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1.1. Cardiac Physiology: Background  

The heart is a vital organ in the human body that is responsible for pumping blood into the 

circularity system through a network of blood vessels. The human heart is decomposed of 

four chambers (Figure 1.1): left and right atria as well as left and right ventricles. Atria are 

the upper chambers of the heart and work as reservoir for blood incoming from veins to 

pass it into the ventricles. Ventricles are the two lower chambers of the heart that are 

responsible for pumping (ejecting) the blood, incoming from the atria, out of the heart to 

the body. The left atrium and ventricle are commonly referred to as the left heart whereas 

right atrium and ventricle are referred to as the right heart. The right heart helps 

oxygenating the blood: the de-oxygenated blood flows through the right atrium into the 

right ventricle that pumps blood to the lungs where it gets oxygenated. The left heart pumps 

this oxygenated blood into the rest of the body: oxygenated blood coming from the lungs 

flows through the left atrium into the left ventricle (LV) that pumps it to the rest of the 

body through the aorta.  

Figure 1.1. Anatomy of the heart (source: https://commons.wikimedia.org) 

 

A single cardiac cycle (heart beat) consists of two phases: systole and diastole. 

The systole, or contraction phase, is the part of the cardiac cycle when left and right 

ventricles contract to eject blood into the aorta and pulmonary artery, respectively. 

Unidirectional flow out of the ventricles is ensured by the atrioventricular (mitral and 

tricuspid) valves that close during systole to prevent backflow into the atria. Diastole is the 
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part of the cardiac cycle when the ventricles relax and refill with blood following the 

systole. Diastolic filling consists of two main phases: early filling and late (atrial) filling. 

Early diastolic filling (E-wave), also known as passive filling, is the phase when the 

ventricle relaxes and its pressure drops below the pressure in the atrium. As a result, the 

atrioventricular valves open causing the accumulated blood in the atria to flow into the 

ventricle in a passive manner. Late diastolic filling (A-wave), also known as atrial or active 

filling, is the phase when the atria contract and push the atrial blood into the ventricle.  The 

duration from the end of E-wave to the start of A-wave is called diastasis and it is inversely 

proportional to the heart rate. In normal hearts, the passive early diastolic filling accounts 

for 70-80% of the total ventricular inflow therefore, minimizing the needed atrial 

contraction (work). 

1.2. Cardiac Vortex ring formation: Historical perspective 

 A vortex can be defined, intuitively, as the swirling motion of a group of particles 

around a common axis. In more formal terms, a vortex is considered a flow region with a 

concentrated vorticity. In three-dimensional space, vorticity is a vector quantity that 

quantifies the local rotation rate of flow particles along the three principal components of 

the flow field. Vorticity is a fundamental property of the flow and, in case of 

incompressible flow, allows a complete reconstruction of the velocity field [1]. In 

mathematical terms, vorticity is defined as the curl of velocity.  

Vortex structures in the flow motion are abundant in nature, ranging from 

destructing vortices of hurricanes and volcano eruptions to smoke rings and vortices in the 

wake of a jelly fish swimming motion. Interestingly, vortex flow does not only form in our 

surrounding environment, but also inside the heart and in every single heartbeat. In the 

cardiac left ventricle, both in-vitro and in-vivo studies have shown that during diastolic 

filling, a vortex ring (also known as a toroidal vortex) is naturally formed from the shear 

layer distal to the mitral valve (MV) [2-6]. In a two-dimensional (2D) cross sectional view, 

a vortex ring is visualized as a pair of counter rotating vortices (Figure 1.2).  

Vortex ring formation in the left ventricle was initially reported from in-vitro 

experiments using LV models [2, 4], suggesting it as a mechanism to help the full closure 

of the bicuspid mitral valve. However, given that the in-vivo study of vortex flow requires 

a flow imaging modality, it was not until the rise of color Doppler velocity mapping when 

Kim et al. have confirmed the vortex formation in-vivo in a pig’s heart using 2D color 

Doppler recordings [5]. Kim et al. was the first to in-vivo show the presence of vortex flow 
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in the normal human left ventricle using 3D magnetic resonance (MR) velocity mapping 

and 2D streamline flow visualization [6]. Kilner et al. have further confirmed the presence 

of recirculating flow in the LV distal to the MV leaflets from MR velocity mapping. They 

suggested a role of LV vortex flow formation in efficient redirection of blood inflow 

towards the aortic outflow tract in an energy efficient manner [3].  

 

 
Figure 1.2. 2D view of an early filling vortex ring flow in the left ventricle (LV) visualized 

as a pair of counter rotating vortices (left) using streamlines (color coded by velocity 

magnitude from red to blue) and superimposed on a four chamber MR cardiac view. LV 

endocardial boundary is delineated in white contours. (RV: Right Ventricle, LA: Left 

Atrium and RA: Right Atrium). 

 

Moving from investigational studies to more quantitative cardiac vortex flow 

analysis, Gharib et al. have introduced the vortex formation time (VFT) as a global 

quantitative and dimensionless index that describes the optimal vortex ring formation and 

progression during early diastolic LV filling [7]. VFT is essentially the length-to-diameter 

ratio of an ejected fluid column (VFT=L/D) with length L through an orifice with diameter 
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D [8]. In the LV, VFT can be computed as ( ) with  as time-

averaged speed through the opened MV over the early filling period  and through the 

average MV inflow diameter . From in-vitro experiments, optimal VFT is found to 

consistently take place at a specific VFT of   4. Optimal VFT in the early LV filling phase 

of normal human volunteers was found to be consistent with in-vitro experiments (normal 

VFT range = 3.3-5.5). A significantly different VFT from the optimal range was reported in 

patients with dilated cardiomyopathy [7], stenotic mitral valves [9, 10], heart failure, 

elevated LV afterload [11] and even in Alzheimer’s disease patients [12]. Therefore VFT 

has been suggested as a novel index for diastolic dysfunction and cardiac health [7, 13]. 

Nevertheless, recent studies [14] have reported that VFT happens in the healthy LV much 

earlier in diastole (VFT 1.6) compared to previously reported optimal VFT (VFT 4) [7], 

therefore questioning previously suggested relation between VFT and diastolic function 

and concluded that VFT might not be related to diastolic function [15].  

1.3. Progress in vortex flow analysis 

 In recent years new advancements in in-vivo flow imaging techniques, such as 

echo Particle Image Velocimetry (echo-PIV) [16, 17] and phase contrast Magnetic 

Resonance Imaging (PC-MRI) [18, 19] have enabled more in-depth analysis of LV vortex 

flow. For instance, echo-PIV was used to reconstruct 2D velocity and vorticity fields to 

quantitatively characterize 2D LV vortex flow in normal subjects and patients with systolic 

dysfunction [20], prosthetic mitral valve heart failure [21] and patients with apical 

thrombus formation [22]. Nevertheless, Echo-PIV requires injection of contrast particles 

(contrast agent) which are then tracked using so-called particle image velocimetry (PIV) to 

approximate the velocity field. While promising, Echo-PIV is mainly limited to assessment 

of 2D velocity field and consequently is a 2D analysis. 

Recent developments are not limited to flow imaging techniques. Major progress 

in computational fluid mechanics (CFD) modeling methods has also been made. This has 

been driven by the significant growth of available computer processing power and the use 

of in-vivo-derived boundary conditions. Such progress enabled simulation and analysis of 

cardiac vortex flow in unprecedented detail. Specifically, 3D modeling of LV flow 

dynamics has revealed the complex 3D nature of the LV flow field [23-25]. Detailed 3D 

simulations guided by in-vivo MR boundary conditions of diastolic LV vortical flow, 

revealed the complex dynamics of cardiac vortex ring formation including vortex twisting, 
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impingement on the wall and following breakup [26, 27]. These studies emphasizes the 

three-dimensional nature of LV vortex ring flow, indicating that proper in-vivo analysis of 

intra-cardiac vortex flow needs to be three-dimensional and involving the three components 

of the velocity field.  

While CFD simulations provide high spatial and temporal resolution allowing 

detailed physical analysis, it involves numerous simplifications to the cardiac geometry and 

dynamics. This can result in a different vortex ring flow dynamics from true human cardiac 

flow. Hence, in-vivo analysis of 3D intra-cardiac vortex ring flow is important to 

understand its dynamics, mechanism and physiological properties in the human cardiac 

(dys)function.  

1.4. Four-dimensional Flow Magnetic Resonance Imaging (4D 

Flow MRI)  

 4D Flow MRI (also known as three-directional three-dimensional phase contrast 

MRI) is an emerging in-vivo flow imaging technique that enables the acquisition of all 

three components of the flow field, over the three spatial dimensions and over the cardiac 

cycle [18, 19, 28-31].  As opposed to other techniques, e.g. echo-PIV, 4D Flow MRI does 

not require the use of a contrast agent for flow imaging. Instead, 4D Flow MRI uses the 

intrinsic magnetic properties of blood flow. That is, the property of the flow velocity being 

directly related to the phase shift in the MR signal along a magnetic field [19, 31]. The 

velocity along a specified encoding direction can be detected by applying suitable bipolar 

gradients, where two acquisitions are performed that are identical in all parameters but with 

two different velocity-dependent signal phases [18, 19, 29]. The velocity images can then 

be calculated by subtracting the two resulting phase images. This approach is also known 

as phase contrast MRI (PC-MRI).  

A dynamic flow acquisition over a cardiac cycle involves acquiring the data over 

multiple ECG-gated cardiac cycles to tackle the slow (up to 20 minutes) MR acquisition 

relative to the cardiac dynamics. Acquiring velocity encoded data requires to manually 

predefine the velocity sensitivity encoding parameter (VENC). That is the maximum 

positive or negative velocity that can be detected without an aliasing error. VENC is mainly 

defined empirically and based on prior knowledge of the maximum expected velocity in the 

region of interest. 4D Flow MRI acquires dynamic volumetric velocity data over three 

velocity encoding directions, requiring long scan times (up to 20 minutes) that can hamper 
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its clinical use. Therefore, different acceleration techniques have been developed to speed 

up the scan time [28, 32-34].  

The typical output of a reconstructed 4D Flow MRI acquisition is three-

dimensional image volumes that encode the three velocity field components (i.e. the two 

in-plane  components and the through-plane  component) (Figure 1.3). The fact that 

4D Flow MRI provides the complete velocity field, enables in vivo analysis of LV kinetic 

energy [35, 36], turbulent flow [37, 38], relative pressure field [39-41] evaluation of 

different flow components [42] and flow patterns [43] in three-dimensional space as well as 

their evolution over time.  

Töger et al. have used Lagrangian coherent structure (LCS) analysis [44, 45] of 

4D Flow MRI to quantify the vortex ring volume in LV diastolic function in healthy human 

subjects and in patients with dilated cardiomyopathy [46]. While encouraging, LCS 

provides global vortex flow analysis over a period of time without providing direct 

information about the instantaneous vortex development. To characterize the details of 

diastolic vortex ring flow dynamics in the LV and in relation to inflow, 3D instantaneous-

based analysis of vortex ring flow evolution over the diastolic LV filling is needed. 

 

Figure 1.3. Example of reconstructed whole-heart 4D Flow MRI volumes of the three 

velocity components (the in-plane  components and the through-plane  component). 

Grey-scale values encode the velocity magnitude and direction along the direction of 

interest.  
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1.5. Thesis objectives and outline 

 The aim of this thesis is to develop methods that enable in-vivo analysis of 3D 

vortex flow patterns in the human heart, particularly through analysis of the 3D velocity 

field from in-vivo 4D Flow MRI. Accordingly, this thesis has the following four objectives: 

1. To characterize and quantify in-vivo 3D cardiac vortex flow to reveal the normal 

3D vortex flow formation process in healthy human subjects. 

2. To determine the impact of unnatural cardiac morphology in human patients, on 

3D cardiac vortex flow formation. 

3. To assess consequences of altered 3D cardiac vortex flow on cardiac physiology. 

4. To enable objective analysis of in-vivo 3D cardiac vortex flow from 4D Flow 

MRI.  

These objectives are addressed throughout the remaining chapters of this thesis as follows: 

 Chapter 2 introduces an interactive workflow for instantaneous 3D vortex ring 

identification in the LV during early and late diastolic filling from in-vivo 4D Flow MRI. 

Standardized quantitative geometric characterization of 3D diastolic vortex ring flow is 

proposed providing normal ranges in a cohort of healthy subjects. The association of 3D 

vortex ring shape with MV inflow shape through mitral annulus and leaflet tips are 

evaluated.   

 Chapter 3 investigates the effect of abnormal atrioventricular (mitral) valvular 

inflow on 3D vortex ring formation in a cohort of congenital heart disease patients who are 

known to develop abnormal atrioventricular (mitral) valvular inflow and morphology. 

These are patients who underwent an atrioventricular surgical repair due to a congenital 

septal defect. Quantitative characterization of 3D vortex ring shape, geometry and position 

relative to LV, introduced in chapter 2, are evaluated and compared to those of healthy 

subjects. Altered 3D vortex formation in the studied patients is revealed. 

 Chapter 4 evaluates the consequences of altered vortex ring flow formation on 

LV physiology through assessment of the association between in-vivo, 4D Flow MRI-

derived, viscous energy loss during diastole and inflow 3D vortex ring formation during 

both early and late filling in both healthy subjects and patients.  

 Chapter 5 explores 3D systolic left atrial vortex flow in healthy subjects and 

congenital heart disease patients with various degrees of left atrioventricular valve (LAVV) 

regurgitation.  
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 Chapter 6 and Chapter 7 address the critical need in clinical practice to ensure 

objective quantitative results by proposing two novel methods, based on 3D shape 

signatures, for automatic identification and extraction of 3D vortex ring objects 

(isosurfaces). The proposed methods are evaluated in healthy subjects (Chapter 6 and 

Chapter 7) and patients (Chapter 7) showing quite promising and encouraging results.  

 Chapter 8 summarizes the results of this thesis, and discusses future perspectives. 
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Chapter 2 

Vortex flow during early and late left ventricular 

filling in normal subjects: quantitative characterization 

using retrospectively-gated 4D flow cardiovascular 

magnetic resonance and three-dimensional vortex core 

analysis

This chapter was adapted from: 

Elbaz, M. S.*, Calkoen, E. E.*, Westenberg, J. J., Lelieveldt, B. P., 
Roest, A. A., & van der Geest, R. J. (2014). Vortex flow during early 
and late left ventricular filling in normal subjects: quantitative 
characterization using retrospectively-gated 4D flow cardiovascular 
magnetic resonance and three-dimensional vortex core analysis.
Journal of Cardiovascular Magnetic Resonance, 16(1), 78. 

* Elbaz, M. S. and Calkoen, E. E. contributed equally to this work.
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Abstract 

Background: LV diastolic vortex formation has been suggested to critically contribute to 

efficient blood pumping function, while altered vortex formation has been associated with 

LV pathologies. Therefore, quantitative characterization of vortex flow might provide a 

novel, objective tool for evaluating LV function. The objectives of this study were 1) to 

assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo 

in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with 

retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative 

parameters characterizing 3D LV vortex flow during both early and late ventricular filling 

in normal subjects. 

 

Methods: With full ethical approval, twenty-four healthy volunteers (mean age: 20 10 

years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 

3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) 

diastolic filling. The 3D location of the center of vortex ring core was characterized using 

cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial(R)). Comparison 

between E and A filling was done with a paired T-test. The orientation of the vortex ring 

core was measured and the ring shape was quantified by the circularity index (CI). Finally, 

the Spearman’s correlation between the shapes of mitral inflow pattern and formed vortex 

ring cores was tested.  

Results: Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings 

significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex 

L=0.15±0.05; p=0.0001), closer to the ventricle’s long-axis (E-vortex: R=0.27±0.07, A-

vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-

vortex: CI=0.57±0.06; p<0.001) compared to E-vortex. The circumferential location and 

orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good 

to strong correlation was found between vortex shape and mitral inflow shape through both 

the annulus (r=0.66) and leaflet tips (r=0.83). 

Conclusions: Quantitative characterization and comparison of 3D vortex rings in LV 

inflow during both early and late diastolic phases is feasible in normal subjects using 

retrospectively-gated 4D Flow CMR, with distinct differences between early and late 

diastolic vortex rings. 
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2.1. Introduction 
Vortex formation within the left ventricular (LV) blood flow has been suggested to 

critically contribute to efficient blood pumping function [1]. A vortex can be described as a 

group of fluid particles with a swirling motion around a common axis. Among different 

types of vortices, vortex rings (also known as toroidal vortex) are abundant in nature 

because of their compactness and stability [1-3].  

 In the LV, in healthy subjects, both in vivo and in vitro studies have reported 

vortex ring formation during early diastolic filling, originating at the distal tip of the mitral 

valve (MV) lea ets [1, 4-11]. In a three dimensional (3D) view, this vortex ring appears as 

a closed tube with torus-like shape distal to the mitral valve orifice. In a two dimensional 

(2D) four-chamber view a 3D vortex ring appears as a counter-rotating vortex pair, one 

distal to the anterior MV leaflet and another distal to the posterior leaflet. Such vortex 

formation may help in efficient MV closure [5], efficient diastolic filling, minimizing 

kinetic energy loss [4, 6] and preventing thrombus formation [7]. An altered (early filling) 

vortex formation have been shown to develop in patients with diastolic dysfunction and 

dilated ischemic cardiomyopathy, suggesting a relation between abnormal vortex formation 

and LV dysfunction [7, 8]. On the other hand, in normal subjects, discrepancies arise in 

literature and little is known about vortex formation during late filling. Experimental 

studies using computational fluid dynamics (CFD)-based simulations of LV inflow have 

reported the formation of a vortex ring distal to the MV during late LV filling, [12-17]. In 

contrast, in vivo studies have reported only the formation of a single anterior vortex during 

late filling (i.e. not a vortex ring because of the absence of a posterior vortex) [6, 9, 18-21] 

or even the absence of any vortex [18]. While CFD simulation can provide higher temporal 

and spatial resolution than in vivo data, application of CFD techniques also involve 

simplifications of the geometry and dynamics of the left ventricle and mitral valve leaflets 

which might result in inaccurate modelling of the true blood flow.  

4D Flow CMR (also known as 4D Flow MRI) with retrospective cardiac gating 

can acquire all the three directional velocity components (in-plane and through-plane) of 

the blood flow relative to the three spatial dimensions and over the whole cardiac cycle, 

providing a powerful tool for evaluating blood flow patterns during both early and late left 

ventricular filling in-vivo [6, 22, 23]. Previous studies have shown the feasibility of using 

4D Flow CMR for vortex flow analysis [6, 19, 22, 24-27]. These studies mainly focus on 

vortex formation during early filling inflow but not late filling inflow. While paramount for 
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establishing normal ranges defining LV vortex flow, standardized quantitative 

characterization of the 3D shape and location of normal vortex flow are currently lacking. 

Different from visualization-based vortex identification, vortex core detection 

techniques [28-30] base their vortex identification on the underlying physical properties of 

a vortex instead of only visual assessment, therefore, provide more objective vortex 

definition. CFD experiments have shown that LV vortex ring originates from the inlet jet 

through the mitral valve orifice during early LV filling [1, 4, 10, 13], therefore, the shape of 

the formed vortex is expected to resemble the shape of the originating valvular opening [4, 

13]. Hence, we hypothesized that similar behavior could be identified in vivo where a more 

oval opening of the MV during peak late filling results in a more elliptical vortex ring 

compared to the one originating from a more circular valve opening during peak early 

filling. Accordingly, the aims of our study were to apply retrospectively-gated 4D Flow 

CMR and quantitative 3D vortex core analysis to  1) Assess feasibility of in vivo vortex 

flow analysis during both early and late diastolic filling in normal subjects 2) Establish 

normative quantitative parameters characterizing 3D LV vortex flow during both early and 

late ventricular filling in normal subjects. 

2.2. Methods 

2.2.1. Study population 

 Twenty-four healthy volunteers (9 males, mean age 20±10 years; age range 9-44 

years), without history of cardiac disease, abnormalities on ECG or echocardiography were 

included. The study protocol was approved by the institutional review board and written 

informed consent was given by all subjects or their legal representatives.  

2.2.2. 4D Flow CMR protocol 

 All subjects underwent 4D Flow MR imaging using a 3T digital broadband multi-

transmit CMR system (Ingenia, Philips Medical Systems, Best, The Netherlands), with 

maximal gradient amplitude 45 mT/m and maximal slew rate 200 T/m/s. For signal 

reception, a 60cm Torso coil was used in combination with the FlexCoverage Posterior coil 

in the tabletop, combining a maximum of 32 elements. A 3D time-resolved volume 

acquisition of the whole heart was performed with velocity encoding in all three directions 

with velocity sensitivity (VENC) of 150 cm/s. The acquired volume data was reconstructed 

in time-resolved manner (30 cardiac phases per cardiac cycle) into 2.3×2.3×3–4.2mm3 
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(three subjects were scanned with 3 mm slice thickness). Retrospective cardiac gating was 

performed with Vector ECG triggering. Scan parameters: echo time 3.0 ms, repetition time 

9.9 ms, flip angle 10°, field-of-view 400 mm, number of signal averages 1. VENC 150 

cm/sec. Acceleration was achieved by Echo Planar Imaging with EPI factor 5. Free 

breathing was allowed and no respiratory motion compensation was used. Commercially 

available concomitant gradient correction was used for phase offset correction. 

2.2.3. 3D vortex core identification using the Lambda2-method  

 In this study, vortex cores in the LV cavity were detected over the diastolic phases 

using the Lambda2 ( 2)-method [28]. The Lambda2-method is an objective method that 

identifies 3D vortex cores based on their physical fluid dynamics properties, and is 

considered the most accepted vortex detection technique [31]. In short, the Lambda2-

method uses the fluid’s velocity gradient properties to obtain a scalar value, 2. In a loose 

sense, this obtained scalar reflects the pressure due to velocity gradients after excluding the 

effect of the irrotational part of the flow. The vortex cores are then identified as the regions 

with extreme negative 2-values. These identified vortex cores can be visualized by use of 

isosurfaces of isovalue , which is an application-dependent threshold. More technical 

background of applying the Lambda2-method on 4D Flow CMR, including the choice of 

the isovalue threshold, has been described earlier [32]. 

2.2.4. Vortex core analysis workflow 

 4D Flow CMR data were analyzed with in-house developed software based on 

Matlab (Version R2012a, Mathworks Inc., Novi, MI). First, the LV endocardial boundaries 

were manually delineated using MASS research software (Version 2013EXP, Leiden 

University Medical Center, Leiden, The Netherlands). Subsequently, the Lambda2-method 

was applied to the 4D Flow CMR data to identify the vortex structures within the LV blood 

pool. Early (E) filling and atrial (A) filling phases were defined from the flow rate-time 

graph after transmitral velocity mapping in combination with retrospective valve tracking 

[33]. For every subject, the vortex ring core (if detected) of peak early filling and peak late 

filling was used for further quantitative analysis. As described in previous work, the 

Lambda2 isovalue threshold ( ) was defined as  =  (with  as a real number and  

as the  average of voxels with 0) with  chosen as the value providing the most 

circular vortex ring core having the least attached trailing structures [32]. The parameter  

was chosen separately for every filling phase. The shape and location of the peak early (E) 
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and late (A) -vortex ring cores were further quantitatively analyzed using the parameters 

explained below. In the remainder, the vortex cores detected at peak early filling and peak 

late filling will be denoted as E-vortex and A-vortex, respectively.  

2.2.5. 3D quantitative characterization of diastolic vortex ring core 

 The 3D location and orientation of the vortex ring core were quantified using a 

standardized 3D local cardiac (cylindrical) coordinate system, abbreviated by CLR. Every 

vortex ring core center was localized using its circumferential (C), longitudinal (L) and 

radial (R) coordinates and orientation relative to the LV as defined and illustrated in 

(Figure 2.1). The shapes of the vortex ring cores were quantified using a dimensionless 

circularity index ( ), defined as the ratio between the vortex’s short ( ) to long ( ) 

diameters, i.e.,  (See Figure 2.2 a).  

2.2.6. Intra and interobserver reproducibility:  

 One observer repeated the same measurements after one week to allow assessment 

of intraobserver reproducibility. Two independent observers repeatedly performed 

measurements on all subjects to assess interobserver reproducibility of derived parameters. 

The observers manually defined the Lambda2 threshold (  ) as explained above. Then, 

C, L, R coordinates and orientation of vortex ring cores for both early and late filling were 

quantified.  

2.2.7. Vortex-Mitral flow association  

 To investigate the relationship between the geometry of the vortex ring core and 

the inflow jet area through the MV, the area of MV opening was assessed at two levels 

using retrospective valve tracking [33]. In short, at the same phase as the selected vortex, a 

plane was positioned at the annulus level and a second plane at one centimeter distal to the 

annulus (Figure 2.2: (b)) as an approximation of the tip level of the opened MV leaflets. 

These planes resulted in two cross-sectional images with through-plane velocity encoding 

in which the flow through the opened MV was outlined (Figure 2.2: (c), (d)). The outlined 

regions were then used to calculate the circularity index of the inflow area at the mitral 

annulus level (CIMV) and at the valve tip level (CIMV_tip), as the ratio between the short- to 

long-diameters of the outlined region. The correlation between the vortex circularity index 

( ) of the diastolic vortex ring cores (E- and A- vortex ring cores pooled together) 

and each of  and  were then evaluated. 
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Figure 2.1. Definition of the local cardiac coordinate system (C, L, R) relative to the LV: 

The LV long-axis is defined as the line from the mid of the mitral valvular opening to the 

LV apex. The long-axis was calculated separately per filling phase (i.e. one for early filling 

and another for late filling). The center of the vortex ring was projected on this long-axis. 

The distance of the projected point to the MV and to the vortex center defined the vortex’s 

longitudinal (L) and radial (R) coordinates as illustrated in (a), respectively. Both L and R 

distances were normalized to the long-axis length and to the basal endocardial radius 

(measured on a reformatted short-axis slice), respectively to provide dimensionless 

parameters. Circumferential (C) Coordinate is defined as the angle between the septal 

landmark (the anterior attachment of the RV free wall with the LV) and the vortex center as 

illustrated in cross-sectional view (b). the vortex ring orientation (  ) measured as angle 

between the LV long-axis vortex and a fitting plane of the vortex ring, where an orientation 

of 90° means a vortex ring is perpendicular to the LV long-axis as shown in (c). 

2.2.8. Statistical analysis 

 Statistical analysis was performed using SPSS Statistics software (version 20.0 

IBM SPSS, Chicago, Illinois). Quantitative parameters were presented as mean ± standard 

deviation or median and inter-quartile ranges (IQR) where appropriate. Differences 

between E- vortex ring and A-vortex ring parameters were compared using paired Student 

t-test. Spearman’s correlation test was used to assess the relationship between vortex ring 

shape and mitral inflow area shape. Inter- and intraobserver reproducibility were 

determined by the interclass correlation coefficient for absolute agreement, the absolute and 

relative unsigned difference between measurements (with paired t-test) and the coefficients 
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of variance defined as the standard deviation of the difference divided by the mean of both 

measurements. A p-value <0.05 was considered statistically significant. 

2.3. Results 

2.3.1 Subject characteristics 

Clinical characteristics of the study population are shown in Table 2.1. Three 

subjects with an absent A-vortex ring core are described separately. 

 

 
Figure 2.2. Diagram showing the measurement of the vortex circularity Index (CI). In (a), 

CI=D2/D1, D1 represents vortex’s long diameter and D2 represents the vortex’s shortest 

diameter. Both diameters measured as the distance between centers of corresponding and 

opposite cross-sections along the diameter of interest. (b) Two planes positioned on 

through-plane velocity-encoded MR images at the annulus level (red) and one centimeter 

distal of the annulus (yellow) resulted in two cross-sectional images of the through-plane 

velocity (c, d) in which the flow through MV was outlined and used to define circularity 

index of MV flow. 

