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Abstract 23 

 24 

Glucocorticoids are steroid hormones that are secreted upon stress. Their effects are mediated by 25 

the glucocorticoid receptor (GR) which acts as a transcription factor. Since the anti-inflammatory 26 

activity of glucocorticoids has been well established, they are widely used clinically to treat 27 

many inflammatory and immune-related diseases. However, the exact specificity, mechanisms 28 

and level of regulation of different inflammatory pathways have not been fully elucidated. In the 29 

present study, a tail fin amputation assay was employed in 3-day-old zebrafish larvae to study the 30 

immunomodulatory effects of the synthetic glucocorticoid beclomethasone. First, a 31 

transcriptome analysis was performed, which showed that upon amputation mainly immune-32 

related genes are regulated. This regulation was inhibited by beclomethasone for 86% of 33 

regulated genes. For two immune-related genes, tlr4bb and alox5ap, the amputation-induced 34 

increase was not attenuated by beclomethasone. Alox5ap is involved in eicosanoid biosynthesis, 35 

but the increase in LTB4 concentration upon amputation was abolished, and LXA4 levels were 36 

unaffected by beclomethasone. Furthermore, we studied the migration of neutrophils and 37 

macrophages towards the wound site. Our results show that amputation induced migration of 38 

both types of leukocytes, and that this migration was dependent on de novo protein synthesis. 39 

Beclomethasone treatment attenuated the migratory behavior of neutrophils in a GR-dependent 40 

manner, but left the migration of macrophages unaffected. In conclusion, beclomethasone has a 41 

dramatic inhibitory effect on the amputation-induced pro-inflammatory gene regulation, and this 42 

is reflected in an inhibition of the neutrophil migration, but not the migration of macrophages, 43 

which are likely to be involved in inflammation resolution.  44 



Introduction 45 

 46 

Glucocorticoids (GCs) regulate a wide range of biological processes, such as our immune 47 

response, metabolism, growth, reproduction, vascular tone, bone formation, and brain function 48 

(1-6). Because of their anti-inflammatory effects, they are widely used clinically for the 49 

treatment of many immune-related diseases, like asthma, rheumatoid arthritis and leukemia (7,8). 50 

These effects are mediated by the glucocorticoid receptor (GR), which acts as a ligand-activated 51 

transcription factor. In its inactive state, the GR resides within the cytoplasm, and upon GC 52 

binding it translocates to the nucleus, where it acts as a transcription factor and orchestrates gene 53 

expression (9). GRs may occupy glucocorticoid response elements (GREs) and recruit 54 

transcriptional coregulators, which results in a positive or negative regulation of the transcription 55 

rate of nearby target genes. GRs may also interact with other transcription factors, e.g. NF-κB or 56 

AP-1, and repress their activity (1,2,4,10-12). This mode of action has long been considered the 57 

main mechanism by which GCs exert their anti-inflammatory effects, since it results in a 58 

downregulation of the expression of a large number of inflammatory mediators (1,2,9-13). 59 

However, recent evidence shows that the picture appears to be more complex (14,15). For 60 

example, repression of genes is commonly a result of GRE occupancy as well, and GR 61 

interaction with transcription factors like NF-κB or AP-1 appears to enhance gene transcription 62 

in about half of all cases where this interaction was observed (14). 63 

Many in vitro and in vivo studies have been performed to elucidate the cellular and 64 

molecular pathways within the immune system that are affected by GR signaling (16,17). From 65 

these studies it appeared that GCs suppress inflammation by downregulating the expression of a 66 

wide variety of genes for pro-inflammatory cytokines (e.g. IL1β, IL6, TNFα), chemokines (e.g. 67 



CCL1, CXCL8), enzymes (e.g. iNOS, COX-2) and adhesion molecules (e.g. ICAM-1), while the 68 

gene expression of several anti-inflammatory mediators is upregulated (e.g. DUSP1, IκB, IL10, 69 

TGFβ, ANXA1, GILZ) (8,18-20). Furthermore, the synthesis of pro-inflammatory agents like 70 

prostaglandins, proteolytic enzymes, free oxygen radicals, and nitric oxide is also inhibited by 71 

GCs (18). However, several studies have revealed immunoenhancing effects of GCs, like the 72 

induction of Toll-like Receptor (TLR)2 and TLR4, the secretion of MIF (Macrophage Inhibitory 73 

Factor) and the upregulation of IL7Ra and serpinA3 (18,21,22).  74 

The aim of the present study is to establish and exploit a robust in vivo model to 75 

investigate in detail the molecular mechanism of the anti-inflammatory action of GCs. A better 76 

understanding of the complex interplay of GR with the different components of the immune 77 

response would be of great importance to improve GC therapies, since the clinical use of GCs is 78 

currently limited by the deleterious side effects and the occurrence of resistance to GC treatment 79 

(23,24). 80 

Over the last decade, the zebrafish has emerged in biomedical research as an important 81 

model system for a variety of human diseases (25-27). The zebrafish immune system remarkably 82 

resembles that of mammals (28), thus providing an excellent system for modeling various 83 

molecular and cellular elements of inflammation such as host-pathogen interactions during 84 

infectious diseases and immune cell migration to wound sites (29,30). In the present study, 85 

zebrafish larvae are used at three days post fertilization (dpf). At this stage, two types of 86 

leukocytes are present which constitute the innate immune system, macrophages and neutrophils 87 

(31-35). Cells representing the adaptive immune system, like lymphocytes, do not mature before 88 

the second week of zebrafish development (36-38). Furthermore, the zebrafish is used as a model 89 

organism for GC research (39-44). Zebrafish have a single GR gene which encodes a GR protein 90 



that upon activation mediates gene transcription in a similar way as its human equivalent 91 

(39,42,45-48). Local inflammation can be modeled in zebrafish by amputation of the tail fin of 92 

zebrafish larvae (49). Amputation induces the expression of many pro-inflammatory mediators at 93 

the wound site and migration of neutrophils and macrophages, towards the site of amputation 94 

