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1
Introduction

“ This chapter presents the reader with our research objective, the problem
that we address and the goals of this research. In addition, it offers a basic
background and definitions necessary to follow up in this thesis. Specif-
ically, it introduces the necessary background about cytomic studies and
pattern recognition methods followed within our research. The final section
illustrates the scope or structure of the thesis. ”



2 Introduction

1.1 Research Objective

THIS thesis addresses the main research problem on how pattern recognition systems can sup-
port objective analysis and phenotype characterization of single-cell in image-based gene

expression experiments. Hence, we address the crucial research questions directly connected to
this problem. Our starting point is spherical/ovoid shape cells. First we address the components
and processes required to build a comprehensive image analysis pipeline for single-cell image
based gene expression. Second we address the best approach to segment ovoid-shaped cells
that are common in micro/cell biology such as Saccharomyces cerevisiae. In addition, we
address how a machine learning approach can aid in the object recognition process, and how
it can improve the identification of subtle patterns residing within the measurement data? i.e.
recognizing the patterns that are not obvious and hard to notice within standard measurement
methods. Another directly related research question is about the features used by the machine
learning approach, where we address the extraction of relevant and meaningful feature sets.
Finally, we address the question on whether the recognition system can be validated on a yeast
study experiment to discriminate various cell groups.

1.2 Cytomics and Saccharomyces cerevisiae

Cytomics is the study of cell systems (cytomes) at a single cell level. It combines all the
bioinformatics knowledge to attempt to understand the molecular architecture and functionality
of the cell system. Much of this is achieved by using molecular and microscopic techniques that
allow the various components of a cell to be visualized as they interact in vivo [Bra11]. In this
section, we define and discuss the gene expression and measurement followed within cytomics.
Subsequently, we define and discuss fluorescent proteins used to study cell behaviours. Finally
we present and discuss the eukaryote model organism used commonly in cell/micro biological
studies, and which we take as a case study in our research, i.e. the Saccharomyces cerevisiae
yeast cells.

1.2.1 Gene Expression and Measurement

In genetics, gene expression is the most fundamental level at which the genotype gives rise to
the phenotype, i.e. observable trait. The genetic code stored in DNA is "interpreted" by gene
expression, and the properties of the expression give rise to the organism’s phenotype. Such
phenotypes are often expressed by the synthesis of proteins that control the organism’s shape,
or that act as enzymes catalysing specific metabolic pathways characterising the organism.
Protein-coding genes are transcribed into messenger RNA (mRNA), which is an information
carrier coding for the synthesis of one or more proteins.

Measuring gene expression is an important part of many life sciences. The ability to quantify
the level at which a particular gene is expressed within a cell or organism can provide a huge
amount of information. Similarly, the analysis of the location of expression protein is a powerful
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tool and this can be done on an organism or cellular scale. Investigation of localisation is
particularly important for study of development in multicellular organisms and as an indicator
of protein function in single cells. Ideally, measurement of expression is done by detecting the
final gene product (for many genes this is the protein); however, it is often easier to detect one
of the precursors, typically mRNA, and infer gene expression level. Levels of mRNA can be
quantitatively measured by northern blotting, which provides size and sequence information
about the mRNA molecules.

For expression profiling or high-throughput analysis of many genes within a sample, quanti-
tative PCR may be performed for hundreds of genes simultaneously in the case of low-density
arrays. A second approach is the hybridization microarray, which is a popular approach in
gene expression studies. Microarrays reveal expression profiles for a large number of genes at
different time points. A single array or "chip" may contain probes to determine transcript levels
for every known gene in the genome of one or more organisms [Wel07]. Alternatively, "tag
based" technologies can be used, such as Serial analysis of gene expression (SAGE), which can
provide a relative measure of the cellular concentration of different mRNAs. Next-generation
sequencing (NGS) such as RNA-Seq is another approach, producing vast quantities of sequence
data that can be matched to a reference genome. Although NGS is comparatively expensive, and
resource-intensive, it can identify single-nucleotide polymorphisms, splice-variants, and novel
genes, and can also be used to profile expression in organisms for which little or no sequence
information is available.

For genes encoding proteins, the expression level can be directly assessed by a number of
means with some clear analogies to the techniques for mRNA quantification. The most commonly
used method is to perform a Western blot against the protein of interest. The gel-based nature
of this method makes quantification less accurate although it has the advantage of being able
to identify later modifications to the protein [Nei00, Ama08]. Moreover, Mass spectroscopy
is developing fast and allows the quantification of a large part of the proteome, which directly
addresses the level of gene products present in a given cell state and can further characterize
protein activities, interactions and subcellular distributions [Ong05]. Mass spectrometry (MS)
is an analytical technique that ionizes chemical species and sorts the ions based on their mass to
charge ratio. In simpler terms, a mass spectrum measures the masses within a sample.

Analysis of expression is not limited to only quantification; localisation can also be deter-
mined. mRNA can be detected with a suitably labelled complementary mRNA strand and protein
can be detected via labelled antibodies. The probed sample is then observed by microscopy to
identify where the mRNA or protein is.

By tagging the gene with a reporter gene, i.e. by replacing the gene with a new version
fused to the reporter gene expressing fluorescent proteins as markers, expression may be directly
quantified in live cells. It is very difficult to clone a reporter gene into its native location in the
genome without affecting expression levels so this method often cannot be used to measure
endogenous gene expression. It is, however, widely used to measure the expression of a gene
artificially introduced into the cell; for example, via an expression vector. It is important to
note that, in some cases, by fusing a gene to a fluorescent reporter the expressed protein’s
behaviour, including its cellular localization and expression level might change. The analysis
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of reporters is initiated by imaging using a confocal laser scanning microscope and by flow
cytometry, discussed hereafter.

1.2.2 Fluorescent Microscopy and Flow Cytometry

There are two popular cell analysis techniques including fluorescent microscopy and flow
cytometry, these are discussed and subsequently their complementarity is considered.

Microscopy

Proteins that are tagged with fluorescent molecules can be studied through imaging. The most
common techniques is by using fluorescent microscopy. Laser scanning microscopy in general
is preferred for fluorescence imaging because of their resolution, higher contrast, ability to
reconstruct 3-D images, the absence of artefacts induced by conventional microscopy, and most
importantly its ability to penetrate into the specimen and obtaining an image of a specific focal
plane [Mas01]. The multi-photon photo-luminescence microscopes have high spatial resolution
and reduced background [Zho10] and also permit additional structures to be observed [Mas01].
However, multi-photon microscopes do not contain pinhole apertures, which give confocal
microscopes their optical sectioning quality [Kam13]. In addition, modern confocal laser
scanning microscope CLSM can do fast scanning that prevents photo-toxicity due to thermal
damage [Paw10], as well as minimizing photo-bleaching. In confocal microscopy, the focus
plane of illumination is the same as the focal plane of detection. In other words, the focus plane
of illumination and the focal plane of detection are confocal [Row00].

Flow Cytometry

In cell biology, flow cytometry is a laser-based, biophysical technology employed in cell
counting, cell sorting, biomarker detection and protein engineering. It suspends cells in a
stream of fluid and passes them by an electronic detector. Flow cytometry allows simultaneous
multi-parametric analysis of the physical and chemical characteristics of up-to thousands of
particles per second [Yan15]. A flow cytometer is similar to a microscope; however, it doesn’t
produce an image of the cell but offers high-throughput automated quantification of the set
parameters for a high number of single cells during each analysis session [Tho06].

Complementarity of Flow Cytometry and Fluorescence Microscopy

Flow cytometry and fluorescence microscopy both provide single-cell analysis using different
but complementary sets of data, essentially population-based target intensities versus target
morphology in relatively small sample sizes. Both approaches employ optical filters to analyze
fluorescence emissions and have to overcome some of the same physical limitations including
spectral overlap of dyes and the dynamic range limits of measuring systems. Hence, flow
cytometry and confocal fluorescence microscopy technologies both have specific characteristics
and limitations. In microscopy, photostability is a more critical issue. Flow cytometry is
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limited by its requirement that analyzed cells are in suspension, making information on tissue
architecture and cell-cell interactions inapplicable. On the other side, fluorescence microscopy
is well suited to the resolution of cell and tissue architecture, and to following kinetic and
trophic responses in single cells. In flow cytometry, cell subpopulations with similar marker
expression are difficult to differentiate, and analyses that employ more fluorophores are subject
to signal spillover [Jah12]. In addition, there is the inability of flow cytometry to recognize
morphologically analyzed cells [Mur08]. Flow cytometry rapidly quantifies small differences
between cell populations using statistically significant numbers of events. Flow cytometry can
represent a “black box” when looking at the magnitude of a population response; fluorescence
microscopy can help verify that measured results represent meaningful biological effects.

In general, the microscopist may arrive at quantitative data. However, the cooperative
use of both flow cytometry and microscopy can provide more robust numerical description of
biological phenomena [God05].

1.2.3 Cytomics and Fluorescent Proteins

Proteins are vital parts in living organisms. Many important proteins in human biology were
understood by studying their homologs in yeast; such proteins include cell cycle proteins,
signalling proteins, and protein-processing enzymes [Wal04]. The large-scale study of the
structures and functions of such proteins is called Proteomics [Bla99]. In Proteomics, Fluo-
rescent proteins such as green fluorescent protein (GFP) and its derived variants are widely
used. One of the most exciting applications is the generation of a library of S. cerevisiae strains
in which each coding sequence is tagged with green fluorescent protein (GFP) [Huh03]. This
library enables the determination of the localization of more than 70 percent of the S. cerevisiae
proteins. In addition, levels of these proteins can be quantified after cultivation under different
conditions.

Tagging genes with the reporter expressing green fluorescent protein (GFP) is a highly
specific and sensitive technique for studying the inter-cellular dynamics of proteins and or-
ganelles [Sha97]. GFP expression is an excellent marker to monitor the gene expression [Phi01]
and protein localization in the living yeast cells. The biggest advantage of the intracellular
GFP is that it is heritable, since it can be transformed with the use of DNA-encoding GFP.
Additionally, visualizing GFP is non-invasive as it is detectable by just shining light on it.
Furthermore, it is a relatively small and inert molecule that does not appear to interfere with
cell growth and function. Moreover, if GFP is used with a monomer it can diffuse readily
throughout cells [Cha09].

The green fluorescent protein (GFP) was first isolated from the jellyfish Aequorea victo-
ria [Sha97, Phi01]. It is a protein composed of 238 amino acid residues (26.9 kDa) that exhibits
bright green fluorescent when exposed to light in the blue to ultraviolet range [Wal04, Moy08,
Cha94]. It has a beta-barrel structure consisting of eleven β-strands. The beta barrel structure
is a nearly perfect cylinder, 42 Å long and 24 Å in diameter, creating what is referred to as a
"β-can" formation, which is unique to the GFP-like family [Yan97]. In GFP the fluorophore is
formed inside the protein globule by modification of amino acids [Shi79].
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Figure 1.1: Excitation and Emission of GFP and some variants. Data from [Hei96].

The GFP gene is widely used as a reporter gene and can be introduced into organisms and
maintained in their genome through breeding, injection with a viral vector, or cell transfection.
The GFP gene has been introduced and expressed in the S. cerevisiae yeast cells as well as other
types of yeast cells, bacteria, fungi, fish (such as zebrafish), plant, fly, and mammalian cells,
including human [Cha09].

GFP requires low excitation light intensity to prevent photo-bleaching and photo-toxicity at
a light wavelength of 490 nm or less [Sha97]. The GFP from A. victoria has a major excitation
peak at a wavelength of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm,
which is in the lower green portion of the visible spectrum [Phi01]. This fluorescence is very
stable, and virtually no photo-bleaching is observed [Cha94].

Many different mutants (variants) of the GFP have been engineered, with improved spectral
characteristics of GFP, resulting in increased fluorescence, photo-stability, and a shift of the
major excitation peak to 488 nm. EGFP and Superfolder GFP are examples of such variants.
Many other mutations have been made as well including color mutants; in particular, blue
fluorescent protein (EBFP, EBFP2, Azurite, mKalama1), cyan fluorescent protein (ECFP,
Cerulean, CyPet, mTurquoise2), and yellow fluorescent protein derivatives (YFP, Citrine, Venus,
YPet). They exhibit a broad absorption band in the ultraviolet spectrum (cf. Fig. 1.1).

Knowing how much of a protein is expressed is not sufficient to understanding its behaviour.
It is particularly important to also know its subcellular location because changes in protein
subcellular location can cause dramatic effects on cell behaviour. Changes in location within
a cell type may also cause or result from disease [Mur05]; however, subcellular location
has received less attention than many other aspects of gene and protein behaviour. The major
exception is in yeast, in which almost all proteins have been assigned to a set of major subcellular
structures using fusion of DNA, with the coding sequence of fluorescent proteins such as the
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green fluorescent protein. For example, Huh et al [Huh03] used green fluorescent protein
tagging of DNAs and visual examination to assign proteins to 12 categories: cell periphery,
bud, bud neck, cytoskeleton, microtubule, cytoplasm, nucleus, mitochondrion, endoplasmic
reticulum, vacuole, vacuolar membrane, and punctate. They then used colocalization with red
fluorescent protein markers to divide the cytoskeleton class into two classes, actin cytoskeleton
and spindle pole, and to add nine new categories: nucleolus, nuclear periphery, golgi apparatus,
three types of transport vesicles, endosome, peroxisome, and lipid particle. In all, 4,156 proteins
were assigned to these 22 categories in their study [Huh03, Mur05].

In our experiments on S. cerevisiae, the model organism is tagged with fluorescent proteins
and is visualized by confocal laser scanning microscope. The subsequent sub-section introduces
this organism that is used to understand gene expression and genetic networks in cytomics.

1.2.4 Saccharomyces cerevisiae in cytomics

Saccharomyces derives from Latinized Greek and means "sugar-mold" or "sugar-fungus",
saccharo being the combining form "sugar" and myces being "fungus". Cerevisiae comes from
Latin and means "of beer". This organism is also known as Baker’s yeast, Brewer’s yeast, Ale
yeast, Top-fermenting yeast and Budding yeast [Stă13].

S. cerevisiae is a well-known yeast species and used since ancient times in wine-making,
brewing and baking. It was originally isolated from the skin of grapes and has been one of the
most intensively studied eukaryote model organisms in molecular and cell biology. [Fel10].
S. cerevisiae cells are round to ovoid with a diameter between 2 to 10 micrometers. [Par97].

Many cell processes in the yeast model eukaryote cell are similar to that in plants and mam-
malians including humans. This fact makes yeast an excellent model organism to understand
the behaviour of proteins involved in such processes. Several traits in the S. cerevisiae drive
researchers to look for this organism. Among these traits is its size, generation time, accessibil-
ity, manipulation, genetics, conservation of mechanisms, potential economic benefits [Gov11],
cell’s transparency, the fact that its genome sequence was completed in 1996, and the availability
of a library of strains in which each individual coding sequence is tagged with green fluorescent
protein (GFP) [Huh03] in addition to a library of knock-out strains [Win99] and a library of
TAP-tagged strains [Gha03]. These traits make S. cerevisiae a significant tool in biological
research. Studying DNA damage and repair mechanisms is one example [Nic01].

S. cerevisiae yeast cells can survive and grow in two forms; as haploid or diploid cells where
they undergo a simple life-cycle of mitosis and growth. Haploid cells usually die under stress
conditions, while diploid can undergo sporulation, entering meiosis and producing four haploid
spores, which can proceed to mate. This reproduction process is known as budding and there
where Budding yeast get their name from. With adequate nutrients, yeast cells can double in
numbers within 100 minutes [Her88]. The mean replicative life span of the S. cerevisiae is
about 26 cell divisions [Kae05, Kae10].

In molecular genetics, S. cerevisiae is used as a model system in the understanding of
gene expression and genetic networks, because it combines considerable variation in key cell
characteristics such as protein levels and expression, cell size, shape and age. It also has short
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generation time and immobility [Don13b]. Moreover, it can be manipulated and genetically
engineered.

Genetic and hereditary diseases are still incurable because we lack the understanding
behaviours of many proteins. This fact drives research groups to use the S. cerevisiae yeast cell
to understand the behaviour of proteins responsible for many processes in the cells. Such as the
14-3-3 family of proteins which is considered vital to cell life. In order to prepare such cells for
the experiments, the gene expressing a protein under study is attached (tagged) to a report gene
that expresses fluorescent protein such as the popular green fluorescent protein (GFP) or any of
its variants. How we use this model organism to recognize patterns is the topic of next section.

1.3 Pattern Recognition

Pattern recognition aims to classify data (patterns) based on either a priori knowledge or on sta-
tistical information extracted from the patterns. The patterns to be classified are usually groups
of measurements or observations, defining points in an appropriate multidimensional space. A
complete pattern recognition system consists of: (i) a sensor that gathers the observations to be
classified or described, (ii) a feature extraction mechanism that computes numeric or symbolic
information from the observations and (iii) a classification or description scheme that does the
actual job of classifying or describing observations relying on the extracted features [dic16].

In our research, the sensor used is the fluorescence microscope that gathers the observations,
i.e. the yeast cell images. Such image observations are acquired by CLSM microscopy and are
discussed in the first sub-section. From such observations image analysis techniques are applied
to extract the features. Such techniques involve image processing, image segmentation, and
object measurement techniques; which will be the topic of the second sub-section. The last part
of the pattern recognition discussion is dedicated to the data analysis and classification of the
measured features obtained by image analysis.

1.3.1 Image Acquisition

All the images created in this work were analyzed by confocal laser scanning microscopy
(CLSM) to view fluorescent tagged proteins expressed within the cells. Images are acquired
as two or three channel images. One or two channels of the reporter construct (GFP, YFP,
CFP). The GFP is excited at 488nm and YFP at 514nm, and emission is at 500-550 for GFP or
530-600nm for YFP [Zah12]. In addition, a bright-field channel is acquired; the bright-field
image depicts the structure of the cells.

The Bright-field image channel is acquired through a bright-field technique embedded
within the confocal microscope. Since it depicts the yeast structure, this channel of the mi-
croscope images of yeast S. cerevisiae cells is used primarily, in our research, to detect the
cell contours. For optimal detection, optimal microscope settings have to be set and hence
the parameters to be used have to be determined. To determine these parameters, an exper-
iment was done where several images were generated under different microscope settings.
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Image Resolution Master Digital Laser
Label Gain Offset

A 512x512 320 -1.20 18%
B 1024x1024 320 -1.20 18%
C 1024x1024 340 -1.90 20%
D 1024x1024 261 -0.05 18%
E 1024x1024 301 -0.50 18%

Table 1.1: microscope settings

Table 1.1 lists all the different settings used,
where each setting is labelled with a different
letter (A...E). This label represents a different
category of images. To choose the optimal
image category that works best with segmen-
tation algorithms. We applied a segmentation
algorithm to try the detection of cell objects
in these images. A score of true positive cell
detections was computed for each category.

Image Label True Positive
A 67%
B 70%
C 52.6%
D 48.4%
E 47.6%

Table 1.2: Percentage of True Positives

The result in Table 1.2 shows different
labelled images with their acquired scores.
Each image label corresponds to images ac-
quired with the microscope settings listed in
Table 1.1. The score of true positive rate indi-
cates the number of cells correctly detected.
The highest score corresponds to category la-
belled as B, i.e. the microscope settings of
1024x1024 resolution, 320 master gain, -1.20
digital offset and 18% laser power.

The availability of GFP and its derivatives has thoroughly redefined fluorescence microscopy
and the way it is used in cell biology and other biological disciplines [Yus05]. Such Fluorescent
(photon-emitting) molecules are introduced into yeast cells because they have a helpful property
of fluorescing when in the presence of non-fluorescent molecules or structures under study.
When the S. cerevisiae specimen is illuminated using laser techniques in confocal microscopy,
the fluorophores (fluorescent molecules) absorbs the light photons raising them to an excited
state with a wavelength (energy) specific to the fluorophore itself. The fluorophore then returns
to its ground state and may emit a photon with lower energy (longer wavelength). This photon
might then strike the detector with the proportion of light entering the objective lens of the
microscope. The charges of electrons produced by photons striking the detector are quantified
and from these quantifications, pixel values are determined. These pixel values correspond to
the number of detected photons (cf. Fig. 1.2). From the number of photons detected at each
pixel, interpretations can be made about the presence or absence of some feature, the size and
shape of a structure, or about the relative concentration of a molecule [Ban13]. The excitation
and emission wavelength used to detect the fluorescent molecules varies with different types.
For example the GFP is imaged with excitation at 488 nm and emission at 505-530 nm.

Now that the image acquisition is performed, we shift our discussion to the image analysis
phase.
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Figure 1.2: Schematic Image Formation of Fluorescence Microscopy. (a) - basic setup. (b) -
the specimen is illuminated in higher energy light, fluorophores become excited.
(c) - Lower energy Light is emitted; some enters the objective lens and is detected.

1.3.2 Image Analysis

When digital cameras where introduced to microscopy, digital image analysis has developed as
an established complement, allowing routine quantification of microscope observations [Tho96].
Currently, flow cytometry is one of the methods used to measure levels of fluorescent proteins;
this can, however, not provide the quantification that image analysis can. Hence, the use of image
analysis was probed to accomplish further progress. Digital image analysis, widely known as
image analysis, is when a machine automatically studies an image to obtain useful information
from it. The applications of digital image analysis are continuously expanding through all areas
of science and industry. It has been successfully applied in a wide variety of fields ranging from
astronomical observations to cell analysis. To name few other fields: nuclear medicine, medical
diagnostics, industry, lithography, microscopy, lasers, biological imaging, remote sensing, law
enforcement, radar images, geological exploration [Gon08], sports management [Fer99] and
chemical imaging [Sch95]. There are many different techniques used in automatically analyzing
images. Each technique may be useful for a small range of tasks. However, there still are
not any known methods of image analysis that are generic enough for wide ranges of tasks,
compared to the abilities of a human’s image analyzing capabilities [Sol11]. In our domain,
we considered few of these techniques including image processing, image segmentation and
feature extraction discussed hereafter.

Image Processing

Image processing is usually used to refer to digital image processing. It is a process that
accepts an image as an input, and the output may be either image or a set of characteristics
or parameters related to the image. It is the use of computer algorithms to perform image
processing on digital images. Since images are defined over two dimensions (perhaps more),
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image processing may be modelled in the form of multidimensional systems. Image processing
is the only practical technology for classification, feature extraction, multi-scale image analysis
and pattern recognition [Gon08].

Image Segmentation

Crucial to image analysis is image segmentation, which is defined as subdividing an image
into its constituent regions or objects [Gon08]. The result of image segmentation is objects
representing connected regions of similar intensity. From these regions, measurements can be
conducted. Some practical applications of image segmentation are image processing, computer
vision, face recognition, medical imaging, digital libraries, image and video retrieval, and cell
image analysis to measure gene expression [Tle13, van07].

Segmentation of individual cells relies on the ability to detect cell boundaries and classifying
all pixels in a given image as foreground or background. The differentiation between foreground
and background pixels can be accomplished by a threshold function determined by a simple
intensity based method, or by more complex functions such as graphical models, pattern
recognition, deformable templates, cell contours or the watershed algorithm [Don13b].

There are a number of refining segmentation algorithms, tracking algorithms, morphology
characterization, and protein localization. However, we lack a robust approach for the seg-
mentation and tracking of budding yeast [Don13b]. The result of such a robust segmentation
algorithm enables us to extract binary masks and contours of cells. These obtained masks and
contours allow us to measure various features of those objects, i.e. cells. More details on object
measurement follow hereafter.

Measurement and Features

Herein, we will define the concepts of measurement, features, textures and feature extraction.
Measurement

In its classical definition throughout physical sciences, measurement is the determination or
estimation of ratios of quantities [Mic99]. However, information theory recognises that all
data are inexact and statistical in nature. Thus the definition of measurement in information
theory is “a set of observations that reduce uncertainty where the result is expressed as a
quantity” [Hub07]. In general, we can state that measurement is the assignment of a number to a
characteristic of an object or event, which can be compared with other objects or events [Ped91].
The science of measurement is pursued in the field of metrology, which includes all theoretical
and practical aspects of measurement [BIP08].

Measurement is a cornerstone in Bio-Imaging and pattern recognition as well as in most
science fields. It is an important step in the discovery process. In Biological image analysis,
measurement is strongly related to features and textures extracted from images. Hereafter, we
will define what a feature is? what a texture is? and we will highlight on the well-known feature
extraction techniques followed within bio-imaging.
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Features
In computer vision and image processing, a feature is a piece of information which is relevant
for solving the computational task related to a certain application. This is the same sense as
feature in machine learning and pattern recognition generally, though image processing has
a very sophisticated collection of features. Features may be specific structures in the image
such as points, edges or objects. Features may also be the result of a general neighborhood
operation or feature detection applied to the image. In general definition, an image feature is a
representation or an attribute of an image describing certain special characteristics of the pattern
of interest.