2.3.2 Characterization of 3D LV vortex ring cores 

 In all twenty-four subjects, during the E-filling, a compact quasi-torus-shaped 

vortex ring core (Figure 2.3: (a-c)) started to form distal to the mitral valve leaflets shortly 

after the onset of the E-filling and continued its development during the period of E-filling 

acceleration, reaching its full development with the E-filling approaching its peak (Figure 

2.4: f1-f5). During E-filling deceleration and diastasis, the vortex core deformed into a 
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complex shape which tended to align with the LV long-axis (Figure 2.4: f6-f10) while 

progressing towards the apex. Only a remaining residual of the vortex ring core, located at 

the mid-ventricular level could be observed at the onset of atrial contraction and this 

remnant of the E-vortex ring core could not be observed anymore at end diastole (Figure 

2.4: f17,f18). In the majority of subjects (twenty-one subjects, 88%), during the late 

diastolic filling, a new isolated compact and more asymmetrically shaped vortex ring core 

was formed at the ventricular basal level with a more dilated anterior side (i.e., the part 

close to the aortic outflow tract) and more compressed posterior side (Figure 2.3: (d-f)), 

reaching its complete formation while approaching peak late filling (Figure 2.4: f15-f17). 

The A-vortex ring core was persistently present until the end of diastole without major 

dissipation and was still located at the basal level (Figure 2.4: f18, f19). For the three 

remaining subjects, (subjects A, B and C in Table 2.1) no vortex ring core was present 

during late diastolic filling. Samples of the Lambda2-based detected peak early and late 

diastolic formed vortex ring cores are shown in Figure 2.3 and are depicted together with 

streamlines visualization of the velocity vector field in Figure 2.5.  A time-sequence of the 

3D vortex detection during the diastole is shown in Figure 2.4 (Additional file 1 and 2)1,2. 

2.3.3 3D Quantification of LV vortex ring core parameters 

 The quantified CLR parameters are presented in Table 2.2. The centers of the 3D 

vortex ring cores during early and late filling were located at the LV basal level, but the 

rings during A-filling were significantly closer to the mitral valve compared to the rings 

during E-filling (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001). The 

centers of the vortex rings during both E- and A-filling were located in the anterior and 

anterolateral segments (E-vortex: C=89±23°, A-vortex: C=100±23°; p=NS). A-filling 

vortex center was located closer to the ventricle’s long-axis during A-filling compared to 

E-filling (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048). Both E- and A- 

vortex ring cores were similarly orientated relative to the LV long-axis (E-vortex 71.0±9° 

versus A-vortex 74±4°; p=NS). E-vortex rings were significantly more circular in shape 

compared to A-vortex rings (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; p<0.001).   

                                                 
1 http://www.jcmr-online.com/content/16/1/78/suppl/S1 
2 http://www.jcmr-online.com/content/16/1/78/suppl/S2 
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Figure 2.3. Results of Lambda2-based vortex core detection from a sample subject: (a) 

Identified vortex ring core at peak early (a) diastolic filling with respective location to LV 

(a), in top-down (b) and bottom-up (c) views. Similarly, identified peak late diastolic vortex 

ring core is shown in (d), (e) and (f). The core of the peak early filling vortex ring appears 

with a quasi-torus-like shape, more circular and symmetrical compared to the core of peak 

late filling vortex ring which appears more elliptical in shape and asymmetrical with dilated 

anterior side and compressed posterior side. Lambda2 isovalue threshold ( ) =  was 

used to define the isosurfaces of vortex ring cores (with  as the  average of voxels with 

0). 
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2.3.4 Inter and intra-observer variation 

 Results of inter- and intra-observer analysis for assessment of relative vortex core 

position and orientation are presented in Table 2.3 and Table 2.4. Inter-observer analysis 

revealed intraclass correlation coefficient higher or equal to 0.96 (all p<0.001), with mean  

relative unsigned differences ranging between 1.5% and 7%, which was not statistically 

significant different. The coefficient of variation ranged between 1% and 3%. Intra-

observer analysis showed intraclass correlation higher or equal to 0.97 (all p<0.001), with a 

mean relative unsigned difference ranging between 0.5% and 3%, which was not 

statistically significant different. The coefficient of variation ranged between 1% and 8%. 

 

Table 2.1. Study characteristics

Characteristics 21 subjects Subject A Subject 
B

Subject C Total 

age (years) 21±10 10 9 13 20±10 
male/female 8/13 female male female 9/15 
heart rate (bpm) 69±11 90 107 91 73±14 
diastasis duration 
(ms) 

108±73 22 0 0 95±77 

E/A ratio 2.6±0.8 2.3 1.83 1.95 2.5±0.7 
 

2.3.5 Vortex-Mitral flow association 

 The Spearman correlation coefficient between the shapes of the vortex ring 

(CIvortex) and the MV inflow jet at the level of the annulus (CIMV) was R=0.66 (p<0.001). 

The correlation coefficient between CIvortex with the shape of inflow jet at the tip of the 

valve leaflets (CIMV_tip) was higher with R=0.83 (p<0.001) (Figure 2.6).  

2.4. Discussion 
 To our knowledge this is the first work to provide standardized quantitative 

characterization and comparison of the 3D LV vortex rings during both early and late 

diastolic filling in normal subjects. Using retrospective-gated 4D Flow CMR and 3D vortex 

core analysis, using the Lambda2-method, we observed the formation of a separate 

compact 3D vortex ring in vivo during late diastolic filling with different characteristics 

from the vortex ring formed during early filling. Our experiments quantitatively confirmed 
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the close correlation between the shape of the formed vortex ring and the shape of the 

inflow area through both the mitral annulus and the tip of the opened MV leaflets.  

 
Figure 2.4. time-sequence of the Lambda2-detected 3D LV vortex structures (visualized as 

isosurfaces in red color) over all acquired diastolic phases of a sample normal subject, with 

E-filling onset (x), peak (y) and end (z), and A-filling onset (u), peak (v) and end (w). 

Diastasis is the duration between z and u. Every dot in the cardiac curve corresponds to a 

time point of the cardiac cycle in which a 4D Flow volume was acquired. With the start of 

diastolic phase (f1), the start of the presence of a compact ring-like shaped vortex ring 

during early- (f3) and late (f7) diastolic filling, the most developed vortex ring formed 

during early-(f5) and A-filling (f18), the start of vortex stretching or elongation in direction 

parallel to the LV long-axis (f10) and end of late filling while compact vortex ring is still 

identifiable (f19). Lambda2 isovalue threshold ( ) =  was used to define the 

isosurfaces of vortex ring cores (with  as the  average of voxels with 0). To avoid 

cluttered view, only large scale vortex cores of 1 cm3 or larger are visualized.  
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Table 2.2 Vortex quantification parameters 

*In 21 subjects an A-filling vortex was observed. Data are presented as mean ± standard 
deviation 

2.4.1 LV vortex ring formation and dynamics with emphasis on late diastolic filling 

 Several studies have demonstrated the presence of rotating flow distal to the MV 

corresponding to a compact vortex ring during the early diastolic filling. This vortex 

formation has been related to the normal shape and function of the LV and its alteration has 

been suggested to be associated with pathologies of the left ventricle [1, 4-6, 9, 11, 18, 24, 

25]. In agreement with previous studies, in all subjects a compact 3D vortex ring core was 

identified distal to the mitral valve during the early filling phase of diastole [6, 9, 10, 18]. 

In previous studies, vortex analysis within LV flow has been primarily devoted to the early 

phase of the diastolic filling [1, 4-10, 15, 21, 34, 35]. Discrepancies exist in literature when 

defining or evaluating vortex formation during late diastolic filling, where CFD simulation 

reports vortex ring formation [12-17] and in vivo studies report no vortex ring formation 

but only a single vortex (rotating flow) distal to the anterior MV leaflet [6, 9, 19-21, 36, 37] 

or no vortex at all [18]. Some of the discrepancies among in vivo studies can be a result of 

limitations of the employed flow acquisition and/or analysis approach. 4D Flow CMR has 

intrinsic advantages over other in vivo flow imaging modalities such as Doppler 

Echocardiography or 2D phase contrast CMR, by allowing acquisition of all three 

directional velocity components and over the three spatial dimensions. Moreover, 4D Flow 

CMR provides the feasibility of retrospective flow acquisition therefore allowing 

acquisition of flow over both early and late diastolic filling phases instead of only the early 

filling phase as with prospective flow acquisition. Previous studies have successfully 

employed 4D Flow CMR to visualize and study LV vortex flow [6, 19, 22, 24-27]. In these 

studies no explicit analysis of vortex ring formation during late diastolic filling have been 

performed and relatively low temporal resolution (50-70 ms) were generally used [24, 27, 

36] while higher temporal resolution of 30 ms was used in this study to help capturing flow 

 C
(clockwise) 
in degrees 

L R Vortex 
Orientation 
in degrees 

Vortex 
CI 

E-vortex ring 89°±23° 0.19±0.04 0.27±0.07 71° ± 9° 0.79±0.09 

A-vortex ring * 100°±23° 
 

0.15±0.05 0.20±0.09 74° ± 4° 0.57±0.06 

Statistical 
Significant 

No p=0.001 p=0.048 No p<0.001 
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over the short duration of the late filling (five late filling phases were reconstructed on 

average).  

Table 2.3. Inter observer analysis for C, relative L, relative R and orientation of vortex ring 

cores 

 C L R Vortex 
Orientation 

Intraclass correlation 
(absolute agreement) 

0.940 
(p<0.001) 

0.976 
(p<0.001) 

0.964 
(p<0.001) 

0.985 
(p<0.001) 

Mean difference 0.8 0.002 0.003 0.286 
Confidence interval 

difference 
-2.4;4.0 -0.003;0.006 -0.006;0.013 -0.239;0.811 

p value difference 0.62 0.42 0.49 0.28 
Mean relative unsigned 

difference 
7% 4% 6% 1.5% 

Coefficient of variance 11% 9% 13% 3% 

In the current study, in agreement with CFD findings [12-17], in the majority of 

subjects (twenty-one subjects, 88%), a compact vortex ring core formed distal to the mitral 

valve during late diastolic filling. This ring formed at the basal level at the time when the 

remnant of the dissipating E- vortex ring core was located more apically, indicating that the 

A-vortex ring is a newly formed vortex as a result of the atrial contraction inflow and not 

just a continuation of the E-vortex. The A-vortex ring core was asymmetrically shaped in 

the anterior-posterior direction with a dilated anterior side, making most of the A-vortex 

flow being located close to the left ventricular outflow tract. This supports the postulation 

of  Kilner et al. [6], about an expected role of the rotating flow beneath the mitral valve 

during the A-filling in aiding the redirection of the late diastolic inflow from the left atrium 

towards the left ventricular outflow tract, helping in an optimized ejection of blood. 

Therefore, with the revealed consistent formation of compact late diastolic vortex ring in 

vivo, extending the analysis of diastolic vortex formation to the late diastolic filling (instead 

of currently being limited to early filling) might help providing more understanding of the 

hemodynamics of the coupling between diastole and systole and associated pathologies. 

This emphasizes the importance of using retrospective cardiac gating when aiming for LV 

diastolic vortex flow analysis, where late filling phase can be acquired instead of the 

prospective-gating where late filling phase is generally missing. The absence of vortex ring 

formation during late filling in three subjects (Table 2.1) might be attributed to their age 
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related high heart rate and subsequent limited diastasis duration which might not allow 

developing the ventricular pressure gradient required for vortex formation [1]. 

 
Figure 2.5. Streamline superimposed on vortex cores. Sample Streamline visualization of 

cross-sectional view of LV flow during peak early filling (a) peak late filling (b) showing 

pair of counter-rotating vortices. Streamlines are color coded (blue to red) based on 

velocity magnitude. Same frames were superimposed with 3D vortex ring cores identified 

using Lambda2-method and showing good overlap between the 3D Lambda2-detected 

vortex cores and the cores of corresponding 2D streamlines’ counter-rotating vortices 

during both peak early (c) and peak late filling (d). Lambda2 isovalue threshold ( ) =  

was used to define the isosurfaces of vortex ring cores (with  as the  average of voxels 

with 0). 
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2.4.2 Quantitative characterization of 3D diastolic vortex rings 

 Previous studies have successfully employed flow visualization techniques to 

identify LV vortex flow [6, 19-23, 26], quantify vortex volume [24] or evaluate early filling 

vortex formation [34]. However, to our knowledge, there have been no in vivo studies 

providing quantitative 3D characterization of the location and the shape of vortex flow 

during both early and late diastolic filling phases.  

 Defining the true boundary of a vortex is challenging task, especially in 3D space, 

as it is highly dependent on the identifier. Most in vivo studies identify a vortex based on 

visual assessment of the visualized flow [9, 11, 20, 21] which is generally an observer 

dependent definition. Instead, vortex cores are generally regarded as a robust and well 

localized approximation of a vortex [2, 3, 28, 38] and can provide more objective physical 

definition of a vortex. Different methods can be used for vortex core identification [13, 28-

30], however, the Lambda2-method is considered the most accepted 3D vortex 

identification technique [1]. Vortex core analysis has been used before to detect vortices 

inside the heart but mainly for visualization purposes [10, 13, 27, 29, 32, 39]. In this work, 

we employ the 3D vortex cores identified using the Lambda2-method to derive quantitative 

parameters to characterize normal vortex ring formation during both peak early and peak 

late filling. In our experiments, following [32], Lambda2 isovalue threshold ( ) in the 

range of [1,6]  (i.e. , with  as the  average of voxels with 0 ) allowed 

identification of a separate compact vortex ring core (when detected) in all subjects. The 

strong inter- and intra-observer agreements (Table 2.3 and Table 2.4) indicate the 

robustness of the method with respect to Lambda2 threshold selection. 

 

Table 2.4. Intra-observer analysis for C, relative L, relative R and orientation of vortex ring 

cores 

 C L R Vortex 
Orientation 

Intraclass correlation 
(absolute agreement) 

0.980 
(p < 

0.000) 

0.985 
(p < 0.000) 

0.988 
(p < 0.000) 

0.971 
(p < 0.000) 

Mean difference 1.7 0.000 0.001 0.46444 
Confidence interval 

difference 
-0.1;3.6 -0.003;0.003 -0.004;0.007 -0.279;1.208 

p value difference 0.07 0.90 0.58 0.21 
Mean relative unsigned 

difference 
3% 2% 3% 1% 

Coefficient of variance 7% 7% 7% 3% 
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 The vortex ring core is significantly closer to the mitral valve annulus 

(longitudinal position) at the late filling peak compared to early filling, which can be 

attributed to the lower velocity and shorter length of inflow jet during late filling compared 

to early filling. The relatively closer position of the vortex ring core to the LV long-axis 

(radial position) at the late filling, can be explained using the confirmed correlation 

between shapes of the vortex ring core and the mitral valve opening, where a restricted 

opening of the mitral valve during late filling results in a vortex core center closer to the 

long-axis compared to full valvular opening at the early filling. Since vortex ring originates 

from the inlet jet at the distal tip of the mitral valve (MV) lea ets [1, 10, 13], vortex ring 

forms parallel to the inclined MV orifice [40]. Therefore, in normal subjects, similarly 

oriented MV orifice of early and late filling (relative to the ventricle’s long-axis) results in 

similarly oriented vortex rings (i.e. similar vortex orientation planes). Consequently, 

circumferential location (C), which is calculated using the vortex orientation plane, is 

similar as well between vortex rings of both early and late filling. The strong correlation 

between the vortex ring shape with the shape of the inflow area at the tip of the opened MV 

leaflets confirms the relationship between the mitral valvular opening and shape of formed 

vortex ring as reported earlier by CFD studies [4, 13]. To the best of our knowledge, this is 

the first in vivo study to quantitatively confirm this correlation. 

 The relatively small variation between normal subjects in derived parameters 

(Table 2.2) indicates good consistency of results. Therefore, the method defines normal 

quantitative ranges for diastolic vortex rings and might in future help evaluating whether 

changes in valve morphology or ventricular dilatation alters the location and shape of the 

formed vortices. 

2.4.3 Clinical implications 

 The suggested LV-normalized vortex parameters might help to provide more 

insights about the normal vortex formation and provide normative parameters to compare 

the 3D vortex flow between controls and patients. This could help to understand the 

hemodynamics of patients with impaired LV relaxation and restrictive filling, where the 

E/A ratio is abnormal. In addition, the close correlation found between vortex formation 

and the flow at the tip of the opened mitral valve leaflets suggests that patients with 

impaired leaflet function, as can be seen in patients with left ventricular dysfunction [41] 

after mitral valve repair and with mitral valve stenosis, could develop aberrant vortex rings, 
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which possibly reduces efficiency of intra-cardiac flow. Therefore, further study is 

warranted to investigate the effect of mitral valve surgery on vortex formation during LV 

filling.  

 
Figure 2.6. Correlation between the shape of the formed vortex ring cores (CI vortex) and 

the shape of the inflow area at the level of both the mitral annulus (A) and the tip of the 

opened MV leaflets approximated as 1 cm below the annulus (B). 

2.4.4 Study limitations 

 Limitations of this study include a relatively small number of healthy subjects and 

lack of comparison with patients. However, an objective detection of possible anomalies in 

the vortex flow of patients should be preceded by finding reliable quantitative measures 

defining the reference normal vortex flow. The current study was performed in a relatively 

young population (age range 9 – 44 years). Global diastolic function parameters, as the E/A 

ratio remain relatively Table 2.2 during the second, third and fourth decade of life [42], 

which explains why we did not observe age related differences. As diastolic function is 

known to decrease later in life [43] future studies are required to compute normal values in 

an elderly population. Limitations of 4D Flow CMR include the relatively long scan times 

(typically between 8-10 minutes with heart rate 60-80bpm), and the need of averaging the 

data over several cardiac cycles. This time-averaging would potentially result in smoothing 

the low scale flow structures and does not, generally, account for flow variations due to 

heart rate variations. In this study, a relatively low spatial CMR resolution of 2.3×2.3×3-4 

mm3 was used. However, it was our aim to evaluate large scale vortex ring cores which are 

expected to have volumes significantly larger than the MR voxel size. In three volunteers, a 
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higher resolution of 2.3×2.3×3 mm3 was used, which did not result in significant different 

findings from the other subjects. Further methodological and quantitative analysis on the 

effect of acquisition resolution may be helpful but was beyond the scope of this work. 

Identified Lambda2-based vortex cores could not be used for volumetric measurements 

(e.g. vortex volume or size) as applying different Lambda2 isovalue thresholds can result in 

different volumes for the same vortex core. Therefore, the vortex parameters derived in this 

study were chosen as not to be dependent on vortex volume.  4D Flow data was acquired 

using free breathing scans and no motion compensation was applied. Nevertheless, no 

motion artifacts were visually observed in the velocity data, and since all subjects 

underwent the same scan protocol, potential inter- and intra-subject effects on the 

measurements might be assumed to be similar among all subjects. 

2.5. Conclusion 
 In summary, this is the first in vivo study using 4DFlow CMR to confirm previous 

CFD findings of vortex ring formation during late filling and to provide standardized 

parameters that allow quantitative characterization of vortex flow during both early and late 

left ventricular filling. The derived quantitative parameters provided consistent 

measurements within the studied population and strong correlation was found between the 

shape of the formed vortices and the shape of the inflow area at the level of both the mitral 

annulus and the tip of the opened MV leaflets. This study provides reference parameters 

defining normal vortex flow, which may allow objective quantitative evaluation of vortex 

flow in patients with cardiac disease. 
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Chapter 3 

Altered left ventricular vortex ring formation by 

4-dimensional flow magnetic resonance imaging after 

repair of atrioventricular septal defects 

This chapter was adapted from: 
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Abstract

Objectives: During normal left ventricular (LV) filling, a vortex ring structure is formed 

distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient 

flow organization. We aimed to investigate whether LAVV abnormality in patients with 

a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring 

formation. 

Methods: Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), 

and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early 

(E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and 

orientation of the vortex ring was defined, and the circularity index was calculated. 

Through-plane flow over the LAVV, and the vortex formation time (VFT), were 

quantified to analyze the relationship of vortex flow with the inflow jet. 

Results: Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 

19%; P = 0.015), and A-peak (healthy subjects 10% vs patients 44%; P = 0.008) was more 

frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 

0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients 

compared with controls, the vortex cores had a more- anterior and apical position, closer to 

the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the 

vortex core closely resembled the valve shape, and its orientation was related to the LV 

inflow direction. 

Conclusions:  This study quantitatively shows the influence of abnormal LAVV and LV 

inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, 

compared with healthy subjects. 
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3.1. Introduction 
Patients with an atrioventricular septal defect (AVSD) require corrective surgery early in 

life to prevent pulmonary overflow and heart failure. Compared with a normal mitral valve, 

the mural (posterior) leaflet of the left atrio-ventricular valve (LAVV) is smaller, and the 

anterolateral papillary muscle is positioned more laterally in AVSD hearts [1, 2].  

Furthermore, the presence of a single papillary muscle and double orifice are described [3]. 

Moreover, surgical correction of an AVSD, including closure of the ‘‘cleft,’’ may result in 

restricted opening of the LAVV[4] and a more-lateral inflow [5], which might affect 

efficiency of cardiac blood flow in the left ventricle (LV). 

Survival after surgical correction is excellent in the current era, but the reoperation rate 

due to valve regurgitation is high [6, 7]. Long-term follow-up data on cardiac function or 

exercise capacity after AVSD correction are lacking. However, deterioration of cardiac 

function and New York Heart Association class is described during pregnancy, when 

cardiac flow increases [8]. 

Recently, the formation of a vortex within the LV during diastole was related to the 

inflow area through the mitral valve in healthy subjects [9]. The formation of vortex 

structures (ie, compact regions of swirling blood flow) in LV blood flow patterns during 

diastolic filling has recently emerged as a potential novel index for characterizing efficient 

LV blood flow and evaluating cardiac chamber (dys) function [10]. During LV filling, a 

vortex ring structure distal to the mitral valve leaflets and enclosing the inflow jet is 

observed. This vortical flow is considered an efficient mechanism for transporting a 

significant portion of LV-filling volume toward the aorta [11], minimizing energy loss, and 

helping mitral valve closure [12, 13]. Recently, 3-directional, 3-dimensional  (3D)  and  

time-resolved velocity-encoded MRI (magnetic resonance imaging; 4D flow MRI) has 

been introduced to assess vortex ring formation during LV filling in vivo [9], because it has 

the advantage of a 3D evaluation of the vortex ring. 

Given the relationship between the vortex ring properties and the mitral valve 

morphology and LV inflow [9, 14-17], we hypothesized that LAVV abnormalities, and 

associated abnormal lateral inflow5 after surgical AVSD correction, may result in disturbed 

vortex flow during LV filling. Therefore, we used 4D flow MRI to identify and 

quantitatively characterize the geometric properties and anatomic location of vortex ring 

cores during early and late LV filling, allowing quantitative assessment of 3D vortex ring 

properties in AVSD-corrected patients and comparison with healthy controls. 
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3.2. Methods

3.2.1 Study Population

The study was approved by the ethical committee of the Leiden University Medical 

Center, and written informed consent was obtained from all participants or their parents. 

Thirty-two patients with a history of corrected AVSD were prospectively enrolled from a 

surgical database [18]. Thirty healthy subjects of similar age, without a history of cardiac 

disease, were included for comparison. 

Participants in the current study were included in previous studies with the aim of 

characterizing and quantifying diastolic transatrioventricular flow [5, 19]. Twenty-four of 

the 30 healthy subjects were included in a study that provided reference values for 3D 

vortex LV flow [9]. None of the previously published papers addresses vortex formation in 

corrected AVSD patients. For clarity, we use the term ‘‘left atrioventricular valve’’ 

(LAVV) in patients and controls, instead of referring to the mitral valve in healthy subjects, 

and the LAVV in patients. 

3.2.2 Magnetic Resonance Imaging Acquisition and Analysis

Whole-heart 4D flow was obtained on a 3T MRI scanner (Ingenia; Phillips Medical 

Systems International, Best, The Netherlands), with a maximal gradient amplitude of 45 

mT/m for each axis, and a slew rate of 200 T/m/s, using a combination of FlexCoverage 

Posterior coil in the tabletop with a dStream Torso coil, providing up to 32 coil elements 

for signal reception. Imaging details are reported elsewhere [5]. 

 In short, a 3D volume acquisition of the heart was performed with a velocity encoding 

of 150 cm/s in all 3 directions, and spatial resolution of 2.3 × 2.3 × 3.0 - 4.2 mm3; 30 

cardiac phases were retrospectively reconstructed to represent one average heartbeat, with a 

maximal true temporal resolution of 31ms. Furthermore, to quantify LV volumes and 

ejection fraction, a left 2-chamber and 4-chamber cine view, and a short-axis cine stack of 

slices, was acquired with steady-state free-precession sequences as reported elsewhere [5].  

Spatial resolution was 1.0 × 1.0 × 8.0 mm3; in addition, for these acquisitions, 30 phases 

were retrospectively reconstructed. 

All acquisitions were performed with free breathing and no respiratory motion control. 

The cine steady-state free-precession acquisitions were all performed with 3 signal 

averages to suppress breathing artifacts. After manual segmentation of LV endocardial 

boundaries, the LV end-diastolic volume (LVEDV), end-systolic volume (ESV), and 
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ejection fraction were calculated. The sphericity index of the LV was calculated as 

LVEDV/( /6 × long-axis at end-diastole) [3]. 

3.2.3 A 3D Vortex Core Analysis Based on the Lambda2 Method

Using the image analysis workflow described elsewhere [9],  the cores of vortex 

structures within the LV blood flow during diastole, as acquired from the 4D flow MRI 

data, were identified by a single observer using the Lambda2 method [20].  In short, the 

Lambda2 method is a fluid-dynamics–based method that uses the gradient properties of the 

velocity field to identify vortex cores in the flow. For each subject, the vortex cores were 

identified at the early (E-peak) and late (A-peak) filling, defined from the trans-LAVV flow 

quantification, described later, and visualized as isosurfaces. 

Qualitative visual inspection of the shape of detected vortex cores was performed to 

determine whether a 3D ring-shaped vortex core was present, defined as a vortex core with 

a donut-like (torus) shape (Figure 3.1). If a vortex ring core was detected during E-peak 

and/or A-peak, its 3D position (in normalized cylindrical coordinates), orientation, and 

shape were quantitatively characterized, as illustrated in Figure 3.1. 

3.2.4 Trans–Left Atrioventricular Valve Flow

Trans-LAVV flow was quantified using the 4D flow MRI data and retrospective valve 

tracking [21]. From the through-plane LAVV velocity map, a flow-time curve of the 

LAVV flow was computed, and E-peak and A-peak were defined. The early LV filling 

fraction was calculated as (E-wave inflow volume/total inflow volume) × 100%.  To study 

the association with diastolic vortex formation, LAVV and inflow characteristics were 

evaluated. The inflow area and peak velocity during E-peak were quantified at the level of 

peak inflow velocity. The peak velocity inflow angle (ie, angle between the long-axis and 

inflow direction) at E-peak was measured using streamline visualization of the flow 

velocity field on the 4-chamber view, as previously described [5]. 
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Figure 3.1. The 3-dimensional quantitative vortex core parameters. The cylindrical 

position of the (A) vortex core center (asterisk) was defined using L, C, and R coordinates 

relative to LV (A, B). L and R were normalized relative to the LV long-axis length and the 

radius of the LV endocardial cavity, respectively. The orientation angle was defined 

relative to the long-axis (C). The circularity index was defined as the ratio between the 

longest (D1) and shortest (D2) diameter (D). (Modified after Elbaz and colleagues [9]). R, 

Radial; L, longitudinal; C, circumferential; sept, septal; lat, lateral; D1, longest diameter; 

D2, shortest diameter. 

3.2.5 Vortex Formation Time Index

The vortex formation time (VFT), a dimensionless index previously proposed to 

quantify the process of vortex progression during early filling [22], was determined using 

the formula: VFT = (Vavg × Eduration)/D, based on the average speed of blood flow 

during the early filling period (Vavg), the duration of the E-filling (Eduration), and the 

maximum diameter (D). The D denominator was computed at E-peak from the area of 

the LAVV flow, measured on the velocity map after retrospective valve tracking at peak 
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velocity level (ie, tip of the valves). The diameter was calculated as D, assuming the 

inflow area to be circular. 

3.2.6 Statistical Analysis 

Data analysis was performed using SPSS (version 20.0, SPSS, Inc, Chicago, Ill). 