(46,49-53). Interestingly, it has been demonstrated that this migration is inhibited by 95 

glucocorticoid treatment and therefore this model system enables studying of the anti-96 

inflammatory action of glucocorticoids in an in vivo situation (46,51). 97 

In the present study we have used the zebrafish tail fin amputation model to study 98 

glucocorticoid effects on changes in gene expression at the whole transcriptome level and 99 

associated leukocyte migration. Our results demonstrate that tail fin amputation affects the 100 

expression of a wide variety of genes, among which many inflammation-related ones, and that 101 

glucocorticoid treatment attenuates the vast majority of these changes. In contrast, glucocorticoid 102 

treatment specifically inhibits the migration of neutrophils towards the wounded area, but leaves 103 

macrophage migration unaffected.  104 



Materials & Methods 105 

 106 

Zebrafish, husbandry & egg collection 107 

Zebrafish were maintained and handled according to the guidelines from the Zebrafish Model 108 

Organism Database (ZFIN, http://zfin.org) and in compliance with the directives of the local 109 

animal welfare committee of Leiden University. Fertilization was performed by natural spawning 110 

at the beginning of the light period and eggs were raised at 28.5°C in egg water (60μg/ml Instant 111 

Ocean sea salts supplemented with 0.0025% methylene blue (GUUR)). The grs357 mutant line 112 

(previously described by Ziv et al. (54) was provided by Dr. H. Baier (Max Planck Institute of 113 

Neurobiology, Martinsried, Germany). 114 

 115 

Tail amputation &chemical treatments 116 

Three-day-old embryos were anesthetized in egg water containing 0.02% buffered aminobenzoic 117 

acid ethyl ester (tricaine, Sigma) and aligned in Petri dishes coated with 2% agarose for 118 

subsequent partial amputation of the tail fin as shown in Fig.1A. Amputation was performed 119 

using a 1mm sapphire blade (World Precision Instruments) using a Leica M165C stereo-120 

microscope and a micromanipulator. Amputated and non-amputated embryos were pretreated for 121 

2h with either 25μM beclomethasone (Sigma) or vehicle (0.05% DMSO) prior to amputation and 122 

again for a specified period of time after amputation. The relatively high dose of beclomethasone 123 

was chosen based on studies by Mathew et al. (51), who showed this dose to be maximally 124 

effective in zebrafish. Cycloheximide treatment (50 µg/ml, Sigma) was performed similarly. For 125 

gene expression analysis samples were collected in TRIzol® reagent (Invitrogen), for ELISA 126 

http://zfin.org/


samples were snap frozen in liquid nitrogen, and for migration studies samples were fixed in 4% 127 

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and stored at 4°C.  128 

 129 

RNA isolation & cDNA synthesis 130 

Total RNA was extracted using TRIzol® reagent (Invitrogen) according to the manufacturer’s 131 

instructions (Invitrogen). RNA was dissolved in water and denatured for 5min at 60°C. Samples 132 

were treated with DNAse using the DNA-free™ kit (Ambion). For microarray analysis, RNA 133 

was further purified using the RNeasy MinEluteTM Cleanup kit from Qiagen and its integrity was 134 

checked with a lab-on-chip analysis using the 2100 Bioanalyzer (Agilent Technologies). For 135 

subsequent cDNA synthesis, 1μg of total RNA was added as a template for reverse transcription 136 

using the iSCRIPTTM cDNA Synthesis Kit (Biorad). 137 

 138 

Microarray design 139 

A 4x180k microarray chip platform (customized by Agilent Technologies, (Design ID:028233)) 140 

was used in this study. This array consists of all probes already present in an earlier 45.219 141 

custom-made array (55), and another 126.632 newly designed zebrafish probes had been added 142 

as described in (56). A total of 16 samples (4 experimental groups from 4 replicate experiments) 143 

were processed for transcriptome analysis and were hybridized against a common reference 144 

sample, consisting of a mixture of all samples used in this study.  145 

 146 

Microarray amplification & labeling 147 

Amplification and labeling of RNA was performed at the MicroArray Department (MAD) of the 148 

University of Amsterdam (Amsterdam, The Netherlands). Per sample, 0.5μg total RNA was 149 



amplified and combined with Spike A according to the Agilent Two-Color Microarray-Based 150 

Gene Expression Analysis kit (Agilent technologies). As a common reference sample an 151 

equimolar pool of all test samples was made and 0.5μg samples were amplified similarly as the 152 

test samples with the exception that Spike B was used. Amino-allyl modified nucleotides were 153 

incorporated during the aRNA synthesis (2.5mM of each GTP, ATP, UTP (GE Healthcare), 154 

0.75mM CTP (GE Healthcare), 0.3mM AA-CTP (TriLink Biotechnologies)). Synthesized aRNA 155 

was purified with the E.Z.N.A. MicroElute RNA Clean Up Kit (Omega Bio-Tek). The quality 156 

was inspected on the BioAnalyzer (Agilent Technologies) with the Agilent RNA 6000 kit 157 

(Agilent Technologies). Test samples were labeled with Cy3 and the reference sample was 158 

labeled with Cy5. Five μg of aRNA was dried out and dissolved in 50mM carbonate buffer pH 159 

8.5. Individual vials of Cy3/Cy5 from the mono-reactive dye packs (GE Healthcare) were 160 

dissolved in 200μl DMSO. To each sample, 10μl of the appropriate CyDye dissolved in DMSO 161 

was added and the mixture was incubated for 1h. Reactions were quenched with the addition of 162 

5μl 4M hydroxylamine (Sigma-Aldrich). The labeled aRNA was purified with the E.Z.N.A. 163 

MicroElute RNA Clean Up Kit. Yields of aRNA and CyDye incorporation were measured on the 164 

NanoDrop ND-1000. 165 

 166 

Microarray hybridization, scanning & data processing 167 

Each hybridization mixture was made up from 825ng Test (Cy3-labeled) and 825ng Reference 168 

(Cy5-labeled) material. Hybridization mixtures were using the Agilent Two-Color Microarray-169 

