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1 Introduction

1.1 Preface

In the last few decades, a major part of the field of condensed matter
physics is the exploration, classification, prediction and experimental
realization of topological insulators and superconductors (which, per-
haps counter-intuitively, can be treated very similarly; this is because
superconductors are thermal insulators). Such materials are indistin-
guishable from “normal” (or trivial) insulators or superconductors in
local bulk properties like density of states or electrical and thermal
conductivity, but are still different from normal states in a manner
that disallows a transition from topological to trivial without going
through a topological phase transition, during which the material loses
its insulating property.75,143

A principle called bulk-boundary correspondence implies that a bound-
ary between two different topological phases hosts robust edge states,
often with very peculiar properties, like absence of backscattering or
dephasing, or non-Abelian exchange statistics. These properties have
been recognized to have potential applications in quantum computing,
both as memory and for the implementation of quantum gates.131

Since then, a lot of experimental effort was put in the realization and
manipulation of materials with topological phases, but the materials
shown to have such properties are rather sparse.

In search for new experimental handles to engineer the topological
properties of a material, the possibility of periodic external driving was
proposed,116 which was shown to induce a topological band structure in
an initially trivial semiconductor. When periodical driving is introduced
to a quantum system, the so-called Floquet theory is usually employed, so
that this new type of topological insulators are called Floquet topological
insulators.

A model that captures the essential difference between insulators and
Floquet insulators is the so-called quantum walk, a quantum-mechanical
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1 Introduction

analogue to the random walk. Just like the classical random walk, the
quantum walk evolves in discrete time steps, so that the effect of the
external driving is represented by the subsequent application of time-
step evolution operators. It turns out that the family of quantum walks
are rich enough to implement relatively simple models with non-trivial
phase diagram for all different possible symmetry classes.101 Quantum
walks thus can serve as a platform to study the different topological
phases of Floquet topological insulators.

Besides their topological properties, quantum walks have also gained
a lot of popularity in the design of quantum algorithms.91,175 As many
classical algorithms can be understood as a (more or less) random walk
on a decision graph, the “quantization” of that random walk may lead
to a quantum algorithm for the same problem, often achieving close to
optimal quantum speed-up.

In the next three chapters of this thesis, we study the properties of
Floquet topological insulators by the help of quantum walks. In the
chapter thereafter, we present a related but slightly different study: We
consider the time-dependent transition of a (non-Floquet) topological
Josephson junction and its relaxation to the new ground state. The final
chapter is devoted to the experimental study of the spin-orbit interaction
in nanowires of indium antimonide, which are the central building block
in one of the most promising experimental approaches to manufacture a
one-dimensional topological superconductor.128

In the rest of this introduction, we outline a few basic ideas that are
used heavily in this thesis, especially the next three chapters, introduc-
ing most of the key concepts highlighted above, including the Floquet
theory, basic properties of quantum walks, the idea of band topology and
the resulting bulk-boundary correspondence, and a connection between
a quantum walk-based algorithm and band topology. We conclude with
a more detailed summary of the subsequent chapters of this thesis.

1.2 Floquet formalism
Periodically driven systems Most chapters in this thesis are concerned
with non-interacting single quantum particles whose time evolution is
governed by explicitly time-dependent Hamiltonians. Especially, we
consider a time evolution where the system is subject to a periodic
driving, so that the Hamiltonian is explicitly dependent on time and
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1.2 Floquet formalism

obeys

H(t)= H(t+T) (1.1)

for some fixed period T.
The energy of such systems is not conserved and it is not possible to

reduce the Schrödinger equation to the stationary Schrödinger equation.
However, the situation is essentially equivalent to the situation of a
particle in a periodic potential, implying broken translational invariance
in space, which can be tackled by the well-known Bloch theorem. Here,
similar ideas can be applied, replacing space with time. The resulting
theory is referred to as the Floquet theory of periodically driven systems.

The Floquet operator The basic element of Floquet theory is the unitary
Floquet operator F, which is the time evolution operator of the system
over one period. It can thus be found as the solution of the Schrödinger
equation for the time-evolution operator

i d
dtU(t, t0)= H(t)U(t, t0), (1.2)

U(t0, t0)= 1, (1.3)

evaluated after one period:

Ft0 =U(t0 +T, t0). (1.4)

One can write the solution formally as

Ft0 =Texp
(
−i

∫ t0+T

t0

H(t)dt
)
, (1.5)

where T refers to time ordering.
It is important to note that the Floquet operator depends on the choice

of t0. However, different choices are related by a unitary transformation:

Ft1 =U(t1, t0)Ft0U(t0, t1). (1.6)

We will refer to the choice of t0 as the choice of a time frame for the
Floquet operator. It is analogous to the choice of a unit cell for a lattice
in the Bloch theory.

3



1 Introduction

Quasienergy and effective Hamiltonian In analogy with the Bloch the-
orem, it can then be shown that any solution of the time-dependent
Schrödinger equation can be written as a superposition of solutions that
are eigenfunctions of the Floquet operator. Such solutions can be written
as

ψε(t)= e−iεtuε(t), (1.7)

where e−iεT is an eigenvalue of F, and uε(t) is a function with period T.
If one considers the function ψε(t) only at integer multiples of T, its

time dependence resembles that of a wave function with energy ε. It is
thus said to have quasi-energy ε. For time scales much larger than T,
the evolution of a wave function is the same as that of a system governed
by a stationary Schrödinger equation with the effective Hamiltonian

Heff =
i
T

log(Ft0 ). (1.8)

Because of the transformation Eq. (1.6), the spectrum of Heff does not
depend on the choice of t0, but the eigenfunctions uε(t) do.

Finally, we note that all quasienergies ε can be chosen to lie in the
interval

[− π
T , πT

]
(corresponding to the selection of the principle branch

of the logarithm) and should be considered periodic on that interval.
This is again in analogy with spatially periodic systems, and in fact this
interval is sometimes referred to as the quasienergy Brillouin zone.

1.3 Random walks and quantum walks
Random walks A classical random walk is a random process of a walker
on a one-dimensional lattice with lattice sites labeled by x ∈Z. The walk
consists of an integer number of steps, during each of which the walker
either walks to the right with probability p, or to the left with probability
1− p. We refer to the position of the walker after t steps as X t.

For the probability distribution after t steps, ρ(x, t)=Pr(X t = x), one
thus obtains the recursion relation

ρ(x, t+1)= pρ(x−1, t)+ (1− p)ρ(x+1, t). (1.9)

For the walker starting at site x = 0, the solution is well-known to be the
binomial distribution

ρ(x, t)=
{( t

(x+t)/2
)
p(x+t)/2(1− p)(x−t)/2 if x+ t even,

0 otherwise.
(1.10)

4



1.3 Random walks and quantum walks

Quantum random walks One of the basic assumptions of quantum
theory is that the result of a measurement is a random process. We
can thus implement a classical random walk by using quantum me-
chanics: We consider a quantum mechanical particle (the walker) on
a one-dimensional lattice, whose state space is spanned by {|x〉 , x ∈Z},
together with a coin, whose state space is spanned by the two states
{|+〉 , |−〉} (corresponding to “heads” and “tails”). Any state of the total
system is thus given by a two component wave function ψ(x)= (u(x),v(x))
by the expansion

|ψ〉 =∑
x

u(x) |x〉 |+〉+v(x) |x〉 |−〉 . (1.11)

Instead of referring to the two systems as walker and coin, we appeal
to a physicist’s intuition by regarding ψ as the wave function of a spin-
1/2 particle on a lattice. Correspondingly, the two coin states will also
often be referred to as “spin-up” and “spin-down” (instead of “heads” and
“tails”).

Assume now that the system starts out in the state |ψ0〉 = |x = 0〉 |+〉.
We then apply the following operations: We first “flip” the coin by apply-
ing a rotation of the spin:

Rθ

(
u(x)
v(x)

)
=

(
cosθ −sinθ
sinθ cosθ

)(
u(x)
v(x)

)
= e−iθσy

(
u(x)
v(x)

)
, (1.12)

where here and in the rest of the introduction, we use ~σ= (
σx,σy,σz

)
to

denote the vector of Pauli matrices in the {|+〉 , |−〉} basis of the coin.
After the rotation, we apply a spin-dependent translation operator S,

defined by:

S
(
u(x)
v(x)

)
=

(
u(x−1)
v(x+1)

)
, (1.13)

which moves the spin-up component of the wave function to the right and
the spin-down component to the left. If we now perform a measurement
of the position of the walker, the walker will have performed a random
walk step, having moved to the right with probability p = cos2θ, and
to the left with probability 1− p = sin2θ. A balanced random walk is
obtained when choosing θ =π/4. In order to perform another step, the
coin must be reinitialized to |+〉.
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1 Introduction

The simple quantum walk The idea of a quantum walk is repeating the
two steps of rotation and spin-dependent shift without the intermediate
measurement.91 Because measurement is the only source of classical
randomness in the previous description, it has become customary to
omit the term random from the name.

A quantum walk in this basic form we can thus consider as a protocol
for the time evolution of a spin- 1

2 particle on a one-dimensional lattice,
obtained by application of two unitary operations in alternation. The
time evolution of the system is thus given only in discrete steps, unlike
systems whose time evolution is defined by a Hamiltonian.

In a sense, quantum walks can be considered as a simplified “lattice
model” for periodically driven systems, restricting the wave functions to
only a finite lattice in time (with two points per period T in this case),
in a similar manner as tight-binding models are simplified models for
systems in a periodic potential.

The time evolution of the simple quantum walk during a whole cycle
is thus given by

ψ(t)= Fψ(t−1)= F tψ(t = 0), (1.14)

F = SRθ.

where we choose the units of time so that the period is T = 1.
In order to distinguish this time evolution from generalizations of this

idea (see below), we refer to this time evolution as the simple quantum
walk with rotation angle θ.

Choice of time frame As discussed before, the quasienergy spectrum
of a time evolution like Eq. (1.14) is defined unambiguously. The cor-
responding eigenfunctions, however, are not: As for the general case
of Floquet system, there is a freedom of choice for F, corresponding to
different time frames. However, while for Floquet systems governed by
a time-dependent Hamiltonian H(t) we obtain a family of Floquet oper-
ators Ft, t ∈ [0,T], for the quantum walk the choice is limited because
time evolution is only defined in discrete steps: The two choices for the
simple quantum walk are F1 = SRθ and F2 = RθS.

By breaking the time evolution operator in slightly smaller pieces,
more choices are possible. Considering the rotation as the product of
smaller rotations, we can write the same time evolution as repeated
application of F3 = Rθ/2SRθ/2. By splitting the shift operator in two

6



1.3 Random walks and quantum walks

commuting operators S = S+S−, where each of the two only shifts one
spin species while leaving the other in place, we can also choose F4 =
S+RS−. The two latter choices for F are of special relevance as they
imply additional symmetries on the eigenfunctions, which is play a role
in Chapters 2, 3 and 4.

The Galton board There is an illustrative device to demonstrate the
idea of a classical random walk, called the Galton board (also known as
a quincunx, or bean machine), which consist of a board with interleaved
rows of pins, arranged in a diagonal lattice (the term quincunx actually
refers to the arrangement of five dots as on the five-side of a regular
game die: , which is the arrangement repeated to form the lattice
of pins on the Galton board, see Fig. 1.1). If a stream of irregular
shaped objects (beans) is flowing through this arrangement, the objects
will pass one pin of each row either on the left or the right, with a
very high sensitivity to the precise conditions, so essentially with equal
probability, p = 1/2. If the object are collected in bins after t rows, one
obtains a histogram of samples from the probability distribution ρ(x, t).
The vertical axis thus represents time in this experiment.

The optical Galton board An analogous implementation of the quantum
walk is obtained by replacing the beans with a monochromatic beam
of light, and the pins with semi-transparent mirrors, so-called beam
splitters. The amplitudes of two incoming wave fronts (u,v) at 45-degree
angles from both sides is related to the outgoing wave fronts at 45-degree
angles (u′,v′) by the scattering matrix(

u′
v′

)
=

(
cosθ −sinθ
sinθ cosθ

)(
u
v

)
, (1.15)

where we took the liberty to define the phase of the incoming and
outgoing modes so that this matrix is real. The angle θ is given by the
reflectivity of the beam splitter. If we arrange an array of identical
beam splitters in the same manner, an incident beam on one of the
first rows in the array will propagate through the lattice, performing
a simple quantum walk. The state of the coin is encoded in horizontal
component of the wave vector. The beam splitters perform the action of
the coin operator R, while the free propagation in the space between the
beam splitters leads to the shift operator S. Detecting the intensity of

7



1 Introduction

u v

u'v'

monochromatic 
light sourcebeam splitters

ti
m

e

position

beans

Galton board Optical Galton board
position

Figure 1.1: Left: The Galton board consists of pins through which beans are falling, performing a
classical random walk. The number of rows of pins corresponds to the number of time steps taken in
the walk. Right: In the optical Galton board, the beans are replaced by a monochromatic beam and the
pins by beam splitters. Beams propagating to the right are considered spin-up and left-propagating
beams spin-down. The mixing of the two species happens at the beam splitters, which corresponds to
a rotation Rθ , while diagonal propagation in the space between the beam splitters corresponds to a
spin-dependent shift. In a “balanced” quantum walk with half-transparent mirrors, one has θ =±π/4
or θ =±3π/4.

the partial beams after n rows of beam splitters will thus result in the
probability distributions (|u(x)|2 , |v(x)|2) of the corresponding quantum
walk. By interference measurements, one could even recover the phases,
and thus obtain the function ψ(x, t).

One might argue that this construction shows that in fact the quantum
walk does not even deserve the name “quantum”, as it can be imple-
mented using classical waves. However, it must be understood that both
of the experiments presented here for the classical and quantum walk
only serve as an illustration of the corresponding processes and are by
no means an efficient implementation of either, given that the size of the
physical system is proportional to the square of the number of steps. In
contrast, an efficient simulation of the classical quantum walk, on a clas-
sical computer, say, only requires log2(n) physical objects (bits) to hold
the position of the walker, and similarly, an efficient implementation of
the quantum walk only requires log2(n) qubits.

Differences between random walk and quantum walk Even though the
construction in the previous paragraphs suggests similarities between

8



1.3 Random walks and quantum walks

pr
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ty

position x

quantum walk
random walk
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quasimomentum k

Figure 1.2: Left: Comparison of a classical random walker starting at the origin and a simple quan-
tum walker with θ = π/4 and initial state |ψ0〉 = |x = 0〉 |+〉, after t = 100 steps. We show the probabil-
ity density ρ(x) for the classical walker, and the probability distribution for a position measurement
ρ(x) = |u(x)|2 + |v(x)|2 for the quantum walk. For both walks, we only show the probability at even
lattice sites, for odd lattice sites the probability is zero. Right: The quasienergy band structure of the
same quantum walk. The maximum propagation speed is vmax =±p2, and the gap in the spectrum is
given by ∆= |θ|.

classical random walks and quantum walks, it turns out that the two
behave quite differently. To illustrate the difference, we consider the
spread of the probability amplitude of a particle that starts out on a
single site with spin up, |ψ0〉 = |x = 0〉 |+〉. We choose the rotation angle
θ = π/4. Fig. 1.2 shows the square of the probability amplitude after
n = 100 steps, compared to the probability distribution of a classical
random walker starting at x = 0, which is ρ(x, t = 100).

While for the random walk we obtain the familiar bell-shaped dis-
tribution of width

p
t, the quantum walk results in a relatively flat

distribution, featuring oscillations, and terminated by two peaks at
around ±t/

p
2.

The long time behavior of the quantum walk Eq. (1.14) can be under-
stood by considering its Floquet operator and corresponding quasienergy
spectrum. Because this system is translational invariant, we can per-
form a Fourier transformation in space:

ψ(x, t)=
∫ 2π

0

dk
2π

eikxψ(k, t). (1.16)

In this basis, the shift operator S preserves k and can be written as

S(k)= exp(iσzk). (1.17)

We thus can calculate and diagonalize the Floquet operator in spin
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1 Introduction

space.101 The result can be expressed as

F(k)= SRθ = exp(−iεk n̂k ·~σ), (1.18)

and the corresponding effective Hamiltonian is thus given by

Heff = εk n̂k ·~σ. (1.19)

In this expression, the quasienergies εk is given by (see Fig. 1.2)

εk =±arccos(coskcosθ) . (1.20)

This spectrum can be used to discuss the long-time behavior of a wave
packet97: A stationary-phase approximation of a wave function that con-
tains contribution from all k (as a very localized initial conditions does,
by Heisenberg’s uncertainty relation), will have most of its contribution
at ±vmax, which for θ =π/4 is given by vmax =

p
2/2. Besides the ballistic

spread, the other striking difference between the two distributions in
Fig. 1.2 is the asymmetry of the quantum walk. It is a consequence of
the asymmetry of the initial condition |+〉, together with the fact that
the quantum walk is not “random”, i.e. Markovian, and does retain
information about its past indefinitely, due to its unitary evolution. The
fact that the |+〉 state is asymmetric becomes clear in Fig. 1.1, where
the initial spin is given by the direction of the initial beam.

1.4 Generalizations and related concepts
Above, we described the simplest version of the quantum walk, consist-
ing of a shift and a rotation. Since, a plethora of generalizations have
been considered.

A generalization in one dimension is to split the shift operator S in
two operators S = S+S− which only shift one spin component, leaving
the other in place:

S+
(
u(x)
v(x)

)
=

(
u(x−1)

v(x)

)
, S−

(
u(x)
v(x)

)
=

(
u(x)

v(x+1)

)
. (1.21)

Additionally, a longer sequence of different rotations can be applied.
This leads to the family of split-step quantum walks14,101 with Floquet
operators given by

F = SnRθn · · ·S2Rθ2 S1Rθ1 , (1.22)

10



1.5 Band topology

where Sn ∈ {S+,S−} and each θn ∈ [0,2π]. These one-dimensional walks
are the main subject of study in Chapters 2, and time-dependent Hamil-
tonians with similar properties are studied in Chapter 3.

Generalizations to higher dimensions have also been studied.54,101 A
common approach is to introduce shift operators that perform the spin-
dependent shift along a selected axis and applies these alternatingly.

Another generalization (in one or more dimensions) is the introduction
of a coin space of higher dimension. The shift operator then typically
shifts two perpendicular subspace in opposite directions. This approach
is used in Chapter 2 to obtain a quantum walk with additional symme-
tries.

In fact, there are generalizations of the idea of a quantum walk to
arbitrary graphs.60 A similar approach,168 which is used in the design of
quantum algorithms, establishes a one-to-one correspondence between
random walks (Markov processes) on any graph and a “quantized” walk
on the same graph. Unlike described here, this approach is based on
reflections as the basic building block, not rotations. Still, under this
paradigm, the random walk on a line and the simple quantum walk
described above are indeed mapped to each other.*

Yet another modification of the quantum walk, which was considered
especially in the context of the optical Galton board implementation, is
the addition of non-linear operator to the time-evolution.130 A modifica-
tion of this nature is investigated in Chapter 4.

1.5 Band topology
In this thesis, we are mostly concerned with the topological properties of
the band structure of quantum walks. Before we consider the peculiari-
ties occurring in quantum walks and driven system, we quickly review
the idea of topological band structures. We restrict our attention to
non-interacting systems and focus mainly on one-dimensional systems.

The general idea is that a band is a periodic and continuous map from
the toric Brillouin zone to the set of eigenfunctions (mathematically,
elements of CPn).† For one-dimensional two-band models like the simple

*Because any rotation can be written as a product of two reflections, quantum walks
with rotations and quantum walks with reflections are very similar in any case.

†This means that eigenfunctions are only defined up to a phase. This is important,
because in general, one cannot make a continuous choice of phase for all k.

11



1 Introduction

quantum walk, it is the map from the unit circle of quasimomenta to
spinors, which can be imagined on the surface of the Bloch sphere. The
spin structure of a band can thus be envisioned as a closed path on the
surface of a sphere.

Under certain conditions, mappings can be different from each other
topologically, meaning that it is impossible to continuously deform one
mapping into the other. For closed curves on the Bloch sphere, however,
no such distinction exists: All paths on the unit sphere can be smoothly
deformed into a point, and thus also into each other.

Winding of a chiral Hamiltonian This situation can change, however,
when additional constraints are present. For instance, consider a tight-
binding Hamiltonian on a bipartite lattice with no on-site energies. This
means that the lattice can be divided into two sublattices A and B, and
the Hamiltonian only has finite elements between the two. We can then
write the Hamiltonian as

H =
(

0 H̃†

H̃ 0

)
, (1.23)

where the subblocks of the Hamiltonian correspond to the A and B
sublattice. The subblock H̃ still is a matrix in position basis (ignoring
for now possible further sub-structure such as spin). The structure of
this Hamiltonian can be described as

σzHσz =−H, (1.24)

where σz is acting on the A/B blocks. A symmetry of this sort is referred
to as chiral symmetry.*

We now consider the translationally invariant case, were bands can
form. We write the same Hamiltonian in momentum basis:

H(k)= hx(k)σx +hy(k)σy =
(

0 h∗(k)
h(k) 0

)
. (1.25)

Then, the spinors are restricted to the equator on the Bloch sphere, as
long as h(k) 6= 0. The path associated with each band will traverse this

*This term is borrowed from elementary particle physics, where its occurrence in a
Hamiltonian actually is related to the handedness of the corresponding particles. Here,
the term is used because of the similar mathematical structure. For an overview over the
history of the different uses of this term, we refer to the introductory chapter of Ref. 49

12



1.5 Band topology

circle an integer number of times, and no deformation subject to the
chiral symmetry restriction can change this; furthermore there even is
a sense of orientation to this winding. For the underlying Hamiltonian,
its two bands will preserve this distinction as long as the bands are
separate, i.e. the gap does not close, h(k) 6= 0.

To capture this idea in mathematical terms, note that an eigen-
vector ξk = (u(k),v(k)) of the Hamiltonian (1.25) will always satisfy
|v(k)/u(k)|2 = 1, (the stereographic projection of the equator of the Bloch
sphere is the unit circle). Thus, we can write the integral

ν=
∫

dk
2πi

∂k log(v(k)/u(k)), (1.26)

which, according to the Cauchy integral theorem, will give the number
of times v/u winds around the origin, or equivalently (by stereographic
projection), how often ξk winds around the north-south axis of the
Bloch sphere. In this two-band example, the other band is given by
ξ̄k = (uk,−vk), and has the same winding number. Because v/u = h/ |h|,
the winding can also be found directly from the Hamiltonian:

ν= 1
2πi

∮
dh
h

=
∫

dk
2πi

∂k log(h(k)), (1.27)

Symmetry classes In one dimension, topological distinction of bands
can thus only occur under the assumption of symmetries. These symme-
tries are assumed to act locally: We require that they only act on the spin
subspace.* Usual unitary symmetries which commute with the Hamil-
tonian are generally not of interest, they only lead to decoupled blocks
of the Hamiltonian which can be considered individually. But there are
other symmetries, which anticommute with the Hamiltonian, or are
antiunitary. That leaves three possibilities: Time-reversal symmetry T
(antiunitary, anticommuting), particle-hole symmetry P (antiunitary,
commuting), and chiral symmetry Γ (unitary, anticommuting).9,150 The
antiunitary symmetries can either square to 1 or −1, and the presence of
two of such symmetries dictates the presence of the third;† this results

*In some systems, like graphene, a chiral symmetry emerges due to a sublattice
symmetry. Then, the chiral symmetry operator involves two neighboring sublattice sites,
and thus is only “almost” local.

†Also, not more than one of each of the symmetries can be present. E.g. if there
are two time-reversal symmetries T1 and T2, then T1T2 is a unitary symmetry of the
Hamiltonian, which we excluded.
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1 Introduction

in the existence of ten different symmetry classes, of which five turn out
to allow topological distinctions in one dimension. Chapter 2 considers
all of these, while in the rest of the introduction, we only consider classes
AIII and BDI (see below) as examples.

Finally, we remark that the names of the symmetry operators hint to
certain physical mechanism that ensure them. However, in this thesis,
most models are rather artificial, so that the names of the symme-
tries should be considered historical, and their mathematical properties
should be taken as their definition independent of their origin.

Consider the Hamiltonian Eq. (1.25). It can have all three symmetries:
It will always have a chiral symmetry represented by the operator
Γ=σz:

σzH(k)=−H(k)σz. (1.28)

If this is the only present symmetry, the Hamiltonian is said to belong
to symmetry class AIII. If furthermore, h(k)= h∗(−k), the system also
has a particle-hole symmetry P = K , which is complex conjugation in
position basis:

H∗(−k)= H(k). (1.29)

Note that complex conjugation in position basis involves k → −k in
momentum basis. This particle-hole symmetry operator P is of the
kind P2 = 1. Furthermore, because Γ and P are present, then also
T = ΓP = σzK is a time-reversal symmetry of the system, and in this
case is of type T2 = 1. This class is referred to as BDI and as we will see
shortly, the simple quantum walk belongs to this class.

However, so far, we have discussed the symmetries and band topol-
ogy of time-independent Hamiltonians. The same classification can
be applied to the quasienergy bands of a Floquet system, but the role
of the symmetries has to be carefully re-evaluated: Firstly, it is not
immediately clear how the presence of a discrete symmetry in the ef-
fective Hamiltonian is caused by certain symmetries in the underlying
time-dependent Hamiltonian. Secondly, even if such a symmetry exists,
because the eigenfunctions depend on the choice of the time frame, the
symmetries and corresponding topological numbers may also depend on
the time frame. This allows for a somewhat richer classification scheme
of the topology of driven systems and is the main subject of investigation
in Chapters 2 and 3.

14



1.5 Band topology

Symmetry and topology of the simple quantum walk To illustrate these
points, we discuss the topological properties of the simple quantum walk.
The Floquet operator is given by

F = Se−iθσy (1.30)

As we can check immediately, the effective Hamiltonian has a particle-
hole symmetry P = K , as can be seen from

F∗ = F, (1.31)

because S is real in position basis (it only has matrix elements 0 and 1).
It follows that

H∗
eff =−Heff. (1.32)

It turns out that the same system also has a chiral symmetry.14,14,101

However, in the effective Hamiltonian presented above, it is “hidden”.
Namely, when changing the time frame to

F = Rθ/2SRθ/2, (1.33)

we can see by a quick calculation that

σxFσx = F−1 ⇒ σxHeffσx =−Heff, (1.34)

so that chiral symmetry is given by Γ=σx. Particle-hole symmetry is
still given by K ; consequently, a time-reversal symmetry is also present.
The symmetry class this effective Hamiltonian thus is BDI, and by a
simple change of basis, we could write it in the form of Eq. (1.25).

The winding number of this effective Hamiltonian can be found by
direct calculation, and turns out to be ν= sgnθ.*

If we try to find the “hidden symmetry” in the original time frame,
we can use the fact that time frames are connected by unitary transfor-
mations. We can reconstruct the action of Γ = σx and find the “chiral
symmetry operator” in the original basis: Γ= R−θ/2σxRθ/2. This operator
is not a useful symmetry operator: It explicitly contains the parame-
ter θ, and thus it is not sensible to compare the winding numbers of

*The sign is actually not well-defined, as it depends on the basis transformation used
to bring Heff to a standard form. For discussion of this matter we refer to the appendix of
Chapter 2.
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Hamiltonians with different values of θ, furthermore, adding any in-
homogeneities or disorder to θ seems to break it. In the symmetrized
time frame Eq.(1.33), however, these problems to not apply. We thus say
that the simple quantum walk belongs to symmetry class BDI because
there exists one time frame in which the effective Hamiltonian has the
required symmetries.

Finally, we note that in the second symmetrized time frame mentioned
above, namely F = S+RS−, the same chiral symmetry Γ=σx holds; the
winding number in this time frame however is always ν= 0, independent
of θ. We thus see that the choice of time frame is relevant.

1.6 Bulk-boundary correspondence
The most interesting consequence of band topology occurs when two
large (so that bands can form) systems are interfaced at a common
boundary. The general principle of the bulk-boundary correspondence
predicts that at such an interface, bound states of a certain type must
always exists even when both systems have no extended states at that
energy and the topological number is different for both systems.

In general, the features of such bound states depend on the dimension-
ality of the problem and on the symmetries involved. In one dimension,
such bound states are located precisely at zero energy (which is a special
energy, because it is singled out by chiral or particle-hole symmetry).
These states, often called Majorana zero modes, have been the subject
to much interest recently for their robustness: not only is their presence
guaranteed independent of the details of the boundary, and also not
destroyed by the presence of disorder, but additionally their energy is
pinned to a fixed value. This topological protection makes these states
interesting for use as storage of quantum information (qubits).

The bulk-boundary correspondence in one-dimensional chiral systems
Because the later chapters make much use of the bulk boundary corre-
spondence, we shall sketch here, as an example, how the bulk-boundary
correspondence emerges for two-band Hamiltonians with chiral sym-
metry. We consider a setup where the lattice is divided into two bulk
domains A and B, in which the Hamiltonian is constant in space, with
different parameters, so that it can be described by two translationally
invariant Hamiltonians HA,B(k). In between, in the boundary region,
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x x = 0

θ

domain A domain B

p(x)

0

1

θA

θB

Figure 1.3: At a domain boundary, the Hamiltonian, parametrized by the parameter θ, varies be-
tween two different values θA and θB , and is translationally invariant in the two bulk domains. If the
two Hamiltonians are topologically different, protected zero modes are expected in the region where
the function p(x) is finite, which is the essence of the bulk-boundary correspondence.

the Hamiltonian interpolates between the two domains in an arbitrary
way (see Fig. 1.3), with the restriction, however, that the Hamiltonian of
the total system still obeys the chiral symmetry, so that we can write it
as:

H =
(
0 h†

h 0

)
, (1.35)

where h is a matrix acting on position space only, and its matrix elements
hxx′ are local: We require that hxx′ decays exponentially as |x− x′|→∞,
and that h is approaches translational invariance deep in the domains.