In our application it is not sufficient to extract only one type of feature to obtain the relevant
information from the image data. Instead multiple different features are extracted, resulting
in multiple feature descriptors at each image point. The information provided by all these
descriptors is organized as the elements of one single vector, referred to as a feature vector.
The set of all possible feature vectors constitutes a feature space. A common example of
feature vectors appears when each image point is to be classified as belonging to a specific
class. Assuming that each image point has a corresponding feature vector based on a suitable
set of features, meaning that each class is well separated in the corresponding feature space, the
classification of each image point can be done using standard classification methods [wik15].
Chapter 4 applies such classification on our feature space.

Textures
An image texture is a set of metrics calculated in image processing designed to quantify the
perceived texture of an image. Image texture gives us information about the spatial arrangement
of color or intensities in an image or selected region of an image [Sha01]. In other words,
it is defined as the visual effect which is produced by spatial distribution of total variations
over relatively small areas [Bar95]. Image textures are believed to be a rich source of visual
information. They are complex visual patterns composed of entities, or sub-patterns, that have
characteristic brightness, colour, slope, size, etc... Thus a texture can be regarded as a similarity
grouping in an image. Image textures can be artificially created or found in natural scenes
captured in an image. Image textures are one way that can be used to help in segmentation or
classification of images. To analyze an image texture in computer graphics, there are two ways
to approach the issue: Structured Approach and Statistical Approach. A structured approach
sees an image texture as a set of primitive texels in some regular or repeated pattern. This works
well when analyzing artificial textures. However, since natural textures are made of patterns of
irregular sub-elements as is the case in our application, statistical approach is used. In general,
statistical approach is easier to compute and is more widely used. It sees as image texture as a
quantitative measure of the arrangement of intensities in a region.

Feature extraction
Feature extraction is defined as locating those pixels in an image that have some distinctive
characteristics [Gub09]. The most known feature extraction techniques in image analysis are
classified into first-order histogram based features, invariant moment features, co-occurrence
matrix based features, and multi-scale features [Mat98]. More details about these techniques
will be discussed in Chapter 4.
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1.3.3 Data Analysis

After performing the measurement, data analysis is necessary to make the measurement mean-
ingful for users. Data analysis can be defined as the process for obtaining raw data and
converting it into information useful for decision making and suggesting conclusions [Jud11].
The workflow depicted in Fig. 1.3 illustrates the general process followed within bioinformatics.
Initially images are acquired from the imaging device during the image acquisition phase; then
these images undergo segmentation to locate the individual objects. Following the segmentation
is the measurement phase where objects are measured for various features. The obtained
data must be processed or organized for analysis [Sch13], but the data could be incomplete,
contain duplicates, or contain errors. Such issues are presented and corrected through data
cleaning [Ara15]. Once the data is processed and cleaned, it can be analyzed. Analysts apply
a variety of techniques referred to as exploratory data analysis to begin understanding the
messages contained in the data [Few04]. Descriptive statistics are generated to help understand
the data. These data are examined in graphical format using data visualization techniques
to communicate key messages contained within the data through these graphical means and
charts [Fri08]. Machine learning models and algorithms can be applied to identify relationships
among the variables or to classify the instances of the data based on these variables. Data
mining and machine learning plays a major role here. They focus on modelling and knowledge
discovery for predictive rather than purely descriptive purposes. The output of such models
is data products fed back to the user such as conclusions or identified subtle patterns residing
within the data.

1.4 Thesis Structure

In the remaining chapters we explain the research we have set out to perform.
Chapter Two: Image Analysis Platform. This chapter presents a complete framework for

biological experiments. It demonstrates how an automated platform based on a complete image
analysis pipeline assist biologists in their experiments? Moreover, this chapter discusses the in-
dividual modules that form the complete framework, including the segmentation, measurement,
data analysis and the GUI that combines these modules together.

Chapter Three: Hough Transform Based Contour Extraction and Optimization. In
this chapter, we show how a new approach based on Hough transform and minimal path
algorithms can improve the segmentation of ovoid objects, i.e. yeast cells. We start by defining
Hough transform and minimal path algorithms. Subsequently we present our general approach
to detect ovoid objects in microscope images by detecting circular arcs using a variety of the
Hough transform. In addition, we discuss the application of minimal path algorithms to extract
the exact contour of detected objects from a polar representation of the image surrounding the
object. Furthermore, this chapter presents an additional novel algorithm to expand the extracted
contours of ovoid objects. Such expansion is necessary for some settings due to the inherently
fuzzy nature of edges and delicate microscope settings. This chapter explains how the polar
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Figure 1.3: Flow Chart of the data analysis process

representation of images is used to expand the initially detected contours by applying circular
shortest paths. In addition, it explains the three introduced parameters to control the expansion
process. These parameters are resistance, limit and convergence. The expansion of a sample
contour is demonstrated as well in this chapter. Finally, results and comparison with other
methods are evaluated using a dataset of S. cerevisiae yeast cells.

Chapter Four: Machine Learning to Improve Object Recognition and Discrimina-
tion of Cell Groups Using Sophisticated Features. This chapter specifically address machine
learning where we introduce features to be used in a machine learning approach to automat-
ically identify cell groups cultivated in two different media. We use the same approach to
classify cell objects from artefacts. First we discuss the feature extraction techniques including
first-order histogram features, texture measurement, moment invariants, co-occurrence matrix
based features and multi-scale wavelet-based texture measurement. Subsequently, various
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classification methods are evaluated to build a model imported into the yeast analysis platform
to be trained for the automatic discrimination of cell groups. This discrimination helps showing
that there are different gene expression patterns between cells cultivated under different stress
levels. Moreover, the same classification methods are evaluated to build another model for
the identification of cell objects. This model is used to discriminate the segmented objects in
images into intact cell objects or artefacts such as debris and dead cells.

Chapter Five: The Effect of NaCl on 14-3-3 Proteins and Nha1 antiporter. In this
chapter, the designed image analysis platform is used in a case study to determine the effect of
sodium chloride on 14-3-3 genes including Bmh1 and Bmh2 in addition to the NHA1 encoding
an antiporter. The study also includes a mutant of BMH1 (∆bmh1) to study the expression of
Nha1 under different osmotic stress levels. The result obtained from using the yeast analysis
software is also validated with that obtained from flow cytometry.

Chapter Six: Discussion. In this chapter, we draw out conclusions learned from this
dissertation and give scope for further research and applications.





2
Yeast Analysis Platform

“ This chapter describes the yeast analysis framework we have developed to
support research in yeast biology. We start by presenting the workflow of
the system and elaborate on its various modules including segmentation,
measurement, analysis and visualization, and finally the Graphical User
Interface (GUI) that connects all these modules. A validation small scale
experiment is performed as well.

”
This chapter is based on the following publications:

• Mohamed Tleis, Ginny Anemaet, Paul van Heusden, and Fons J. Verbeek. Image analysis
platform for yeast biologists. In The 2nd International Conference on Advances in
Biomedical Engineering 2013 (ICABME’13), pages 57–60, Tripoli, Lebanon, September
2013.

• Mohamed Tleis and Fons J. Verbeek. Yeast-Cell features extraction plugin. In ImageJ
Conference 2012, Mondorf, Luxembourg, October 2012.
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2.1 Background

THE goal of this study is to address which components and processes can form an objective
and comprehensive image analysis pipeline to analyze image-based gene expression in

single cells. The developed objective image analysis platform should be applicable for live cell
imaging, thus without additional staining and should perform in an automatic way the entire
image analysis pipeline:

• Fluorescence (confocal) microscopy images.
• Detection of individual cells on the images (segmentation).
• Quantification of the fluorescent signal and other characteristics of each individual cell

(measurement).
• Statistical analysis of the measurements.
• Visualization of the measurements in several graphical ways.

To quantify expression levels of GFP-tagged reporter genes in fluorescent microscope
images, several software tools have been developed. The first step is to detect the individual
cells in the image through segmentation. Detection of cells can be performed both in the
bright-field channel as well as in the fluorescence channel(s). Until recent, a software tool
has been used for screening the yeast GFP-fusion library to investigate global cellular protein
reorganization on exposure to the alkylating agent methyl-methane-sulfonate [Maz13]. In that
image analysis software, developed in Matlab, cellular boundaries are detected after staining the
cell-wall with Alexa 647 conjugated Concanavalin A. A disadvantage of such an approach is that
additional staining is required. Another recent research implements a pipeline including high-
throughput microscopy, automated image analysis, and pattern classification through machine
learning [Cho15]. The approach followed in that research also requires staining. It uses yeast
synthetic genetic array (SGA) technology to introduce a cytosolic red fluorescent protein (RFP)
to mark cell boundaries. Moreover, a number of software tools that processes bright-field images
have been described, such as Pombex [Pen13], CellStat [Kva08] and CellSerpent [Bre11].
Pombex segments Schizosaccharomyces pombe cells in bright-field images. For S. cerevisiae,
however, Pombex is not optimal as they have different shape characteristics. CellStat is able to
segment bright-field images of S. cerevisiae, but it has a constraint on the cells to be detected,
as they must not be encapsulated by other cells [Kva08]. CellSerpent utilizes an active contour
segmentation algorithm for cell detection, where only few features are measured [Bre11].
Moreover, both CellStat and CellSerpent requires the Matlab software to be installed. In another
study, images obtained by confocal microscopy are analyzed to investigate the localization of
the plasma membrane protein Mrh1p-GFP [Bir11]. Image analysis is carried out using modules
derived from the Acapella software that is supplied with the Opera microscope that the software
is developed for, and hence the modules are not freely available.

As expression levels and subcellular localization of tagged genes are highly variable, we
will use bright-field for the detection of cells. In addition, the information from the fluorescent
datasets is given. Nevertheless, the software offers segmentation methods that works well
with fluorescence images when needed. In the next section, we describe the workflow of our
developed platform. The platform is named YeastAnalysis.
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2.2 YeastAnalysis Workflow
Image analysis was probed to accomplish further progress to complement flow cytometric
analysis for the S. cerevisiae yeast cells. This should be part of a comprehensive image
analysis platform. Such platform must have the following components: (1) Segmentation, (2)
Measurement, (3) Data analysis and visualization and (4) a graphical user interface (GUI).

The proposed workflow is depicted in Fig. 2.1. The three major components offered by
the system are shown as separate blocks connected through the GUI. In the next sections
we elaborate on each of these modules including segmentation, measurement, data analysis
and visualization and the GUI. Subsequently, a small scale validation experiment is presented
in Section 2.7. Section 2.8 discusses the hardware and software tools we used during the
development of the platform. We complete this chapter with a conclusion in Section 2.9.

2.3 Segmentation Module
For different image modalities, different segmentation methods give different results. In our
research we identify four different type of images. In Fig. 2.1 we label these images as
Fluorescent Type A, Fluorescent Type B, Bright-field Type C and Bright-field Type D. Four
different segmentation processes are developed for each image type. As a general approach we
always follow the same segmentation path used with Type D; i.e. applying Hough Transform
and Minimal Path algorithms as the core methods. However, when results are not satisfactory,
one can always choose a different method according to the image modality. Type A fluorescent
images are those whose cells show evenly distributed fluorescent signal throughout the cell.
Example of this type are images showing the expression of BMH gene tagged with GFP as a
reporter gene. Type B fluorescent images are those whose cells show strong signal throughout
the cell or nucleus and possesses speckle noise. For example, images showing the nucleus
stained with DAPI signal, and the cytoplasm of the cell shows speckle noise throughout the
cytoplasm possibly corresponding to mitochondria. Type C images uses brightfield channel
where the cell structures are well separated and their contours are well highlighted. Example
of this type, is when the fluorescent channel is weak and its segmentation is not possible with
standard methods; then we use this brightfield channel to detect the cell objects. Type D
images represent the most sophisticated case, where the fluorescent signal is weak, and the
brightfield channel has cells clumped within other cells, or attached to budding cells, leading to
disconnected cell contours.

In this section, we discuss two types of segmentation algorithms used by the system. The
first is filter-based and the second uses Hough Transform and Minimal Path algorithms.

2.3.1 Filter-Based Methods
In these type of segmentation methods, we use one of three different filters as its core processing
followed by triangle auto-threshold, fill holes and morphological watershed algorithms. The
three different filters are the Sigma, Despeckle and Sobel. These filters will be discussed first.
Subsequently we discuss the triangle auto-threshold, fill holes and morphological watersheds.
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Sigma Filter

We use Sigma filter [Lee83, Sch07] in one of the simple segmentation methods on fluorescent
images. This filter is motivated by the sigma probability of the Gaussian distribution, and it
smooths the image noise by averaging only those neighbourhood pixels that have the intensities
within a fixed sigma range of the center pixel. Smoothing and blurring the images through
Sigma filter makes it possible to acquire binary masks that better represent the shape of the
objects. It was selected for a number of advantages including:

• Noise near edge areas will be smoothed without blurring the edge because only pixels on
one side of the edge are included in the average;

• Preservation of subtle details and linear features;

• Not sensitive to shape distortion;

• Retention of step edges and sharpening of ramp edges;

• Removal of high-contrast spot noise;

• Computationally efficient.

Figure 2.2 illustrate a sample application of sigma filter on S. cerevisiae cells.

(a) Fluorescence Image (b) Applying Sigma Filter

Figure 2.2: Applying Sigma Filter on a Fluorescence Image.

Median Filter

In some fluorescent images, there exists speckle noise, also known as salt-and-pepper kind
of noise. Since Median filters are well known as a good approach to remove such kind of
noise [Gon08], we apply a Despeckle algorithm [Ras16], which is a median filter that replaces
each pixel with the median value in its 3 x 3 neighbourhood. Figure 2.3 shows a threshold
image of yeast cell nuclei before and after the application of the Despeckle algorithm.
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(a) impulsive noise (b) Application of a Median Filter

Figure 2.3: Median Filter.

Sobel Filter

Sobel filter is a discrete differentiation operator, computing an approximation first estimate of
the gradient of the image intensity function. We use the Sobel filter to highlight and detect
the edges of the cells. At each point in the image, the result of the Sobel operator is either
the corresponding gradient vector or the norm of this vector. This vector has the important
geometrical property that it points to the direction of the greatest rate of change at a certain
location (x,y) in the image. The Sobel operator is based on convolving the image with a
3x3 filter masks. These masks are separable and integer valued in the horizontal and vertical
directions and is therefore relatively inexpensive in terms of computations [Gon08, Ras16].

Triangle auto threshold '

&

$

%
Figure 2.4: Triangle auto threshold.

In the filter-based segmentation methods, the
Triangle auto-threshold [Zac77, Ras16] is
used to obtain a binary image as shown in
Fig. 2.5(a). The threshold level in the Trian-
gle auto threshold method is determined on
the basis of the histogram of pixel intensities
as illustrated in Fig. 2.4.

We evaluate the distance from the his-
togram at every level to the hypotenuse of
the triangle having the histogram height and
dynamic range as sides. The histogram level
having the maximum distance corresponds to
the final threshold used by this method. In
Fig. 2.4, point T corresponds to such threshold.
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The microscope we used throughout our research produce images whose histogram has a
weak bimodal distribution and a high kurtosis as it has a distinct peak near the mean, which
belongs to the low extreme of the histogram. Triangle’s method has proved its superiority for
these kind of images as it assumes a peak near one of the extremes and searches the threshold
value toward the other end [Car12]. Additionally, Triangle’s method is applied once on the
histogram and it is computationally in-expensive unlike some other threshold methods such as
the Otsu and Isodata.

The final result of the threshold operation is a binary image. Sometimes some inner parts of
the objects are not recognized as foreground pixels. Hence, we apply Fill Holes algorithm.

Fill Holes

After obtaining a binary image through threshold, the Fill Holes algorithm simply walkthrough
the pixels starting from the boundaries of the image and filling all the pixels with a background
label and stops when facing a foreground pixel. Labelling all the background pixels leaves all
the closed contours and their inner regions to be considered as foreground pixels. This operation
produces a binary mask of the cells. To separate the cells that are connected together, we apply
the morphological watersheds discussed hereafter.

Morphological watersheds

As Fig. 2.5(a) shows, the obtained binary image might have cells clumped together. For separa-
tion of such clumped cells, morphological watersheds [Gon08, Ras16] is used to obtain the final
binary mask of the cells. Figure 2.5(b) shows the same cells from Fig. 2.5(a) processed with
watersheds. The concept of watersheds is based on visualizing an image in three dimensions:
two spatial coordinates versus intensity. In such a "topographic" interpretation, we consider
three types of points: (a) points belonging to a regional minimum; (b) points at which a drop
of water, if placed at the location of any of those points, would fall with certainty to a single
minimum; and (c) points at which water would be equally likely to fall to more than one such
minimum. For a particular regional minimum, the set of points satisfying condition (b) is called
the catchment basin or watershed of that minimum. The points satisfying condition (c) form
crest lines on the topographic surface and are termed divide lines or watershed lines [Gon08].
These watershed lines are located by the algorithm to separate the clumped S. cerevisiae cells.

2.3.2 Hough Transform and Minimal Path

The second type of segmentation methods is developed to be used as a general segmentation
algorithm on bright-field images and it uses our novel Hough Transform and Minimal Path
algorithms in its core. The idea of the new method is to use Hough Transform to locate the
geometrical circles that contains part of the cell contours in a skeleton of the gradient image
where the foreground shapes are reduced to a skeleton of one pixel width. Subsequently, a
polar transformation is applied to resample the pixels surrounding the cells, and apply Minimal
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%(a) Applying Triangle Auto-threshold (b) Applying Watershed Algorithm

Figure 2.5: Threshold Image and Separating Cells.

Path algorithm to find the path (full contour) of every cell. Chapter 3 explains more about this
method. In addition, Chapter 3 describes an extension for the Hough Transform and Minimal
Path algorithm by adding a contour expansion process. This expansion offers more optimized
contours in some image modalities. The extracted contours are then used to obtain a binary
mask of every yeast cell, enabling its measurement in the overlaid fluorescence channel.

After the segmentation process, the extracted contours or the binary masks are used to
measure the individual S. cerevisiae yeast cells. The measurement is performed within the
Measurement module in the image analysis pipeline. The Measurement module is discussed
hereafter.

2.4 Measurement Module

This part of the workflow measures and describes the S. cerevisiae yeast cells for various
features and textures. Using the labelled objects from the binary masks generated during the
segmentation process, measurement of individual cells is made possible. This system provides
an option to choose from a list of features to be measured; moreover, it provides an option to
exclude outliers based on the values of the circularity feature and size of the measured cells.

In this platform, basic feature extraction techniques in image analysis are considered, while
more sophisticated techniques are studied later in Chapter 4. We categorize the basic techniques
used in this platform into two classes. The first is based on first-order statistics and the second
is based on texture measurement. In the following sub-section we start discussing the first-order
statistic features; subsequently, we discuss the basic texture measurements.
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2.4.1 First order statistics based features
By first-order statistic features, we mean all those features computed based on single pixel
values including first-order histogram based features. This is in addition to basic shape and
intensity descriptors.

Assuming that our microscope image is a function f(x,y) of two space variables x and
y, x = 0, 1, . . . .N − 1 and y = 0, 1...M − 1. The function f(x,y) can take discrete values
i = 0, 1...L − 1, where L is the total number of intensity levels in the image. The intensity-level
histogram is a function showing the number of pixels for each intensity level in the whole image.
This function is depicted in Eq. 2.1.

h(i) =
N−1

∑
x=0

M−1

∑
y=0

δ(f(x,y), i), (2.1)

where δ(j, i) is the Kronecker delta function, depicted in Eq. 2.2. The Kronecker delta
function simply increments the intensity level histogram by the value of one at every pixel
whose intensity value j = f(x,y) is equal to that histogram intensity level i.

δ(j, i) = {
1, j = i
0, j ≠ i

(2.2)

The histogram of intensity levels is obviously a concise and simple summary of the statistical
information contained in the image. Calculation of the grey-level histogram involves all single
pixels. The histogram contains the first-order statistical information about the image. The
histogram can also be computed for a sub-image, i.e. the region of interest (RoI) of cell objects.
Different useful image features are worked out from the histogram to quantitatively describe the
first-order statistical properties of the objects. In this research, we considered many basic shape
and intensity descriptors based on the first order statistical information in the images. A list of
those features is depicted in Table 2.1.

2.4.2 Texture Measurement

An image or object texture is an important metric as it gives us information about the spatial
arrangement of intensities in that image or selected region of an image, i.e. the object. A set of
basic texture features [Gon08] is available to be measured in the measurement module. A list of
these texture features is depicted in Table 2.2.

All these measurements of features and simple feature textures are saved automatically into
a CSV (comma-separated values) file that is used at the following step to generate a report,
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Table 2.1: Features based on first order statistics.

Features Description
Size The size of a yeast cell (object) is simply the number of pixels occupied

by that cell in the image, and for SI unit, it is multiplied by the area of
one pixel in square µ-meters (width x height of pixel).

Total Intensity The total intensity of a yeast cell is the total gray-level values of the
pixels occupied by this cell, which ranges between 0 and 255 for the gray
images used.

Intensity Standard
Deviation

The standard deviation from the mean of the intensity values in each cell.

Perimeter The perimeter representation method used to estimate the perimeter of
the cell is that of Vossepoel and Smeulders [Vos82]. This representation
is based on chaincodes:

Lvs = (0.980).Ne + (1.406).No − (0.091).Nc (2.3)

where Ne, No and Nc represents the number of even codes, odd codes
and corners in the chaincode of cell boundaries [Gon08].

Density The density of a particle object is its area multiplied by the average mean
of gray-level values:

d = A ∗ µ (2.4)

where d represents density, A represents area and µ represents mean of
intensity of a measured cell.

Circularity The circularity of detected shapes [Ras16].

Circularity =
4πxSize

perimeter2 . (2.5)

Vacuole Size If the fluorescent protein is expressed by genes known to have expression
in the cytoplasm and nucleus without its vacuoles, the size of the central
vacuole can be estimated. This is computed by using a vacuole filter
algorithm that looks in the fluorescent images for a region, inside the
RoI (region of Interest) representing every cell, that forms the largest
connected region with the lowest intensity values.

Membrane
Features

Different features can be measured in the region close to the cell borders
where membrane proteins are expressed. Such features include size, total
Intensity and Intensity standard deviation.

Nucleus Features For those images that contain a nuclear stain such as DAPI, the nucleus
can be measured for all the features an individual cell could be measured
for.
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Table 2.2: Basic texture measurement.

Features Description
Variance The variance (µ2 or σ2) is a measure of intensity contrast and can be

computed from the second statistical moment.

µ2(z) =
L−1

∑
i=0

(zi −m)
2.P(zi) (2.6)

where zi is the intensity value of the histogram at location i, m is the
mean intensity value, L is the total number of intensity levels (histogram
range), and P(zi) is the corresponding histogram with i between 0 and
L − 1 [Gon08]).

Smoothness The variance (σ2) is used to establish the descriptor of relative smooth-
ness (S):

S(z) = 1 −
1

1 + σ2(z)
(2.7)

This measure is zero for areas of constant intensities where the variance is
zero there, and it approaches 1 for large values of the variance [Gon08].

Skewness The skewness (µ3) of the intensity histogram which is the third statistical
moment.

µ3(z) =
L−1

∑
i=0

(zi −m)
3.P(zi) (2.8)

A negative skewness means that most of the pixel values are high and
thus concentrated at the right side of the histogram. A positive skewness
means that most of the pixel values are low and thus concentrated at the
left side of the histogram [Gon08].

Uniformity The uniformity (U) has a maximum value for a cell image in which all
intensity levels are equal [Gon08].

U(z) =
L−1

∑
i=0
P2

(zi) (2.9)

Entropy The Entropy (e), which is a measure of variability, is zero for constant
images [Gon08].

e(z) = −
L−1

∑
i=0
P(zi).log2P(zi) (2.10)
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or to be inspected manually. More advanced sophisticated feature extraction techniques are
considered in our research to improve the recognition of objects after the segmentation process
and to discriminate yeast cells into different categories with the purpose of identifying subtle
patterns. These sophisticated features are explained in Chapter 4.

2.5 Data Analysis and Visualization Module
After measurement, usually molecular biologists would like to compare two classes of cells to
study any significant changes in cell size or fluorescence intensity in cells having a certain gene
mutation or cultured in a different medium (ex. 2M NaCl, 50mM KCl, etc...). The changes in
features of cells in different conditions are compared usually to wild-type cells. To assist in
achieving this goal of comparison, our system generates automatically a report in pdf format
including basic statistics about the experiment and graph charts to visualize the results.

The statistical information created into the report includes counts of the cells belonging to
different cultures, the mean value of their surface area, and fluorescence intensity along with its
standard deviations. The unpaired student t-test is performed to report the t-value and p-value
to assist in recognizing the significant of the difference between two different cell samples.

The module in the yeast analysis pipeline performs statistical descriptive data analysis.
More advanced analysis of the measurement data is considered in Chapter 4. Such advanced
analysis makes use of machine learning techniques. This machine learning approach is used
to improve the segmentation process. It also makes use of a similar approach to discriminate
various cell conditions aiming at identifying subtle patterns.