Variables were tested for normal distribution using the Shapiro-Wilk test. Continuous 

variables are expressed as mean ± SD, or as median with interquartile range (IQR), as 

appropriate. Differences between presences of E-peak versus A-peak vortex ring core were 

tested with a Pearson analysis. Differences between patients and controls, and subjects 

with versus without E-peak vortex ring core, were assessed using an unpaired t test or a 

Mann-Whitney U test. Correlation between inflow directions, LV volume, and vortex 

position parameters were assessed with linear regression analysis (Pearson r). 

3.3. Results

3.3.1 Patient Characteristics 

Characteristics of patients and healthy controls are presented in Table 3.1. Of 32 

patients, 1 had a double-orifice LAVV [3], 1 had a single papillary muscle [3], and another 

was known to have dextrocardia. In patients compared with controls, the mean LV ejection 

fraction was lower, diastasis was shorter, and the LV sphericity index was higher. 

3.3.2 Presence of 3D Vortex Cores during E-Peak and A-Peak

In all controls, during peak E-filling, a quasi–ring-shaped vortex core was identified 

distal to the mitral valve in the LV blood flow pattern (Figure 3.2). In 26 (81%; P=0.015) 

patients, such a compact 3D vortex ring core distal to the LAVV was identified during peak 

E-filling. The shape of the detected 3D vortex ring cores in patients was more frequently 

deformed, albeit that the vortex cores were still compact and recognizable (Figure 3.2). 

Visually, the shape of the vortex core tended to resemble the shape of the inflow area 

over the LAVV, as observed on the through-plane velocity maps (Figure 3.2). In 6 patients 

(19%) (Table 3.2), no E-peak vortex ring core was detected; instead, only a complex 

irregular vortex shape was present. The 6 patients included the patient with a double-orifice 

LAVV (Figure 3.4), and the patient with a single papillary muscle. The other 4 patients 

without an E-peak vortex ring core had a small LAVV area, higher peak velocity, and VFT 

deviating more than 2 SD (VFT = 5.1, 5.5, 7.4, and 7.8) (Table 3.2) from that for healthy 

participants (2.6 ± 0.6). The other patients with an E-peak vortex ring core had a mean VFT 
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of 2.4 ± 0.6, which was very similar to the healthy participants. The LV shape parameters 

LVEDV and sphericity index, of the 6 patients without E-peak vortex, still fell within the 

ranges of the patients with an E-peak vortex ring core. 

At peak A-filling, an asymmetric compact vortex ring core formed at the basal LV 

level in 27 healthy subjects (90%), but only 19 (59%; P = 0.006) patients. Details of 

patients with and without A-peak vortex ring core are presented in Table 3.3. Patients and 

healthy subjects without an A-peak vortex ring core had shorter diastasis (14 ± 17 ms), 

compared with patients and controls with an A-peak vortex ring (109 ± 85 ms; P <0.001). 

3.3.3 Quantitative 3D Parameters of Vortex Ring Cores and Association with 

the LAVV and LV Characteristics

The circumferential, longitudinal, and radial position, orientation, and circularity index 

were quantified for all detected vortex ring cores. During E-peak and A-peak, the center of 

the vortex ring core was positioned more anteriorly (lower circumferential value), closer to 

the apex (higher longitudinal value), and closer to the LV wall (higher radial value) in 

patients, compared with control subjects (Table 3.4).  

In healthy subjects, the vortex orientation ranged from 55o to 88o, whereas in patients, 

the vortex orientation showed a wider range (14o -134o ). Three patients had a vortex 

orientation angle  90 o (ie, 102 o , 115 o, and 134 o), indicating a reversed orientation of 

the ring (Figure 3.5), with the lateral side of the vortex being positioned toward the apex, in 

contrast to the control subjects, for whom the septal side was positioned more apically. In 

patients with nonreversed vortex ring cores (orientation <90 o), cores were in a more-tilted 

position (50 o ± 20 o), compared with the position in healthy subjects (71o ± 9o; P < 0.001) 

(Figure 3.3). 

During A-peak, the vortex ring core orientation was in a nonreversed, more-tilted 

position in all patients, compared with control subjects (54 o ± 21 o vs 72 o ± 6 o; P = 

.001). During both E-peak and A-peak, vortex ring cores were less circular in patients, 

compared with healthy subjects (Figure 3.3; Table 3.4). In patients, vortex ring core 

orientation angle relative to the LV long-axis showed a significant correlation with the 

inflow angle (E-peak r = 0.41; P = .037; A-peak r = .62; P = .005); inflow area during E-

peak (r = 0.47; P = .015); and LVEDV (E-peak r = 0.61; P = .001; A-peak r = 0.54; P = 

.017).  
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Figure 3.2. Shape of vortex core corresponds with the inflow area. Vortex cores depicted 

on reformat planes of through-plane flow at peak inflow velocity (B, E, H, K) during E-

peak and A-peak in a healthy subject (A-F) and a patient (G-L). AVSD, Atrioventricular 

septal defect; E-peak, early filling; A-peak, late filling; LA, left atrium; LV, left ventricle; 

Sept, septal side. 
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Figure 3.3. Example of a vortex core during early filling in a patient (E-H) and a healthy 

subject (A-D). Streamline visualization (color coding represents velocity magnitude) shows 

a more lateral inflow direction in the patient (F) compared with the control (B). The vortex 

core has a more-tilted orientation (G) and elliptical shape (H) in the patient, compared with 

the healthy control (C-D). LA, Left atrium; LV, left ventricle. 
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In healthy subjects, no significant correlations were found between orientation angle 

and inflow angle, inflow area, or LVEDV. In patients, the sphericity index of the LV did 

not show a relationship with vortex ring core characteristics. Ejection fraction did not 

correlate with vortex ring core presence or characteristics. In patients, no significant 

correlation (P = 0.97) was found between regurgitation fraction and vortex orientation. 

Table 3.1 Characteristics of healthy subjects and patients

Characteristics Healthy 
subjects 

Patients with 
corrected AVSD 

Age (y) 23 (13-38) 26 ± 12 
Male (%) 14 (46) 9 (28) 

Heart rate (bpm) 68 (60-78) 76 ± 13 
Diastasis (ms) 116 ± 89 26 (0-67) a, b

Type AVSD — 21 (66%) partial, 11 (33%) 
complete or intermediate 

Time after surgical correction 
(y) 

20 ± 9 

Stroke volume LV (mL) 89 ± 23 85 ± 19 
LVEDV (mL) 146 ± 42 155 ± 33 

LVEDV/BSA (mL/m2) 87 ± 13 91 ± 15 
LV sphericity index 0.37 ± 0.06 0.57 ± 0.14 c

Inflow area (cm2) 9.2 ± 2.0 8.5 ± 2.5 
Peak velocity (cm/s) 94 ± 15 93 (77-145) 

VFT index 2.6 ± 0.6 2.4 (1.9-3.1) 
Blood pressure systolic (mm 

Hg) 
112 ± 13 119 ± 20 

Blood pressure diastolic (mm 
Hg) 

67 ± 9 67 ± 12 

E/A ratio peak flow rate 2.5 ± 0.8 2.1 (1.7-2.6) a

Early filling fraction (%) 76 ± 5 73 ± 13 
Ejection fraction (%) 61 ± 5 56 (52-58) c

LAVV regurgitation (%) — 14 ± 8 

Boldface indicated the time after surgical correction. AVSD, Atrioventricular septal defect;  
bpm, beats per  minute;  LV, left  ventricle;  LVEDV, left  ventricular  end- diastolic 
volume; BSA, body surface area; VFT, vortex formation time; LAVV, left atrioventricular 
valve; E/A, early/late filling. a Excluding 2 cases without late-peak filling. b P <.01 , c P
<.001. 
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Figure 3.4. Patient with a double-orifice LAVV showed 2 separate inflow jets. 

Streamlines (color coding representing velocity magnitude) show (A) 2 inflow jets (white 

arrows). The vortex core had a complex shape (B), but fit with streamlines (C). (D) 

Through-plane flow analysis showed3 jets in the LAVV (dotted line). Positioning the 

streamlines (E) and vortex core (F) on top of the velocity map shows that a core is 

formed around both jets. LA, Left atrium; LV, Left ventricle. 

3.4. Discussion
This study, for the first time, quantitatively describes the effect of LAVV abnormalities 

and abnormal LV inflow on 3D vortex ring formation in LV blood flow patterns during 

early and late filling, in patients with surgically corrected LAVV valves compared with 

healthy subjects. These findings highlight the close relationship between AVV morphology 

and LV filling characteristics, with LV vortex formation. Previous studies on vortex 

formation in the presence of LAVV abnormalities were performed in vitro, or were based 

on 2-dimensional analysis using echocardiography. 

The current report provides an in vivo 3D analysis using 4D flow MRI. Key findings 

are as follows: (1) Absence of vortex ring formation is more frequent in corrected-AVSD 

patients and is related to LAVV abnormalities (single papillary muscle and double-orifice) 

and a narrow LAVV diameter concomitant with high inflow velocities evidenced by a high 

VFT. (2) If a vortex ring core is present in corrected-AVSD patients, it has a different 
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position, a more-elliptical shape, and an oblique orientation compared with controls, and 

these differences correlate with LV inflow direction. 

Figure 3.5. Reversed orientation of the vortex ring core in a corrected AVSD patient. 

Healthy subject (A), and patients (B). LA, Left atrium; LV, left ventricle; ant, anterior. 

3.4.1 Absence of Vortex Ring Core Related to Valve Morphology and VFT

In the normal heart, adequate suction, correct shape of the valve leaflets, and normal 

electrical conduction allow vortex ring formation during LV filling [23]. In our study, 6 

patients did not develop a vortex ring. One of these patients had a double-orifice LAVV, 

resulting in 2 inflow jets, as is seen after edge-to-edge repair. Absence of a ring in this 

patient is in agreement with computational fluid dynamics studies simulating edge-to-edge 

repair, resulting in abnormal vortex formation with increased energy loss and decreased LV 

filling efficiency [24]. Another patient without vortex ring formation had a single papillary 

muscle, stressing the contribution of the papillary muscles to the shape of the vortex ring 

[25].  

Both cases underline the influence of morphologic LAVV abnormalities on vortex 

formation. Next to 2 patients with abnormal anatomy, 4 other patients were observed 

without E-peak vortex ring formation. These 4 had a VFT more than 2 SDs higher, 

compared with patients with an E-peak vortex ring core and with healthy subjects. The 

VFT index, studied in vitro and in vivo, is known to have an optimal value range that 

defines efficient vortex formation [22, 26]. In patients with mitral stenosis, higher values of 
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VFT have been related to the absence of a well-formed vortex ring, resulting in increased 

energy dissipation [27]. 

In the current MRI study, the VFT values in healthy subjects were lower than the 

reported range (3.5-5.5) measured with echocardiography [22]. This difference might be 

due to differences between modalities [28]  and their definition of valve diameter 

measurement. However, the markedly higher VFT values in patients with an absent vortex 

ring confirms that patients with a narrow LAVV diameter and a higher peak velocity 

develop abnormal vortex flow [22, 26]. In addition, VFT measurements were comparable 

and not significantly different between controls and patients when an E-vortex ring core 

was present. Absence of a separate A-peak vortex ring core was related to the shorter 

diastasis in patients, similar to what is reported in healthy controls [9]. 

3.4.2 Vortex Ring Formation Related to LAVV and LV Characteristics

In normal hearts, a vortex ring forms at the tip of the LAVV [29], with the septal side 

positioned toward the apex, owing to the unbalanced shape of the leaflets (ie, longer 

anterior and shorter posterior leaflet) and interaction with the LV wall [23, 29]. The visual 

similarity between the 3D shape of the vortex ring core and the (abnormal) LAVV orifices 

(ie, LAVV inflow area) in this study illustrates the impact of the abnormal LAVV on 

vortex ring formation. Moreover, the observed correlation between disturbed vortex 

characteristics and altered inflow area and direction, indicates an influence of abnormal 

valve and inflow on vortex ring formation. 

Our findings are in agreement with computational fluid dynamics experiments [16], 2-

dimensional echocardiography analysis in human [17, 30], and an MRI study in sheep [31]  

showing that LAVV repair and replacement are related to unnatural vortex formation. 

Aside from the impact of the valve abnormalities, the correlation between vortex ring 

orientation and LVEDV shows an impact of LV size on vortex formation. This finding is in 

agreement with the relationship between LVEDV and vortex size observed in patients with 

dilated cardiomyopathy [32]. 
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Table 3.2. Characteristics of the 6 patients without a vortex ring core during E-peak or 

 A-peak. 

Characteristics Pt 1 Pt 2 Pt 3 Pt 4  Pt 5 Pt 6 
Age 10 23 20 36 12 32 
Type AVSD Partial 

double-
orifices 

Complete 
single 
papillary 
muscle 

Partial Complete Complete Complete 
dextrocardia 

Regurgitation % 10 23 20 36 12 32 
Heart rate (bpm) 76 78 96 114 60 62 
Diastasis (ms) 24 0 No A-

peak
No A-
peak

0 0 

Early filling 
fraction (%) 

61 80 100 100 81 88 

Area LAVV 
(cm2)

9.2 8.4 6.0 5.1 4.6 4.6 

Peak velocity 
(cm/s) 

58 110 144 158 146 155 

VFT 1.6 2.5 5.1 5.5 7.8 7.4 

AVSD, Atrioventricular septal defect; Pt, patient; A-peak, late-peak filling; bpm, beats per 
minute; LAVV, left atrioventricular valve; VFT, vortex formation 

Table 3.3. Characteristics of healthy subjects and patients with a vortex ring core 
present during E-peak 

Characteristics Controls 
with E- and 
A-peak ring 

Controls 
with only E-

peak ring 

Patients with 
E- and A-
peak ring 

Patients with 
only E-peak 

ring
N 27 3 19 7 

Age 26 ± 13 11 ± 2 26 ± 14 28 ± 8 
Type AVSD - - 14 partial 

5 complete 
5 partial 

2 complete 
Regurgitation % - - 12 ± 8 13 ± 6 
Heart rate (bpm) 67 ± 10 95 ± 7 72 ± 12 80 ± 4 
Diastasis (ms) 128 ± 86 7 ± 13 81 ± 79 22 ± 18 

Passive filling fraction 
(%) 

76 ± 5 79 ± 2 72 ± 11 68 ± 10 

Area LAVV (cm2) 9.5 ± 1.9 6.4 ± 0.8 8.8 ± 2.5 9.3 ± 2.3 
Peak velocity (cm/s) 93 ± 16 105 ± 4 92 ± 15 94 ± 28 

VFT 2.6 ± 0.6 2.6 ± 0.2 2.4 ± 0.6 2.4 ± 0.5 

Values are mean ± SD, unless otherwise indicated. E-peak, Early-peak filling; A-peak, late-
peak filling; AVSD, atrioventricular septal defect; bpm, beats per minute; LAVV, left 
atrioventricular valve; VFT, vortex formation time. 
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In the current study, no relationship was found between vortex ring core characteristics 

and sphericity index, as described in a previous study using vortex filling fraction [11]. 

However, absence of such a correlation might be due to the narrow range in sphericity 

index of patients in the current study. In addition, no relationship was found with the 

ejection fraction, which was close to normal in all patients. Consequently, a possible impact 

of a restrictive LV remains to be investigated. 

3.4.3 Clinical Implications 

During AVSD correction, the common atrioventricular valve is separated and the cleft 

is closed. During surgical correction of an AVSD, surgeons have to minimize valve 

regurgitation, without causing valve restriction. Even though the shape of the vortex will 

not be the main concern of the surgeon during correction of an AVSD, awareness of the 

effect of valve surgery on the formation of vortices in the LV blood flow is important, as 

changes in vortex formation might affect blood flow efficiency. Similar consideration 

accounts for LAVV surgery in other congenital and acquired heart disease. 

These results do not preclude the possibility that the aberrant vortex formation is a 

coping mechanism of the heart and has a favorable effect on cardiac function. However, 

computational fluid dynamics studies have shown increased energy dissipation in cases 

with a disturbed LAVV shape and abnormal vortex flow formation [14-16], and reduced 

efficiency of the heart pump in patients with a higher VFT index [33]. A reversed vortex 

resulted in an increased energy-dissipation level compared with a normally oriented vortex 

[15]. Whether the aberrant vortex formation additionally results in clinically relevant 

changes in flow efficiency in corrected AVSD patients remains to be investigated during 

long term follow-up of this patient group. 

In the current study, global diastolic and systolic functions were within normal ranges; 

however, vortex ring characteristics were significantly different in patients, compared with 

healthy subjects. This finding may suggest that vortex formation provides a more sensitive 

indication of disturbed diastolic function than do conventional functional parameters, and 

confirms the suggested role of vortex analysis as an early predictor of diastolic dysfunction 

[34]. In patients with unbalanced AVSD, the inflow direction may play a role in LV growth 

as well [35]. Analysis of vortex formation in unbalanced AVSDs potentially can contribute 

to predicting LV growth and decision making for biventricular repair. 

The disturbed vortex formation observed at rest may become more pronounced during 

exercise or pregnancy, when cardiac blood flow increases. Future studies are needed to 
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analyze flow organization in situations with increased cardiac flow, such as during exercise. 

Furthermore, disturbed vortex ring formation might influence shear stress, which serves as 

an epigenetic factor in cardiac remodeling [13]. Therefore, future long-term studies have to 

reveal if abnormal vortex formation affects energy loss or cardiac pumping efficiency, 

and/or may serve as an early predictor for poor cardiac outcome [30]. 

Table 3.4. Quantitative vortex core characteristics, as presented in Figure 3.1, at E-peak 
and A-peak, in healthy subjects and patients 

characteristics Controls (N=30) Patients (N=26) P value 
E-peak 
Circumferential 90 ± 26° 70 ± 21° 0.003 
Longitudinal 0.19 ± 0.04 0.23 ± 0.07 0.015 
Radial 0.26 ± 0.07 0.33 ± 0.08 0.001 
Orientation 71 ± 9° 50 ± 20° * <0.001 * 
Circularity Index 0.80 ± 0.08 0.70 ± 0.13 0.002 

Controls (N=27) Patients (N=19)  
A-peak 
Circumferential 106 ± 27° 80 ± 28° 0.003 
Longitudinal 0.15 ± 0.05 0.19 ± 0.05 0.004 
Radial 0.20 ± 0.08 0.32 ± 0.14 0.002 
Orientation 72 ± 6° 54 ± 21° 0.001 
Circularity Index 0.63 (0.59-0.69) 0.60 ± 0.10 0.115 

E-peak, Early-peak filling; A-peak, late-peak filling. *Including patients with a nonreversed 
orientation (N = 23). Inclusion of all patients (n = 26) gives a mean orientation of 58 ±
29; P = .037. 

3.4.4 Limitations 

Absence or presence of a vortex ring was scored visually; however, a previous study 

[9] showed that vortex detection can be done with low inter- and intra-observer variation. 

In the current study, the absence of vortex formation was further confirmed by the 

significant high VFT, which is in line with previous work. The 4D flow MRI has the 

disadvantage of having a relatively long scan duration (8-10 minutes), and it is associated 

with relatively high costs, compared with echocardiography. 

Vortex core analysis was limited to the E-peak and A-peak; thus, no data were 

available on the timing, forming, and disappearance of the vortex cores. Parameters of 

diastolic and systolic function of patients were all close to normal reference values, which 

made correlation with clinical parameters difficult. The inflow angle of the LV was 

measured on a 2-dimensional plane, but was compared with a 3D-determined vortex 
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orientation. If a vortex ring core was not elliptical, the circularity index was computed by 

approximating an ellipse around the deformed vortex shape. This approximation may not 

fully capture or characterize the deformed vortex ring shape. 

3.5. Conclusions 
Quantitative 3D vortex analysis of early- and late-filling vortex ring formation revealed 

a disturbed vortex ring formation in patients after correction of an AVSD. This disturbance 

is characterized by either the absence of a formed vortex ring or alterations in the geometric 

properties and location of the formed rings. These findings were associated with abnormal 

LV inflow and morphology of the LAVV in the studied patients. Using 3D analysis, the 

current in vivo study quantitatively confirms the relationship between LAVV abnormalities 

and altered vortex ring formation in the LV. 

Our findings highlight the close relationship among AVV abnormalities. In addition, 

they create awareness of the influence of AVV abnormalities and AVV surgery on LV 

vortex formation. The exact implications of abnormal vortex formation and possible 

increased energy loss and cardiac remodeling, owing to aberrant vortex formation, need 

further investigation. 
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Chapter 4 

Assessment of viscous energy loss and the association 

with 3D vortex ring formation in left ventricular 

inflow: in vivo evaluation using 4DFlow MRI

This chapter was adapted from: 
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of viscous energy loss and the association with three dimensional
vortex ring formation in left ventricular inflow: In vivo evaluation 
using four dimensional flow MRI. Magnetic Resonance in Medicine.
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Abstract 

Purpose: To evaluate viscous energy loss and the association with 3D vortex ring for-

mation in left ventricular (LV) blood flow during diastolic filling. 

 

Methods: Thirty healthy volunteers were compared with thirty-two patients with corrected 

atrioventricular septal defect as unnatural mitral valve morphology and inflow are common 

in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was 

identified in LV blood flow at peak early (E)-filling and late (A)-filling and characterized 

by its presence/absence, orientation and position from lateral wall. Viscous energy loss was 

computed over E-, A-filling and complete diastole using the Navier-Stokes energy equa-

tions.  

 

Results: Compared to healthy volunteers, viscous energy loss was significantly elevated in 

patients with disturbed vortex ring formation as characterized by a significantly inclined 

orientation and/or position closer to the lateral wall. Highest viscous energy loss was found 

in patients without a ring-shaped vortex during E-filling (on average more than double 

compared to patients with ring-shape vortex, p<0.003). Altered A-filling vortex ring for-

mation was associated with significant increase in total viscous energy loss over diastole 

even in the presence of normal E-filling vortex ring.  

 

Conclusion: Altered vortex ring formation during LV filling is associated with increased 

viscous energy loss. 
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4.1. Introduction 
Evaluation of vortex ring formation in left ventricular (LV) blood flow during diastolic 

filling has recently emerged as a potential novel approach for characterization of LV blood 

flow efficiency and cardiac chamber (dys-)function[1-5]. A vortex is characterized by a 

flow pattern with compact vorticity (the curl of velocity). During LV filling, vortical flow 

is organized in a ring-like shape enclosing the inflow jet. During both LV filling phases, a 

vortex ring is formed in the shear layer at the distal tip of the mitral valve (MV) leaflets [6], 

eventually pinches off from these leaflets and propagates towards the apex. While propa-

gating, the vortex ring dissipates in the bulk flow due to viscosity-driven friction between 

the vortex ring and the lateral LV wall [7]. 

 Vortical flow in the LV cavity is thought to preserve momentum and kinetic ener-

gy in intra-LV blood flow and to help redirecting mitral inflow towards the aortic valve and 

therefore, minimizing the LV mechanical energy needed to eject the blood during systole 

[2, 6, 8]. Viscous dissipation of the vortex ring may contribute to or attenuate this flow 

organization [8, 9]. Viscous energy dissipation/loss is essentially kinetic energy converted 

into thermal energy due to viscosity-driven friction [10]. Consequently, in healthy hearts 

the viscous energy loss is proportional to the amount of kinetic energy produced in the flow 

which is in turn proportional to the amount of the inflow, i.e., the stroke volume [10]. 

 The normal dissipation of the vortex ring in the LV is mainly driven by the asym-

metric shape of MV leaflets and the annulus position [3, 7]. The MV setup is found to be 

optimal for minimizing viscous kinetic energy loss in LV blood flow [8, 9]. Using an ideal-

ized LV model, computational fluid dynamics (CFD) studies have shown that a breakup in 

the natural MV setup, by either displacing the annulus closer to the lateral wall [8] or 

changing the natural MV asymmetry [9], can alter the formed vortex ring orientation and/or 

position relative to the lateral wall. Such unnatural vortex ring formation is found to be 

associated with an increase in viscous energy loss during LV filling which then may require 

more mechanical energy from the LV to preserve the cardiac output during systole [3, 8, 9]. 

However, it has not been shown that a similar association between 3D vortex ring for-

mation and viscous energy loss during LV filling is present in vivo. 

 Patients after atrioventricular septal defect (AVSD) correction are exemplary to 

have an unnatural MV/left atrioventricular valve (LAVV) setup with a more laterally posi-

tioned annulus and a smaller posterior leaflet compared to normal hearts [11-13]. This set-

up has shown to result in altered 3D vortex ring formation characterized by a more lateral 

position, more inclined orientation and more frequent absence of vortex ring formation 
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compared to healthy controls [14]. Moreover, the inflow jet was found to be directed to-

wards the lateral wall in these patients [15]. Nevertheless, it is currently unclear whether 

these disturbed vortex ring parameters would correspond with different levels of viscous 

energy loss during LV filling in these patients compared to healthy volunteers. 

 Recently, 4DFlow MRI (also known as three-directional, three-dimensional (3D) 

and time-resolved velocity-encoded MRI) has enabled quantitative 3D vortex ring analysis 

during both early and late LV filling in healthy volunteers and patients including measure-

ments of vortex ring orientation and radial position (i.e. distance from lateral wall) [14, 16, 

17]. Given the role of natural vortex ring formation in minimization of viscous energy loss, 

previously reported in in vitro studies [8, 9], we hypothesized that disturbed vortex ring 

formation in patients would be associated with increased viscous energy loss in LV blood 

flow due to increased friction with the lateral wall. Therefore, the aim of this study was to 

employ 4DFlow MRI to evaluate viscous energy loss and assess the association with 3D 

vortex ring formation during LV filling in vivo in healthy volunteers and patients with al-

tered vortex flow. 

4.2. Theory 
Mechanical energy can be described as the ability to move the mass of an object 

over some distance. In case of idealized flow in which no frictional forces are present, the 

total mechanical energy in the system (i.e., circulatory system) is conserved [10]. This 

means that any increase in potential energy (i.e., pressure) will be compensated by a de-

crease in kinetic energy and vice versa and the exchange of energy occurs without energy 

loss. In the LV, the blood flow is non-idealized and with blood being a viscous fluid, fric-

tional forces exist resulting in irreversible mechanical energy loss mainly in the form of 

thermal energy (heat) [10]. Viscous energy loss corresponds to the mechanical kinetic en-

ergy irreversibly lost (converted) to thermal energy due to frictional forces induced by fluid 

viscosity and no-slip condition [10, 18].  

4DFlow MRI can provide the three-directional velocity flow field  over the three principal 

directions x, y, z and over the complete cardiac cycle [19]. Given the acquired velocity 

field , the instantaneous rate of viscous energy loss ( ) in watt (W) and the total energy 

loss ( ) in joule (J) over a given period of time  can be computed using the viscous 

dissipation function  in the Newtonian Navier-Stokes energy equations [20-22]: 

= ,    [s-2]( 1 ) 
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 The viscous dissipation function  represents the rate of viscous energy dissipa-

tion per unit volume.  correspond to the principal velocity directions x, y, z.  is the 

divergence of the velocity field. Hence, the volumetric rate of viscous energy loss ( ) in 

watt at time instance  can be computed as: 

   [watt (W)]( 2 ) 
with the dynamic viscosity =0.004 Pa·s, assuming the blood as a Newtonian fluid, as 

the total number of voxels in the given domain of interest (e.g. LV),  as the voxel vol-

ume.  

Consequently, the total viscous energy loss ( ) in joules over time period  starting at 

phase  and ending at  can be computed as: 

 [joule (J)]( 3 ) 

with  the time step (temporal resolution) of the 4DFlow MRI acquisition. 

Given the three-directional velocity vector field , the kinetic energy ( ) over a domain of 

interest with  voxels of volume  at time instance  can be computed as 

  [J]( 4 ) 

with blood assumed as incompressible fluid with density = 1,025 kg/m3. 