The flat-band Hamiltonian The object of consideration now is a de-
formed version of H, the flat-band Hamiltonian Q, given by

Q = signH, (1.36)

which is obtained by deforming all positive eigenvalues of H to +1 and
all negative eigenvectors to −1, and leaving zero eigenvalues at zero. For
the bulk Hamiltonians, this corresponds to rectifying the loop h(k) to lie
on the unit circle, h(k) → q(k) = h(k)/ |h(k)|, which does not change its
winding number. We thus can write the operator for the setup including
the boundary as

Q =
(
0 q†

q 0

)
, (1.37)

17



1 Introduction

where the operator q acts on space only. A crucial important property of
Q, which we shall not prove here, is that, like H, its matrix elements
decay in real space exponentially, i.e. qxx′ = O(e−ξ|x−x′|) as |x− x′| →∞
for some decay length ξ.*

Consider now an eigenfunction ψ= (u,v) of Q with eigenvalue ±1:

qu =±v, q†v =±u. (1.38)

Then,

q†qu = u, qq†v = v (1.39)

And thus, u is an eigenvector of q†q while v is an eigenvector of qq†,
both with eigenvalue 1.

Eigenfunctions of Q with eigenvalue 0, on the other hand, can be
chosen to have either v = 0 or u = 0, and thus are eigenfunctions of the
chiral operator σz at the same time. We thus distinguish zero modes by
their chirality n, σzψ= nψ, where n =±1.

Counting the zero modes We can thus write down the total chirality,
i.e. the sum of the chiralities of all the zero modes of Q, as

n = dimker q†q−dimker qq† (1.40)

(dimker denotes the dimension of the kernel, in other words, the number
of linearly independent zero eigenfunctions) and because we just saw
that the eigenvalues of qq† and q†q only take values 0,1, this can be
expressed as traces:

n = tr(1− q†q)− tr(1− qq†)= tr(qq† − q†q). (1.41)

Only zero modes of Q contribute to exactly one of the two traces, depend-
ing on the chirality. We immediately see that in any finite system (i.e.
with periodic boundary conditions), the total chirality n = 0, by cyclic
invariance of the trace. For the infinite line, the mathematical situation
is more complicated and the result can be finite.142

*In fact, an algebraic decay |x− x′|α with α<−1 is sufficient 95; but fast decay often
holds and makes for somewhat easier intuition of the proof.
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1.6 Bulk-boundary correspondence

Zero modes in a region We can modify the formula to count only those
zero modes that have support in the boundary region. For that, we
introduce the operator

P =∑
x

px |x〉〈x| , (1.42)

where (see Fig. 1.3)

px =
{

1 close the boundary region
→ 0 as |x|À ξ, far in the domains.

(1.43)

This allows us to define the chirality of that region as

n = tr(qq† − q†q)P. (1.44)

The effect of the operator P is that eigenfunctions of Q only contribute
according to their weight in the region where px is finite, so that zero
modes in the region where px = 0 are not counted.

In position space we can then write

n =∑
xx′

(
q∗

x′xqx′x − q∗
xx′ qxx′

)
px′ =

∑
xy

q∗
x+y,xqx+y,x

(
px+y − px

)
, (1.45)

and because qx+y,x decays, there is no contribution for large y. This
means that there is no contribution for x close to the boundary, because
px − px+y = 1−1 = 0 for small y, We only get contributions where p
varies, which is in the bulk. This allows us to obtain an expression
which only involves the bulk Hamiltonians and is independent of the
exact properties of the boundary.

In the bulks, q is translationally invariant, and we can write qxx′ =
qA,x−x′ where p varies from zero to one, and qxx′ = qB,x−x′ where p
varies back to zero. Then we can write*

n =∑
xy

q∗
x+y,xqx+y,x

(
px+y − px

)=∑
y

yq∗
A,yqA,y −

∑
y

yq∗
B,yqB,y. (1.46)

*We used the following telescoping formulas:∑
x¿0

px − px+1 = p−∞− p0 =−1, thus
∑

x¿0
px − px+y =−y.

for all not too large y; and a similar expression for x > 0. The fact that we then can also
extend the sum over y to infinity requires the decay of q.
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Using the Fourier transform qA/B,y =
∫

qA/B,k eiky(dk/2π), we can finally
write this as n = νB −νA , where

νA/B =−∑
y

yqA/B,yq∗
A/B,y =−i

∫
dk
2π

q∗
A/B,k∂k qA/B,k, (1.47)

which is the winding number of q(k), and thus h(k) defined in Eq. (1.27)
Thus we conclude that if the winding number of q(k), and thus of h(k),
changes by δν across a domain boundary, the total chirality of the states
in the boundary is indeed given by δν, and especially, the number of
zero modes in the boundary is at least |δν|.

Bulk-boundary correspondence in Floquet systems The bulk-boundary
correspondence also applies to effective Hamiltonians, but is not suffi-
cient. The crucial difference is the definition of Q: While for stationary
Hamiltonians, the sign function is defined unambiguously, effective
Hamiltonians are defined only up to multiples of 2π, which makes the
distinction arbitrary. This also leads to the possibility of bound states
at quasienergy ε = π = −π which are protected by symmetry (e.g. in
class BDI as discussed above, they can carry chirality). In fact, Floquet
systems have been found where the classification of the effective Hamil-
tonian predicts no bound states, while numerical or optical simulations
show protected edge modes.99,149

How to classify the topology of driven systems beyond the bands of an
effective Hamiltonian has been the subject of a lot of recent research
and is addressed in Chapters 2 and 3 in this thesis.

1.7 Quantum algorithms
The idea of quantum walks have been generalized to arbitrary bipartite
graphs (or in fact any graph, using its bipartite double cover)168, which
allows the design of quantum algorithms that solves computational
problems represented by such graphs.

Even though such algorithms are not the main topic of this thesis,
they are a large field of application of quantum walks, and furthermore
can often be understood in terms of the properties of quantum walks
that we discussed above. In this section, we thus take a small detour
and consider one of these algorithms, first presented in Ref. 162, and
highlight their connection to topology.
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1.7 Quantum algorithms

Quantum search on the hypercube The algorithm we discuss solves the
same problem as the famous Grover search algorithm.72 In the problem,
we want to find the solution to the problem f (x∗)= 0, where x∗ ∈ {0,1}n

i.e. x is a bit string of length n. The function f is not restricted, but we
assume the solution x∗ to be unique.

The computation is performed by a quantum walk on the hypercube
graph, formed by possible solutions x. The walker’s position thus can be
any bit string x of length n, and during one step, the walker is allowed
to move to any bit string x′ when x and x′ only differ by a bit flip at one
position, (see Fig. 1.4 for an illustration with n = 3).

The oracle The evaluation of the function f (x) is performed by an
oracle O. This oracle is an additional unitary evolution of the walker
which “marks” the solution of f (x) = 0 by changing the phase of the
walkers wave function on these points by π.* We thus have

O = 1−2 |x∗〉〈x∗| (1.48)

For definiteness, we can even assume that the solution is x∗ = 00 . . .0,
because except for the application of the oracle, all parts of the algorithm
are invariant under bit flips of the labels of the vertices, as will become
apparent immediately.

The quantum walk on the hypercube The generalization of the one-
dimensional quantum walk to this graph is rather straight-forward:
Because at each time there are n possible directions for the walker to go,
we require an n-dimensional internal coin space (not a two-component
spinor, as for the one-dimensional walker).

The coin rotation R must be a unitary on that space, and should be
invariant under bit flips. We could use a rotation around the symmetric
state |s〉, defined by

|s〉 = 1p
n

n∑
i=1

|i〉 , (1.49)

which can be written as

Rθ = e−iθ |s〉〈s|+ eiθ(1−|s〉〈s|), (1.50)

*It must be understood that for the implementation of such an oracle, it is not
necessary to know the target state x∗ explicitly; In fact, if f can be computed efficiently
with classical gates, the oracle can be implemented efficiently using quantum gates.
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Figure 1.4: (a) The three-dimensional hypercube is mapped to a one-dimensional quantum walk by
joining states which have the same distance to the oracle state |0〉. (b) The one-dimensional quantum
walk has an effective θ1D = arcsin(1− x/n). The oracle changes θ1D (x = 0) = −π to π. This results is
two bound states: |ψ0〉, located around x = n/2, which corresponds to the totally delocalized state on
the original hypercube, and |ψ1〉, localized around the oracle state. The states are shown for n = 32,
(c) The algorithm works by a beating between the initial state and the oracle state. We show this
oscillation for n = 32. When measuring the position of the walker at time t = t∗, the probability of
measuring the oracle state is almost 0.5.

and in order to achieve a maximal spreading speed, we can choose
θ = π/2. In fact, in the original description, the coin is chosen as a
reflection around |s〉 instead, which differs from Rπ/2 by a factor i.

The shift step then is a coin-dependent shift in the direction in which
the coin is pointing, in other words, if the coin state is |i〉, the ith bit of
x is flipped.

The algorithm then proceeds by initializing the walker in a equal
superposition of all possible states and then performing a quantum
walk, applying

F =OSR (1.51)

repeatedly. After t = π
2

p
2n repetitions, the position of the walker is
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measured, and will result in the state marked by the oracle with high
probability (almost 0.5).

Projection to one dimension The mechanism underlying this surprising
result can be understood by projecting the walk on the hypercube to
a one-dimensional walk on n+1 sites and two-dimensional coin (see
Fig. 1.4a), where the position denotes the distance to the oracle state
(if x∗ = 00 . . .0, this is the number of 1’s in the bit string, see Fig. 1.4)
and the coin state is projected to either pointing towards or away from
the oracle state. Omitting the action of the oracle, the result is a simple
quantum walk, albeit with site-dependent rotation angle:

θ1D = arcsin(1−2x1D /n), (1.52)

where x1D labels the sites of the reduced walk, see Fig. 1.4b.

Topological bound states in 1D walk Because the simple quantum walk
changes its bulk winding number at θ = 0, it ca be seen that this 1D walk
features a topological phase transition at x1D = n/2, and a corresponding
chiral bound state is expected. In fact, this “bound state” is simply the
result of projecting the equal superposition of all starting positions onto
the 1D walk; this is just the initial condition of the described algorithm,
and it in fact can be seen to be a zero-energy eigenstate of the system
without the oracle.

We now consider the changes to the 1D walk when introducing the
oracle operator. The oracle only acts on the target state, which is mapped
to the state x1D = 0 and in fact in the one-dimensional projected quantum
walk, it turns out to be a change of the rotation angle θ1D by π. This
leads to the formation of a second topological phase transition, and a
corresponding bound state.

The working of the algorithm is now clear: Because of the finite
distance between the two bound states, they have an exponentially small,
but finite overlap, leading to a splitting in quasi-energy ∆ε∝ 2−n/2, so
that the application of the effective Hamiltonian leads to a very slow
quantum beating between the two bound states at zero energy. The
algorithm terminates after half a beating period, when the walker is
in the bound state exponentially localized around the oracle state, see
Fig. 1.4c.
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1.8 This thesis
We finally give a short overview over the topics and main results of each
of the following chapters.

Chapter 2
Besides considering winding numbers of the bulk, it is also possible
to characterize the topological quantum numbers of band insulators
by calculating the scattering matrix of a half-infinite insulator at the
energies of interest.65 This matrix is directly related to the bound states
emerging at an interface of two such systems, and can thus be used
to classify the topological properties of the Hamiltonian, in accordance
with the bulk-boundary correspondence. In fact, depending on the
symmetries of the system, the topological quantum number at a certain
energy can be expressed in terms of the determinant, trace, or Pfaffian
of the scattering matrix.

In this chapter, we extend this approach to the Floquet scattering
matrix of quantum walks, immediately identifying expressions for the
additional quantum numbers required for Floquet systems. We use this
result to map out the topological phase diagram of several quantum
walk protocols with different symmetries.

Chapter 3
The Su-Schrieffer-Heeger model (SSH model) is a one-dimensional tight
binding model with alternating hopping strengths u and v, originally
devised to model the electronic structure of polymers with conjugated π-
bonds. With fixed u,v, this system forms a one-dimensional topological
insulator with chiral symmetry.

When driving the hopping strengths periodically in a symmetric way,
the system becomes a topological Floquet insulator, with chiral symme-
try still present. The Floquet operator of this system is very similar to
that of quantum walks, and can in fact be mapped to quantum walks if
the time-dependence of u(t),v(t) is chosen piecewise constant.

In this chapter, we study the topological properties and bulk-boundary
correspondence of the driven SSH model and find that in order to estab-
lish a bulk-boundary correspondence for both zero and π-quasienergy
bound states, we need to calculate the winding number of the Floquet
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operator in two different time frames, or, equivalently, consider the time
evolution operator U(T/2,0) which connects the two time frames.

Chapter 4
In this chapter, we consider the simple quantum walk as presented in
the introduction. However, we introduce an important modification,
which is a non-linear self-interaction of the walker. To be precise, the
local spin density M(x)=ψ†(x)σzψ(x) of the walker is taken to lead to
a correction to the rotation angle θ(x) = θ0 +δθ(M(x)) in the next time
step.

This self-interaction makes the time evolution in the bulk nonlinear,
and a description in terms of a single particle Floquet operator is not
longer possible. However, the interaction is chosen so that topologically
protected bound states, which are present at domain boundaries in the
linear model, are insensitive to this non-linearity, meaning that they
still are a steady state solution of the non-linear time evolution.

We show that furthermore in this model, numeric simulation suggests
that some of these modes are in fact attractive fixed points of the dy-
namics, meaning that independent of the initial conditions, the system
approaches the same stable state at finite times. We corroborate this
behavior by considering the non-linear Dirac equation obtained as a
continuum approximation of the quantum walk for long wavelengths.

Chapter 5
In this chapter we consider a driven system which is not driven period-
ically, but instead we consider a quench, where a parameter is varied
from −∞ to ∞, crossing a phase transition in between.

The system under consideration is a generalization of the single elec-
tron emitter,30,31,52,64,121,136 where a quantum dot is coupled to a one-
dimensional lead. The dot is assumed to have a bound state well below
the Fermi energy EF , which is thus occupied. A plunger gate is then
used to control the energy of the bound state, moving it well above the
Fermi energy. While the energy of the bound states crosses EF , the
particle will tunnel from the quantum dot and enter the lead as a lo-
calized excitation above the Fermi surface. Surprisingly, it has been
recognized that this simple scheme to emit a single electron on top of
a Fermi surface is very noiseless, in fact, at zero temperature and in
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the limit of constant derivative of the energy of the bound state, the
final state of the lead is precisely the ground state of the lead, with one
particle added above the Fermi surface. Thus, even though the system is
explicitly time dependent and the lead is assumed gapless, no additional
particle-hole pairs are created.

In this chapter, we consider a generalization of this scheme to su-
perconducting systems. Here, we change the phase across a topologi-
cal Josephson junction as a function of time, thus driving the system
through a fermion parity switch. Similarly, this leads to the emission of
a particle, which now, due to the presence of superconductivity, will be a
Bogoliubov quasiparticle, i.e. a coherent superposition of electron and
hole.

We solve the scattering problem analytically for a minimal model
and find again that no additional particle-hole pairs are created in the
lead. Additionally, we give expressions for the charge of the emitted
quasiparticle, which in general depends on both the coupling to the lead
as well as the speed of the sweep. We find that for very slow (adiabatic)
sweeps, the emitted particle is always either an electron or a hole, and
that in order to obtain equal superposition, a very special coupling, a
Majorana filter, is required.

Chapter 6
In this chapter, unlike the previous chapters, we consider a classical
transport problem of a solid state system. The theoretical issue consid-
ered, inspired by experiments that are also described in detail in this
chapter, is that of magnetotransport in a hexagonal indium antimonide
nanowire, which features strong spin-orbit coupling. Experimentally,
the spin-orbit interaction strength can be determined by measuring the
so-called weak localization and weak antilocalization, which are quan-
tum corrections to the conductivity that depend on a small magnetic
field in a characteristic manner.

However, the relation between magnetic field dependence and re-
sulting spin-orbit strength estimates depend on the geometry of the
problem. Because applying results for two-dimensional wires appeared
as an oversimplification for the presented experiments, we used Monte
Carlo simulation and the quasi-classical technique to model the three-
dimensional geometry of the hexagonal nanowires.

The results of the simulation are used to interpret the experimental
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data and furthermore explain an observed independence of weak local-
ization on magnetic field direction as a coincidence for the parameters
of the examined samples.

In regimes not accessible by current experiments, the simulations
predict an interesting dependence of the weak localization corrections
on the ratio W/le with a fractional exponent, where W is the radius of
the wire and le is the electronic mean free path.
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2 Scattering theory of
topological phases in
discrete-time quantum
walks

2.1 Introduction
The last decade has seen a systematic exploration of topological phases
in band insulators and the protected low energy states that emerge
at their boundaries.75,143 From Majorana bound states at the ends of
topological superconducting wires to the unique metallic surface state
of three-dimensional topological insulators, a variety of boundary states
can arise in this way. Their potential applications range from spintronics
to topological quantum computation. As there are few real-life materials
that are topological insulators,12 there is an intense search for model
systems that simulate topological insulators in the laboratory.5,104,167

Discrete-time quantum walks (DTQW)175 are quantum generaliza-
tions of the random walk, with a quantum speedup that could be em-
ployed for fast quantum search28 or even for general quantum computa-
tion.119 They have been realized in many experimental setups, including
atoms in optical lattices,68,88 trapped ions,157,184 and light in optical
setups.33,83,137,152,160,161 DTQWs are known to simulate topological insu-
lators,101 this was recently experimentally confirmed by the observation
of edge states in an inhomogeneous quantum walk with photons.99

Beyond realizing entries in the periodic table of topological insula-
tors,150 DTQWs possess a richer structure of topological phases which
is subject of ongoing research. The role of energy is taken over by
quasienergy ε, that is 2π-periodic in natural units, where ~= 1 and the
unit of time is one timestep of the walk. This is a feature that quan-
tum walks share with periodically driven lattice Hamiltonians,36,116 for
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which unique topological invariants have been found.98 For both types of
systems, topologically protected states may appear both at quasienergy
ε= 0 and ε=π,84 and states may be topologically protected even when
all bands are topologically trivial.97,149

In this work we characterize topological phases of one dimensional
DTQWs using a scattering matrix approach. This constitutes a general-
ization of methods developed for time-independent systems.6,43,66 For
DTQWs with gaps in the quasienergy spectrum at both ε= 0 and ε=π,
we obtain the topological invariants as simple functions of the scattering
matrix at these quasienergies. For unbalanced quantum walks, where
there is an unequal number of left- and rightward shifts in a period, we
find an integer number of perfectly transmitting unidirectional modes,
that is equal to the quasienergy winding.98 Our approach is particularly
suitable to calculate the topological invariants of disordered quantum
walks, as we demonstrate in an example.

This chapter is structured as follows. After defining our notation for
one-dimensional discrete-time quantum walks in the next section, we
adapt the concept of a scattering matrix for DTQWs in Sec. 2.3. In
Sec. 2.4 we discuss the influence of particle-hole, time-reversal and
chiral symmetry on the scattering matrix. The central result of this
chapter, the topological invariants of DTQWs, are shown in Sections 2.5
and 2.6. We illustrate our approach in Sec. 2.7 with concrete examples.
Finally, Sec. 2.8 discusses how the topological invariants can be directly
measured in a quantum walk experiment.

2.2 Discrete-time quantum walks

We consider a particle (walker) with N internal states (coin states) on a
one-dimensional lattice, whose wave function can be written as

|Ψ〉 = ∑
x∈Z

N∑
n=1

Ψ(x,n) |x,n〉 . (2.1)

Here x denotes the discrete position and n the internal state of the
walker.

The walker is subjected to a periodic sequence of two different types of
operations: shifts and rotations. Measuring time τ in units of the period,
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the dynamics are given by

|Ψ(τ+1)〉 =F |Ψ(τ)〉 , (2.2)

F = RM+1SMRM . . .S1R1. (2.3)

The time-evolution operator over one period, a.k.a. Floquet operator F ,
consists of shift operators S j and rotation operators R j.

Each shift operation S j, shifts a chosen internal state n j by one lattice
site, either to the right (+) or to the left (−). In formulas S j = S±

n j
, with

S±
n = ∑

x∈Z

[
|x±1,n〉〈x,n|+ ∑

n′ 6=n
|x,n′〉〈x,n′|

]
. (2.4)

For each internal state n, we fix a direction sn ∈ {+1,−1,0} throughout
the protocol. We require that the operators S j are compatible with each
other, i.e. no state is shifted to the left by some S j and to the right by
others. Accordingly, there are three sets of internal states: those shifted
to the right, n ∈ M+, those shifted to the left, n ∈ M−, and those not
shifted at all, n ∈ M0. For each internal state n, we use dn to denote the
number of shift operators S in a period that shift the state,

dn =
M∑
j=1

δn j ,n. (2.5)

Rotations mix the internal degrees of freedom, but are local in real
space,

R j =
∑
x∈Z

|x〉〈x|⊗R j(x). (2.6)

Each R j(x) is a U(N) operation. For translation invariant quantum
walks, R j(x) is independent of x.

The time evolution (2.3) is a stroboscopic simulation of an effective,
time-independent Hamiltonian

Heff ≡ i logF . (2.7)

For definiteness, the branch cut of the logarithm is chosen such that
all quasienergies, the eigenvalues of Heff, are restricted to ε ∈ [−π,π].
In the presence of translational symmetry, quantum walks thus have a
band structure, just like time-independent systems.
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2 Scattering theory of topological phases in discrete-time quantum walks

Figure 2.1: Left: Propagation of a particle in the simple quantum walk, initialized in spin-up state
on a single site. Right: band structure of the simple quantum walk for different values of the rotation
angle θ. Generically the spectrum is gapped around quasienergies ε= 0,π except for the special cases
θ = 0,π.

As an example, Fig. 2.1 illustrates the protocol and the quasienergy
band structure of the simple quantum walk,

F = S−
↓ S+

↑ R(θ). (2.8)

The walker here has only two internal states, which we label by ↑ for
n = 1 and ↓ for n = 2, and refer to as spin. First the spinor is rotated by
an angle θ on the Bloch sphere,

R(θ)=∑
x
|x〉〈x|⊗ e−iθσy . (2.9)

Subsequently S+
↑ shifts the spin-up component of the state to the right

and S−
↓ the spin-down component to the left.

Note that the Floquet operator is not unique for a given quantum
walk protocol. For example we could just as well choose

F = S+
↑ R(θ)S−

↓ , (2.10)

for the Floquet operator of the simple quantum walk, since it produces
the same protocol of operations (. . .S+

↑ R(θ)S−
↓ S+

↑ R(θ)S−
↓ . . .). Describing

a quantum walk by a specific Floquet operator amounts to fixing a
starting time, or time frame,14 for the period of the walk. Changing the
starting time of the period is much like choosing a different unit cell
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in a crystal. It corresponds to a unitary transformation on the Floquet
operator F , and, as a result, cannot change the quasienergy spectrum.
Nevertheless, the choice of the correct time frame can be crucial when
investigating symmetries and topological properties as we shall discuss
in the course of this chapter.

2.3 Scattering in quantum walks
To study DTQWs in a scattering setting, we maintain the whole quantum
walk protocol only in a central region (0 ≤ x < L), which we want to
analyze. In the remaining regions we omit the rotations,

R j(x < 0)= R j(x ≥ L)= 1N for all j. (2.11)

In this way, a left (x < 0) and a right lead (x ≥ L) are formed. The
scattering setting is illustrated in Fig. 2.2 for the example of the simple
quantum walk. Deep in the leads, a particle with internal state n is
simply shifted by dn sites in direction sn in each period,

F |x,n〉 = SM . . .S1 |x,n〉 = |x+ sndn,n〉 ,

for x <−dn or x > L+dn. (2.12)

An infinite lead of this type has propagating solutions at all quasiener-
gies.

A natural basis for propagating states in the two leads (l,r) is given
by the states

|ln,d,ε〉 =
0∑

j=−∞
eisnε j | jdn −d,n〉 ,

|rn,d,ε〉 =
∞∑
j=1

eisnε j |L+ jdn −d,n〉 , (2.13)

for n ∈ M+∪M−. These are quantum walk equivalents of plane waves,
restricted to the left/right lead and normalized to carry the same particle
current. Unlike true plane waves,125 they only occupy every dnth site
and the different sublattices that arise in this way are indexed by d,
restricted to 1≤ d ≤ dn.

In a scattering problem, an incoming mode incident on a central region
is scattered into outgoing modes. Consider a mode |ln,d,ε〉 in the left lead,
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2 Scattering theory of topological phases in discrete-time quantum walks

Figure 2.2: Scattering setting for the simple quantum walk, Eq. (2.8). The lattice is divided in three
regions: a left lead (x < 0), a right lead (x ≥ L) and a scattering region in between. Each site contains
two internal spin states. The shift operators of the protocol act throughout the whole system (solid
black arrows), shifting a walker with state ↑ to the right, and state ↓ to the left. Rotations (dotted
arrows) only change the internal state of the walker in the scattering region. (a) A walker with
spin-up in the left lead is incident on the scattering region. (b) Once it reaches x = 0, it is subject to
rotations and acquires a spin-down component, which is shifted in the opposite direction. The purple
arrows illustrate a possible reflection process. (c) A walker with spin-down is propagated away from
the scattering region. While (a)-(c) depict the scattering in time, the scattering states we consider
are the corresponding quasienergy eigenstates.

with sn =+1, so that it is incident on the central region. It is scattered
into outgoing modes |Ψout

L,R〉 in both the left and the right lead. The
corresponding scattering state is a Floquet eigenstate with quasienergy
ε,

|Ψn,d,ε〉 = |ln,d,ε〉+ |ΨC〉+ |Ψout
L 〉+ |Ψout

R 〉 , (2.14)

|Ψout
L 〉 = ∑

n′∈M−

∑
d′

rn′d′,nd(ε) |ln′,d′,ε〉 , (2.15)

|Ψout
R 〉 = ∑

n′∈M+

∑
d′

tn′d′,nd(ε) |rn′,d′,ε〉 , (2.16)

where |ΨC〉 denotes the contribution of the state in the central region.
This defines the matrix elements of both the reflection matrix r(ε) and
the transmission matrix t(ε).

Using the Floquet operator of the scattering setting, we can write
down the scattering state explicitly,

|Ψn,d,ε〉 =
∞∑

ν=−∞
eiενF ν |−d,n〉 . (2.17)

This really is a stationary state with quasienergy ε, as can be seen
by application of F on Eq. (2.17). State |Ψn,d,ε〉 contains the correct
incoming plane wave, since

|ln,d,ε〉 =
0∑

ν=−∞
eiενF ν |−d,n〉 . (2.18)
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Furthermore, this state contains no incoming plane waves other than
|ln,d,ε〉, since terms in the above sum with ν > 0 correspond to states
that can be reached by propagating |−d,n〉 forward in time: they are in
the central region and in the outgoing modes.

The reflection matrix elements are found from projections of |Ψn,d,ε〉
onto outgoing (sn′ = −1) states in the left lead, |ln′,d′,ε〉. Using the
definitions above, we obtain

rn′d′,nd(ε)= 〈−d′,n′|
∞∑

ν=−∞
eiενF ν |−d,n〉

= 〈−d′,n′| (1− eiεF )
−1 |−d,n〉 . (2.19)

Similarly, the transmission matrix elements are

tn′d′,nd(ε)= 〈L−d′,n′| (1− eiεF )
−1 |−d,n〉 . (2.20)

for all n′ with sn′ = +. For numerical evaluation, the reflection and
transmission matrices can be calculated from this formula using Floquet
operators that are truncated in the leads. We discuss this in detail in
Appendix 2.A.

Scattering matrices for DTQWs have been considered in a different
formalism by Feldman and Hillery.60,61 With an elegant mathematical
duality transformation, they assign the walker to the edges rather
than the nodes. We chose a different route from theirs, as outlined in
this Section, for two reasons. First, our approach is easier to apply to
multistep walks (i.e., DTQWs where the number of steps per cycle is
M > 2). Second, and this is the more important reason: our approach
allows for a transparent treatment of the relevant symmetries of the
system. This is the topic we turn to in the next Section.

2.4 Symmetries of quantum walks
The standard band theory of topological insulators describes topological
phases of Hamiltonians depending on three discrete symmetries: time-
reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral
symmetry (CS). In this section we show how the definition of these
symmetries translates to the Floquet operator and the scattering matrix
of DTQWs.
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A quantum walk has TRS if an antiunitary operator T = KUT exists
such that

U†
TF∗UT =F−1 ⇔ U†

T H∗
effUT = Heff. (2.21)

Here K denotes complex conjugation in the basis used in Eq. (2.1), and
UT is a unitary operator acting on the internal state only. The TRS
operator T transforms the time-evolution operator F into its inverse,
justifying the term “time-reversal”.

If a unitary operator Γ achieves time reversal, this is referred to as
CS,

Γ†FΓ=F−1 ⇔ Γ†HeffΓ=−Heff. (2.22)

Finally, consider an anti-unitary operator P = KUP that transforms
the Floquet operator into itself,

U†
PF∗UP =F ⇔ U†

P H∗
effUP =−Heff. (2.23)

A symmetry of this form is referred to as PHS, because of its existence
in superconductors. In quantum walks, there is no natural concept of
particles and holes, but a symmetry of this form might still be present.

Like in the symmetry classification of time-independent problems, the
unitary symmetries present in the system are used to block diagonalize
the Floquet operator (and, as a consequence, the effective Hamiltonian)
before PHS, TRS and CS are analyzed. Then, P and T , if present, will
square to plus or minus unity, and chiral symmetry is related to the two
by Γ∝T P , if both are present. The possible presence or absence, as
well as the squares of these symmetries, gives ten possible symmetry
classes, which are referred to by so-called Cartan labels.9,150

We now turn to the discussion of symmetries in a scattering setup.
The situation is is very similar to systems whose dynamics are governed
by time-independent Hamiltonians. We thus refer the reader especially
to Appendix A of Ref. 65.

If a scattering setup possesses one of the symmetries above, we can
consider the action of the symmetry operators on the modes in the leads.
TRS and CS reverse the action of the time evolution operator, and thus
map incoming modes to outgoing modes and vice versa, while PHS will
act on these spaces separately.
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Symmetry class T 2 P 2 Γ QX =QX ,0 ×QX ,π

AIII × × X 1
2 Tr r(0)× 1

2 Tr r(π)

CII −1 −1 X 1
2 Tr r(0)× 1

2 Tr r(π)

BDI +1 +1 X 1
2 Tr r(0)× 1

2 Tr r(π)

D × +1 × 1
2 Det r(0)× 1

2 Det r(π)

DIII −1 +1 X 1
2 Pf r(0)× 1

2 Pf r(π)

Table 2.1: Symmetry classes with non-trivial topological invariants in gapped one-dimensional
DTQWs. For TRS and PHS, the table gives the square values of the symmetry operators. For CS,
existence is indicated by X. The full topological invariant QX is composed of invariants QX ,ε at
quasienergies ε= 0,π inside the two gaps of the quasienergy spectrum. The invariants as given in the
table apply after a basis change on the reflection matrix, as detailed in Appendix 2.B.

