MSCs or systemic
conditions such as hypoxaemia [26, 27]. Likewise, a pro-inflammatory environment can “activate” MSCs,
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as pro-inflammatory cytokines were shown to induce expression of immune mediators and trophic factors
in MSCs (reviewed in [16]). We used the pro-inflammatory cytokines TNF-α and IL-1β that are
implicated in COPD pathogenesis [28, 29], and likewise observed induction of immune mediators and
growth factors, which was unaffected by COPD status. Along with the observation that MSC-CM-induced
EGFR ligand expression in airway epithelial cells was comparable between groups, these data provide
evidence that MSCs from COPD patients respond in a similar fashion to inflammation. This suggests that
their ability to modify inflammation and induce repair upon recruitment to inflammatory sites, such as
the lung in COPD, is preserved.
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FIGURE 3 Induction of immune mediators and growth factors upon stimulation with pro-inflammatory cytokines. Mesenchymal stromal cells
(MSCs) were stimulated with tumour necrosis factor (TNF)-α and interleukin (IL)-1β (20 ng·mL−1 each) or plain culture medium as a negative
control (NC) during 6 h. a) mRNA expression of immune mediators and growth factors, normalised for housekeeping genes, shown for chronic
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factor-like growth factor; FGF2: fibroblast growth factor 2; ADM1: adrenomedullin; CCL20: chemokine (C-C motif ) ligand 20; IL6: IL-6; CXCL8:
chemokine (C-X-C motif ) ligand 8; TSG6: TNF-stimulated gene 6. Individual data are shown in graphs, horizontal bars represent mean. *: p<0.05,
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MSCs from COPD and non-COPD donors were phenotypically similar, and all had trilineage differentiation
potential, confirming their status as progenitor cells. We found significantly higher adipocyte differentiation
in MSCs from COPD patients compared with their healthy counterparts and a trend towards lower
osteogenic differentiation. Our data might have even underestimated the osteogenic differentiation potential
of MSCs from the non-COPD group, due to loss of the differentiated monolayer due to strong contractility
of differentiated cells at the wells periphery, in a substantial subgroup of COPD and non-COPD subjects.

Similar to MSCs from COPD patients, increased adipocyte differentiation has been observed in aged MSCs
and this appears to occur at the expense of osteoblast differentiation [30–32]. A definite statement about
this so-called “adipogenic switch” in aged MSCs has not yet been made due to inconsistencies between
studies [33]. However, if cellular ageing affects the differentiation potential of MSCs, then based on the
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current data we propose that increased cellular ageing may underlie the “adipogenic switch” we observed
in MSCs from COPD patients. Interestingly, accelerated cellular ageing has been thought to underlie
COPD [34]. Since oxidative stress contributes to cellular ageing [35] as well as to COPD pathogenesis [17],
we speculate that oxidative stress might explain the shared features of altered differentiation between MSCs
from COPD patients and aged MSCs. This hypothesis is supported by observations in aged mice MSCs
that display decreased antioxidant power despite increases in proteins involved in antioxidant defence [36],
which resembles observations made in COPD patients who have decreased antioxidant capacity [37],
despite increased Nrf2 expression [38]. Concordantly, we observed lower expression of NQO1 and SCAL1
in MSCs from COPD patients, suggesting a lower antioxidant response upon induction of the Nrf2-ARE
pathway. We found no differences in HMOX1 and GPX2 expression between groups, potentially explained
by the role of other signalling pathways (c-Met and p63, respectively) [39, 40] in induction of these genes,
whereas NQO1 and SCAL1 are thought to be more selective representatives of the Nrf2-ARE pathway [41,
42]. Whether decreased mRNA expression of Nrf2-ARE target genes also results in decreased antioxidant
activity needs further elucidation before making more definite statements on this issue.

We have used MSCs from patients with severe to very severe COPD and compared these with MSCs from
non-COPD controls. MSCs from the control group were obtained from donors from whom sufficient
MSCs were expanded during initial cultures, thus allowing storage of excess MSCs. We cannot rule out
that this created a selection bias in the control group, in favour of better MSC proliferation and potentially
even function; however, such differences were not observed. We successfully prioritised on age-matching
of both groups, but were unable to correct for smoking history, as all COPD patients were ex-smokers
versus a majority of non- or never-smokers in the control group. Whereas our data are unlikely to be
affected by acute effects of cigarette smoke on BM-MSCs (all COPD donors had quit smoking for at least
6 months before enrolment), we cannot exclude that we assessed effects on MSCs due to chronic cigarette
smoke exposure in the past. Effects of chronic cigarette smoke exposure on MSCs has only been
investigated to a limited extend in animal models and to the best of our knowledge this has not yet been
investigated in human MSCs. Our study was not designed to address this question and therefore we
cannot formally draw conclusions in this respect. However, taking into account the differences between
the COPD and non-COPD group regarding smoking history, our data do not confirm previous results
showing, for instance, detrimental effects of nicotine on proliferation and migration of MSCs [43].

Since LE BLANC et al.’s [44] report in 2004 describing remission of severe graft versus host disease after MSC
infusion, much attention has been paid to the clinical application of MSCs in a variety of diseases, including
lung diseases. In addition to promising effects of MSCs on inflammation and regeneration, the interest in
MSC-based cell therapy is attributable to the relatively easy method to obtain and expand MSCs, and to their
low-immunogenic status. These properties make MSCs interesting candidates for (commercial) cell therapy
programmes. However, although allogeneic MSCs did not appear to induce immune responses in
immunocompromised recipients, their application in immunocompetent recipients might not be ideal, as
allogeneic MSCs were shown to elicit alloimmune responses in immunocompetent recipients [45], which
moreover appeared to have detrimental effects on MSC function [46]. This underlines the importance of
evaluating the treatment potential of autologous MCSs. The data provided by the current study support the
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FIGURE 5 Paracrine effects of mesenchymal stromal cells (MSCs) on H292 airway epithelial cells. NCI-H292 airway epithelial cells were incubated
with conditioned medium obtained from MSCs (MSC-CM). mRNA expression of epidermal growth factor receptor ligands after 9 h incubation with
conditioned medium from MSCs cultured in serum-free low-glucose Dulbecco’s modified Eagle medium (LG-DMEM) (Ctrl, from MSC-CMCTRL) or in
serum-free LG-DMEM supplemented with TNF-α and IL-1β (Stim, from MSC-CMSTIM). AREG: amphiregulin; HBEGF: heparin-binding epidermal growth
factor-like growth factor; TGFA: transforming growth factor-α; CCDN1: cyclin D1. Normalised values compared with housekeeping genes are shown.
Individual data points are shown (circles: chronic obstructive pulmonary disease (COPD) donor-derived MSC-CM; squares: non-COPD donor-derived
MSC-CM); horizontal bars represent mean. *: p<0.05, n=9 per group. For all genes investigated, mRNA expression was lower in cells cultured in plain
culture medium (LG-DMEM without additional stimulation) compared with mRNA expression in cells cultured in MSC-CM (data not shown).
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implementation of autologous MSCs as a cell-based therapy for patients with chronic lung disease in future
clinical trials.

In conclusion, we observed that the (immuno)phenotype and function of MSCs from patients with COPD is
preserved, compared with their healthy counterparts. This finding is important in light of the potential
clinical use of autologous MSCs to treat COPD patients. However, we did observe differences in
differentiation potential and in activation of the Nrf2-ARE pathway that might link systemic manifestations
of COPD to increased cellular ageing of MSCs.
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