The process of data analysis would not provide significant details for users without some
visualization tools. This platform offers some data visualization techniques to assist biologists
in extracting meaningful information from their experiments. A very frequently used graph
chart in yeast cell biology are those scatter plots that visualize the different values of cell surface
area on one axis against fluorescence intensity on the other, with a different label for each cell
culture. Figure 2.6(a) depicts a sample of such plot. A scatter plot is typically used to compare
between two observations represented by two variables to study their correlation, and determine
if the two variables exhibit the same or opposite direction. Other visualization options available
are charts visualizing one attribute of the cells in one chart, as a Pareto chart (cf. Fig. 2.6(b)), a
scatter plot visualizing the Gaussian density distribution of the data for the two cell cultures
(cf. Fig. 2.6(c)), or a box and whiskers plot to facilitate the analysis of the range of data (cf.
Fig. 2.6(d)).
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(a) Scatter Plot (b) Pareto Chart

(c) Scatter Plot of one attribute (d) Box and Whiskers Plot

Figure 2.6: Graph Charts to visualize measurement.

2.6 System GUI

The graphical user interface is a necessary tool that connects the workflow components together.
In its basic structure, the GUI is composed of the different modules mentioned in the workflow
in Fig. 2.1. These modules are provided as separate tabs in a user friendly interface. Figure 2.7
depicts the interfaces of the GUI. Figure 2.7(a) shows the interface where a user can set the
segmentation method and parameters to perform the segmentation process. Figure 2.7(b)
depicts the interface in the measure tab, where users can specify the channels and features
to be processed. Figure 2.7(c) shows the data analysis part, where one can set multiple pairs
of keywords corresponding to different cell strains or cultures. The last tab in the GUI is



30 Yeast Analysis Platform

an interface to set the directory of the input images as well as the output directories of the
segmentation, measurement and analysis results. Besides being implemented as a stand-alone
desktop application, this GUI was also implemented as a plugin for the imageJ software [Tle12].

'
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$

%

(a) Segmentation Tab (b) Measure Tab

(c) Data Analysis Tab (d) I/O Tab

Figure 2.7: GUI of the Yeast Analysis platform.
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2.7 Workflow validation
To validate YeastAnalysis platform, a small scale experiment is performed to compare two
cell cultures. The first sample belonging to a strain of cells having a mutation in the BMH1
gene and expressing Nha1 protein attached to a green fluorescent protein (GFP). This cell
strain is labelled ∆bmh1 Nha1-GFP. The second sample is from a wildtype cell strain ex-
pressing Nha1 protein attached to GFP. This strain is labelled BY4741 Nha1-GFP. A set of
18 images are acquired with a Zeiss LSM5 Exciter confocal microscope. From the segmen-
tation, 188 cells are detected using our novel segmentation method on the bright-field image
channels; i.e. Hough Transform followed by Circular Shortest Path (HCSP). More details
about this method are explained in Chapter 3. Ensuing segmentation, the cells are measured
for various features and all the measurements are written to a CSV file. The measurements
are then analyzed automatically to generate a report including graph charts and statistics.'
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%
Figure 2.8: Sample report from the

experiment analysis.

Such charts are shown in Fig. 2.6. Example of the
statistical information automatically generated into the
report is shown in Fig. 2.8.

Having a look at the chart and the statistics, and
specifically the p-values of the cell size and intensity,
reveals meaningful information. It is clearly visible
that mutant cells belonging to the ∆bmh1 Nha1-GFP
strain are smaller and have less GFP fluorescence than
the wildtype cells in BY4741 Nha1-GFP strain. The
results obtained using the image analysis platform we
developed in our research are in good correspondence
with the flow cytometry test. Figure 2.9 reveals these
results obtained by flow cytometry.'
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%
Figure 2.9: Results of the Flow Cytometry test.
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2.8 Development of YeastAnalysis

The hardware used in the development of YeastAnalysis is a desktop computer equipped with
an Intel® Core™ i7-2600 CPU @ 3.40GHz × 8 processor, and 16 GB of memory installed
with the Ubuntu 12.04 LTS operating system. The software is written in Java using JDK-1.7
including a variety of open-source packages. An ImageJ library package [Ras16] is utilized
to access some existing functions such as the Watershed Algorithm, Fill Holes Algorithm and
Overlays feature. ImageJ plugins are also imported, such as the Sigma-Filter-Plus which is an
implementation of the sigma filter [Sch07]. The output of measurement was integrated with
spreadsheet applications through Java Excel API [jex16]. The t-test and statistical analysis
of these measurements are performed with the support of the Apache commons Mathematics
library [apa16]. Visualization of statistical results was made possible with the JfreeChart
API [jfr16]. Creation of the Pdf reports was done with iText programmable pdf software [ite16].
Moreover, for drawing of the ground-truth images we used the TDR software package [Ver04].
YeastAnalysis and a manual are available for download from [git16].

2.9 Conclusion

In this chapter, we addressed the components and processes that builds up an automatic image
analysis pipeline for the objective analysis of gene expression in single cells, i.e. yeast cells. We
designed a workflow for this pipeline. This workflow is composed of a segmentation module,
a measurement module, a data analysis and visualization module and a GUI connecting the
aforementioned modules.

The segmentation module has various segmentation and image processing algorithms
adopted in this system including the sigma filter based method, median filter based method,
Sobel filter based method and Hough Transform and Minimal Path algorithms. Including as well
the post-processing methods such as Triangle, fill holes and watershed. After the segmentation
phase, there is the measurement phase. The measurement module has various features that could
be selected and measured. These features are categorized into first-order statistical features and
basic texture measurements based on the histogram intensities. After the measurement phase,
comes the data analysis and visualization phase. In this part, the statistical descriptive data
analysis that is performed include the computation of basic statistical metrics and Student’s
t-test for statistical analysis. The GUI of the developed image analysis platform connects the
various modules as separate tabs. There is also a room to add new components. Finally, the
platform is validated in a small scale experiment; the analysis of a study experiment revealed
decreased expression of the Nha1 protein in a yeast strain having a mutation in the BMH1 gene
compared to the wildtype strain.

The results demonstrate that this platform can potentially contribute to the improvement
of the objective analysis and diagnosis of gene expression studies in yeast. It reveals an
advantageous comprehensive image analysis platform that can be used in the laboratory assisting
in analyzing experiments.
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Hough-based Contour Extraction and

Optimization

“ In this chapter, we present our novel algorithm for the segmentation of ovoid
objects. Our method implements a variation of the Hough Transform and
Minimal Path algorithms. We propose equations and parameters to control
the detection of objects through Hough Transform. The contours of these
objects are extracted through minimal path algorithms implemented on a
polar resampled representation of the object images. In addition, we present
a contour expansion algorithm using the same polar representation of object
images. Such expansion is necessary under some microscope settings. ”

This chapter is based on the following publications:

• Mohamed Tleis and Fons J. Verbeek. "Extracting contours of oval-shaped objects by
Hough transform and minimal path algorithms." In Sixth International Conference on
Digital Image Processing, pp. 915903-5. International Society for Optics and Photonics,
2014. (Excellent Paper Award).

• Mohamed Tleis and Fons J. Verbeek. "Contour Expansion preceded by the Application
of Hough transform and Minimal Path Algorithm". In Fifth International Conference on
Image Processing Theory, Tools and Applications, pp. 149-154. IEEE, 2015.
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3.1 Background

IN Chapter Two, the Hough transform based segmentation methods and contour optimization
were introduced. This chapter explains in details the underlying algorithms of such methods

and their implementation. The following section introduces Hough transform, generation of
the cube-like accumulator, and how this accumulator is threshold in order to get information
about the object locations in the image. In Section 3.3 polar transformations are described
and how these are applied to ovoid objects to generate a rectangular array that is used to
obtain the minimal path in the object image. In Section 3.4, the implemented minimal path
algorithms are explained. The polar representation of object images is also used for the purpose
of contour optimization; our novel optimization method to expand object contours is explained
in Section 3.5. Section 3.6 validates the introduced methods by comparing them to other
state-of-the-art solutions and assess their performance under various noise levels.

3.2 Hough Transform

In the daily practice of processing microscope images, sets of pixels yielded by edge detection
methods seldom characterize the edge because of noise, breaks in the edges due to non-uniform
illumination and the effects that introduce spurious discontinuities in intensity values. This is
often observed with the S. cerevisiae cells in bright-field images.

A well-known global approach to edge linking is Hough transform [Gon08]. Hough
transform is applicable to any function of the form g(v, c) where v is a vector of coordinates
and c is a vector of coefficients. Since many objects in systems and micro-biology such as S.
cerevisiae yeast cells are characterized as having nearly ovoid shapes [Fel10], detecting circular
arcs in yeast images would help in detecting the yeast cells. A circle is represented as in Eq. 3.1,
which can be rewritten in its normalized form as depicted in Eq. 3.2.

(x − c1)
2
+ (y − c2)

2
= c

2

3
(3.1)

x = r.cosθ

y = r.sinθ
(3.2)

Our implementation of the Hough transform includes two steps. The first step is to fill
the accumulator and the second is to threshold this accumulator in order to extract the circles
corresponding to the estimated object locations. These steps are discussed hereafter.
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3.2.1 Filling the Accumulator
Figure 3.1(a) illustrates the geometrical interpretation of the parameters x, y, θ and r. The x,
y, r parameter space is sub-divided into accumulator cells forming a 3-D cube-like cells and
accumulator of the form A[x,y, r]. The x and y dimensions of this accumulator are related
with the width and height of image I and the r dimension is defined by the constraint of the
possible object radius values. This accumulator is illustrated in Fig. 3.1(b). The procedure is
to increment x and y and solve the equations in Eq. 3.2 for θ at a pre-specified value of the
radius r and update the accumulator cell associated with the triplet (x,y, r), i.e. increment
accumulator cell by 1 if a foreground edge pixel is found at angle θ for the circle of center (x,
y) and radius r. The flowchart in Fig. 3.2 illustrates the filling process in more detail. At radius
r specified from a range of radii, all the pixels in the image are checked and if a certain pixel is
an edge pixel, i.e. foreground in the binary image, the accumulator cell is incremented by the
value of one. After filling the Hough accumulator array, we need to decide on which pixels in
the binary image are to be considered as center of circles. This required specifying a rule to find
a threshold for the accumulator. The following sub-section discusses our approach to find this
accumulator threshold.

3.2.2 Accumulator Threshold
Hough values in the accumulator array are related to the number of pixels located in the
circumference of a certain circle with a specified center c and radius r where a maximum of
2πr pixels can belong to that circumference. A threshold value is set to allow detection of
structures that lie a pre-specified percentage of the circumference. This threshold starts at 2πr
and decrements for smaller values of the radius. The threshold value is calculated according to
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(a) Geometrical interpretation of parameters x,
y ,θ and r.
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(b) Cube AccumulatorA[x,y,r].

Figure 3.1: The Hough Accumulator.
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the equations depicted in Eq. 3.3 and 3.4, where r is the radius of the circle, rmax and rmin
are the maximum and minimum specified radius values, rindex is an index to track the current
radius value. α and β are control values. Parameter p in Eq. 3.4 ensures that the threshold value
is relatively high for smaller circles. This allows detecting some deformed shapes at a smaller
radius (r − 1) if not detected at radius r.

T = 2πr − {2πr ×α + p} (3.3)

p = β × (rmax − rmin) − rindex (3.4)

The flowchart in Fig. 3.3 walks-through the process of using the threshold value to get the
geometrical arcs that form part of circles in the binary image. Starting from the largest radius
and decrementing until the minimal radius, we loop through Hough values in every cell of
the cube accumulator starting from the maximum Hough value until the specified threshold
given in Eq. 3.3. As long as there are pixels associated with that Hough value, we check if the
circles occupying that space overlap with the previously detected circles. If not, then the space
occupied by the new circle is reserved, preventing subsequent circles from occupying this space.
The parameters α and β control the threshold equation depicted in Eq. 3.3 and 3.4.

The parameter α is a weighting factor in the range [0, 1] and is used to determine the
percentage of pixels that must exist as edge pixels in order to consider them as being part of
a closed circumference of a circle; e.g. at α = 0.5, at least 50% of the pixels located on the
circumference must be edge pixels. The parameter β acts similar to α except that it increases in
value at the examination of circles with lower radius values, allowing more shape deformation
at lower radii.

Figure 3.2: Filling the Hough Accumulator.
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3.3 Polar Transformation
After estimating the initial position of the ovoid objects such as S. cerevisiae yeast cells in
bright-field microscope images through Hough transform, our objective is to extract the exact
contour of that object. For this, we resample each object into a polar representation for each
object where a polar transformation is applied on the image part as a RoI for that object. On
this polar image, we extract the minimal path corresponding to the actual contour of the object.
In this section, we explain the Polar Coordinate system? How the transformation is achieved
from cartesian to polar system? And how is that applied on actual objects such that S. cerevisiae
cells? The minimal path algorithm is discussed later in Section 3.4.

3.3.1 Polar Coordinate system
In 2D space, the polar coordinate system is a two-dimensional coordinate system in which
each point on a plane is determined by a distance from a reference point and an angle from a
reference direction. The reference point is analogous to the origin of a cartesian system. It is
known as the "pole", and the ray from the pole in the reference direction is known as the "polar
axis". The distance from the pole is called the radial coordinate or radius and we will refer to it
as r, and the angle is the angular coordinate, polar angle, or azimuth and we will refer to it as
θ [Bro97].

3.3.2 Cartesian to Polar System
The cartesian coordinates x and y can be converted to polar coordinates r and θ with r ≥ 0 and
θ in the interval (−π,π] using Eq. 3.5 and 3.6. The atan2 notation in Eq. 3.6 is a common
variation of the arctangent function as defined in Eq. 3.7. The geometrical interpretation of
the relationship between the polar and cartesian coordinates is further illustrated in Fig. 3.4.

Figure 3.3: Extracting the Circles from Image.
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r =
√

(x2 + y2) (3.5)

θ = atan2(y,x). (3.6)
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−
π

2
, if x = 0 and y < 0
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Figure 3.4: Geometrical interpretation of relationship between polar and cartesian coordinates.
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3.3.3 Polar Image of Yeast Cells

Figure 3.5(a) shows an example of a yeast cell after locating its center point by Hough transform.
The red circles and blue lines are labels to illustrate the resampling of the polar image of the
pixels surrounding the center point of the cell as shown in Fig. 3.5(b). The radius at an angle
θ in the original image plane is transformed into a column in the polar image. The circles
surrounding the center point, i.e. red circles of radius r in the original image plane in Fig. 3.5(a),
are transformed into rows of the polar image, i.e. red horizontal lines in Fig. 3.5(b).

As a rule, the height of the polar image I is determined based on the scale information of the
images, and a priori generic knowledge on the objects, i.e. scale × maximum radius. The width
of I is dependent of the length of the contour. In order to have a sufficient region to evaluate, we
use a resampling length equal to twice the height of I. The minimal path algorithm then finds
the circular shortest path from the first to the last angular coordinate in image I.

3.4 Minimal Path Algorithms

Once all the center of objects, i.e. cells, are estimated as circle centers using the Hough
transform, a polar image I relative to each circle center is resampled from the original intensity
image [Kva08]. In our work, we adopted dynamic programming to extract the object contours
by finding the minmal path in the polar representation of these objects. In this section, we
discuss our implementation of a minimal path algorithm that uses grey weighted distance
transform followed by our novel approach to extract a circular shortest path for the polar image.
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(a) An example of a cell after detection of
the center point by Hough transform.

(b) A polar image is generated for the yeast cell in Fig. 3.5(a). The
columns correspond to the pixels along the radius at an angle θ of the
largest possible circle (red lines). The rows correspond to the circles
surrounding the center point (blue lines, blue circles in Fig. 3.5(a)).

Figure 3.5: Polar transform of a yeast cell image.
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3.4.1 Grey-weighted Distance Transform

Grey-weighted distance transform algorithm was developed originally [Vin88] to find the path
in grey-scale images. Let I be a polar image, which is formally a matrix of weights C(r,θ);
then let A denotes the first column of pixels in image I and B denotes the last column of
pixels. The objective is to find the minimal path from A to B. Considering I as a neighbouring
graph, let E be the edge between two neighbouring pixels p and q. E is assigned a value
VI(E) = VI(p,q) = I(p) + I(q). Let P be a path in this graph, and let CI(P) be a cost
associated with path P. This cost equals to the sum of all the edge values. This provides
a new metric in image I for which the distance dI between two pixels p and q is given by:
dI(p,q) =minCI(P), P: path between p and q. A pixel p belongs to the minimal path if and
only if dI(p,A) + dI(p,B) = dI(A,B), therefore, the grey-weighted distance transform to A
for each pixel is created by computing dI(p,A) for every pixel p, and similarly creating the
grey-weighted distance transform to B. The two distance functions are added. Subsequently, a
column-wise threshold is applied to the resulting image taking the minimum pixel value of the
column as a threshold in order to keep the pixels p belonging to the minimal cost between A
and B. This result represents the actual contour of the object. We ensure a closed contour by
assigning the coordinates of the extracted pixels p ∈ I as vertices of a polygon region of Interest
(RoI), which is filled to create a binary mask representing a closed object.

Figure 3.6(a) shows a sample polar image, where the first and last columns are labelled as A
and B as shown in Fig. 3.6(b). Figure 3.6(c) shows the grey-weighted distance transform to A
for each pixel created by computing dI(p,A). Similarly, Fig. 3.6(d) shows the grey-weighted
distance transform to B. The addition of the two distance images is shown as Fig. 3.6(e). The
result of the application of column-wise threshold to obtain the minimal cost between A and B
is shown in Fig. 3.6(f). This minimal path is the acutal contour of the cell. Figure 3.7 shows
another example for a cell whose contour is extracted from within a group of clumped cells.

3.4.2 Circular Shortest Path

Object contours are extracted from the computation of the minimal path through distance
transform as discussed in the previous subsection. However, this extracted contour is not
circular as the pixels pA and pB of column A and B in the polar image I are actually the same
pixels (at θ = 0 and θ = 360○). Hence, we developed an algorithm to extract the circular shortest
path from column A to column B in the polar image with the constraint that a path that starts at
row ri must also end at ri.

While the standard shortest path problem aims at finding a shortest path between two known
nodes in a graph or an image grid, the shortest circular path problem is to find a closed path with
minimum cost. This problem is more difficult than the standard shortest path problem since no
explicit start or end node is known. Our circular shortest path algorithm uses the concept of
ordinary shortest path obtained with dynamic programming [Buc97] but with the constraint that
the first and last pixels pA and pB of the detected path P are at the same radial coordinate in
order to ensure a circular path (cf. Fig. 3.8).
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We apply the shortest path algorithm just once starting at the first angular coordinate θ = 0
of each row ri in image I and only evaluating the pixels ph that would have a high probability
of belonging to the path. The global minimummin{CI(P)} of these shortest paths CI(P) is
guaranteed to be the global circular shortest path CSP [App03]. Our algorithm does not require
evaluating all the pixels while checking for shortest paths. It actually visits the pixels (w

2l

4
)

times instead ofw2l times stated in the standard circular shortest path algorithm [Sun03], where
w and l are the width and height of image I respectively.

In Box 3.1 the pseudo-code for the circular shortest path algorithm is depicted. For each
radial coordinate r in the polar image I (cf. line 2), we create a matrix C(r,θ) having the same
dimensions as I, i.e. w × l (cf. line 3). Ultimately all contour points need to get the status final.
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(a) Polar representation of S. cerevisiae yeast cell. (b) Labeling First and Last Column asA and B.

(c) IA = Distance Transform to Column A. (d) IB = Distance Transform to Column B.

(e) Add grey-weighted distance transform to A (IA)
and that to B (IB), i.e. (IA + IB).

(f) Threshold (IA + IB) in Fig. 3.6(e).

Figure 3.6: Hough Transform and Minimal Path Algorithm to Extract Cell Contours.
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Input :A polar image I of size w × l.
Integer variables i, j, i2, k and Costmin.

Output :Integer array CSP of length w.
1 Initialization: Costmin ←Maximum Value; i2 ← w − 1;
2 for each radial coordinate r do
3 Create cost matrix C(r,θ) of size w × l ;

/* Initialize first column of C(r,θ) to the value 1 */
4 C(r,θ)[0...l − 1, 0]← 1;

/* For each column in the left half of the image */

5 for i from 1 to (
w

2
− 1) do

/* And for each row within the possible range R */

6 for j from (r − i%
w

2
) to (r + i%

w

2
) do

7 C(r,θ)[i, j]← I[i, j] +min(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];
8 K[i, j]← argmin

k
(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];

9 endfor
10 endfor

/* For each column in the right half of the image */

11 for i from (
w

2
) to (w − 1) do

/* And for each row within the possible range R */

12 for j from (r − i2%
w

2
) to (r + i2%

w

2
) do

13 C(r,θ)[i, j]← I[i, j] +min(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];
14 K[i, j]← argmin

k
(C(r,θ)[i − 1, j + k]) ∀k ∈ [−1, 1];

15 i2 ← i2 − 1;
16 endfor
17 endfor

/* Keep track of the global minimal Cost */
18 if C(r,θ)[w − 1, r] < Costmin then
19 Indexmin ← r;
20 Costmin ← C(r,θ)[w − 1, r];
21 end
22 endfor
/* BackTrace path at row r */

23 CSP[w − 1]← Indexmin ;
24 for j from (w − 2) to 0 do
25 CSP[j] = CSP[j + 1] + k[CSP[j + 1], j + 1];
26 endfor
27 return CSP.

Box 3.1: Find Circular Shortest Path.
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For each angular coordinate less than w

2
, we check all pixels that have a radial coordinate

in the possible range R ∈ [(r − i% w

2
), (r + i% w

2
)], where i is the current angular coordinate.

When a pixel meets the aforementioned conditions, its value is added to the minimum cost at

the previous angular coordinate and a radial coordinate in the range of r± 1 (cf. line 7), where r

is the radial coordinate of the current pixel. The distance from the current radial coordinate to

the minimum cost at the previous angular coordinate is stored in an index matrix K (cf. line 8).

For the right part of the image I, the same procedure is performed with the constraint that the

range of R is dependent on the integer variable i2 instead of the current angular coordinate i. i2
decrements from w − 1 as i increments from w

2
to w − 1 (cf. lines 11- 17). After computing the

cost matrix C(r,θ), we update the minimal circular shortest path cost Costmin by first checking

if the minimal cost at the last angular coordinate is less than the global variable Costmin (cf.

line 18). If this is the case, the current radial coordinate is stored as an index for the global

minimal path Indexmin (cf. line 19). The minimum cost value is also stored by updating the

global variable Costmin (cf. line 20). Now that all the radial levels are examined in the polar

image I, we created a rule to extract the circular minimal path by back-tracing the pixels of this

path starting from the index of the global minima Indexmin that will be the radial index for

the last contour point (cf. line 23). As an additional rule at each current angular coordinate,

the radial index of the circular shortest path is stored by checking the radial index at the next

angular coordinate and adds to it the distance stored in the index matrix K (cf. line 25).

A sample application of the circular shotest path algorithm is applied on the S. cerevisiae

yeast cell shown previously in Fig. 3.5(a). The result of this application is illustrated in

Fig. 3.9(a), where the final extracted contour is displayed as cyan points on the resampled image.

The backprojection of the contour on the original image is shown in Fig. 3.9(b).
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Figure 3.7: Hough transform and grey-weighted distance transform to extract cell contours.



44 Hough-based Contour Extraction and Optimization

3.5 Contour Optimization
Our objective is to find reliable methods for the extraction of an accurate contour delineating
the object. We have shown to be successful in achieving this objective through dynamic
programming (DP) [Ger86], where we used Hough transform and set a cost matrix where we
applied a minimal path algorithm to estimate the contour location [Tle14]. We described two
minimal path methods, consequently we have two segmentation algorithms. The first is the'
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(a) Pathological cost function from [App03]. Last col-
umn shows CSP cost for each row.

(b) Shortest path at first row with a total weight=7.

(c) Shortest path at 3rd row with a total weight=24. (d) Shortest path at last row with a total weight=33.

Figure 3.8: Finding the Circular Shortest Path (CSP). Black, grey and white squares represent
pixel intensity values of 0, 1 and 11 respectively (similar to [App03]). Pixels marked
with X are not evaluated. The path with the minimum weight is the global CSP.
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Hough transfrom followed by grey-weighted distance transform method; i.e. HDT, and the
second is the Hough transform followed by circular shortest path method; i.e. HCSP. However,
since microscope imaging can be very delicate and edges have an inherently fuzzy nature,
a refinement of the initial estimate is sometimes required. For example, the objects to be
segmented have contours that are described by more than one pixel thick contour line. This
is typically true for the yeast image dataset that we show as a case study in this section. This
problem is observed when high resolution images using high numerical aperture (NA) lenses are
used with image sizes larger than 512x512 pixels. Further analysis of the results demonstrates
that the circular minimal path method has a bias toward the inner part of the object as a result
of the fact that some inner pixel values are lower than the edge pixel values. We state that, in
these cases, the minimal path is no longer the ultimate valid representation of the contour. In
this section, we use a yeast dataset for which this is typically the case.