We thus can write a time-reversed incoming state as a superposition
of outgoing states. In the left lead this reads:

T |ln,d,ε〉 =
∑

n′∈M−
QT,n′n |ln′,d,ε〉 for n ∈ M+. (2.24)

In the same manner, time-reversed outgoing states are superpositions
of incoming states, with coefficients captured in the left lead by a matrix
VT =T 2(QT )T . Similarly, the action of CS is given by matrices QΓ and
VΓ =Γ2Q†

Γ. PHS on the other hand acts on right and left moving states
separately, and we write

P |ln,d,ε〉 =
∑

n′∈M±
QP±,n′n |ln′,d,ε〉 for n ∈ M±. (2.25)

Here the matrices VP+ and VP− are independent and, in general, can
have different dimensions.

The symmetries of the Floquet operator F translate to properties of
the reflection matrix r:

r(ε)=QT r(ε)TV †
T , (2.26)

r(ε)=QΓr(−ε)†V †
Γ , (2.27)

r(ε)=QP−r(−ε)∗Q†
P+. (2.28)

There is an important caveat here. The Floquet operator, and, conse-
quently, the effective Hamiltonian and the scattering matrix, all depend

37



2 Scattering theory of topological phases in discrete-time quantum walks

on the choice of time frame, as in the example of Eq. (2.10). As a con-
sequence, the same DTQW can be seen to have a symmetry in one
timeframe, while this symmetry might be hidden in another timeframe
— this holds especially for TRS and CS. Therefore, finding the sym-
metries and the topological invariants includes going into the proper
timeframe. In this section and in the rest of the chapter, we assume
that this work has been done and that we are in a timeframe where the
symmetries are explicit.

There are two special quasienergies: As can be seen from Eqs. (2.27)
and (2.28), CS and PHS yield special constraints on the scattering matrix
if ε=−ε, which, due to the periodicity of quasienergy, is fulfilled at both
ε= 0 and ε=π. As we show in the following, this has the consequence
that for DTQWs, topological invariants come in pairs.

2.5 Topological invariants of gapped
quantum walks

In this section we consider balanced quantum walks, where the number
n+ of shift operators that shift to the right equals the number n− of
shift operators that shift to the left in a period. For these walks, the
quasienergy band structure generically has gaps around the special
quasienergies ε= 0 and ε=π. Then, the transmission amplitudes at the
two quasienergies are exponentially small in system size L, and, in the
limit of large system size, the reflection blocks, r(0) and r(π), become
unitary matrices.

2.5.1 Topological invariants

In five of the ten symmetry classes, unitarity of the reflection matrix
allows us to define topological invariants, along the lines of the scattering
theory of topological insulators and superconductors.66 These classes
are AIII, CII, D, BDI and DIII, as defined in Table 2.1, where we also
summarize the main results of this section.

As a first step towards defining the topological invariants, a change
of basis is performed separately for both in- and outgoing lead states,
to simplify Eqs. (2.26), (2.27), and (2.28). Concrete recipes for the ba-
sis transformations are presented in Appendix 2.B for each class. In
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the thus standardized form, the reflection matrices obey the following
relations,

r(ε)= r∗(−ε) for class D, (2.29)

r(ε)= r∗(−ε)=−rT (ε) for class DIII, (2.30)

r(ε)= r†(−ε) for classes AIII, CII and BDI, (2.31)

which we need to define the topological invariants. These follow from
PHS, PHS + TRS and CS respectively after the simplifying basis changes.

In class D, r(0) and r(π) are real and due to unitarity they are or-
thogonal matrices. Hence they have determinant ±1. Four topologically
distinct situations arise, distinguished by the Z2 ×Z2 invariant

QD = 1
2 Det[r(0)]× 1

2 Det[r(π)] for class D. (2.32)

In symmetry class DIII, the reflection matrices r(0) and r(π) are both
real and antisymmetric. Therefore, the invariant of (2.32), will be ( 1

2 , 1
2 ),

as the eigenvalues of real antisymmetric matrices are purely imaginary
and come in complex conjugate pairs. However, the determinant of an
antisymmetric matrix is the square of a function of the matrix, the
Pfaffian. The Pfaffian in this case can take values ±1. Thus, again four
topologically different cases can be distinguished,

QDIII =Pf[r(0)]×Pf[r(π)] for class DIII. (2.33)

In symmetry classes AIII, BDI, CII the reflection blocks r(0) and r(π)
are Hermitian and unitary. Thus their eigenvalues are pinned to ±1
and their traces are quantized to integer values. This is expressed by
the Z×Z topological invariant

Qch = 1
2 Tr[r(0)]× 1

2 Tr[r(π)] forclassesAIII,CII,BDI. (2.34)

In class CII, the traces can only take even integer values due to Kramers
degeneracy of the scattering states. In principle, this invariant is also
defined for i r(0) and i r(π) in symmetry class DIII, which we described
before, but will always take the trivial value (0,0), due to the antisym-
metry of r.

In combination with the scattering formalism in Sec. 2.3, the topo-
logical invariants QD, QDIII and Qch, are the main results of this work.
Our approach is in agreement with the most recent analysis of topology
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in DTQWs from a Floquet operator perspective,14 as we will demon-
strate for three examples in the next section. Similar invariants exist
for reflection matrices of time-independent systems at zero energy,66

but the time-periodicity of DTQWs leads to an extra contribution at
quasienergy π.

2.5.2 Boundary states
The main reason bulk topological invariants are interesting is that they
can be used to predict the number of protected midgap states at an
interface between two bulk systems.75 This applies to inhomogeneous
DTQWs that have two domains, A (x < 0) and B (x > 0), governed by
different quantum walk protocols, given that the complete system has
the right combination of symmetries. If the topological invariant QX =
QX ,0×QX ,π with X ∈ {D,DIII,ch} changes across the interface by ∆QX =
∆QX ,0×∆QX ,π =QA

X −QB
X , it can be shown that a number of |∆QX ,{0,π}|

quasienergy eigenstates are guaranteed to exist at quasienergies ε= 0,π
inside the gaps. These are bound to the interface and protected by the
change of topological invariant. A full discussion based on reflection
matrices is provided in Appendix 2.C.

In order to interface two DTQW protocols, such that they form an
inhomogeneous system, the two protocols have to be compatible (we
explain what we mean by this below). The shift operators are nonlocal,
and thus to ensure that the Floquet operator of the combined system
is unitary, they have to be applied throughout the system at the same
time, and to the same internal states. Thus, two DTQW protocols A and
B are compatible if SA

j = SB
j for every j. The two DTQW protocols can

only differ in their rotations.
Note that there is no unique DTQW analogue of open boundary con-

ditions. Thus the bulk topological invariant alone does not predict the
number of topologically protected edge states at the ends of a finite
line segment on which an otherwise homogeneous DTQW takes place.
Edge states can exist, but their number depends on the way the walk
is terminated.13 This is analogous to the situation of time-independent
Hamiltonian systems with chiral symmetry.66

Note further that the values of the topological invariants depend on
the starting time of the period of the DTQW, i.e., the choice of time frame
for the Floquet operator. Nevertheless, the correct number of protected
boundary states is obtained from the individual topological invariants
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of two interfaced quantum walk domains when their starting times are
chosen such that the walks are interfacable.

2.6 Topological invariant of unbalanced
quantum walks

When a period of the quantum walk protocol contains a different number
of shift operators that shift to the right than shift operators that shift
to the left, n+ 6= n−, the quasienergy bandstructure shows a winding
in quasienergy space.98 This unique type of topology only can occur
because of the 2π-periodicity of quasienergy space. From a transport
point of view, such a winding is produced when particles are pumped
through the one dimensional system. A simple example is given by
F = S+

↑ for which the quasienergy band structure is given by the raising
half of the green dotted line in Fig. 2.1.

The scattering matrix of such a system has an unusual form since
the reflection blocks r and r′ of the scattering matrix are rectangular
matrices of size n−×n+ and n+×n− respectively, while the transmission
blocks are square matrices of differing sizes: n+×n+ (t) and n−×n−(t′).
The ranks of the matrix products rr† and r′r′† is thus at most as large as
min(n+,n−) and one of them has at least |n+−n−| zero eigenvalues. Due
to the unitarity of the scattering matrix, |n+−n−| of the transmission
eigenvalues of the larger transmission block have thus to be unity for
all quasienergies. These perfectly transmitting channels in only one
direction reflect the charge pumping through the system. Hence the
topology of the quantum walk can be read off from the scattering matrix
through the topological invariant

I = dim(t)−dim(t′). (2.35)

2.7 Examples
In this section, we consider three examples for gapped DTQWs and
demonstrate how their topological properties can be analyzed by the
scattering matrix approach. We first discuss the so-called split-step
walk,101 which includes the simple quantum walk of Eq. (2.8) as a
special case. We then discuss a generalization of this protocol, which
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2 Scattering theory of topological phases in discrete-time quantum walks

contains four shift operators per period.14 Depending on the choice of
parameters, it can fall into several of the relevant symmetry classes,
realizing either QD or Qch. The third example has a larger internal
space and is characterized by the invariant QDIII.

Finally, we show that the scattering matrix approach can also be used
to define topological invariants in the presence of disorder and illustrate
this using the simple quantum walk with disordered rotation angles.

2.7.1 Split-step walk
Extending the DTQW of Eq. (2.8) by adding another rotation, we obtain
the so-called split-step walk97

F = S+
↑ R2S−

↓ R1. (2.36)

Here, R j = R(θ j) is a rotation about the y axis as defined in Eq. (2.9).
The split-step walk is thus parametrized by two angles θ1,θ2. This
DTQW has two internal states (N = 2), again referred to as a spin, with
spin-up propagating to the right, and spin-down propagating to the
left. Since d1 = d2 = 1, according to Sec. 2.3, the reflection matrix is a
1×1-matrix.

To find the topological properties of the split-step walk, we first need to
understand its symmetries. According to Eq. (2.9), the rotation matrices
are real matrices. The same applies for the shift matrices in position
basis, so that F will be real and thus have PHS, with P = K .101 The
protocol also has a chiral symmetry. This can be seen by choosing a
different time frame,14

F ′ =
√

R1S+
↑ R2S−

↓
√

R1, (2.37)

so that chiral symmetry is given by Γ = σx, which can be seen from
σxS↑σx = S−1

↓ and σxRσx = R−1. Thus the system falls in symmetry
class BDI. Note that also the simple quantum walk is of this form if
written as in Eq. (2.10), with θ1 = 0.

We calculated the reflection matrix in Eq. (2.19) numerically for the
Floquet operator F ′, following the procedure described in Appendix 2.A.
The resulting class BDI invariant Qch is plotted in Fig. 2.3 as a function
of the rotation angles θ1,θ2 for system size L = 50. The calculation is
simplified by the fact that the chiral symmetry of r is in its canonical
form, Eq. (2.31), because VΓ = 1. The topological invariant Qch is thus
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in fact half of the reflection matrix’s only element, taken at energies 0
and π, with values Qch ∈ (± 1

2 ,± 1
2 ).

The results plotted in Fig. 2.3 are in agreement with topological
invariants that were derived directly from the Floquet operator, by
counting gap closings in the dispersion relation.13

2.7.2 Four-step walk
We now turn to a multistep walk, choosing a longer sequence that
includes three different rotations,

F = S−
↓ R3S−

↓ R2S+
↑ R1S+

↑ . (2.38)

Here, we also allow for more general rotations

R(θ,χ)=∑
x
|x〉〈x|⊗ e−iθ(σy cosχ+σz sinχ), (2.39)

so that the walk is parametrized by six angles, θ j,χ j, with j ∈ 1,2,3.
This four-step walk has been introduced before in Ref. 14.

For the four-step walk, there are still only two internal states (N = 2),
but the number of shift operators is larger (d↑ = d↓ = 2), leading to a 2×2
reflection matrix. The symmetries of the system are fixed by restricting
the parameters to certain subsets. To be precise, if we set χ1,2,3 = 0, the
rotation matrices are real, and the system has PHS, given by P = K . On
the other hand, if we require R1 = R3, the system has chiral symmetry
given by Γ= σx. This walk thus serves as an illustrative example for
the symmetry classes D, AIII, or BDI. We concentrate on the BDI case,
where all χ= 0 and θ1 = θ3.

In Fig. 2.3, we show the numerical result for the invariant Qch from
the scattering matrix. As defined in Sec. 2.5, the invariant is half the
trace of the reflection block at quasienergies 0 and π, and here each of
the two elements can take the values {−1,0,1}. Similar to the split-step
walk above, the symmetry relations for r are in their standard form
already, so no basis transformation is required.

Our result for the the phase diagram agrees with Fig. 2 of Ref. 14,
where the topological invariant was calculated by combining winding
numbers from two different time frames. Interestingly, with the ap-
proach of this chapter, it suffices to consider the protocol in one time
frame. This is because the scattering matrix method uses all possible
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2 Scattering theory of topological phases in discrete-time quantum walks

plane waves to probe the quantum walk, which reach the scattering re-
gion at different times. The reflection matrix thus contains information
about the dynamics of the system during one timestep.

Quantum walks for classes AIII and D are obtained from this walk
by breaking either particle-hole or chiral symmetry. In the former case,
the topological invariant does not change, while in the latter case, the
topological invariant is reduced to Z2 ×Z2.14

2.7.3 Symmetry class DIII
The construction of a DTQW that realizes T 2 = −1 is more involved;
some proposals have been given in Ref. 101. As an example, we now
consider a protocol with DIII symmetry, which is constructed with four
internal states N = 4, of which two are right-moving and two are left-
moving. We consider these as two instances of a two-state quantum
walk, which are governed by

F =
(
F1 0
0 F2

)
eiσzτyγ

(
F2 0
0 F1

)
, (2.40)

where σi are Pauli matrices acting on the spin of each copy of the two-
state quantum walk, while τy is a Pauli matrix that mixes the two
instances. Here, F1 and F2 are both Floquet operators of the simple
quantum walk in the form of Eq. (2.10), with different parameters θ1/2.
The additional angle γ provides a way to couples the two instances of
the walk. This quantum walk has CS with Γ= iσxτy, PHS with P = K ,
and thus TRS with T =σxτyK , falling into symmetry class DIII.

According to Sec. 2.5, the calculation of the topological invariant
from the reflection block r requires us to find the basis in which r is
antisymmetric, in order to calculate the Pfaffian. From Appendix 2.B, it
follows that this property is fulfilled by the matrix r̃ =VT r, so that the
topological invariant in this example can be calculated as

QDIII =Pf
(
τyr(0)

)×Pf
(
τyr (π)

)
. (2.41)

The resulting phase diagram of this protocol, with θ2 = 0, is displayed
in Fig. 2.3 (c). It realizes all possible topological phases of the symmetry
class. Non-generic features can be observed at θ1 = 0,π in the phase
diagram, signalling unprotected gap closings at which the topological
invariant does not change.
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Figure 2.3: Topological phase diagrams for three quantum walk examples, obtained from the scatter-
ing matrix approach. All phases are labelled by their topological invariant QX and are furthermore
encoded in brightness (QX,0) and hue (QX,π). (a) Topological invariant QBDI of the split-step quan-
tum walk (2.37). (b) Topological invariant QBDI of the four-step quantum walk (2.38), where θ1 = θ3
and χ1,2,3 = 0, so that falls into class BDI. (c) Topological invariant QDIII of the quantum walk (2.40),
with θ2 = 0. For all three examples, the length of the scattering region is L = 50. Close to phase bound-
aries, where the gap closes, r becomes subunitary due to finite size effects and the invariants are not
quantized. Otherwise the quantization of the invariants is evident.
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2 Scattering theory of topological phases in discrete-time quantum walks

2.7.4 Disorder

A major advantage of the classification of topological phases using the
scattering matrix is that the topological invariants can also be defined
for systems with spatial disorder.

As a proof of concept, let us now add disorder to the simple quantum
walk, Eq. (2.10). Spatial disorder is introduced by drawing the the
rotation angle θ (x) for each site x from a Gaussian ensemble with mean
〈θ〉 and variance δθ, with no correlation for different x. This breaks
neither PHS nor CS, so a BDI topological invariant is still defined if r
remains unitary.

As for the split-step walk, the BDI topological invariant is just half
the reflection block itself, which is a single number. Furthermore, due to
an additional symmetry,97 Qch,π =−Qch,0, so we only have to consider
quasienergy ε= 0. We thus numerically calculated an ensemble average
of r(0) for a range of 〈θ〉 and δθ which is presented in Fig. 2.4. Note
that the topological invariant is stable against the introduction of small
disorder unless very close to the transition, demonstrating the stability
of the phases to disorder.

For strong disorder, the ensemble average approaches zero (the green
region in Fig. 2.4). However, this is not due to the fact that r becomes
subunitary. On the contrary, the distribution of r is strongly bimodal
around ±1, indicating that individual systems are still insulating and
allow for the definition of a topological invariant, whose value however
can not be predicted for large disorder strengths.

2.8 Experiment

The scattering matrix of a discrete-time quantum walk is not only a
theoretical construct but can also be directly measured. In this section
we discuss the principle of such an experiment using the example of the
split-step walk, introduced in Sec. 2.7.1. For the split-step walk, the
reflection matrices are real numbers of unit magnitude, (r(0), r(π)) =
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Figure 2.4: Disorder averaged invariant 〈Qch,0〉 at ε = 0 for the simple quantum walk as a function
of mean rotation angle and disorder strength. The transition region around 〈θ〉 = 0 is broadened
with increasing disorder until the topological phases are not properly defined anymore (green region).
System size is L = 50, the average is taken over n = 100 different disorder realizations.

(±1,±1), and, using (2.19), the pair of topological invariants simplify to

Qch,0 =
1
2

∞∑
ν=1

〈−1,↓|F ν |−1,↑〉 ;

Qch,π =
1
2

∞∑
ν=1

(−1)ν 〈−1,↓|F ν |−1,↑〉 . (2.42)

These formulas suggest a measurement protocol for the topological
invariants: (1) Initialize the walk with the walker at time τ = 0 at
x = −1, in state ↑. (2) Obtain the topological invariants as the sum,
and alternating sum of the probability amplitudes for the walker at
timestep τ ∈ N to be at x = −1, in state ↓. This measurement can be
straightforwardly conceived in optical realizations of quantum walks, as
we show below.

We demonstrate our ideas using a simple beam splitter (BS) repre-
sentation of the quantum walk, shown in Fig. 2.5. This layout can be
easily adapted to many actual physical realizations, including integrated
photonics,152 or even optical feedback loops.161* It consists of an array
of cascaded BS’s, with a light pulse incident on the lower left BS. As

*Recently, there has in fact been a report of the realization of this experimental
proposal in time-multiplexed quantum walk experiments using optical fiber loops, Ref. 18.

47



2 Scattering theory of topological phases in discrete-time quantum walks

x=0

x=2

x=1

x=-1

τ=1 τ=2τ=0 τ=3

x=3

τ=4 τ=5 τ=6

Figure 2.5: Schematic layout for the experimental measurement of the reflection amplitudes of a split-
step quantum walk. An incident coherent light pulse at τ= 0, x =−1 enters an array of beam splitters
of two types (dark blue, light orange), where it is split and recombined repeatedly, thereby performing
the quantum walk. A row of detectors at x =−1 measure the wave amplitudes 〈−1,↓|Fτ |−1,↑〉 leaving
the quantum walk region. The reflection amplitudes r(0) and r(π) are given by the sum and and the
alternating sum of the measured reflected amplitudes, Eqs. (2.42).

the light propagates in time, it spreads throughout the array in a way
that can be interpreted as a quantum walk. The state of the light just
before and just after the nth column of BS’s is mapped to the state of
the walker just before and just after the nth rotation operation. The
direction of propagation of the modes is identified with the internal state
of the walker, “right-up” representing ↑ and “right-down” representing ↓.
The vertical coordinate in the arrays is identified with the position x of
the walker, as indicated in Fig. 2.5. We use two different types of BS’s to
realize the two rotations in the Floquet operator, Eq. (2.36).

In optical DTQW experiments, intensity measurements on the modes
leaving the array at the right edge are used to read out the position
distribution of the walker after τ steps. In our case, there are two
differences. First, as indicated in Fig. 2.5, our output modes are not
at the right edge, but rather at the bottom edge of the array. Second,
intensity measurement on the output modes does not work for us, since
it destroys the phase information that is crucial to obtain the topological
invariants, as sums of probability amplitudes, Eq. (2.42).

A direct measurement of the probability amplitudes as required for
the invariants is possible if the incident light pulse is a strong coherent
state |α〉, containing many photons. This is standard practice in some
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photonic quantum walk experiments.161 Strictly speaking the spreading
of the light pulse is then not a quantum walk any more, since there is
no entanglement at any point in the system. However, it simulates a
single-photon quantum walk directly. At any time, the array contains
coherent states Π j |α j〉, with the coherent amplitudes α j corresponding
exactly to the probability amplitudes Ψ j of the walker, Ψ j =α j/α. This
is used in experiments160 to read out the state of the walker during the
walk, and to measure the probability distribution after N steps in one
shot.

The 0 and π quasienergy invariants are obtained by measuring the
sum and the alternating sum of the outcoming coherent amplitudes,
cf. Eqs. (2.42). This can be done practically by interfering each output
mode with a local oscillator, or, interfering the output modes directly
with each other on an N-port. Note that since the BS’s have only real
elements (no phase shifting), a single intensity measurement suffices.
Moreover, in this setup, one can even use a CW laser instead of a laser
pulse.

2.9 Conclusion
In this chapter we have classified the topological phases of one-dimen-
sional discrete-time quantum walks using a scattering matrix approach.
For this purpose, we generalized the concept of the scattering matrix to
these periodically time-dependent systems.

We find that, dependent on their symmetries, gapped DTQWs are
characterized by one of three different topological invariants, QD, QDIII
and Qch. They are calculated from the determinant, Pfaffian or trace
of the reflection matrix as summarized in Table 2.1. In contrast to
their analogs for time-independent systems,66 the invariants consist of
two independent contributions Q =Q0 ×Qπ that are evaluated at the
two special quasienergies ε= 0,π. Adapting arguments for topological
insulators,66 we found that an interface between two extended quantum
walk regions hosts a number of protected boundary states that equals the
difference of the invariants across the interface. These are stationary
states of the walk where the walker stays exponentially close to the
interface, and has quasienergy ε= 0 or ε=π.

We also considered unbalanced DTQWs where there is a difference
n in the number of left- and rightward shifts per cycle, producing a
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quasienergy winding in the Brillouin zone. We found that they have n
channels that transmit perfectly in the majority direction. The charac-
terization of transmission in this problem, including the transport time
distribution of disordered quantum walks with quasienergy winding,
poses an interesting direction for further investigation.

We provide a simple scheme to directly measure the reflection matrix
— and, thus, the topological invariants — of a quantum walk. This
scheme is well within the reach of current experiments working with
light pulses137,152,160,161.

Our scattering matrix approach complements existing methods based
on Floquet operators in momentum space, with two important advan-
tages. First, we provide a unified framework describing topological
phases in different symmetry classes as simple functions of a single,
typically small matrix. Second, our formulas use only a single time
frame for the Floquet operator. This is in contrast with Ref. 14, which
explicitly states that the topological invariants of chiral quantum walks
can only be obtained by combining the winding numbers from different
timeframes. The scattering matrix gets around this restriction, and
probes the behavior of the system during a protocol by including contri-
butions from plane wave-like modes that enter and exit the scattering
region at intermediate times.

The scattering matrix formalism presented in this chapter gives a
powerful new tool for the investigation of the effects of disorder on
topological phases and transport in DTQWs. Depending on the types
of disorder and symmetries, experiments and theory on DTQWs have
already seen both Anderson localization,159 and delocalization.134 Our
generalized scattering matrix formalism allows a continuation of this
research to more general multistep DTQWs.

2.A Numerical implementation
According to Eq. (2.19) the scattering matrix is determined by following
the time evolution of a particle which is placed in an incoming mode until
it enters an outgoing mode. While doing so, most of the infinite Hilbert
space of the scattering problem will not be reached by the particle.
Consequently, we can evaluate this formula in a modified, finite Hilbert
space.

We thus introduce a reduced circular system, which contains all states
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of the L sites in the system, and additional “buffer” states, which we
now describe. Consider all lead states that are localized on a single lead
site only and, after one period, will be shifted into the scattering region.
These are the only lead states which are non-trivially involved during
one time step, all other lead states are just shifted according to the lead
propagator. Likewise, consider all localized lead states that are reached
from the scattering region during one period. These two groups of
states are arranged symmetrically with respect to the scattering center:
Whenever a shift operator moves a state into the scattering region from
one side, a corresponding state on the other side of the system is moved
out of the system. To form the reduced finite space, we identify such
pairs of lead states with each other. Each pair forms one of the buffer
states, which in turn form a circular system when combined with the
scattering region.

In summary, there are dn buffer states and L system states in the
reduced space for each internal state n. For exactly one time period, the
time evolution of this finite system will be the same as for the original
infinite system.

We can use this system to describe the complete scattering process,
if before each step we initialize the buffer states with a wave function
from the incoming leads, propagate for one unit of time, and then unload
the buffer states as the outgoing mode. Denoting by ψsys the wave
function on the scattering sites and by ψin/out the states of the buffer,
the dynamics are described by:(

ψsys (t+1)
ψout (t+1)

)
=V

(
ψsys (t)
ψin (t)

)
=

(
A win

wout S0

)(
ψsys (t)
ψin (t)

)
, (2.43)

where the matrix V describes the effect of F on this reduced space. We
note that this form corresponds to the standard form for discrete-time
scattering problems given in Ref. 67.

We can write V in terms of modified shift and rotation operators:

V =V (M)
S V (M)

R · · ·V (2)
S V (2)

R V (1)
S V (1)

R . (2.44)

Here, the effect of S( j) on our reduced space is given by a shift matrix

V ( j)
S =∑

n

L∑
x=−dn

|x+ sn j ,n〉〈x,n| , (2.45)
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which is circular because of the identification of incoming and outgoing
localized states |L+1,n〉 ' |−dn,n〉. Similarly, the effect of a rotation on
this space is given by

VR = ∑
n,n′

L∑
x=1

|x,n〉Rnn′ (x)〈x,n′|

+∑
n

0∑
x=−dn

|x,n〉〈x,n| , (2.46)

applying the rotation to the system, but not to the buffer.
It can then be shown67 that the scattering matrix (reflection and

transmission) can be obtained from the finite matrix V by

S = wout

(
e−iε− A

)−1
win +S0, (2.47)

in contrast to Eq. (2.19) which is defined on an infinite space.

2.B Symmetries of the reflection matrix

2.B.1 Derivation of the symmetry relations
We demonstrate how we obtain the symmetry relations Eqs. (2.26),
(2.27), (2.28) for the reflection matrix. Assume that we are given a
scattering state with one incoming mode (n ∈ M+), so that

(ε−Heff)
[|ln,d,ε〉+ r |ln,d,ε〉+ |ΨC〉

]= 0. (2.48)

The first term is the incoming mode and the second term describes the
corresponding reflected modes, where we use operator notation for the
reflection matrix:

r |ln,d,ε〉 =
∑

n′∈M−

dn′∑
d′=1

rn′d′,nd |ln′,d′,ε〉 . (2.49)

The third term describes the wavefunction within the scatterer, cf.
Eq. (2.16).

By application of the TRS operator T on Eq. (2.48), using the fact
that it commutes with Heff, and employing the representation of TRS
on the scattering states, Eq. (2.24), we find that

(ε−Heff)
[
QT |ln,d,ε〉+VT r∗ |ln,d,ε〉+T |ΨC〉

]= 0, (2.50)
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where the complex conjugation occurs due to the antiunitarity of T .
Thus we constructed another scattering state at energy ε, where

the incoming modes are the time-reversed former outgoing modes:
VT r(ε)∗ |ln,d,ε〉, and outgoing modes are constructed from the time-
reversed incoming mode: QT |ln,d,ε〉. By the definition of r, we thus
must have the relation

r (ε)VT r(ε)∗ |ln,d,ε〉 =QT |ln,d,ε〉 , (2.51)

and as this holds for all n ∈ M+ and corresponding d, we can conclude
Eq. (2.26). Analogous arguments can be given to show Eq. (2.27) and
Eq. (2.28).

2.B.2 Basis transformations
We next consider basis transformations of the incoming and outgoing
modes in order to turn the symmetries of r presented in Eqs. (2.26)
to (2.28) into standard form. Because the incoming and outgoing modes
are separate spaces, we can choose basis transformations for both in-
dependently. This amounts to a multiplication of r with two unrelated
unitary matrices from the left and right respectively.

In the following we assume that r is taken at energies ε= 0,π and we
suppress energy dependence.

Class D If P 2 = 1, it can be seen that QP± =QT
P±. Thus, we can find

square roots M2
± = QP,±, which are also symmetric. It can then be

checked that after the transformation

r̃ = M∗
−rMT

+ , (2.52)

Eq. (2.28) is equivalent to r̃ = r̃∗.

Class DIII If T 2 =−1, one can see that QT
T =−VT . Again, we can find

symmetric square roots,

M2
+ =QP,+, (2.53)

M2
− =Q†

TQP,−Q∗
T , (2.54)

and performing the basis transformation

r̃ = M∗
−V∗

T rMT
+ , (2.55)
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this leads from Eqs. (2.26) and (2.28) to r̃ = r̃∗ = −r̃T . Importantly,
one uses the fact that because of assumed irreducibility of any unitary
symmetry operator, by Schur’s lemma we must have P T P T = eiφ,
from which one finds that M−MT+ = e−iφ/2.

Chiral classes For these classes, we have a chiral operator, obeying
VΓQΓ = Γ2 = 1. Then we can choose r̃ = VΓr and from Eq. (2.27) find
r̃ = r̃†.