4.3. Methods 

4.3.1. Study population 

 The study was approved by the local ethical committee and written informed con-

sent was obtained from all participants or their parents. Thirty-two patients with a history 

of corrected-AVSD were prospectively enrolled [23]. Thirty controls with a similar age and 

without history of cardiac disease were included for comparison. Patients underwent elec-

trocardiography and ECG and their details were analyzed. All patients were in sinus 

rhythm. Forty-four percent of the patients presented with a right bundle branch block and 

six (19%) with some form of left bundle branch block. Data from patients and/or controls 

was previously reported in studies with the aim to characterize and quantify diastolic trans-

atrioventricular valve flow [15, 24], providing reference values for 3D vortex flow in the 

LV [16] and evaluating LV inflow propagation velocity [25]. Two more recent publications 

have used the 4D flow MRI data to evaluate the intracardiac blood flow organization in the 

same populations of corrected AVSD patients and healthy controls [17, 26] and to evaluate 

vortex ring formation in patients after AVSD-repair [17]. However, none of these publica-
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tions reported viscous energy loss, kinetic energy or its association with vortex ring param-

eters. For clarity, the term mitral valve (MV) will be used in both healthy subjects and pa-

tients (instead of LAVV).

4.3.2. 4DFlow MRI protocol and data preparation 

 Whole-heart 4DFlow MRI was obtained on a 3T MRI scanner (Ingenia 3T MRI 

with Software Stream 4.1.3.0, Philips Healthcare, Best, The Netherlands), using a combina-

tion of FlexCoverage Posterior coil in the table top with a dStream Torso coil, providing up 

to 32 coil elements for signal reception. Velocity encoding of 150cm/s was used in all three 

directions, with spatial resolution 2.3×2.3×3.0–4.2mm3, flip angle 10°, echo time (TE) 

3.2ms and repetition time (TR) 7.7ms, resulting in a maximal true temporal resolution of 

4×TR=31ms. Retrospective ECG-gating was used and 30 cardiac phases were reconstruct-

ed to represent one average heartbeat. Parallel imaging was performed using SENSE with 

factor 2 and echo planar imaging with factor 5 for acquisition acceleration. Furthermore, to 

quantify LV volumes and ejection fraction as well as facilitating LV segmentation, a left 

two-chamber and four-chamber cine view and a short-axis cine stack of slices were ac-

quired with steady-state free-precession with TE/TR 1.5/3.0; 8mm section thickness; 45° 

flip angle; spatial resolution 1.0×1.0×8.0mm3; three signal averages and parallel imaging 

with SENSE factor 2. Typical volume for a whole-heart 4DFlow MRI acquisition was 396 

mm (right-left) × 336 mm (anterior-posterior) × 117 mm (feet-head). However, the field-

of-view in anterior-posterior direction was adapted to the size of each subject. 4DFlow 

MRI acquisition took on average 8 minutes (range 5-12 minutes). Concomitant gradient 

correction and local phase correction were applied using the software available on the MRI 

system.  

 To enable a reasonable acquisition time (8-10 minutes), free breathing was al-

lowed for both patients as well as controls, without using motion compensation techniques 

such as navigators. For each voxel, 4D flow MRI data was obtained in retrospectively gated 

time-resolved manner, using one velocity-compensated and three velocity-sensitive (in 

three orthogonal directions) recordings. No additional signal averaging was performed. For 

short-axis cine data, three signal averages were obtained to compensate for breathing mo-

tion. 

 Using in-house developed MASS software (Leiden University Medical Center), 

the LV endocardial contours were manually traced on short-axis slices over all acquired 

phases. Contours were then projected on the whole-heart 4DFlow data. To reduce possible 
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translation errors between cine short-axis and whole-heart 4DFlow acquisitions, automated 

image registration using Elastix [27] was performed between cine short-axis data and ve-

locity magnitude reconstructed images of the 4DFlow data using a single phase that visual-

ly showed the best depiction of the LV in the velocity magnitude 4DFlow image. Registra-

tion was restricted to translation only. This registration result was then propagated to all 

4DFlow phases. Registered 4DFlow MRI contours were then visually reviewed for any 

possible registration or projection errors and manually corrected whenever needed. The 3D 

velocity data within the segmented LV volume was then used to compute energy parame-

ters as described in the Theory section. Segmented LV endocardial boundaries were also 

used to compute the LV end-diastolic volume (EDV), end-systolic volume (ESV), stroke 

volume (SV) and ejection fraction. Cardiac output (CO) was computed as CO = (SV x HR) 

with HR as the heart rate. 

 LV inflow was quantified from 4DFlow MRI data using retrospective mitral valve 

tracking [28]. The time points corresponding to peak early filling (E-peak) and peak late 

filling (A-peak) were defined from the flow-time curves which resulted from velocity map-

ping as previously described [15, 24]. E/A ratio was computed from flow rate values at E-

peak and A-peak. To study the association with diastolic vortex formation, the inflow area 

and peak velocity during E-peak were quantified at the level of peak inflow velocity as 

previously described [15].  

Image analysis was performed by one observer (EC) with two years of experience in cardi-

ac MRI and verified by one observer (JW) with over 15 years of experience. 

4.3.3. 3D vortex core identification using the Lambda2 ( 2)-method 

 Using the previously validated 3D vortex analysis workflow [16], the 3D vortex 

cores within the segmented LV blood pool were identified from the 4DFlow MRI data at 

both LV filling phases using the Lambda2-method and visualized as 3D isosurfaces [29]. In 

short, the Lambda2-method is a well-established fluid-dynamics-based method that uses 

the gradient properties of the velocity field to generate a 3D scalar ( 2) field. The 2-field 

implicitly describes the fluid pressure at each voxel. Voxels with extreme negative values, 

i.e. below a predefined 2 threshold are labeled as part of a vortex core in the flow. Vortex 

cores are then visualized as isosurfaces of some negative 2 threshold. In this work, the 

threshold was defined using a previously validated interactive method [16]. Qualitative 

visual inspection of the shape of detected 3D vortex core isosurfaces were performed by a 

single observer (ME) to determine whether a ring-shaped vortex core (a vortex core with a 
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donut-like (torus) shape enclosing the inflow jet) was present. If such vortex ring core was 

detected during E-filling and/or A-filling, its normalized radial position and orientation 

relative to the LV long-axis were calculated as described previously [16] (Figure 4.1).  

4.3.4. Vortex formation time (VFT) index 

 The Vortex Formation Time (VFT), a dimensionless index previously proposed to 

quantify the process of vortex progression during early filling [30], was determined as fol-

lows: 

       ( 5 )

with  as the average speed of the blood flow during E-filling,  as the duration 

of E-filling and  as the maximum diameter of the MV opening.  was computed at E-

peak from the area of the MV flow on retrospective valve tracking at peak inflow velocity 

level (i.e., approximately at the tip of the valves), using  = , assuming a circu-

lar inflow area. 

4.3.5. Energy Analysis 

 To quantify viscous energy loss in the LV during diastolic filling, the instantane-

ous volumetric rate of viscous energy loss ( ) was computed for each time point during 

LV filling using Equation (2). To quantify the viscous energy loss over both E- and A-

filling phases, the average rate of viscous energy loss over both periods ( ) and 

( ) was computed. The average viscous energy loss rate was used instead of the total 

viscous energy loss to account for the variation in E- and A-filling durations among differ-

ent subjects. The peaks  during E-filling ( ) and A-filling ( ) were cal-

culated as well as the ratio  / , reported as . 

 The total viscous energy loss over diastole ( ) was computed using Equa-

tion (3). To account for the variation in inflow volumes between different subjects, all 

computed viscous energy loss measurements were normalized by stroke volume (SV). This 

resulted in viscous energy loss measurements per unit volume  (in J/m3) and the rate of 

viscous energy loss  per unit volume (in W/m3). To compare with previously reported 

studies on viscous energy loss based on other modalities [31, 32], the absolute (i.e. not SV 

normalized)  is also reported as . 

 To quantify the change of kinetic energy (KE) over the period of LV filling, the 

instantaneous volumetric KE was quantified at each time point during LV filling (defined 
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from the flow-time curve) using Equation (4). The average KE over E-filling ( ) and 

A-filling ( ) was computed. Also peak KE over E-filling ( ) and A-filling 

( ) was calculated. 

 The amount of KE is proportional to the amount of LV inflow volume. Similar to 

EL, all computed KE were normalized by SV resulting in KE per unit volume (in J/m3) to 

account for the variation in inflow volumes among subjects. To compare with previously 

reported KE [33], the absolute (i.e. not SV normalized)  and  are also 

reported as  and . 

 Energy analysis was performed with an in-house software module developed using 

MATLAB (MathWorks Inc., version R2013b). Time-resolved segmented LV volumes 

were used in all provided analysis. 

4.3.6. Statistical analysis 

 Data analysis was performed using SPSS Statistics (version 20.0 IBM SPSS, Chi-

cago, Illinois). Variables were tested for normal distribution using the Shapiro-Wilk test. 

Continuous variables are expressed as mean ± standard deviation (SD) or as median with 

inter-quartile range [IQR] where appropriate. Comparison of variables amongst different 

groups was performed using unpaired Student's t-test or Mann-Whitney U-test where ap-

propriate, and p < 0.05 was considered statistically significant. 

 The normal limits of vortex ring’s radial position and orientation were obtained 

from the 95%CI (confidence interval) in the controls group. For each of the two vortex 

parameters, the patients were divided into three groups; patients with data within, below or 

above 95%CI of controls. One additional group was constructed which included patients 

with a normal vortex ring, i.e., both radial position and orientation within 95%CI normal 

limits. For each group, the values of aforementioned parameters of  and were com-

pared with corresponding values in controls using Mann-Whitney U-test.  

 Correlations of with , with , stroke volume with 

, ejection fraction with , VFT with , with inflow 

E/A and with HR were assessed from linear regression analysis (Pearson’s R2). 
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4.4. Results 

4.4.1. Clinical characteristics 

 Clinical characteristics of the studied subjects are summarized in Table 4.1. 

4.4.2. LV viscous energy loss (EL) over diastole 

 Detailed results are listed in Table 4.2. In all controls, the timing of the peaks in 

viscous energy loss rate  over diastole appeared in good alignment with the peaks in the 

flow rate-time curves (one example shown in Figure 4.2a). Two distinct peaks of viscous 

energy loss (EL) during diastole were discriminated: the first during early filling and the 

second during late filling. The peak E-filling viscous energy loss was significantly higher 

than A-peak ( = 14.7±4.6 W/m3, = 5.1±2.8 W/m3, p<0.001). The ratio 

between the EL peaks  was 3.4±1.6. The normal limits of 95%CI of  were 

[1.97–4.92 J/m3]. 

 

Table 4.1. Characteristics of healthy controls and corrected-AVSD patients 

 Controls  Corrected-AVSD patients 
Age (years) 23 [13–38] 26 ± 12 
Male (%) 14 (46) 9 (28) 
Heart rate (bpm) 68 [60–78]  76 ± 13 
Diastasis (ms)  116 ± 89 26 [0–67] * † 
Stroke volume (mL) 89 ± 23 85 ± 19 
Cardiac output (L/min) 6.01 ± 1.3 6.39 ± 1.4 
EDV (mL) 146 ± 42 155 ± 33 
Early filling fraction (%) 76 ± 5 73 ± 13  
Ejection fraction (%) 61 ± 5 56 [52–58] ‡ 
E/A ratio peak flow rate 2.5 ± 0.8 2.1 [1.7–2.6] * 
VFT index 2.6 ± 0.6 

(N=30) 
2.4 [1.9–3.1] (N=32) 

EDV = end-diastolic volume, VFT = vortex formation time, * excluding two cases without 
A-peak, † indicates p<0.01, ‡indicates p<0.001. Normally distributed data is presented as 
mean ± SD while non-normally distributed data is presented as median [Interquartile 
Range]. 
 

 In patients, similar to controls, two peaks could be detected in  during diastole 

in good alignment with the peaks in the flow rate-time curves (Figure 4.2b). The 

was significantly higher than in controls (patients = 18.3 [13.9–28.6] 

W/m3, p=0.002). Similarly, the peak of energy loss rate during A-filling in patients was 
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significantly increased compared to controls (patients = 10.4±5.3 W/m3, p<0.001). 

Furthermore, the E/A ratio between  peaks was significantly reduced in patients com-

pared to controls (patients =1.9 [1.3–2.9], p=0.003). In two patients, no A-wave was 

discriminated and therefore in those cases, no results for A-peak were obtained. Compared 

to controls, patients showed a significant increase (p<0.001) in viscous energy loss over 

complete diastole . 

4.4.3. LV kinetic energy (KE) over diastole and the association with viscous energy 

loss 

 Detailed results are listed in Table 4.2. Similar to EL, two peaks  and 

 of KE could be detected in controls and patients with the timing of these peaks in 

good alignment with the flow rate-time curves (Figure 4.2). Both  and  

were significantly higher (p=0.03) in patients compared to controls. Similarly, 

both  and  were significantly increased in patients compared to controls 

(p<0.001).  

 In controls, strong correlations were found between and  during 

E-filling (R2=0.81) and between and  during A-filling (R2=0.88) (Figure 

4.3). This was similar for patients where strong correlations were found between 

and  during E-filling (R2=0.88) and between  and  during 

A-filling (R2=0.88) (Figure 4.3).  

4.4.4. LV vortex ring formation and viscous energy loss 

 In all controls, a compact vortex ring core was identified in the LV blood flow 

during E-filling and quantitatively characterized. In 26 patients (81%), a vortex ring core 

was present but with different characteristics from controls (Table 4.3, Table 4.5). Among 

these patients, 17 (65%) patients had significantly tilted vortex ring orientation beyond the 

95%CI of controls’ vortex orientation (Table 4.4): in 14 patients below the lower limit and 

in 3 patients above the upper limit of the 95%CI of controls. Compared to controls, patients 

with E-peak vortex ring orientation within the normal limits (N=9) presented with non-

significantly different E-filling viscous energy loss rate but showed significantly 

higher (p<0.01) and (p=0.04) (Table 4.5). Patients with E-peak vortex 

ring orientation beyond normal limits (N=17) presented significantly increased viscous 

energy loss during E-filling, A-filling and complete diastole (p<0.01). Detailed results are 
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listed in Table 4.5. In eight patients with both radial position and orientation of E-peak 

vortex ring within the normal limits,  was not significantly different from controls 

but was still different from controls (p<0.01). Patients with E-peak vortex ring 

positioned significantly more lateral (radial position > 95%CI), showed a significant in-

crease in viscous energy loss during E-filling, A-filling and over complete diastole. 

 

 
Figure 4.1. (a) Example of vortex ring isosurface (in green) at E-peak filling phase as iden-

tified using Lambda2-based vortex core detection (16) from a healthy volunteer (b) Stream-

lines superimposed on vortex ring isosurface (a) in a four-chamber view. (c) Definition of 

vortex ring orientation and normalized radial position relative to the LV long-axis: The LV 

long-axis is defined as the line from the mid of the mitral valvular opening to the LV apex. 

The normalized radial position was calculated as the distance of the vortex ring center 

(marked by ‘*’) to the LV long-axis normalized by the basal endocardial radius. Vortex 

ring orientation was measured as the angle between the fitting plane of the vortex ring 

isosurface and the LV long-axis (LA). (d) Example vortex ring isosurface (in light green) at 

E-peak filling phase from an AVSD-repired patient with an inclined E-peak vortex ring 

orientation, showing a more elliptical vortex ring compared to controls. This deviated shape 

can be due to the restricted valve opening known to occur in AVSD patients after repair 

(17). (e) Streamlines superimposed on vortex ring isosurface presented in (d) showing the 

inclined inflow and vortex ring orientation in this patient in a four-chamber view.  
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Table 4.2. Quantitative analysis of viscous energy loss and kinetic energy during LV filling 

 Controls (N=30) Patients (N=32) p-value 
 (W/m3) 6.6 [5.5–9.0] 12.2±7.2 <0.001 
(W/m3) 3.9±2.2 8.1±3.8* <0.001 
(W/m3) 14.7±4.6 18.3 [13.9–28.6] 0.002 
(W/m3) 5.1±2.8 10.4±5.3* <0.001 

 3.4±1.6 1.9 [1.3–2.9]* 0.003 
(J/m3) 2.7 [2.3-3.2] 4.9±2.0 <0.001 

 (mJ) 0.24 [0.19–0.28] 0.37 [0.26–0.53] <0.001 
 (J/m3) 25.1±7.8 34.1±18.8 0.03 
(J/m3)* 9.3 [7.0–13.2] 21.4±11.2* <0.001 
(J/m3) 57.2±16.6 55.2 [46.4–76.5] 0.65 
(J/m3)* 15.9±8.0 28.9±16.0* <0.001 

  (mJ) 5.0±1.9 5.5±2.7 0.73 
(mJ)* 1.3±0.5 2.26 [1.3–3.2]* <0.001 

*Two patients had no A-wave and were excluded. 
 

 In the remaining six patients (19%), no well-formed E-peak vortex ring core was 

detected but rather a complex flow with isolated vortex cores of irregular shape. These 

patients showed a significant increase in viscous energy loss over complete diastole 

 compared to controls (p<0.01) as well as compared to the other patients 

(p=0.002) (Figure 4.2b, Table 4.4). Moreover, these patients presented significant increase 

in energy loss rate during E-filling ( ) compared to controls (p<0.01). Five out of 

these six patients showed  per unit volume above the 95%CI [1.97–4.92 J/m3] of controls 

(Figure 4.4). In addition, these five patients showed significantly higher vortex formation 

time (VFT) compared to controls (VFT (six patients without E-vortex ring) = 6.4±1.3 ver-

sus VFT (controls) = 2.6 ±0.6, p=0.002) and compared to other patients (VFT (twenty-six 

patients with E-vortex ring)=2.4±0.6, p=0.002). The one remaining patient with no E-peak 

vortex ring presented with an abnormal valve anatomy with double orifice for which it was 

not feasible to determine the orifice diameter D (in Equation (5)). In controls, the values for 

VFT presented with a narrow range, therefore, low correlation was found between 

 and VFT (R2=0.03, p=0.35) (Figure 4.5). However, in patients, with a wider 

range for VFT, this parameter showed good correlation with  (R2=0.864, p<0.001) 

(Figure 4.5). 
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Table 4.3. Quantitative energy parameters in patients presented with vortex ring core vs. 

those without vortex ring. 

 Patients with vortex ring 
(E-filling: N=26, A-
filling: N=19)

Patients without vortex 
ring (E-filling: N=6, A-
filling: N=13)

p-value 

 (W/m3)  9.3 [7.5–12.4]b 21.0±11.6b 0.003 
(W/m3)* 1.6±1.1a 2.2±0.9b* 0.04 
(W/m3) 17 [13.8–22.5]a 41.8±20.0b 0.001 
(W/m3)* 9.4 [6–13.3]b 12.1±5.5b* 0.16 
(J/m3) 4.2±1.3b 7.60±2.2b 0.005 

 (J/m3) 26.8 [22.8–34.9]NS 54.4±31.8b 0.03 
(J/m3)* 19.0±11.4a 25.5±10.1b* 0.13 
(J/m3) 57.8±0.2NS 101.6±59.2a 0.05 
(J/m3)* 24.9 [16.0–40.8]a 34.5±16.2b* 0.07 

NS p>0.05 compared to controls a p<0.05 compared to controls b p<0.01 compared to con-

trols. *Two patients had no A-wave and were excluded. 

 

 In 27 (90%) controls, a vortex ring core was identified during late filling. In the 

remaining three controls with no identified A-filling vortex ring, a short or no diastasis was 

observed [16]. During A-filling, a vortex ring core was identified in 19 patients (59%). In 

the other 13 patients (41%), only irregular isolated vortex cores were present. Although 

 was significantly increased in patients with absent A-peak vortex ring compared to 

controls, it was not significantly different from the other patients who presented with A-

peak vortex ring. Detailed results are presented in Table 4.3 and Table 3.5. 

 During A-filling, patients with A-peak vortex ring orientation and/or radial posi-

tion within the normal limits still presented significant increase in viscous energy loss rate 

 (p<0.05) compared to controls. These patients showed significant increase in the 

corresponding E-filling energy loss rate ( ) with p<0.01. There was no significant 

difference of  between patients with significantly laterally positioned A-peak vor-

tex ring and those within 95%CI.  

 Only three patients had both E-peak and A-peak vortex rings with orientation and 

radial position within normal limits. Compared to controls, these patients presented compa-

rable viscous energy loss of  (p=0.5),  (p=0.2) and  (p=0.3). 
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4.4.5. Association between viscous energy loss with global functional parameters 

 No correlation was found between ejection fraction and  in controls 

(R2=0.04, p=0.31) or patients (R2=0.001, p=0.7). Good correlation was found between 

 and stroke volume in controls (R2=0.56, p<0.001). This correlation was 

moderate in patients (R2=0.32, p=0.001) (Figure 4.5). E/A ratio showed moderate correla-

tion with  in both controls (R2=0.31, p=0.001) and patients (R2=0.36, p=0.001). No 

correlation was found between  and HR in controls (R2=0.008, p=0.97) or patients 

(R2=0.11, p=0.55). 

 

Table 4.4. Controls’ vortex ring parameters and normal limits 

Phase Vortex ring 
parameter 

95%CI range    
Lower 
limit 
(2.5%) 

Upper 
limit 
(97.5%) 

 N 
(total=30) 

Noutside 

E-filling 
peak  

Orientation 55º 87º  28 2 
Normalized 
Radial Posi-
tion 

0.14 0.39  28 2 

A-filling 
peak* 

Orientation 57 º 84 º  25 2 
Normalized 
Radial Posi-
tion 

0.05 0.39  25 2 

95% Confidence Interval (CI) represents the interval [2.5%–97.5%]. N is the number of 

subjects that presented a vortex ring core within the 95%CI range. Noutside is the number of 

subjects with detected vortex ring core but outside the 95%CI range. Radial position is 

normalized to the basal endocardial radius (measured on a short-axis slice). * three subjects 

did not present vortex ring core at peak late filling. 

4.5. Discussion 
 The present study quantitatively evaluates the viscous energy loss during LV fill-

ing in healthy volunteers and patients with altered 3D vortex ring formation (corrected-

AVSD patients) in LV blood flow by means of 4DFlow MRI. The main finding of this 

study is that viscous energy loss during LV filling is significantly elevated in patients with 

altered diastolic vortex ring parameters characterized by an abnormal orientation and/or 

position of the vortex ring relative to the lateral wall. The highest viscous energy loss was 

found in patients who presented without ring-shaped vortex during early filling in combina-

tion with a VFT significantly beyond the normal limit.  



78 

 

Figure 4.2 Temporal evolution of viscous energy loss rate ( ), kinetic energy (KE) and 

inflow rate over LV diastole of a) a typical healthy subject b) a patient who did not present 

E-vortex ring formation but rather a complex irregular flow instead. Viscous energy loss 

characterized by E- and A-peaks is significantly elevated (with more than two-fold in-

crease) in the patient (b) compared to the healthy control subject (a). 

 

 Previous in vitro [22] and in vivo [20] studies showed the feasibility of MRI-

derived viscous energy loss calculation. However, no studies have reported in vivo viscous 

energy loss in 3D (+time) in the LV using 4DFlow MRI and no gold standard currently 

exists. Nevertheless, the reported quantitative values of viscous energy loss for healthy 
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volunteers in this study are in good agreement with those reported in recent in vitro studies. 

A CFD study using an echo-derived LV model [32] reported a mean total viscous energy 

loss over diastole from 20 volunteers (age 19±4 years) of 0.17±0.07 mJ. This is in the same 

order of magnitude of our results ( = 0.24 [0.19–0.28] mJ). Similarly, the 

reported mean viscous energy loss in patients in the current study ( = 0.37 

[0.26–0.53] mJ) is in good agreement with the calculated in vitro energy loss (0.39 mJ) 

reported from a CFD simulation in a patient with unnatural mitral valve [31]. Moreover, the 

appearance of the viscous energy loss-time curves agree with previously reported in vitro 

results [8, 9]. Likewise, our reported results of kinetic energy in LV blood flow in healthy 

volunteers for both E-peak ( = 5.0±1.9 mJ) and A-peak ( = 2.26 

[1.3–3.2] mJ) agree well with those reported by Carlsson et al. [33] as 6.0±0.6 mJ and 

1.3±0.2 mJ, respectively. Using a time-resolved KE measurements, similar to the current 

study, Hussaini et al. [34] reported peak KE from 10 healthy volunteers to be 4.90±1.49 mJ 

which is again in good agreement with our reported results ( = 5.0±1.9 mJ). 

Furthermore, the obvious strong correlation found in this study between viscous energy 

loss and kinetic energy during both early and late filling as well as the good correlation 

with the stroke volume may further emphasize the feasibility of 4DFlow MRI for in vivo 

computation of kinetic energy and viscous energy loss in the LV.  

 During normal LV filling, vortex ring formation in LV blood flow is thought to 

contribute to organizing the inflow and its kinetic energy by preserving momentum, rear-

ranging flow direction and minimizing collision of flow with the LV wall and therefore, 

minimizing energy loss [6, 8, 9, 18]. In AVSD patients, the connection between the atria 

and ventricles is characterized by a common atrioventricular valve [12, 13]. Compared to 

the normal MV, the LAVV in AVSD hearts is characterized by a smaller posterior leaflet 

which is positioned more laterally [11-13]. Surgical correction of an AVSD may also result 

in a restricted opening of the LAVV [35] causing the inflow jet to be directed towards the 

lateral wall [15]. The abnormal LAVV morphology in corrected-AVSD patients compared 

to the MV in healthy controls is associated with altered vortex ring orientation and shifted 

radial position towards the lateral wall [14]. In this study, we demonstrated that these dif-

ferent vortex characteristics are also associated with an increase in viscous energy loss 

compared to healthy controls. A possible explanation may be that the deformed asymmetry 

of the MV leaflets in corrected-AVSD patients [11-13] inclines the inflow jet more towards 

the lateral wall [8, 9, 15]. Consequently, the vortex ring originates with an abnormal orien-

tation during LV filling and propagates towards (instead of along) the lateral wall, eventu-
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ally colliding with it. Friction due to vortex-wall interaction increases the viscous dissipa-

tion [8]. Also, the shifted position of the vortex ring brings the lateral vortex side in close 

interaction with the lateral wall.  

 

 
Figure 4.3. Correlation between average viscous energy loss during E-filling (ELE-avg) (a) 

and late filling (ELA-avg) (b) with corresponding kinetic energy (KE), i.e., KEE-avg and  

KEA-avg, respectively in controls (blue) and patients (red). 

 

 The associations between vortex characteristics and viscous energy loss reported 

in this study are in agreement with previous studies. Using idealized LV models with a 

circular mitral annulus and CFD experiments, Pedrizzetti et al. [8] showed that a shift of 

the annulus towards the lateral wall altered vortex ring formation during diastole which was 
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associated with elevated viscous energy loss. Furthermore, in vitro experiments [9, 36] 

showed that a change in the natural MV asymmetry corresponded with altered vortex ring 

formation and increase in viscous energy loss. Moreover, simulations using an abnormal 

symmetric prosthetic mitral valve orifice resulted in reversed vortex ring orientation which 

was associated with increased viscous energy loss [9, 18], similar to the findings in three 

patients in this study. Additionally, in an in vivo study using particle image velocimetry 

and ultrasound, abnormal vortical flow associated with increased energy dissipation was 

found in patients with an unnaturally oriented or positioned prosthetic mitral valve [37]. 

Finally, in another CFD simulation of a patient with mitral valve stenosis, de Vecci et al. 

[31] reported the formation of an abnormally skewed vortex ring towards the lateral wall 

which was associated with increased viscous energy loss during diastole.  

 

 
Figure 4.4. Normal limits (95%CI (confidence interval)) of the total viscous energy loss 

integrated over complete diastole and normalized by stroke volume (ELdiastole) as derived 

from thirty healthy controls (in blue circles). Solid red horizontal line represents the 2.5% 

(lower limit) and dashed red horizontal line represents 97.5% (upper limit). Five (out of the 

six) patients who showed no vortex ring formation during E-filling presented elevated vis-

cous energy loss considerably beyond the upper limit of the healthy controls. Likewise, two 

(out of the three) patients who presented E-peak vortex ring orientation above the 95%CI 

showed significant increase in viscous energy loss beyond the upper limit with the remain-

ing patient approaching the upper limit. 
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Highest viscous energy loss was found in patients who presented without a ring-

shaped vortex during early filling. Given the suggested role of vortex ring formation in 

minimizing inflow collision with the LV wall [3, 6, 8, 9, 18], the absence of vortex ring 

formation in patients could lead to a disorganized LV inflow with increased blood-wall 

interaction as a result and associated increased viscous energy loss. In this study, the ab-

sence of vortex ring formation during E-filling in patients was further confirmed by a high 

VFT. This agrees with previous studies showing that in the presence of elevated VFT, the 

vortex ring will not pinch off from the MV leaflets, i.e., the vortex ring does not form effi-

ciently [18, 37, 38] which was associated with increased viscous energy loss [37]. Further-

more, VFT is proportional to mitral inflow velocity and inversely proportional to mitral 

inflow diameter [30], therefore, the reported good correlation between VFT with diastolic 

viscous energy loss in patients might implicate similar association between energy loss and 

mitral inflow diameter and velocity.  