As a possible solution to this problem, we developed an expansion algorithm that directly
evaluates the polar image I used to extract the minimal path. We refer to I as a polar image,
which is a polar representation of each object Oi in the original image. With our additional
heuristic, we are able to achieve the necessary refinement of contours. This contributes to the
accomplishment of precise measurements of the objects so that machine learning techniques
can better recognize the subtle patterns within the data.

In the following subsections, we provide a background and subsequently the control param-
eters are described. In the last subsection we discuss the contour expansion (CE) algorithm.

3.5.1 Background
Our goal is to obtain the exact contours of ovoid objects; here applied to yeast cells. The initial
contour detected by HCSP is expanded out toward the background surrounding the object until
it meets certain criteria. The expansion is realized using dynamic programming in the polar
image I. Starting from the initial contour detected by HCSP [Tle14], the contour is expanded in
such a way that r ′ ≥ r, where r ′ is the radial coordinate of the new contour pixel in image I and
r is the initial radial coordinate. Every contour pixel considers a number of factors that decides'
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(a) Extracted minimal path from the resampled image.

(b) Contour backprojected on the original image.

Figure 3.9: Sample application of circular shortest path on S. cerevisiae cell.
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whether it should be expanded to the next level or if it is a final contour point. To decide if
the current contour point is a final contour point, we have identified three parameters; i.e. the
resistance, limit and convergence; these parameters are discussed hereafter.

3.5.2 Control parameters

The resistance parameter res is a float variable in the range res ∈ [0, 1]. It is the key player in
this algorithm. It decides if the current contour point is a final point by evaluating the value
of the point at the next radial coordinate. When the value of res is 0 the expansion is blocked,
while at the value of 1 the pixels in I would not block the expansion. At a value of 0.5 we
threshold the image I at the mean of its histogram and consequently the background pixels
above that threshold value will block the expansion of the contour. At res values below and
above 0.5, we would threshold I according to Eq. 3.8 and Eq. 3.9 respectively.

t = hmin + 2(hµ − hmin) × res ∀ res ∈ (0, 0.5] (3.8)

t = hµ + 2(hmax − hµ) × (res − 0.5) ∀ res ∈ (0.5, 1] (3.9)

where hµ is the mean of the histogram of I, hmin is the minimum value of I histogram, and
hmax is its maximum histogram value, res is the value of resistance, and t is the returned
threshold value. The pseudocode of the threshold process is presented in Box 3.2.

The limit control parameter is an integer variable specifying a constraint of the maximally
allowed radial coordinate for a new contour point. Specifically, it is the number of radial
positions after the largest radial coordinate in the initial contour. After that level, the contour
expansion is blocked.'
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Input :A polar image I of size w × l
An integer resistance ∈ [0, 1]

Output :A binary image Bi of size w × l

1 if resistance ≤ 0.5 then
2 t← hmin + 2(hµ − hmin) × resistance
3 end
4 else
5 t← hµ + 2(hmax − hµ) × (resistance − 0.5)
6 end
7 Bi ← threshold I at t.
8 return Bi

Box 3.2: Polar image threshold based on resistance.
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The convergence parameter is an integer variable specifying a constraint of the maximum
number of iterations before the expansion process is terminated. Subsequently, the contour
at the last iteration is considered as a final contour. In general, the contour is saturated and
reaches its final status after a few iterations. This will be shown in an example in the following
sub-section.

3.5.3 The Expansion Algorithm

The expansion algorithm is applied after the initial contour processing. The flowchart in
Fig. 3.10 explains how the expansion algorithm works and how the pixels are processed in the
polar image I. The pseudocode of this algorithm is referred to in Box 3.3. The algorithm iterates
until the convergence criterion is met, or until, in an iteration, no point is expanded anymore
(cf. line 2). In each iteration, the expanded boolean variable is set to false (cf. line 3), and all
the contour points are processed (cf. line 4). If any point is expanded at that iteration, then
expanded variable is set to true, and the algorithm keeps running as long as the convergence
criteria is not reached.

The processing procedure of the contour points at each iteration is shown in a separate
block in the flowchart (Process Contour Pixels), and its pseudocode is presented separately as
Box 3.4. This procedure evaluates each point in the contour and considers whether to expand
it to the next radial coordinate or not. As long as the current contour point is not marked as a
final contour point (cf. line 2), it is marked as final if the limit parameter is reached (cf. line 4);
otherwise, the previous and the next neighbour contour points are checked if any of them is
at a radial position lower than that of the current point (cf. line 7), in which case the point
is skipped in this iteration. If none of these neighbour contour points is at a previous radial
coordinate, these neighbour points are checked whether they are both marked as final points,
forcing the current point to be final contour point as well (cf. line 8). If both neighbours are not
marked as final points, the current point is marked as final if the point at the next radial position
is blocked by the resistance parameter (cf. line 11). When the resistance control parameter
does not block the expansion, the point is expanded to the next radial position unless one of
the neighbours is marked as final and the current point has higher radial coordinate than that
neighbour (cf. line 13), then the current point is marked as a final contour point (cf. line 14).
Other than that, the point is expanded to the next radial position (cf. line 16), and normally this
expanded contour point will be marked as a final contour point in the next iteration or when the
convergence criteria is met before the next iteration.

Figure 3.11 illustrates an example showing the extracted initial estimate by HCSP algorithm
and the final expanded contour extracted by CE method in a pathological cost image function.
The image function shown in Fig. 3.11(a) is a sample of a polar image I having ten angular and
ten radial coordinates. The first and last angular coordinates θA and θB are actually for the
same point since as the path from θA to θB is a circular path. The black squares in I represent
pixels with an intensity value of 0, the grey squares represent pixels with an intensity value of 1,
and the white squares represent pixels with an intensity value of 11. In Fig. 3.11(b), the initial
contour points extracted by applying HCSP are displayed by green spots.
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Figure 3.10: Flow chart explaining the expansion algorithm.
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To illustrate how the CE algorithm works, we apply contour expansion on image I with
the parameters set as follows: resistance = 0.5, limit = 1, and convergence = 5. After the first
iteration, the contour evolves to take the position illustrated in Fig. 3.11(c). The points that
were not considered for expansion in this iteration are left as green spots. Those expanded are
displayed by blue spots and the red spot is the contour point marked as final. The point at the
eighth angular coordinate is marked as final because the point at the next radial position was
blocked by the resistance parameter. Figure 3.11(d) shows the contour points after the second
iteration. Note here that the point at the seventh angular coordinate is marked as final because
both its connected neighbours are marked final as well. Figure 3.11(e) shows the path after the
third iteration. In the fourth iteration, the first four points and consequently the last contour
point are marked as final points by the limit parameter (cf. Fig. 3.11(f)). In addition, the points
at the fifth and ninth angular coordinates were marked final because their connected neighbours
are marked final contour points as well. Since no contour point was expanded in this iteration,
the contour expansion process is terminated at this point, even before the convergence criteria is
met.

To demonstrate the application of this algorithm on a real sample, a RoI containing two
yeast cells is depicted in Fig. 3.12. The initial estimate is shown as well as the expanded
contour for two yeast cells from a sample image acquired by a Zeiss LSM5 confocal micro-
scope [Inc12]. The yellow contours represent the initial estimate extracted after the application
of Hough transform and circular minimal path algorithm, while the red contours represent the
final expanded version of the contours acquired ensuing the application of our new contour
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Input :A binary image Bi of size w × l.
Integer array CsP of initial contour, of size w.
Boolean array isFinal of size w.
Boolean variable expanded.
Integer limit ∈ [0, l].
Integer covergence ≥ 0.

Output :Integer array finalContour of size w.
1 initialize isFinal and expanded to false, i← 0.
2 while (expanded ≠ false && i < convergence) do
3 i ← i + 1
4 expanded← false
5 CsP ← ProcessContour(CsP) (Procedure in Box 3.4)
6 end
/* Current contour is final */

7 for each element p in CsP do
8 finalContour[p] ← CsP[p].
9 endfor

10 return finalContour

Box 3.3: Expand Contour Algorithm.
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expansion algorithm. Figure 3.12(a) shows the contours on the bright-field channel used for
initial estimation and expansion of the contours, while Fig. 3.12(b) shows the same contours
superimposed on the fluorescent counterpart of the cells acquired as a second image channel by
the same microscope. The latter channel is used to obtain the meaningful measurements and
pattern recognition regarding protein levels and gene expression in the yeast cells. It is clear
from this image, how much of the green signal would not be included in the cell measurement
if contour expansion would not have been applied. This is even more quintessential when
measuring proteins that are bound to the membrane of the cell.

3.6 Validation
In order to validate the new segmentation methods described in this chapter, i.e. the Hough
transform followed by minimal path algorithms, we create an artificial dataset of 1000 images
representing the yeast cells in an approach similar to that implemented in [Yan12]. Such dataset
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/* Process contour pixels */
1 for each point c in CsP with radial coordinate r do
2 if isFinal[c] ← false then
3 if r← limit then
4 isFinal[c] ← true
5 else
6 if (CsP[c − 1] ≠ (r − 1)) and (CsP[c + 1] ≠ (r − 1)) then
7 if CsP[c − 1]← true and CsP[c + 1]← true then
8 isFinal[c] ← true

9 else
10 if (Bi[c, r + 1]← Background pixel then
11 isFinal[c]← true
12 else
13 if (isFinal[c − 1]← true and c has higher r than c − 1) or

isFinal[c + 1]← true and c has higher r than c + 1 then
14 isFinal[c]← true

15 else
16 Expand c to next radial position (r + 1).
17 expanded← true

18 end
19 end
20 end
21 end
22 end
23 end
24 end

Box 3.4: Process Contour Points Procedure.
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has a random number of elliptical shapes ranging from 2 to100 per image with a random
Gaussian values for the background. The Gaussian values for the background is created to
resemble that of the real bright-field microscope images. The eccentricity of the ellipses ranges
randomly with semi −minor

semi −major
factor between 0.75and1 to resemble the actual cell shape. As a

case study, an experiment was performed and 8 images were acquired. These images depict 110
cells in total. Our methods were applied on this dataset.

To evaluate our segmentation methods, we considered well-known metrics; i.e. the Pratt
Figure of Merit (FoM) and F1-measure. Moreover, the tuning of parameters for the differ-
ent segmentation methods and inspection of the segmented results were performed using
Paramorama [Pre11], a prototype developed to optimize parameters based on parameter sam-
pling and interactive visual exploration. Paramorama is implemented as a plug-in for the
CellProfiler biomedical image analysis framework [Car06].

The following subsections provide definitions for the Pratt FoM and that of F1-Measure. The
last subsection shows the result comparing HCSP and HDT with state of the art segmentation
package, i.e. CellStat. In addition, it shows the result comparing the extension algorithm
HCSP-CE with CellStat, CellSerpent and the initial HCSP.'
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Expanding the Initial estimate of the contour. Black, grey and white squares
represent pixels with intensity values of 0, 1 and 11 respectively.
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3.6.1 Pratt Score

The Pratt Figure of Merit (FoM) is considered because it has been reported as a very good
criterion to detect the differences in segmentation results [Cha06]. Pratt’s FoM provides a
quantitative comparison of the results of the different contour detection methods by measuring
the deviation of the output contours from a ground-truth. The ground-truth dataset were
separately delineated using our dedicated structural annotation software (TDR) with a digitizer
tablet (WACOM, Cintiq LCD-tablet) [Ver02]. The Pratt measure is computed according to
Eq. 3.10.

P =
1

max(IA, II)

IA

∑
i=1

1
1 +α.d2(i)

(3.10)

(a) Bright-Field view of yeast cells. (b) Contours superimposed on a fluorescent channel of the
same yeast cells.

Figure 3.12: The expanded contour is depicted in red, while the yellow contour is the initial estimate
extracted by the Hough transform and Circular Shortest Path algorithm (HCSP).
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where IA being the number of detected edge points, II the edge points in the ideal ground-truth
image, α a scaling factor or an empirical calibration constant set to the optimal value established
by Pratt, α = 1÷9 [Abd79], d(i) is the distance between the detected edge point and the nearest
edge point in the ideal ground-truth [The10]. Pratt’s FoM is an indicator of the quality of edge
and reflects the overall behaviour of the distances between the edges. Pratt’s FoM is a relative
measure, which varies in the range [0,1], where 1 represents the optimal value, i.e., the detected
edges coincide with the ground truth [Boa09].

3.6.2 F1-Measure

The F1-measure, also known as F1-score, is a measure of accuracy used in many domains
including the comparison of segmentation algorithms. It considers the precision and recall in
its computation [Hou13]. The precision is defined as the number of correctly detected objects
divided by the number of detected objects by the segmentation method. The recall is defined as
the number of correctly detected objects divided by the number of actual objects. We considered
a yeast cell object correctly detected if the centroid of its detected binary mask also exists as a
foreground pixel in the ground-truth binary mask. The F1-score can also be used to measure
the accuracy of the extracted contour by considering the binary mask of the individual detected
object. In this case, the precision is defined as the correctly detected pixels in the binary mask
divided by the number of detected pixels. The recall is then defined as the number of correctly
detected pixels divided by number of actual pixels in the ground-truth mask. When this later
definition is used we will refer to the F1-score as F1p-score to indicate its computation at the
pixel level. The F1-score is computed according to Eq. 3.11.

F1 = 2 x
precision x recall
precision + recall

(3.11)

3.6.3 Results

In this subsection, we present the validation results of the methods we prooposed earlier
including the HDT and HCSP methods proposed in Section 3.2 and Section 3.4; in addition
to the optimization method applied after HCSP as discussed in Section 3.5, i.e. the HCSP-CE
method.

HDT and HCSP validation

The HDT method uses Hough transform followed by the grey-weighted distance transform as
the minimal path algorithm. The HCSP method uses Hough transform followed by our proposed
circular shortest path algorithm. To evaluate these methods, we compare them with state of the
art yeast segmentation software, i.e. CellStat.
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Detection Rate F1-score
HCSP 97.23% 0.972
HDT 97.23% 0.972
CellStat 94.97% 0.950

Table 3.1: Detection Rates and F1-measure on
artificial dataset.

CellStat also uses dynamic programming
and cost functions and it is implemented in
Matlab. It is designed to segment bright-field
images of S. cerevisiae, but it has a constraint
on the cells to be detected, as they can not be
clumped within other cells [Kva08].

In Table 3.1 the detection rates and F1-
scores [Hou13] are shown after applying the
three methods on the artificial dataset. In the last step of the contour extraction process, the
shape is checked for its circularity value. If this value is less than an empirically determined
value, i.e. 0.614, the object is rejected. Checking the detection rate on the whole artificial
dataset using CellStat is not feasible. Therefore, we manually checked on a sample drawn
from the complete set. To verify whether this sample is representative for the whole dataset,
an unpaired student t-test was performed on the results obtained from the HCSP method. The
p-value of this test is 0.95.

As a case study, an experiment with S. cerevisiae yeast cells was performed with 8 repre-
sentative images. In total, these images contain 110 cells. Our methods were applied on this
dataset (both HDT and HCSP). The results are compared to that obtained from CellStat [Kva08].

Detected Correct Precision F1
HCSP 115 106 0.964 0.942
HDT 120 104 0.945 0.904
CellStat 112 101 0.918 0.910

Table 3.2: Detection Rates and F1-measure on yeast images.

HCSP CellStat
Detected 106 101
Precision 96.4% 91.8%
Wins 60 50

HDT CellStat
104 101

94.5% 91.8%
57 51

Table 3.3: Comparing Detected Contours of yeast images.

The detection rates and F1 −
measures are shown in Ta-
ble 3.2.

For the comparison of the
accuracy of the detected con-
tours, Pratt’s FoM is selected.
Table 3.3 shows the results of
the comparison between the
proposed methods and that of
the CellStat software on our S.
cerevisiae dataset. The detec-
tion rate outperforms that of
CellStat and the number of de-
tected contours that gains bet-
ter Pratt score (referred to as Wins in Table 3.3) is also higher than that of CellStat making it
a suitable segmentation method to be used in analysis of yeast cells. Hence, this method is
successfully used in our yeast analysis platform proposed in Chapter 2.

HCSP-CE validation

In order to validate the new HCSP-CE method, its performance is compared to the previous
HCSP, CellSerpent and CellStat.

Figure 3.13 shows the number of detected cells that gained a higher Pratt score using HCSP
method followed by contour expansion (CE) algorithm (HSCP-CE). These cells were obtained
from a dataset of 312 Saccharomyces cerevisiae yeast cells distributed over 14 bright-field
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images acquired by a Zeiss LSM 5 Exciter-AxioImager M1 confocal microscope. Compared to
CellSerpent, the HCSP-CE method has 163 cells with better Pratt scores, referred to as wins,
while CellSerpent has only 138 wins. In addition, comparison with CellStat leads to 284 wins
of cells with higher Pratt scores in the HCSP-CE method, with only 16 wins for CellStat. This
result is expected as the method implemented in CellStat looks for the minimal path as the final
contour of yeast cells in a similar way to that of HCSP, which scored 18 wins. On the other
hand, CellSerpent performs better than CellStat because its method is based on Active Contour
models for cell detection. However, Active Contour models couldn’t outperform our algorithm.

In Table 3.4 a comparison between the detection rates of the four used segmentation
methods on the dataset of 312 cells is listed. In Table 3.5, the accuracy of the detected contours
is compared between the four methods using average Pratt scores and F1p-scores for the
individual objects.'
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Figure 3.13: Number of cells with higher Pratt score (wins)..

HCSP-CE CellSerpent HCSP CellStat

Detected 322 359 322 231
Correct 296 302 296 181
Precision 0.92 0.84 0.92 0.78
Recall 0.95 0.98 0.95 0.58
F1 0.93 0.90 0.93 0.67

Table 3.4: F1-measure and average Pratt Score of different segmentation methods on a yeast
dataset.

.

HCSP-CE CellSerpent HCSP CellStat
F1p 0.92 0.89 0.76 0.47
Pratt 0.58 0.55 0.19 0.15

Table 3.5: Accuracy of detected contours.
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The HCSP-CE segmentation method has an overall highest scores with an F1-score of 0.93,
F1p of 0.92 and an average Pratt score of 0.58. The following method is CellSerpent with an
F1-measure of 0.90, F1p of 0.89 and average Pratt of 0.55. CellStat follows with an F1-measure
of 0.67, F1p of 0.47 and average Pratt of 0.15. HCSP scores similar F1-measure to that of
HCSP-CE as they both use the same underlying method for detection, however the Pratt score
of HCSP is 0.19 and the F1p is 0.76, which is noticeably worse than HCSP-CE and close to
that of CellStat as they both look for minimal paths for contour extraction.

3.6.4 Robustness under Noise

The HCSP-CE method is further validated for its robustness under noise. We evaluate how the
method performs under various noise levels. First we selected a random sample and prepared a
groundtruth. The ground-truth is separately delineated using our dedicated structural annotation
software (TDR) with a digitizer tablet (WACOM, Cintiq LCD-tablet) [Ver02]. Subsequently, we
determined the optimal parameter values to perform the segmentation. This step involves an
initial heuristic determination of parameter values, then quantitatively evaluate the segmentation
accuracy after iterating each of the parameters individually while fixing values of all the other
parameters. This procedure is repeated until parameter values are saturated. Figure 3.14 shows
the optimal saturated parameter set values after three repetitions.

In order to evaluate the segmentation accuracy, we used F1-scores for the detected cells per
image in addition to F1-scores of the extracted mask per cell as described in Section 3.6.2. We
used the average of the two F1 scores to determine the optimal values.

In order to generate noisy images, we first determined three main types of noise. Gaussian
noise, Poisson noise and Speckle noise. The principal sources of Gaussian noise in digital
images arise during acquisition e.g. sensor noise caused by poor illumination and/or high
temperature, and/or transmission [Cat13]. Poisson noise is known also as Shot noise, it occurs
in photon counting in optical devices. Poisson noise describes the fluctuations of the number
of photons detected (or simply counted in the abstract) due to their occurrence independent
of each other [Bla00]. Speckle noise, also known as salt and pepper kind of noise, is caused
usually by the scattering of light from a highly coherent source, such as a laser, and generates a
random-intensity distribution of light that gives the image a granular appearance [fre16].

We vary the signal to noise ratio SNR for each type of noise, and perform the segmentation
on the sample using the optimal parameters mentioned in Fig 3.14. Image noise can often be
described by an additive noise model, where the resulted image f(i, j) is the sum of the true
image s(i, j) and the noise image n(i, j) as depicted in Eq. 3.12.

f(i, j) = s(i, j) +n(i, j) (3.12)
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We considered the noise n(i, j) as zero-mean and we describe it by its variance σ2
n. The

impact of the noise on the image is described by the signal to noise ratio (SNR), which is
given by Eq. 3.13, where σ2

s and σ2
n are the variances of the true image and the noise image

respectively.

SNR =
σs

σn
=

¿
Á
ÁÀ σ2

s

σ2
n

− 1 (3.13)
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Figure 3.14: Optimal Segmentation Parameters. (a) - The optimal value of the alpha parameter
for the sample dataset is 0.7. This parameter is part of the thresholding equation
described in 3.2.2. (b) - Beta parameter associated with alpha has an optimal
value at 0.022. (c) - The limit parameter used in the optimization of contours was
described in 3.5.2. It has an optimal value at 20. (d) - The resistance is also a
contour optimization parameter described in 3.5.2. Its optimal value is 0.56. (e) -
The radius range used in filling the Hough accumulator as described in 3.2.1. The
optimal value is 8. (f) - The minimum radius to consider during the acuumualtor
filling has an optimum at 15.
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Figure 3.15 shows the segmentation performance under the noisy conditions with an SNR
ranging from 1 to 35. For Gaussian noise, the final average F1-score is 0.926 and the standard
deviation is 0.009. For Poisson noise the final average F1-score is 0.934 and the standard
deviation is 0.012. For Speckle noise the final average F1-score is 0.928 and the standard
deviation is 0.010. These numbers along with the visual inspection of the plots show that the
HCSP-CE segmentation method is very robust under various noise conditions.'
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Figure 3.15: F1-score at various noise levels. (a) - Assessing segmentation performance under
various levels of Gaussian noise. (b) - Assessing segmentation performance under
various levels of Poisson noise. (c) - Assessing segmentation performance under
various levels of Speckle noise.

3.7 Conclusion
In this chapter, we proposed new methods to detect oval-shaped objects, such as yeast cells in
bright-field microscopy images. We started by defining Hough transform and introducing our
proposed equations to threshold the Hough accumulator array. Subsequently, we introduced the
definition of polar transformation, the concept of polar coordinate system and how transforma-
tion from cartesian to polar system is achieved. We also demonstrated the polar representation
of a sample yeast image. The polar representation of an object image is required to extract the
minimal path corresponding to the contour of the object. The minimal path concept is also
discussed in this chapter and two algorithms to extract this minimal path are introduced. These
algorithms are the Grey-weighted distance transform and Circular shortest path. Hence, we
proposed two segmentation methods that uses Hough transform and minimal path algorithms;
i.e. HDT and HCSP methods. Subsequently, we introduced our additional expansion algorithm
that operates on the polar representation of object images; i.e. HCSP-CE. To validate the HDT
and HCSP new methods, they have been applied on two datasets along with state of the art
software packages common to yeast biology. The first dataset is a large artificial dataset of
ovoid shapes, and the second is a actual small dataset of S. cerevisiae yeast cells. For evaluation,
we considered two metrics namely the Pratt Figure of Merit (FoM) and F1-Measure. The results
show higher Pratt score and F1-Measure compared to the method from the CellStat software.
On the other hand, the HSCP-CE is applied to a different dataset of 312 S. cerevisiae yeast cells
distributed over 14 bright-field images. HCSP-CE was compared to methods from CellStat and
CellSerpent.



4
Machine Learning to Identify Subtle Patterns

and Improve Object Recognition

“ In this chapter, we choose some sophisticated features and use them in a
machine learning approach to improve the recognition of objects and to
identify subtle patterns between different objects. As a case study, we applied
this machine learning approach on S. cerevisiae yeast cells. In the first
experiment, we identify different characteristics between two different cell
groups cultivated under different stress levels. In the second experiment, we
improve the recognition of S. cerevisiae yeast cells by classifying the intact
cells from artefacts, i.e. debris and dead cells existing in the culture medium.
Since the dataset generated in both experiments are imbalanced, we were
careful in the evaluation of classifiers built by the machine learning process.
We considered sampling of data, scaling, feature selection, cross-validation
and evaluation metrics. ”

This chapter is based on the following publications:

• Mohamed S. Tleis and Fons J. Verbeek. "Machine Learning approach to discriminate
Saccharomyces cerevisiae yeast cells using sophisticated image features." Journal of
Integrative Bioinformatics, 12(3):276, 2015.

• Mohamed S. Tleis and Fons J. Verbeek. "Machine Learning approach to segment Sac-
charomyces cerevisiae yeast cells." In third International Conference on Advances in
Biomedical Engineering (ICABME). pp. 278-281. IEEE, 2015.
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4.1 Introduction

SUBTLE Patterns such as different characteristics that are hard to notice from the basic
measurment and statistical analysis of data, are not easily extracted from these measurement

or basic statistical analysis. These subtle patterns are especially intrinsic in high throughput
screening (HTS) where thousands of images are analysed. Moreover, when biologists study an
organism in two different conditions, it can be not possible to know if different groups of that
organism have different characteristics. In addition, recognition of objects in images prior to
their analysis is quintessential in order to generate meaningful conclusions. Thus, the need of
an automatic system to extract those hidden features and to recognize objects.