Based Gene Expression Analysis kit according to the manufacturer’s instructions (Agilent 170 

technologies). The samples were loaded onto the microarray chips and hybridized for 17h at 171 

65°C. Afterwards the slides were washed and scanned (20 bit, 3µm resolution) in an ozone-free 172 



room with the Agilent G2505C scanner. Data was extracted with Feature Extraction (v10.7.3.1, 173 

Agilent Technologies) with the GE2_107_Sep09 protocol for two-color Agilent microarrays. 174 

The Agilent output from the 16 hybridizations was then imported into the Rosetta Resolver 7.2 175 

software (Rosetta Biosoftware, Seattle, Washington) and subjected to a factorial design with a 176 

re-ratio with common reference application. Data analysis was performed setting cutoff for the p-177 

value of <10-10 and for fold change of either >2 or <-2. The raw data were submitted to the Gene 178 

Expression Omnibus (GEO) database under accession number GSE69444. 179 

 180 

Gene Ontology analysis 181 

Gene ontology analysis of the microarray results was performed as described previously (44). As 182 

a starting point, clusters of genes were analyzed using the online functional classification tool 183 

DAVID (http://david.abcc.ncifcrf.gov/summary.jsp). In addition, for genes not classified by 184 

DAVID, information was gathered on their function (using the websites GeneCards 185 

(http://www.genecards.org/), NCBI (http://www.ncbi.nlm.nih.gov/gene), Genetics Home 186 

Reference (http://www.ncbi.nlm.nih.gov/gene) and Wikipedia (http://en.wikipedia.org/wiki/). 187 

Using this information, all genes were classified in one of the categories assigned by DAVID, or 188 

in a new category. 189 

 190 

Quantitative Polymerase Chain Reaction (qPCR)  191 

QPCR analysis was performed using the MyiQ Single-Color Real-Time PCR Detection System 192 

(Biorad). PCR reactions were performed in a total volume of 25μl containing 6.5μl diluted 193 

cDNA, 1μl forward and reverse primer (10μM) and 12.5μl of 2x iQ™ SYBR® Green Supermix 194 

(Biorad). Cycling conditions were 95°C for 3min, followed by 40 cycles of 15sec at 95°C, 30sec 195 

http://david.abcc.ncifcrf.gov/summary.jsp
http://www.genecards.org/
http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
http://en.wikipedia.org/wiki/


at 60°C and 30sec at 72°C. Ct values (cycle number at which a threshold value of the 196 

fluorescence intensity was reached) were determined for each sample. A dissociation protocol 197 

was added, determining dissociation of the PCR products from 65°C to 95°C, allowing 198 

discrimination of specific products. In all qPCR experiments, a water-control was included. Data 199 

shown are means (± s.e.m.) of four individual experiments. In each experiment, cDNA samples 200 

were assayed in duplicate. Sequences of all primers used for qPCR analysis are presented in 201 

Suppl. Table 1, and a phylogenetic tree showing all zebrafish arachidonate lipoxygenase (alox) 202 

genes is shown in Suppl.Fig.1. 203 

 204 

LTB4 and LXA4 ELISA 205 

For each data point, six samples (20 larvae each) were collected. All liquid was removed and 206 

samples were snap frozen in liquid nitrogen. For ELISA, 250µl 1x PBS and 0.2 SSB02 stainless 207 

steel beads (Next advance) were added to each sample. Larvae were homogenized using the 208 

Bullet blender® (Next advance) for 3min on speed 8. The samples were then centrifuged at 3500 209 

rpm for 5min. The supernatant was collected and centrifuged again at 5000 rpm for 5 min after 210 

which the supernatant was collected again. An LTB4 ELISA kit (Enzo Life Sciences), and LXA4 211 

ELISA kit (Cloud-Clone) were used according to the manufacturer’s instructions. All samples 212 

were measured in duplicate (100 µl used per measurement), and the data from the duplicates was 213 

averaged. Data shown are the averages (± s.e.m.) from six replicates. 214 

 215 

 216 

 217 



Myeloperoxidase staining and whole mount immunohistochemistry for visualization of 218 

macrophages and neutrophils 219 

Embryos were fixed in 4% PFA overnight at 4°C and following washes with PBS containing 220 

0.1% Tween 20 (PBST), the Myeloperoxidase (mpx) activity was detected using the Leukocyte 221 

Peroxidase kit (Sigma) according to the manufacturer’s instructions. Mpx staining was always 222 

performed prior to L-plastin immunohistochemistry. For this purpose, embryos were washed in 223 

PBST, gradually dehydrated with methanol in PBS and stored in 100% methanol overnight at 224 

4°C. The next day embryos were rehydrated with graded series of methanol in PBS containing 225 

0.8% Triton X-100 (PBS-TX) and incubated with 10μg/ml Proteinase K (Roche) for 10min at 226 

37°C. Embryos were then incubated in PBS-TX blocking buffer (containing 1% BSA) for 2h at 227 

RT and subsequently in blocking buffer containing a rabbit anti-L-plastin polyclonal antibody 228 

(provided by Dr. A. Huttenlocher (57), 1:500 dilution) overnight at 4°C. Following washes with 229 

PBS-TX, embryos were incubated again in blocking buffer for 1h at RT prior to incubation with 230 

goat anti-rabbit Alexa Fluor® 568 dye–labeled secondary antibody (Invitrogen) for 2h at RT 231 

(1:200 dilution in blocking buffer).  232 

Imaging of the embryos was performed using a Leica MZ16FA fluorescence stereo-233 

microscope supported by the LAS version 3.7 software. Macrophages were detected based on the 234 

red fluorescent labeling by the immunohistochemistry and neutrophils were detected based on 235 

their dark brown appearance as a result of the Mpx assay (although they are stained by both 236 

methods, the L-plastin immunolabeling is hard to detect in these cells due to the dark staining of 237 

the Mpx assay). To determine the number of cells that had migrated to the wounded area, the 238 

cells posterior to the caudal vein were counted (see also Suppl.Fig.6). Data shown are means (± 239 



s.e.m.) of three individual experiments. In each experiment, treatment groups consisted of at least 240 