 In this study, patients with a normal E-peak vortex ring orientation and radial posi-

tion presented comparable viscous energy loss to controls. However, this was not the case 

in patients with normal A-peak vortex ring orientation and/or radial position as significant-

ly higher levels of energy loss during A-filling were presented compared to controls. In 

these patients, viscous energy loss was significantly elevated during E-filling which might 

have an additional effect to the viscous energy loss during A-filling and subsequently in-

creasing its total viscous energy loss. Although only in three patients, normal vortex char-

acteristics for both E- and A-filling did show comparable viscous energy loss during E- and 

A-filling compared to the normal subjects. Reported results of  in association with 

E- and A-vortex ring formation suggest that normal vortex ring formation during both E- 

and A-filling might be necessary to maintain normal levels of total viscous energy loss over 

diastole. Accordingly, presence of only normal E-vortex ring formation might not be suffi-

cient to retain or indicate normal total diastolic viscous energy loss. This could suggest the 

need to extend vortex flow analysis in the LV to A-filling vortex ring formation which is 

not included in recent analyses of vortex formation [30, 38].  

 Despite the normal ranges of conventional global diastolic and systolic functional 

parameters in the studied patients, viscous energy loss was significantly increased and dis-

criminative in patients compared to healthy controls. This included a more pronounced 

decrease in ÉLE/A compared to the conventional E/A ratio. This may suggest that viscous 

energy loss could be more sensitive to altered LV inflow than conventional global diastolic 

parameters.  
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Table 4.5. Viscous energy loss in corrected-AVSD patients with normal or abnormal E-

peak vortex ring orientation and/or radial position 

 Phase N Vortex  
Orientation

(degrees) 

 
(W/m3) 

 
(W/m3) 

(J/m3) 

Patients with 
Orientation 

within 95%CI  

E-filling 9 71±10NS 8.4±1.8NS 8.3±3.9b 3.8 [2.6–4.0]a 

A-filling 10 71±7NS 9.7±2.6b 6.7±3.9b 3.7±0.8b 
Patients with 
Orientation 

below 95%CI  

E-filling 14 37±11b 10.0±3.2b 8.3±4.2b 4.4±1.30b 

A-filling 9 35±13b 10.0±3.7b 8.3±4.0b 4.8±1.1b 
Patients with 
Orientation 

above 95%CI  

E-filling 3 118±16b 16.1±5.2b 8.1±5.3a 5.8±1.6b 
A-filling 0 -  - - 

  N Normalized 
Radial  

Position 

 
(W/m3) 

 
(W/m3) 

(J/m3) 

Patients with 
Radial posi-
tion within 

95%CI  

E-filling 20 0.29±0.06 
NS 

9.5 [7.4–
12.5]b 

8.1±4.1b 4.1±1.4b 

A-filling 12 0.25±0.07NS 10.5±3.4b 6.5±3.3b 4.0(3.4-5.2)b 
Patients Radi-

al position 
below 95%CI 

E-filling 0 - - - - 
A-filling 0 - - - - 

Patients with 
Radial posi-
tion above 

95%CI 

E-filling 6 0.43±0.03b 9.0±1.8a 8.8±4.2b 4.6±1.0b 
A-filling 7 0.47±0.04b 8.7±2.0a 9.3±4.5b 4.2±0.7b 

Patients with 
both Radial 
position and 
Orientation 

within 95%CI  

E-filling 8 0.28±0.05NS 8.5±1.9NS 7.8+-
3.9b 

3.7 [2.5–4.0]a 

A-filling 7 0.25±0.08NS 9.6±2.9a, 4.8±1.7a, 3.±1.0a 

NS p>0.05.  a 0.01<p<0.05 when compared to controls. b p 0.01 when compared to controls. 
 

 The reported association between viscous energy loss and vortex ring formation 

emphasizes the previously suggested role of vortex ring formation in optimizing blood flow 

in the LV [1, 18]. This knowledge can be important for all heart disease, congenital or ac-

quired, leading to cardiac failure. With respect to AVSD patients, this study shows that the 

surgeon correcting these defects should be aware of the influence of valve abnormalities on 

energy balance within the LV. Although, currently, the main concern in correcting an 

AVSD is avoiding regurgitation and/or stenosis, ensuring a more natural orienta-

tion/position of the LAVV may encourage normal inflow vortex ring formation and associ-

ated minimization of viscous energy loss. Furthermore, altered vortex ring interaction with 



84 

the lateral wall might influence the wall shear stress which serves as an epigenetic factor in 

cardiac remodeling [1, 18]. However, future follow-up studies are needed to assess the 

impact of abnormal vortex ring formation and its associated increase in viscous energy loss 

on cardiac function. 

 

 
Figure 4.5 (a) Correlation between total viscous energy loss integrated over diastole but 

not normalized by stroke volume (abs_ELdiastole) with stroke volume in controls (blue) and 

patients (red). (b) Correlation between total viscous energy loss integrated over diastole 

(ELdiastole) with vortex formation time (VFT) in controls (blue) and patients (red). 

 

 This study has some limitations. The typical limited spatiotemporal resolution of 

4DFlow MRI may influence the accuracy of the velocity gradients used in the viscous en-

ergy loss equations and therefore, affect the accuracy of the computed viscous energy loss. 
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However, in this study both controls and patients underwent similar 4DFlow MRI protocols 

with similar spatiotemporal resolutions to minimize possible discrepancy and to allow for 

comparative analysis. The aim of this study was to provide relative comparative analysis of 

viscous energy loss in association with vortex ring formation in subjects acquired under the 

same resolution/protocol, and not to provide absolute values for viscous energy loss which 

can be resolution dependent. In this study, the noise level ( ), the standard deviation of 

the signal intensity (i.e. velocity) in the stationary chest wall, was measured and found in 

the order of 0.75 cm/s in all three directions (0.5% of the velocity sensitivity VENC=150 

cm/s). Noise level is expected to be similar among subjects of this study where the 4D flow 

MRI protocol was maintained similar and therefore, allowing for the relative comparison. 

Furthermore, the reported strong correlation with kinetic energy, for which no derivatives 

are involved in its calculation, may further indicate feasibility of the computed viscous 

energy loss. However, future studies are needed to evaluate the impact of spatial resolution 

and noise on in-vivo viscous energy loss calculations. The viscous energy loss and kinetic 

energy computations are automated calculations without observer dependency. Only the 

LV segmentation from cine short-axis slices required manual interaction. However, this has 

previously shown to have low inter- and intra-observer variability [39]. The registration of 

the cine short-axis contours to the 4DFlow MRI was performed automatically using the 

Elastix image registration toolbox [27]. 

 The presence and absence of vortex rings was visually scored. Nevertheless, a 

previous study [16] showed that vortex detection can be done with low inter- and intra-

observer variation. Moreover, the absence of vortex ring formation in some patients in this 

study was further confirmed by the significantly high VFT values which are in good 

agreement with previous literature. Analysis of vortex ring formation was limited to only 

E-peak and A-peak, subsequently no data was available on the timing, forming and disap-

pearance of the vortex rings. It was the objective of this work to mainly characterize and 

quantify the viscous energy loss globally by means of average and total viscous energy loss 

(over E- , A-filling and complete diastole), to associate with vortex ring formation at peak 

E-filling, peak A-filling as full vortex ring development occurs at these phases [16]. Analy-

sis of the association between the instantaneous viscous energy loss rate over the cardiac 

cycle and corresponding instantaneous vortex ring evolution/deformation could provide 

more insights on vortex-energy association but was beyond the focus of this work. Future 

studies are needed to assess the impact of vortex ring time evolution on viscous energy 

loss. The presence of elevated kinetic energy as reported in patients with absent E-vortex, 
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may yield turbulent flow which increases energy loss by means of turbulence [10, 18]. 

Whenever turbulent energy loss is present in the flow, it can dominate the viscous dissipa-

tion by orders of magnitude, becoming the main source of energy loss [10, 18]. Turbulent 

energy loss [40] was not investigated in this study and is left for future work. 

 In this study, a possible effect of the left bundle branch block observed in 6 pa-

tients cannot be ruled out, but we expect that this will predominantly influence LV ejection 

during systole and not the LV inflow during diastole, which is the focus of this work. 

 In the current MRI study, the VFT values in controls were lower than previously 

reported range [3.5-5.5] with echocardiography and CFD [30]. This might be due to differ-

ences between modalities and their measurement of valve diameter. However, our results 

are in agreement and may further confirm the recent Echo publication by Stewart et al. [41] 

who studied VFT of sixty volunteers using echocardiography and reported a mean of 1.6, 

much below the previously reported CFD-derived and experimentally observed VFT, sug-

gesting that the vortex ring pinch-off in the human left ventricle occurs before the end of E-

filling i.e. earlier than the experimentally observed and CFD-derived time range. Moreover, 

in this study, VFT measurements were comparable and not significantly different between 

controls and patients who presented an E-vortex ring core. Meanwhile, the considerably 

higher VFT values in patients with an absent E- vortex ring confirm that patients with a 

narrow mitral valve diameter and higher peak velocity develop abnormal vortex flow [30, 

36]. 

 In this work, stroke volume was used to normalize the in vivo-derived LV energet-

ics. A similar approach was used in a recent study where Mangual et.al. [32] have normal-

ized energy dissipation to account for stroke volume differences between subjects. Howev-

er, a previous in vitro CFD study of Fontan patients [42] suggested a different  normaliza-

tion of energy dissipation by   with  as the blood density, CO as cardiac output and 

BSA as body surface area. Future in vivo studies are needed to evaluate the impact of dif-

ferent normalizations on energy loss (dissipation) for inter-subject analysis. 

 4D flow MRI was acquired without respiratory gating. However, a recent publica-

tion showed that 4D flow MRI acquired without respiratory gating yields comparable quan-

titative measurements, both kinetic energy and vortex ring formation, to 4D flow MRI with 

respiratory gating [43]. Furthermore, possible errors due to motion blurring from breathing 

are expected to be similar in magnitude between patients and controls. 
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4.6. Conclusion 
 Altered vortex ring formation in the blood flow during LV filling is associated 

with elevated viscous energy in the LV in the studied patient cohort. Further work is need-

ed to understand the connection between increased viscous energy loss in the LV and clini-

cal outcomes. 
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Chapter 5 

Abnormal left atrial flow patterns in patients after 

atrio-ventricular septal defect correction and 

regurgitation: evaluation with 4DFlow Magnetic 

Resonance Imaging and particle tracing

This chapter was adapted from: 

Calkoen E. E., Elbaz, M. S., de Koning P. J.H., Jongbloed M. R. M., 
Kroft L. J. M., van der Geest, R. J., Blom N. A., de Roos A., Roest, A. 
A., & Westenberg, J. J. Abnormal left atrial flow patterns in patients 
after atrioventricular septal defect correction and regurgitation: 
evaluation with 4DFlow Magnetic Resonance Imaging and particle 
tracing. submitted.
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Abstract 

Background: During ventricular systole, a compact recirculating flow pattern forms in the 

left atrial (LA) blood flow. We aimed to evaluate LA recirculating flow structures in 

healthy volunteers and patients with corrected atrioventricular septum defect (AVSD) with 

both none-mild and moderate left atrioventricular valve (LAVV) regurgitation with the use 

of 4DFlow MRI. 

 

Methods: Data was obtained in eighteen controls (age 24±14 years) and eighteen corrected 

AVSD patients: nine (24±12 years) with none-mild regurgitation (<9%) and nine (21±13 

years) with moderate regurgitation (>17%). Recirculating flow was quantified based on 

streamline visualization in late systole. Vortex cores were extracted by the lambda2-method 

at this time point and backwards particle tracing was performed to quantify contribution of 

the left pulmonary veins (LPVs) and right pulmonary veins (RPVs) respectively to the 

vortex core.  

 

Results: In healthy controls, a single recirculating flow structure was visualized in the LA 

by streamlines (size 4.3±2.9mL) with a similar volume as the lambda2-extracted vortex 

core (3.9mL, IQR 3.0  6.8 mL, p=0.27). In patients with regurgitation of the LAVV, two 

recirculating flow structures were observed in the LA, with opposing circulation direction. 

Recirculating blood flow contribution originated less frequently from the LPVs in patients 

with none-mild regurgitation (27±25%, p=0.023) and moderate regurgitation (6%, IQR 0–

23%, p=0.002) compared with controls (49±21%).  

 

Conclusion: Quantitative 3D analysis showed disturbed recirculating LA flow patterns in 

corrected AVSD patients with decreased contribution to the vortex cores from the LPVs. 

Furthermore, LAVV regurgitation caused multiple recirculating flow structures and 

disturbed flow from the LPVs. 
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5.1. Introduction 
The left atrium (LA) has a reservoir function during ventricular systole when blood enters 

from the right pulmonary veins (RPVs) and left pulmonary veins (LPVs). During diastole, 

after opening of the left atrioventricular valve (LAVV), the LA serves as a conduit when 

blood flows from the RPVs and LPVs through the LA into the left ventricle. Efficient 

filling of the LA, contraction and draining into the ventricle contribute to adequate cardiac 

function [1].  

 Recirculating flow patterns and vortex formation are well described in the left 

ventricle and are known to contribute to efficient blood flow [2]. Recirculating flow in the 

LA has been described in healthy hearts during systole and mid-diastole based on 

streamline and pathline analysis from intra-cardiac blood flow velocity data. This 

phenomenon is suggested to play a role in preventing thrombus formation, preservation of 

LA flow momentum during ventricular systole and efficient diastolic left ventricular (LV) 

filling [1, 3-5]. Previous studies suggest that the recirculating flow during ventricular 

systole mainly consist of blood originating from the LPVs. Blood flow from the RPVs was 

proposed to be directed along the inter-atrial septum towards the ventricle [1].  

Regurgitation of the left atrioventricular valve (LAVV) has been a predictor for a poor 

clinical outcome even in asymptomatic patients [6]. An increase in turbulent kinetic energy 

in the LA has been described around LAVV regurgitation jets [7]. Patients after 

atrioventricular septal defect (AVSD) correction often present with LAVV regurgitation [8] 

and the re-operation rate is as high as 28% [9]. Moreover, the regurgitation direction in 

corrected AVSD patients is lateral towards the ostia of the LPVs, though the direction 

varies dynamically during systole [10]. We hypothesize that the dynamic and eccentric 

regurgitant jet in these patients disturbs formation of normal LA recirculating blood flow 

patterns. 

 Novel 4DFlow MRI techniques allow 3D quantification of intra-cardiac flow 

patterns and vortex analysis [11, 12]. Therefore, the aim of this explorative study was to 

evaluate flow patterns in the LA in healthy subjects and patients after AVSD correction 

with the use of 4DFlow MRI-based visualization methods. In this study, normal flow 

behavior in the LA will be evaluated in healthy controls and in patients after correction of 

an AVSD correction. Furthermore, the effect of LAVV regurgitation on LA flow patterns 

will be studied by comparing left atrial flow patterns in patients with none-to-mild versus 

moderate LAVV regurgitation. 
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5.2. Methods 
Twenty healthy controls and twenty patients with a corrected AVSD were included. 

Patients were selected from a total group of 34 patients who underwent cardiac MRI. 

Selection was based on regurgitation grade: ten patients were selected with none to mild 

regurgitation (regurgitation fraction below 9%) and ten patients with moderate 

regurgitation (regurgitation fraction above 17%). Subjects with aliasing in LA velocity data 

were excluded. Informed consent was obtained from all patients and controls and/or their 

parents. Subjects and controls in the current study were also included in previous studies 

using 4DFlow MRI [10, 12, 13], but in none of these studies atrial flow patterns were 

evaluated.  

5.2.1. Magnetic Resonance Imaging  

 All subjects underwent whole-heart 4DFlow MRI on a 3T system (Ingenia, Philips 

Medical Systems, The Netherlands) with maximal amplitude of 45mT/m for each axis and 

a slew rate of 200T/m/sec. A combination of FlexCoverage Posterior coil in the Table top 

with a dStream Torso coil, providing up to 32 coil elements for signal reception was used, 

with the following acquisition settings: velocity-encoding of 150cm/s in all three directions, 

spatial resolution 2.3×2.3×3.0-4.2mm3, flip angle 10°, echo time (TE) 3.2ms, repetition 

time (TR) 7.7ms, true temporal resolution (4×TR) 31ms, SENSE factor 2 in anterior-

posterior direction and Echo Planar Imaging with a factor 5. Retrospective VCG-gating 

was used with 30 phases reconstructed to represent one average heart cycle and free 

breathing without motion compensation was allowed. Commercially-available concomitant 

gradient correction and local phase correction filter were applied from the software 

available on MRI system (Ingenia 3 T with Software Stream 4.1.3.0). Acquisition time of 

the 4DFlow scan with a heart beat 60-80bpm was typically 8-10 minutes. Cine 2D left 2-

chamber and 4-chamber views were acquired to quantify maximal left atrial volume 

according to the biplane area-length method 

. 

5.2.2. Streamline evaluation of compact recirculating flow  

 As regurgitation occurs during ventricular systole, flow patterns were evaluated 

during the reservoir function phases of the LA. Streamline display of the velocity field at 

any instant of time allows visualization of flow structures at a specific time point [14]. 

Streamline visualization using Mass software (LUMC, Leiden, The Netherlands) was used 
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to assess and quantify compact recirculating flow structures in the LA. A stack of 

reformatted planes parallel to the 4-chamber view was analyzed with streamlines to 

visualize the flow pattern in the LA. The number of compact recirculating flow structures 

(i.e. where streamlines are circular and connected) was visually scored and the rotational 

direction with respect to the feet-head axis (clockwise or counter-clockwise) was 

determined (Figure 5.1A). A previous study showed that the vortex inside the atrium 

reached its largest volume just before the end of systole [1]. Therefore, the volume of the 

compact recirculating flow structure was measured two phases before end-systole. The 

compact recirculating flow structure was manually outlined in each axial slice and the areas 

were summed and multiplied by the slice thickness to compute the volume of the 

recirculating flow structure. 

5.2.3. Vortex detection in the left atrium and particle tracing 

 Three-dimensional (3D) vortex cores can be identified using the gradient 

properties of the 4DFlow MRI data [12]. Vortex core detection was used to provide a more 

objective definition of the compact region of recirculating flow in the LA. Backwards 

particle tracing [15] was then used to distinguish respective contribution of the LPVs and 

RPVs to the detected vortex core. First, the LA was manually segmented on magnitude 

images of the 4DFlow scans. Subsequently the lambda2-method [12] was used to detect the 

vortex core from the velocity field two phases before end-systole. The 3D velocity data of 

the whole-heart 4DFlow acquisition was used for particle tracing algorithm, using 4th order 

Runge-Kutta numerical integration to create pathlines. To identify the origin of the 

recirculating flow, each voxel in the vortex core was designated as a seed point and 

backward particle tracing was performed until the start of systole. At the first phase of 

systole the particles were scored as 1) originating from LPVs; 2) originating from RPVs; 3) 

originating from LV (i.e., regurgitation); 4) particles already present in LA at start of 

systole (Figure 5.1). Particles entering the LA from outside the heart and not part of the 

pulmonary venous flow or LV regurgitation were excluded and considered as tracing errors 

(i.e., particles crossing the myocardial wall due to the discrete time step or spatial 

discretization used in the integration algorithm or due to other sources of error such as 

imaging artifacts). Additionally, to calculate the contribution of particles originating from 

LPVs and RPVs to the whole LA volume, at the same phase (two phases before systole) the 

whole atrium was seeded with particles and backwards tracing was performed to the start of 

systole. 
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5.2.4. Retrospective flow quantification  

 Using the same 4DFlow data set, retrospective valve tracking and through-plane 

flow mapping over the aorta and LAVV was performed. From aortic and LAVV flow-time 

curves the start and end of systole were determined as well as the regurgitation fraction 

[16]. Furthermore, the combined flow through the superior and inferior LPVs and the 

combined flow through the superior and inferior RPVs was quantified by retrospectively 

placing measurement planes at the ostium of each pulmonary vein, perpendicular to the 

inflow direction into the LA as visualized with streamlines. A resultant flow-time curve 

was formed for the summed LPVs and RPVs and peak systolic (S) and peak diastolic (D) 

flow from the pulmonary veins was defined. Furthermore, the time to peak systolic flow 

was determined.  

5.2.5. Statistical analysis 

 Data are described as mean ± standard deviation or median (interquartile range) 

where appropriate. Differences between patients and controls are calculated with an 

independent t-test or Mann-Whitney U test where appropriate. The within-subject 

difference were tested with a paired t-test or Wilcoxon signed-rank test where appropriate 

between 1) volume of the compact recirculating flow structure (defined by streamlines) and 

vortex core volume defined using the lambda2-method) 2) the left atrial inflow volume 

defined with particle tracing and the total trans-pulmonary vein inflow. Correlation 

between different flow volumes were evaluated with Pearson’s test.   

5.3. Results 
 Visual grading of the 4DFlow scans revealed aliasing in the area of the LA in 2 

controls and 2 patients (1 with none to mild regurgitation and 1 with moderate 

regurgitation), who were excluded from further analysis. Characteristics of included 

subjects are described in Table 5.1.  

5.3.1. Controls  

 In the remaining 18 controls, a single counter-clockwise (with respect to the feet-

head axis) compact recirculating flow pattern could be detected with streamline 

visualization during ventricular systole (Figure 5.2A). The manually segmented compact 

recirculating flow structure had a median volume of 4.3 ± 2.9mL when measured just 

before end-systole. These measured volumes showed modest correlation with total LA 
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volume (r = 0.60, p = 0.009), but not with age (p = 0.73). In all controls, a vortex core 

could be detected with the lambda2-method in the LA. The median volume (3.9mL, IQR 

3.0 – 6.8mL) was not different from the volume detected with streamlines (mean difference 

0.51mL, p = 0.267 with 95%CI -0.7 – 1.7mL) and correlation between both volumes was r 

= 0.61 (p = 0.007).  

  

Figure 5.1. Explanation of used methodology. Streamline visualization shows recirculating 

flow (dotted line in A) in clockwise direction with respect to the feet-head axis. The 

lambda2-method is used to extract the vortex core (red in B). Vortex cores are filled with 

seeds (dots in C). Backwards particle tracing allows the distinction between flow from the 

right pulmonary veins (RPV) and left pulmonary veins (LPV). RA = right atrium, RV = 

right atrium, LV = left ventricle. 
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 Backward tracing of the vortex core volume revealed a mean of 49 ± 21% of the 

total vortex volume originating from the LPVs, a median of 7% IQR 3 – 14% originating 

from the RPVs with a remaining mean of 40 ± 15% of the total vortex volume originating 

from blood particles already present within the atrium at the start of ventricular systole.  

The flow from the four pulmonary veins could be separately detected and quantified in 15 

of 18 controls. In the remaining three controls, streamline visualization was not adequate to 

depict LA inflow at the ostium of all four veins respectively, and to perform retrospective 

flow mapping. For the remaining 15 controls, the combined flow from the four veins (38 ± 

15mL) was comparable to the combined particle volumes of the LPVs and RPVs after 

seeding the whole atrium and backward tracing (36 ± 15mL) (mean difference -1.8 mL, p = 

0.60, 95%CI -9.3 – 6.0 mL). Pulmonary venous flow during ventricular systole in controls 

showed a right-left volume ratio of 1.2 ± 0.4. Peak velocity was significantly higher in the 

LPVs (54 ± 14cm/s) as compared with the RPVs (36 ± 11cm/s, p<0.001). Peak systolic 

flow rate was reached in the LPVs 195 ± 49ms and in the RPV 107ms IQR 87 – 175ms 

(difference p = 0.003) after the start of ventricular systole.  

 

Table 5.1. Subject characteristics 

 Controls Patients with 
none-mild LAVV 
regurgitation 

Patients with moderate 
LAVV regurgitation 

Number 18 9 9 
Age (years) 24 ± 14 24 ± 12 21 ± 13 
Male (%) 50 66 6 
Type of AVSD  6 partial,  

3 complete/intermediate 
5 partial,  
4 complete/intermediate 

Age of surgery 
(months) 

 58 ± 55 69 ± 110 

Time after surgery 
(years) 

- 19 ± 9 16 ± 8 

Regurgitation 
fraction (%) 

- 5 ± 2 24 ± 6 

Atrial volume 
(mL) 

60 ± 31 74 ± 21 72 ± 24 

Atrial volume / 
BSA (mL/m2) 

34 ± 13 41 ± 8 48 ± 8 *  

LV Ejection 
fraction (%) 

62 ± 4 57 ± 4 * 55 ± 8 * 

* p <0.05 as compared with controls 
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5.3.2. Patients 

 All patients were in sinus rhythm, one patient previously underwent a 

cardioversion because of atrial fibrillation. In patients, the normal LA flow pattern was 

disturbed. Differences between both patient groups (none to mild regurgitation and 

moderate regurgitation) and the controls are presented in Table 5.2.  

Of the patients with none to mild regurgitation streamline visualization revealed a 

single recirculating flow pattern in the LA as seen in controls in 8 (89%) patients and two 

separate compact recirculating flow structures in 1 (11%) patient, with a regurgitation 

fraction of 9%. Total volume of compact recirculating flow patterns combined was 3.2 ± 

2.0mL in the none to mild regurgitation group, which was not significantly different from 

the vortex core volume in controls (mean difference patients with none to mild 

regurgitation to controls 1.0 mL, p = 0.34, 95%CI -1.2 – 3.3 mL). In patients with none to 

mild regurgitation, particles seeded from inside the vortex core originated less frequently 

from the LPVs compared with controls (27 ± 25%, p = 0.023). Moreover, an increased 

contribution to the vortex core of blood already present in the LA at the start of ventricular 

systole was observed in patients with none to mild regurgitation compared with controls 

(57 ± 23%, p = 0.03). Using retrospective mapping, detection of flow from four separate 

pulmonary veins was possible in all patients with none to mild regurgitation and revealed a 

non-significantly different right-left volume ratio as described in controls (1.1 IQR 0.9 – 

1.6, p = 0.61). Peak flow velocity was similar in patient and controls in LPVs and RPVs 

(Table 5.2). In patients with none to mild regurgitation, peak flow rate was reached later in 

the RPVs as compared with controls (mean difference -69ms, 95%CI -121 – -18ms, p = 

0.01). 

In contrast to the controls, in patients with moderate regurgitation, streamline 

visualization revealed two or three separate compact recirculating flow structures in the LA 

in 8 (89%) patients (difference between patient groups p = 0.002) (Figure 5.2C). In patients 

with multiple recirculating flow structures, two structures could be detected around the 

regurgitant jet; one circulating in counter-clockwise direction and one in clockwise 

direction with respect to the feet-head axis. In 3 out of 9 patients with recirculating flow 

around the regurgitant jet, another (third) counter-clockwise recirculating flow pattern was 

seen more cranially in the atrium. Total volume of compact recirculating flow patterns 

combined was 4.7 ± 3.4mL in the moderate regurgitation group, which was not 

significantly different from the vortex core volume in controls (mean difference patients 

with moderate regurgitation -0.4mL, p = 0.74, 95%CI -3.0 – 2.1 mL). In patients with 
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moderate regurgitation, particles seeded from inside the vortex core originated less 

frequently from the LPVs compared with controls (6% IQR 0 – 23%, p = 0.002). A trend 

towards an increased contribution to the vortex core of blood already present in the LA at 

the start of ventricular systole was observed in patients with moderate regurgitation (62 ± 

27%, p = 0.05) compared with controls. Pulmonary venous flow quantification, possible in 

five patients with moderate regurgitation, revealed a non-significantly different right-left 

volume ratio as described in controls (1.3 ± 0.4, p = 0.90). Peak flow velocity was similar 

in patients and controls in the LPVs and RPVs (Table 5.2). Systolic peak flow rate was 

reached later in the cardiac cycle in patients with moderate regurgitation compared with 

controls in both the LPVs (mean difference -48ms, 95%CI -84 – -12ms, p = 0.012) and the 

RPVs (mean difference -92ms, 95%CI -139 – -44ms, p = 0.001). Time to systolic peak 

flow rate in the LPVs was moderately correlated with the regurgitation fraction (r = 0.49, p 

= 0.04) whereas timing of peak flow rate in RPVs was not significantly correlated.  