As an application, we take the S. cerevisiae as a case study. The segmentation module of the
automated analysis platform, i.e. YeastAnalysis, discussed in Chapter 2, provides a segmentation
of the cells obtained from the microscope images, while the measurement module measures
various features of the segmented cells. The data analysis part analyzes the measurement and
report relevant statistics about the different cell groups. When biologists construct and study
different yeast cell strains cultivated in different media, it can be not possible to know if the
different cell groups have different characteristics for the same expressed proteins. Thus the
need for an automatic system to identify any charactersitic difference.

Our novel segmentation algorithm in YeastAnalysis segments intact cells as well as artefacts.
These artefacts can be dead cells or debris existing in the culture medium. Artefacts have
negative effects on the analysis result of the experiments. These artefacts can be interactively
excluded after the segmentation using YeastAnalysis platform; however, in high throughput
screening (HTS) where thousands of images are analysed, manual checking is not feasible
anymore. Thus, the need of an automatic system to exclude such artefacts prior to analysis.

The research question in this work is what machine learning approach can be used to improve
object recognition and identify subtle patterns in a dataset of sophisticated features? and the sub-
question is whether the combination of various feature sets can improve the performance of this
machine learning approach? The features (attributes) for training the machine learning system
were selected in a way to offer a more sophisticated description of the intensity and morphology
characteristics of the objects. The machine learning workflow is depicted in Fig. 4.1.

Applying the extraction techniques that we will use is mentioned in the first section. We cre-
ated two different dataset on the basis of sophisticated features. Since our dataset is imbalanced
with a different ratio for different cell groups, we were careful in our evaluation to choose the
classifier system that can classify well the majority as well as the minority classes. Therefore,
we considered sampling and normalization techniques prior to feature selection algorithms. A
number of linear and non-linear classifiers were evaluated to select the best model that can
classify the instances in the first dataspace into cells belonging to a different group, i.e. different
strain, or cultured in a different medium, and the best model that can classify the instances in
the second dataset into intact cells or artefacts.
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The result shows that many classifiers have an excellent performance after data preprocess-
ing. Consequently, two classification models are built. As a result, the first model allows to
identify the different characteristics of objects, while the second model has raised the perfor-
mance level of the measurement and consequently the pattern recognition system.

In the next section, we will discuss the sophisticated feature sets we presented then we
discuss the classification process for our dataset.

4.2 Sophisticated Features
In Chapter 2 we presented our developed platform to perform image analysis on S. cerevisiae
yeast cells. This platform can segment the cells and measure a range of features and textures for
each individual cell obtained from two channel images acquired by a laser scanning confocal
microscope (CLSM). Figure 4.2 shows a sample two-channels image of S. cerevisiae yeast
cells. The first channel in Fig. 4.2(a) is a bright-field channel depicting yeast cell structures.
The second overlaid channel in Fig. 4.2(b) is a fluorescent channel of the BMH1 gene expressed
Bmh1 protein binding with GFP protein cultivated in lowNaCl medium. The yellow contours
surrounding the cells in Fig. 4.2 are the results of our segmentation algorithm [Tle14]. Such
segmentation of individual cells enables us to introduce sophisticated features and texture
measurement to describe the characteristics of cell morphology and intensity distribution of
individual cells. These features and texture measurement (cf. Section 1.3.2) facilitate the
analysis and discrimination of different yeast cells.

Next, we define the concept of extraction techniques. Subsequently, we select and discuss
well-known extraction techniques that are useful in analyzing biological images. The benefits
of combining these extraction techniques will be revealed in the results. Before that, we discuss
building a machine learning system using the feature set extracted using these techniques
explained in this section.'
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4.2.1 Feature Extraction Techniques

Feature extraction is one very important area of application in image processing, in which
algorithms are used to detect and isolate various desired portions or shapes (features) of a
digitized image. Feature extraction is defined as locating those pixels in an image that have
some distinctive characteristics [Gub09]. In our research, we considered the most known feature
extraction techniques in image analysis. These techniques are classified into histogram based
features and the moment invariants derived from them, co-occurrence matrix based features,
and multi-scale features [Mat98]. Hereafter, we start discussing the histogram based features
then the moment invariants derived from them. Subsequently, we explain the additional features
derived from the co-occurrence matrix. We complete this sub-section by highlighting on the
multi-scale features and specifically wavelet-based texture features.

First order statistics based features

The histogram of intensity levels is a concise and simple summary of the statistical information
contained in the image. Calculation of the grey-level histogram involves single pixel. Thus
the histogram contains the first-order statistical information about the image, i.e. the region of
interest (RoI) of cell objects. Different useful image features are worked out from the histogram
to quantitatively describe the first-order statistical properties of the cells. In this study, we
considered many basic shape descriptors based on the first order statistics, and the most relevant
texture features among those originally proposed by Haralick et al. [Har79, Gon08]. These
features were already discussed in Section 2.4 and a list of those features are listed in Table 2.1
and Table 2.2.

Another way to characterize the texture is by deriving moment invariants from the first order
statistical information in the histogram [Pap65]. The following sub-section discusses these
moment invariant features.'
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(a) Bright-field channel depicting structure of cells. (b) Fluorescent channel depicting Bmh1-GFP gene

expressed protein.

Figure 4.2: S. cerevisiae Yeast Cell Images.
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Moment invariant features

Recognition of visual patterns independent of position, size, and orientation in the visual field
has been a goal of much recent research. To achieve maximum utility and flexibility, it would
be useful if the extraction technique is insensitive to variations in shape and provide improved
performance with repeated trials. This property is known in moment invariant techniques. An
image moment is a certain particular weighted average, i.e. moment, of the pixel intensities in an
image or a function of such moments chosen to have some attractive property or interpretation.
Traditionally, moment invariants are computed based on the information provided by both the
shape boundary and its interior region. Image moments are useful after segmentation to describe
cell characteristics that uniquely describe the shape of that cell. Low order moments are used
to derive simple properties including area, total intensity, centroid, skewness, kurtosis and
information about the cell’s orientation. Moment invariant values are invariant to translation,
scale and rotation of the cell [Key01]. For example, the first rotation invariant moment is known
to be analogous to the moment of inertia around the image’s centroid, where the pixel intensities
are analogous to physical density. The seventh one, is skew invariant, which enables it to
distinguish mirror images of otherwise identical images [Hu62]. Although wavelet transform
(discussed in section 4.2.1) is scale invariant, it is not in all cases translation or rotation
invariant [Jaf05], this is an additional advantage of moment invariants in our measurements.
Moment Invariants have been frequently used as features for image processing, remote sensing,
shape recognition and classification. They showed to be fairly reliable at distinguishing certain
classes of topographic objects [Key01] as well as in many other applications [Mat98]. In yeast
studies, the first and second moment invariants were the top predictors to classify virulent from
non virulent cells [van07].

Hu [Hu62] defines seven shape descriptor values derived from central moments through or-
der three that are independent to object translation, scale and orientation. Translation invariance
is achieved by computing moments that are normalized with respect to the center of gravity
so that the center of mass of the distribution is at the origin (central moments). Size invariant
moments are derived from algebraic invariants but these can be shown to be the result of a
simple size normalization. From the second and third order values of the normalized central
moments a set of seven invariant moments can be computed which are independent of rotation.
The set of seven moment invariants proposed by Hu are widely known [Gon08], and hence we
adopted them in our study. We define Hu’s set as in Eq. 4.1, where Φ1 and Φ2 are invariants
based on second order moments, whileΦ3 ...Φ7 are invariants based on third order moment.

hu = {Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7} (4.1)

The effectiveness of moment invariants will increase when fused with the results of other
techniques [Key01]. In this research we fuse them with wavelet-based texture measurements to
get the best from these approaches in the classification step required to discriminate between
various cell conditions. The co-occurrence matrix based features and the wavelet-based texture
features are discussed in the following sub-sections.
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Co-occurrence matrix based features

The simplicity of texture attributes can not completely characterize texture of the cells. Studies
state that similar textures agree in their second-order statistics [Mat98] and hence textures can be
discriminated if they differ in their second-order statistics. Therefore one of the major statistical
methods used in texture analysis is the one based on the definition of the joint probability
distribution of pairs of pixels. Methods based on second-order statistics, i.e. statistics given
by pairs of pixels, have been shown to achieve good discrimination rates in texture classifi-
cation [Wes76], and considered to be important in automated image analysis [Nie81]. The
second-order statistical features for texture analysis are derived from the co-occurrence ma-
trix [Har79]. They were demonstrated to feature a potential for effective texture discrimination
in biomedical images as well [Ler93].

The second-order histogram is defined as the co-occurrence matrix Cdθ(i, j). When divided
by the total number of neighbouring pixels R(d,θ) in the image, this matrix becomes the
estimate of the joint probability Pdθ(i, j) of two pixels, a distance d apart along a given
direction θ having particular "co-occurring" values i and j [Mat98]. Formally, for image
f(x,y) with a set of L discrete intensity levels, the matrix Cdθ(i, j) is defined such that its
(i, j)th entry is equal to the number of times that: f(x1,y1) = i and f(x2,y2) = j, where
(x2,y2) = (x1,y1) + (dcosθ,dsinθ). This yields a square matrix of dimension equal to
the number of intensity levels in the image, for each distance d and orientation θ. Most
relevant co-occurrence matrix derived features used for the purpose of texture discrimination
are the angular second moment, correlation, inertia, absolute value, entropy and maximum
probability [Har79, Lah09]. Table 4.1 lists descriptions for these features. In this research we
calculated the measures at distance d = 1 for horizontal, vertical and diagonal orientations at
θ = 0°, 90°, 45° and 135° to achieve a degree of rotational invariance.

Multi-scale features and Wavelet-based texture measurement

Various methods adopted for calculating multi-scale features. The most commonly used are
the Wigner distributions, Gabor functions and wavelet transforms. These transform methods of
texture analysis represent an image in a space whose coordinate system has an interpretation that
is closely related to the characteristics of a texture, i.e. frequency or size. Wigner distribution
are found to possess interference terms between different components of a signal. These
interference terms lead to wrong signal interpretation. Gabor filters are criticized for their
non-orthogonality that result in redundant features at different scales or channel. On the
other hand, the wavelet transform, being a linear operation, does not produce interference
terms nor redundant features. For this reason, our interest is in the application of the wavelet
transform to texture analysis. Discrete wavelet transform (DWT) derived features appear to
be a suitable tool to be used for digital image texture analysis, because they allow analysis of
images at various levels of resolution. The DWT provides powerful insight into an image’s
spatial and frequency characteristics [Koc01]. Moreover, it has shown to be an efficient
descriptor for phenotyping [Cao14]. In general, wavelet analysis is highly capable of revealing
aspects of data such as trends, breakdown points, discontinuities in higher derivatives and self
similarity [Shr13].
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Table 4.1: Co-occurrence-matrix based features

Features Description
Angular second
moment (ASM)

Also known as uniformity and it is a measure of cell homogeneity. The maximum value is
achieved when all the elements in the co-occurrence matrix are equal.

ASM =
L−1
∑
i=0

L−1
∑
j=0

[p(i, j)]2 (4.2)

Correlation The correlation measures the dependencies between the yeast cell image pixels. µx, µy
and σx, σy denote the mean and standard deviations of the row and column sums of the
co-occurrence matrix respectively.

Correlation =
L−1
∑
i=0

L−1
∑
j=0

ijp(i, j) −µxµy
σxσy

(4.3)

Inertia Inertia is also known as contrast. It is calculated by squaring the subtraction of the examined
pixel values. Thus, the minimum value is when the pixels have the same grey-level value,
and the maximum is achieved when squaring the subtraction of L and 1.

Inertia =
L−1
∑
i=0

L−1
∑
j=0

(i − j)2p(i, j) (4.4)

Absolute value It calculates the absolute value of the subtraction of the examined pixel values. Hence it
ranges between 0 and L.

Absolute value =
L−1
∑
i=0

L−1
∑
j=0

∣i − j∣p(i, j) (4.5)

Inverse difference It has relatively high value when the high value in the co-occurrence matrix are near the
main diagonal, where the difference (i − j) is smaller there.

Inverse difference =
L−1
∑
i=0

L−1
∑
j=0

p(i, j)
1 + (i − j)2

. (4.6)

Entropy The entropy measures the complexity of the texture. It is a measure of randomness,
achieving its highest value when the elements in the matrix are maximally random.

entropy = −
L−1
∑
i=0

L−1
∑
j=0
p(i, j)log2[p(i, j)]. (4.7)

Maximum probability Gives an indication of the strongest response in the co-occurrence matrix.

Maximum probability =maxi,jp(i, j) (4.8)



66 Machine Learning to Identify Subtle Patterns and Improve Object Recognition

Approximations and details are the most important terms in wavelet analysis. The ap-
proximations are the high-scale, low-frequency components of the image signal, while the
decomposition process in the wavelet transform generates the coefficient matrices for the level-
one approximation and horizontal, vertical and diagonal details. In this study, we include a
bi-orthogonal wavelet in which texture details are derived from the three different directions on
the same scale as the original image [Cao14]. The derived wavelet-based textures are the same
as those derived for the original cells and listed in Table 2.2.

In this section we highlight on the powerful set of extraction techniques that we haven
chosen in our research to measure individual yeast cells. The extracted sophisticated features
and textures are quintessential for pattern recognition and identification of subtle patterns
residing within our measured data. In the following section, we will discuss the application of
machine learning using these sophisticated features. Then we show the results that reveal the
advantages of these features.

4.3 Constructing the Classification Model
In this section, we will address the creation of our datasets and discuss the sampling techniques
applied on these datasets to study whether such techniques have any impact on the classification
results. Similarly we discuss the various normalization schemes used. Subsequently we highlight
the used feature selection algorithms. Thereafter we provide detail about the evaluation metrics.
The last part is about the classifiers considered in the comparison. The results are discussed
later in the next section.

4.3.1 Imbalanced Dataset and Sampling Techniques
In order to generate our dataset for the purpose of object pattern discrimination and object
recognition, we extracted features to describe the object characteristics and morophology in a
more sophisticated way.

In our two experiments performed on S. cerevisiae yeast cells, we generate two datasets
S1 and S2. S1 consisting of 1440 yeast cell instances belonging to two major classes, one
representing cells showing genes tagged with (GFP) reporter and expressing 14-3-3 proteins.
The first class of cells is cultivated under low osmotic stress level, i.e. non-NaCl medium, and
the other representing same cell strains under a high stress level, i.e. 0.5M-NaCl medium. The
second dataset, i.e. S2, consists of 1380 segmented objects belonging to two major classes, one
representing intact yeast cells and the other representing artefacts in the microscope images.
After segmentation, all cells are measured for the features mentioned previously in Section 4.2.
Each instance I in these two datasets is mapped to one element of the set (p,n) of positive and
negative class labels representing the two different cell classes of low vs. high stress levels in
S1 and intact vs. artefacts in S2 respectively. We need to build a classification model to map
from instances to predicted classes. Given a classifier and a test set of instances, a two-by-two
confusion matrix, also known as contingency table is constructed to represent the dispositions
of the set of instances. This matrix forms the basis for many metrics we used to evaluate the
classifiers [Faw06].
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Our dataset S1 and S2 are considered imbalanced since they exhibit an unequal distribution
between their positive class, i.e. yeast cells under low osmotic stress in S1 or intact cells in S2,
and their negative class, i.e. yeast cells under high stress in S1 or artefacts in S2 classes. The ratio
of positive to negative classes being around 2.7 ∶ 1 in S1 and 8 ∶ 1 in S2. Hence, in this domain,
we require a classifier that will provide high accuracy for the negative minority class without
severely jeopardizing the accuracy of the positive majority class. In conventional evaluation
practice, singular assessment criteria, e.g. the overall accuracy or error rate are used. These
criteria do not provide adequate information in the case of imbalanced learning because most
standard algorithms assume or expect balanced class distributions or equal misclassification
costs.

The problem of learning from imbalanced data is a relatively new challenge that has attracted
growing attention and has become apparent in all kinds of datasets.

The induction rules that describe the minority concepts are often fewer and weaker than
those of majority concepts, since the minority class is often both outnumbered and under-
represented. Successive partitioning of the dataspace results in fewer and fewer observations of
minority class examples resulting in fewer rules describing minority concepts and successively
weaker confidence estimates. In addition, concepts that have dependencies on different feature
space conjunctions can go unlearned by the sparseness introduced through partitioning. The
application of sampling techniques has shown to improve classifier accuracy. Therefore, we
considered three well-known sampling techniques, namely under-sampling, over-sampling and
Synthetic Minority Oversampling technique (SMOTE).

We define subsets Smin ⊂ Sd and Smaj ⊂ Sd where Sd refers to either dataset S1 or S2,
Smin is the set of minority class instances in Sd, and Smaj is the set of majority class instances
in Sd, so that Smin ∩ Smaj = {φ} and Smin ∪ Smaj = {Sd}.

Random under-sampling removes data from the original data set. In particular, we randomly
select a set of majority class instances in Smaj and remove these instances from Sd so that
∣Sd∣ = ∣Smin∣ + ∣Smaj∣ − ∣E∣, where E represents the set removed by the sampling procedure.
Under-sampling readily gives us a simple method for adjusting the balance of the original data
set Sd; however, removing instances from the majority class may cause the classifier to miss
important concepts pertaining to the majority class.

In oversampling, multiple instances of certain examples become "tied" since it simply
appends replicated data to the original dataset, leading to overfitting. In particular, overfitting
in oversampling occurs when classifiers produce multiple clauses in a rule for multiple copies
of the sample example which causes the rule to become too specific; although the training
accuracy will be high in this scenario, the classification performance on the unseen testing data
is generally far worse.

The synthetic minority oversampling technique (SMOTE), on the other hand, is a powerful
method that has shown a great deal of success in various applications. It creates artificial data
based on the feature space similarities between existing minority instances. Specifically, for
subset Smin, consider the K-nearest neighbours for each instance xi ∈ Smin for some specified
integer K; the K-nearest neighbours are defined as the K elements of Smin whose euclidean
distance between itself and xi under consideration exhibits the smallest magnitude along the
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n-dimensions of feature space X. To create a synthetic sample, we randomly select one of the
K-nearest neighbours, then multiply the corresponding feature vector difference with a random
number ∈ [0, 1], and finally add this vector to the minority instance xi ∈ Smin as depicted in
Eq. 4.9, where x̂i ∈ Smin is one of the K-nearest neighbours for xi, and δ ∈ [0, 1] is a random
number. Therefore, the resulting synthetic instance according to Eq. 4.9 is a point along the
line segment joining xi under consideration and the randomly selected K-nearest neighbour
x̂i [He09]. Applying SMOTE to balance both of our datasets increased the accuracy of the
classification as we will see in the next section. Moreover, the classification accuracy obtained
after applying SMOTE significantly outperformed both the under-sampling and over-sampling
methods.

xnew = xi + (x̂i − xi) × δ, where δ ∈ [0, 1] (4.9)

4.3.2 Feature Scaling or Normalization
Feature scaling is a method used to standardize the range of independent variables or features
of data. In data processing, it is also known as data normalization and is generally performed
during the data preprocessing step [Ver14]. Since the range of values of the raw data in our
dataset varies, some machine learning algorithms will not work properly without normalization.
For example in distance classifiers, the range of all features should be normalized so that
each feature contributes approximately proportionately to the final distance. In our work we
considered two well-known normalization techniques which are unit-length normalization (UL)
and zero-mean and unit-variance normalization (MV) [Štr09]. Feature normalization techniques
represent a vital part in building the classification model. They aim at normalizing the individual
components of the extracted feature vectors in such a way that the resulting vectors are better
suited for classification.

Unit length normalization (UL) scales all of the components xi (i = 1, 2,. . . .,d) of vector x
of all instances in our dataset Sd in accordance with the expression in Eq. 4.10 to produce the
normalized feature vector x∗, where ∣∣.∣∣ denotes the norm operator, and xi∗ stands for the ith

component of the normalized vector x∗.

xi
∗
=
xi

∣∣x∣∣
, i = 1, 2, ...d, (4.10)
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The zero-mean and unit-variance normalization is defined in Eq. 4.11, where µ denotes the
mean value of the feature vector x and σ represents its standard deviation. TheMV technique
transforms the feature vector x to a random variable with a mean value of zero and variance of
one. It is assumed the individual components of the feature vector are normally distributed.

xi
∗
=

(xi − µ)

σ
, i = 1, 2, . . . .,d, (4.11)

Applying both normalization schemes to scale our dataset improved the accuracy of the
classification. More details are illustrated in the next section. The zero-mean and unit-variance
normalization outperforms the unit length normalization in both experiment dataset, hence, we
adopted the zero-mean unit variance as a normalization scheme for our datasets.

4.3.3 Feature Selection

In machine learning and statistics, dimensionality reduction or dimension reduction is the
process of reducing the number of random variables under consideration, and can be divided
into feature selection and feature extraction. It is used to assist in the data analysis process.

Feature selection also known as variable or attribute selection, can be defined as a process
that chooses a minimum subset of M features from the original set of N features, so that the
feature space is optimally reduced according to a certain evaluation criterion. The reduced
feature space are the most important parameters which help in predicting the outcome. Finding
the best feature subset is usually intractable and many problems related to feature selection have
been shown to NP-hard. The objective of feature or variable selection is three-fold:

• improving the prediction performance of the classifiers on the testing dataset.

• providing faster and more cost effective classifiers.

• providing a better understanding of the underlying process that generated the data.

Selecting the most relevant features is suboptimal for building our predictor, particularly
if the features are redundant or irrelevant. Redundant features are those that provide no more
information than the currently selected features, and irrelevant features provide no useful
information in any context. For our data, we considered two well-known feature selection
algorithms which are the Information Gain (IG) method and the Correlation Feature Selection
(CFS).

Next to feature selection is feature extraction, which transforms the data in the high-
dimensional space to a space of fewer dimensions. We considered the main linear technique
for feature extraction, i.e. the principal component analysis (PCA), which performs a linear
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mapping of the data to a lower-dimensional space in such a way that the variance of the data in
the low-dimensional representation is maximized.

4.3.4 Building a Classifier

The prediction problem for our case study is to predict whether the cells are cultivated under high
osmotic stress vs. those under low osmotic stress in dataset S1 or those intact cells vs. artefacts
in dataset S2. The classification models are given a training dataset of known ground-truth data,
and a testing dataset of unknown first-seen data against which the models are tested. In order
to limit problems like over-fitting and give an insight on how the model will generalize to an
independent dataset, the widely used 10-fold cross validation is considered [Kim11]. Over-
fitting occurs when the classification model does not fit this validation data as well as it fits the
training data. Cross validation is important in protecting against testing hypotheses suggested
by the data, also known as Type III errors [Don13a]. Its advantage is that all observations are
used for both training and validation, and each observation is used for validation exactly once.

4.3.5 Evaluation metrics, ROC and AUC

A receiver operating characteristic (ROC) curve is a two dimensional graphical plot that illus-
trates the performance of a binary classifier system, which predicts a two-class problem in which
the outcomes are labelled either as positive (p) or negative (n) [Lak11]. The curve is created by
plotting the true positive rate (TPR) on the Y axis against the false positive rate (FPR) on the
X-axis at various threshold settings. TPR is also known as sensitivity in biomedical informatics,
or recall in machine learning [Li14]. TPR defines how many correct positive results occur
among all positive samples available during the test. On the other hand, FPR also known in
biomedical informatics as (1-Specificity) defines how many incorrectly labeled positive results
occur among all negative samples available during the test [Sen13]. Each prediction result or
instance of a confusion matrix represents one point in the ROC space [Ras13].

The ROC graphs are useful for evaluating our classifiers and visualizing their performance.
ROC graphs have been successfully used in medical decision making, and in recent years,
they are popular in machine learning and data mining research, due to the realization that
scalar measures such as simple classification accuracy, error rate or error cost are often poor
metrics for measuring performance. ROC graphs have properties that make them especially
useful for domains with skewed class distribution and unequal classification error costs. These
characteristics have become increasingly important as research continues into the areas of
cost-sensitive learning and learning in the presence of unbalanced classes [Faw06]. ROC
analysis provides tools to select possibly optimal models [Bes10]. Classifiers appearing on the
left-hand side of an ROC graph, near the X axis, may be thought of as “conservative”: they
make positive classifications only with strong evidence so they make few false positive errors,
but they often have low true positive rates as well. Classifiers on the upper right-hand side of an
ROC graph may be thought of as “liberal”: they make positive classification with weak evidence
so they classify nearly all positives correctly, but they often have high false positive rates. Many
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real world domains are dominated by large numbers of negative instances, so performance
in the far left-hand side of the ROC graph comes more interesting. We have used the area
under the ROC curve (AUC), also known as c-statistic [Her11], which is usually interpreted
according to the following ratings: x = 1, perfect; 1 > x ≥ 0.9, excellent; 0.9 > x ≥ 0.8, good;
0.8 > x ≥ 0.7, fair; 0.7 > x ≥ 0.6, poor; 0.6 > x ≥ 0.5, fail (random guessing for AUC); x < 0.5,
unacceptable [Tsa12]. AUC is a common statistic most often used for model comparison in the
machine learning community [Chi13]. Despite its popularity, some machine learning researches
show that the AUC is quite noisy as a classification measure [Han10], and has some other
significant problems in model comparison [Lob08, Han09]. Therefore, we also considered the
standard accuracy metric, which is widely used to get an additional insight into the results. More
importantly, we considered the AUC for the minority class (Amin) as well. Amin reveals the
dangers of blindly looking into the AUC alone in the raw dataset classifiers evaluation. However,
the AUC becomes a safe metric when the data is preprocessed with a sampling technique as the
result will show in the following section.