20 larvae. 241 

 242 

Statistical analysis 243 

Statistical analyses (one- or two-way ANOVAs with Bonferroni post-hoc tests) were performed 244 

using the GraphPad Prism version 4.00 (GraphPad Software, La Jolla, USA).  245 



Results 246 

Analysis of GC effects on the transcriptional response to wounding using the zebrafish tail 247 

fin amputation assay 248 

In order to study the anti-inflammatory action of GCs in zebrafish, we set up a tail fin amputation 249 

assay using 3 day post fertilization (dpf) larvae that were exposed to either vehicle or the 250 

synthetic GC beclomethasone (25μM) for 2h. Tail fins were amputated and vehicle or 251 

beclomethasone treatment was continued. Total RNA samples were collected at 4 h post 252 

amputation (hpa). This way, four experimental groups were generated: control  treated with 253 

vehicle (con/vehicle), amputated treated with vehicle (4hpa/vehicle), control treated with 254 

beclomethasone (con/beclo), and amputated treated with beclomethasone (4hpa/beclo). The 255 

samples were used in a microarray experiment to analyze the transcriptional response to 256 

wounding as well as how this response was affected by beclomethasone treatment. 257 

 258 

The effects of amputation on gene transcription  259 

First, we identified 380 probes to be significantly regulated due to amputation (comparison 260 

con/vehicle vs. 4hpa/vehicle). Gene annotation demonstrated that these probes corresponded to 261 

279 genes, of which 201 were upregulated and 78 downregulated due to amputation. Gene 262 

ontology analysis revealed that 31 genes in this cluster were involved in the immune system. Of 263 

these 31 genes, 3 encoded anti-inflammatory proteins, 9 were involved in chemokine or cytokine 264 

signaling, and 4 were involved in prostaglandin or leukotriene signaling. Furthermore, 29 genes 265 

encoding transcription factors (or other proteins involved in transcriptional regulation) were 266 

present in this amputation-regulated cluster. The two most strongly upregulated transcription 267 

factor genes (fos and atf3) are both members of the AP-1 transcription factor family, and another 268 



member of this family (mafk) was upregulated as well. Several other genes encoding 269 

transcription factors known to activate immune-related genes, like irf9 and stat3 were also 270 

upregulated. Genes involved in metabolic processes also formed a large gene ontology group 271 

within this cluster, and were represented by 25 genes. Of these genes, 8 were involved in 272 

carbohydrate metabolism, 14 in protein metabolism and 2 in lipid metabolism. An overview of 273 

the gene ontology analysis is presented in Fig.1B, and detailed information is presented in 274 

Suppl.Table2.  275 

 276 

The effects of beclomethasone on gene transcription  277 

Subsequently, we investigated which genes responded to beclomethasone treatment in non-278 

amputated larvae. A cluster of 927 probes was identified to be significantly regulated due to 279 

beclomethasone treatment (comparison con/vehicle vs. con/beclo). Gene annotation 280 

demonstrated that these probes corresponded to 506 genes (Fig.1B), of which 420 were 281 

upregulated and 86 downregulated due to beclomethasone. Gene ontology analysis showed that 282 

90 genes in this cluster were involved in metabolic processes, of which 19 in the metabolism of 283 

carbohydrates, 28 in protein metabolism, and 13 in lipid metabolism. Other gene ontology 284 

groups overrepresented in this cluster were those containing genes involved in membrane 285 

transport (37 genes), cell cycle and apoptosis (30), and genes encoding transcription factors (30). 286 

An overview of the gene ontology analysis of this cluster is presented in Suppl.Fig.2A and B, 287 

and detailed information is presented in Suppl.Table3. A number of 32 genes were present in 288 

both the amputation- and the beclomethasone-regulated cluster of genes (Fig.1C and 289 

Suppl.Table3). This cluster may represent the genes that are regulated upon amputation due to 290 

increased cortisol levels. 291 



 292 

The effects of amputation and beclomethasone on gene transcription  293 

Next, we were interested in genes that were significantly changed due to the combination of 294 

amputation and beclomethasone treatment (comparison con/vehicle vs. 4hpa/beclo). We 295 

identified 1075 probes to be significantly regulated and gene annotation revealed that these 296 

probes corresponded to 594 genes, of which 459 were upregulated and 135 were downregulated. 297 

Gene ontology analysis demonstrated that this cluster very much resembles the beclomethasone-298 

regulated gene cluster. For example, the largest gene ontology group were the genes involved in 299 

metabolism (Suppl.Fig.2A and B and Suppl.Table4), and 315 genes from the cluster of 506 300 

beclomethasone-regulated genes were present in this cluster as well (Fig.1C). In contrast, only 61 301 

genes from the cluster of 279 amputation-regulated genes were present in this cluster (Fig.1C). 302 

Apparently, gene regulation by amputation is attenuated by beclomethasone treatment.  303 

To study how beclomethasone changes the amputation-induced changes in gene 304 

expression, we plotted the level of regulation by amputation and beclomethasone (comparison 305 

con/veh vs. amp/beclo) against the regulation by amputation (comparison con/veh vs. amp/veh) 306 

for all probes significantly regulated upon amputation (Fig.2). The resulting scatter plot shows 307 

that of all probes regulated by amputation, 86% shows an attenuation of this regulation upon 308 

amputation in the presence of beclomethasone. This indicates that beclomethasone has a 309 

dramatic inhibitory effect on the amputation-induced changes in gene expression, affecting 310 

almost the entire transcriptional response to amputation. For comparison, a similar plot was 311 

made in which the level of regulation by amputation and beclomethasone (comparison con/veh 312 

vs. amp/beclo) was plotted against the regulation by beclomethasone (comparison con/veh vs. 313 

con/beclo). This plot (Suppl.Fig.3) shows that the regulation by beclomethasone was attenuated 314 



upon amputation and beclomethasone treatment in only 62% of probes. Thus, the effect of 315 

beclomethasone on amputation-induced changes is much stronger than the effect of amputation 316 

on the total group of beclomethasone-regulated genes. 317 

 The regulation of immune system-related genes by amputation and beclomethasone was 318 

subsequently studied in more detail. Of the 31 immune-related genes that were regulated by 319 

amputation, we plotted the regulation by amputation (con/veh vs. amp/veh), beclomethasone 320 