5.4. Discussion 
 This explorative study provides new insights in blood flow characteristics in the 

LA in healthy controls and patients after AVSD correction with recurrent LAVV 

regurgitation, with the combined use of streamline visualization, semi-automated vortex 

core detection and particle tracing of pulmonary venous flow of 4DFlow MRI data. Key 

findings of the study are 1) in controls, on average 49% of volume of the single compact 

recirculating flow structure in the LA originates from the LPVs, but also on average 7% 

contribution to the volume originating from the RPVs was observed; 2) in corrected AVSD 

patients with none to mild regurgitation and with moderate regurgitation, the LPVs 

contribute less to the vortex core and systolic peak flow was reached later in the RPV; 3) 

additional differences in corrected AVSD patients with moderate LAVV regurgitation are 

multiple compact recirculating flow patterns and delayed systolic peak flow in the LPV that 

was related to regurgitation fraction. 

5.4.1. Vortex formation in the LA in healthy controls 

 During ventricular systole the LA is filled and serves as an expanding reservoir. 

Previous studies observed recirculating blood in the LA [1, 3-5], which in some studies is 

addressed as vortex flow. The recirculating flow conceivably avoids stasis and thrombosis 

and minimizes static pressure on the atrial wall [17]. Recirculating flow also contributes to 
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the preservation of momentum in blood flow during ventricular systole, when the atrium is 

filled. Preserved momentum may aid efficient LV filling during early diastole. 

Previous MRI studies used vector graphs, streamline analysis and pathline analysis [1, 4, 

18] to visualize recirculating flow in 3D, however quantification of duration and size (area) 

of recirculating flow was limited to a 2D plane. Park et al. used echocardiography [5], with 

the advantage of a high frame rate and real-time imaging, but the limitation of analyzing 

3D structures on 2D images. Complementing the quantification based on streamlines, the 

current study used the lambda2-method [12], to allow quantification of atrial vortex flow in 

3D. Volumes of streamline-based recirculating flow were comparable to lambda2-detected 

atrial vortex cores, however, the shape of vortex cores appeared more irregular than the 

usually compact structures as segmented on streamline representation.  

 

 

Figure 5.2. Differences between healthy control (A-C) and a patient with 36% left 

atrioventricular valve regurgitation (D-F). Streamline visualization shows a single counter-

clockwise (with respect to the feet-head axis ) recirculating flow structure in the control 

(arrow in A) compared with multiple recirculating flow structures in the patient (arrows in 

D). The vortex core in the patient is less compact and nearer to the atrioventricular valve 

(E). Backward tracing in the healthy control shows predominant contribution of the left 

pulmonary veins (LPVs) to the vortex core, whereas in the patient only contribution from 

the right pulmonary veins (RPVs) is observed (F). RA = right atrium, RV = right atrium, 

LV = left ventricle. 
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Table 5.2. Differences between controls and the two patients groups. 

  Controls Patients with 
none-mild 
LAVV
regurgitation 

Patients with 
moderate 
LAVV
regurgitation 

N  18 9 9 
Streamlines Volume compact 

recirculating flow 
(mL) 

4.3 ± 2.9 3.2 ± 2.0 
 

4.7 ± 3.4 
 

Rotational 
direction 

100% single, 
counter-
clockwise 

89% single 
counter-
clockwise, 11% 
one counter-
clock wise and 
one clockwise 

11% single 
counter-
clockwise, 
11% two 
counter-
clockwise 
structures and 
78% one 
counter-
clockwise and 
one clockwise  

Vortex core Volume vortex 
(mL) 

3.9  
(IQR 3.0    6.8) 

4.0 
 (IQR 3.3    6.8) 

4.2  
(IQR 2.3    6.7) 

Contribution LPVs 
(%) 

49 ± 21 27 ± 25 * 6  
(IQR 0 – 23) * 

Contribution RPVs 
(%) 

7  
(IQR 3 – 14) 

16 ± 15  
 

17  
(IQR 4 – 31)  

Residual in atrium 
(%) 

40 ± 15 57 ± 23 * 
 

62 ± 27 * 
 

Pulmonary 
venous 
flow  

Right-left ratio 
systolic volume ˆ 

1.3 ± 0.3 1.1  
(IQR 0.9   1.6) 

1.3 ± 0.4 
 

Peak velocity LPVs 
(cm/s) 

54 ± 14 46 ± 12 
 

49 ± 17 
 

Peak velocity 
RPVs (cm/s) 

36 ± 11 33 ± 12 
 

36 ± 12 
 

Time to peak LPVs 
(ms) 

195 ± 49 207 ± 53 
 

242 ± 28 *  
 

Time to peak RPVs 
(ms) 

107 
 (IQR 87    175) 

201 ± 74 * 
 

223 ± 61 * 
 

* indicate p < 0.05 as compared with controls. ˆ pulmonary vein right-left ratio only 

computed in cases with four pulmonary veins detected. Rotational direction is described 

with respect to the feet-head axis.

 

 Postulations that flow from the LPVs mainly contributes to the LA recirculating 

flow formation and that flow from the RPVs is mostly directed along the LA wall with only 

little contribution to the vortex, were thus far based on qualitative evaluations only [1]. The 
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current study quantitatively showed that flow from LPVs in healthy controls has a 

substantially higher contribution to the vortex core than flow from RPVs (on average 49% 

versus 7%). The higher peak velocities in the flow from the LPVs compared with the RPVs 

might be a factor in this difference in contribution. However, even in healthy volunteers a 

large variation in venous contribution was observed, which is possibly caused by diversity 

in pulmonary vein anatomy [19], which was not assessed in this study.  

5.4.2. Left atrial flow in patients after AVSD correction 

 A recent 4DFlow streamline-based study showed frequent absence of a vortex 

core in the LA in patients with a variety of organic heart disease, which was related to 

pulmonary venous peak velocity, but not pulmonary vein insertion angle [18]. In studies 

using computer fluid dynamics [20], echocardiography [5] and 4DFlow MRI [3], abnormal 

LA flow was also described in patients with atrial fibrillation and a relation with thrombus 

formation was suggested in these patients [21]. 

 Decreased contribution of blood flow from the LPVs to the vortex core was 

observed in corrected AVSD patients with moderate as well as none to mild regurgitation. 

Therefore, the laterally directed regurgitation (i.e., towards the LPVs) can only partly 

explain the decreased contribution of flow from the LPVs to the atrial vortex core in 

corrected AVSD. Contributing effects may include the different pulmonary vein and LA 

anatomy after AVSD correction, possibly caused by remodeling after surgery. The delayed 

peak flow rate in the LPVs was predominately present in patients with moderate LAVV 

regurgitation and correlated to the regurgitation fraction and might therefore be a direct 

result of regurgitation or caused by increased atrial pressure secondary to regurgitation. 

 In the current study, patients after AVSD correction showed a disturbed 

recirculating flow pattern. Patients after AVSD correction often develop eccentric and 

dynamic regurgitation of LAVV. In patients with regurgitation, two recirculating structures 

were detected around the regurgitation jet(s). In an in vitro study, regurgitation jets with a 

high velocity in the presence of a prosthetic mechanical heart valve were related to aberrant 

LA vortex formation and an increase of shear stress in the blood flow near the wall, which 

directly activates platelets and has the ability to damage endothelial cells [22]. If 

endothelial cells fail to produce enough platelet inhibitors, this can lead to thrombus 

formation. The vortex formation observed around the regurgitant jet(s) in our study may 

similarly affect the atrial wall. Subsequently, it may contribute to the LA enlargement, 

diastolic dysfunction and atrial fibrillation observed in patients with chronic regurgitation 
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of the LAVV [6]. On the other hand, others have suggested a protective property of LAVV 

regurgitation for thrombus formation, due to the increased velocity which may prevent 

stasis [23]. 

 The clinical relevance of our preliminary findings comprise the role of disturbed 

LA flow patterns on outcome in patients with and without regurgitation. Early correction of 

moderate-severe regurgitation is debated even in asymptomatic patients [6] as regurgitation 

may result in LA dilatation, diastolic dysfunction and atrial fibrillation. Our study showed 

that LA blood flow in patients after AVSD correction is disturbed, and specifically LAVV 

regurgitation disturbs normal recirculating flow structures during ventricular systole. The 

parameters described in this study can be used in future studies to investigate if 

regurgitation in patients with other congenital or acquired heart disease similarly disturbs 

LA flow patterns. Further insights in LA flow patterns will help to better understand the 

effect of regurgitation on the LA and will eventually allow better prediction of the effect of 

regurgitation, which may be of benefit to optimization of timing of interventions. 

5.4.3. Study limitations 

 Current study is a pilot study with small numbers of patients and no patients with 

severe LAVV regurgitation were available. Compact recirculating flow patterns were 

manually segmented based on streamline visualization. Streamlines only present the 

velocity field at an instant in time and therefore cannot represent the true trajectory of 

recirculating flow. To overcome the limitations of streamlines and the manual 

segmentation, we have in addition used a semi-automatic method to detect vortex cores, 

which resulted in similar volumes. Particle tracing resembles the true pathlines of blood 

flow over time, however changes in velocity magnitude and direction faster than the 

temporal and spatial resolution allow to detect, cannot be represented in the tracing 

algorithm. The border between atrium and pulmonary veins was manually segmented, 

which might have introduced inaccuracies in quantification.  

5.5. Conclusion 
 Using 4DFlow MRI, quantitative 3D analysis of recirculating flow structures and 

vortex cores in the LA blood flow during ventricular systole showed a higher contribution 

of blood flow from the LPVs versus RPVs in healthy controls. Furthermore, patients after 

AVSD correction with and without regurgitation presented a decreased contribution of flow 

from the LPVs to the vortex cores. Finally, LAVV regurgitation in patients with a corrected 
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AVSD resulted in disturbed LA flow patterns with two recirculating flow structures around 

the regurgitation jet with an opposed circulation direction. Follow-up studies in patients 

with disturbed LA flow are needed to further explore the long-term consequences of this 

disturbed atrial flow on cardiac function.   
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Chapter 6 

Automatic extraction of the 3D left ventricular 

diastolic transmitral vortex ring from 3D whole-heart 

phase contrast MRI using Laplace-Beltrami signatures

This chapter was adapted from: 

ElBaz, M. S., Lelieveldt, B. P., Westenberg, J. J., & van der Geest, R. J. 
(2014). Automatic extraction of the 3D left ventricular diastolic 
transmitral vortex ring from 3D whole-heart phase contrast MRI 
using Laplace-Beltrami signatures. In Statistical Atlases and 
Computational Models of the Heart. Imaging and Modelling Challenges 
STACOM-MICCAI (pp. 204-211). Springer Berlin Heidelberg.
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Abstract 

 In this work, a new method is proposed for automatic extraction of the left ven-

tricular diastolic transmitral vortex ring from 3D whole-heart three directional Phase Con-

trast MRI. The proposed method consists of two parts, training and extraction. In the train-

ing step, an average reference signature of the complex transmitral vortex ring is captured 

from training subjects using Laplace-Beltrami spectrum and the Lambda2 method. In the 

vortex extraction step, the trained signature is used to identify the vortex ring by perform-

ing an iterative search for the vortex object with minimum distance from the trained signa-

ture. The proposed method is validated on a dataset of 8 healthy volunteers with 32 ob-

served diastolic vortex rings. The method was able to successfully extract 27 diastolic vor-

tex rings from a total of 32. Furthermore, the conducted experiments showed the capability 

of the proposed method in dealing with vortex shape changes that occur between the phases 

of early and late diastolic filling. 
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6.1. Introduction 
Vortex formation in intra-cardiac flow patterns has recently gained much interest due to its 

vital role in keeping balance between blood motion and stresses of sur-rounding structures. 

Vortices are complex flow structures that evolve as a result of a change in velocity direc-

tion around an imaginary axis. In the cardiac Left Ventricle (LV), during early and late 

diastolic filling, the flow behind the mitral valve develops as a closed vortex tube: a vortex 

ring [1]. Vortex rings are frequently observed in nature because of their stability [1]. Recent 

studies have shown that transmitral vortex rings evolve in the LV during rapid early filling 

(E-wave) and late filling (A-wave) [2, 3]. These vortex rings help in improving blood 

transport through the ventricle towards the aorta, minimizing the loss of energy and pre-

venting blood stagnation [1, 2, 4]. Moreover, patients with diastolic dysfunction have been 

shown to form different diastolic vortex rings compared to healthy volunteers [5-7]. This 

makes vortex ring analysis a promising tool for detection of diastolic blood flow abnor-

malities. Nevertheless, most of the reported studies are based on Computational Fluid Dy-

namics (CFD) simulations [1, 4] or Echocardiography [5, 6]. CFD simulations usually re-

quire simplifications of the anatomy (i.e. cardiac chambers) or boundary conditions, which 

might result in simulated blood flow velocities different from the actual flow. In echocardi-

ography, generally only one single velocity component out of the three velocity compo-

nents can be acquired providing limited flow velocity information.  

  Phase Contrast MRI (PC-MRI), also referred to as Velocity-Encoded MRI, can 

acquire all the three directional velocity components (in-plane and through-plane) of the 

blood flow relative to the three spatial dimensions and over the cardiac cycle, providing a 

powerful tool for cardiac flow analysis. In [7], Toger et al. used PC-MRI flow data to 

measure diastolic vortex ring volume using manual delineation of the vortex ring boundary 

from visualized Lagrangian coherent structures. They used the measured vortex volumes to 

differentiate between healthy volunteers and patients with dilated ischemic cardiomyopa-

thy. In [8],Eriksson et al. proposed to quantify the intraventricular cardiac blood flow based 

on the visualization of PC-MRI data using pathline extraction, which allowed them to sub-

divide the intracardiac flow into four components based on their rates of passage relative to 

the cardiac cycle. In [9, 10] flow visualization techniques (e.g. particle tracing, stream 

lines, streaklines,…etc) for PC-MRI flow were used to qualitatively assess the aorta func-

tion. Nevertheless, in most of these studies, vortex rings were defined qualitatively using 

flow visualization techniques (e.g. as region of swirling pathlines or steamlines), which 

might suffer from observer bias or high cluttered data. In [11], ElBaz et al. used the lamb-
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da2 method which is a quantitative method to define vortex rings. However, vortex rings 

were then extracted manually which is a tedious and time consuming process. 

 Due to the complex intra-cardiac blood flow, vortex rings are neither the only nor 

always the largest vortex object in the heart. Thus, using simple metrics (e.g. vortex size or 

location) is not enough to extract the LV vortex ring from surrounding vortex structures, 

similar in size, close in space, but different in shape. Furthermore, cardiac vortex rings are 

not ideally shaped rings but rather complex structures that tend to have a quasi-ring-like 

shape (Figure 6.1). All these factors make automatic vortex ring extraction from PC-MRI 

flow data a difficult and challenging task.  

 In this paper, we propose a novel method for automatic extraction of diastolic 

transmitral vortex rings from three-directional, three dimensional time resolved Phase Con-

trast MRI flow data during the rapid early (E) and late (A) filling phases. In the proposed 

work, we use a cardiac-vortex-specific shape signature to tackle the complex cardiac vortex 

shape and structure problems.  

 The proposed method consists of two parts. First, vortex structures are identified 

from the PC-MRI flow field using the Lambda2 method [12]. From this, a cardiac vortex 

ring signature is defined using the Laplace-Beltrami spectrum method [13]. Second, the 

cardiac vortex is extracted from the PC-MRI flow field by searching iteratively for the 

object with the best signature match relative to the reference signature. To the best of our 

knowledge, this work is the first attempt to extract vortex rings automatically from Phase 

Contrast MRI flow data in general and from the LV in particular. 

6.2. Methodology 

6.2.1. Vortex identification using the Lambda2 method 

 The first step towards vortex ring extraction is to identify vortex structures from 

the MRI flow field. To achieve this, we use the Lambda2 method [13] to detect vortex 

cores as it is considered the most accepted vortex identification technique [1]. Furthermore, 

the Lamda2 method is a quantitative detection method, i.e. it does not depend on visualiza-

tion techniques but rather on the physical fluid dynamics definition of the vortex structure. 

The input for the Lambda2 method are the three velocity components of the velocity vector 

field. Let  and  denote the three velocity components of the flow field acquired using 

PC-MRI and  denote the three spatial dimensions. Then the Lambda2 method can be 

applied as follows. First, the velocity gradient tensor J is computed as 
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 J   (1) 

 Second, the tensor J is decomposed into its symmetric part, the strain deformation 

tensor  and the antisymmetric part, the spin tensor , where T is the trans-

pose operation. Then, eigenvalue analysis is applied only on  . Finally, a voxel is 

labeled as part of a vortex core only if it has two negative eigenvalues i.e. if  are 

the eigenvalues whereas  then a voxel is labeled as vortex core if its  . 

However, usually the velocity data is noisy, and as a result of which   gives cluttered 

results. Therefore, a threshold, , is applied instead to allow separation of strong 

vortex structures from weaker ones. Using the detected vortex voxels, a vortex structure is 

defined as connected region of these voxels. In this work, we used connected component 

analysis (CCA) [14] to define the connected vortex cores. The CCA performance is gov-

erned by the threshold  i.e. it is important that  results in separate vortex structures 

for CCA to be able to define them as seperate objects. The Lambda2 method yields the 

vortex structures in the flow field. These vortex structures are usually visualized as isosur-

faces with as the isovalue.  

 It is important to note that the Lambda2 method detects all vortex structures from 

the flow field i.e. vortex rings may be included in the extracted vortices but not all extract-

ed vortices are vortex rings. The output of this step is converted to isosurfaces of the de-

tected vortex structures from the PC-MRI flow field data (Figure 6.1). The vortex shape 

signature is subsequently captured by applying the Laplace-Beltrami method to these 

isosurface meshes. 

6.2.2.  Capturing Vortex Ring Shape Signature using Laplace-Beltrami Spectrum 

From Figure 6.1, it is obvious that cardiac vortex rings are rather complex structures 

which tend to have a quasi-ring-like shape. Therefore, a method for extraction of cardiac 

vortex rings should capture the features specific for cardiac vortex rings. We achieve this 

by using the recently introduced Laplace-Beltrami spectral shape signature [13]. This spec-

tral shape signature is a global shape signature computed only from the object’s inherent 

geometry (e.g. curvature, surface area and volume). Furthermore, this signature can be used 

to compare objects independent of their representation, position and size. This signature is 
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defined as the beginning sequence of the Laplace-Beltrami (LB) differential operator. That 

is, for a given manifold  , if the LB operator is denoted by , then the Laplacian eigen-

value equation can be written as : 

  (2) 

where  is a real scalar value corresponding to the eigenvalue of the Laplacian  and cor-

responds to its eigenvectors. The shape spectral signature is then defined as the diverging 

sequence of eigenvalues . This spectrum is truncated at the 

dth eigenvalue where is application specific, and determined empirically. In our case, we 

apply the LB operator on the Lambda2 vortex isosurfaces which are discrete triangle mesh-

es, hence, we solve (2) using a finite element method and apply the discrete Laplace-

Beltrami (LB) operator and follow the same procedure as described in [13] to capture the 

LB spectrum for the vortex isosurface.  

              (a)            (b)                        (c)                                   (d) 

Figure 6.1. (a, b) Lambda2 isosurfaces of peak early filling (E) and late filling (A) phases 

respectively (c,d) their respective heart position in whole heart region of interest magnitude 

images.  

 Though similar, cardiac vortex rings differ between subjects. Therefore, we derive 

an averaged signature from multiple subjects using Laplace-Beltrami analysis as follows. 

First, for each training subject, the peak early filling (E phase) transmitral vortex ring 

isosurface is manually selected from the identified vortex structures. Second, for each ex-

tracted vortex, the Laplace-Beltrami signature is captured as described above. Then, every 

signature is normalized by both slope of its fitting line and the volume of the vortex isosur-

face (i.e. the number of voxels in the isosurface) [6]. The reason for this normalization is to 

make signatures scale invariant. Finally, signature average is computed. Through the rest of 

the paper we denote the computed vortex shape signature average by VS. Due to the repre-
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sentation, position and size invariance properties of the LB signature [13], no shape regis-

tration is required prior to averaging. The steps for the vortex ring signature extraction from 

one subject are illustrated in Figure 6.2. 

 Of note, in addition to the E-phase averaged signature, we tested a signature 

trained on shapes of both phases (E and A) vortex rings. However, this provided identical 

results as for using only E-phase averaged signature. 

6.2.3. Vortex Ring Extraction 

The vortex ring extraction starts by identifying the vortex structures from the PC-

MRI data using Lambda2 method as explained in section 6.2.1 Then, the normalized signa-

ture of each vortex object in the desired frame is captured using Laplace-Beltrami spectral 

shape analysis as explained in the previous section.  For each vortex object in the current 

frame, its signature distance  from the reference signature VS is computed as the L2 

norm and computed as: 

 =  , m=1…M                          (3) 

with  being the mth object signature and M the total number of vortex objects in the 

frame under processing. The extracted vortex ring is then defined as the vortex structure 

with the minimum .

6.3. Experiments 

6.3.1. Data and Preprocessing 

 The proposed method was evaluated on a data from eight healthy volunteers 

(mean age: 40±15 years) who underwent three-dimensional (3D), time resolved, three-

directional Phase Contrast (VE) MR imaging at 1.5 T (Philips). VE MRI was performed in 

a 3D isotropic dataset of 4.2×4.2×4.2mm3 covering all 4 cardiac chambers. Retrospective 

gating with 30 phases with average temporal resolution of 30 ms were reconstructed and 

velocity sensitivity of 150cm/s in all directions were used. This data was then linearly in-

terpolated spatially to result in a 1 mm3 spatial resolution. The whole heart (not just the LV) 

region was then outlined manually from all slices and time frames. There are two reasons 

behind segmenting the whole heart region instead of just the LV. First, to investigate the 

ability of our method in extracting the LV vortex rings in the presence of other vortex 

structures formed in other ventricles. Second, to avoid the need for  LV segmentation from 
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the PC-MRI magnitude images (Figure 6.1. b and d) which usually suffer from low contrast 

between LV and right ventricle (RV) boundaries making LV segmentation a difficult task. 

6.3.2. Diastolic Vortex Ring Extraction  

 Using the manually segmented whole heart flow field volumes resulting from the 

previous step, vortex structures were identified using the Lamda2 method. After Applying 

threshold  (as explained in Sec. 2.1), connected component analysis method (CCA) [14] 

was then applied to define the identified vortices as connected vortex objects. After that, 

LV vortex rings were labeled manually to be used as ground truth. In this work, for each 

subject, two observed rings were labeled from each of the rapid early (E) and late filling 

(A) diastolic phases. The two early filling rings correspond to the rings of the peak early 

filling PC-MRI phase and the subsequent frame. Similarly, the two late filling rings were 

labeled from the peak late filling phase and the subsequent frame. These were the frames in 

which vortex rings were observed consistently in all 8 subjects. From the eight volunteers, 

in total 32 LV vortex rings were manually labeled which then used as the ground truth to 

evaluate the proposed extraction method. For computing the Laplace-Beltrami (LB) signa-

ture [13], the vortex shape signature is captured from the Lambda2 isosurfaces with as 

isovalue.  

To quantitatively evaluate the proposed method and to avoid bias in the selection 

of the average signature VS, a leave-one-out cross-validation approach was used. The aver-

age signature VS was computed from 7 subjects out of the available 8 subjects (i.e. com-

puted as average of the corresponding 28 vortex signatures). This VS is then used to extract 

the LV vortex rings from the 4 aforementioned frames of the left out subject. This is re-

peated 8 times, leaving out different subjects. To evaluate the extraction performance we 

used the precision criterion, which was computed as the proportion TP/(TP+FP) where TP 

stands for the true positive i.e. the number of correctly extracted LV vortex rings, FP for 

false positive i.e. the number of the mis-extracted LV vortex rings. 
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Figure 6.2. Steps of the proposed vortex ring shape signature extraction from one subject, 

U, V, W are three volumes representing the PC-MRI flow field velocity components. 

6.3.3. Parameter selection 

  In the proposed method there are two empirically determined parameters, and

. is application and subject specific. In this study,  was manually adjusted per sub-

ject until meaningful vortex rings could be differentiated from surrounding structures. In 

our experiments, in the range of [2-5]  (with  as the  average of voxels with 0) 

was found to give good results. Second, in the applied Laplace-Beltrami analysis, a signa-

ture of 300 eigenvalues (i.e. =300 ) was sufficient in all experiments.

6.4. Results 
 The overall precision is 0.844, detailed results for the performance over the two 

diastolic phases are given in Table 6. 1, where every phase has a total of 16 LV transmitral 

vortex rings to be extracted. In the reported results, vortex rings were extracted from an 

average of 43 different sized surrounding vortex structures in the E-phases and an average 

of 30 structures in the A-diastolic phases. The proposed method failed in extracting only 5 

rings, 1 from the E phase and 4 from A, out of the total 32 vortex rings. 

Table 6. 1. LV Transmitral vortex ring extraction results 

Phase E (n=16) A (n=16) Total (n=32) 

True Positive 15 12 27 

False Positive 1 4 5 
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6.5. Discussion and Conclusion 
 Our results show that the proposed cardiac-vortex-specific signature based extrac-

tion is rather accurate in extracting LV diastolic transmitral vortex rings from whole heart 

PC-MRI with 27 successfully extracted LV vortex rings out of the total 32 rings yielding an 

overall precision of 0.844. In all 5 failed cases, the proposed algorithm extracted the RV C-

shape or incomplete rings instead of the LV ring i.e. it was successful in ring extraction but 

could not differentiate between the RV partial rings and the more complete LV vortex 

rings. This could be due to the similarity in shape (e.g. curvature and complexity) of RV 

and LV vortex rings. Moreover, in all failed experiments, the LV vortex ring was ranked 

second after the RV partial ring based on the distance defined in Eqn.3 with a small differ-

ence of 0.16 0.23 from the highest rank while the third ranking structure (not ring) was 

more distant (2.72 1.90) from the highest ranking structure. It is important to note that the 

proposed E-phase trained average signature was able to detect most of the A-phase rings 

(12 out of 16), which shows the ability of the proposed method to deal with shape variabil-

ity of the transmitral vortex rings between the E and A diastolic phases. The proposed 

method is automatic relative to the LV vortex ring extraction process. In this work, the 

whole heart region was still segmented manually from PC-MRI as automatic segmentation 

is out of this paper’s focus. On the other hand, vortex identification is a complex fluid dy-

namics topic and no definite rigorous vortex definition is yet reached. In this work, we used 

the Lambda2 method which is the most commonly accepted fluid dynamics definition of a 

vortex [1]. Nevertheless, this method requires definition of  threshold for defining 

meaningful vortex structures. To the best of our knowledge, no objective method has been 

reached yet for defining . Currently, we are working on developing a method for objec-

tive definition of this threshold. For the LB signature normalization, we evaluated different 

normalizations as suggested in [13], however, the best normalization in our case was to 

normalize by both the signature’s fitting line slope and the vortex volume. 

 To our knowledge, this is the first attempt to automatically extract transmitral 

vortex rings from PC-MRI in general and from the LV in particular. Our results show that 

the proposed method is a promising technique for left ventricular vortex ring extraction. 