We note that these transformation are not unique (for instance, in
class D, any orthogonal transformation preserves r̃ = r̃∗) , so that other
possible choices exist. The actual value of topological invariants obtained
from r̃ depend on the choice. However, because there is no unambiguous
notion of a trivial vacuum for quantum walk systems, we do not impose
further restrictions on the choice of basis, and instead remark that the
definition of topological invariants is only possible after fixing a specific
suitable basis.

2.C Protected boundary states
Here we derive the existence of protected boundary states caused by
a change of topology across an interface between two domains with a
different DTQW protocol. We exemplify the derivation for a class D
quantum walk. For other symmetry classes, one can argue in a similar
fashion.66

If two compatible DTQWs, a left (A) and right (B) one, are inter-
faced, a bound state occurs at the interface whenever Det (1− rAr′B)= 0,
where r′ denotes the reflection matrix for incoming states from the
right. Consider a fixed energy ε ∈ 0,π. The reflection matrices rA and
r′B are orthogonal matrices at this energy, as is their product. Thus,
Det (rAr′B)=±1.

The determinant Det (rAr′B) is the product of the eigenvalues of an
orthogonal matrix, which in term come either in complex conjugate pairs
or are 1 or −1.

For even matrix size and Det (rAr′B)=−1, an odd number of eigenval-
ues has to be −1 and thus at least one eigenvalue 1. An eigenvalue of 1
amounts to a bound state at the given energy. For odd matrix size on the
other hand, a positive determinant requires at least one eigenvalue 1
and thereby ensures a bound state.
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To connect these bound states to the topological invariant QD, we first
need to understand the relation between r and r′. This can be deduced
by requiring that by connecting two copies of the same quantum walk,
no bound states should exist (they would be states in the middle of
a gap). Thus for even matrix dimension, Det r = Det r′ while for odd
matrix dimension Det r =−Det r′.

In conclusion this means that, when Det rA 6=Det rB, a bound state
between the two regions is ensured by the change of topology across the
boundary.
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3 Chiral symmetry and
bulk-boundary
correspondence in
periodically driven
one-dimensional systems

3.1 Introduction
Controlling the topological phases of matter is an important challenge
in solid state physics. In the recent years, periodic driving has emerged
as an important tool to meet this challenge. Topologically protected edge
states, the hallmarks of topological phases, have been predicted and
observed in periodically driven systems, such as materials irradiated
by light51,100,116,176, in shaken optical lattices,76,146 and in photonic
crystals.145 In the above cases, the principle of bulk—boundary corre-
spondence150 was applied to the effective (Floquet) Hamiltonian of the
periodically driven system.

The variety of topological phases that periodically driven systems
can display, however, is much wider than those of their Floquet Hamil-
tonians, and the systematic exploration of these phases has only just
begun.149 An important example is the case of periodically driven one-
dimensional topological superconductors,where, the bulk Z2 invariant
is replaced by a pair of Z2 invariants, whose calculation necessitates
information beyond that represented by the Floquet Hamiltonian.84

The edge states then are the Floquet Majorana fermions, with potential
applications in quantum information processing.117 Such states, not
predicted by the bulk Floquet Hamiltonian, have also been observed in
optical realization of a one-dimensional quantum walk.99

Simulations of one-dimensional periodically driven superconductors
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have shown that they can host a large number of Floquet Majorana
fermions at their ends.170,172 This can be explained by an extra chiral
symmetry (CS) of the Floquet Hamiltonian, which prevents Majorana
fermions on the same sublattice from recombining into complex fermions.
Although this explanation is sufficient in some cases,170,172 it cannot be
general as it only relies on the Floquet Hamiltonian. Thus, the question
is still open: what are the bulk topological invariants for periodically
driven systems with CS?

In this chapter, we find the bulk—boundary correspondence for peri-
odically driven one-dimensional quantum systems with chiral symmetry,
building on the theory of CS in discrete-time quantum walks.13,14,97,101

We show how CS can be ensured in a periodically driven system, whose
time evolution in a period starts with a unitary operator F, by choosing
an appropriate second part for the period. We show that the topological
invariants predicting the number of 0 and π quasienergy end states
are the winding numbers of the blocks of F in a canonical basis. Our
formulas give a direct recipe to tune the topological invariants using
a sublattice shift operation. We give an example of how to realize this
operation in the simplest periodically driven one-dimensional Floquet
insulator with CS, the periodically driven Su-Schrieffer-Heeger (PDSSH)
model. We show how this model realizes a discrete-time quantum walk,
and how this can be used to calculate the topological invariants of
particle-hole symmetric quantum walks.

3.2 Floquet formalism

We consider periodically driven single-particle lattice Hamiltonians,
H(t+1)= H(t). The long-time dynamics of H(t), i.e., over many periods,
is governed by the time-evolution operator of one period, the Floquet
operator U(τ),

U(τ)=Te−i
∫ τ+1
τ H(t)dt, (3.1)

where T stands for time ordering. If at time τ the system is in an eigen-
state |Ψ〉 of the Floquet operator, U(τ) |Ψ〉 = e−iε |Ψ〉, then at all times
τ+n, for n ∈Z, it will be in state e−inε |Ψ〉. In this sense, the periodically
driven system acts as a stroboscopic simulator of the effective (Floquet)
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3.2 Floquet formalism

Hamiltonian Heff,

Heff(τ)= i lnU(τ). (3.2)

We fix the branch of the logarithm by restricting the eigenvalues ε of
Heff, the quasienergies, to −π< ε≤π.

The Floquet operator U(τ), and thus also the effective Hamiltonian
Heff(τ), depend on the choice of the starting time of the period, τ. Chang-
ing τ amounts to a unitary transformation of the Floquet operator and
the effective Hamiltonian (quasienergies are independent of τ).

3.2.1 Chiral symmetry of periodically driven
systems.

Ensuring CS of the periodically driven system amounts to ensuring
that there is an initial time τ such that the corresponding effective
Hamiltonian has CS, i.e., there is a unitary, Hermitian, and local (within
a unit cell) operator Γ, that satisfies

ΓHeff(τ)Γ=−Heff(τ) ⇐⇒ ΓU(τ)Γ=U−1(τ). (3.3)

The effective Hamiltonian does not inherit CS from the instantaneous
Hamiltonian, as is the case with particle—hole symmetry.98 However,
CS of the periodically driven system is ensured if there is an intermedi-
ate time 0< t1 < 1 that splits the period into a first and second part in a
special way. Let F denote the time evolution of the first part of the cycle,

F =Te−i
∫ τ′+t1
τ′ H(t)dt. (3.4)

The second part of the cycle has to fulfill

ΓF†Γ=Te−i
∫ τ′+1
τ′+t1

H(t)dt. (3.5)

It is easy to check that in that case, not only U ′ ≡U(τ′), but also U ′′ ≡
U(τ′′) have CS, where τ′′ = τ′+ t1. These Floquet operators read

U ′ =ΓF†ΓF; U ′′ = FΓF†Γ. (3.6)
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3 CS and bulk-boundary correspondence in driven 1D systems

3.2.2 Topological invariants due to chiral symmetry
Consider a one-dimensional Floquet insulator: a long chain, with a
translation invariant insulating bulk part, whose quasienergy spectrum
has gaps around ε= 0 and π. If the system has CS, a local basis trans-
formation can be performed that diagonalizes Γ, so that each lattice site
has a sublattice index A or B, defined via the projectors ΠA/B = (1±Γ)/2.
We call such a basis a canonical basis. For the system to be a Floquet
insulator, the number of A and B sites in each bulk unit cell has to be
equal (or else the system would have flat bands at 0 or π quasienergy).
We denote this number by N. In a canonical basis, the CS operator acts
in each unit cell independently, as Γ=σz ⊗1N .

The spectrum of an effective Hamiltonian with CS is symmetric: sta-
tionary states |Ψ′〉 of H′

eff with quasienergy ε 6= 0,π have chiral symmet-
ric partners Γ |Ψ′〉, that are also eigenstates with quasienergy −ε. Such
states can be chosen to have equal support on both sublattices. The
system can also host states |Ψ′〉L/R with quasienergy ε= 0 or π, whose
wavefunctions are expelled from the bulk to the left/right by the gaps in
the bulk spectrum. These end states can be chosen to have support only
on one sublattice.

The effective Hamiltonians H′
eff and H′′

eff have CS, as per Eqs. (3.6),
and thus can be assigned topological invariants ν′ and ν′′. These are
obtained by standard procedure,150 whereby we first isolate the bulk
part of H′

eff and H′′
eff, by imposing periodic boundary conditions on the

translation invariant central part of these Hamiltonians, and taking the
thermodynamic limit. The bulk Hamiltonians are periodic functions of
the quasimomentum k ∈ [−π,π], and, in the canonical basis, are block
off-diagonal,

Heff(k)=
(

0 h(k)
h†(k) 0

)
. (3.7)

Here, and later on, Heff refers to either of H′
eff or H′′

eff, and similarly for
U and h. The topological invariants are

ν′ = ν[h′]; ν′′ = ν[h′′], (3.8)

where the function ν[h] is a winding number,

ν[h]= 1
2πi

∫ π

−π
dk

d
dk

ln Det h(k). (3.9)
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3.2 Floquet formalism

These integers cannot change under adiabatic deformation of the bulk
Hamiltonians, and so are equal to the winding numbers of the flat band
limits of these Hamiltonians, which are the topological invariants of
Ryu et al.150 They can be interpreted as the dimensionless bulk sublat-
tice polarization127 of the effective Hamiltonians, at times τ′ and τ′′.

3.2.3 Topological invariants of the driven system
To derive the topological invariants of the periodically driven system, we
start by adopting the results obtained for discrete-time quantum walks
(DTQW) with CS14 to periodically driven systems. The derivations
follow very closely those of Ref. 14, and so we omit them here, but for
completeness, we give details in Appendix 3.A. As with DTQWs, also
in periodically driven systems, the wavefunctions of quasienergy π end
states switch sublattices as they evolve from time τ′ to τ′′, and so, neither
ν′, nor ν′′, on their own, give useful information about the number of
end states (observations to the contrary in specific models170,172 do not
generalize). The winding numbers ν′ and ν′′ must be combined to obtain
the bulk topological invariants controlling the number of end states,

ν0 = ν′+ν′′
2

; νπ = ν′−ν′′
2

. (3.10)

We now proceed to simplify Eqs. (3.10), and express them using the
blocks of F in the canonical basis:

F(k)=
(
a(k) b(k)
c(k) d(k)

)
. (3.11)

Along the way, we will use simple properties of the function ν[A(k)] of
Eq. (3.9): ν[AB]= ν[A]+ν[B] and ν[A†]=−ν[A], for arbitrary A(k) and
B(k).

There are two constraints on the winding numbers of the blocks of the
Floquet operator F representing the first part of the drive cycle, both
following from the unitarity of F. First, substituting Eqs. (3.11) directly
into F(k)F(k)† = 1 gives ac† =−bd†. Taking the winding numbers of the
two sides gives

ν[c]−ν[a]= ν[d]−ν[b]. (3.12)

Second, F represents an operation on an open chain, terminated at its
ends. Thus, the average displacement of a state in the bulk, with this
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3 CS and bulk-boundary correspondence in driven 1D systems

average going over all possible states, has to be zero: Otherwise, unitar-
ity of F would be violated in the end regions. This average displacement
is given by the winding number of F itself,98 which, since F is unitary,
can be written as

ν[F]= 1
2πi

∫
dkTr F†(k)

d
dk

F(k). (3.13)

Inserting the decomposition of F in the canonical basis, Eq. (3.11), into
ν[F]= 0, gives

ν[F]= ν[a]+ν[c]+ν[b]+ν[d]= 0. (3.14)

To use the relations derived above, we note, that

U = e−iHeff = cosHeff − isinHeff. (3.15)

Because of the block off-diagonal structure of Heff, the first term in the
sum above corresponds to the block diagonal and the second to the block
off-diagonal parts of U. Now since sign(ε) = sign (sinε) for ε ∈ [−π,π],
the winding number of Heff is the same as that of sinHeff. Therefore,
in Eq. (3.9) above, we can substitute the off-diagonal block of U in a
canonical basis: h → iU12. For the topological invariants of the effective
Hamiltonians H′

eff and H′′
eff, using Eqs. (3.6), substituting the blocks of

F, we obtain ν′ = ν[a†b− c†d] and ν′′ = ν[−ac† + bd†]. We can simplify
these using the unitarity of F, whereby a†b+ c†d = 0 and ac† +bd† = 0,
and the fact that ν[αc]= ν[c] for any α ∈C. We obtain

ν′ = ν[b]−ν[a]= ν[d]−ν[c]; (3.16a)

ν′′ = ν[a]−ν[c]= ν[b]−ν[d]. (3.16b)

Inserting these equations into Eqs. (3.10), together with Eqs. (3.14)
and (3.12), gives us

ν0 = ν[b]; νπ = ν[d]. (3.17)

These equations are the central result of this chapter: In one-dimensional
periodically driven systems with CS, the windings of the determinant
of the off-diagonal and the diagonal blocks of the Floquet operator in
a canonical basis fix the number of end states at quasienergy 0 and π,
respectively.

62



3.2 Floquet formalism

Eqs. (3.17) determine the topological invariant ν0 (νπ) even if the
gap of Heff at quasienergy ε = π (ε = 0) is closed, a problem raised by
Tong et al.172 Consider

cosH′
eff = 1−2

(
c†c 0
0 b†b

)
= 2

(
a†a 0
0 d†d

)
−1. (3.18)

If there is a quasimomentum k where the gap of H′
eff closes around

ε= 0, then cosH′
eff(k) has a doubly degenerate eigenvalue +1. At that k,

using the first relation of Eq. (3.18), either c(k) or b(k) (or both) have an
eigenvalue zero. This means ν0 is not well defined, and neither are ν′ or
ν′′. However, νπ of Eq. (3.17) is still well defined. Similarly, if at some
k the gap of H′

eff around ε=π closes, then, using the second relation of
Eq. (3.18), a(k) or d(k) must have an eigenvalue zero, and νπ is not well
defined, but ν0 is.

3.2.4 Geometrical picture
In case of a two-band 1D Floquet insulator with CS, we can give a
geometrical interpretation for the topological invariants ν0 and νπ. We
relegate details to Appendix 3.B, and just summarize the results here.

Disregarding an irrelevant global phase, the evolution operator for
the first half of the period reads F(k) = e−i~f (k)~σ, with ~f (k) a three-
dimensional real vector inside a unit sphere of radius π, all points
on whose surface are identified with each other, and ~σ the vector of
Pauli matrices. As k traverses the Brillouin zone [−π,π], ~f (k) describes
a directed, smooth, closed loop. If the gap around ε= 0 is open, the loop
of ~f (k) cannot touch the z-axis or the surface of the sphere, and we find
that the invariant ν0 is given by the winding of the loop around the z
axis. If the gap of Heff around ε = π is open, the path of ~f (k) cannot
touch the circle in the xy plane of radius π/2. In that case, νπ is given
by the winding of the loop around that circle.

3.2.5 Tuning the invariants
Formulas (3.17) allow for a simple way to tune the topological invariants
of a periodically driven system, using a unitary sublattice shift operation
S(n), whose bulk part reads

S(n,k)= exp(−inΓk). (3.19)
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3 CS and bulk-boundary correspondence in driven 1D systems

In the bulk, S(n) displaces sites on sublattice A (B) to the right (left) by
n sites. Therefore, at the left/right end, under the effect of S(n), n states
must switch sublattices, transitioning B → A / A → B (if n is negative,
vice versa). How this transition happens depends on the details of S(n)
that have no influence on the topological invariants (nor on the number
of end states).

To tune the invariants of a periodically driven system, obeying Eq. (3.6),
with some F = F (0), insert extra sublattice shifts before and after F (0),

F (1) = S(m)F (0)S(n). (3.20)

Substituting into Eqs. (3.17), we obtain directly the topological invari-
ants of the modified driven system,

ν(1)
0 = ν(0)

0 +m−n; ν(1)
π = ν(0)

π −m−n. (3.21)

3.3 Example: the periodically driven SSH
model

We now illustrate the concepts introduced above on the PDSSH model,
given by

HSSH(t)=
M∑
j=1

(
v(t)c2 j c

†
2 j−1 +w(t)c2 j+1c†

2 j

)
+h.c., (3.22)

where cx annihilates the fermion on site x. For simplicity, we keep the
intracell hopping amplitudes v(t) and the intercell hopping amplitudes
w(t) real, homogeneous in space, and modulated periodically, with period
1. We fix open boundary conditions by identifying c2M+1 = 0 (as opposed
to periodic boundary conditions, which would require c2M+1 = c1).

The sublattice shift operator S(n) can be realized149 by the following
drive sequence: a pulse of v of area π/2, followed by a pulse of w of
area −π/2. This allows us to realize a discrete time quantum walk as a
periodically driven lattice Hamiltonian.

As a concrete example, we consider the PDSSH model on an open
chain of 40 sites (M = 20 unit cells). The drive sequence, shown in
Fig. 3.1 (a), consists of a train of nine pulses, chosen to be Gaussian for
numerical convenience, applied to v and w homogeneously. We ensure
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Figure 3.1: Floquet eigenstates of a periodically driven SSH chain of 40 sites. (a) Time dependence of
the intracell (continuous) and intercell (dotted) hopping amplitudes. (b) The curve ~f (k), which winds
-1 times around the z axis (red) and -2 times around the circle of radius π/2 on the xy plane, showing
that ν0 = −1 and νπ = −2. (c) Local Density of States of the effective Hamiltonian Heff(0). (d) Time
evolution of the position distribution |〈Ψ(t)|x〉|2 of the single end state with ε = 0, and (e,f) of two
orthogonal end states with ε=π.

CS by way of Eq. (3.6), with t1 = 0.5, by choosing both v(t) and w(t) to be
even functions of time.

We follow the recipe of Eq. (3.20), to realize ν0 =−1,νπ =−2. The role
of role of F (0) is played by the first half of the central Gaussian pulse,
where w = 5v: thus, it is a short pulse e−iπ/2H1 , where H1 is an SSH
Hamiltonian in the topologically nontrivial phase. So, we have ν(0)

0 = 1,
ν(0)
π = 0. To test the robustness of the recipe, we realize the sublattice

displacement S(n = 2) only approximately by allowing considerable
overlaps between the π/2 area pulses of v and the −π/2 area pulses of w.

We find that the bulk topological invariants and the end states agree
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3 CS and bulk-boundary correspondence in driven 1D systems

perfectly with the theory above. The invariants are the winding numbers
of the curve of Fig. 3.1 (b), which are ν0 =−1,νπ =−2. Correspondingly,
in the local density of states, Fig. 3.1 (c), at each end, we find two end
states at ε = π, and 1 end state at ε = 0, exclusively localized on B/A
sublattice at the left/right end. The time dependence of these end states,
Fig. 3.1 (d-f), shows that that they indeed spread over both sublattices
at intermediate times, but return to a single sublattice at t = 0.5. For
the 0/π energy end states, this is the same/opposite sublattice as that
occupied at t = 0.

Since we restricted the hopping amplitudes v and w to be real, the
instantaneous SSH Hamiltonian, Eq. (3.22), has particle-hole symmetry
(PHS), represented by ΓK , where K denotes complex conjugation.The
PDSSH model inherits this symmetry, and therefore, its the end states
are analogous to 0 and π quasienergy Floquet Majorana fermions. If
CS is violated, but PHS is maintained, only the parity of the number of
the Floquet Majorana fermions at each edge and at each quasienergy
0,π is protected. There is a corresponding pair of bulk Z2 topological
invariants.84 In the case of the PDSSH model, we can follow the con-
struction of Jiang et al.84 and find that the Z2 invariants can simply be
obtained from the complete areas of the pulses of v and w. For details,
see Appendix 3.C.

3.4 Outlook
The topologically protected states our theory predicts should have ex-
perimental signatures in different kinds of setups. Optical experiments,
where edge states are routinely imaged directly,99,103 are in the best po-
sition to test our predictions. Alternatively, in transport measurements,
the end states should give rise to transmission resonances, similar to
the ones predicted for Floquet Majorana fermions.105

Our work leaves a couple of theoretical questions open. First, is the
decomposition of the drive cycle U into F and ΓF†Γ, as per Eqs. (3.4-3.6),
a necessary requirement for a periodically driven Hamiltonian to have
CS? For previously studied cases170,172 we can find such a decomposi-
tion, but if a counterexample were to be found, the theory we presented
here would need to be expanded. Second, the bulk effective Hamiltonian
Heff(τ,k) of a one-dimensional Floquet insulator (with or without CS)
is periodic in both τ and k, and thus has a Chern number. In all the
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examples we examined numerically, we found this Chern number to be
zero, but can it take on a nonzero value? If so, what is the physical inter-
pretation of this number? Last, how can the topological invariants we
found here be formulated in the frequency domain149? This is especially
an interesting question, as previous work on the PDSSH model using
this approach70 has not detected the pair of topological invariants we
found.

3.A Derivation of Eqs. (3.10)

To derive Eqs. (3.10), we follow closely the line of thought of Ref. 14. We
consider an open, periodically driven chain with CS, which has one bulk
and two ends. Let n′

A/B,0/π denote the number of end states at the left
end on the A/B sublattice at quasienergy 0/π of the Hamiltonian H′

eff,
and n′′

A/B,0/π the corresponding quantities for H′′
eff. The bulk-boundary

correspondence for the effective Hamiltonians H′
eff and H′′

eff reads

ν′ = n′
A,0 −n′

B,0 +n′
A,π−n′

B,π; (3.23a)

ν′′ = n′′
A,0 −n′′

B,0 +n′′
A,π−n′′

B,π. (3.23b)

Topologically protected end states of periodically driven one-dimen-
sional lattices with CS can be divided to two classes: (a), they have
quasienergy 0 and are on the same sublattice at τ′ and τ′′, or (b) have
quasienergy π and are on opposite sublattices. Indeed, consider a topo-
logically protected end state |Ψ′〉, which is an eigenstate of U ′ with
eigenvalue e−iε, with ε ∈ {0,π}. It is only on a single sublattice: Γ |Ψ′〉 =
e−iγ |Ψ′〉, with γ = 0/π corresponding to sublattice A/B. Now consider
the same end state at the other special time τ′′, |Ψ′′〉 = F |Ψ′〉. This is an
eigenstate of U ′′ with the same quasienergy ε. This state is also on one
sublattice only, because ΓF |Ψ′〉 =ΓFΓeiγ |Ψ′〉 =ΓFΓei(γ−ε)ΓF−1ΓFΨ′ =
ei(γ−ε)F |Ψ′〉 . So |Ψ′′〉 is on the same (opposite) sublattice as |Ψ′〉 if ε= 0
(ε=π). This can be written succinctly as

n′′
A,π−n′

B,π = n′′
B,π−n′

A,π = 0; (3.24a)

n′′
A,0 −n′

A,0 = n′′
B,0 −n′

B,0 = 0. (3.24b)
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Using Eqs. (3.24) to simplify ν′+ν′′ and ν′−ν′′ from Eqs. (3.23), we
obtain

ν0 = ν′+ν′′
2

; νπ = ν′−ν′′
2

, (3.25)

which are Eqs. (3.10) we set out to demonstrate.

3.B Geometrical picture
For a two-band 1D Floquet insulator with CS, we can give a direct
geometrical picture for the topological invariants ν0 and νπ. Since the
global phase cannot wind (F cannot have quasienergy winding), it can
safely be disregarded, and the evolution operator for the first half of the
period then reads F(k) = e−i~f (k)~σ. Here ~f is a 3-dimensional vector, of
magnitude f ∈ [0,π] and~σ the vector of Pauli matrices. The k-dependent
vector ~f (k) is restricted inside a spherical ball of radius π, with all points
on the surface identified with each other. The a,b, c,d in Eq. (3.11) are
just complex number valued functions of k,

F =
(
cos f − isin f cosθ −isin f sinθe−iφ

−isin f sinθeiφ cos f + isin f cosθ

)
, (3.26)

using spherical coordinates. As k traverses the Brillouin zone, ~f (k)
describes a directed, smooth, closed loop, that can at some k exit the
ball at a point on the surface and reenter at the same k at the antipodal
point.

If the gap around ε= 0 is open, the loop of ~f (k) cannot touch the z-axis,
nor the surface of the sphere. Thus, the loop has a well defined winding
number around the z axis,

ν0 = 1
2π

∫
dk

d
dk

φ(k). (3.27)

Since both f (k),θ(k) ∈ [0,π] for all k, this is the same as the winding
number ν0 obtained by substituting (3.26) into Eq. (3.17).

The gap of Heff around ε= π closes when ~f (k) is on the circle on the
nz = 0 plane of radius π/2 (nz = 0 and f =π/2). Thus, if the gap around
ε=π is open, the loop of ~f (k) has a well defined winding number around
that circle. To calculate this winding number, first discard the φ informa-
tion, by setting φ= 0. This transforms the 3D closed path of ~f (k) into a
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2D path in a semicircle, with the points on the circular boundary with the
same x coordinate identified. We need the winding of this path around
the single point, f =π/2,nz = 0. This is found by deforming the semicir-
cle yet again, by the transformation ( f sinθ, f cosθ)→ (cos f ,sin f cosθ),
into circle, into whose origin the point f = π/2,nz = 0 is mapped. The
winding number is then

νπ = 1
2π

∫
dk

d
dk

arctan
cos f (k)

sin f (k)cosθ(k)
(3.28)

which is the same as νπ obtained by substituting Eq. (3.26) into Eq. (3.17b).

3.C The Z2×Z2 invariant
The PDSSH model, Eq. (3.22), has particle-hole symmetry (PHS), repre-
sented by ΓK , where K stands for complex conjugation. This antiunitary
symmetry is inherited by the effective Hamiltonian from the instanta-
neous Hamiltonian.98

If we break CS in the PDSSH model, an end state can remain protected
if it can have no PHS partner. This happens whenever the number of end
states at a given energy and at a given end is odd: then, after breaking
CS, a single end state is still protected by PHS. We illustrate this on
the PDSSH model. If we break CS by delaying the intracell hopping
amplitude v by δt with respect to the intercell hopping w pulses, as
shown in Fig. 3.2 (a), the lone end state at ε = 0 is still topologically
protected, while the pair of end states at ε=π hybridize and move away
from the edge of the energy Brillouin zone (except for a time shift of 0.5,
where the conditions for CS are again fulfilled). To break PHS, we can
add a sublattice potential to the SSH model, obtaining the periodically
driven Rice-Mele (PDRM) model,

HRM(t)= HSSH(t)+u(t)
M∑

x=1

(
c†

2x−1c2x−1 − c†
2xc2x

)
. (3.29)

Now, CS still holds if in addition to v(t) and w(t) being even functions of
time, u(t) is odd: u(t)=−u(−t). We choose u(t)= sin(2πt). This time, if
we break CS by shifting the v(t) pulse in time with respect to the w(t)
and u(t) pulses, as shown in Fig. 3.2 (b), all end states move away from
their original energies (again except for the time shift of 0.5).
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Figure 3.2: Effect of breaking CS by time-shifting the pulse of the intracell hopping v(t) with respect
to the other pulses. (a) In the PDSSH model, the extra PHS protects the end states at ε= 0. (b) In the
PDRM model, there is no PHS, and all end state energies are affected by the time shift.

The extra PHS of the PDSSH model brings with it an extra pair of
bulk topological invariants, (Q0,Qπ) ∈Z2×Z2, which predict the number
of end states protected by PHS at 0 and π energy. If we have CS, the
invariants are just Qε = νεmod 2; if CS is broken, however, they can only
be obtained by a procedure involving analytic continuation based on the
full cycle H(t), as found by Jiang et al.84

We find that for the PDSSH model, the invariant of Jiang et al.84 can
be given by simple closed formulas. At the momenta k = 0 and k = π,
the Hamiltonians at different times all commute with each other, and
therefore, all that matters is the total area under the v and w pulses,

V =
∫ 1

0
v(t)dt; W =

∫ 1

0
w(t)dt. (3.30)

A short calculation gives

Q0 = sgn
(
sin

V +W
2

sin
V −W

2

)
; (3.31)

Q0Qπ = sgn
(
sin(V +W)sin(V −W)

)
. (3.32)

3.D Mapping to the discrete time quantum
walk

The PDSSH model, besides being the simplest periodically driven topo-
logical insulator, also gives a lattice realization of the discrete time
split-step quantum walk. For the quantum walk, we need to define the
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3.D Mapping to the discrete time quantum walk

basis states |R/L, x〉, for coin state predicting the next step right/left, and
the walker at position x. These basis states are identified with states on
the SSH chain as

c†
2x+1 |0〉 = |R, x〉 ; (3.33)

c†
2x |0〉 =−i |L, x〉 . (3.34)

The basic operations of the split-step walk are rotations of the internal
state of the walker, R(θ) = e−iθσy , and shifts of the R/L internal state
to the right/left, given by S± = e−ik(σz±1). One timestep of the split-step
walk is defined as

U = S−e−iθ2σy S+e−iθ1σy . (3.35)

A pulse of v of area V followed by a pulse of w of area W , in the basis of
Eq. 3.34, can be written as

U = e−iW(coskσy−sinkσx)e−iVσy , (3.36)

which reproduces the timestep of the split-step walk with the angles

θ2 =W +π/2; θ1 =V −π/2. (3.37)

The above mapping is important as it allows us to apply results about
the topological phases of periodically driven systems to quantum walks.