(con/veh vs. con/beclo), and the combination of amputation and beclomethasone (con/veh vs. 321 

amp/beclo). As expected, the results show that most amputation-induced changes in immune 322 

gene expression are attenuated upon amputation in the presence of beclomethasone (Fig.3). By 323 

means of qPCR, the regulation of 4 immune-related genes was verified (Suppl.Fig.4). 324 

Additionally, we plotted the regulation of the 29 transcription factor genes that were observed to 325 

be induced by amputation (Suppl.Fig.5). The induction of only 6 transcription factor genes was 326 

resistant to beclomethasone treatment. Of the 23 other transcription factor genes (among which 327 

many known to have pro-inflammatory action) the induction was attenuated by beclomethasone. 328 

For 4 immune-related genes the induction upon amputation was not attenuated by 329 

beclomethasone treatment. Of these 4 genes, 2 encoded anti-inflammatory proteins (cd22 and 330 

anxa1a), and 2 encoded pro-inflammatory proteins (alox5ap and tlr4bb). 331 

 332 

The effects of amputation and beclomethasone on leukotriene biosynthesis 333 

The observed regulation of the alox5ap (arachidonate 5-lipoxygenase-activating protein) gene is 334 

particularly interesting since Alox5ap activates the Alox5 protein. Alox5 is  known to be 335 

involved (together with Leukotriene A4 hydrolase (Lta4h)) in the biosynthesis of Leukotriene B4 336 

(LTB4), which plays an important role as a chemoattractant for leukocyte migration 337 



(biosynthesis pathway shown in Fig.4A). Therefore, it was studied whether the observed alox5ap 338 

gene regulation was translated into altered LTB4 levels. An LTB4 ELISA was performed on 339 

homogenates taken from control and amputated larvae in the absence and presence of 340 

beclomethasone at 4hpa. The results show an almost three-fold increase in LTB4 concentration 341 

upon amputation, and interestingly this increase is abolished in the presence of beclomethasone 342 

(Fig.4B).  343 

Subsequently, we studied whether transcriptional regulation of the expression of enzymes 344 

involved in the LTB4 biosynthesis pathway could explain the alterations in LTB4 levels. For this 345 

purpose, we determined mRNA levels for alox5ap, alox5a, and lta4h using qPCR (alox5b.1-3 346 

mRNA levels were too low to be detected by qPCR). The regulation of the alox5ap gene as 347 

observed in the microarray was verified (Fig.4C). Furthermore, alox5a and lta4h mRNA levels 348 

were decreased by amputation, and beclomethasone increased the expression of lta4h (Fig.4D 349 

and E). Thus, although the amputation-induced increase in alox5ap mRNA expression (observed 350 

in the microarray and confirmed by qPCR) was not inhibited by beclomethasone, the increase in 351 

LTB4 levels upon amputation was blocked by beclomethasone treatment. This discrepancy could 352 

not be explained by the regulation of other genes involved in the LTB4 biosynthesis. 353 

Alternatively, beclomethasone may regulate eicosanoid biosynthesis downstream of 354 

LTA4 as well, and could for example stimulate conversion of LTA4 to lipoxinA4 (LXA4) 355 

(pathway shown in Fig.5A). An LXA4 ELISA was performed to test this hypothesis. The results 356 

showed that amputation decreased the LXA4 concentrations and that beclomethasone did not 357 

affect this decrease (Fig.5B), thereby falsifying the hypothesis. Expression of three genes 358 

involved in this pathway, alox12, alox12b and alox15b, determined by qPCR could explain the 359 



LXA4 data (Figs.5C-D). The qPCR results showed that amputation decreases the expression of 360 

these genes and this decrease is only affected by beclomethasone for alox12.  361 

 362 

The tail fin amputation assay to study GC effects on leukocyte migration  363 

Previous studies in zebrafish larvae have shown that leukocytes migrate to wound sites, 364 

representing an inflammatory response, and that this response is impaired upon treatment with 365 

GCs (46,51). In order to study this in more detail, tail fins were amputated upon vehicle or 366 

beclomethasone treatment as described above. Larvae were fixated at 0, 2, 4, 8, 16 and 24hpa 367 

and neutrophils and macrophages were labeled and counted. To determine the number of cells 368 

that had migrated to the wounded area, cells posterior to the caudal vein were counted (area 369 

indicated by the red box in Fig.6A). 370 

In order to label the populations of neutrophils and macrophages in 3dpf larvae we 371 

employed Myeloperoxidase (Mpx) histochemistry, followed by immunofluorescent labeling of 372 

L-plastin. At this stage of development two populations of leukocytes are present: neutrophils, 373 

which are Mpx- and L-plastin-positive, and macrophages, which are Mpx-negative and L-374 

plastin-positive (31,33-35,58). Although neutrophils are stained by both methods, the L-plastin 375 

immunofluorescence is hard to detect in these cells due to the dark staining of the Mpx assay 376 

which hides the fluorescent signal. Using this approach, the number of macrophages and 377 

neutrophils were determined in the tail fins at different time points upon amputation. The results 378 

showed that macrophages migrated more to the posterior end of the tail where they appeared to 379 

line up at the actual wound site, whereas neutrophils were more randomly located in the vicinity 380 

of the wound (Fig.6B and 6C). 381 

 382 



The effect of GC treatment on amputation-induced leukocyte migration  383 

The results of the experiment described above revealed that both neutrophils and macrophages 384 

migrate towards the wounded area, but that their migratory behavior and response to 385 

beclomethasone are remarkably different. Analysis of our data revealed a migratory response of 386 

macrophages over time (as shown by a significant effect of time in an ANOVA (p<0.001)), but 387 

no effect of beclomethasone treatment was observed (Fig.7A). Macrophage migration increased 388 

rapidly after amputation, especially in the first 2 hours (9.7 ± 0.2 at 2hpa versus 4.0 ± 0.1 0hpa), 389 

and no decline was observed until 24hpa. For neutrophils, a migratory response was observed as 390 

well, which was inhibited by beclomethasone treatment (as shown by significant effects of time 391 

and beclomethasone treatment (both p<0.001)). Neutrophil migration reached a peak at 4hpa (7.4 392 