Furthermore, the results show the capability of the proposed method dealing with the vor-

tex ring shape differences between the two diastolic (E and A) phases. As such, this work 

can be seen as a first step towards a quantitative understanding of cardiac vortex structures, 

their evolution and physiological implications. In addition, the proposed method could be 

used for vortex ring analysis in CFD simulations. 
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Chapter 7 

Hierarchical Shape Distributions for Automatic 

Identification of 3D Diastolic Vortex Rings from 4D 

Flow MRI 
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Abstract 

Vortex ring formation within the cardiac left ventricular (LV) blood flow has re-

cently gained much interest as an efficient blood transportation mechanism and a potential 

early predictor of the chamber remodeling. In this work we propose a new method for au-

tomatic identification of vortex rings in the LV by means of 4D Flow MRI. The proposed 

method consists of three elements: 1) the 4D Flow MRI flow field is transformed into a 3D 

vortical scalar field using a well-established fluid dynamics-based vortex detection tech-

nique. 2) a shape signature of the cardiac vortex ring isosurface is derived from the proba-

bility distribution function of pairwise distances of randomly sampled points over the 

isosurface 3) a hierarchical clustering is then proposed to simultaneously identify the best 

isovalue that defines a vortex ring as well as the isosurface that corresponds to a vortex ring 

in the given vortical scalar field. The proposed method was evaluated in a datasets of 24 

healthy controls as well as a dataset of 23 congenital heart disease patients. Results show 

great promise not only for vortex ring identification but also for allowing an objective 

quantification of vortex ring formation in the LV. 
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7.1. Introduction 
A growing body of evidence [1-6] suggests a critical role of  vortex ring formation within 

cardiac left ventricular blood flow during diastole as a significant contributor to efficient 

blood transportation [2] and as a potential clinical biomarker for early prediction of cardiac 

remodeling and diastolic dysfunction [4, 5]. A vortex is generally characterized by a swirl-

ing motion of a group of fluid elements around a common axis. Among different types of 

vortical flow structures, vortex rings are most abundant in nature due their stability [6]. In 

the LV, the asymmetrical redirection of blood flow through the LV results in the develop-

ment of a vortex ring distal to the mitral valve (Figure 7.1) [1]. 

 In fluid dynamics, different methods exist to define a vortex structure [7]. Most of 

these methods are based on a function of the velocity gradient tensor of the flow field. 4D 

Flow MRI enables non-invasive acquisition of the blood flow velocity field providing all 

three velocity components (in-plane and through-plane) over the three spatial dimensions 

and over the cardiac cycle [1]. Therefore, 4D Flow MRI provides all the flow field infor-

mation needed for 3D vortex analysis [3].  

 A typical 3D vortex ring identification problem consists of three steps 1) convert 

the 3D velocity flow field into some 3D vortical scalar field in which a vortex is defined 

given some criteria; 2) manually (empirically)  select an isovalue threshold that can define 

a vortex ring structure from the 3D vortical field. Given that different vortex structures may 

be present in the same flow field, the selected isovalue may result in multiple co-existing 

isosurfaces of other vortex structures in addition to the target vortex ring. 3) Manually iden-

tify the isosurface that corresponds to a vortex ring. It is obvious that manual isovalue se-

lection and vortex ring selection can be time consuming and subjective. This may limit the 

applicability of a 3D vortex ring analysis in a clinical setup in which objective and repro-

ducible analysis is crucial.  

To our knowledge, there have been no studies on fully automatic identification of 

a vortex ring (i.e. both steps 2 and 3) from 4D Flow MRI. In our previous work [8], only 

the automatic identification of a vortex ring (step 3) was addressed using a spectral shape 

analysis [9]. However, this was based on the assumption that an isovalue was already pre-

defined; therefore the problem of automatic isovalue selection has not been addressed. In 

addition, spectral shape analysis can be computationally intensive, hence may not be suita-

ble for a multi-level search.  

 In this work, we propose a new method that simultaneously and automatically 

identifies the isovalue and the vortex ring isosurface. The proposed method has three ele-
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ments: First, the flow field from peak inflow phase of 4D Flow MRI is converted into a 3D 

vortical scalar field using a well-established fluid-dynamics-based vortex identification 

method called the Lambda2 method [10]. Second, a reference shape signature defining the 

vortex ring isosurface is computed from a training set using D2 shape distributions [11]. 

Finally, simultaneous identification of isovalue and vortex ring is achieved using hierar-

chical clustering that allows for an iterative search for the best D2 shape distribution match 

with the reference signature. To evaluate the objectivity and generalizability of the pro-

posed method in a clinical setup, the defined vortex ring was quantified using the method 

introduced in [3] in a dataset of 24 healthy controls as well as in a challenging dataset of 23 

congenital heart disease patients who were previously reported to have abnormal diastolic 

inflow [12]. 

7.2. Methodology 

7.2.1. 3D Vortical scalar field from 4D Flow MRI using the Lambda2 method  

 Among different fluid dynamics based vortex identification methods [7], the 

lambda2 ( 2) method is considered the most accepted definition of a vortex [6]. The lamb-

da2 method extracts vortex structures from the flow field by means of vortex-cores. The 

input for the Lambda2 method is the three velocity components of the velocity vector field 

and the output is a 3D scalar field in which each voxel is assigned a scalar value ( 2). This 

scalar value can then be used to determine whether or not a voxel belongs to a vortex. For 

more formal definition, if  and  denote the three velocity components of the flow field 

acquired using 4D Flow and  denote the three spatial dimensions each of size 

 with  as 4D Flow MRI’s slice width,  as its height and  as the number of 

slices. Then the 2 method can be applied as follows. First, the velocity gradient tensor J is 

computed. Second, the tensor J is decomposed into its symmetric part, the strain defor-

mation tensor and the antisymmetric part, the spin tensor , where T is the 

transpose operation. Then, eigenvalue analysis is applied only on . Finally, a voxel 

is labeled as part of a vortex only if it has two negative eigenvalues i.e. if  are the 

eigenvalues whereas  then a voxel is labeled as vortex if its . Isosur-

faces of a  isovalue threshold (  <0 can be used to visualize different vortex struc-

tures in the flow field. A single isovalue can result in multi isosurfaces of different vor-

tex structures among which a vortex ring may or may not be present. Different isovalues

can be used to reveal different levels of details of vortices in the flow.
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There are two outputs of this step. 1) A 3D volume denoted by where 

  , . 

2) A 1D feature vector   that stores all scalar values  (i.e. all possi-

ble thresholds).  represents the isovalue feature vector.  represents the total number 

of scalar values . 

 Throughout the rest of the paper, the term vortex refers to a vortex core under the 

definition explained above. 

7.2.2. D2 Signature of Shape Distributions 

 The signature of shape distributions was first introduced in [11] for shape retrieval 

in computer vision tasks. The idea behind shape distributions’ signature is to statistically 

encode a 3D model using a probability distribution of some parametric function that 

measures geometric properties of the given 3D model. This reduces the shape match-

ing/retrieval problem into a simple distribution comparison [11]. D2 signature (Figure 7.1) 

is a shape distribution signature where the parametric function is defined by the Euclidean 

distances between randomly sampled pairs of points over the 3D surface. The D2 distribu-

tion can globally define the surface of interest (in our case, the vortex ring isosurface). 

Compared to other global shape signatures e.g. spectral signatures [9], the major advantage 

of the D2 distribution signature is its simplicity, essentially the shape matching problem is 

reduced to random sampling of points, histogram construction and finally histogram com-

parison using a dissimilarity metric.  

 Being a distribution, the D2-signature is invariant to rotation, translation and scal-

ing (after normalization), therefore allowing matching of different shapes without the need 

for pre-registration or alignment. In addition, it is robust to small shape perturbations or 

deformations (e.g. due to noise) [11] which makes it sufficient for tasks that require multi 

shape comparisons as in our case. 

 In this work, the D2 signature is constructed following a similar procedure to that 

proposed in [11]: 1) Represent the 3D shape of interest as an isosurface. 2) Randomly sam-

ple point pairs over the vortex-ring isosurface. =5122 pair of samples was used in this 

work. 3) Compute Euclidean distances between the  samples using L2-norm. 4) Construct 

a histogram of  bins of the pairwise distances.  =100 equally space bins was used in this 

work. 5) Normalize the resulting histogram using root mean square deviation. This step 
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makes the signature scale invariant. 6) Define a dissimilarity metric to be used for histo-

gram matching with a new given 3D model. In this work we used the normalized L1-norm 

(normalized by L1 norm of the reference signature) as dissimilarity metric. Though similar, 

cardiac vortex rings differ between subjects. To account for this, we derive an average ref-

erence signature from a cohort of healthy subjects for matching purposes. Of note, increas-

ing and  more than the specified numbers did not yield significant improvement. 

 

 
Figure 7.1. (a) A four chamber view showing the 3D vortex ring isosurface (in green) with 

superimposed streamlines in the LV at peak inflow phase in a sample healthy subject. (b) 

Separate view of the 3D vortex ring isosurface shown in (a). (c) The reference (average) D2 

shape distributions’ signature determined from the 24 healthy controls in this study.  

7.2.3. Hierarchical shape distributions for vortex ring identification 

 In principle, the vortex ring isosurface may be defined by any isovalue in the  

feature vector. This can result in a large search space as multiple shape matching tasks are 

needed per each value to find the target isosurface. To reduce the search space, we propose 

to compress the isovalue feature vector into a subset of representative isovalues using the 

vector quantization technique [13]. Given a vector of features, the vector quantization pro-

cess involves compression of the input set of points into a smaller set. This works by divid-

ing the input vector into groups, each group is then defined by one value given some crite-
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ria [13].  The well-known K-means clustering algorithm is a vector quantization method 

[13] in which a long input feature vector can be compressed into a vector of K cluster cen-

troids that minimize the within-cluster sum of square distances.  

 In this work, we use an iterative hierarchical K-means scheme in which there is no 

need to predefine the number of centroids K. This allows avoiding the possible bias when 

K is predefined. The proposed scheme is as follows: Given the isovalue feature vector , 

initialize with K=1 and apply the K-means clustering algorithm (i.e. feature vector is 

reduced to a single candidate isovalue). Then, K is iteratively incremented by one until 

convergence or a predefined stopping criterion is satisfied. This results in a hierarchical 

multi-level vector , in which each level  carries  candidate 

isovalues.  

 Given an isovalue level , each isovalue  can define  isosur-

faces of different vortex structures from among them a vortex ring may or may not be pre-

sent. Therefore, to identify the vortex ring isosurface we need to solve two problems. 1) 

Find the isovalue  in which a vortex ring is one of its  resulting isosurfaces. 2) Find 

the isosurface  that corresponds to a vortex ring. 

 Using the proposed hierarchical vector quantization scheme and the reference D2 

shape distribution signature, we are able to simultaneously solve these two problems by 

minimizing the shape distribution distances as follows: for each isovalue  at level , 

extract the corresponding  vortex isosurfaces. Then, for each isosurface , construct 

the D2 shape distribution following the procedure explained above. Compute the dissimi-

larity distance  with the reference signature using the normalized L1 norm (i.e. normal-

ized by the L1-norm of the reference signature). Repeat this for every isovalue level until 

convergence ( <   ) or stopping criteria is satisfied. We wish to identify the best surface 

match by finding the indices  such that  

 

As a result, the target two problems are simultaneously solved by defining the isosurface 

 as the target vortex ring isosurface and corresponding isovalue  as the target 

isovalue. To avoid local minima, for each iteration, the K-means algorithm was replicated 

 times (  =10 was used in this work) using different initial centroids. Then, the centroids 

with minimum within-cluster sums of point-to-centroid distances were chosen. Two stop 

criteria were defined 1) reaching a maximum number of predefined iterations (set to 50 in 
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this work). In all our experiments, less than 15 iterations were enough to find , and 

2) the dissimilarity distance was increasing for three consecutive iterations. This decreases 

the possibility of stopping at local minima when only a single diverging iteration is used 

instead.  

7.2.4. Quantitative characterization of the identified vortex ring in the LV  

 After the identification of the vortex ring isosurface, it was quantified using the 

parameters proposed in [3]. These parameters are the vortex ring orientation and normal-

ized cylindrical (Circumferential (C), Longitudinal (L) and Radial(R)) 3D position of the 

vortex ring center relative to the LV. L and R were normalized relative to the LV long-axis 

length and the radius of the LV endocardial cavity, respectively. Vortex orientation is de-

fined as the angle between the LV long axis and the fitting plane of the vortex isosurface.  

7.3. Dataset, preprocessing and validation 
 We evaluated the proposed method on two datasets:  one dataset of 24 healthy 

controls (mean age: 21±10 years) as previously described in [3] and a dataset of 23 patients 

(27±11) after atrioventricular septal defect correction. All subjects underwent retrospective-

ly-gated 4D Flow MRI at 3.0 T (Philips) with spatial resolution of 3-4 mm3 and a temporal 

resolution of 30 ms covering all 4 chambers of the heart. This data was then linearly in-

terpolated spatially to result in a 1mm3 spatial resolution. More details on the acquisition 

parameters can be found in [3]. 

 To localize the LV ROI, the LV was manually segmented from only the peak-

inflow diastolic phase in the 4D Flow volume as explained in [3]. As the vortex ring is a 

connected region of voxels within the LV, accurate segmentation is not required for the 

purpose of vortex ring identification. Only rough over-segmentation of the LV (to ensure 

the LV is covered) was enough to roughly define the LV ROI. In this work, an over-

segmentation of about 0.5 cm around LV border was used to define LV ROI. 

 To generate the ground truth for the vortex ring isosurface in the two included 

datasets, for the healthy control dataset, we used the vortex ring isosurfaces interactively 

generated with low inter and intra observer variability in a previously validated workflow 

[3]. Same procedure in [3] was used to blindly generate the ground truth for patient dataset. 

To quantitatively evaluate the performance of the proposed method in the first dataset of 

healthy controls, leave-one-out cross-validation was used to avoid bias in the selection of 

the reference averaged D2 signature.  
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 To test the generalization performance in a clinical setting, the dataset of 23 pa-

tients was evaluated using a reference signature derived only from the 24 healthy control 

subjects. To evaluate the identification performance relative to the ground truth, we per-

formed two sets of evaluations. The accuracy of the identified isosurface object was as-

sessed using the Hausdorff distance and dice coefficient for surface overlap. In addition, a 

paired student’s t-test comparison of the automatically defined isovalues and the one used 

to generate the ground truth isosurfaces was performed. Second, paired student’s t-test was 

used to statistically compare the quantitative vortex ring parameters of the automatically 

identified vortex-ring isosurfaces to those of the ground truth. For all statistical tests a p-

value <0.05 was considered significant. 

7.4. Results 
 In all subjects of both datasets, a vortex ring isosurface was successfully identified 

from the Lambda2 scalar field with qualitatively similar shape to that of the ground truth 

(Figure 7.2). Detailed results of the quantitative evaluation over the two datasets is given in 

Table 7.1 where a Hausdorff distance of 8.36±7.55 mm in healthy control dataset and 

11.73±6.57 mm in the patients dataset were found. The surface overlap (dice coefficient) 

was 0.81±0.09 in controls and 0.77±0.14 in patients. The identified isovalues using the 

proposed method were highly comparable to those of the ground truth and not statistically 

different (p=0.86). Quantitative parameters of the automatically identified vortex rings 

were in good agreement with the ground truth.  

7.5. Discussion and conclusion 
 This paper presents a framework for objective identification and quantification of 

3D vortex ring in the LV from 4D PC MRI by means of isosurfaces. The problem of vortex 

ring identification from the 3D vortical scalar field was reduced to histogram comparison 

and hierarchical K-means vector quantization. The reported results on healthy controls as 

well as patients show great promise of the proposed method. The generalizability of the 

proposed method was evaluated with abnormal vortex rings being identified from 23 pa-

tients with a signature trained solely on normal vortex ring isosurfaces from healthy con-

trols.  
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Table 7.1. Qunatitative evaluation results 

Parameter 24 Controls 23 Patients 

 
Ground 

truth 
Proposed 
method 

p-value 
(paired 
t-test) 

Ground 
truth 

Proposed 
method 

p-value 
(paired 
t-test) 

C 87±20 85±24 0.12 67±19 63±23 0.07 
L 0.19±0.04 0.19±0.04 0.92 0.22±0.06 0.22±0.05 0.74 
R 0.27±0.07 0.27±0.07 0.91 0.33±0.09 0.33±0.1 0.61 

Vortex Orientation 70±55 65±54 0.65 57±25 57±40 0.87 
Lambda2 Isovalue* -7.2±-

3.43 
-7.3±-3.2       

0.82 
-7.27±-
11.24 

-7.7±-5.45       
0.86 

Surface Overlap 
(Dice Coeffecient) 

0.81±0.09 0.77±0.14 

Hausdorff distance 
(mm) 

8.36±7.55 11.73±6.57 

*The absolute lambda2 isovalue does not have direct interpretation here and was provided 

only to give impression on how similar were they in test cases compared to ground truth 

 

 

The proposed  method provided high performance and agreement with the blindly 

generated ground truth. It is important to emphasize that the exact size/volume of a vortex 

ring is generally undefined as it is isovalue dependent. Therefore, volumetric measurements 

like Hausdorff distance or dice overlap may not sufficiently capture the validity of the iden-

tified vortex rings. Instead, the evaluated quantitative characterization parameters (C, L, R 

and orientation) may provide more objective evaluation of the method and its potential 

clinical value. In this work, the vortex ring identification was limited to the phase of  peak 

LV inflow which is considered the moment around full vortex development [3, 6], however 

vortex formation in the LV is a dynamic process over the entire diastole involving vortex 

evolution and dissipation with corresponding shape deformations. Future work will address 

the method’s performance in other diastolic phases. The proposed method allows for objec-

tive quantitative characterization of the peak-inflow vortex ring formation in the LV with 

results comparable to those previously validated [3]. With the increasing interest in vortex 

ring formation as a potential biomarker for LV (dys)function [2, 4, 6], the proposed method 

can play an important role in providing objective 3D vortex analysis for assessment of vor-

tex ring formation in the LV from 4D Flow MRI.  
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7Figure 7. 2. Sample results of the proposed method on 4 healthy controls (top two rows: v1 

to v4) and 4 patients (bottom two rows: p1 to p4).  For every subject, the ground truth is 

presented on left (green) and the automatically identified peak-inflow vortex ring isosur-

face on right (red). D2_v1 to D2_v4 and D2_p1 to D2_p4 show the best matched D2 distri-

butions corresponded to the automatically identified vortex ring isosurface (red curve) 

overlaid on the reference signature (average over healthy controls) in blue. 
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Chapter 8 

Summary, Discussion and Future Perspectives 
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8.1. Summary 

The methods presented in this thesis enable quantitative characterization, evaluation and 

automatic identification of in-vivo 3D intra-cardiac vortex flow patterns in the human 

heart, specifically through utilization of in-vivo 4D Flow MRI. These methods show the 

feasibility and expand the potential of 4D Flow MRI towards objective in-vivo evaluation 

of 3D intra-cardiac vortex flow, noninvasive assessment of intra-cardiac viscous energy 

loss and of their association in healthy subjects and patients with altered intra-cardiac flow. 

Different aspects of in-vivo 3D intra-cardiac vortex flow analysis, from 4D Flow MRI, in 

healthy subjects and cardiac patients were addressed in this thesis.   

In Chapter 2, a semi-automatic workflow was introduced for identification of 3D 

left ventricular (LV) vortex ring flow from 4D Flow MRI during diastole. This workflow is 

based on instantaneous Eulerian 3D vortex core identification using a fluid dynamics-based 

method called the Lambda2 method. The developed workflow was then used to 

characterize the 3D vortex ring flow and its evolution during early and late diastolic filling 

in twenty-four healthy human volunteers who all underwent 4D flow MRI. Reported results 

revealed the formation of two distinct 3D vortex rings during LV diastole: an early filling 

vortex ring and a late filling vortex ring. Standardized quantitative parameters were derived 

to quantitatively characterize vortex ring shape and location (3D position and orientation) 

relative to the LV geometry at the moments of peak early filling (E-vortex) and peak late 

filling (A-vortex). We provided quantitative normal ranges of E- and A- 3D vortex rings 

from the studied healthy volunteers. Both the E- and A-vortex rings were formed at the 

basal level, but with E-vortex ring center being significantly closer to the mitral valve 

annulus compared to the A-vortex ring. E- and A-vortex rings were similarly oriented 

relative to the LV. E-vortex ring shape was significantly more circular compared to a more 

elliptical A-vortex ring. A strong correlation was found between vortex ring shape and the 

inflow shape through the mitral annulus and leaflet tips. 

In Chapter 3, after characterizing and revealing 3D diastolic LV vortex ring 

formation in healthy cases, the impact of altered inflow and abnormal mitral valve 

morphology on 3D LV vortex ring formation was studied in patients who are known to 

develop altered inflow and mitral valve morphology. The workflow and quantitative 

characterization developed in Chapter 2 were applied on thirty healthy controls and thirty-

two patients who previously underwent a surgical repair to correct a congenital 

atrioventricular septal defect. Vortex formation time (VFT) was computed in all studied 



133

8

subject. Results showed altered 3D LV inflow vortex ring formation in patients compared 

to healthy controls. This alteration was characterized by a more frequent absence of a 

(well-formed) ring-shaped vortex (a complex irregular vortex flow was detected instead), 

more oblique vortex ring orientation and 3D position closer to the lateral wall in the 

patients who presented a vortex ring compared to healthy controls at moments of peak early 

and peak late filling. Patients with absent (well-formed) E-vortex ring showed significantly 

higher VFT compared to healthy controls. Three patients showed a reversed E-vortex ring 

orientation with the vortex’s lateral side being positioned towards the apex in contrast to 

healthy controls in which the septal side was the apically positioned side. Detected 3D 

vortex rings in patients were more elliptical in shape compared to healthy controls which 

could be a reflection of the restricted inflow area found in patients.  

In Chapter 4, the influence of the disturbed 3D inflow vortex ring parameters 

found in patients (Chapter 3) on LV physiology is studied by means of its association with 

viscous energy loss levels in the LV during diastole. Using Navier-Stokes energy 

equations, instantaneous 3D viscous energy loss in the LV was non-invasively evaluated 

from the 4D Flow MRI derived velocity field over diastole in the previously studied 

population of thirty volunteers and thirty-two patients (Chapter 2 and 3). Association 

between viscous energy loss levels and previously derived 3D vortex ring parameters 

(orientation and 3D position) was assessed during both early and late diastolic filling as 

well as over complete diastole. Normal ranges of viscous energy loss and 3D vortex 

parameters were derived from the healthy volunteers as the 95% confidence interval. 

Patients with vortex ring parameters beyond the normal range showed significant elevation 

in viscous energy loss compared to healthy volunteers. Highest viscous energy loss was 

found in patients with absent (well-formed) E-vortex ring, and patients with reversed E-

vortex ring orientation (on average more than double the viscous energy loss levels 

measured in the rest of patients). As such, this was the first in-vivo study to confirm the 

role of normal 3D vortex ring formation on minimization of viscous energy loss using 4D 

Flow MRI. 

In Chapter 5, systolic Left Atrial (LA) vortex flow is evaluated in healthy 

volunteers and patients with corrected congenital atrioventricular septum defect (AVSD) 

with both none-mild and moderate left atrioventricular valve (LAVV) regurgitation. Atrial 

vortex flow was identified using streamline visualization and 3D vortex core analysis 

(using the Lambda2-method) around the moment of LV-systole. Backward particle tracing 

with particles seeded from within the identified 3D vortex core was used to identify the 
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origin of atrial vortex flow. Accordingly, the atrial vortex flow was decomposed into four 

components based on origin: 1) flow originating from left pulmonary vein (LPV) 2) flow 

originating from right pulmonary vein (RPV) 3) residual atrial flow or 4) a regurgitant flow 

originating from LV.  Results show that in both healthy volunteers and patients, the 

majority of atrial vortex flow originates from the LPV. However, patients showed a 

significant decrease in LPV vortex flow and significant increase in residual atrial vortex 

flow. Compared to a single recirculating atrial flow region detected in healthy volunteers, 

patients showed disturbed atrial vortex flow with multiple regions of recirculating flow 

structures around the regurgitation jet and with opposed circulating directions.  

In Chapter 6, a method is proposed for automatic extraction of 3D LV vortex ring 

core isosurfaces (by means of Lambda2 vortex cores) of peak E- and peak A-filling phases 

from whole-heart 4D Flow MRI. The proposed method is based on capturing the intrinsic 

global shape features of the cardiac vortex ring isosurface using the Laplace-Beltrami (LB) 

spectral shape signature. The LB signature is defined as the diverging eigenvalues sequence 

of the Laplace-Beltrami differential operator. This LB sequence encodes the discriminating 

shape features that are intrinsic to the shape of interest. In this work, an LB reference 

signature of the LV vortex ring shape is derived from a training set of LV vortex ring 

isosurfaces of healthy volunteers. In the extraction phase, the trained reference signature is 

used to iteratively search for the LV vortex ring object (isosurface) among co-existing 

vortex objects. The target vortex ring object is defined as the isosurface that gives best LB-

signature match with the trained reference signature. This method has been evaluated in a 

dataset of eight healthy volunteers using leave-one-out cross validation yielding a precision 

of 84%.  However, one limitation of this work is that it expects the input to be multiple 

isolated isosurface objects, among them is the target vortex ring isosurface to be extracted. 

This requires prior definition of the isovalue that produces such a well-defined vortex ring 

that is isolated from other co-existing vortex objects. In this work, isovalue selection was 

done empirically based on manual interaction. Selection of appropriate isovalue may 

require experience and can be a tedious and subjective process. 

In Chapter 7, to overcome the aforementioned limitations of the method in 

Chapter 6, a new method is proposed for automatic identification of the 3D vortex ring 

core isosurface from 4D Flow MRI flow field without any presumptions on the isovalue 

selection. In fact, the proposed method allows simultaneous automatic identification of 

both the best appropriate isovalue and the object corresponding to the vortex ring 

isosurface. First, the 4D Flow MRI velocity field is converted into a vortex core scalar field 
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using the fluid-dynamics-based Lambda2 method. Second, a vortex shape signature is 

derived from a training set of healthy subjects by means of shape distributions: probability 

distribution of pairwise Euclidean distances of randomly sampled points on the vortex ring 

isosurface. This derived shape distribution is used as a reference signature defining the 

shape of the vortex ring isosurface. Finally, a hierarchical vector quantization algorithm is 

proposed to simultaneously define the best appropriate isovalue and to identify the vortex 

ring isosurface among co-existing vortex isosurfaces. The method was evaluated 

qualitatively and quantitatively in two cohorts: a cohort of twenty-four healthy volunteers 

and a cohort of twenty-three congenital heart disease patients. Results of performed 

experiments showed excellent performance and good agreement with blindly generated 

ground truth as well as generalizability to challenging abnormal vortex rings in patients. As 

such, the proposed method is a step forward towards allowing objective automatic 3D 

vortex ring analysis from 4D Flow MRI in clinical practice.  

8.2. Discussion and Future perspectives 

The aims of this thesis as stated in chapter 1 were accomplished. Nevertheless, this thesis 

can serve as a ground for further work. In this thesis, we have identified and qualitatively 

characterized the 3D vortex ring formation and its evolution over complete diastole 

(Chapter 2). However, 3D vortex ring quantification (Chapter 2, 3, 4) and automatic 

identification (Chapter 6, 7) were mainly limited to only peak early and peak late filling 

phases which are considered the moments around full vortex ring development. 

Nevertheless, as shown in Chapter 2, 3D cardiac vortex flow is a dynamic process that 

involves development, propagation, interaction with chamber wall and subsequent decay. 

These dynamics were not fully quantified in this thesis. A potential mechanism of vortex 

flow in cardiac (dys)function is more likely to be evident in the vortex evolution process. 

Future work should be aimed at quantifying this evolution and its relation to cardiac 

(dys)function.  

The main focus of this thesis was inflow vortex flow formation in the LV during 

diastole and LA during systole. In principle, the vortex identification and energy evaluation 

methods developed in this thesis (Chapter 2, 4, 6, 7) are generally applicable to analysis of 

other blood flow regions in the cardiovascular system from 4D Flow MRI. An example of 

this was shown in Chapter 5, where 3D atrial vortex identification was successfully 

performed using methods and workflow originally developed for LV vortex analysis 

(Chapter 2). In the future, we plan to employ the 3D vortex and energy methods developed 
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in this thesis to expand the analysis into other cardiac chambers (e.g. right ventricle, right 

atrium), as well as great arteries, such as aorta, and over the complete cardiac cycle. Such 

comprehensive analysis would provide more insights into the normal physiology of the 

heart and potential connection or alteration in cardiovascular patients.  