4.3.6 Classifiers Evaluated

In this work, 23 different linear and non-linear classification systems were evaluated on our
dataset. These systems including the popular predictors such as decision trees, naive Bayes,
least-square linear predictors, and support vector mahcines. A complete list of these models
along with short descriptions are shown in Table 4.2. We applied a supervised classification on
our two datasets S1 and S2, with a 10 fold cross validation.

4.4 Results

Using our dataset with the presented sophisticated features, we evaluated the classifiers by
considering the area under ROC curve (AUC) as our main metric in addition to the minority class
Amin and ACC (accuracy) of each classification system. For dataset S1, we listed in Table 4.3
the AUC, Amin and ACC scores for each classifier under the best sampling, normalization and
feature selection algorithms. For dataset S2, we only listed the top ten classifiers in Table 4.4.
Figures 4.3 and 4.4 shows the noticeable difference between AUC and Amin. This is the
rational behind evaluating the AUC for the minority class as well as that of the complete dataset.

For our case study, most classifiers have optimal results with the SMOTE sampling technique
and the MV normalization scheme. The Feature Selection with the best results was the IG
method. It is clear from the results that a number of classifiers were able to excellently
discriminate between the two cell groups in both datasets S1 and S2 with an AUC, Amin and
ACC metrics above 0.9. The following subsections reveal the power of sampling, the effect of
normalization and feature selection, in addition to the power of the discriminators based on our
feature space.
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Table 4.2: Classification Algorithms evaluated in this study

Classifier Description
C4.5 A decision tree classifier. At each node of the tree, C4.5 chooses the attribute that most

effectively splits its set of samples into subsets enriched in one class or the other [Qui93].
Adaptive Boosting
(AdaB)

A machine learning meta-algorithm used in conjunction with a weak learner (Decision
Tree) to improve its performance [Fre96].

PART Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a
rule [Fra98].

Decision Table
Majority (DTM)

A decision table with a default rule mapping to the majority class. It has a set of features
(schema) and a set of labelled instances (body) [Koh95].

Decision Stump
(DSmp)

A model consisting of a one-level decision tree. i.e, it is a decision tree with one internal
node (the root) which is immediately connected to the terminal nodes (its leaves) [Iba92].

One Rule (OneR) OneR generates one rule for each predictor in the data, then selects the rule with the
smallest total error as its "one rule" [Hol93].

JRip JRip implements a propositional rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) [Coh95].

Bayes Network
(BNet)

Bayes Network learning represents the dataset variables via a directed acyclic graph (DAG)
based on probability theory [Fri97].

K-Nearest Neighbour
(IBK)

Predicts the class of the single nearest training instance for each test instance [Aha91].

Locally Weighted
Learning (LWL)

Uses an instance-based algorithm (Decision Stump) to assign instance weights [Atk96].

LogitBoost (ALR) Performs additive logistic regression on the base learner (Decision Stump) [Fri98].
Random Committee
(RCom)

Builds an ensemble of randomization base classifiers (Random Tree). The final prediction
is a straight average of the predictions generated by the individual base classifiers..

Random Subspace
(RSub)

Constructs a decision tree based classifier (REPTree) with multiple trees constructed in
randomly chosen subspaces [Ho98].

Hoeffding Tree
(VFDT)

An incremental decision tree induction algorithm capable of learning from massive data. It
assumes that the distribution of variables does not change over time [Hul01].

Logistic Model Tree
(LMT)

A logistic model tree basically consists of a standard decision tree structure with logistic
regression functions at the leaves [Lan05].

REPTree Fast decision tree learner. Builds a decision/regression tree using information gain/variance
and prunes it using reduced-error pruning.

Random Forest
(RFor)

Constructs a forest of random decision trees at training time and outputting the mode class
(classification) or mean prediction (regression) of the individual trees [Bre01].

Random Tree (RTre) Constructs a tree with randomly chosen attributes at each node.
Logistic (Log) Building and using a multinomial logistic regression model with a ridge estimator [Ces92].
Stochastic Gradient
Descent (SGD)

Implements stochastic gradient descent for learning various linear models (binary SVM,
binary logistic regression, squared loss, Huber loss and epsilon-insensitive loss).

Sequential Minimal
Optimization (SMO)

Sequential minimal optimization algorithm for training a support vector classifier [Pla98].

SimpleLogistic
(SLog)

Classifier for building linear logistic regression models. LogitBoost with simple regression
functions as base learners is used for fitting the logistic models [Lan05].

Voted Perceptron
(VPer)

Based on a linear predictor function combining a set of weights with the feature vector,
and a transformation of online learning, in that it processes elements one at a time [Fre98].
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4.4.1 Power of Sampling

The first obvious fact from the result in Table 4.3 and 4.4 is the power of data sampling on
the classifiers performance. SMOTE has not failed to improve the overall classification within
all the algorithms tested, unlike the under-sampling and over-sampling methods. This makes
SMOTE an excellent choice for our data. Moreover, SMOTE addresses the information loss of
the under-sampling and the over-representation issue of the over-sampling methods.

After applying SMOTE on dataset S1, the AUC was improved in average by .025, and the
average accuracy increased slightly by 0.007. However, the strongly significant different is
shown when considering the AUC for the minority class (Amin) where the average improvement
was increased by .139 per classifier from an average of .708 to .847. This demonstrates the
reason why accuracy is not a sufficient measure in our imbalanced dataset. Generally, power of
sampling is more conspicuous in PART, C4.5, JRIP, SMO and VFDT classifiers (cf. Fig. 4.5).

On dataset S2, the power of sampling is more obvious since S2 exhibits a higher ratio
between majority and minority class instances. After applying SMOTE on dataset S2, the
AUC was improved in average by .127, but the average accuracy decreased slightly by 1.1%.
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Figure 4.3: AUC and Amin of classifiers for raw dataset S1.
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However, the strongly significant different is shown when considering the AUC for the minority
class (Amin) where the average improvement was increased by .369 per classifier from an
average of .565 (poor classification) to .935 (excellent classification) (cf. Fig. 4.6). This also
reveals the reason why accuracy is not a sufficient measure in our imbalanced dataset.

4.4.2 The effect of Normalization and Feature Selection

On dataset S1, Normalization showed an extra average improvement of .015 and .013 for the
AUC and Amin respectively, and improved accuracy by 1.2% over the original dataset. As can
be noticed from Fig. 4.7 and 4.8, the most significant difference of normalization was shown in
VPer and VFDT classifiers. Similarly for dataset S2, Normalization showed an extra average
improvement of .007 and .009 for the AUC and Amin respectively, and improved accuracy by
5.8% over the sampled dataset.

The best feature selection algorithm, i.e. IG, showed no significant change in the averages
of AUC and Amin for both dataset. On dataset S2, the AUC was .949 and Amin .944. The
accuracy metric has a slight extra increase of .03% up to a final average accuracy of 92.2%.
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Figure 4.4: AUC and Amin of classifiers for raw dataset S2.
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Table 4.3: AUC, Amin and ACC of classification algorithms using raw dataset S1, and
after sampling, normalization and feature selection.

Cl
as

sifi
er Raw Dataset Sampled Normalized Features Selected

AUC Amin ACC AUC Amin ACC AUC Amin ACC AUC Amin ACC

RCom .972 .937 .940 .984 .980 .943 .983 .979 .939 .982 .977 .939
RSub .959 .923 .911 .978 .978 .928 .976 .976 .921 .975 .974 .927
RFor .965 .917 .920 .981 .974 .937 .977 .972 .922 .978 .970 .930
SLog .926 .841 .867 .926 .911 .854 .926 .911 .853 .926 .911 .854
Log .945 .839 .898 .916 .925 .872 .916 .919 .872 .916 .920 .872
LogB .930 .837 .878 .933 .918 .874 .932 .918 .868 .932 .918 .868
DTab .922 .833 .876 .942 .933 .872 .942 .936 .873 .943 .936 .872
LMT .927 .808 .901 .937 .898 .908 .936 .896 .905 .937 .895 .904
REPT .891 .789 .887 .932 .912 .892 .923 .903 .887 .923 .904 .887
AdaB .908 .767 .855 .919 .899 .850 .917 .895 .849 .917 .895 .849
PART .884 .764 .901 .916 .892 .904 .932 .906 .910 .925 .901 .909
C4.5 .853 .747 .893 .915 .885 .914 .900 .864 .906 .898 .861 .906
JRip .853 .747 .893 .916 .887 .905 .918 .891 .894 .911 .877 .894
BNet .881 .703 .808 .888 .853 .830 .889 .862 .824 .889 .862 .824
SGD .950 .683 .888 .869 .815 .869 .866 .810 .864 .866 .810 .864
RTre .853 .669 .883 .877 .830 .877 .879 .835 .879 .875 .826 .874
IBK .851 .668 .881 .881 .839 .881 .881 .839 .881 .881 .839 .881
LWL .870 .644 .736 .874 .819 .773 .874 .819 .773 .874 .819 .773
SMO .803 .628 .867 .866 .815 .866 .866 .814 .865 .866 .814 .865
OneR .767 .553 .834 .795 .733 .794 .795 .733 .794 .795 .733 .794
DSmp .769 .450 .733 .774 .692 .774 .774 .692 .774 .774 .692 .774
VPer .543 .289 .638 .526 .515 .527 .802 .735 .798 .802 .736 .798
VFDT .500 .267 .733 .638 .582 .606 .736 .668 .661 .736 .668 .661

Although the effect of feature selection is negligible on the prediction performance of the
classifiers, it has two advantages; the first advantage is the provision of faster and more cost
effective calssifiers, and the second is the provision of a better understanding of the underlying
process that generated the data.

4.4.3 The Powerful discriminators

Wavelet-based texture measurement has shown their superiority to discriminate our instances
in the top classifiers. Specifically, the Smoothness and Uniformity textures in the horizontal,
diagonal and vertical wavelet detail images were used as root nodes in most base trees in the
RCom, RFor, RSub and C4.5 Decision tree classifiers. In addition, the fusion of invariant
moments with wavelet details in many dimensions obtained high weights in the functions of
SLog and LMT classifiers revealing their discriminative power. They also showed up multiple
times within the decision trees built by various models. The second order histogram features
extracted from the co-occurrence matrix have also played a major role in the discrimination of
yeast cells, they showed up in almost every classifier, though at lower level in decision trees or
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Table 4.4: Area under ROC and Accuracy of the top 10 classification algorithms using
raw dataset S2, and after sampling, normalization and feature selection.

Cl
as

sifi
er Raw Dataset Sampled Normalized Features

Selected

AUC AC1 ACC AC1 ACC AC1 ACC AC1 ACC

SLG .930 .797 .944 .987 .948 .987 .948 .986 .948
LMT .930 .797 .944 .981 .953 .981 .956 .979 .956
BYN .922 .743 .918 .974 .930 .971 .927 .971 .927
RNC .920 .750 .937 .991 .973 .992 .972 .991 .968
RNF .914 .722 .938 .988 .966 .991 .964 .990 .962
LBS .906 .758 .942 .975 .920 .975 .919 .975 .919
RSS .905 .739 .938 .990 .955 .989 .958 .988 .955
BGG .903 .763 .938 .989 .952 .990 .950 .990 .951
ABM .887 .664 .930 .966 .910 .967 .903 .967 .903
DTB .870 .642 .930 .953 .888 .961 .895 .964 .898

with a smaller weight in regression functions.
Considering dataset S1, most of the top classifiers built complex models that are not easy

to interpret. RCom has built ten random trees of sizes between 267 and 297. RSub built a
"relatively" less complex model of ten random REP trees of sizes between 47 and 87. RFor
built ten random trees each using seven random attribute values in its construction. On the other
hand, the Logistic and Simple Logistic algorithms built decent regression functions. Simple
Logistic built its function with a few attributes (22 of the total 90 considered). This makes
Logistic regression a much more appealing classification model for our domain. The Logistic
regression classifier has two output terms, coefficients and odds ratios. High coefficient values
when predicting the negative class were noticed in many moment invariant features in the
wavelet detail images. Moreover, high odds ratios were noticed in texture measurements and
co-occurrence matrix features. The Simple Logistic has used in its function, eight features from
the co-occurrence matrix, five features from the wavelet texture measurement, two features
from the combination of wavelet and moment invariants, four features from moment invariants,
one texture measure and two basic shape descriptors.
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Figure 4.5: Amin of classifiers for raw and sampled dataset S1.'
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Figure 4.6: Amin of classifiers for raw and sampled dataset S2.
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Figure 4.7: Amin of classifiers for raw, sampled and scaled dataset S1.'
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Figure 4.8: Amin of classifiers for raw, sampled and scaled dataset S2.
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Figure 4.9: Amin of SMO classifier for raw

dataset S1, and after the applica-
tion of SMOTE, MV and IG algo-
rithms for sampling, scaling and
feature selection respectively.

Support Vector Machines (SVMs) are pop-
ular classifiers. The SMO, which is an imple-
mentation of the SVMs, did not rank as an ex-
cellent classifier in dataset S1 when using the
default parameters. However, this changes
when optimizing its parameters by increas-
ing the complexity constant to 5, disabling
any normalization within the classifier itself,
fit logistic models to SVM outputs and use a
normalized Polynomial Kernel.

Figure 4.9 shows initially that the SVM
classifier evaluated as a poor classifier with
an Amin value of .628. This value is im-
proved into "good" level after sampling with
the SMOTE algorithm, i.e. .815. However,
optimization pushed the SMO into the top five
classifiers with an Amin of 0.92.

Next we study the considered feature sets
for their contribution to the power of discrim-
ination.

4.4.4 Feature sets performance

In order to investigate whether our composed
feature sets has any added value to the dis-
crimination power, we started by comparing
the classification performance on dataset S1 using different set of features including basic shape
descriptors, invariant moments, wavelet texture measurement, invariant moments on wavelet
detail images, co-occurrence matrix derived features, basic texture measurement and a full
feature space combining all the feature sets. The difference is shown in Fig. 4.10. This test was
performed on both Logistic and C4.5 classifiers. Logistic regression was chosen as it is the
top "non-random based" classifier and C4.5 as a non-linear approach for comparison. In both
classifiers, the benefits of using the full set is obvious. In the Logistic classifier, the performance
of individual feature sets were not sufficient, except for the basic texture measurement which
shows a very good discrimination with an AUC of 0.82. However, using the full features set
shifted the performance of the Logistic classifier into the excellent category with an AUC of
0.916. In the non-linear C4.5 decision tree classifier, all the individual feature sets except the
basic set have good discrimination. However, none is ranked as excellent. Only when the feature
sets are fused together the classifier has an excellent discrimination rate with an AUC of 0.914.

Since 3rd order moment invariants are more complex than there 2nd order counterpart, and
they might be more noise-prone [Goo96], we study whether it really adds any discrimination
value by creating only two small feature spaces. The first having only the second moment
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invariants while the second feature space contains the whole set of seven invariant moments.
Figure 4.11 show the ROC graph of the performance of the Logistic and C4.5 classifiers on
both feature spaces. The third order moments show to have an additional discriminative value
in both classifiers for this dataset.
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Figure 4.10: ROC analysis and AUC value of C4.5 (left) and Logistic (right) classifiers using

various feature sets'
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Figure 4.11: Performance of C4.5 (left) and Logistic (right) classifiers using second and up-to

third order moment invariant features
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4.5 Discussion

In this chapter, we addressed our principal research question and showed that a machine learning
approach can discriminate S. cerevisiae yeast cells to identify essential characteristic differences
between two groups treated under different conditions, and a similar approach can improve the
object recognition based on its measured sophisticated features. In addition we address the sub
question and showed that a combination of various feature extraction methods have a significant
role in improving the accuracy of the built classification models.

In the case study of yeast cells, we were able to find a significant difference in the expression
of 14-3-3 proteins for cells cultivated under different stress levels. This difference in their
characteristics is a subtle pattern that is hard to be noticed using standard methods, such as
investigation the measurement data and examining the basic statistical information. On the
other hand, the object recognition allow us in our experiment to exclude artefacts prior to data
analysis, which consequently improves the identification of subtle patterns.

In this work, we introduced a machine learning workflow to be followed in building a
classification model. We showed that the extracted object features explained in Section 4.2
are advantageous to predict the group that an object belongs to. The Wavelet-based texture
measurements, co-occurrence matrix derived features, moment invariant features and texture
measurement derived from the image histogram, forms a set of powerful discriminators in
the top classification models, from which the Logistic model was chosen as the most efficient
for classifying our cells. Sampling of our dataset with the SMOTE method showed to have a
significant effect on building the classification model system. In addition, the MV normalization
scheme showed an extra improvement. The best feature selection algorithm tested showed a
little non-significant improvement; however, it provides a more simple, faster and cost effective
classification model. With this machine learning process and the chosen feature sets, it becomes
possible as future work, to classify different cell strains and conditions in a high-volume
high-throughput studies.
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Role of 14-3-3 proteins and Nha1 antiporter

in the response of S.cerevisiae to salt stress

“ In Chapter 2, we described our developed platform, i.e. YeastAnalysis.
In this chapter, the developed platform is tested in studies on the role of
14-3-3 proteins and the Nha1 Na+(K+)/H+ antiporter in the response of
S. cerevisiae cells to high external NaCl concentrations. To this end we
investigate the effect of high external Na+ concentration on the levels of
GFP-tagged Bmh1, Bmh2 and Nha1. For validation of the software tool
the results were compared to results obtained by flow cytometry.

”

This chapter is based on the following publication:

• Mohamed Tleis, Paul van Heusden and Fons J. Verbeek.YeastAnalysis: An image analysis
platform to quantify fluorescent reporter proteins in Saccharomyces cerevisiae cells.
(Submitted).
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5.1 Introduction

Sacharomyces cerevisiae yeast as a model system is very suitable to study the function of
proteins. This can be achieved through biochemistry and/or molecular biology or, if

location is important through imaging. There is a class of proteins, referred to as the 14-3-3
proteins that are very important to maintain the integrity of the organism. These 14-3-3 proteins
are found in all organisms and are often related to stress situations, i.e. disease [Rob02, Mar04].
Therefore, an experiment on stress in S. cerevisiae yeast is designed to further investigate
these proteins. There we use salt stress, which can simply be induced by increasing the salt
concentration in the medium.

S. cerevisiae has two genes encoding 14-3-3 proteins, BMH1 and BMH2. In this study we
address the function of the Bmh1 and Bmh2 14-3-3 proteins and the Nha1 cation transporter
protein that modulates ion homeostasis. To address this function in the tolerance of yeast cells
under salt stress, we cultivated strains expressing Nha1-GFP, Bmh1-GFP and Bmh2-GFP
reporters under standard conditions and in the presence of 0.5MNaCl. These reporter proteins
are expressed by the NHA1, BMH1 and BMH2 genes tagged with the GFP reporter gene that
expresses a green fluorescent protein. We also included a mutant strain with a deletion of BMH1
gene (∆bmh1) expressing Nha1-GFP protein. Images were made by confocal laser scanning
microscopy. As shown in Fig. 5.1, Nha1-GFP was mainly found in the plasma membrane, in
agreement with the reported localization [Huh03]. Deletion of BMH1 gene did not affect the
localization of Nha1-GFP protein. Both Bmh1- and Bmh2-GFP were found all over the cell,
also in agreement with previous reports [Huh03]. In order to fully understand the role of the
14-3-3 proteins and Nha1 protein in salt tolerance, the effect of NaCl on the levels of GFP-
tagged proteins needs to be quantified. To this end we have used YeastAnalysis (cf. Chapter 2)
to analyze microscope images using an extended set of features. In the following sections we
discuss the materials and methods used in this experiment. Subsequently we discuss how the
experiment analysis is performed including segmentation, measurement and data analysis. Then
we discuss the results obtained from the application of YeastAnalysis to study the function of
BMH1, BMH2 and NHA1 genes in the response to salt stress. We complete this chapter with a
conclusion.

5.2 Materials and Methods

In this section we describe the materials and methods used to conduct the experiment explained
in the introduction. The development of YeastAnalysis was already discussed in Section 2.8.
Herein, we first highlight the used strains and how they were cultivated. Subsequently, we
discuss the used microscopy and flow cytometry techniques.
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Figure 5.1: Confocal laser scanning microscopy of BY4741NHA1-GFP,∆bmh1NHA1-GFP,

BY4741 BMH1-GFP and BY4741 BMH2-GFP cells grown in supplementedMY
medium with (+NaCl) or without (−NaCl) additional 0.5MNaCl.

5.2.1 Yeast strains and cultivation

The yeast strains used in this study are listed in Table 5.1. ∆bmh1 NHA1-GFP was constructed
by integration of GFP downstream of the NHA1 gene coding sequences in strain ∆bmh1
(GG3240). For this purpose a PCR fragment was generated using pYM28 [Jan04] as template
and the primers pYM-NHA1-Fw (5′-GCTGCTGTTAAGTCGGCGCTATCAAAAACGCTT
GGTCTCAATAAGCGTACGCTGCAGGTCGAC-3) and pYM-NHA1-Rev (5′-CGACACA
TGTAAATAAAAAAGGCATTTCGTTTATATATATACTAAATCGATGAATTCGAGC
TCG-3′). Transformants were selected for histidine prototrophy. Yeast transformations were
performed using the LiAc method [Gie95]. Yeast was cultivated inMY medium supplemented,
when required, with histidine, methionine, uracil and leucine [Zon86].

For microscopy and flow cytometry, yeast cells were grown overnight in MY medium
supplemented with histidine, methionine, uracil and leucine, when required. The next morning
cultures were diluted ten-fold in supplemented MY medium containing 0.5 M NaCl or in
the same medium without added NaCl. After cultivation for 4 to 7 hours at 30○C, cells were
analyzed by confocal microscopy and/or flow cytometry.



86 Role of 14-3-3 proteins and Nha1 antiporter in the response of S.cerevisiae to salt stress

Strain Genotype Source/Reference
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Euroscarf,Germany
∆bmh1
(GG3240)

MATa his3∆1 leu2∆0 met15∆0 ura3∆0
bmh1∆::loxP

Wouter Hendrik-
sen, unpublished
results

NHA1−GFP MATa his3∆1 leu2∆0 met15∆0 ura3∆0 NHA1-GFP
(HIS3MX6)

Life Technologies

BMH1−GFP MATa his3∆1 leu2∆0 met15∆0 ura3∆0 BMH1-GFP
(HIS3MX6)

Life Technologies

BMH2−GFP MATa his3∆1 leu2∆0 met15∆0 ura3∆0 BMH2-GFP
(HIS3MX6)

Life Technologies

∆bmh1
NHA1-GFP
(GG3398)

MATa his3∆1 leu2∆0 met15∆0 ura3∆0
bmh1∆::KAN.MX NHA1-GFP (HIS3MX6)

This study

Table 5.1: Yeast strains used in this study.

5.2.2 Confocal microscopy and flow cytometry

For image acquisition a Zeiss LSM 5 Exciter-AxioImager M1 confocal microscope with a
Plan-Apochromat objective (63X/1.4 Oil DIC) and Zeiss ZEN 2009 software were used. GFP
was imaged with excitation at 488 nm and emission at 505-530 nm. For flow cytometry, a
Merck-Millipore Guava EasyCyte 5 Flow Cytometer was used. Fluorescence was determined
after excitation at 488 nm and using the standard green 525/30 nm emission filter. For each flow
cytometry analysis, 5000 cells were used.

5.3 Experiment Analysis

Here we discuss the steps followed in the analysis of the experiment images; i.e. segmentation,
measurement and data analysis.