± 2.0 cells compared to 0.6 ± 0.1 at 0hpa) and rapidly decreased after this time point to 3.4 ± 0.6 393 

at 8hpa after which it remained stable at this level until 24hpa (Fig.7B). Beclomethasone 394 

treatment had a significant inhibitory effect on the neutrophil migration at 4hpa (4.3 ± 0.4 cells in 395 

the presence of beclomethasone). Based on these results, we concluded that both neutrophils and 396 

macrophages migrate towards wound sites, but that beclomethasone exhibits an inhibitory effect 397 

only on neutrophil migration. To establish whether beclomethasone specifically affects the 398 

migration of neutrophils rather than their total number, cells in the entire tail fin area (posterior 399 

to the yolk extension) were counted. The results of these countings did not show any significant 400 

difference in the number of neutrophils between vehicle- and beclomethasone-treated larvae 401 

upon amputation (Suppl.Fig.7), indicating a specific effect of beclomethasone on the neutrophil 402 

migration towards the wound site. 403 

In order to study whether the inhibition of neutrophil migration by beclomethasone was 404 

mediated by the GR, a mutant line grs357 was used which has a point mutation in the gene 405 



encoding the GR. This mutant receptor has been shown in in vitro studies to be unable to 406 

regulate gene transcription (54). Using this mutant line, neutrophil migration at 4hpa was 407 

determined in the absence and presence of beclomethasone. The results showed that 408 

beclomethasone had no effect on neutrophil migration in the mutant larvae (Fig.7C), indicating 409 

that the beclomethasone effect on the migration of neutrophils is mediated by the GR. 410 

Looking for differences between neutrophil and macrophage migration which may help 411 

to explain the difference in glucocorticoid responsiveness, we studied whether this migration was 412 

dependent on de novo protein synthesis. For this purpose, we administered the protein synthesis 413 

inhibitor cycloheximide and studied the effect of this treatment on macrophage and neutrophil 414 

migration at 4hpa (Fig.7D). Cycloheximide appeared to significantly inhibit both the 415 

macrophage and the neutrophil migration (as shown by a significant effect of treatment in an 416 

ANOVA (p=0.007 and p=0.013 respectively)). Apparently, the migration of both macrophages 417 

and neutrophils upon amputation depends on de novo protein synthesis.  418 

 In summary, macrophage migration appears to be dependent on de novo protein synthesis 419 

and is not inhibited by beclomethasone treatment. Therefore, macrophage migration must be 420 

dependent on the upregulation of genes of which this upregulation is not inhibited by 421 

beclomethasone. The most likely candidates are the four immune-related genes cd44, alox5ap, 422 

anxa1 and tlr4bb.  423 



Discussion 424 

 425 

In the present study, we have used zebrafish larvae in order to study the effects of GC signaling 426 

on the inflammatory response to tail fin amputation, both at the molecular and the cellular level. 427 

First, we looked for transcriptional changes at 4hpa and we identified 279 genes of which the 428 

expression was significantly altered upon amputation. The largest gene ontology group in this 429 

cluster of genes was formed by genes involved in the immune system, indicating that many of 430 

the observed changes are related to the induction of an inflammatory response. In a similar study 431 

by Yoshinari et al. (59), in which 2dpf embryos were tail fin amputated and samples were 432 

collected at a much later time point (16hpa), transcriptome analysis revealed that the largest 433 

fraction of regulated signaling routes were metabolic pathways (40%) and only a small fraction 434 

(2%) of signaling cascades regulated were immune-related. Thus, it appears that at 4 hours after 435 

injury, immune-related pathways are heavily activated at the transcriptional level, while 12 hours 436 

later amputation-induced changes in gene expression no longer reflect an inflammatory response. 437 

This is in line with the observed decline in neutrophil migration after 4hpa in our study. The 438 

second largest group was formed by genes encoding transcription factors, encompassing 439 

members of the AP-1 family and several other pro-inflammatory transcription factors.  440 

In contrast, in the presence of beclomethasone the transcriptional response to amputation 441 

is dramatically inhibited. From the 279 genes regulated by amputation, only 61 were still 442 

significantly regulated in the presence of beclomethasone, and for 86% of all amputation-443 

regulated probes an attenuated response to amputation was observed in the presence of 444 

beclomethasone. It must be noted that our data show that in general the transcriptional responses 445 

to tail fin injury are not completely blocked by beclomethasone, but that they are dampened. 446 



When we focused on the regulation of immune-related genes, it was found that the amputation-447 

induced regulation of only 4 genes was not attenuated by beclomethasone. Two of those genes, 448 

cd22 and anxa1a, are known to encode anti-inflammatory genes, but the other two, tlr4bb and 449 

alox5ap, encode proteins considered to be pro-inflammatory.  450 

In human cells, GCs have been shown to alter TLR signaling at different levels (60). The 451 

expression of the human tlr4 gene (like the trl2 gene) has been shown to be positively regulated 452 

by GCs in multiple human cell types in vitro (21,61). However, since GCs suppress the 453 

downstream signaling of these receptors, e.g. by inducing MKP-1 and GILZ/TCS22D1 or 454 

inhibiting transcription factors like AP-1, NF-κB and IRF (60), it has been argued that GCs 455 

ready the innate immune system by increasing the expression of TLRs, but repress inflammation 456 

by inhibiting the downstream signaling of these receptors (16). TLR ligands have been shown to 457 

stimulate cortisol secretion in mouse and human adrenal cells, which is abolished in TLR4-458 

deficient mice. It has therefore been suggested that the induction of tlr2 and tlr4 in the adrenal 459 

glands by GCs serves as a positive feedback loop, resulting in an increased cortisol release upon 460 

exposure to TLR ligands, which will eventually elicit mainly anti-inflammatory effects (60). 461 