Eulerian vortex core analysis using the fluid dynamics-based Lambda2 method 

was the main method used in this thesis for extracting and identifying instantaneous 3D 

vortex core regions from 4D Flow MRI. A limitation of instantaneous (Eulerian) vortex 

core identification methods is that, in practice, they require a threshold (isovalue) to be 

defined (mainly manually) to identify meaningful vortex core regions. The fact that 

different thresholds might result in different 3D vortex volumes makes it challenging to 

derive reliable volumetric measurements (e.g. vortex volume, total strength or total energy) 

based on such vortex core analysis. This becomes more evident when the input velocity 

field is typically noisy and with coarse resolution as the case with 4D Flow MRI. That is 

the main reason why volumetric vortex measurements were largely avoided in this thesis. 

 A solution to the threshold selection problem was approached in Chapter 7, by 

automatic identification of appropriate threshold (isovalue). This could be a step forward 

towards an objective identification of vortex core volume. Further studies are still needed to 

evaluate the accuracy of such method for vortex volume quantification. On the other hand, 

Lagrangian vortex identification methods, such as Lagrangian Coherent Structures (LCS), 

might allow quantification of total vortex ring volume over a period of time, but are 

generally not meant for instantaneous vortex flow analysis (i.e. not to quantify vortex 

volumes at specific time points). Therefore, they do not directly aim at analyzing the 

evolution of instantaneous vortex flow. In the future, different vortex identification 

methods; including Eulerian and Lagrangian, methods should be investigated in a manner 

that allows accurate and objective analysis of the evolution of instantaneous 3D vortex flow 

volumes. 

4D Flow MRI is a state-of-the-art in-vivo flow imaging technique and the only 

modality that allows in-vivo acquisition of 4D flow data of all three velocity components. 

Nonetheless, 4D Flow MRI has some limitations. Typical long acquisition times (up to 20 

minutes) may limit the clinical feasibility. However, applying recent scan acceleration 

techniques enable more feasible acquisition durations (~10 minutes when no respiratory 

gating is applied) and this is expected to further improve in the future.  Given the slow MR 

acquisition, 4D Flow MRI is requires acquisition over multiple cardiac cycles. This results 

in acquiring mainly the average flow field while smoothing out turbulent fluctuations or 
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potential higher order flow components. This has to be taken in consideration when 

computing and/or interpreting 4D Flow MRI measurements including vortex flow and 

energetics. The need to heuristically determine an appropriate velocity sensitivity encoding 

(VENC) prior to 4D Flow MRI acquisition to avoid potential aliasing artifact can be 

challenging. The acquired 4D Flow MRI flow field may present errors in the form of eddy 

current effects, Maxwell terms, signal noise, and/or velocity offsets. These errors should be 

corrected using appropriate techniques before processing/interpreting flow data. Coarse 

temporal (~30-50 ms) and spatial resolutions (~3×3×3 mm3) of 4D Flow MRI limits flow 

analysis to the large scale flow structures with life-span longer than the acquired temporal 

resolution. All these factors may limit the reliability of 4D Flow MRI-based results and 

subsequent interpretations.  

To allow reliable and correct interpretations of 4D Flow MRI measurements, it is 

important to evaluate and validate such results. A limiting factor in such validation is the 

lack of a realistic gold standard (ground-truth) of the in-vivo human cardiovascular flow in 

general, and vortex flow and energetics in particular. Available phantom techniques are not 

able to provide such realistic gold standard. One way to tackle this issue in future studies 

could be to benefit from the advances in computational fluid dynamics (CFD) by building 

hybrid CFD-4D Flow MRI computational systems that impose realistic in-vivo flow field 

measurements (not only geometry) from 4D Flow MRI to guide high resolution, more 

controllable and robust, CFD simulations to reach a realistic high resolution model of 

human cardiac flow field. 

While many studies have speculated on a role of vortex flow formation on 

optimizing cardiac function and/or a connection with cardiac abnormalities, there is a lack 

of studies evaluating such assumptions in-vivo using a true and complete flow field. In 

Chapter 4, using 4D Flow MRI flow fields, we have in-vivo evaluated and confirmed the 

previously speculated, but unverified, role of vortex flow on minimization of energy loss. 

More (follow-up) studies of different groups of cardiovascular patients are needed to assess 

the true association between vortex flow patterns and cardiac (dys)function and to 

determine whether vortex flow could serve as a biomarker, or whether it is only a 

byproduct of other factors. In fact, the normal cardiac hemodynamics are largely 

unexplored and therefore still mostly unknown. While currently underestimated in the 

community, it is critical to carry out more studies aiming at revealing, at a comprehensive 

level, the normal hemodynamics of the cardiovascular system before jumping into patient 

evaluations.
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This thesis shows the potential of 3D/4D vortex flow analysis and viscous energy 

loss measurements from 4D Flow MRI in revealing and evaluating in-vivo intra-cardiac 

hemodynamics. It is critical to ensure reliability and reproducibility of such measurements 

and analysis to allow sound clinical interpretations. A sophisticated vortex flow analysis 

needs to be accessible for clinical personnel with minimal needs of technical background. 

An important mechanism to achieve this would be to continue working on building 

automatic reliable systems for identification and quantification of cardiac hemodynamics in 

general and vortex flow and energetics in particular from 4D Flow MRI. 
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Samenvatting en conclusies
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8.1. Samenvatting 

Met de methodieken die in dit proefschrift worden beschreven, kunnen in-vivo 3D vortex 

(wervel) flowpatronen in het menselijk hart kwantitatief worden gekarakteriseerd, 

geëvalueerd en automatisch worden geïdentificeerd, met name door gebruik van in-vivo 4D 

Flow MRI. Deze methodieken tonen de uitvoerbaarheid van 4D Flow MRI aan en 

verbreden de potentie ervan in de richting van een objectieve in-vivo evaluatie van 3D 

intra-cardiale vortexstroming, non-invasieve bepaling van intra-cardiaal viskeus 

energieverlies en de onderlinge associatie hiervan in gezonde personen en patiënten met 

een veranderd intra-cardiale bloedstroming. In dit proefschrift worden verschillende 

aspecten van in-vivo 3D intra-cardiale vortex flow analyse, middels 4D Flow MRI, in 

gezonde personen en cardiale patiënten behandeld. 

 In Hoofdstuk 2 werd een half-automatische methode geïntroduceerd waarmee 3D 

vortexringstructuren met 4D Flow MRI kunnen worden geïdentificeerd in de 

bloedstromingspatronen in het linker ventrikel (LV) tijdens diastole. Deze methode is 

gebaseerd op de instantane Euleriaanse 3D vortexkernidentificatie waarbij een methode uit 

de stromingsleer wordt toegepast, de zogenaamde Lambda2 methode. De ontwikkelde 

methode werd vervolgens toegepast om 3D vortexringstructuren en de ontwikkeling ervan 

te karakterisen tijdens vroege en late diastolische vulling in vierentwintig gezonde 

vrijwilligers die allen 4D Flow MRI ondergingen. De resultaten lieten zien dat er twee 3D 

vortexringstructuren ontstaan en onderscheiden kunnen worden tijdens LV diastole: een 

vortexring tijdens de vroege diastolische vullingsfase en een tijdens late vulling. 

Gestandaardiseerde kwantitatieve parameters werden bepaald om de vortexringstructuur 

kwantitatief te karakteriseren en de locatie (3D positie en oriëntatie) ervan ten opzichte van 

de geometrie van het LV op de momenten van piek-vroege vulling (E-vortex) en piek-late 

vulling (A-vortex). We verschaffen het kwantitatieve bereik van normaalwaarden voor 3D 

E- en A-vortexringstructuren, bepaald middels de onderzochte gezonde vrijwilligers. Beide 

E- en A-vortexringen ontstonden op het basale niveau, maar met het centrum van de E-

vortexring significant dichterbij de annulus van de mitralisklep dan dat van de A-

vortexring. E- en A-vortexring waren overeenkomstig in oriëntatie ten opzichte van het LV. 

De E-vortexring was siginicant meer circulair ten opzichte van de meer ellipsvormige A-

vortexring. Een sterke correlatie werd gevonden tussen de vorm van de vortexring en de 

vorm van de instroming door de annulus van de mitralisklep en de uiteinden van de 

klepbladen. 
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 Na het karakteriseren en het onthullen van 3D diastolische LV vortexringformatie 

in gezonde vrijwilligers wordt in Hoofdstuk 3 de impact die de gewijzigde instroming van 

bloed en een abnormale mitralisklepmorfologie heeft op de vorming van een 3D LV 

vortexring onderzocht bij patiënten van wie bekend is dat de instroming en 

mitralisklepmorfologie afwijkend ontwikkelen. De methode en de kwantitatieve 

karakterisering die in Hoofdstuk 2 is ontwikkeld, werden toegepast op dertig gezonde 

controlepersonen en tweeëndertig patiënten die eerder een chirurgische correctie van een 

aangeboren atrioventriculair septum defect ondergingen. Vortexformatietijd (VFT) werd 

berekend in alle onderzochte personen. De resultaten toonden een veranderde 3D LV 

vortexringvorming bij patiënten aan vergeleken met gezonde controlepersonen. Deze 

verandering werd gekenmerkt door een vaak ontbrekende (goed ontwikkelde) ringvormige 

vortex (in plaats daarvan werd een complex onregelmatige vortexstroming gedetecteerd), 

en bij die patiënten waarbij een vortexring kon worden gedetecteerd, een schuinere 

oriëntatie van de vortexring en een 3D positie die dichter bij de laterale wand was in 

vergelijking met gezonde controlepersonen op de momenten van piek vroege en late 

vulling. Patiënten waarbij een goed-ontwikkelde E-vortexring ontbrak, hadden een 

significant hogere VFT in vergelijking met gezonde controlepersonen. Drie patiënten 

vertoonden een omgekeerde oriëntatie van de E-vortexring waarbij de laterale zijde van de 

vortex naar de apex gepositioneerd was in tegenstelling tot de oriëntatie bij de gezonde 

controlepersonen waarbij de septale zijde van de vortex het meest apicaal georiënteerd was. 

Bij patiënten waren de 3D vortexringen meer elliptisch van vorm in vergelijking met 

gezonde controlepersonen, hetgeen een afspiegeling is van het beperkte instroomgebied bij 

patiënten. 

In Hoofdstuk 4 wordt de invloed van de afwijkende 3D instroomvortexring 

parameters die bij patiënten werd gevonden (Hoofdstuk 3) op de fysiologie van het LV 

bestudeerd via de associatie met verschillende niveaus van viskeus energieverlies in het LV 

tijdens diastole. De Navier-Stokes energievergelijkingen worden gebruikt om het instantane 

3D viskeuze energieverlies in het LV non-invasief te bestuderen middels het snelheidsveld 

dat uit 4D Flow MRI is afgeleid gedurende de diastole in de reeds bestudeerde populatie 

van dertig vrijwilligers en tweeëndertig patiënten (Hoofdstuk 2 en 3). De associatie tussen 

niveaus van viskeus energieverlies en de eerder afgeleide 3D vortexringparameters (de 

oriëntatie en 3D-positie) werd bestudeerd tijdens zowel de vroege en late diastolische 

vulling, evenals voor de gehele diastole. Normaalwaarden van viskeus energieverlies en 3D 

vortexparameters werden verkregen uit het 95% betrouwbaarheidsinterval dat bij de 
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gezonde vrijwilligers werd bepaald. Patiënten met vortexringparameters die buiten het 

normale bereik lagen, lieten een aanzienlijke verhoging van het viskeuze energieverlies 

zien in vergelijking met gezonde vrijwilligers. Het hoogste viskeuze energieverlies werd 

gevonden bij patiënten waarbij de (goed ontwikkelde) E-vortex ring afwezig was, en bij 

patiënten met een omgekeerde oriëntatie van de E-vortexring (bij deze patiënten werd 

gemiddeld meer dan het dubbele viskeuze energieverlies gemeten dan in de rest van de 

patiënten). Als zodanig was dit de eerste in-vivo studie op basis van 4D Flow MRI waarin 

bevestigd werd dat de normale 3D vortexringvorming een rol speelt in de minimalisering 

van viskeus energieverlies. 

In Hoofdstuk 5 wordt de systolische vortexstroming in het linker atrium (LA) 

onderzocht bij gezonde vrijwilligers en patiënten met een gecorrigeerde aangeboren 

atrioventriculair septum defect (AVSD) en met ontbrekende tot milde en matige 

regurgitatie van de linker atrioventriculaire klep (LAVV). Atriale vortexstroming werd 

geïdentificeerd met behulp stroomlijnvisualisatie en 3D vortexkernanalyse (met behulp van 

de Lambda2-methode) rond het moment van LV-systole. Achterwaartse particle tracing

met deeltjes die ontspringen vanuit de geïdentificeerde 3D vortexkern werd gebruikt om de 

oorsprong van atriale vortexstroming te identificeren. Vervolgens werd de atriale 

vortexstroming onderverdeeld in vier componenten op basis van herkomst van de deeltjes: 

1) stroming afkomstig van linker longader (LPV) 2) stroming afkomstig van rechts 

longader (RPV) 3) residuele atriale stroming of 4) een regurgiterende stroming afkomstig 

uit het LV. De resultaten tonen aan dat bij zowel gezonde vrijwilligers als patiënten de 

atriale vortexstroming overwegend afkomstig is van de LPV. Echter, patiënten vertoonden 

een significante afname van LPV vortexstroming en een aanzienlijke toename van 

residuele atriale vortexstroming. In vergelijking met een enkele atriaal recirculerend 

stromingsgebied zoals aangetroffen bij gezonde vrijwilligers vertoonden patiënten 

verstoorde atriale vortexstromingen met meerdere gebieden van recirculerende 

stromingsstructuren rond de regurgitatie jet en met tegengestelde circulatierichtingen. 

In Hoofdstuk 6 wordt een methode voorgesteld om een automatische extractie 

van iso-oppervlakten van 3D LV vortexringkernen (door middel van Lambda2 

vortexkernen) te bewerkstelligen tijdens de piek E- en peak-A vullingsfasen uit 4D Flow 

MRI van het gehele hart. De voorgestelde methode is gebaseerd op het vastleggen van de 

intrinsieke globale vormkenmerken van de cardiale vortexring iso-oppervlakte door 

gebruik te maken van de Laplace-Beltrami (LB) spectrale vormsignatuur. De LB signatuur 

wordt gedefinieerd als de divergerende eigenwaarden sequentie van de Laplace-Beltrami 
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differentiaaloperator. Deze LB sequentie codeert de onderscheidende vormkenmerken die 

inherent zijn aan de vorm van interesse. In dit werk wordt een LB referentie signatuur van 

de LV vortexring iso-oppervlakte afgeleid van een trainingset van LV vortexring iso-

oppervlakten van gezonde vrijwilligers. In de extractiefase wordt de getrainde 

referentiesignatuur gebruikt om onder coëxisterende vortexobjecten iteratief te zoeken naar 

het LV vortexring object (iso-oppervlakte). Het vortexring doelobject wordt gedefinieerd 

als de iso-oppervlakte die de beste LB-signatuur overeenkomst heeft met de getrainde 

referentiesignatuur. Deze methode is geëvalueerd in een dataset verkregen uit acht gezonde 

vrijwilligers waarbij de leave-one-out kruisvalidatie is gebruikt en waarbij een 

nauwkeurigheid van 84% is verkregen. Echter, een beperking van dit werk is dat verwacht 

wordt dat de invoer bestaat uit meerdere geïsoleerde iso-oppervlakte objecten, waaronder 

het te verkrijgen vortexring iso-oppervlakte doelobject. Dit vereist een voorafgaande 

definitie van de iso-waarde die een dergelijke goedgedefinieerde vortexring voortbrengt die 

geïsoleerd is van de andere aanwezige vortexobjecten. In dit werk werd de selectie van de 

iso-waarde empirisch bepaald door middel van handmatige interactie. Voor de bepaling van 

de geschikte iso-waarde is ervaring nodig en kan een langdurig en subjectief proces zijn. 

Om de in Hoofdstuk 6 genoemde beperkingen van de methode te overwinnen, 

wordt in Hoofdstuk 7 een nieuwe methode voorgesteld om de automatische identificatie 

van de 3D vortexringkern iso-oppervlakte uit 4D Flow MRI stromingsveld zonder enige 

aannames over de iso-waardebepaling te bewerkstelligen. In feite stelt de voorgestelde 

werkwijze de gebruiker in staat om een gelijktijdige automatische identificatie te verkrijgen 

van zowel de best passende iso-waarde en het object dat overeenkomt met de vortexring 

iso-oppervlakte. Eerst wordt het 4D Flow MRI snelheidsveld omgezet in een vortexkern 

scalair veld door gebruik te maken van de uit de stromingsleer bekende Lambda2 methode. 

Ten tweede wordt een vortexvormsignatuur afgeleid uit een trainingset van gezonde 

proefpersonen door middel van vormdistributies: de waarschijnlijkheidsverdeling van 

paarsgewijze Euclidische afstanden rondom willekeurig bemonsterde punten op de 

vortexring iso-oppervlakte. Deze afgeleide vormverdeling wordt gebruikt als een 

referentiesignatuur die de vorm van de vortexring iso-oppervlakte definieert. Tenslotte 

wordt een hiërarchisch vectorkwantisatiealgoritme voorgesteld dat tegelijkertijd de best 

passende iso-waarde definieert en de iso-oppervlakte identificeert van de vortexring tussen 

de bestaande vortex iso-oppervlakten. De methode werd kwalitatief en kwantitatief in twee 

cohorten geëvalueerd: een cohort van vierentwintig gezonde vrijwilligers en een cohort van 

drieëntwintig patiënten met aangeboren hartziekte. De resultaten van de uitgevoerde 
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experimenten toonden een uitstekende prestatie aan en een goede overeenkomst met 

geblindeerd gegenereerde grondwaarheid evenals een generaliseerbaarheid van de methode 

wanneer deze toegepast wordt bij uitdagende abnormale vortexringen bij patiënten. Als 

zodanig is de voorgestelde methode een stap voorwaarts in de richting van een objectieve 

automatische 3D vortexringanalyse uit 4D Flow MRI in de klinische praktijk. 

8.2. Discussie en Toekomstperspectief 

De doelstellingen van dit proefschrift die opgesteld zijn in Hoofdstuk 1, zijn 

behaald. Toch kan dit proefschrift als basis dienen voor toekomstig werk. In dit proefschrift 

hebben we 3D vortexringvorming en de evolutie ervan tijdens de gehele diastole 

geïdentificeerd en kwalitatief gekarakteriseerd (Hoofdstuk 2). Echter, 3D 

vortexringkwantificatie (Hoofdstuk 2, 3, 4) en automatische identificatie (Hoofdstuk 6, 7)

zijn hoofdzakelijk beperkt tot piek vroege en piek late vullingsfasen, welke worden 

beschouwd als de momenten rondom de volledige ontwikkeling van de vortexring. Zoals 

echter getoond in Hoofdstuk 2, 3D cardiale vortexstroming is een dynamisch proces dat de 

ontwikkeling, propagatie, interactie met kamerwand en het daaropvolgende verval bevat. 

Deze dynamiek werd niet volledig gekwantificeerd in dit proefschrift. Een mogelijk 

mechanisme van vortexstroming in cardiale (dys-)functie zal eerder duidelijk zijn in het 

vortex evolutieproces. Toekomstig werk zou gericht moeten zijn op het kwantificeren van 

deze evolutie en haar relatie tot de cardiale (dys-)functie. 

De belangrijkste focus van dit proefschrift was de instromende vortexstromingen 

in het LV tijdens diastole en het LA tijdens systole. In principe zijn de vortexidentificatie- 

en energie evaluatiemethoden die in dit proefschrift zijn ontwikkeld (Hoofdstuk 2, 4, 6, 7)

algemeen toepasbaar op de analyse met 4D Flow MRI van andere bloedstromingsgebieden 

in het cardiovasculaire systeem. Een voorbeeld hiervan is weergegeven in Hoofdstuk 5,

waarbij 3D atriale vortexidentificatie succesvol werd uitgevoerd na toepassing van 

methodes en werkwijze die oorspronkelijk ontwikkeld waren voor LV vortexanalyse 

(Hoofdstuk 2). We zijn van plan om in de toekomst de 3D vortex- en energiemethodes die 

in dit proefschrift zijn ontwikkeld, te gebruiken om de analyse naar andere hartkamers uit 

te breiden (rechter ventrikel, rechter atrium), evenals naar de grote slagaders, zoals de 

aorta, en over de volledige hartcyclus. Een dergelijke uitgebreide analyse zou meer 

inzichten kunnen geven in de normale fysiologie van het hart en de mogelijke aansluiting 

of verandering bij cardiovasculaire patiënten. 
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Euleriaanse vortexkernanalyse met behulp van de Lambda2 methode uit de 

stromingsleer was de belangrijkste methode die in dit proefschrift werd gebruikt voor het 

extraheren en het identificeren van instantane 3D vortexkerngebieden uit 4D Flow MRI. 

Een beperking van instantane (Euleriaanse) vortexkernidentificatie methodes is dat in de 

praktijk een drempelwaarde (iso-waarde) moet worden bepaald (voornamelijk handmatig) 

om zinvolle vortexkerngebieden te kunnen identificeren. Het feit dat verschillende 

drempelwaarden kunnen resulteren in verschillende 3D vortexvolumes maakt het uitdagend 

om betrouwbare volumetrische metingen (bijvoorbeeld vortexvolume, totale sterkte of 

totale energie) af te kunnen leiden op basis van dergelijke vortexkernanalyse. Dit wordt 

meer duidelijk wanneer het invoer snelheidsveld kenmerkend ruisig is en een lage resolutie 

heeft zoals het geval is met 4D Flow MRI. Dit is de belangrijkste reden waarom 

volumetrische vortexmetingen grotendeels vermeden zijn in dit proefschrift. 

Een oplossing voor het probleem van de drempelwaardeselectie werd benaderd in 

Hoofdstuk 7, door de automatische identificatie van een passende drempel (iso-waarde). 

Dit zou een stap voorwaarts kunnen zijn in de richting van een objectieve identificatie van 

vortexkernvolume. Er zijn nog steeds studies nodig om de nauwkeurigheid van een 

dergelijke methode voor vortexvolumekwantificatie te evalueren. Aan de andere kant 

kunnen Lagrangiaanse vortex identificatiemethoden, zoals Lagrangian Coherent Structures

(LCS) de kwantificatie van het totale vortexringvolume gedurende een tijdsperiode 

mogelijk maken, maar deze zijn over het algemeen niet bedoeld voor instantane 

vortexstromingsanalyse (dus kunnen er geen vortexvolumes worden gekwantificeerd op 

specifieke tijdstippen). Daarom zijn deze niet direct gericht op het analyseren van de 

evolutie van de instantane vortexstroming. In de toekomst moeten verschillende 

vortexidentificatiemethoden, waaronder Euleriaanse en Lagrangiaanse, worden onderzocht 

op een manier die nauwkeurige en objectieve analyse van de evolutie van de instantane 3D 

vortexstromingsvolumes mogelijk maakt. 

4D Flow MRI is een state-of-the-art beeldvormende techniek voor in-vivo 

stroming en het is de enige modaliteit die toestaat om in-vivo 4D Flow data van alle drie de 

snelheidscomponenten te verkrijgen. Niettemin, 4D Flow MRI heeft een aantal 

beperkingen. Typerend zijn de lange opnametijden (tot 20 minuten) welke de klinische 

haalbaarheid beperken. Echter, de toepassing van recente versnellingstechnieken stelt de 

gebruiker in staat om een meer haalbare opnameduur te verkrijgen (~ 10 minuten als er 

geen respiratoire gating wordt toegepast) en dit zal naar verwachting in de toekomst nog 

verder verbeteren. Gezien de langzame MR opname is het voor 4D Flow MRI vereist om 
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over meerdere hartcycli data op te nemen. Dit resulteert in het voornamelijk verkrijgen van 

een gemiddeld stromingsveld, waarbij turbulente fluctuaties of in potentie hogere orde 

stromingscomponenten zijn gladgestreken. Dit moet in overweging worden genomen bij de 

berekening en / of interpretatie van 4D Flow MRI metingen met inbegrip van 

vortexstroming en energetica. De noodzaak om een passende gevoeligheid van de 

snelheidscodering (VENC) voorafgaand aan de 4D Flow MRI opname heuristisch te 

bepalen om zo mogelijke omvouwingsartefacten te vermijden, kan uitdagend zijn. Het 

verkregen 4D Flow MRI stromingsveld kunnen fouten bevatten in de vorm van 

inductiestromingseffecten in de spoelen, Maxwelltermen, signaalruis en / of 

offsetsnelheden. Deze fouten moeten worden gecorrigeerd met behulp van geschikte 

technieken voorafgaand aan de verwerking / interpretatie van stromingsdata. Lage 

temporele (~ 30-50 ms) en spatiële resoluties (~ 3 × 3 × 3 mm3) van 4D Flow MRI 

begrenzen stromingsanalyse tot de grootschalige stromingsstructuren met een levensduur 

die langer is dan de verworven temporele resolutie. Al deze factoren kunnen de 

betrouwbaarheid van 4D Flow MRI-gebaseerde resultaten en daaropvolgende interpretaties 

beperken. 

Om een betrouwbare en correcte interpretatie van 4D Flow MRI metingen 

mogelijk te maken, is het belangrijk om deze resultaten te evalueren en valideren. Een 

beperkende factor in dergelijke validatie is het ontbreken van een realistische gouden 

standaard (grondwaarheid) van de in-vivo humane cardiovasculaire stroming in het 

algemeen, en vortexstroming en energetica in het bijzonder. Beschikbare 

fantoomtechnieken zijn niet in staat om een dergelijke realistische gouden standaard te 

leveren. Een manier om dit probleem in toekomstige studies aan te pakken zou kunnen zijn 

om te profiteren van de vooruitgang in computational fluid dynamics (CFD), door hybride 

CFD-4D Flow MRI computationele systemen te bouwen die realistische in-vivo 

stromingsveldmetingen (niet enkel de geometrie) opleggen uit 4D Flow MRI, om een hoge 

resolutie, beter controleerbare en robuuste CFD simulaties te begeleiden naar een 

realistisch hoge resolutie model van het menselijk cardiaal stromingsgebied. 

Hoewel veel studies hebben gespeculeerd over een rol die 

vortexstromingsformatie speelt in de optimalisatie van de hartfunctie en / of de verbinding 

die het heeft met hartafwijkingen, ontbreekt het aan studies waarin dergelijke aannames in-

vivo worden geëvalueerd in een juist en volledig stromingsveld. Met behulp van 4D Flow 

MRI stromingsvelden hebben we in Hoofdstuk 4 de eerder gespeculeerde maar niet-

geverifieerde rol van vortexstroming op de minimalisatie van energieverlies in-vivo 



147

geëvalueerd en bevestigd. Meer (vervolg-)studies van verschillende groepen hartpatiënten 

zijn er nodig om het verband tussen vortexstromingspatronen en cardiale (dys-)functie te 

verkrijgen en om te bepalen of vortexstroming als biomarker kan dienen of dat het slechts 

een bijproduct is van andere factoren. In feite is de normale cardiale hemodynamica 

grotendeels onontdekt en daarom nog grotendeels onbekend. Terwijl momenteel onderschat 

in de gemeenschap, is het essentieel om meer studies uit te voeren die gericht zijn op het 

onthullen, op een alomvattend niveau, van de normale hemodynamica van het 

cardiovasculaire systeem voordat evaluaties in patiënten kunnen worden gestart. 

Dit proefschrift toont de mogelijkheden aan van 3D/4D vortexstromingsanalyse en 

viskeuze energieverliesmetingen uit 4D Flow MRI in het onthullen en evalueren van in-

vivo intra-cardiale hemodynamiek. Het is cruciaal om de betrouwbaarheid en 

reproduceerbaarheid van zulke metingen en analyses te garanderen om zo duidelijke 

klinische interpretaties mogelijk te maken. Een hoogwaardige vortexstromingsanalyse moet 

toegankelijk zijn voor klinisch personeel met minimale noodzaak voor technische 

achtergrond. Een belangrijk mechanisme om dit te bereiken zou zijn het blijven 

ontwikkelen van automatische betrouwbare systemen voor de identificatie en kwantificatie 

van cardiale hemodynamica in het algemeen en vortexstroming en energetica in het 

bijzonder uit 4D Flow MRI. 
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