As an example, consider the invariants due to CS, via Eqs. (3.17),
for the simple quantum walk, given by U = S−S+e−iθσy . According
to the mapping above, the winding numbers are ν0 = ν[−i(s+ ceik)],
νπ = ν[c−se−ik], with c = cos(π/4+θ/2), s = sin(π/4+θ/2). We get (ν0,νπ)=
(+1,0) if |c| > |s|, i.e., if θ ∈ [−π,0], and (0,−1) if θ ∈ [0,π]. This is shifted
by (1/2,−1/2) from the invariants obtained by the scattering matrix
method,169 but such a shift is not physical: both methods predict a pair
of end states at 0 and π quasienergy at an interface between bulks with
θ < 0 and θ > 0, as seen in simulations.13

Another example is the calculation of the invariants due to PHS in
the split-step quantum walk. Compared to the invariants Q(gap)

0 ,Q(gap)
π ,

defined via gap closings in the parameter space,13 the above mapping
to the PDSSH model, together with Eqs. (3.32) gives Q0 = Q(gap)

0 , and
Qπ = 1−Q(gap)

π , which agrees in all the predictions concerning end states
at interfaces. Compared to the scattering matrix topological invari-
ants,169 we of course find the same constant shift by (1/2,−1/2) as for the
invariants due to CS, which has no influence on the physical predictions.
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4 Attractor-repeller pair of
topological zero-modes in a
nonlinear quantum walk

4.1 Introduction

A classical random walk is invariably associated with diffusive motion,
but quantum superposition and interference allow for a more varied dy-
namics. A quantum walk can explore phase space more rapidly than its
classical counterpart,2,59,124 a shift from diffusive to ballistic dynamics
that is at the origin of the quadratic speed-up of quantum search algo-
rithms.91,175 Diffusion is recovered for temporal disorder, while spatial
disorder can induce an Anderson quantum phase transition to localized
wave functions.3,4,54,69,85,134,158

Two recent developments have further enriched the phenomenology:
One development is the discovery that quantum walks can exhibit a
topological phase transition, at which a bound state (a so-called zero-
mode) appears at a boundary or domain wall.15,35,88,99,101,141,148,184,186 A
second development involves the introduction of nonlinearities in the dy-
namics.107,110 These have been associated with soliton structures48,130

and investigated as a means to speed up the quantum search.126 Here
we wish to connect these two separate developments, and explore how
nonlinearities manifest themselves in a topological quantum walk.

We consider the simplest case of a one-dimensional discrete-time
quantum walk in the chiral orthogonal symmetry class (also known
as class BDI, familiar from the Su-Schrieffer-Heeger model166). The
topological phase transition manifests itself by the appearance of a
pair of zero-modes of opposite chirality. We demonstrate that these
zero-modes may survive in the presence of nonlinearities and moreover
acquire a special role as the attractor and repeller of the nonlinear
dynamics.
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4 Attractor-repeller pair of zero-modes in a nonlinear quantum walk

4.2 Formulation of the linear quantum
walk

We study the one-dimensional dynamics of a two-level system, repre-
sented by a spin- 1

2 degree of freedom on the lattice x ∈Z. We employ a
stroboscopic description, so that time t ∈Z is discretized as well as space.
The linear dynamics is obtained by repeated applications of a unitary
operator U on a spinor ψ,

ψt = (U)tψ0, ψt(x)= (u(x, t),v(x, t)) . (4.1)

Quite generally, a single time step of such a discrete-time quantum walk
can be decomposed into two operations: A rotation Rϑ of the spinor and
a shift S to the left or to the right dependent on the spin component:

Rϑψ= e−iϑσyψ= (ucosϑ−vsinϑ,usinϑ+vcosϑ),

S (u(x, t),v(x, t))= (u(x−1, t),v(x+1, t)) . (4.2)

We can combine the two operations as SRϑ or RϑS, but we prefer to
take the symmetrized product,14

U = Rϑ/2SRϑ/2. (4.3)

The evolution operator (4.3) is representative of a chiral orthogonal
quantum walk, meaning that U =U∗ is real orthogonal (particle-hole
symmetry) and(σxU)2 = 1 (chiral symmetry). This BDI symmetry class
supports a topologically protected zero-mode bound to a domain wall
where ϑ(x) changes sign. Its time-independent state Ψ±(x) satisfies*

UΨ± =Ψ±, σxΨ± =±Ψ±. (4.4)

The eigenvalue ±1 of the Pauli matrix σx distinguishes the chirality of
the zero-mode.†

*In addition to the zero-mode with UΨ =Ψ, the domain wall may also support a
bound state with UΨ=−Ψ. Because this state is rapidly oscillating on the scale of the
lattice constant, it plays no role in the long-wave length dynamics considered here.

†The fact that the zero-mode is an eigenstate of σx follows from UΨ=Ψ and UσxΨ=
σx(σxU)2U−1Ψ=σxΨ. Since the zero-mode is nondegenerate, the two states Ψ and σxΨ
must be linearly related.
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4.3 Introduction of a nonlinearity

4.3 Introduction of a nonlinearity
We now introduce a nonlinearity (strength κ) into the quantum walk by
inserting a ψ-dependent rotation at each time step,

ψt+1(x)=Uψ̄t(x), (4.5a)

ψ̄t(x)= exp
(−iκMz(x, t)σy

)
ψt(x), (4.5b)

Mz(x, t)=ψ†
t (x)σzψt(x)= |u(x, t)|2 −|v(x, t)|2. (4.5c)

This nonlinear time-evolution conserves particle-hole symmetry (a real
ψ remains real), but chiral symmetry no longer applies. Still, a zero-
mode Ψ± of the linear problem (κ= 0) remains a stationary state when
we switch on the nonlinearity, because Mz = 0 for any eigenstate of σx.

To appreciate the new features introduced by the nonlinearity, it is
helpful to look at a uniform ϑ and a real initial state ψ = (cosα,sinα)
without any spatial dependence. In one time step the angle α is mapped
to α+ϑ+κcos2α. This map is invertible if |κ| ≤ 1/2, but it is not area
preserving. The phase space contracts around one of two attractive fixed
points, defined by cos2αc =−ϑ/κ, sin2αc > 0. Note that this relaxation
does not involve any loss of particles:

∑
x(|u|2 +|v|2) is conserved by the

nonlinear dynamics.
As we will now show, for a spatially dependent ϑ(x) the zero-mode at

a domain wall becomes an attractive or repulsive fixed point, depending
on its chirality. We first present numerical evidence and then give the
analytical solution in the continuum limit.

4.4 Collapse onto a zero-mode
We take a lattice of length L with periodic boundary conditions, −L/2<
x < L/2. The profile of ϑ(x) consists of two domains, with domain walls
of width λ¿ L at x± =±L/4:

ϑ (x)=
{
ϑ0 tanh(x/λ−L/4λ) for 0< x < L/2,
−ϑ0 tanh(x/λ+L/4λ) for −L/2< x < 0,

(4.6)

see Fig. 4.1. As initial condition for the numerics we take a real Gaussian
wave packet centered at x = 0,

ψ0 = (u0,u0), u0(x)= (2σ
p
π)−1/2 exp(−x2/2σ2), (4.7)
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4 Attractor-repeller pair of zero-modes in a nonlinear quantum walk

Figure 4.1: Solid curve: Position-dependent rotation angle ϑ(x) with a pair of domain walls at which
the angle changes sign. Plotted is the profile (4.6) with L = 500, λ= 10, ϑ0 = 0.4 used in the numerical
simulations. Dashed curves: The two (unnormalized) spinor components of the zero-modes bound to
the two domain walls, calculated from Eq. (4.9). The state Ψ± is an eigenvector of σx with eigenvalue
±1.

normalized to unity,
∫
ψ

†
0ψ0 dx = 1. Fig. 4.2 shows how this state col-

lapses onto one of the two domain walls, depending on the sign of κ.
For the analytics we take the continuum limit of the discrete-time

quantum walk, obtained from Eq. (4.5) under the assumption that the
change δψ in one time step δt is infinitesimal. The state-dependent
rotation contributes a term −iδt(ϑ+κψ†σzψ)σyψ to δψ, while the state-
dependent shift contributes −δtσz∂ψ/∂x, resulting in the Dirac equa-
tion124

i
∂ψ

∂t
=−iσz

∂ψ

∂x
+ (
ϑ (x)+κψ†σzψ

)
σyψ. (4.8)

For large L the two domain walls may be considered separately. The
zero-mode bound to the domain wall at x± =±L/4 is given by

Ψ± ∝ (u±,±u±), u±(x)= exp
(
±

∫ 0

x
ϑ(x′)dx′

)
. (4.9)

The time-independent state Ψ± is an eigenvector of σx with eigenvalue
±1, selected by the sign of ϑ′(x) at the domain wall.

We now perform a linear stability analysis for a real perturbation
ψ(x, t)=Ψ±(x)+η(x, t) of the zero-mode. To linear order in η we have

∂η

∂t
=−σz

∂η

∂x
−ϑ(x)iσyη−2κu2

±(x)(±η−σxη). (4.10)

We focus on perturbations η= eikxη(t) of the zero-mode with wave num-
ber k & 1/λ, so we may neglect the spatial dependence of ϑ(x) and u±(x).
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4.4 Collapse onto a zero-mode

Figure 4.2: Time-evolution of the density ψ
†
tψt , starting from a real Gaussian wave packet ψ0 =

(u0,u0) (given by Eq. (4.7) with σ2 = 50), for the quantum walk with rotation angle profile of Fig. 4.1.
The three panels show the result for the linear quantum walk (panel a, κ = 0) and for the nonlinear
quantum walk (panels b and c, κ=±1.4). Depending on the sign of the nonlinearity, the state collapses
onto the zero-mode Ψ+ or Ψ−.
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4 Attractor-repeller pair of zero-modes in a nonlinear quantum walk

The resulting ordinary differential equation,

dη
dt

=−Γη, Γ= ikσz + iϑσy +2κu2
±(±1−σx), (4.11)

has relaxation matrix Γ with eigenvalues µ1,µ2 given by

µ1 =±2κu2
±+∆, µ2 =±2κu2

±−∆,

∆2 = 4κ2u4
±−k2 −ϑ2.

(4.12)

We conclude that for κ> 0 the zero-mode Ψ+ is an attractor (Reµ1,µ2 >
0) and Ψ− is a repeller (Reµ1,µ2 < 0), while for κ < 0 the roles are
interchanged.

4.5 Initial states without particle-hole
symmetry

Particle-hole symmetry ensures that a real ψ remains real, but we
might start with an initially complex state and ask for the stability of
the zero-mode under complex perturbations. Substitution into Eq. (4.8)
of ψ=Ψ±+η+ iζ, with real Ψ±,η,ζ, shows that to first order in η,ζ the
nonlinear term contains only the real perturbation:

∂

∂t
(η+ iζ)= −σz

∂

∂x
(η+ iζ)−ϑ(x)iσy(η+ iζ)

−2κu2
±(x)(±η−σxη). (4.13)

The relaxation matrix for the real perturbation is as in Eq. (4.11),
with eigenvalues µ1,µ2 given by Eq. (4.12). But the relaxation matrix
for the imaginary perturbation,

dζ
dt

=−Γ0ζ, Γ0 = ikσz + iϑσy, (4.14)

has purely imaginary eigenvalues,

µ3 = i
√

k2 +ϑ2, µ4 =−i
√

k2 +ϑ2. (4.15)

More generally, a perturbation of a complex zero-mode

Ψ±(x)= eiφ(u±,u±) (4.16)
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4.6 Discussion

Figure 4.3: Same as Fig. 4.2b, but with a complex initial state ψ0 = (u0, iu0).

Figure 4.4: Decomposition of the state ψ = eiφ(η+ iζ) at a late time (t = 8 ·104), starting from the
complex state ψ0 = (u0,u0 + iu0), with u0 the Gaussian wave packet (4.7) (κ = 1.4, other parameters
as in Fig. 4.1). The spinor η = (η1,η2) is in-phase with the zero-mode Ψ+, the spinor ζ = (ζ1,ζ2) is
out-of-phase.

has (for κ> 0) a decaying in-phase component eiφη and a nondecaying
out-of-phase component ieiφζ [with real spinors η= (η1,η2),ζ= (ζ1,ζ2)].
Figs. 4.3 and 4.4 illustrate the resulting localized peak on the extended
background.

4.6 Discussion
Fig. 4.2 summarizes our key finding: While the linear quantum walk is
only slightly perturbed by the emergence of zero-modes at a topological
phase transition, once we turn on the nonlinearity the wave packet is
steered towards a domain wall and trapped in a zero-mode of definite chi-
rality. This striking dynamics follows from a specific model calculation.
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4 Attractor-repeller pair of zero-modes in a nonlinear quantum walk

Figure 4.5: Optical Galton board consisting of an array of beam splitters with an adjustable trans-
mission, conditioned on the output of a pair of photodetectors. The left panel shows a single element
of the array, the right panel shows their combination.

How generic is it, and how might it be realized in an experiment?
For the experimental connection, we recall that quantum walks can

be realized with true quantum mechanical elements123 (ion traps, cold
atoms, quantum dots) — or they can be simulated with classical waves,
as in the optical Galton board32,50,82,102,160. Such a simulated quantum
walk combines linear optical elements to mimic the quantum evolu-
tion of a spin-1/2 degree of freedom. Nonlinearities can be introduced
via nonlinear optics,164 or while staying within linear optics by intro-
ducing a feed-forward element conditioned on the output of a photode-
tector.163 A scheme of the latter type* is illustrated in Fig. 4.5. This
optical Galton board simulates a quantum walk with evolution operator
SRϑ exp(−iκMzσy), which differs from Eqs. (4.3) and (4.5) by the order
of the operators (SRϑ instead of Rϑ/2SRϑ/2). In the continuum limit of
Eq. (4.8) this order is irrelevant, and we have checked numerically that
the dynamics is essentially the same as in Fig. 4.2.

Concerning the generality of the result, we have two necessary condi-
tions for the nonlinearity: it should preserve the zero-mode as a fixed
point of the dynamics and it should contract phase space, breaking

*In the implementation of an optical Galton board shown in Fig. 4.5, the photon
polarization plays no role and the spin-1/2 degree of freedom of the quantum walk is fully
orbital. 15 The adjustable beam splitter combines the rotation and shift operators Rϑ and
S in a single step. Alternative split-step implementations can use adjustable polarizers
for Rϑ, followed by polarizing beam splitters 50 or birefringent displacers 99 for S.
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the area-preservation of the linear dynamics. Both conditions hold if
Eq. (4.5) is replaced by

ψt+1 =Uψ̄t, ψ̄t = exp(−iκ̃M̃n̂ · σ̂)ψt, (4.17)

M̃ =ψ†
t (m̂ · σ̂)ψt,

with σ̂= (σx,σy,σz) and two unit vectors n̂ = (0,ny,nz) and m̂ = (0,my,mz),
satisfying m̂× n̂ 6= 0 (otherwise the map would be area preserving).
Particle-hole symmetry is broken for nz 6= 0, but the zero-modeΨ± is pre-
served. A complex perturbation δψ has relaxation matrix dδψ=−Γ̃δψ
with eigenvalues µ̃n, n = 1,2,3,4, given by Eqs. (4.12) and (4.15), upon
the replacement κ 7→ κ̃(n̂×m̂)· x̂. The attractor-repeller pair is preserved,
demonstrating the generality of our findings.

We finally note that discrete-time quantum walks have been used as
a design principle for quantum algorithms. For instance, the search
algorithms of Refs. 11,162 can be understood in terms of bound states
in effectively one-dimensional quantum walks. The key observations in
this chapter, namely the convergence towards certain bound states from
arbitrary initial states, as well as the accelerated escape from unwanted
bound states, thus may have promising implications for quantum algo-
rithms. This is in line with several other recent results on continuous
time quantum walks, where nonlinearities are observed to speed up
quantum algorithms.126
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5 Quench dynamics of
fermion-parity switches in a
Josephson junction

5.1 Introduction

Superconductors connected by a Josephson junction can freely exchange
pairs of electrons, but single-electron transfer is suppressed by the
superconducting gap.171 The tunneling of an unpaired electron into
the junction is an incoherent, stochastic source of charge noise in a
Cooper pair transistor.41 In contrast to this undesirable “quasiparticle
poisoning”, a controlled phase-coherent way to exchange single quasi-
particles with a superconductor would be a desirable tool, that would
complement existing single-electron sources in normal metals and semi-
conductors.30,31,52,64,121,136

Here we propose to exploit the phenomenon of a fermion-parity switch
to transfer, phase coherently and on demand, a single quasiparticle of
adjustable charge Q from a Josephson junction to a metal probe (see
Fig. 5.1a). A fermion-parity switch is a topological phase transition
(zero-dimensional class D in the “ten-fold way” classification9,150) where
the superconducting condensate can lower its ground-state energy by in-
corporating an unpaired electron and changing the number of electrons
in the ground state from νF even to νF odd,17 leaving behind as “defects”
an odd number of quasiparticle excitations above the ground state.

In the quasiparticle excitation spectrum, the switch in the ground-
state fermion parity is signaled by the crossing of a pair of bound states
(Andreev levels) at E = 0 (the Fermi level). There may be an even
number of switches when the phase difference φ across the Josephson
junction is incremented by 2π — if there is an odd number of switches
(as in Fig. 5.1b) the superconductor is topologically nontrivial. The two
lowest Andreev levels ±E0(φ) of a nontrivial Josephson junction have a
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Figure 5.1: (a) Josephson junction formed by a superconducting ring interrupted by a nanowire.
The junction contains two Majorana zero-modes, separated by a tunnel barrier (height V0). A time-
dependent flux Φ(t) through the ring drives the phase φ(t) = Φ(t)× 2e/~ through a fermion-parity
switch, at which a quasiparticle is injected as a current I(t) into the grounded metal probe. (b) Pair of
phase-dependent Andreev levels ±E0(φ) in the closed Josephson junction (uncoupled from the metal).
The switch in the ground-state fermion parity νF is signaled by a level crossing.

cos(φ/2) phase dependence,96

E0(φ)=∆0
√

T0 cos(φ/2). (5.1)

The superconducting gap is ∆0 and T0 ∈ (0,1) is the transmission proba-
bility through the junction. For small T0 this describes a pair of bound
states at nearly zero energy, consisting of an equal-weight superposition
of electron and hole excitations. Such a charge-neutral quasiparticle
is called a “Majorana fermion” (or Majorana zero-mode) because of the
identity of particle and antiparticle. These objects have unusual non-
Abelian statistics (see Refs. 24,45,113,177 for recent reviews), but here
it is only their charge-neutrality that matters.

Fermion-parity switches are actively studied, theoretically and ex-
perimentally,* for the connection to topological superconductivity and
Majorana fermions.8,23,75,143 The dynamics of the transition is what con-
cerns us here, in particular the quench dynamics, where φ(t) is driven
rapidly through the switch from even to odd ground-state fermion parity.

The geometry of Fig. 5.1 that we consider is modeled after existing
experiments (e.g., Ref. 38), where a mesoscopic Josephson junction is
formed by a semiconductor nanowire connecting two arms of a supercon-
ducting ring. A time-dependent flux Φ(t) enclosed by the ring imposes a

*For recent theoretical work, see Refs. 21,42,92,153,173,183. For expiremental work,
see Refs. 38,111,112
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5.2 Microscopic model

time dependence on the phase difference φ(t)=Φ(t)×2e/~ across the junc-
tion. When the Josephson junction is quenched through a fermion-parity
switch there will appear a current pulse I(t) from the superconductor (S)
into the metal (N). We seek the quasiparticle content of that pulse. How
many quasiparticles are transferred? What is the transferred charge?
In particular, we wish to establish the conditions under which a single
quasiparticle is transferred with vanishing charge expectation value.

We find that the quench dynamics transfers one single quasiparticle
from the superconductor to the metal, as a wave packet that is a coherent
superposition of electron and hole states near the Fermi level. A nearly
charge-neutral equal-weight superposition is produced in a topologically
nontrivial superconductor, if the metal probe couples predominantly to
one of the two spatially separated Majorana zero-modes. More generally,
for two arbitrary coupling constants γ1,γ2 we derive that the quantum
quench injects a charge

Qquench = 2e
p
γ1γ2/(γ1 +γ2) (5.2)

into a single-channel point contact. For a multi-channel point contact
the injected charge is reduced further by a factor R determined by the
peak height Gpeak = (4e2/h)(1−R2) of the point contact conductance at
resonance.

5.2 Microscopic model

Before proceeding to the mathematical analysis of the quench dynamics,
we explore the relevant physical parameters in a microscopic model165

for an InSb nanowire (length L = 2.5µm, width W = 0.25µm, Fermi
energy EF = 1.52meV, corresponding to 4 occupied electron subbands),
coupled at both ends to a Nb superconductor (induced gap ∆0 = 0.4meV).
Spin-rotation symmetry is broken by Rashba spin-orbit coupling (char-
acteristic length lso = ~2/meffαso = 0.25µm), and time-reversal symme-
try is broken by a magnetic field parallel to the wire (Zeeman energy
VZ = 1

2 geffµBB = 0.6meV). For these parameters, the Josephson junc-
tion is in the nontrivial regime, with a pair of Majorana zero-modes at
the two ends.120,135 We tune the coupling strength of the Majoranas
by means of a tunnel barrier of width 25nm and adjustable height V0
(which might be experimentally realized by means of a gate voltage).
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The data shown in Fig. 5.2 is for V0 = 15meV. (See App. 5.A for details
of the calculation.)

The Josephson junction is coupled by a point contact to a normal-
metal probe, which plays the role of a fermion bath that can exchange
quasiparticles with the superconductor. We assume that the charging
energy of the junction is much smaller than the Josephson energy, to
ensure that the Coulomb blockade of charge transfer is not effective. The
Josephson junction is now an open system, with quasibound Andreev
states En − iΓn that acquire a finite life time ~/2Γn. The evolution of
a pair of these states through the fermion-parity switch is shown in
Fig. 5.2.71 The coupling constants γn that determine the transferred
charge can be read off from

πγn = lim
φ→π

Γn(φ). (5.3)

Particle-hole symmetry requires that the complex energies come in
pairs ±E− iΓ, symmetrically arranged around the imaginary axis. This
constraint produces a bifurcation point (pole transition138 or exceptional
point151) at which the real part is pinned to E = 0 and the decay rates Γ1,
Γ2 become distinct — resulting in widely different γ1, γ2. The unusual
extension of the level crossing over a finite interval seen in Fig. 5.2
is the key distinguishing feature of level crossings in superconducting
and non-superconducting systems, and makes the dynamical problem
considered here qualitatively different from the familiar Landau-Zener
dynamics.108

5.3 Scattering formulation
The exchange of quasiparticles across the NS interface is described by
the scattering matrix

S(t, t′)= δ(t− t′)−2πiW†G(t, t′)W . (5.4)

The coupling matrix W to the fermion bath is assumed to be time-
independent. The retarded Green’s function G(t, t′) satisfies the differ-
ential equation174

(
i∂/∂t−H[φ(t)]+ iπWW†)G(t, t′)= δ(t− t′), (5.5)
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5.3 Scattering formulation

Figure 5.2: Phase dependence of the complex energies En − iΓn of a pair of quasibound states of the
open Josephson junction (solid curves), when the energies ±E0 of the closed junction (dashed curves)
vary through the level crossing of Fig. 5.1b. At the fermion parity switch, the inverse lifetimes Γn
reach opposite extremal points πγn , n = 1,2.

where H(φ) is the Bogoliubov-De Gennes Hamiltonian of the Josephson
junction at a fixed value φ of the superconducting phase difference. (We
have set ~ ≡ 1 for ease of notation.) Fourier transform to the energy
domain is defined by

S(E,E′)=
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ eiEt−iE′ t′S(t, t′). (5.6)

In a stationary situation, with a time-independent Hamiltonian H,
the scattering matrix is diagonal in energy, S(E,E′)= 2πδ(E−E′)S0(E),
with S0 given by the Mahaux-Weidenmüller formula,122

S0(E)= 1−2πiW†(E−Heff)−1W ,

Heff = H− iπWW†.
(5.7)

The formulation of this dynamical problem in an open system in terms
of an effective non-Hermitian Hamiltonian Heff goes back to the early
days of nuclear scattering theory.63,118

For a minimal description, we take a pair of Andreev levels in the
Josephson junction coupled to a pair of electron-hole modes in a single-
channel metal probe. (The multi-channel case is addressed in Sec. 5.5.)
Both H and W are now 2×2 matrices. Particle-hole symmetry requires
that

H =−σxH∗σx, W =σxW∗σx. (5.8)
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(The Pauli matrix σx interchanges electron and hole indices.) Particle-
hole symmetry is the only symmetry constraint we impose on the system
(symmetry class D), assuming that time-reversal symmetry and spin-
rotation symmetry are both broken by magnetic field and spin-orbit
coupling in the nanowire.

Using also that H = H†, we have the general form

H = E0σz, W = eiα′σzΛeiασz , Λ=
(
λ+ λ−
λ− λ+

)
, (5.9)

with real coefficients α,α′, λ±. The eigenvalues γ1,γ2 ≥ 0 of the coupling
matrix product WW† are given by

γ1 = (λ++λ−)2, γ2 = (λ+−λ−)2. (5.10)

The eigenvalues of Heff (representing the poles of S0 in the complex
energy plane) are given by

E± =−iπγ̄±E0

√
1+ (πγ̃/E0)2 − (πγ̄/E0)2, (5.11)

in terms of the arithmetic and geometric mean

γ̄= 1
2 (γ1 +γ2), γ̃=p

γ1γ2. (5.12)

The evolution of E± through the fermion-parity switch is shown in
Fig. 5.3. The relation E+ = −E∗− required by particle-hole symmetry
produces a bifurcation point at which the two quasibound states acquire
distinct decay rates,138,151 see also Fig. 5.2.

The time dependent phase difference φ(t) across the Josephson junc-
tion shakes up the fermion bath in the normal metal. We assume zero
temperature, so that the unperturbed Fermi sea is the vacuum state |0〉
for excitations: a(E)|0〉 = 0 for E > 0, with a = (a1,a2) the two-component
Nambu spinor of annihilation operators for Bogoliubov quasiparticles.
The fermion-parity switch produces a superposition

|Ψ〉 = ζ0|0〉+∑∞
p=1|Ψp〉 (5.13)

of the vacuum state with p-particle excited states

|Ψp〉 =
[ ∑

E>0

∑
E′<0

a†(E)S(E,E′)a(E′)

]p

|0〉. (5.14)

(The sum
∑

E is evaluated as (2π)−1 ∫
dE.) The weight ζ0 of the unper-

turbed Fermi sea follows from the normalization 〈Ψ|Ψ〉 = 1.
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5.4 Linear sweep through the fermion-parity switch

Figure 5.3: Evolution of the complex eigenvalues E± of the effective Hamiltonian (5.7) of the open
Josephson junction (coupled to a metal probe), when the real eigenvalues ±E0 of the closed junction
vary through a level crossing. At the fermion parity switch, E0 = 0 and E± reach opposite extremal
points on the imaginary axis.

5.4 Linear sweep through the
fermion-parity switch

We now proceed to a complete solution of the dynamics of the fermion-
parity switch, to derive the result (5.2) for the charge of the transferred
quasiparticle. The non-superconducting counterpart to this problem
was studied by Keeling, Shytov, and Levitov.90 Their analysis provided
much guidance and inspiration for what follows.

We calculate the scattering matrix for a linear sweep through the
fermion parity switch: E0[φ(t)]= γ2

0t. Referring to Eq. (5.1), this linear
approximation of the spectrum is justified for rapidities γ2

0 ¿
√

T0∆0γ̄.
In the energy domain, Eqs. (5.4) and (5.5) then take the form

S(E,E′)= 2πδ(E−E′)−2πie−iασzΛG(E,E′)Λeiασz ,(
iγ2

0σz∂/∂E+E+ iπΛ2)
G(E,E′)= 2πδ(E−E′). (5.15)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The solution for the Green’s function factorizes,

G(E,E′)= 2π
iγ2

0
X (E)Θ(E−E′)σz X−1(E′)σz, (5.16)

Θ(E−E′)=
(
θ(E−E′) 0

0 θ(E′−E)

)
. (5.17)

Here θ(E) is the unit step function and the matrix X (E) solves the
homogeneous equation*

(
iγ2

0σz∂/∂E+E+ iπΛ2)
X (E)= 0. (5.18)

Because of particle-hole symmetry, X has two rather than four indepen-
dent elements,

X (E)=
(
u(E) v∗(−E)
v(E) u∗(−E)

)
, (5.19)

determined by

γ2
0u′′+ (ε2 +δ2 − i)u = 0, δv = iεu−γ0u′, (5.20)

ε= (E+ iπγ̄)/γ0, δ= 1
2π(γ1 −γ2)/γ0. (5.21)

The retarded Green’s function is specified by G → 0 in the limits
E →+∞ or E →−∞. The factor Θ in Eq. (5.16) ensures that this two-
sided decay follows from the one-sided decay u,v → 0 for E →+∞. With
this condition the solution of Eq. (5.20) reads†

u(E)= eiε2/2 U(− 1
4 iδ2, 1

2 ;−iε2),

v(E)=− 1
2δeiπ/4 eiε2/2 U( 1

2 − 1
4 iδ2, 1

2 ;−iε2),
(5.22)

where U is the confluent hypergeometric function of the second kind.1,109

The determinant of X is particularly simple (see App. 5.B)

Det X = exp(−πδ2/4), (5.23)

independent of energy.

*Since X solves a homogeneous equation, the solution is only determined up to a
multiplicative constant. This has no effect on the Green’s function, because both X and
X−1 appear in Eq. (5.16).

†To obtain v from u we used the identity (d/dz)U(a,b; z)=−az−bU(1+a−b,1−b; z).
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5.4 Linear sweep through the fermion-parity switch

The scattering matrix (5.15) results as the dyadic product of two
vectors,

Snm(E,E′)|E>E′ =−ψn(E)ψ∗
m(−E′), (5.24)

ψ(E)= (2π/γ0)eπδ
2/8e−iασzΛ

(
u(E)
v(E)

)
. (5.25)

Substitution into Eq. (5.14) gives |Ψp〉 = 0 for p ≥ 2 because of the
anticommutation of the creation operators, so that only a single-particle
excitation remains,*

|Ψ1〉 =− ∑
E>0

∑
E′<0

[ψ(E)a†(E)][ψ∗(−E′)a(E′)]|0〉. (5.26)

This absence of multi-particle excitations is a generic feature of rank-one
scattering matrices.89,90

The normalization
∑

E>0 |ψ(E)|2 = 1 can be derived directly from
Eq. (5.18). (See App. 5.B.) This implies that 〈Ψ1|Ψ1〉 = 1, hence there
is no contribution from the vacuum state [ζ0 = 0 in Eq. (5.13)]. Cor-
rections of order |eiε2 | = exp(−2πEγ̄/γ2

0) to the normalization appear
because of the finite band width E .

√
T0∆0. Since we have assumed

γ2
0 ¿ √

T0∆0γ̄ we can ascertain that the sweep through the fermion-
parity switch will fail to produce a quasiparticle with exponentially
small probability.