Alox5ap is the activating protein for the enzyme alox5 which catalyzes the conversion of 462 

arachidonic acid (AA) into 5(S)-hydroperoxyeicosatetraenoic acid (5-HPETE) and LTA4 that 463 

can further be converted into LTB4, which plays an important role in the inflammatory response 464 

by acting as a chemoattractant for leukocytes. In several human and rat cell types, the expression 465 

of Alox5 and/or Alox5ap has been shown to be increased at the mRNA and protein level by 466 

dexamethasone treatment (62-65). However, the effect of GC treatment on the synthesis of pro-467 

inflammatory eicosanoids like LTB4 is less clear. In several in vivo and ex vivo studies on cells 468 

from human asthma patients, either no effect of GC treatment or a decrease in the concentration 469 



of eicosanoids like LTB4 was observed (66-68). In line with these data, we found that the 470 

amputation-induced increase in LTB4 concentration was inhibited by beclomethasone, although 471 

the steroid did not clearly affect the transcriptional regulation of proteins involved in LTB4 472 

biosynthesis. We also studied whether GCs stimulate conversion of LTA4 to lipoxinA4 (LXA4), 473 

an anti-inflammatory lipid which could contribute to the resolution of the inflammatory response 474 

(69,70). It was found that GCs did not affect LXA4levels, and did not have a clear effect on the 475 

mRNA levels of genes involved in LXA4 biosynthesis. Apparently, the LXA4 pathway is not a 476 

target for GCs, whereas LTB4 induction is inhibited by GCs. 477 

Finally, we examined the effect of GC treatment on the migration of leukocytes towards 478 

injured sites. Our analysis showed that beclomethasone treatment had a significant inhibitory 479 

effect only on the migration of neutrophils. Hence, the zebrafish model recapitulates the 480 

inhibitory effects of glucocorticoids on neutrophil migration towards inflamed tissues, that have 481 

been well established in mammalian models (71). However, macrophage migration was not 482 

inhibited by beclomethasone, in line with previously observed GC effects on leukocytes in 3dpf 483 

zebrafish larvae that were shown to be specifically suppressive regarding the recruitment of 484 

neutrophils but not of macrophages (51). It must be noted that macrophages are not a 485 

homogeneous cell population, but rather encompass distinct phenotypes. Macrophages with pro-486 

inflammatory activities are generally called M1 and those displaying anti-inflammatory action, 487 

thereby encouraging tissue repair, are called M2 (72). Interestingly, it has been shown that GC 488 

exposure induced a gene expression profile in human monocytes in which not only expression of 489 

pro-inflammatory genes was inhibited, but moreover expression of anti-inflammatory genes was 490 

induced (73). GC treatment has been shown to induce a highly phagocytic monocyte-derived 491 

macrophage phenotype, characterized by an increased expression of the scavenger receptor 492 



CD163 (73,74). We therefore suggest that the lack of effect of beclomethasone on macrophage 493 

migration should not be interpreted as a pro-inflammatory pathway that is resistant to GC 494 

treatment. However, GCs may induce differentiation of these macrophages towards an anti-495 

inflammatory phenotype, which may contribute to the resolution of the inflammation (75). 496 

Interestingly, in a recent study it has been shown that Anxa1 is able to recruit monocytes, by 497 

signaling through ALX/FPR2, which is the receptor for LXA4 (76). This suggests that the 498 

amputation-induced upregulation of anxa1 in our study which is not inhibited by beclomethasone 499 

may play an important role in the chemoattraction of macrophages. 500 

In summary, the zebrafish embryonic model of tail fin amputation and GC treatment 501 

constitutes a suitable system for studying GR signaling with respect to the innate immune 502 

response. In our model GCs appear to have a suppressive effect on the large majority of changes 503 

in gene transcription at 4hpa, which are mainly pro-inflammatory in nature, and this suppressive 504 

effect is reflected in a decreased neutrophil migration after 4hpa. Macrophage migration is not 505 

inhibited by GC treatment, and this migration may be a result of Anxa1 upregulation and 506 

increased production of anti-inflammatory eicosanoids. As a result, these macrophages may 507 

rather act anti-inflammatory, thereby resolving inflammation.  508 
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Figure legends 705 

Figure 1. A. The tail fin amputation assay. Schematic drawing of a zebrafish larvae at 3dpf, 706 

indicating the site of the tail fin amputation (red line).  B. Analysis of microarray experiment. 707 

Gene ontology groups represented in the clusters of genes regulated upon amputation. The 708 

results show that amputation mainly regulated genes involved in the immune system, genes 709 

encoding transcription factors, and genes involved in metabolism. Details on individual genes are 710 

presented in Suppl.Table2. C. Venn diagram showing overlaps between clusters of genes 711 

significantly regulated by amputation (amp), beclomethasone (beclo) and the combined 712 

amputation/beclomethasone treatment (amp+beclo). The diagram shows that there is a large 713 

overlap between the cluster of beclo-regulated genes and amp+beclo-regulated genes, but very 714 

little overlap between the amp-regulated cluster and the amp+beclo-regulated cluster. Data 715 

analysis was performed setting cutoffs for the p-value of <10-10 and for fold change of either >2 716 

or <-2 717 

 718 

Figure 2. Scatter plot showing the effect of beclomethasone treatment on amputation-induced 719 

alterations in gene expression. For all 2539 probes showing significant regulation upon 720 

amputation (comparison con/vehicle vs. 4hpa/vehicle, cutoff for the p-value of <10-10 and no 721 

cutoff for fold change), the fold change due to beclomethasone and amputation treatment 722 

(con/vehicle vs. 4hpa/beclo) was plotted as a function of the fold change due to amputation 723 