5.3.1 Segmentation

The first step in the analysis is to locate the individual cells in the image through segmentation.
In this experiment, we apply segmentation on the bright-field channel of the image, and we
use the segmentation results to analyze the other channels. In the bright-field images, the cell
contours are visible as dark structures. We applied the HCSP segmentation algorithm described
in Section 3.2 and Section 3.4.2. It first applies a 3x3 Prewitt filter, which gives a good initial
estimate of the magnitude of the gradient of the image. i.e. it highlights the cell contours. On
this gradient image, a threshold and skeletonization algorithm [Gon08] are applied to get the
contours as binary structures of one pixel thickness. The following step is the utilization of
Hough Transform to locate the structures that form part of a geometrical circle, for the fact that
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yeast cells are nearly circular. The detected partial circumference of this circle corresponds to
the detected part of the cell contour, and the center point of this circle corresponds to a point
somewhere in the middle of the cell. The location of the center point is not necessarily at the
center of the cell, as the next step creates a sufficient resampled polar image to evaluate the
complete cell. This subsequent step is the extraction of the exact contour of the cell starting
from the center point for that cell located by Hough transform. Figure 5.2(a) shows an example
of a cell after locating its center point by Hough Transform. The red circles and blue lines are
labels to illustrate the creation of the resampled polar image of the cell as shown in Fig. 5.2(b).
The radius at an angle θ (blue lines in Fig. 5.2(a)) in the image plane, is transformed into a
column in the polar image (vertical blue lines in Fig. 5.2(b)). The circles surrounding the center
point (red circles of radius r in the image plane in Fig. 5.2(a)), are transformed into rows of the
polar image (red horizontal lines in Fig. 5.2(b)). Next, a minimal path algorithm is applied on
the polar image to find the full contour of the cell. Figure 5.2(c) shows the detected minimal
path in cyan. Figure 5.2(d) shows the detected cell contour as cyan pixels backprojected to
the original image. The results of segmentation of a typical microscope image are shown in
Fig. 5.3.

During the segmentation process, outliers are discarded by setting limits to the minimum and
maximum cell size as well as to the minimum circularity of the detected shape. The extracted
cell contours or the masks are subsequently used to measure the fluorescence intensity in the
overlaid fluorescence channel, and for measurements in the bright-field channel.

5.3.2 Measurement

After detection of the cells in the microscope images, the YeastAnalysis software is used to
perform various measurements on these cells. In addition to the fluorescence intensity, several
shape features of the cells are measured in the bright-field image, including size (area), perimeter,
density, and features describing the textures of the cell such as variance, relative smoothness,
skewness, uniformity and entropy [Gon08]. The same set of features are measured in the
bright-field channel as well as in the overlaid fluorescence image channels. Table 5.2 lists how
texture measurements can possibly be interpreted within images of S. cerevisiae cell.

For analysis of membrane proteins YeastAnalysis automatically estimated the region where
the cell membrane protein are expressed by focusing on the pixels next to the cell contour
(Fig. 5.4). All measurements are saved automatically into a CSV (comma-separated values) file
as explained in Section 2.4. This measurement file is used at the following step to generate a
report and for further inspection by a specialist.

5.3.3 Data Analysis

After completion of the measurements, two sets of cells are compared to study any differences
between those sets. The first set is those cells cultivated in a non-NaCl medium, while
the second set is those cultivated in a 0.5 M NaCl medium. YeastAnalysis automatically
generates a report in pdf format holding basic statistics and graph charts to visualize the results.
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Figure 5.2: Detecting contours by Hough Transform and Minimal Path algorithm. Image
(a) shows an example of a cell after detection of the center point by Hough Trans-
form. In (b) a polar image is generated. The columns correspond to the pixels
along the radius at an angle θ of the largest possible circle (red lines). The rows
correspond to the circles surrounding the center point (blue lines, blue circles in
image a). Image (c) shows the detected path from the first column to the last column
in the polar image, after the application of dynamic programming. Image (d) shows
the detected path as the actual contour of the cell.
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The statistical information includes the number of detected cells and the mean values of the
different measured features along with their standard deviations. The unpaired Student t-test
is performed to report the t-value and p-value to assist in analyzing the significance of the
differences between two sets of cells. To visualize the measurement results, several chart types
are generated, including scatter plots, Pareto charts and box-and-whiskers plots. The next
section shows the results obtained using YeastAnalysis to study the function of BMH1, BMH2,
and NHA1 genes under salt stress.

Figure 5.3: Overlay on a bright-field image showing the extracted contours of the detected
cells.
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Texture Bright-Field Channel Fluorescent Channel
Entropy A higher entropy value can

indicate a distorted cell as in
cell death.

Lower entropy values can
indicate that expressed pro-
teins are forming simple pat-
terns within cells. Higher
values can indicate a more
complex and variable pat-
terns.

Skewness Lower skewness values can
indicate brighter cells while
higher values can indicate
darker cells.

Lower Skewness values
can indicate less intensity
while higher values can
indicate higher intensity
values within the cell.

Uniformity Uniformity values go lower
when there are no dark struc-
tures or organelles appearing
within the cell, or when the
cell is not distorted.

Uniformity values can go
higher when the gene is
expressed more evenly
throughout the cell.

Variance Indicates how many dark
structures appear or how dis-
torted a cell is

Indicates a constant expres-
sion throughout the cell (low
variance), or an highly vari-
able expression throughout
the cell (high variance).

Table 5.2: Interpretation of texture measurements in yeast.

5.4 Results

We validated YeastAnalysis in studies on the effect of salt stress on yeast cells expressing
GFP-tagged Bmh1, Bmh2 or Nha1. To this end, six to ten confocal microscope images were
acquired with in total more than 200 cells for each condition. We have four different conditions
in two different classes; i.e. the non-NaCl and the 0.5MNaCl class. The number of samples
per condition per class are depicted in Table 5.3. The acquired images in this experiment contain
two channels, a fluorescence channel and a bright-field channel. The fluorescence images
show the expression of BMH1-GFP, BMH2-GFP, NHA1-GFP and ∆bmh1 NHA1-GFP in yeast
cells cultured in the absence or presence of additional 0.5MNaCl. We loaded these images
into YeastAnalysis and used the HCSP algorithm for detection of the cells in the bright-field
image. By automatic segmentation of the total acquired 195 microscope images in this study
we were able to detect 92 percent of the cells on these images, whereas 2.2 percent of the
detected objects did not correspond to learned shape of a healthy cell; i.e. debris and dead
cells. The F1-Score [Rij79] is used to measure the effectiveness of the algorithm. The F1-Score
measure is 0.95. The missing cells were added by manual segmentation and the false positives
were removed. Such manual segmentation is easily performed as non-detected cells are added
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through manual seeding and incorrect detections are deleted. These adjustments are facilitated
through an interactive Graphical User Interface (GUI) in the YeastAnalysis software.

The segmented images were used for measurement of various cell features. These measure-
ments are exported into a csv-file showing the cells expressing GFP-tagged Bmh1, Bmh2 and
Nha1 cultured in the absence and presence of additional 0.5MNaCl. For the measurements
of the fluorescence channel, we selected the most common features; i.e. the total intensity, cell
size, cell perimeter, internal density, intensity per pixel, intensity per square micron, circularity,
variance, skewness, uniformity, relative smoothness and entropy.

The results of the measurements of the cell size and fluorescence intensity in a typical
experiment on the effect of additional 0.5 NaCl on cells expressing Nha1-GFP, Bmh1-GFP

Figure 5.4: Automatically generated overlay showing estimated cell membrane locations.
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Strain Cell Size in µm2

Fold
Change
Cell Size
+NaCl/
-NaCl

(P-Value)

Integrated GFP
fluorescence

Fold
Change

GFP
+NaCl/
-NaCl

(P-Value)-NaCl +NaCl -NaCl +NaCl

NHA1-GFP
16.7±5.2

(407)
15.6±4.7

(281)
0.93

P = 0.002
4.3±2.2
(407)

4.5±2.6
(281)

1.05
P = 0.44

∆bmh1
NHA1-GFP

13.6±4.2
(915)

15.3±5.6
(219)

1.12
P < 0.001

3.2±1.7
(915)

5.6±2.9
(219)

1.75
P < 0.001

BMH1-GFP
12.7±4.2

(447)
12.6±4.5

(328)
0.99

P = 0.74
32.6±15.2

(447)
56.6±18.3

(328)
1.74

P < 0.001

BMH2-GFP
12.9±4.5

(311)
11.7±3.7

(238)
0.91

P = 0.001
20.0±10.4

(311)
33.9±13.8

(238)
1.70

P < 0.001

Table 5.3: Determination of cell size and GFP fluorescence in microscope images using
YeastAnalysis. The statistical method used to check the significance of the differences
(P-Value) was the Student t-test. Numbers within parenthesis represents the number
of cells used in the analysis. Arbitrary unit is used for GFP fluorescent.

Strain GFP fluorescence [Arbitrary Units] Fold Change GFP
fluorescence

+NaCl/-NaCl-NaCl +NaCl
NHA1-GFP 2.53 2.98 1.18
∆bmh1 NHA1-GFP 1.83 2.72 1.49
BMH1-GFP 77.3 131.0 1.69
BMH2-GFP 43.5 65.6 1.51

Table 5.4: Determination of GFP fluorescence using flow cytometry.

or Bmh2-GFP are summarized in Table 5.3. Moreover, the effect of deletion of BMH1 gene on
Nha1-GFP expression is shown. The results show that NaCl stress results in a slight increase
in the expression of Nha1-GFP in the wild type BY4741 background but a stronger increase
in the mutant ∆bmh1 background, whereas the expression of both Bmh1- and Bmh2-GFP
is strongly increased upon salt stress. The results further show that ∆bmh1 cells are slightly
smaller than wild type BY4741 cells (P-values from Student t-test less than 0.001 as seen in
Table 5.3). Figure 5.5 shows some visualization charts generated by YeastAnalysis for this
analysis of ∆bmh1 NHA1-GFP strain under salt stress. Figure 5.6 shows the analysis of their
membrane intensity and size. All the experiments were repeated three times except for the cells
expressing Bmh2-GFP that was repeated in duplo and similar results were obtained.

To validate the results obtained by analyzing microscope images by YeastAnalysis we
used flow cytometry. To this end 5000 cells from each culture were analyzed and the GFP-
fluorescence measurements are shown in Fig. 5.7. Calculation of the average GFP fluorescence
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Figure 5.5: Visualization of data generated by YeastAnalysis. Yeast strain ∆bmh1 NHA1-
GFP was cultivated inMY medium supplemented or not supplemented with 0.5M
NaCl and cells were analyzed by microscopy, followed by analysis of the images
using YeastAnalysis. Results can be visualized in several ways. (a) - in Scatter Plot
showing the cell size on the x-axis and fluorescent Intensity on y-axis. (b) - in a
Pareto chart of the fluorescence intensity vs the number of cells. (c) - in a Box and
Whiskers Plot. (c) - in a Scatter Plot fitted to Gaussian Distribution showing the
cell size on the x-axis and the Probability Density Function (PDF) on the y-axis.
Statistical analysis revealed that bmh1 Nha1-GFP total fluorescence intensity
increased significantly upon salt stress (1.75-fold; P< 0.001). The size is increased
significantly upon salt stress as well (1.12-fold; P< 0.001).
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Figure 5.6: Membrane Intensity of ∆bmh1 NHA1-GFP cell strain. Statistical analysis re-
vealed that bmh1 Nha1-GFP fluorescence membrane intensity increased signifi-
cantly upon salt stress (1.53-fold; P< 0.001). The size that this membrane protein
occupies constitutes of an average of 40 percent of the total cell size.

showed that the expression of Nha1- Bmh1- and Bmh2-GFP increased upon NaCl stress
(Table 5.4). In summary, the results obtained by confocal microscopy and image analysis using
YeastAnalysis and the results obtained by flow cytometry are in very good agreement.

YeastAnalysis is able to measure GFP intensity in the membrane (Fig. 5.4). In a typi-
cal experiment we showed that 63 percent of the GFP fluorescence was found around the
membrane in BY4741 NHA1-GFP cells, whereas the membrane protein region constitutes, in
average, 40 percent of the cell area (cf. Fig. 5.6). This result indicates that the majority of the
Nha1 protein is expressed nearby the membrane, which corresponds well with the reported
localization [Huh03].
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Figure 5.7: Flow cytometric analysis of the effect of 0.5 M NaCl on yeast cells express-

ing GFP-tagged proteins. NHA1-GFP, BY4741 expressing Nha1-GFP; bmh1
Nha1-GFP, ∆bmh1, expressing Nha1-GFP; Bmh1-GFP, BY4741 expressing
Bmh1-GFP; Bmh2-GFP, BY4741 expressing Bmh2-GFP. Yellow: cells culti-
vated in the absence of additional NaCl; green: cells cultivated in the presence of
0.5MNaCl; solid line, no fill: BY4741 cells.
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5.4.1 Yeast Vacuoles

Using the YeastAnalysis software, the size and number of vacuoles for an individual cell can be
estimated. As some gene expression causes a fluorescence all over the cytoplasm, this fact can
be used to find the size and shape of the vacuoles. In this experiment we study the vacuole of
cells from BMH1-GFP wildtype strains. Our objective is to study the vacuole size and number
of vacuolar compartments under salt stress in both strains. First we analyze the size of the
central vacuoles. Subsequently we analyze the number of vacuolar compartments and their total
size. After that, we repeat the experiments using images acquired from different experiments at
different time points.

In our dataset we have 42 segmented cells from BMH1-GFP strain cultivated in 0.5 M
NaCl, 131 BMH1-GFP cultivated under non-NaCl medium. In our analysis we compute the
relative vacuole size; i.e. the vacuole size in terms of percentage of the cell size. In the first
analysis we noticed that the central vacuole size occupies in average 3.5% of the cell size in
BMH1-GFP strain, increased to 5.3% in 0.5MNaCl. This result is depicted in Fig. 5.8 and
Table 5.5(a). In order to assess the significance of this increase, we perform an unpaired Student
t-test of the null hypothesis such that the means of the two samples (i.e. under non-NaCl and
that of 0.5MNaCl) are equal. The p-value from the Student t-test statistical analysis is 0.021
as shown in Table 5.5(a).

The mean value does not show clear significant difference in the first analysis. Therefore
we perform additional analysis in which outliers are removed. From our observations of
yeast images we have observed outlier cases such as very few large cells that might bias the
measurement and cells with very high intensity values due to auto-fluorescence from a dead
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Figure 5.8: Central vacuole estimation in BMH1-GFP cells under salt stress. (a) - Box and
whiskers chart comparing BMH1-GFP under non-NaCl and 0.5MNaClmedium.
(b) - Fitting measurement in (a) to a Gaussian distribution.
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cell. Deviation from the mean is widely used to set outlier threshold, however, significant
results could easily turnout to be false positives. In literature [Ley13], deviation from the
median is proposed, as the median is very insensitive to the presence of outliers. The Median
Absolute Deviation (MAD) is used as a way of dealing with the problem of outliers. To define a
rejection criterion, we have adopted the recommended coefficient value of 2.5 [Ley13]. The
recommended threshold value for outlier detection is at the median plus or minus 2.5 times the
MAD. By removing these outliers, difference between the mean vacuole size in the two groups
becomes more significant. This result is shown in Fig. 5.9 and Table 5.5(a). The estimated
average vacuole size is increased from 2.3% to 3.6% under stress. The p-value from Student
t-test is 0.002. Nevertheless, this analysis suggests that the central vacuole has a larger volume
under salt stress. This is an interesting result, but what about all the vacuoles within the cells?
Hence, we perform an additional experiment considering all estimated vacuoles.

In addition to the central vacuole we analyzed the number of vacuolar components and their
total size per individual cells. Similarly to the central vacuole analysis, we compute the relative
vacuole size; i.e. the vacuole size in terms of percentage of the cell size. Figure 5.10 illustrates
typical yeast cells expressing Bmh1-GFP, where the central vacuole and all other vacuoles are
segmented.

In this analysis we noticed interestingly, as it is clear from Fig. 5.11 that the number of
vacuolar compartments significantly increased under NaCl salt stress in the BMH1-GFP strain.
This increase is from an average of two vacuolar compartments under non-NaCl medium to
five compartments under 0.5MNaCl.

From Fig. 5.12 and Table 5.5(b), we can see that the total vacuoles size occupies in average
4.6% of the cell size in BMH1-GFP strain, increased to 8.7% in 0.5 M NaCl. The p-value
from the Student t-test statistical analysis is less than 0.001 as shown in Table 5.5(b).

We performed an additional analysis by removing outliers as done with the analysis of
central vacuoles. The result is shown in Fig. 5.13 and Table 5.5(b). The estimated average
vacuoles size is increased from 3.1% to 7.0% under stress. The p-value from Student t-test

(a)

-NaCl +NaCl P-value

Initial
Analysis

3.5% ± 5.1
(131)

5.3% ± 4.1
(42) 0.021

No-
Outliers

2.3 %± 2.0
(94)

3.6% ± 1.9
(34) 0.002

(b)

-NaCl +NaCl P-value

Initial
Analysis

4.6% ± 6.0
(131)

8.7% ± 4.9
(42) < 0.001

No-
Outliers

3.1% ± 2.5
(84)

7.0% ± 3.1
(34) < 0.001

Table 5.5: Analysis of vacuole size in Bmh1 14-3-3 protein under non-NaCl stress and 0.5
MNaCl stress level. The values represent the mean and standard deviation of the
relative percentage of vacuole size related to the cell size. The p-value is computed
from the Student t-test statistical analysis. The numbers in parentheses represent the
number of cells in each condition. (a) - Descriptive analysis of central vacuole sizes
before and after removal of outliers. (b) - Descriptive analysis of total vacuole sizes
before and after removal of outliers.
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Figure 5.9: Central Vacuole estimation in BMH1-GFP under salt stress and after outliers
removal. (a) - Box and whiskers chart comparing BMH1-GFP under non-NaCl
and 0.5MNaCl medium. (b) - Fitting measurement in (a) to a Gaussian distribu-
tion.'
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Figure 5.10: Estimation of vacuoles in sample yeast cells expressing Bmh1-GFP protein.
The detected central vacuole is marked with a yellow contour and all the other
vacuoles are marked with cyan countors. (a) - Sample yeast cell with two vacuoles.
(b) - A sample cell with one large central vacuole and multiple small vacuoles.
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is again less than 0.001. Nevertheless, this analysis suggests that also the total vacuoles has
a larger volume under salt stress as well as the central vacuole. The result in this analysis is
interesting. However, it requires more experiment validation. The increase in the number of

'

&

$

%(a) (b)

Figure 5.11: Number of Vacuolar Compartments in cells expressing Bmh1 14-3-3 proteins
under salt stress. (a) - Number of vacuoles in BMH1-GFP under non-NaCl and
0.5 M NaCl medium. (b) - Number of vacuoles in BMH1-GFP after outliers
removal.'
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Figure 5.12: Total vacuole sizes estimation in BMH1-GFP cells under salt stress. (a) - Box
and whiskers chart comparing BMH1-GFP under non-NaCl and 0.5MNaCl
medium. (b) - Fitting measurement in (a) to a Gaussian distribution.



100 Role of 14-3-3 proteins and Nha1 antiporter in the response of S.cerevisiae to salt stress

vacuolar compartments might be a mechanism for water conservation in yeast cells. These
small provacuoles in cells under salt treatment could have appeared as a result of dehydration.
This result is consistent with another study done with plant root cells [Sán92]. However,
the increase in total vacuole size and central vacuole size is opposite to what we expected.
Because we expected the cellular volume to decrease in response to increase in external salinity.
Hence we analyzed images acquired in three other experiments performed at different dates.
Interestingly, in all the experiments the estimation of vacuoles size has increased under NaCl
stress for BMH1-GFP strain with p-values from Student t-test being < 0.001, 0.03 and 0.3 with
a fold change of 1.39, 1.19 and 1.12 respectively. The result of the repeated experiments for
BMH1-GFP cells are depicted in Table 5.6. After outliers removal these numbers are shown
in Table 5.7. The number of vacuoles seems to be always increasing with BMH1-GFP under
NaCl stress, although not significantly in one experiment.

These results are unexpected. In order to validate if these results are correct, we propose
to perform an experiment in which we stain the vacuoles with a bio-marker. From the liter-
ature [Rob91], there are different protocols available for the staining of the vacuoles. This
experiment will help us to better understand the behaviour of cells under salt stress, and whether
the number of vacuolar components and vacuole sizes increase as a mechanism that the cell
adopt under stress. The stained vacuoles can be easily measured in YeastAnalysis, which has an
option to measure separate channels of any stain/fluorescent label.
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Figure 5.13: Total vacuole sizes estimation in BMH1-GFP cells under salt stress after out-
liers removal. (a) - Box and whiskers chart comparing BMH1-GFP under non-
NaCl and 0.5MNaCl medium. (b) - Fitting measurement in (a) to a Gaussian
distribution.
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Repetitions
BMH1-GFP

Vacuoles Size
Size

Fold Change
+Nacl/-Nacl
(P-Value)

Number Of Vacuolar
Compartments

Vacuoles
Fold Change
+Nacl/-Nacl

(P-Value)-NaCl +NaCl -NaCl +NaCl

Experiment 1
10.0 ± 4.4

(166)
13.9 ± 8.2

(155)
1.39

(P<0.001)
7.2 ± 4.0

(166)
8.1 ± 4.6

(155)
1.16

(P : 0.068)

Experiment 2
9.1 ± 5.1

(88)
10.8 ± 4.2

(86)
1.19

(P: 0.035)
5.4 ± 3.2

(88)
5.6 ± 2.7

(86)
1.04

(P : 0.717)

Experiment 3
6.7 ± 4.6

(74)
7.5 ± 4.0

(57)
1.12

(P: 0.324)
5.0 ± 3.8

(74)
5.3 ± 2.9

(57)
1.06

(P : 0.611)

Table 5.6: Repeated experiments to determine vacuoles size and number of vacuolar com-
partments. The statistical method used to check the significant of the differences
(P-Value) was the Student t-test. Numbers within parenthesis represents the number
of cells used in the analysis.

Repetitions
BMH1-GFP

Vacuoles Size
Size

Fold Change
+Nacl/-Nacl
(P-Value)

Number Of Vacuolar
Compartments

Vacuoles
Fold Change
+Nacl/-Nacl

(P-Value)-NaCl +NaCl -NaCl +NaCl

Experiment 1
9.7 ± 3.5

(139)
11.7 ± 4.5

(130)
1.21

(P<0.001)
6.6 ± 2.9

(139)
7.7 ± 3.8

(130)
1.17

(P : 0.008)

Experiment 2
7.7 ± 3.4

(70)
9.4 ± 3.7

(72)
1.22

(P:0.006)
5.0 ± 2.2

(70)
5.7 ± 2.6

(72)
1.14

(P : 0.075)

Experiment 3
6.1 ± 3.8

(58)
6.5 ± 2.8

(49)
1.07

(P: 0.585)
4.3 ± 2.6

(58)
5.0 ± 2.7

(49)
1.16

(P : 0.206)

Table 5.7: After removal of outliers from the repeated experiments to determine vacuoles size
and number of vacuolar compartments. The statistical method used to check the
significant of the differences (P-Value) was the Student t-test. Numbers within
parenthesis represents the number of cells used in the analysis.
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5.5 Conclusion

We have used YeastAnalysis to address the role of 14-3-3 proteins and the Nha1 cation trans-
porter in the response of yeast cells to high salt concentrations. 14-3-3 proteins are highly
conserved eukaryotic proteins binding to hundreds of different mostly phosphorylated proteins
[for reviews see: [Mac04, Ait06, Mor09]]. In addition, the S. cerevisiae 14-3-3 proteins, encoded
by BMH1 and BMH2, bind to hundreds of phosphorylated proteins [Heu95, Kak07, Heu09] and
play a role in the regulation of many processes including tolerance to NaCl [Pos00, Zah12].
Deletion of BMH1, encoding the major 14-3-3 isoform, is known to result in an increased
sensitivity to Na+, Li+ and K+ and to cationic drugs [Zah12]. Testing the genetic interaction
between BMH genes and genes encoding plasma membrane cation transporters revealed a
genetic interaction between BMH1 and NHA1. These results show that the yeast 14-3-3 proteins
and an alkali-metal cation efflux system interact and that this interaction enhances cell survival
upon salt stress [Zah12]. To further understand the role of 14-3-3 proteins and the Nha1
antiporter in salt stress resistance, the effect of high external NaCl concentration on the levels
of these proteins was studied here. Cultivation in the presence of 0.5MNaCl resulted in an
increased level of both Bmh1-GFP and Bmh2-GFP. This observation is in line with a role of
14-3-3 proteins in tolerance to high environmental NaCl. Moreover, analysis of vacuole sizes
revealed larger vacuole size and increased number of vacuolar compartments under increased
concentration of environmental NaCl; this result might be a mechanism that the cells employ
under stress conditions in BMH1 − GFP cell strain. In order to validate if these results are
correct, we propose to perform an experiment in which we stain the vacuoles with a bio-marker.
Further analysis using sophisticated feature sets as discussed in Chapter 4 is possible, for
example, to recognize the characteristic differences between all the cells cultured in increased
concentration of environmental NaCl and those in low concentration of environmental NaCl.
Such characteristic differences cannot be seen by standard descriptive analysis. However, such
analysis was not relevant in the study performed in the current chapter.



6
Discussion

“ In this chapter, we will evaluate our research questions and make separate
discussion for each of these research questions. In the first section, we
specify the research problem and the research questions we addressed in
this dissertation. In the following sections we discuss our image analysis
pipeline, our segmentation algorithms, our machine learning approach to
perform object recognition and pattern recognition using our combination
of feature sets, and then the validation of our analysis system. ”
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6.1 Research Problem and Questions

HERE we again clearly state our research problem (RP), which is at the center of our entire
project and directly related to our goals and the associated research questions (RQs) that

frame our research study. The answers to these questions creates an identifiable connections
between them and the main research problem inspiring the study. Such connections is what
makes our research meaningful. In the following sections we discuss these research questions.