The Josephson junction thus injects a single Bogoliubov quasiparticle
into the metal probe, in a pure state with wave function ψ given by
Eq. (5.25). The transfer of this quasiparticle is observable as an electrical
current pulse, with expectation value

I(t)= e
∫ ∞

0

dE
2π

∫ ∞

0

dE′

2π
ei(E′−E)tψ∗(E′)σzψ(E). (5.27)

The expectation value of the total transferred charge Q = ∫ ∞
−∞ I(t)dt is

given by

Q = 2πe
γ2

0
(λ2

+−λ2
−) eπδ

2/4
∫ ∞

0
dE

(|u(E)|2 −|v(E)|2)
. (5.28)

*Eq. (5.26) describes two equivalent copies of the single-particle excitation ψ(E), one
at E > 0 and one at E < 0. This double-counting is inherent in the Nambu representation
of superconducting quasiparticles. It plays no role in Eqs. (5.27) and (5.28), where we
restrict ourselves to E > 0. In Eq. (5.30) we correct for double-counting by replacing the
usual prefactor 1/2π by 1/4π.
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5 Quench dynamics of fermion-parity switches in a Josephson junction

Figure 5.4: Expectation value of the charge of the quasiparticle transferred between the superconduc-
tor and a single-channel metal probe, following a fermion-parity switch with rapidity γ0. The charge
Q is given as a function of the ratio γ̃/γ̄ of the geometric and arithmetic mean of the coupling energies
to the two Majorana operators involved in the transition. The curves are calculated numerically from
Eq. (5.28). The quenched and adiabatic limits are given by Eqs. (5.29) and (5.32).

For definiteness we take λ2+ ≥λ2− in what follows (otherwise the sign of
currents and charges should be inverted).

5.5 Transferred charge
Single-channel probe A single quasiparticle passes through the NS
interface irrespective of the rapidity γ0, but the transferred charge
differs. Fig. 5.4 shows results from a numerical evaluation of Eq. (5.28).
Analytical results can be obtained in the quenched limit γ0 À γ1,γ2 of a
fast fermion-parity switch and in the opposite adiabatic limit γ0 ¿ γ1,γ2
of a slow switch.

In the quenched limit we set δ→ 0 and since U(0, 1
2 ;−iε2)= 1 we have

u → exp(iε2/2), v → 0. The current and transferred charge evaluate to

Iquench(t)= 2πeγ̃exp(−2πγ̄t)θ(t), Qquench = eγ̃/γ̄. (5.29)

This is the result (5.2) stated above.
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5.5 Transferred charge

The adiabatic limit may be obtained, with some effort, from the Fourier
transform (5.27) in saddle-point approximation, or more easily by start-
ing directly from the general scattering formula16,19,29,34

Iadiabatic(t)=
ie
4π

TrS†
F(0, t)σz

∂

∂t
SF(0, t). (5.30)

(A self-contained derivation of this formula is given in App. 5.C.) The
adiabatic charge transfer is described by the “frozen” scattering matrix

SF(E, t)= S0(E)|φ≡φ(t), (5.31)

with S0 from Eq. (5.7) evaluated for a fixed value φ(t) of the phase across
the Josephson junction. The result is

Iadiabatic(t)=
epγ1γ2

π2γ1γ2/γ2
0 +γ2

0t2
, Qadiabatic = e. (5.32)

The exponential versus Lorentzian current profiles (5.29) and (5.32)
have the same form as in the non-superconducting problem of Ref. 90,
but there the transferred quasiparticle was an electron of charge e. Here
what is transferred is a Bogoliubov quasiparticle, which is not in an
eigenstate of charge. In the quenched limit Q can vary between 0 and e,
depending on the ratio of the geometric and arithmetic mean of the two
coupling energies γ1, γ2 of the metal probe to the Majorana operators of
the zero-mode. A nearly charge-neutral quasiparticle is transferred if
γ1 ¿ γ2, when Q = 2e

√
γ1/γ2 in the quenched limit.

Multi-channel probe So far we have assumed that the metal probe
supports a single electron-hole channel. More generally, the coupling
between the superconductor and the metal would involve N electron-
hole channels, where N would include both orbital and spin degrees of
freedom. This multi-channel generalization is worked out in App. 5.D.
A single quasiparticle is injected, as before, with a reduced charge
QN =RQ1. The reduction factor R ∈ [0,1] is independent of the rapidity
γ0. It is determined entirely by the point contact conductance, which at
the fermion parity switch has a resonant peak of height

Gpeak = 4e2

h
(1−R2). (5.33)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

5.6 Conclusion

In conclusion, we have investigated the phase-coherent, deterministic
counterpart of incoherent, stochastic quasiparticle poisoning: A fermion-
parity switch in a Josephson junction transfers a single quasiparticle
into a metal contact, on demand and in a pure state. The quasiparticle is
a coherent superposition of electron and hole, with a charge expectation
value that can be adjusted between 0 and e. A nearly charge-neutral
quasiparticle is produced in the quenched limit of a fast parity switch,
if the metal couples predominantly to a single Majorana operator in
the Josephson junction. This device could be used for superconducting
analogues of single-electron collision experiments,30,31,52,64,121,136 such
as the Hanbury-Brown-Twiss or Hong-Ou-Mandel interferometer for
Majorana fermions.22,62

Experimentally, one can determine the value of Q by sweeping up
and down through the fermion-parity switch and measuring the shot
noise power Pshot. In each period τ a charge {0,+e,−e} is transferred
with probability {1−2p(1− p), p(1− p), p(1− p)}, where Q/e = |1−2p| is
the average charge transferred during a sweep up or down. The full
distribution of the transferred charge is trinomial. The first moment
vanishes and the second moment is given by

Pshot = 2p(1− p)(e2/τ)= 1
2τ

−1(e2 −Q2). (5.34)

Referring to the model calculation of Fig. 5.2, a band width of
p

T0∆0 '
10GHz at a driving frequency of 1/τ' 0.1GHz would imply a rapidity
γ0 ' 1GHz (so that γ2

0τ '
p

T0∆0). The escape rate γ̄ could then vary
between, say, 0.2GHz and 2GHz to vary between the adiabatic and the
quenched regime. These frequencies should all lie above the decoherence
rate of the Bogoliubov quasiparticle due to charge noise, which could be
below 1MHz.156

An alternative way to measure the transferred charge is to apply
a voltage V between the two superconductors. The phase will then
advance with constant rate dφ/dt = 2eV /~, producing a current I =
Q×2eV /h (assuming a single level crossing in a 2π phase interval).
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5.A Model Hamiltonian

5.A Model Hamiltonian
The model Hamiltonian for the nanowire Josephson junction of Fig. 5.5
has the Bogoliubov-De Gennes form

H =
(
H0(p) ∆

∆∗ −σyH∗
0 (−p)σy

)
, (5.35a)

H0 = p2

2meff
−EF + αso

~
(σx py −σy px)+ 1

2 geffµBBσx

+V0 [Θ(x−WB/2)−Θ(x−WB/2)]. (5.35b)

Electrons and holes are coupled by the induced s-wave pair potential ∆
at the superconducting contacts, with a phase difference φ. The single-
particle Hamiltonian H0 contains Rashba spin-orbit coupling and the
Zeeman energy of a magnetic field parallel to the nanowire. A potential
barrier of strength V0 and width WB is located at the center of the
junction.

The Hamiltonian H is discretized on a square lattice, to obtain a
tight-binding model.71 For the parameters indicated in the figure, the
Josephson junction is in the nontrivial regime,120,135 with a pair of
Majorana zero-modes at the normal-superconducting (NS) interface,
weakly coupled via the potential barrier. A normal-metal lead is attached
perpendicular to the nanowire, coupling predominantly to one of the two
zero-modes.

To obtain the complex energies of the quasibound states, the imaginary
part of the lead self-energy is added to the tight-binding Hamiltonian of
the junction. Diagonalization of this non-Hermitian Hamiltonian yields
the complex eigenvalues En(φ)− iΓn(φ) plotted in Fig. 5.2.

5.B Details of the calculation of the Green’s
function

5.B.1 Evaluation of the determinant
Since the expression (5.16) for the Green’s function contains both the
matrix X (E) and its inverse, we need to evaluate the determinant of
this 2×2 matrix. As a first step we will show that Det X is energy inde-
pendent. This can be done directly from the differential equation (5.18)
for X .
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5 Quench dynamics of fermion-parity switches in a Josephson junction

Figure 5.5: Nanowire Josephson junction modeled by the Hamiltonian (5.35), discretized on a square
lattice (lattice constant a = 25nm). The InSb nanowire is grey, with a tunnel barrier (width 25nm) in
black, the superconducting contacts are yellow, the normal-metal probe (width 100nm) is blue. There
are 4 electron subbands in the nanowire and 8 in the probe, counting spin. The peak conductance at
the fermion-parity switch is indicated.

We write the determinant in the form

Det X (E)=
(
u∗(−E)
v∗(−E)

)T

σz

(
u(E)
v(E)

)
, (5.36)

and take the derivative with respect to E. The functions u,v solve

(
iγ2

0σzd/dE+E+ iπΛ2)(u
v

)
= 0. (5.37)

This allows us to express the derivatives

d
dE

(
u(E)
v(E)

)
= i
γ2

0
σz(E+ iπΛ2)

(
u(E)
v(E)

)
, (5.38)

d
dE

(
u∗(−E)
v∗(−E)

)
= − i

γ2
0
σz(E+ iπΛ∗2)

(
u∗(−E)
v∗(−E)

)
. (5.39)

Since Λ is a real and symmetric matrix, it follows that

d
dE

Det X = i
γ2

0

(
u∗(−E)
v∗(−E)

)T

[(E+ iπΛ2)

− (E+ iπΛ∗2)
T

]
(
u(E)
v(E)

)
= 0, (5.40)

so Det X is independent of E.
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5.B Details of the calculation of the Green’s function

From Eq. (5.22) we have an explicit expression for the determinant of
X :

Det X =U(− 1
4 iδ2, 1

2 ;−iε2)U( 1
4 iδ2, 1

2 ; iε2)

− 1
4δ

2U( 1
2 − 1

4 iδ2, 1
2 ;−iε2)U( 1

2 + 1
4 iδ2, 1

2 ; iε2). (5.41)

This is an analytic function of ε= (E+ iπγ̄)/γ0, which is independent of
E and hence independent of ε. At ε= 0 we may evaluate it by means of
the identities1

U(a, 1
2 ,0)=

p
π

Γ( 1
2 +a)

, (5.42)

Γ( 1
2 + ia)Γ( 1

2 − ia)= π

coshπa
,

Γ(1+ ia)Γ(1− ia)= πa
sinhπa

. (5.43)

Substitution into Eq. (5.41) at ε= 0 gives

Det X = exp(−πδ2/4), (5.44)

as in Eq. (5.23).

5.B.2 Normalization of the excited state
We wish to demonstrate that the wave function (5.25) of the single-
particle excited state is normalized to unity. For that purpose we need
to evaluate the integral

N ≡ 〈ψ|ψ〉 =
∫ ∞

0

2πdE
γ2

0 Det X

(
u∗(E)
v∗(E)

)T

Λ2
(
u(E)
v(E)

)
. (5.45)

We again use the fact that u,v solve Eq. (5.37). Substitution into
Eq. (5.45) gives (denoting u′ = du/dE)

N = −2
Det X

∫ ∞

0
dE

[
u∗u′−v∗v′− iEγ−2

0 (uu∗+vv∗)
]

= 2
Det X

(|u(0)|2 −|v(0)|2)
+ 2

Det X

∫ ∞

0
dE

[
uu∗′−vv∗′+ iEγ−2

0 (uu∗+vv∗)
]

= 2−N ∗, (5.46)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

and because N is real, we indeed have N = 1. Notice that 〈ψ|ψ〉 = 1
also implies 〈Ψ1|Ψ1〉 = 1 in Eq. (5.26).

5.C Scattering formula for the charge
transfer in the adiabatic regime

The current passing through the NS interface in the adiabatic regime
γ0 ¿ γ1,γ2 of a slow fermion-parity switch can be evaluated most easily
from the scattering formula (5.30), which is the analogue for Bogoliubov
quasiparticles of a well-known formula for normal electrons.16,19,29,34

For completeness we give a derivation of Eq. (5.30).
One subtlety in this derivation is that Fourier transforms of quasi-

particle annihilation operators a(E) to the time domain need to include
both positive and negative energies in order to produce a complete basis
set. This results in a double counting of the quasiparticle excitations, be-
cause of the relation a(−E)=σxa†(E). To correct for the double counting
we include a factor 1/2 in the definition of the current operator,22

I (t)= 1
2 ea†

out(t)σzaout(t),

aout(t)=
∫ ∞

−∞
dE
2π

e−iEtaout(E).
(5.47)

The outgoing and incoming operators are related by the scattering
matrix,

aout(E)=
∫ ∞

−∞
dE′

2π
S(E,E′)ain(E′), (5.48)

which satisfies the unitarity condition∫ ∞

−∞
dE′

2π

∑
n′

Snn′ (E1,E′)S∗
mn′ (E2,E′)

= 2πδnmδ(E1 −E2).
(5.49)

The incoming operators have the equilibrium expectation value

〈a†
n(E)am(E′)〉 = 2πδ(E−E′)δnm f (E), (5.50)

with f (E)= (1+ e(E/kT)−1
the Fermi function at temperature T. We seek
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the current expectation value I(t)≡ 〈I (t)〉, given by

I(t)= 1
2 e

∫ ∞

−∞
dE
2π

∫ ∞

−∞
dE′

2π

∫ ∞

−∞
dω
2π

eiωt

× f (E′)TrS†(E+ω,E′)σzS(E,E′). (5.51)

Because of the unitarity condition (5.49), the integral over E′ without
the factor f (E′) vanishes,∫ ∞

−∞
dE′

2π
TrS†(E+ω,E′)σzS(E,E′)= 2πδ(ω)Trσz

= 0. (5.52)

We may therefore equivalently write

I(t)= 1
2 e

∫ ∞

−∞
dE
2π

∫ ∞

−∞
dE′

2π

∫ ∞

−∞
dω
2π

eiωt

× [ f (E′)− f (E)]TrS†(E+ω,E′)σzS(E,E′). (5.53)

It is convenient to introduce the Wigner transform

SW(E, t)=
∫ ∞

−∞
dE′

2π
e−iE′ tS(E+ 1

2 E′,E− 1
2 E′), (5.54)

because it becomes the frozen scattering matrix SF(E, t) from Eq. (5.31)
in the adiabatic limit.174 More precisely,

SW(E+δE, t)= SF(E, t)+O (γ0/Ec)+O (δE/Ec), (5.55)

with Ec =min(γ1,γ2) the width of the quasi-bound state.
Fourier transformation of the time variable gives

SW(E,ω)=
∫ ∞

−∞
dt eiωtSW(E, t)= S(E+ 1

2ω,E− 1
2ω). (5.56)

In terms of SW(E,ω) the expression (5.53) for the current reads

I(t)= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω′

2π

∫ ∞

−∞
dω
2π

eiωt

× [
f (Ē− 1

2ω
′)− f (Ē+ 1

2ω
′)
]

×TrS†
W(Ē+ 1

2ω,ω+ω′)σzSW(Ē,ω′), (5.57)
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with the definitions Ē = 1
2 (E+E′), ω′ = E−E′.

The integrals over ω and ω′ contribute over the range −γ0 .ω,ω′ . γ0.
To leading order in γ0 we therefore have

TrS†
W(Ē+ 1

2ω,ω+ω′)σzSW(Ē,ω′)=
TrS†

F(Ē,ω+ω′)σzSF(Ē,ω′)+O (γ0/Ec), (5.58)

in view of Eq. (5.55). Substitution into Eq. (5.57), with a change of
variables ω′′ =ω+ω′, results in

I(t)= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω′

2π

∫ ∞

−∞
dω′′

2π
ei(ω′′−ω′)t

× [
f (Ē− 1

2ω
′)− f (Ē+ 1

2ω
′)
]

×TrS†
F(Ē,ω′′)σzSF(Ē,ω′)[1+O (γ0/Ec)]

= 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω
2π

e−iωt

× [
f (Ē− 1

2ω)− f (Ē+ 1
2ω)

]
×TrS†

F(Ē, t)σzSF(Ē,ω)[1+O (γ0/Ec)]. (5.59)

Since we do not wish to assume that γ0 is small compared to kT, we
expand the difference of Fermi functions in square brackets to all order
in ω,

[ f (Ē− 1
2ω)− f (Ē+ 1

2ω)]e−iωt =

=−2
∞∑

p=0

(ω/2)2p+1

(2p+1)!
∂2p

∂Ē2p
f ′(Ē)e−iωt

=−
( ∞∑

p=0

(i/2)2p

(2p+1)!
∂2p

∂Ē2p
∂2p

∂t2p

)
f ′(Ē)ωe−iωt.

(5.60)

Upon partial integration, the sum over p contributes to the integral (5.59)
terms of order

∂2p

∂Ē2p
∂2p

∂t2p SF(Ē, t)=O (γ0/Ec)2p, (5.61)

so only the p = 0 term needs to be retained to leading order.
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We thus arrive at

I(t)= − 1
2 e

∫ ∞

−∞
dĒ
2π

∫ ∞

−∞
dω
2π

f ′(Ē)ωe−iωt

×TrS†
F(Ē, t)σzSF(Ē,ω)[1+O (γ0/Ec)]

= − 1
2 ie

∫ ∞

−∞
dĒ
2π

f ′(Ē)

×TrS†
F(Ē, t)σz

∂

∂t
SF(Ē, t)[1+O (γ0/Ec)]. (5.62)

At zero temperature, when − f ′(E)→ δ(E), we recover Eq. (5.30),

Iadiabatic(t)=
ie
4π

TrS†
F(0, t)σz

∂

∂t
SF(0, t). (5.63)

5.D Multi-channel probe

5.D.1 Coupling matrix
In the main text we assumed that the pair of Andreev levels near the
level crossing is coupled to a single pair of electron-hole modes in the
normal-metal probe. This coupling is described by the 2×2 coupling
matrix W defined in Eq. (5.9). More generally, a multi-channel probe
has a 2×2N coupling matrix of the form

W = (W1,W2, . . .WN ), Wn =
(
αn β∗

n
βn α∗

n

)
, (5.64)

constrained by particle-hole symmetry: W = σxW∗σx. We collect the
complex coefficients αn,βn in a pair of vectors,

α= (α1,α2, . . .αN ), β= (β1,β2, . . .βN ), (5.65)

and define the inner products

〈α|α〉 =
N∑

n=1
|αn|2, 〈β|β〉 =

N∑
n=1

|βn|2,

〈α|β〉 =
N∑

n=1
α∗

nβn.

(5.66)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

The decay rates γ1, γ2 of the pair of quasibound Andreev levels are
the eigenvalues of the 2×2 matrix

WW† =
N∑

n=1
WnW†

n

=
(〈α|α〉+〈β|β〉 2〈α|β〉∗

2〈α|β〉 〈α|α〉+〈β|β〉
)
, (5.67)

⇒
{
γ1 = 〈α|α〉+〈β|β〉+2|〈α|β〉|,
γ2 = 〈α|α〉+〈β|β〉−2|〈α|β〉|. (5.68)

As before, we define the arithmetic and geometric averages,

γ̄= 1
2 (γ1 +γ2), γ̃=p

γ1γ2. (5.69)

For later use, we also note that

WσzW† =
N∑

n=1
WnσzW†

n = (〈α|α〉−〈β|β〉)σz. (5.70)

5.D.2 Scattering matrix

Carrying through the same steps as in the single-channel case, we have
the following expression for the 2N ×2N scattering matrix S in terms
of the 2×2 Green’s function G:

S(E,E′)= 2πδ(E−E′)−2πiW†G(E,E′)W ,(
iγ2

0σz
∂

∂E
+E+ iπWW†

)
G(E,E′)= 2πδ(E−E′). (5.71)

The solution for G has the factorized form (5.16), in terms of the 2×2
matrix

X (E)=
(
u(E) v∗(−E)
v(E) u∗(−E)

)
(5.72)

that solves the homogeneous equation(
iγ2

0σz
∂

∂E
+E+ iπWW†

)
X (E)= 0. (5.73)
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5.D Multi-channel probe

The functions u and v are determined by

γ2
0u′′+ (ε2 +δ2 − i)u = 0, ζv = iεu−γ0u′, (5.74)

ε= (E+ iπγ̄)/γ0, ζ= (2π/γ0)〈α|β〉∗, (5.75)

δ= |ζ| = 1
2 (π/γ0)(γ1 −γ2). (5.76)

The solution is

u(E)= eiε2/2 U(− 1
4 iδ2, 1

2 ;−iε2), (5.77)

ζv(E)=− 1
2δ

2eiπ/4 eiε2/2 U( 1
2 − 1

4 iδ2, 1
2 ;−iε2). (5.78)

Finally, the scattering matrix has the dyadic form

Snm(E,E′)|E>E′ =−ψn(E)ψ∗
m(−E′), (5.79)

ψ(E)= (2π/γ0)eπδ
2/8W†

(
u(E)
v(E)

)
. (5.80)

5.D.3 Transferred charge
Because the scattering matrix is still of rank-one, a single quasiparticle
is transferred as a result of the fermion-parity switch, irrespective of
the number of channels N in the metal probe. The charge expectation
value of this quasiparticle is given by

Q = e
∫ ∞

0

dE
2π

ψ∗(E)σzψ(E)

= 2πe
γ2

0
eπδ

2/4
∫ ∞

0
dE

(
u∗(E)
v∗(E)

)
WσzW†

(
u(E)
v(E)

)
= 2πe

γ2
0

eπδ
2/4(〈α|α〉−〈β|β〉)

∫ ∞

0
dE

(|u(E)|2 −|v(E)|2)
. (5.81)

Comparison with Eq. (5.28) shows that the transferred charge for a
multi-channel contact differs from that in the single-channel case by a
reduction factor

R = 〈α|α〉−〈β|β〉
γ̃

= 〈α|α〉−〈β|β〉√
(〈α|α〉+〈β|β〉)2 −4|〈α|β〉|2

∈ [0,1], (5.82)
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5 Quench dynamics of fermion-parity switches in a Josephson junction

independent of the rapidity γ0 of the fermion-parity switch.
As a check, we can directly compute the transferred charge in the

adiabatic limit from Eq. (5.30). Substitution of the frozen scattering
matrix at the Fermi level,

S0 = 1+2πiW†(E0σz − iπWW†)
−1

W , (5.83)

gives the charge

Qadiabatic =
ie
4π

∫ ∞

−∞
dE0 TrS†

0σz
∂S0

∂E0

= e
2

∫ ∞

−∞
dE0 Tr(E0σz + iπWW†)

−1
WσzW†(E0σz − iπWW†)

−1
σz

= e
(〈α|α〉−〈β|β〉)∫ ∞

−∞
dE0 (E2

0 +π2γ̃2)
−1

= eR. (5.84)

5.D.4 Relation of the reduction factor to the
Andreev conductance

The charge reduction factor R from Eq. (5.82) is a property of the cou-
pling matrix of the normal-metal probe to the Josephson junction. It
can be expressed in terms of an independently measurable quantity, the
Andreev conductance.

When the normal-metal probe is biased at a voltage V , a current I
is driven into the grounded superconductor by the process of Andreev
reflection. The Andreev conductance GA = limV→0 dI/dV is related to
the scattering matrix S0 at the Fermi level by

GA = e2

2h
Tr(1−S0σzS0

†σz). (5.85)

Near the level crossing a resonant peak appears in GA as a function
of E0, with the Lorentzian line shape

GA = 4e2

h
π2γ̃2

E2
0 +π2γ̃2

(
1−R2)

. (5.86)

The resonant peak height of (4e2/h)(1−R2) directly determines the
charge reduction factor.
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6 Spin-orbit interaction in
InSb nanowires

6.1 Introduction

Hybrid semiconductor nanowire-superconductor devices are a promising
platform for the study of topological superconductivity.7 Such devices
can host Majorana fermions,120,135 bound states with non-Abelian ex-
change statistics. The realization of a stable topological state requires an
energy gap that exceeds the temperature at which experiments are per-
formed (∼50 mK). The strength of the spin-orbit interaction (SOI) is the
main parameter that determines the size of this topological gap154 and
thus the potential of these devices for the study of Majorana fermions.
The identification of nanowire devices with a strong SOI is therefore
essential. This entails both performing measurements on a suitable
material and device geometry as well as establishing theory to extract
the SOI strength.

InSb nanowires are a natural candidate to create devices with a strong
SOI, since bulk InSb has a strong SOI.58,179 Nanowires have been used
in several experiments that showed the first signatures of Majorana
fermions.40,44,46,128 Nanowires are either fabricated by etching out wires
in planar heterostructures or grown bottom-up. The strong confinement
in the growth direction makes etched wires two-dimensional (2D) even
at high density. SOI has been studied in 2D InSb wires86 and in planar
InSb heterostructures,87 from which a SOI due to structural inver-
sion asymmetry,144 a Rashba SOI αR , of 0.03eVÅ has been obtained.87

Bottom-up grown nanowires are three-dimensional (3D) when the Fermi
wavelength is smaller than the wire diameter. In InSb wires of this
type SOI has been studied by performing spectroscopy on quantum
dots,129,132 giving αR = 0.16−0.22eVÅ.129 However, many (proposed)
topological nanowires devices79,80,178 contain extended conducting re-
gions, i.e. conductive regions along the nanowire much longer than the
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6 Spin-orbit interaction in InSb nanowires

a) b)

Figure 6.1: Quantum interference along time-reversed paths in 2D (a) and 3D (b) nanowires. In both
cases an inversion symmetry induces spin precession in between (boundary) scattering events.

nanowire diameter. The SOI strength in these extended regions has not
yet been determined. It is likely different from that in quantum dots,
as the difference in confinement between both geometries results in a
different effective electric field and thus different Rashba SOI. Measure-
ments of SOI strength in extended InSb nanowire regions are therefore
needed to evaluate their potential for topological devices. Having chosen
a nanowire material, further enhancement of Rashba SOI strength can
be realized by choosing a device geometry that enhances the structural
inversion asymmetry.56,133 Our approach is to use a high-k dielectric in
combination with a top gate that covers the InSb nanowire.

6.2 Magnetoconductance measurements in
3D nanowires

The standard method to extract SOI strength in extended regions is
through low-field magnetoconductance (MC) measurements.78,81 Quan-
tum interference (see Fig. 6.1) in the presence of a strong SOI results in
an increased conductance, called weak anti-localization (WAL),27 that
reduces to its classical value when a magnetic field is applied.10 From
fits of MC data to theory a spin relaxation length is extracted. If spin re-
laxation results from inversion asymmetry a spin precession length and
SOI strength can be defined. To extract SOI strength in nanowires the
theory should contain (1) the length over which the electron dephases in
the presence of a magnetic field, the magnetic dephasing length,25 and
(2) the relation between spin relaxation and spin precession length.93

The magnetic dephasing and spin relaxation length depend, besides
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6.2 Magnetoconductance measurements in 3D nanowires

magnetic field and SOI strength respectively, on dimensionality and
confinement. For instance, in nanowires, the spin relaxation length
increases when the wire diameter is smaller than the spin precession
length93,94,155. Therefore the spin relaxation length extracted from WAL
is not a direct measure of SOI strength. These effects have been studied
in 2D wires,25,93 but results for 3D wires are lacking. As geometry and
dimensionality are different (see Fig. 6.1), using 2D results for 3D wires
is unreliable. Thus, theory for 3D wires has to be developed.

In this chapter, we first theoretically study both magnetic dephasing
and spin relaxation due to Rashba SOI in 3D hexagonal nanowires.
We then use this theory to determine the spin-orbit strength from our
measurements of WAL in dual-gate InSb nanowire devices, finding a
strong Rashba SOI αR = 0.5−1eV Å.

The WAL correction to the classical conductivity can be computed in
the quasiclassical theory as25,37,106

∆G =− e2

h
1
L

[
3

( 1
l2
ϕ

+ 4
3l2

so
+ 1

l2
B

)− 1
2−

( 1
l2
ϕ

+ 1
l2
B

)− 1
2

−3
( 1

l2
ϕ

+ 4
3l2

so
+ d

l2
e
+ 1

l2
B

)− 1
2+

( 1
l2
ϕ

+ d
l2

e
+ 1

l2
B

)− 1
2 ]

. (6.1)

The length scales in this expression are the nanowire length L, the mean
free path le, the phase coherence length lϕ, the magnetic dephasing
length lB, and the spin relaxation length lso. The mean free path
le = vFτe where τe is the mean time between scattering events and vF
the Fermi velocity. In addition, the remaining length scales are also
related to corresponding time scales as

lB,ϕ,so =
√

DτB,ϕ,so. (6.2)

where D = 1
d vFle the diffusion constant in d dimensions (d = 3 for

bottom-up grown nanowires).
In the quasiclassical theory, τϕ (and hence lϕ) is a phenomenological

parameter. In contrast, τB and τso are computed from a microscopic
Hamiltonian, by averaging the quantum mechanical propagator over
classical trajectories (the details of the theory are outlined in Sec. 6.3
below). τB and τso thus depend not only on microscopic parameters
(magnetic field B and SOI strength, respectively), but through the av-
erage over trajectories also on dimensionality, confinement, and le. We
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a) b)

Figure 6.2: (a) Normalized dephasing time τB le4/τe lm4 as a function of W /le for a hexagonal
nanowire (see inset) for field parallel (black) and perpendicular (red) to the nanowire. Dots are nu-
merical data for different lm in the range 1−102.5 (10−20 points per W), solid lines a fit to Eq. (6.3).
Dashed line is the 2D wire result of Ref. 25. (b) τso/τe as a function of spin-orbit strength lR/le and
different wire diameters in a 3D hexagonal nanowire.

focus on the case where Rashba SOI due to an effective electric field in
the z-direction, perpendicular to wire and substrate, dominates. Then
the microscopic SOI Hamiltonian is αR

~ (pxσy − pyσx), where σx,y are
Pauli matrices and px,y the momentum operators. The corresponding
spin-orbit precession length, lR, equals ~2/m∗αR. In our treatment we
neglect the Zeeman splitting, EZ since we concentrate on the regime of
large Fermi wave vector, kF, such that αRkF À EZ.