(con/veh vs. 4hpa/veh). The grey dashed line indicates the point at which beclomethasone 724 

treatment does not affect amputation-induced changes. Of the 2539 probes showing regulation 725 

by amputation (upregulation at right side of y-axis, downregulation at left side of y-axis), 86% 726 

shows an attenuation of this regulation in the presence of beclomethasone (indicated by red 727 



markers, probes of which the regulation is not attenuated by beclomethasone are indicated by 728 

green markers). These results show that in the vast majority of cases beclomethasone dampens 729 

the effects of amputation on gene expression. 730 

 731 

Figure 3. Regulation of genes involved in the immune system, determined using microarray 732 

analysis. For all 31 genes of which at least one probe was regulated significantly upon 733 

amputation, the average fold change due to amputation (amp, black bars), beclomethasone 734 

(beclo, black bars) and the combined amputation/beclomethasone treatment (amp+beclo, grey 735 

bars) was determined by averaging the fold change for all probes representing this gene present 736 

on the microarray. The results show that beclomethasone dampens the amputation-induced 737 

expression of 27 genes, but for 4 genes (indicated by grey boxes) amp+beclo treatment results in 738 

higher fold change compared to amp treatment.  739 

 740 

Figure 4. A. Leukotriene B4 (LTB4) biosynthesis pathway. Arachidonic acid (AA) is converted 741 

into 5(S)-hydroperoxyeicosatetraenoic acid (5-HPETE) by Arachidonate 5-lipoxygenase 742 

(Alox5). In zebrafish, four genes (alox5a, alox5b.1-3) encode four different Alox5 isoforms.  5-743 

HPETE is converted into LTA4, which can be converted into LTB4 by Leukotriene A4 744 

hydrolase (LTA4H). B. Whole body LTB4 concentrations measured in 3dpf larvae by ELISA. 745 

Statistical analysis (ANOVA) showed a significant increase upon amputation only in the vehicle-746 

treated groups. An interaction between amputation and beclomethasone treatment was observed 747 

(p=0.01). C. Validation of alox5ap gene regulation by qPCR. Statistical analysis showed that 748 

alox5ap mRNA expression was significantly altered by amputation (p=0.04), and that there was 749 

no effect of beclomethasone treatment (and no interaction between amputation and 750 



beclomethasone treatment). D. Expression levels of alox5a determined by qPCR. A significant 751 

effect of amputation was observed. E. Expression levels of lta4h determined by qPCR. A 752 

significant effect of both amputation and beclomethasone treatment was observed. * Statistically 753 

significant difference compared to control treatment (Bonferroni post hoc comparison, p<0.01). 754 

 755 

Figure 5. A. Lipoxin A4 (LXA4) biosynthesis pathway. LXA4 can be synthesized from LTA4. 756 

In zebrafish, three genes encode enzymes that may be involved in this conversion:  arachidonate 757 

12-lipoxygenase (alox12), alox12b, and arachidonate 15-lipoxygenase b (alox15b). These 758 

enzymes may also convert AA to 15-Hydroxyicosatetraenoic acid (15S-HETE), which can 759 

subsequently be converted into LXA4 by Alox5 (70). B. Whole body LXA4 concentrations 760 

measured in 3dpf larvae by ELISA. Statistical analysis (ANOVA) showed an effect of 761 

amputation (p=0.01). C. Expression levels of alox12 determined by qPCR. A significant 762 

interaction between amputation and beclomethasone treatment was observed. D. Expression 763 

levels of alox12b determined by qPCR. A significant effect of amputation was observed. D. 764 

Expression levels of alox15b determined by qPCR. A significant effect of amputation was 765 

observed. * Statistically significant difference compared to control treatment (Bonferroni post 766 

hoc comparison, p<0.05).  767 

 768 

Figure 6. A. Schematic drawing of a zebrafish larvae at 3dpf, indicating the area selected for 769 

counting the number of neutrophils and macrophages that had migrated to the wounded area (red 770 

box, CV=caudal vein). B. Leukocyte staining upon tail fin amputation in a 3dpf embryo by 771 

immunohistochemistry against the pan-leukocyte marker L-plastin (shown in red). C. Staining of 772 

neutrophils specifically by Mpx staining (shown in black). Neutrophils are stained by both 773 



methods, but the L-plastin immunolabeling is hard to detect in these cells due to the dark staining 774 

of the Mpx assay. Therefore, the number of neutrophils was determined by counting in the cells 775 

stained by the Mpx assay (shown black in B and C) and the number of macrophages was 776 

determined by counting the number of cells stained by the L-plastin immunohistochemistry 777 

(shown red in B). Further details on the analysis of this labeling can be found in Suppl.Fig.6. 778 

 779 

Figure 7. Leukocyte migration upon tail fin amputation in 3dpf zebrafish larvae, and the effect 780 

of beclomethasone treatment on this migration. A. The number of macrophages in the wounded 781 

area as a function of time after amputation. Statistical analysis by two-way ANOVA revealed a 782 

migratory response of macrophages over time (p<0.001), but no effect of beclomethasone on this 783 

response. B. The number of neutrophils in the wounded area as a function of time after 784 

amputation. Statistical analysis by two-way ANOVA revealed that both beclomethasone 785 

treatment and time had a significant effect on the number of neutrophils (both p<0.001), and that 786 

the neutrophil number was significantly increased at 4hpa compared to the 0hpa time point 787 

(p<0.001). C. Neutrophil migration in GR mutant (grs357) larvae. The number of neutrophils in 788 

the wounded area is shown at 4 hours post amputation in wild type and grs357 larvae. No effect of 789 

beclomethasone was observed in the mutant larvae, whereas beclomethasone significantly 790 

decreased the number of neutrophils in the wild types. D. The effect of cycloheximide treatment 791 

on macrophage and neutrophil migration. Macrophage and neutrophil numbers in the wounded 792 

area are shown at 4hpa, after vehicle (black bars) or cycloheximide (grey bars) treatment. 793 

Statistical analysis by ANOVA revealed a significant effect of cycloheximide treatment on both 794 

the macrophage and the neutrophil migration (p<0.05). * Statistically significant difference 795 

compared to vehicle treatment (p<0.05). 796 
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