• RP: There is no mature Pattern Recognition system to support objective analysis and
phenotype characterization in single-cell image-based gene expression experiments.

• RQ1: Which components and processes are required to build a comprehensive image
analysis pipeline for single-cell image based gene expression experiments?

• RQ2: Can a segmentation based on Hough-Transform and minimal path extraction
algorithms improve the detection of ovoid-shaped objects in micro/cell biology images?
Can we realize an optimization of the initial result using contour expansion algorithms?

• RQ3: What machine learning approach using sophisticated features can support in
the object recognition process? and can it improve the identification of subtle patterns
residing within the measurement data?

• RQ4: Can we study the role of 14-3-3 proteins and Nha1 antiporter based on imaging
and image analysis? Do results from other analysis confirm our result and thereby validate
our method?

6.2 Image Analysis Pipeline

RQ1: Which components and processes are required to build a comprehensive image analysis
pipeline for single-cell image based gene expression experiments?

Fluorescent reporter proteins like GFP are widely used in biological research, also in
research employing the model yeast S. cerevisiae. The analysis of these images is very time
consuming and not completely objective. In this study we developed a novel and comprehensive
image analysis platform for analysis of microscope images of cells expressing fluorescent
proteins. Our application was focused on the model organism S. cerevisiae as a case study. The
main outcome is a software platform that is currently used by our collaborators to assist them in
their experiments.

The novelty of this system is the overall image analysis pipeline and the segmentation
algorithm developed for yeast cell detection. This segmentation algorithm for bright-field
channels has advantages over algorithms implemented in other software packages as additional
staining is not required, the segmentation approach is optimized for S. cerevisiae cells and it is
freely available.
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To the best of our knowledge no similar platform exists, where the existing systems are
not flexible as they either offer part of the pipeline such as the segmentation modules as in
CellStat [Kva08] and CellSerpent [Bre11], or they are general and not able to offer segmentation
for the image modalities that we have as in CellProfiler [Car06]. On the other hand, our
proposed solution overcomes these issues and can be extendible and reusable. Our proposed
system is a new and comprehensive tool that can generate measurement reports to confirm
and validate experiments performed by biologists. YeastAnalysis system also extends previous
work through providing a complete image analysis system instead of only parts of the pipeline.
The strength of this platform relies on a novel segmentation algorithm, user friendly interface,
automatic reports generation and selected features to be measured. The system also has
flexibility in verifying the results, such as manual segmentation of individual cells, or manual
correction of the measurement results and performing analysis of selected groups of cells, as
well as choosing from various visualization charts. Such input from the user can be fed in
a future work into the system to train it using the machine learning approach we developed.
The already existing software packages that deal with S. cerevisiae yeast cells are usually
developed for a specific task. For example, they are developed to achieve only the segmentation
step [Kva08, Bre11, Pen13], to measure only a few features [Kva08, Bre11, Pen13], or to
address a specific experiment [Maz13]. This complicates their ability to perform a complete
analysis which is especially important for analysis of large datasets as required for systems
biology. The YeastAnalysis platform with its novel segmentation algorithm and its complete
pipeline is a promising tool for the analysis of large number of images generated in large scale
experiments. This is further supported by the observation that the time required for segmenting
an average 1024x1024 image with around 30 cells, using a quad core computer with Ubuntu
operating system, is only around 5 seconds.

In conclusion, this platform contributes to improve the analysis of gene expression studies, it
provides a comprehensive image analysis platform that can be used by cell biologists to analyze
their experiments. This platform can be further improved and its usability can be extended in
future work.

The model in Fig. 6.1 depicts an example of what can be done next to extend the usability
of the system. This model can be used to help us know and understand the ideas we have for a
future work. The primary objective of our model is to convey the fundamental principles and
basic functionality of the system to be developed. It must be developed in such a way as to
provide an easily understood system interpretation for the models users. In order to implement
this model properly, it should satisfy four fundamental objectives [Str11]:

• Enhance an individual’s understanding of the representative system.

• Facilitate efficient conveyance of system details between stakeholders.

• Provide a point of reference for system designers to extract system specifications.

• Document the system for future reference and provide a means for collaboration.

Our system is now a standalone application. However, for better maintainability, we can
develop into a web application. In the model depicted in Fig. 6.1, a user can connect with its
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account to a web application through a web interface. This application is connected to a network
storage, where the users data are stored. Through this Application a user can perform either
segmentation, measurement or data-analysis.

The segmentation module requires as input the images to be segmented and the segmentation
method to be used in addition to the specific parameters for that method. The measurement
module requires the binary masks or contour coordinates of the segmented images and as
parameters all the features required to be measured and the image channels to be measured.
The output of this module would be a CSV file holding all the individual cell objects measured
for the requested features. The data analysis module requires the CSV file generated by a
measurement process and keywords specifying what cell groups to be analyzed and what type
of visualization charts to be output into the final PDF report. These steps can be performed one
by one. However, when preferred, the parameters for all the modules can be fed in advance into
an additional batch module that performs all these steps sequentially and generate automatically
the required report.

At the lowest level in the model there is a Cell Analysis API that can communicate with
each of the mentioned modules through a web services description language (WSDL). In future
implementation, this model will play an important role in the overall system development life
cycle.

6.3 Ovoid Objects Segmentation

RQ2: Can a segmentation based on Hough-Transform and minimal path extraction algorithms
improve the detection of ovoid-shaped objects in micro/cell biology images? Can we realize an
optimization of the initial result using contour expansion algorithms?

The segmentation algorithm is an improvement of an algorithm developed in an initial
work [Kva08] by increasing the detection rate and the accuracy of the detected contours [Tle14].
Our approach consists of two steps, the first uses the Hough Transform to locate circular objects
in an image, the second step is fine-tuning each detected object and extracting its exact contour
where the center of the circle detected in the first step is taken as a seed point. From that point,
a polar representation of the object (referred to as polar image) is generated and an algorithm is
applied to extract the exact contour of the object by determining the minimal path from the first
to the last column in the polar image.

The detection rate is dependent on the quality of the images. Images containing out-of-focus
cells and images containing debris and dead cells are more difficult to segment. Furthermore,
during confocal imaging, the intensity of the fluorescence drops dramatically when cells are
out-of focus, making quantification difficult. In the case study on the role of 14-3-3 proteins and
Nha1 antiporter mentioned in Chapter 5 the segmentation method was able to detect 92 percent
of the cells. Additionally, the non-detected cells could be segmented using an interactive GUI
by manually seeding (mouse click within) the cells. Detected artefacts such as debris or dead
cells could easily be removed manually as well.

The novelty of this method is the threshold equations presented to control the Hough-
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Transform to detect circular objects; in addition to the extraction of the circular shortest path
method from the polar representation of the image object. Our novel segmentation method is
better than the other methods and offers higher detection rate and more accurate contours. In
a validation experiment the detection rate obtained an F1-score of 0.93 outperforming similar
methods.

Since microscope settings are delicate and contours are biased to the inner part of the objects,
the novel expansion algorithm comes into play. In one experiment the expansion algorithm
could improve the accuracy of the extraction contour with an F1-score of 0.92 and a Pratt score
of 0.58 outperforming other methods.

The strength of our segmentation algorithm is represented by the higher detection rate and
the more precise contours compared with other methods. It is much better than many algorithms
such as heavy active-contour based algorithms [Bre11]. The improved segmentation level
means consequently an improved accuracy in the analysis of the measurement.

In conclusion, we presented a novel segmentation algorithm to extract the contours of
ovoid-shaped and circular objects by using a variety of Hough Transform and a minimal path'

&

$

%
Figure 6.1: Model for further platform development. At the lowest level in this model there is

a cell analysis API that communicates with several modules through web services
description language (WSDL). At the top level, users can interact with these
modules through a web interface.
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algorithm. In addition to a contour expansion algorithm that optimizes the extracted contour.
As a future work we can apply parallel programming to make a real-time detection method and
analysis a possibility. We can also improve the detection by using noise removal algorithms and
segmentation that uses the information from all the image channels.

6.4 Machine Learning and Feature Sets

RQ3: What machine learning approach using sophisticated features can support in the object
recognition process? and can it improve the identification of subtle patterns residing within the
measurement data?

The popular feature sets we chose to describe the single-cell objects has played a signifi-
cant role in raising the performance of the classification models. The Wavelet-based texture
measurement has shown their superiority to discriminate cell objects in the top classifiers. In
addition, the fusion of invariant moments and wavelet details in many dimensions obtained high
weights in some classifiers such as Simple Logistics and Linear Model Trees revealing their
discriminative power. The second order histogram features extracted from the co-occurrence
matrix has also played a role in the discrimination of single-cell objects. However, a complete
feature set gained the best classification results on two different datasets. The complete feature
set combines features from basic shape descriptors, invariant moments, wavelet texture measure-
ment, invariant moments on wavelet detail images, co-occurrence matrix derived features, basic
texture measurement. The AUC metric was the main evaluation criteria used. The complete
feature set got an AUC value of 0.91 and 0.92 on the two different datasets respectively. This
suggests that the presentation of complex feature sets to describe the single-cell characteristic
and morphology in a more sophisticated way is an advantageous step in building classification
models that aims to recognize objects and identify subtle patterns.

The use of wavelet-based texture measurement, invariant moments and second order his-
togram features are not new in describing texture measurement in bioimaging. However, the
novelty of our work is to combine these feature sets to describe the objects in addition to
our novel approach to fuse moment invariants and wavelet details. Our results show optimal
classification when combining various feature sets.

The strengths of these features is their ability to describe objects characteristics and mor-
phology is a more sophisticated way enabling its recognition and identification of subtle patterns
residing within these objects. As in many disciplines, there is a drawback. This drawback is the
complexity of the constructed classification models based on these features. This makes it very
difficult to describe the underlying processes of the classification model. Despite this difficulty,
the classification results were excellent and the constructed model could easily classify the cell
objects into its correct group when compared to groundtruth.

The feature sets contribute to the improvement of classifying single-cell objects and conse-
quently improving cell object recognition and identification of subtle patterns residing within the
measurement data; i.e. recognizing the patterns that are not obvious and hard to notice within
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standard measurement methods. Nevertheless, further research is still possible. Interesting
research could be to try more techniques and feature sets known to be used with texture mea-
surement and trying to fuse different methods together. For example, if we where to redo this
research we would consider methods based on Zernike moments, Discrete Cosine Transform
and Linear Binary Patterns, as these methods are mentioned in the literature and are successful
in texture retrieval [Sim04, Bae97, Mäe03]. Moreover, an interesting research topic would be
to use fewer features that can gain a similar classification power. This would enable a more easy
understanding of the underlying process that is generating the data.

Using the aforementioned features, we presented a machine learning system that was able
to discriminate cell objects to identify essential characteristic differences between two groups
treated under different conditions, and a similar approach that improves the object recognition
based on the object’s measured sophisticated features. This implies that we can apply the same
approach in further biological studies and especially in high-throughput screening.

Machine learning systems are gaining popularity within bioimaging and biomedical studies
because as models are exposed to new data, they are able to independently adapt. They
learn from previous computations to produce reliable, repeatable decisions and results. The
idea of applying machine learning is not a new idea by itself. However, our novel machine
learning workflow is the combination of selected sophisticated and complex features, the
sampling of the dataset using SMOTE method (cf. Section 4.3.1) after measuring individual
features, normalization of the data features using the MV scheme in addition to the evaluation
of numerous linear and non-linear classification approaches in an automatic way to elect a
classifier to construct our model.

The strength of this approach resides in the selected features as a powerful discriminative
power. In addition, the evaluation of the best existing classification models assures the selection
of the best model to be used as our classifier. One issue with this system is the parameters that
most models utilize. With default parameters, an excellent classifier might not show its strength
as we showed for the SVM classifier in Chapter 4. Despite this fact, the performance of the
classification models were superior with an excellent classification level, i.e AUC ≥ 0.90.

With such machine learning approach we expect an easier identification of objects and
patterns within these objects. This fact will contribute to improve the understandability of
protein and gene behaviours in cell/micro biological studies. Further work in this field is still
possible. Applying developmental techniques to create an optimal classifier is an interesting
domain. Moreover, an automatic parameter optimization and selection for the existing popular
classifiers is also a possibility for a future work. In addition, adding more feature sets as
mentioned in the previous section and testing the classifiers on global existing datasets would
be an important project. Next to that, an implementation of such approach in a real-time image
analysis might have an additional value to biologists performing there experiments.

To summarize the discussion, we state that a feature set based on wavelet-based texture
measurements, moment invariants, first and second order histogram features, basic texture
measurement and fusion of moment invariants with wavelet details has an optimal classifying
results in classifying single-cell based gene expression data. In addition, we offered a reusable
machine learning workflow that offers an excellent performance to recognize biological objects
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and identify subtle patterns within the measurement of these objects. There is still more work to
explore, and the application of such approach in a highthroughput study is the obvious thing to
do next.

6.5 Image Based Proteomics

RQ4: Can we study the role of 14-3-3 proteins and Nha1 antiporter based on imaging and
image analysis? Do results from other analysis confirm our result and thereby validate our
method?

We have used YeastAnalysis to address the role of 14-3-3 proteins and the Nha1 transporter
in the response of yeast cells under salt stress. 14-3-3 proteins are highly conserved eukaryotic
proteins binding to hundreds of different mostly phosphorylated proteins. Also the S. cere-
visiae 14-3-3 proteins, encoded by BMH1 and BMH2, bind to hundreds of phosphorylated
proteins [Heu95, Kak07, Heu09] and play a role in the regulation of many processes including
tolerance to NaCl [Pos00, Zah12]. Deletion of BMH1, encoding the major 14-3-3 isoform,
resulted in an increased sensitivity toNa+, Li+ and K+ and to cationic drugs [Zah12]. Testing
the genetic interaction between BMH genes and genes encoding plasma membrane cation
transporters revealed a genetic interaction between BMH1 and NHA1. In addition, using bi-
molecular fluorescence complementation (BiFC) a physical interaction between 14-3-3 proteins
and the Nha1 antiporter was shown. These results show that the yeast 14-3-3 proteins and an
alkali-metal cation efflux system interact and that this interaction enhances cell survival upon
salt stress [Zah12]. To further understand the role of 14-3-3 proteins and the Nha1 antiporter
in salt stress resistance, the effect of high externalNaCl concentration on the levels of these
proteins is studied here. Cultivation in the presence of 0.5 MNaCl resulted in an increased
level of both Bmh1-GFP and Bmh2-GFP. This observation is in line with a role of 14-3-3
proteins in tolerance to high environmental NaCl.

The results obtained by YeastAnalysis were further validated using Flow Cytometric analysis,
which were in good agreement. This validation suggests the beneficial advantage of using this
system in further gene expression analysis experiments.
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Summary

Image analysis of objects in the microscope scale requires accuracy so that measurements can
be used to differentiate between groups of objects that are being studied. This thesis deals with
measurements in yeast biology that are obtained through microscope images. We study the
algorithms and workflow of image analysis of yeast cells in order to understand and improve
the measurement accuracy. The Saccharomyces cerevisiae cell is widely used as a model
organism in the life sciences. It is essential to study the gene and protein behaviour within
these cells, and consequently making it possible to find treatment and solutions for genetic and
hereditary diseases. This is possible since many processes that occurs at the molecular level in
this organism are similar to those in human cells.

In the research group Imaging and Bioinformatics, we have developed a framework for
analysis of yeast cells. This framework is intended to serve as a support for research in
yeast biology. The framework is integrated in one application and presented via a GUI. The
application integrates modules and algorithms including segmentation, measurement, analysis
and visualization.

In Chapter 1, we present our research objective: i.e. the problem on how pattern recognition
systems can support objective analysis and phenotype characterization of single-cell in image-
based gene expression experiments. In addition, we offer a basic background and definitions
necessary to follow up in this thesis. Specifically, we introduce the necessary background about
cytomic studies and pattern recognition methods followed within our research.

In Chapter 2, we present a complete framework for image based experimental read-out in
yeast. This framework demonstrates how an automated platform based on a complete image
analysis pipeline can assist biologists in their experiments. Moreover, this chapter discusses
the individual modules that are integrated in the complete framework: i.e. including the
segmentation, measurement, data analysis as well as the GUI that combines these modules
together.

In Chapter 3, we discuss our novel approach to segmentation based on Hough transform
and minimal path algorithms. We show how these can improve the segmentation of ovoid
objects, i.e. yeast cells. We start by defining Hough transform and minimal path algorithms.
Subsequently we present our general approach to detect ovoid objects in microscope images
by detecting circular arcs using a variety of the Hough transform. In addition, we discuss the
application of minimal path algorithms to extract the exact contour of detected objects from a
polar representation of the image surrounding the object. Furthermore, this chapter presents an
additional novel algorithm to expand the extracted contours of ovoid objects. Such expansion is
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sometimes necessary settings due to the inherent fuzzy nature of edges and delicate microscope
settings. This chapter explains how the polar representation of images is used to expand the
initially detected contours by applying circular shortest paths. In addition, it explains the three
introduced parameters to control the expansion process. These parameters are resistance, limit
and convergence. Finally, results and comparison with other methods are evaluated using a
dataset of S. cerevisiae cells.

In Chapter 4, we specifically address machine learning where we introduce features to
be used in a machine learning approach to automatically identify cell groups cultivated in
two different media. We use the same approach to classify cell objects from atrefacts. First
we discuss the feature extraction techniques including first-order histogram features, texture
measurement, moment invariants, co-occurrence matrix based features and multi-scale wavelet-
based texture measurement. Subsequently, various classification methods are evaluated to build
a model imported into the yeast analysis platform. This model is trained for the automatic
discrimination of cell groups. This discrimination can be used to show that there are different
gene expression patterns between cells cultivated under different stress levels. Moreover, the
same classification methods are evaluated to build another model for the identification of cell
objects. This model is used to discriminate the segmented objects in images into intact cell
objects or artefacts such as debris and dead cells.

In Chapter 5, the designed image analysis platform is used in a case study to determine the
effect of sodium chloride on 14-3-3 genes including Bmh1 and Bmh2 in addition to the Nha1
antiporter. The study also includes a mutant of BMH1 (∆bmh1) to study the expression of Nha1
under different osmotic stress levels. The result obtained from using the yeast analysis software
is also validated with that obtained from flow cytometry.

In Chapter 6, we present conclusions and lessons learned from this research. Subsequently,
we give scope for further research and applications.



Samenvatting

Beeldanalyse van objecten op microscopische schaal vereist nauwkeurigheid opdat de metingen
uit de beeldanalyse kunnen worden gebruikt om te verschillen te vinden in groepen van objecten
die worden bestudeerd. Dit proefschrift gaat over metingen verkregen uit microscope beelden
gedaan zijn ten behoeve van onderzoek in de gistbiologie. Wij hebben algoritmes en workflow
van beeldanalyse van gist-cellen bestudeerd teneinde de meetnauwkeurigheid te begrijpen en
verbeteren. De Saccharomyces cerevisae (bakkersgist) cel is een algemeen gebruikt model
systeem in de levenswetenschappen. Het is essentieel het gedrag van genen en eiwitten in deze
cellen te bestuderen zodat het daarmee kan bijdragen aan het vinden van behandelingen en
oplossingen voor genetische en erfelijke ziekten. Dit is mogelijk omdat veel van de processen
die zich op het moleculiare niveau afspelen in de gistcel vergelijkbaar zijn met de processen in
de menselijke cel.

In de onderzoeksgroep Imaging & BioInformatica van het LIACS hebben we een platform
ontwikkeld voor het doen van beeldanalyse van gistcellen. Dit platform dient ter ondersteuning
van het gistbiologie onderzoek; het is ingebed in een softwaretoepassing en wordt bediend door
middel van een Grafische Gebruikers Omgeving. De softwaretoepassing integreert modules and
algoritmes voor segmentatie, metingen, data-analyse en visualisatie.

In hoofdstuk 1, wordt de motivatie voor het onderzoek uiteengezet, meer specifiek: hoe
kunnen systemem voor patroon herkenning worden ingezet voor het onderzoek naar genex-
pressie in cellen gebaseerd op beelden vekregen uit experimenten. Daarnaast presenteren we de
basis achtergronden en definities die nodig zijn voor de vervolghoofdstukken in dit proefschrift.
Daarbij wordt speciaal aandacht gegeven aan cytomics en methodieken uit patroonherkennen
zoals dezen zijn gebruikt in het beschreven onderzoek in dit proefschrift.

In hoofdtstuk 2 wordt een complete omgeving voor beeld-gebaseerd experimenteel gist on-
derzoek gepresenteerd. Deze omgeving demonstreert hoe een complete reeks van bewerkingen
(ook wel pipe-line genoemd) biologen kan helpen in het doen en verwerken van experimenten.
In dit hoofdstuk worden ook de afzonderlijke componenten geïntegreerd in de reeks van bew-
erkingen behandeld: te weten segmentatie, metingen, data analyse en het Grafische Gebruikers
Omgeving waarbinnen al deze componenten als een applicatie gepresenteerd worden.

In hoofdstuk 3 bespreken we onze nieuwe aanpak voor segmentatie waarbij gebruik gemaakt
wordt van de Hough Transformatie en minimale pad-lengte algoritmes. We laten zien hoe deze
algoritmes de segmentatie van ei-vormige (ovoide) objecten, zoals gist cellen, kan verbeteren.
We beginnen met een uitleg van de basis van de Hough Transformatie en minimale padlengte
algoritmen. Daarop presenteren we onze generieke aanpak om eivormige objecten te vinden
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in microscoop beelden door cirkelboogsegmenten te zoeken gebruikmakend van onze eigen
variant van het Hough Transformatie algoritme. Daarnaast gaan we in op het toepassen van
minimale padlengte algortimen om na een eerste schatting de exacte contour van de objecten
te vast te stellen. Hierbij wordt gebruik gemaakt van een polaire representatie van het deel
van het beeld waar het object is gevonden. Dit hoofdstuk beschrijft een additioneel algoritme
voor het verruimen van de gevonden contouren van de eivormige objecten. Een dergelijke
verruiming is soms nodig als gevolg van onduidelijkheid van de randen en ook door bepaalde
instellingen/keuzes in de microscopie. Eerst wordt uitgelegd hoe de polaire representatie van
de beelden wordt gebruikt om het initiëele resultaat te verbeteren door het toepassen van ons
circulaire kortste pad algoritme. Daarna wordt uitgelegd hoe, door gebruik te maken van drie
condities, dit proces precies gestuurd kan worden. Deze condities zijn: weerstand, limiet en
convergentie. Het hoofdstuk sluit af met een demonstratie van resultaten en vergelijkt deze
resultaten met andere methoden waarbij gebruik gemaakt wordt van een set van “test-beelden”
van S. cerevisiae cellen.

In hoofdstuk 4 gaan we specifiek in op de “machine learning” aspecten en we introduceren
de kenmerken die we gebruiken om, in een “machine learning” aanpak, automatisch groepen
van cellen te kunnen herkennen die gecultiveerd zijn in twee verschillende media. We gebruiken
eenzelfde aanpak om cellen te classificeren tegenover artefacten. We beginnen met het uitleggen
van technieken voor kermerk-extractie, waaronder eerste-orde histogram kenmerken, textuur
metingen, invariante momenten, co-occurent matrix kenmerken en multi-scale wavelet textuur
kenmerken. Daaropvolgend worden verschillende classificatie methoden geëvalueerd teneinde
een model te bouwen dat kan worden gebruikt in het platform dat we in Hoofdstuk twee hebben
geïntroduceerd. Dit model is getraind om de automatische de verschillende celgroepen te
kunnen herkennen. Deze automatische herkenning kan worden ingezet om te laten zien dat er
veschillende patronen van genexpressie zijn wanneer cellen in verschillende niveaus van stress
worden gecultiveerd. Dezelfde classificatie methoden worden bovendien geëvalueerd om cellen
te kunnen identificeren tegenover andere objecten. Op deze manier worden rommel en resten
van dode cellen gescheiden van levende cellen.

In hoofdstuk 5 wordt het beeldanalyse platform gebruikt in een toepassing waarbij het effect
van keukenzout (NaCl) wordt gedemonstreerd op de expressie van de 14-3-3 genen, te weten
Bmh1 en Bmh2, in samenhang met Nha1. In deze studie wordt daarnaast ook nog gebruik
gemaakt van een mutant-stam van het BMH1 gene waardoor de expressie van Nha1 onder
verschillende niveaus van osmotische stress kan worden bestudeerd. De resultaten die uit de
beeldanalyse zijn verkregen zijn gevalideerd met een complementaire study waarbij gebruik
gemaakt is van flow-cytometrie.

In hoofdstuk 6 sluiten we af met de conclusies en de lessen geleerd in dit onderzoek.
Tenslotte geven we een blik op de toekomst met suggesties voor verder onderzoek.
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