The quasiclassical description is valid if the Fermi wave length λF ¿
le, lR, and much smaller than the transverse extent W of the nanowire,
i.e. for many occupied subbands. In particular, the quasiclassical method
remains valid even if lR < le,W .185

We evaluate τB and τso numerically by averaging over random classi-
cal paths for a given nanowire geometry. The paths consist of piece-wise
linear segments of freely moving electrons with constant speed,26,37

only scattered randomly from impurities and specularly at the boundary.
These assumptions imply a uniform electron density in the nanowire.
Specular boundary reflection is expected as our wires have no surface
roughness.181 (We extrapolate the results on InAsSb wires to InSb since
the flatness of the facets results from the introduction of Sb.)

We apply our theory to nanowires with a hexagonal cross-section
and diameter W (see inset in Fig. 6.2a) in the quasi-ballistic regime,
le & W. Fig. 6.2(a) shows the magnetic dephasing time τB (normal-
ized by τe l4

m/l4
e with lm =p

~/eB) as a function of wire diameter. Both
parallel and perpendicular field give rise to magnetic dephasing due
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6.3 Evaluation of weak (anti-)localization in the quasiclassical theory

to the three-dimensionality of the electron paths, in contrast to two-
dimensional systems where only a perpendicular field is relevant (see
Fig. 6.1). The different field directions show a different dependence on
W, with, remarkably, τB (and thus lB) independent of field-orientation
for W/le = 0.5. Our results for τso as a function of lR are shown in
Fig. 6.2b. We find an increase of τso as the wire diameter W is decreased,
indicating that confinement leads to increased spin relaxation times.

For lm,R, le &W we can fit our results reliably as

τB,so = C
l4
m,R

Wγl(4−γ)
e

. (6.3)

This is shown for τB in Fig. 6.2a where data for different lm and W
collapse to one line. In particular for τB, we find C = 34.1±0.1 and
γ= 2.590±0.002 for parallel field, C = 22.3±0.3 and γ= 3.174±0.003 for
perpendicular field. For τso C = 8.7±0.5 and γ= 3.2±0.1. Note that our
numerics is valid beyond the range where the fit (6.3) is applicable. For
example, for lR .W the numerical result deviates from the power-law
of (6.3) as seen in Fig. 6.2b; in this regime only the numerical result can
be used.

The fit (6.3) allows for a quantitative comparison of our 3D wire
results to 2D wires: Both are similar in that there is flux cancellation
(γ> 2)25 and suppressed spin relaxation due to confinement. However,
they exhibit a significantly different power-law. As an example, in
Fig. 6.2a we compare to the 2D wire result for weak fields from Ref. 25
(C = 10.8, γ= 3) that can differ by an order of magnitude from our results.
This emphasizes the need for an accurate description of geometry for a
quantitative analysis of WAL.

6.3 Evaluation of weak (anti-)localization
in the quasiclassical theory

6.3.1 The quasiclassical theory
Within the quasiclassical formalism, the weak (anti-) localization correc-
tion ∆G is given as26,37,106

∆G =−2e2

π~
D
L

∫ ∞

0
dtC(t) (1− e−t/τe ) e−t/τϕ〈MB(t)〉〈Mso(t)〉 (6.4)
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In this expression, L is the length of the nanowire, C(t)= (4πDt)−1/2 is
the 1D return probability, D = 1

d vFle the diffusion coefficient (d = 3 for
the nanowires). 〈. . .〉 denotes an average over all classical paths that
close after time t. MB is due to the orbital effect of the magnetic field
and reads37

MB(t)= eiφ(t), with φ(t)= 2e
~

∫ x(t)

x(0)
A ·dl . (6.5)

The Hamiltonian of spin-orbit interaction (SOI) can in general be written
as

HSOI =σ ·Bso(p) (6.6)

where σ is a vector of Pauli matrices and Bso a momentum-dependent
effective magnetic field due to the SOI. In the case of Rashba SOI as
considered here we have Bso(p) = αR

~ (−py, px,0). The SOI of Eq. (6.6)
then gives rise to the modulation factor37,185

Mso(t)= 1
2

Tr
(
W(t)2

)
W(t)=T exp

[
i
~

∫ t

0
dt′σ ·Bso(p(t))

]
(6.7)

where T is the time-order operator.
When the motion along the longitudinal direction of wire is diffusive,

the modulation factors generally decay exponentially with time,37

〈MB(t)〉 = e−t/τB , and 〈Mso(t)〉 = 3
2 e−4t/3τso − 1

2 . (6.8)

Note that τB and τso depend explicitly on the magnetic field B and the
SOI strength through equations (6.5) and (6.7), respectively. However,
through the average over classical paths, 〈. . .〉 they also depend on the
geometry of the nanowire and the mean free path le.

With the exponential form of the modulation factors in Eq. (6.8) the
integral in Eq. (6.4) can be performed to give Eq. (6.1)

Requirements of the quasi-classical theory The quasiclassical descrip-
tion is valid if the Fermi wave length λF is much smaller than the
typical transverse extent of the nanowire W , i.e. for many occupied sub-
bands. It also requires that the classical paths are neither affected
by magnetic field nor SOI: The former requires that the cyclotron
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6.3 Evaluation of weak (anti-)localization in the quasiclassical theory

radius λcyc À W , le,26,37 the latter that the kinetic energy dominates
over the spin-orbit energy so that lR ÀλF .185 In particular, the quasi-
classical method is valid also for lR < le,W. Additional requirements
are τB,τso À τe, for the exponential decay of magnetic dephasing time
(length) and spin relaxation time to be valid.26,185 In addition we must
have lϕÀW to be in the quasi-one-dimensional limit, where the return
probability C(t) in Eq. (6.4) is given by the 1D return probability.

These are the fundamental requirements for the quasiclassical theory
to hold. They should not confused with the stronger requirements
lm,R,e &W needed for the validity of the fit of Eq. (6.3)

Experimental fulfillment of quasi-classical requirements The experi-
mental details validating the applicability of the quasiclassical tech-
nique follow later in this chapter. The number of occupied subbands is
discussed in Sec. 6.4.4. As shown in Fig. 6.5c below, lϕ largely exceeds
the wire diameter for a large range of conductance, thereby obeying the
requirement for a one-dimensional quantum interference model. The
range of B (up to 200mT) in the fits in Figs. 6.5 and 6.6 in general obey
τB & τe. Alternatively, fitting over a smaller B-range (up to 75−100mT,
fulfilling lm & W, τe and λcyc À W , le to a larger extent) can be per-
formed on MC traces showing WAL without WL at larger B (observed
when G ≥ 2e2/h) with fixed ∆G(B →∞), yielding the same results within
∼ 20%.

6.3.2 Monte Carlo evaluation
In order to obtain the decay times in Eq. (6.8) as a function of mean free
path le, wire diameter W, and magnetic field B or Rashba spin-orbit
strength αR , we performed Monte-Carlo simulations of quasiclassical
paths in a hexagonal nanowire, as has been described before in Refs.
26,37 and 185.

Model and Boltzmannian ensemble We model the nanowire as a three-
dimensional prism of infinite length, with a regular hexagon as cross-
section.

A Boltzmannian ensemble of quasiclassical paths is created, with
each path consisting of propagation along a sequence of straight line
segments with constant velocity. For each path, after certain inter-
vals, the direction of the particles velocity is changed at random, with
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isotropic distribution, corresponding to collision of randomly distributed
pointlike impurities. The distance of free propagation between collision
is determined at random, Poisson-distributed P(l)∝ e−l/le , so that the
mean-free path is le. On impact with one of the nanowires walls, reflec-
tion occurs in a specular fashion, by reversing the velocity component
perpendicular to the wall. The resulting ensemble will consist of paths
which are open (start and end point do not coincide).

Evaluation of MB, Mso After obtaining an ensemble of Boltzmannian
paths, for each path the integrals Eq. (6.5) or Eq. (6.7) are evaluated.
Because the paths consist of straight line segments, the evaluation is el-
ementary for each segment, and the integrals MB, Mso are the products
of these segments. For MB, these are the phase factors eiφn accumulated
along each segment, while for Mso we must multiply unitary two-by-two
matrices which describe the spin dynamics along each segment. When
calculating M at the same time as generating the path, only the last
position, velocity and accumulated product of MB,so(t) need to be kept
in memory.

Magnetic field To be more specific, for magnetic fields we choose the
field to point along the y direction, and the nanowire to lie along either
the x or y direction, so that the magnetic field is either perpendicular or
parallel to the nanowires axis. In the perpendicular case, the orientation
of the nanowire was either such that the magnetic field penetrated one
of the faces perpendicularly, or such that it was parallel to one of the
faces (the difference being a rotation by 30 degrees). It was established
that for the resulting τB there is no significant difference between these
two orientations in the relevant regime.

When choosing the gauge,

A(r)= (Bz,0,0) (6.9)

the generation of open paths is sufficient for the evaluation of MB(t)
according to Eq. (6.5), because the average 〈MB(t)〉 over open and closed
paths is then identical.25 Since open and closed paths are equivalent in
this situation, we use open paths that are easier to generate numerically
than closed paths. In our simulations, we chose an ensemble size of 214

open paths to for averaging.
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Spin-orbit For 〈Mso〉 an evaluation with open paths is not possible, and
we have to average over an ensemble of closed paths, which is created
as described in the following. By creating a number N of open paths of
length L/2, we can create a set of N(N −1)/2 statistically independent
open paths of length L, by pairwise concatenation of two different paths.
We restrict this much larger set of paths to those which are almost closed
(with start and end point separated not further than le), and then insert
an additional line segment that closes these paths. If the concatenated
paths are of sufficient length, we assume that the insertion of this
additional line segment with a slightly different length distribution
than the other line segments does not change the ensemble properties
appreciably. Because we thus could only use a subset of the generated
paths, we chose an ensemble size of 216 open paths in this case. (The
size of the ensemble of closed paths decreases with increasing L).

Fitting decay times Finally, after having created ensembles of open
or closed paths as described above for a set of different path lengths,
which we chose to be logarithmically spaced, tn = (1.1)nτe with n integer
and 1≤ tn/τe ≤ 106, we determined the averages 〈MB,so(t)〉 and numeri-
cally fitted the exponential decays according to Eqs. (6.8), resulting in
estimates for the decay times τB and τso.

Validating against known results: Square nanowire To validate the
results of our simulations for MB, we also simulate other geometries, in
which results have been found previously, numerically or analytically.
First, instead of considering hexagonal nanowires, we change the shape
of the nanowire to be square. If a square nanowire is placed in a
perpendicular magnetic field and has specularly reflecting walls, we
expect the result to be the same as for a 2D layer, as treated in Ref.
25. This is because reflections on the walls perpendicular to B do not
change the projection of the path along the direction of B, and thus are
ineffective.

We should thus reproduce the result of Ref. 25, which in the “clean,
weak field” limit reads

τB

τe
=12.1

l4
m

W3le
(6.10)

and should hold for W ¿ le and lm À√
Wle. In the left frame of Fig. 6.3

we show simulation results for both perpendicular and parallel field
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Figure 6.3: Left: Comparison to the analytical expression by Beenakker and van Houten. 25 Numer-
ically obtained data points are shown for different magnetic field le < lm < 101.5 le , parallel (“par”)
and perpendicular (“perp”) to the nanowire. The fact that points for different lm collapse shows the
expected l4

m behavior. The black line “BvH” is the asymptotic expression Eq. (6.10) for W ¿ le . For
W ' le , a cross-over to the diffusive regime can be observed. Right: Comparison of the numerical
evaluation of 〈Mso〉 in a 2D strip (blue dots and line) and the diffusive result of Ref. 93 (dashed line).
In the numerics, the width of the strip is W = 10`e , so that motion is diffusive. The Cooperon-based
treatment in Ref. 93 applies for lR >W.

for a square nanowire. In perpendicular field, the data agrees to the
analytical results in the regime of its validity (the onset of cross-over to
the diffusive case can be seen). Remarkably, in parallel field, we also ob-
serve a W−3 dependence, while for hexagonal geometry, the dependence
on Wγ has two different γ for the two orientations.

Validating against known results: Spin-orbit coupling in 2D strip To
check the calculations of Mso, we compare our simulations to the expres-
sion for τso for two-dimensional diffusive wires (le ¿W) with Rashba
spin-orbit interaction from Kettemann.93

When comparing τso between different sources it is important to note
that different conventions for τso exist (such as choosing a factor 4/3
in Eq. (6.8)). For consistency it is thus important to compare physical
observables. For weak antilocalization this is the conductance correction.
In order to describe the case of diffusive wires (le ¿W) we need to take
the limit le → 0 in Eq. (6.1):

∆G =− e2

h

p
D

L

[
3

( 1
τϕ

+ 4
3τso

+ 1
τB

)− 1
2−

( 1
τϕ

+ 1
τB

)− 1
2 ]

. (6.11)
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Kettemann uses a Green’s function based approach and arrives at:93

∆G =− e2

h

p
D

L

[
2

(
1
τϕ

+ 1
2τ∗so

+ 1
τB

)− 1
2 +

(
1
τϕ

+ 1
τ∗so

+ 1
τB

)− 1
2 −

(
1
τϕ

+ 1
τB

)− 1
2
]

,

(6.12)
where τ∗so refers to the “τso” used in Ref. 93. In the limit of small spin-
orbit splitting, 1/τso → 0, both expressions become equal if we identify

τso = 2τ∗so. (6.13)

Hence we need to take this factor of 2 into account when comparing our
results to Kettemann’s. Taking this factor into account, the expressions
(6.11) and (6.12) not only agree for weak spin-orbit, but also never differ
by more than 5% for all τso.

The right frame in Fig. 6.3 shows the comparison between the expres-
sion given in Ref. 93, which after conversion to the quantities used in
this chapter is

τso/τe = 3l4
R /W2, (6.14)

and numerical results we obtained for a diffusive 2D strip for different
spin-orbit strengths.

6.4 Experiments
The experiments described below were performed in the QuTech lab and
the Kavli Institute for Nanoscience in Delft, without direct involvement
of the author of this thesis.

InSb nanowires139 with diameter W ≈ 100nm are deposited onto a
substrate with a global back gate. A large (≥ 2µm) contact separation
ensures sufficient scattering between source and drain. After contact
deposition a HfO2 dielectric layer is deposited and the device is then
covered by metal, creating an Ω-shaped top gate (Fig. 6.4a and insets
of Fig. 6.4c-d). Nanowire conductance is controlled with top and back
gate voltage, reaching a conductance up to ∼ 5e2/h (Fig. 6.4b). The
device design leads to a strong top gate coupling (Fig. 6.4c), while back
gate coupling is weaker (Fig. 6.4d). From a field-effect mobility of ∼
11,000cm2/Vs a ratio of mean free path to wire diameter le/W = 1−2 is
estimated140, see Sec. 6.4.2.
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Figure 6.4: (a) False color scanning electron microscopy image of device I. Contact spacing is 2µm.
Device fabrication is described in Sec. 6.4.1 (b) Conductance G, as a function of top gate voltage, VTG ,
and back gate voltage, VBG . Arrows and dashed lines indicate cross sections shown in panels (c)
and (d). Dots indicate voltages (VBG ,VTG ) at which traces in Fig. 6.5a were taken (same dot color
corresponds to same G). Data taken with 10 mV voltage bias at a temperature of 4.2K. (c) G as a
function of VTG at VBG = 0V. Inset: radial cross section of the device. The blue layer is HfO2. (d) G
as a function of VBG at VTG =−0.15V. Inset: axial cross section of the device. (e) Conductance, as a
function of magnetic field at several values of device conductance controlled by VTG , VBG = 0V. Data
taken with AC excitation VAC = 100µVRMS .
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Figure 6.5: (a) Magnetoconductance (MC) obtained after averaging MC traces taken at the same
G. For G = 3.5,1.3 and 0.3e2/h the voltages at which these MC traces were taken are indicated in
Fig. 6.4b. Averaged MC traces have been centered to ∆G = 0 at B = 0T. G (B = 1T) is indicated on the
right. Red curves are fits to the data assuming le

W = 1. (b) Spin relaxation length lso obtained from

the fits of panel (a) ( le
W = 1, blue points) and obtained from fits with le

W = 2 (red points). Standard
deviation of the fit outcomes is indicated. The distribution around the blue and red points (green and
gray bands, respectively) is given by the spin-orbit lengths obtained from fits with an effective width
15nm smaller (resulting in longer lso) or larger (resulting in shorter lso) than the expected wire width
W = 90nm. (c) Phase coherence length, lϕ and (d) spin precession length lR as a function of device
conductance. Figure formatting is as in panel (b).

At large G the magnetoconductance, measured with conductance
controlled by the top gate at a temperature T = 4.2K and with B per-
pendicular to the nanowire and substrate plane, shows an increase of
conductance of ∼ 0.2 to ∼ 0.3 e2/h around B = 0 (Fig. 6.4e). G(B) is, apart
from reproducible conducantance fluctuations, flat at B > 200 mT, which
is further evidence of specular boundary scattering.26 On reducing con-
ductance below ∼ 1.5 e2/h WAL becomes less pronounced and a crossover
to WL is seen.

Reproducible conductance fluctuations, most clearly seen at larger B
(Fig. 6.4e), affect the WAL peak shape. To suppress these fluctuations
several (7−11) MC traces are taken at the same device conductance
(see Fig. 6.4b). After averaging these traces WAL remains while the

117



6 Spin-orbit interaction in InSb nanowires

conductance fluctuations are greatly suppressed (Fig. 6.5a). Also here
on reduction of conductance a crossover from WAL to WL is seen. Very
similar results are obtained when averaging MC traces obtained as a
function of top gate voltage with VBG = 0V. We expect that several (∼ 10)
subbands are occupied at device conductance G & 2 e2/h (see estimation
in Sec. 6.4.4). Hence, our quasiclassical approach is valid and we fit
the averaged MC traces to Eq. (6.1) with lso, lϕ and the conductance at
large magnetic field ∆G(B →∞) as fit parameters. lB is extracted from
Eq. (6.3). Wire diameter and mean free path are fixed in each fit, but we
extract fit results for a wire diameter deviating from its expected value
and for both le

W = 1 and le
W = 2. We find good agreement between data

and fits (see Fig. 6.5a). While showing fit results covering the full range
of G, we base our conclusions on results obtained in the quasiclassical
transport regime G & 2e2/h.

On increasing conductance, the spin relaxation length first decreases
to lso ≈ 100−200nm, then increases again to lso ≈ 200−400nm when
G ≥ 2.5e2/h (Fig. 6.5b). The phase coherence length (Fig. 6.5c) shows
a monotonous increase with device conductance. This increase can be
explained by the density dependence of either the diffusion constant
or the electron-electron interaction strength,115 often reported as the
dominant source of dephasing in nanowires.86,114

Spin relaxation180 in our device can possibly occur via the Elliot-
Yafet55,182 or the D’yakonov-Perel’ mechanism,53 corresponding to spin
randomization at or in between scattering events, respectively. The
Elliot-Yafet contribution can be estimated as39

lso,EY =
√

3
8

EG

EF
le

(EG +∆SO)(3EG +2∆SO)
∆SO(2EG +∆SO)

≥ 300−600nm, (6.15)

with band gap EG = 0.24eV, Fermi energy EF ≤ 100meV, spin-orbit gap
∆SO = 0.8eV and le

W = 1−2. For the D’yakonov-Perel’ mechanism, we
note that our nanowires have a zinc-blende crystal structure, grown
in the [111] direction, where Dresselhaus SOI is absent for momen-
tum along the nanowire.* We therefore expect that Rashba SOI is the
dominant source of spin relaxation, in agreement with previous exper-
iments.129 As found in our theoretical analysis, it is then crucial to

*Furthermore, even for [100] nanowires Dresselhaus SOI is weak: In this case the
maximum linear Dresselhaus SOI strength is γk2

F (with γ the cubic Dresselhaus SOI

strength), yielding a spin-orbit length lD = ~2/m∗γk2
F . With γ= 437eV Å3 58 and EF ≤

100meV we estimate lD > 300nm.
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Figure 6.6: (a) Magnetoconductance (MC) at T = 0.4K. Each MC trace is obtained after averaging 21
MC traces taken along the top-gate controlled pinch-off trace shown in Fig. 6.4c (VBG = 0V). Black
(blue) trace is the average of traces taken between VTG = 0.34V and VTG = 0.14V (VTG = 0.12V and
VTG = −0.08V) with steps of 20mV. The voltage excitation VAC was 10µVRMS . G(B = 0.5T) is
indicated on the right. Phase coherence and spin relaxation length obtained from fits (in red) to the
traces is 1078±32 (1174±39)nm and of 95±18(205±16)nm respectively for le

W = 1 (2). Values obtained
at G = 2.6e2/h are given below. (b) False color scanning electron microscope image of device II with
different magnetic field orientations indicated by the arrows. Scale bar is 1µm. (c) MC obtained
with B parallel to the nanowire (in-plane angle w.r.t. nanowire θ ≈ 5◦, black), B perpendicular to
the nanowire in the plane of the substrate (θ ≈ 95◦, red) and B perpendicular to the substrate plane
(blue). VTG = 0.2V, VBG = 0V. Smaller ∆G compared to the preceding data is due to a larger contact
resistance (∼ 10kΩ) of this device for which no correction was made.

capture confinement effects accurately. Our lso correspond to τso
τe

= 2−15
that are captured well by our simulations.*

Given that W ≈ lR, we extract the lR corresponding to our τso
τe

directly
from Fig. 6.2b. We extract spin precession lengths lR of 50−100nm,
shown in Fig. 6.5d, corresponding to αR = 0.5−1.0eV Å. MC measure-
ments on a second device show very similar lR, see Fig. 6.15.

To confirm the interpretation of our MC measurements we extract
MC at a lower temperature T = 0.4K (Fig. 6.6a). We find larger WAL
amplitudes of up to ∆G ∼ 0.5e2/h, while the width of the WAL peak
remains approximately the same as at T = 4.2K, corresponding to a
longer lϕ at lower temperature, with approximately constant lso. A
longer lϕ is expected at lower temperature, as the rate of inelastic
scattering, responsible for loss of phase coherence, is reduced in this
regime.

Our theoretical analysis found similar dephasing times for magnetic
fields perpendicular and parallel to the nanowire for our estimated

*Exceptions are the smallest values of lso at G = 2.4 and 2.8 e2/h: When assuming a
wire width larger than the expected value (W = 105nm) we find τso

τe
∼ 1. In this case the

lR corresponding to the lowest simulated value of τso
τe

have been chosen as a lower bound.
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mean free paths, le/W = 1−2. Indeed, we observe virtually identical
WAL for fields parallel and perpendicular to the nanowire in our second
device (see Figs. 6.6b-c). WAL in the first device is also very similar for
both field directions, see Fig. 6.13. This is in striking contrast to MC
measurements in two-dimensional systems where only a perpendicular
magnetic field gives strong dephasing due to orbital effects. It also
provides strong support for the assumptions made in our theory, and
emphasizes the importance of including the three-dimensional nature
of nanowires to understand their MC properties. In contrast, WL is
anisotropic, which we attribute to a different density distribution at low
conductance compared to the high conductance at which WAL is seen.

Relevant to Majorana fermion experiments is the spin-orbit energy,

ESO = mα2
R

2~2 , that is 0.25−1meV in our devices. These values compare fa-
vorably to InAs nanowires that yield αInAs

R = 0.1−0.3eV Å47,57,73,114,147

and corresponding EInAs
SO = 15− 135µeV. EInSb

SO is similar or slightly
larger than reported spin-orbit energies in Ge/Si core-shell nanowires
(EGe/Si

SO = 90−600µeV74,77), while αInSb
R is larger than αGe/Si

R = 0.07−
0.18eV Å. Note that the device geometries and expressions for αR(lso)
used by different authors vary and that often only lso, not lR is evalu-
ated. With our ESO we then find, following the analysis of Ref. 154, a
topological gap of ∼ 0.1−1K (details in Sec 6.4.5) even for our moderate
mobilities of order 10000cm2/Vs. This gap largely exceeds the tempera-
ture and previous estimates. Hence, our findings underline the potential
of InSb nanowires in the study of Majorana fermions.

6.4.1 Device fabrication

The nanowire is deposited onto a p++-doped Si substrate covered by
285nm SiO2 (depicted in black in Fig. 6.4a). Contacts to the nanowire
(green) are made by a lift-off process using electron beam lithogra-
phy. Contact material is Ti/Au (25/125nm). After passivation of the
nanowire with a diluted ammoniumpolysulfur solution (concentration
(NH4)SX:H2O 1:200) the chip is covered with HfO2 (30nm), deposited
by atomic layer deposition. The dielectric is removed at the bonding
pads by the writing of an etch mask (PMMA) followed by an HF etch.
A top gate (brown) is deposited using a lift-off process with electron
beam lithography. Top gate is defined using Ti/Au (25/175nm). Lastly,
an additional layer of Ti/Pt (5/50nm) is deposited on the bond pads to
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reduce the chance of leakage to the global back gate. Devices were only
imaged optically during device fabrication. SEM imaging was performed
only after the measurements.

6.4.2 Estimation of mobility, mean free path and le
W

Nanowire mobility, µ, is obtained from pinch-off traces using the method
described in section 3 of the Supplementary Material of Ref. 140. In
short, mobility is obtained from the change of current, or conductance,
with gate voltage. We thus extract field-effect mobility, whereby we rely
on a fit of the gate trace to an expression for gate-induced transport.
This expression includes a fixed resistance in series with the gated
nanowire. To extract mobility and series resistances from device I
(data shown in Fig. 6.4–6.6a as well as Fig. 6.7, Fig. 6.11, Fig. 6.12,
Fig. 6.13, Fig. 6.14) in this way, a gate trace from pinch-off to saturation
is needed. However, I(VBG ,VTG = 0V) obtained from Fig. 6.7a covers
only an intermediate range (see 6.7b). Therefore traces at I(VBG , VTG =
−0.15,V) and I(VBG , VTG = 0.15V), shown in Fig. 6.7b are also used. The
three traces then together form a full pinch-off trace (see Fig. 6.7c) that is
well approximated by Eq. (11) in Ref. 140, for which here an equivalent
expression for current I instead of conductance G was used. Here the
capacitance between back gate and nanowire CBG = 22aF, the series
resistance RS = 10kΩ, the mobility µ= 12,500cm2/Vs and the threshold
voltage VTG =−16.5V (see Fig. 6.7c). Other inputs are source-drain bias
VSD = 10mV and contact spacing L = 2µm. The capacitance has been
obtained from electrostatic simulations in which the hexagonal shape
of the nanowire has been taken into account. The series resistance RS
consists of instrumental resistances (RC-filters and ammeter impedance,
together 8kΩ) and a contact resistance RC . The experimental pinch-off
traces are best approximated by RC = 2kΩ. Expressions for I(VBG)
with RC = 1kΩ and RC = 3kΩ, also shown in Fig. 6.7c, deviate from
the measured pinch-off traces. Mobility is also estimated from a linear
fit to the top gate pinch-off trace shown in Fig. 6.7d. Prior to this fit
instrumental and series resistances have been subtracted. From the
fit µ ∼ 9,000cm2/Vs is obtained, using CTG = 1440aF, obtained from
electrostatic simulations, and L = 2µm. Similarly, mobility in device III
(see Fig. 6.7e, magnetoconductance data shown in Fig. 6.15 is extracted
from a fit to the top gate pinch-off trace, giving µ∼ 10000cm2/Vs using
CTG = 1660aF and L = 2.3µm. These mobilities are similar to those
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Figure 6.7: (a) Current, I, in device I as a function of top gate voltage, VTG , and back gate voltage,
VBG . Cross sections corresponding to the I(VBG ) traces in panel b are indicated with arrows. Data
taken with source-drain voltage VSD = 10mV. (b) I(VBG ) at VTG = 0.15V, VTG = 0V and VTG =
−0.15V . (c) Traces at I(VBG ,VTG = −0.15V) (blue) and I(VBG ,VTG = 0.15V) (green) are displaced
by ∆VBG = −8V and ∆VBG = 8V, respectively, chosen such that their current is similar to that of
the I(VBG ,VTG = 0V) trace (red). Data is well approximated by I(VBG ) (see text) with mobility µ ∼
12,500cm2/Vs and contact resistance RC = 2kΩ (black). Traces with larger (3kΩ, pink) or smaller
(1kΩ, cyan) contact resistance are also shown. (d) G(VTG ) in device I with VBG = 0V (blue). A linear fit
of the pinch-off traces (red) gives a slope dG

dVTG
= 8.5(e2/h)/V. (e) G(VTG ) in device III with VBG = 0V.

A linear fit of the pinch-off traces (red) gives a slope dG
dVTG

= 7.9(e2/h)/V.

obtained in InSb nanowires that are gated using only a global back
gate.140 Mean free path, le, is estimated as le = vFτe, with vF the Fermi
velocity and τe the scattering time. τe = µm∗

e , with e electron charge
and m∗ the effective electron mass in InSb. Assuming a 3D density

of states vF = ~
m∗ (3π2n)

1
3 with ~ the reduced Planck constant and n

electron density, n is estimated from pinch off traces using n = C(VG−VTH )
eAL

with A the nanowire cross section, VG top or back gate voltage and
VTH the threshold (pinch-off) voltage. In this way in device I n up to
∼ 4 ·1017cm−3 are obtained, giving le up to ∼ 160nm. This estimate of n
agrees reasonably with densities obtained from a Schrödinger-Poisson
solver (see Subsec. 6.4.4). In device III n up to ∼ 4 ·1017cm−3 gives
le ∼ 150nm. Together with the facet-to-facet width W (described in
Fig. 6.8) these mean free paths yield a ratio le

W = 1−2.
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6.4.3 Nanowire width

Nanowires were not imaged with scanning electron microscope prior to
device fabrication to avoid damage due to electron irradiation. The wire
diameter is estimated from a comparison of the nanowire width after
fabrication to the nanowire diameter obtained from a number of wires
from the same growth batch deposited on a substrate as described in
Fig. 6.8.

6.4.4 Estimation of the number of occupied
subbands

An estimate of the number of occupied subbands is calculated in two
ways:

1. A self-consistent Schrodinger-Poisson calculation yields that 17
subbands contribute to transport at higher device conductance
(density profile shown in the inset of Fig. 6.9). As contact screening
has been neglected in these two-dimensional calculations the ac-
tual number of subbands may be slightly lower, but likely several
(∼ 10) modes contribute at high device conductance.

2. The conductance, G, of a disordered quantum wire relates to the
number of subbands, N, as20

G = NG0

1+ L
le

, (6.16)

which, using L
le
≈ 10−20 (obtained from the estimate of le above)

yields N ≥ 25.

6.4.5 Topological gap as a function of mobility and
spin-orbit strength

We follow the theoretical analysis of Ref. 154 to compute the maximum
topological gap that can be achieved at a given mobility µ and spin-orbit
strength αR. One should only be careful to note that the definition of
ESO in Ref. 154 differs by a factor of 4 from ours. Whenever we refer to
ESO here, we use our definition given in Sec. 6.4.
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Figure 6.8: (a) Cross-sectional view of hexagonal nanowires with indicated widths WC and WF . A
top view of these nanowires (such as a scanning electron microscope image) shows the width from
corner to corner, WC . In our simulations of electron interference in hexagonal nanowires the facet-to-
facet width, WF , is used. The two widths are related by WF = cos( π6 )WC . (b) Distribution of nanowire
diameters obtained from scanning electron microscope images of nanowires lying on a substrate. The
imaged nanowires are from the same growth batch as the ones used in the experiment. The nanowire
diameter is the width of the nanowire when lying on a substrate and thus corresponds to WC in panel
a plus twice the native oxide thickness. Four imaged wires are shown in panel d. Average diameter
is 110nm, standard deviation is 15nm. (c) Distribution of the apparent nanowire diameter after
device fabrication. The distribution has been obtained from scanning electron microscope images of
devices made in the same fabrication run (and thus with the same fabrication recipe) as the ones
measured. The apparent diameter increases due to HfO2 and top gate metal deposition. Average
apparent diameter is 197nm. Device I had an apparent diameter after fabrication of 200nm, close
to the average apparent nanowire device diameter, and therefore its wire diameter is estimated as
110nm, the average the distribution of wire diameters in panel c. Device III has a diameter after
fabrication of 180nm, which is 17nm below average. Wire diameter is therefore estimated as 110−17=
93nm. Wires are covered by a native oxide of ∼ 2.5nm, giving an InSb diameter WC ≈ 105nm and
WC ≈ 88nm for device I and device III respectively. Facet-to-facet diameter WF , simply denoted by
W in the previous sections, is therefore W ≈ 90nm (device I) and WF = W ≈ 75nm (device III). The
standard deviation of wire diameter of 15nm in panel b is used to define a range of wire diameters,
W ±15nm, for which spin relaxation length, spin precession length and phase coherence length are
obtained in Fig. 6.5. (d) Scanning electron microscope image of four of the nanowires used to obtain
the histogram of nanowire diameters of panel b. (e)Scanning electron microscope image of four of the
devices imaged to obtain the apparent nanowire diameter after fabrication of panel c. The arrows in
the upper left image indicate the apparent nanowire diameter.

In Fig. 6.10a we show the topological gap as a function of mobility
for the spin-orbit energies estimated in the main text, with parameters
suitable for the Majorana experiments in Ref. 128 We observe a nearly
linear dependence of the topological gap on mobility for these parameters.
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Figure 6.9: Electron density as a function of the nanowire cross section. Density is obtained from
self-consistent Schrodinger-Poisson calculations with VTG = 0.5V and VBG = 0V. TG (BG) denotes top
(back) gate.

Figure 6.10: (a) Topological gap as a function of mobility for different values of Eso. (b) Topologi-
cal gap as a function of Eso for a fixed mobility of 10000cm2/Vs. The remaining parameters were
chosen to be suitable for InSb nanowires in proximity to NbTiN: effective mass m∗ = 0.014me and
superconducting gap ∆= 30K.
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6 Spin-orbit interaction in InSb nanowires

The topological gap can be rather sizable, and we find gaps of order 1K
for a moderate mobility of µ = 10,000cm2/Vs for Eso = 1meV. From
the figure it is also apparent that the topological gap depends rather
strongly on Eso.

We investigate the Eso-dependence of the topological gap in Fig. 6.10b.
At a mobility of 10,000cm2/Vs the topological gap depends roughly
quadratically on Eso up to Eso ∼ 1meV, i.e. the topological gap increases
as α4

R . This is in stark contrast to the clean case where the topological
gap depends linearly on αR .

The different dependences of the topological gap on mobility (linear)
and spin-orbit strength (to the fourth power) indicates that for current
devices it may be more efficient to attempt to improve spin-orbit strength
rather than mobility.

6.5 Supplementary experimental data
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Figure 6.11: Magnetoconductance traces at constant conductance. (a) Conductance G, as a
function of top gate voltage, VTG , and back gate voltage, VBG as shown in Fig. 6.4b. Dots indicate
voltages (VBG ,VTG ) at which traces in Fig. 6.5a were taken (same dot color corresponds to same
G). The letters at the dots at G = 3.5e2/h refer to the magnetoconductance traces shown in panels b
and c. Data obtained with 10 mV voltage bias at a temperature of 4.2 K. (b) Magnetoconductance
traces taken at the points at G = 3.5e2/h shown in panel b. Data taken with AC excitation VAC =
100µVRMS . The difference between the conductance of the dots in panel a and the conductance
of the corresponding magnetoconductance traces in panel b is likely due to the difference in source-
drain bias between both measurements. Also at other conductances (for instance at the green and
orange dots in panel a) magnetoconductance traces generally show a conductance lower than those
obtained in the gate-gate plot of panel a by a similar amount. For each of these traces the conductance
denoted on the vertical axis of Fig. 4a and that on the horizontal axis of Fig. 4b-d is the conductance
of the equiconductance points of Fig. 6.4b. (c) Magnetoconductance traces of panel b normalized to
∆G(B = 0)= 0. By averaging over these traces the blue trace of Fig. 6.5a (G = 3.5e2/h) is obtained.
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Figure 6.12: Spin relaxation and phase coherence length obtained from top gate averaging
in device I (a) Magnetoconductance traces obtained after taking MC traces with top gate voltage
spacing ∆VTG = 20mV between VTG = 0.34V and VTG = −0.42V and averaging 9 subsequent traces.
VBG = 0V. Averaged MC traces have been centered to ∆G = 0 at B = 0T. G(B = 0.5T) is indicated on
the right. Red curves are fits to Eq. (6.1), wherein Eqs. (6.2) and (6.3) have been used to obtain lB ,
using le /W = 2 and W = 90nm. (b) Spin relaxation length, lso , obtained from the fits of panel a ( le

W = 2,

red points) and obtained from fits with le
W = 1 (blue points). Standard deviation of the fit outcomes are

indicated. The distribution around the blue and red points (in green and gray, respectively) is given
by the spin-orbit lengths obtained from fits with an effective width 15nm smaller or larger than the
expected wire width W = 90nm. (c) Phase coherence length, lϕ, obtained from fits of panel a. Figure
formatting (colors, standard deviation and wire diameter dependence) is the same as in panel b.

(e2/h) le
W lso (nm) lϕ (nm)

3.9 1 95 ± 18 1078 ± 32
2 205 ± 16 1174 ± 39

2.6 1 171 ± 26 805 ± 52
2 380 ± 29 937 ± 60

Table 6.1: Phase coherence and spin relaxation length at T = 0.4K . Spin relaxation length, lso ,
and phase coherence length, lϕ, obtained from fits to the traces in Fig. 6.5a. le

W denotes the ratio of
mean free path, le , to wire width, W.
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1. B┴ out-of-plane 

2. B┴ in-plane (q=950) 
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a) b) le/W = 2 le/W = 1 c) 

lso 

lϕ 

lso 

lϕ 

Figure 6.13: Magnetoconductance in parallel and perpendicular field in device I. (a) MC
with parallel and perpendicular magnetic field orientation. Out-of-plane, ⊥, (in-plane, ∥,) denotes an
orientation of the magnetic field (parallel) perpendicular to the substrate plane. θ denotes the in-
plane angle of the magnetic field w.r.t. the nanowire. As the uncertainty in orientation of the in-plane
magnetic field is 20◦ three parallel magnetoconductance traces with |θ| ≤20◦ are shown. Each MC
trace is an average of 7 traces taken at the same conductance G = 3.5 e2/h by varying top and back gate
voltage similar to the MC data of Fig. 6.2. No systematic change of MC along these equiconductance
points was observed. As in device II (Fig. 6.6c) also here WAL in parallel and perpendicular magnetic
field are very similar. Red curves are fits to Eq. (6.1) (in which Eqs. (6.2) and (6.3) have been used
for lB , with values of C corresponding to parallel or perpendicular magnetic field orientation), using
le
W = 1 and W = 90nm. (b) Spin relaxation length (red) and phase coherence length (black) obtained

from fits of the MC traces in panel a using le
W = 2. B orientation numbers correspond to the traces

numbered 1 to 5 in panel a. (c) Spin-orbit length (red) and phase coherence length (black) obtained
from fits of the MC traces in a using le

W = 1. The slightly wider WAL peak in parallel magnetic field

yields better agreement with le
W = 1 as spin-orbit lengths and phase coherence lengths obtained in

parallel and perpendicular field with le
W = 1 are more similar than when assuming le

W = 2.
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6.5 Supplementary experimental data

Figure 6.14: Magnetoconductance for other angles of magnetic field in device I. (a) MC as a
function of out-of-plane angle, φ, with in-plane angle w.r.t. the nanowire θ = −55±20◦. Angles θ and
φ are shown in the schematic drawing in the inset of panel c. Out-of-plane (in-plane) denotes an ori-
entation of the magnetic field (parallel) perpendicular to the substrate plane. φ= 0◦ (90◦) is magnetic
field perpendicular to (parallel to) the substrate plane. (b) MC as a function of out-of-plane angle φ

with in-plane angle w.r.t. nanowire θ = 35±20◦. While weak anti-localization is (nearly) independent
of magnetic field orientation, here we find that the suppression of weak localization by the magnetic
field becomes less effective when rotating the field from perpendicular to parallel to the substrate
plane. (c) MC as a function of in-plane angle θ. Although the suppression of weak localization by
magnetic field is much less effective for all magnetic fields oriented parallel to the substrate plane,
a closer inspection shows that the magnetic field dependence is weakest when the magnetic field is
approximately aligned with the nanowire. We suggest that the difference in dependence on magnetic
field orientation between WAL and WL is due to a difference in charge distribution: while at the
larger device conductance at which weak anti-localization is observed many subbands all across the
nanowire cross section contribute to transport (see the inset of Fig. 6.2d), at low conductance, when
weak localization is seen, transport takes place only a few modes, confined to a small region of the
nanowire cross section. The low conductance situation may resemble a two-dimensional system, in
which only the magnetic field component perpendicular to the substrate leads to a suppression of WL.
This would lead to the reduction of positive MC when rotating the magnetic field from out-of-plane to
in-plane. In all panels VTG =−0.36V, VBG = 0V. The difference in G(B = 0T) between panels a-b and
c is due to a slight device instability at low conductance or due to hysteresis when sweeping VTG .
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Figure 6.15: Device III: Reproducibility of extracted spin relaxation and phase coherence
length. (a) False color scanning electron microscope image of device III. A voltage bias, VAC , is
applied across the outer contacts, after which simultaneously the current, I, through the device and
the voltage across the inner contacts, V , is measured. Subsequently conductance G = I

V is determined.
(b) Averaged MC traces obtained after taking MC traces with top gate voltage spacing ∆VTG = 20mV
between VTG = 0.3V and VTG =−0.22V and averaging 7 subsequent traces. VBG = 0V. G(|B| = 0.5T)
is indicated. Red curves are fits to Eq. (6.1), wherein Eqs. (6.2) and (6.3) have been used to obtain lB ,
using le /W = 1 and W = 75nm. (c) Spin relaxation length, lso , obtained from the fits of panel b ( le

W = 1,

blue points) and obtained from fits with le
W = 2 (red points). Standard deviation of the fit outcomes is

indicated. The distribution around the blue and red points (in green and gray, respectively) is given
by the spin-orbit lengths obtained from fits with an effective width 15nm smaller or larger than the
expected wire width W = 75nm. (d) Phase coherence length, lϕ, obtained from the fits of panel b
( le

W = 1, blue points) and obtained from fits with le
W = 2 (red points). Figure formatting is the same

as in panel c. (e) Spin precession length, lR , as a function of device conductance, G, extracted from
the spin relaxation lengths of panel c. Figure formatting is the same as in panel c. When assuming
W = 90nm the τso

τe corresponding to the lso at G = 2.3e2/h are below the simulation range. In this
case the lR corresponding to the lowest simulated value of τso

τe has been chosen.
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Samenvatting
Topologische eigenschappen van kwantummechanische golffuncties staan
momenteel sterk in de belangstelling, vooral in verband met elektro-
nen in de vaste stof. Een recente ontwikkeling in dit vakgebied is de
aandacht voor systemen die periodiek in de tijd worden aangedreven, bij-
voorbeeld door een elektromagnetisch wisselveld. Doorgaans behandelt
men dit externe veld niet kwantummechanisch, het is slechts een middel
om de eigenschappen van de elektronen in sterke mate te variëren, en
zo de topologie van de elektrongolffunctie te beïnvloeden.

Het eenvoudigste en meest gangbare model dat periodieke aandrijving
kan beschrijven is de zogenaamde kwantumwandeling, het kwantum-
mechanische analogon van de toevals-wandeling ("random walk") in de
klassieke mechanica. De aanwezigheid van een rijke verscheidenheid
aan topologische kenmerken in een kwantumwandeling is al een tijd
geleden opgemerkt, in de context van de “gebruikelijke” formulering van
topologische invarianten door middel van eigenfuncties van de Hamilto-
niaan. Een alternatieve formulering in termen van de verstrooiingsma-
trix (S-matrix) is veel efficiënter gebleken voor niet-aangedreven syste-
men, en bovendien is zo’n formulering direct toepasbaar op wanordelijke
systemen. In het tweede hoofdstuk van dit proefschrift (na de inleiding
in hoofdstuk één) laten we zien hoe de S-matrix-aanpak toegepast kan
worden op kwantumwandelingen, met dezelfde voordelen. Niet alleen is
de S-matrix-aanpak nuttig voor theoretische computersimulaties, maar
zij kan ook worden toegepast op optische experimenten, omdat de S-
matrix een middel biedt om de topologische invariant heel direct uit een
verstrooiingsexperiment af te leiden.

Er is een model dat lijkt op de kwantumwandeling, met een duidelijke
onderbouwing op grond van een Hamiltoniaan met tijdsafhankelijke
parameters, het zogenaamde Su-Schrieffer-Heeger (SSH) model. We
verkennen in hoofdstuk drie onder welke omstandigheden de symme-
trie van het statische SSH-model behouden blijft in de dynamische,
in de tijd aangedreven, versie, en we geven eenvoudige uitdrukkin-
gen voor de topologische invarianten in termen van het windingsgetal
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van de tijdsevolutie-operator. We tonen aan dat dit systeem door een
opeenvolging van verschillende topologische fasen kan worden geleid,
eenvoudigweg door het aandrijvingspatroon aan te passen.

De aanwezigheid van een externe aandrijving kan ook een radicale
verandering teweegbrengen in de invloed van kwantumruis en niet-
lineaire effecten ten gevolge van de omgeving. Deze effecten kunnen
in experimenten niet uitgesloten worden, en soms worden ze zelfs met
opgezet aangebracht. We onderzoeken om deze reden in hoofdstuk
vier een niet-lineaire variant van een kwantumwandeling, met inbe-
grip van termen die wrijving (relaxatie) veroorzaken. Als we in dit
systeem een topologische domeinwand aanbrengen, dan vinden we dat
voor sommige vormen van niet-lineariteit de topologisch beschermde
gebonden toestand behouden blijft, en bovendien een speciale rol vervult
als aantrekker of afstoter ("attractor/repellor") van de niet-lineaire dy-
namica.

De laatste twee hoofdstukken van het proefschrift behandelen iets
andere vraagstukken. In hoofdstuk vijf onderzoeken we een aange-
dreven systeem dat in de belangstelling staat als een bron voor enkele
elektronen: een zogenaamde kwantumdoos ("quantum dot") die aange-
dreven wordt door een tijdsafhankelijke spanning en dan één voor één
elektronen of gaten injecteert in een reservoir. Ons doel is om een
supergeleidende variant van dit systeem te construeren, waarbij de
kwantumdoos vervangen is door een Josephsonjunctie tussen topolo-
gische supergeleiders. De geïnjecteerde deeltjes zijn nu zogenaamde
Bogoliubov-quasideeltjes (een mengeling van elektronen en gaten). We
leiden een expliciete uitdrukking af voor de golffunctie van de deeltjes
en vinden dat zowel de injectiesnelheid als de aard van de koppeling
tussen Josephsonjunctie en reservoir van cruciaal belang zijn voor de
bepaling van de lading van het geïnjecteerde deeltje.

In hoofdstuk zes beschrijven we tenslotte de experimentele uitdag-
ing om de spinbaankoppeling-sterkte te bepalen van de InSb (indium-
antimoon) nanodraden die momenteel zo sterk in de belangstelling
staan als topologische supergeleiders en bron van Majoranadeeltjes.
De sterkte van de spinbaankoppeling kan in principe gehaald worden
uit de details van geleidingsmetingen die het zogenaamde "zwakke lo-
calizatie effect" vertonen. Het gaat dan om een weerstandspiek rond
magneetveld nul, die soms overgaat in een dip (men spreekt dan van
"zwakker antilocalizatie"). Om de gewenste informatie uit de metin-
gen te halen is het nodig om het geheel van de elektronenpaden in de
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nanodraad te beschouwen, die beïnvloed worden door het magneetveld
en de spinbaankoppeling. De InSb nanodraden hebben een zeshoekige
doorsnede, die we nauwkeurig in rekening hebben gebracht in een nu-
merieke simulatie. We vonden grote afwijkingen van resultaten in de
literatuur voor platte draden, in het bijzonder machtswetten met niet-
heeltallige exponenten. Onze resultaten konden direct toegepast worden
op magnetoweerstand-metingen in het QuTech laboratorium aan de TU
Delft.
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Summary
Topological properties of wave functions in quantum mechanics, espe-
cially in the context of electrons in condensed matter systems, have
recently attracted a lot of theoretical and experimental attention. One
of the more recent developments in this field is the attention to sys-
tems which are subject to external fields that vary periodically in time,
so-called driven systems. The external fields themselves are typically
not treated quantum mechanically, but can be used to influence and
change the properties (topological and otherwise) of the electrons in a
wide range.

As a minimal model that captures the physics introduced by exter-
nal driving, an often considered model is the so-called (discrete time)
quantum walk, a quantum mechanical analogue of the classical random
walk. In the “usual” formulation of topological properties in terms of
invariants of bulk wave functions, the richness of topological phases
in quantum walks has been realized a while ago. Another formulation
of topological invariants in terms of the scattering matrix has proven
very useful for non-driven systems due to its numerical efficiency and
easy extension to disordered systems. We show in the second chapter
of this thesis (after the introductory first chapter) how this approach
could be extended to quantum walks and find that the same advantages
apply. We show that the scattering matrix approach is not only useful in
theoretical numerical studies, but can also directly be implemented in
photonic experiments as a direct probe for the topological invariant of a
quantum walk.

A model actually derived from a driven Hamiltonian, the Su-Schrieffer-
Heeger (SSH) model with driven time-dependent parameters, is closely
related to the quantum walk. In chapter three we explore under what
conditions the symmetries of the (static) SSH model carry over to the
driven version and give simple closed expressions for the topological
invariants in terms of winding numbers of the time-evolution operator,
and thus the driving. We show that this system can be tuned through a
manifold of different phases by only changing the driving pattern.
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The presence of external driving can also radically change the role
of quantum noise and non-linear effects due to the environment on the
system, which is inadvertently present or can even be engineered in
experiments. We thus study in chapter four a non-linear modification of
the quantum walk which involves terms that lead to quantum friction
and thus relaxation. In the presence of topological domain boundaries,
we find that for certain forms of the non-linearity, the topologically
protected bound states obtain a very special role as either attractors or
repellors of the global dynamics of the system.

The last two chapters of this thesis consider slightly different ques-
tions. A driven system that has been subject to recent research is the
so-called single electron emitter, which consists of a quantum dot subject
to a time-dependent gate voltage which emits individual electrons or
holes to a coupled electron reservoir. In chapter five, we attempt to
construct a superconducting version of this system where the quantum
dot is replaced by a Josephson junction between topological supercon-
ductors and calculate the properties of the emitted so-called Bogoliubov
quasiparticles (superpositions of electrons and holes) in the aperiodic
limit of driving. We derive an analytical expression for the wave function
of the emitted particles and find that both the driving speed and the
nature of the coupling between junction and reservoir are crucial in
determining the charge of the emitted particle.

In the sixth and final chapter, we consider the experimental challenge
of extracting spin-orbit coupling strength in InSb nanowires, which
are the basis for constructing (non-driven) one-dimensional topologi-
cal superconductors. Spin-orbit coupling strength can be obtained by
magnetoconductance measurements, which contain weak localization
and weak anti-localization features. In order to extract the desired
information from these features, one needs to consider the ensemble of
closed paths in the given geometry and the average effect of magnetic
and spin-orbit fields on these paths. For hexagonal nanowires such
as the InSb nanowires under consideration, we numerically determine
those influences and found striking differences, such as non-integer
power laws, in comparison to previous models e.g. for two-dimensional
nanowires. We immediately apply these results to magnetoconductance
measurements performed in the QuTech laboratory at the TU Delft.
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Zusammenfassung
Topologischen Eigenschaften von quantenmechanischen Wellenfunk-
tionen, insbesondere im Kontext der Festkörperphysik, wurden in der
letzten Zeit viel Aufmerksamkeit zuteil, sowohl theoretisch als auch ex-
perimentell. Eine der letzten Entwicklungen ist die Untersuchung von
Systemen die von äußeren Feldern beeinflusst werden, welche periodisch
von der Zeit abhängen, sogenannte getriebene Systeme. Die äußeren
Felder werden für gewöhnlich nicht quantenmechanisch behandelt, aber
sie können verwendet werden, um die Eigenschaften (topologische und
andere) der Elektronen in großem Maße zu beeinflussen.

Ein minimales Modell, welches die Eigenschaften abbildet, die pe-
riodische äußere Felder mit sich bringen, ist der sogenannte (zeit-
diskrete) Quantum Walk, ein quantenmechanisches Analogon zum klas-
sischen Random Walk. In der üblichen Formulierung von topologischen
Eigenschaften durch Invarianten von ausgedehnten Wellenfunktionen
wurde die Reichhaltigkeit topologischer Phasen von Quantum Walks vor
einiger Zeit erkannt. Eine andere Formulierung, die auf Streumatrizen
basiert, hat sich bereits für nicht getriebene Systeme wegen seiner nu-
merischen Effizienz und einfachen Übertragbarkeit auf ungeordnete
Systeme als nützlich erwiesen. Im zweiten Kapitel dieser Arbeit (nach
der Einleitung im ersten Kapitel) zeigen wir, wie dieser Ansatz auf
Quantum Walks übertragen werden kann und dass die selben Vorteile
zutreffen. Wir zeigen, dass der Streumatrixansatz nicht nur in theo-
retischen numerischen Studien von Nutzen ist, sondern dass er auch
direkt in Experimenten mit Photonen zur Messung der topologischen
Invarianten von Quantum Walks verwendet werden kann.

Ein mit Quantum Walks nahe verwandtes Modell, welches direkt
durch ein getriebenen Hamiltonian gegeben ist, ist das Su-Schrieffer-
Heeger-Modell (SSH-Modell) mit getriebenen zeitabhängigen Parame-
tern. Wir untersuchen in Kapitel drei unter welchen Umständen die
Symmetrieeigenschaften des ungetrieben SSH-Modells auf das getriebe-
ne Modell übertragen werden können, und geben einfache geschlossene
Formeln für die topologischen Invarianten, ausgedrückt durch den Zeit-
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entwicklungsoperator, und damit durch die treibenden Felder, an. Wir
zeigen, dass dieses System nur durch Verändern der treibenden Felder
eine Mannigfaltigkeit von topologischen Phasen erreichen kann.

Äußere Felder verändern auch grundlegend die Rolle von Quanten-
rauschen und nichtlinearen Effekten durch die Umgebung auf das Sys-
tem, welche in Experimenten immer vorhanden sind oder sogar gezielt
manipuliert werden können. Wir untersuchen daher in Kapitel vier
eine nichtlineare Variante des Quantum Walks, welches Terme enthält,
die zu Quantenreibung und damit Relaxation führen. Bei Vorhanden-
sein von topologischen Phasengrenzen im System finden wir, dass für
manche Formen der Nichtlinearität die lokal gebundenen topologischen
Zustände eine besondere Rolle als Attraktoren für die globale Zeitent-
wicklung des Systems einnehmen.

Die letzten beiden Kapitel sind etwas anders gearteten Fragen gewid-
met. Ein getriebenes System, das in letzter Zeit häufig untersucht
wurde, ist der Einzelelektronen-Emitter (engl. single electron emitter),
der aus einem Quantenpunkt mit zeitabhänger Gatespannung besteht,
welcher einzelne Elektronen oder Löcher in ein gekoppeltes Reser-
voir aussendet. Im fünften Kapitel versuchen wir, eine supraleitende
Variante dieses Systems zu konstruieren, in dem der Quantenpunkt
durch einen Josephson-Kontakt zwischen topologischen Supraleitern er-
setzt wird, und leiten die Eigenschaften des ausgesendeten Bogoliubov-
Quasiteilchens (eine quantenmechanische Superposition von Teilchen
und Loch) im Grenzfall aperiodischen Treibens her. Wir erhalten ana-
lytische Ausdrücke für die Wellenfunktion der ausgesendeten Teilchen
and finden, dass die Ladung des Teilchens stark von sowohl der Än-
derungsgeschwindigkeit des treibenden Feldes als auch von der Art der
Kopplung an das Reservoir abhängt.

Im sechsten und letzten Kapitel betrachten wir das experimentelle
Problem, die Stärke der Spinbahnkopplung in Indiumantimonid-Nano-
drähten, die die Grundlage für die Konstruktion von eindimensionalen
(nicht-getriebenen) topologischen Supraleitern bilden, zu bestimmen.
Die Spinbahnkopplung kann aus magnetfeldabhängigen Leitwertmes-
sungen erhalten werden, die schwache Lokalisierungs- und Antilokali-
sierungssignale enthalten. Um die gewünschte Information zu erhalten,
muss das Ensemble geschlossener Pfade in der gegeben Geometrie und
der Einfluss des Magnetfelds und Spinbahnfelds auf diese Pfade bes-
timmt werden. Für hexagonale Drähte bestimmen wir diesen Einfluss
durch numerische Simulation und finden auffallende Unterschiede, wie
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nichtganzzahlige Skalierungsexponenten, im Vergleich zu früheren Mod-
ellen für zum Beispiel zweidimensionale Nanodrähte. Wir wenden diese
Ergebnisse auf experimentelle Ergebnisse an, die im QuTech-Labor an
der TU Delft erhalten wurden.

157





Curriculum Vitæ
I was born in Berlin, (West-)Germany, in 1988. After moving to Franken-
thal (Pfalz) in 1995, where I attended primary school, I received my
secondary education at Carl-Bosch-Gymnasium in Ludwigshafen am
Rhein, where I graduated in 2006. In 2006–2007, I completed a nine
months civil service at a hospital in Bad Dürkheim.

I moved back to Berlin in 2007 and enrolled for a Bachelor of Science
in Physics at the Freie Universität Berlin, from which I graduated in
2010; my thesis "Edge state mixing in the quantum hall effect in p–n
junctions in graphene" was supervised by Piet Brouwer. Immediately
afterwards, I enrolled for the Master of Science in Physics at the same
university, and graduated in 2012 with my thesis “Fluctuation correc-
tions to conductivity in superconducting films and cylinders” which was
supervised by Georg Schwiete, again in the group of Piet Brouwer.

I continued my studies joining the group of Carlo Beenakker in Leiden
in 2013 as a PhD student at the Instituut Lorentz, part of the Leiden
Institute of Physics, and employed by the Stichting voor Fundamenteel
Onderzoek der Materie (FOM). During my time there, I collaborated
closely with experimental physicists from the group of Leo Kouwen-
hoven and Leonardo DiCarlo, both at TU Delft, and with Janos Asbóth
at the Wigner Institute for Advanced Studies in Budapest, Hungary. I
also supervised a project of a visiting Bachelor student, Yaroslav Gerasi-
menko, which resulted in a publication. I taught the exercise classes
of the Statistical Physics 2 course in Leiden in 2013, 2014 and 2015,
for which I was awarded a Teaching Assistant Prize from the Faculty
of Science in 2014. I attended many conferences and workshops and
presented my work to others in the Netherlands, Hungary, Germany,
France, Finland, Ukraine, and Italy.

159





List of publications
• B. Tarasinski and G. Schwiete. Fluctuation conductivity of disor-

dered superconductors in magnetic fields. Phys. Rev. B 88, 014518,
2013.

• B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus. Scattering theory
of topological phases in discrete-time quantum walks. Phys. Rev.
A 89, 042327, 2014. [Chapter 2]

• J. K. Asbóth, B. Tarasinski, and P. Delplace. Chiral symme-
try and bulk-boundary correspondence in periodically driven one-
dimensional systems. Phys. Rev. B 90, 125143, 2014. [Chapter 3]

• P. Baireuther, T. Hyart, B. Tarasinski, and C. W. J. Beenakker.
Andreev-Bragg reflection from an Amperian superconductor. Phys.
Rev. Lett. 115, 097001, 2015.

• I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R.
Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, and M. Wimmer.
Spin-orbit interaction in InSb nanowires. Phys. Rev. B 91, 201413,
2015. [Chapter 6]

• B. Tarasinski, D. Chevallier, J. A. Hutasoit, B. Baxevanis, and
C. W. J. Beenakker. Quench dynamics of fermion-parity switches
in a Josephson junction. Phys. Rev. B 92, 144306, 2015.

[Chapter 5]

• Y. Gerasimenko, B. Tarasinski, and C. W. J. Beenakker. Attractor-
repeller pair of topological zero-modes in a nonlinear quantum
walk. Phys. Rev. A 93, 022329, 2016. [Chapter 4]

161


