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1
Introduction

1.1 A brief history of the Universe

The questions concerning the origin, evolution, and fate of the Universe are probably as old
as conscious mankind. For millennia the attempts to answer these questions were fundamen-
tally connected to the religious narratives emerging throughout all human cultures. Just a
few centuries ago with the rise of modern natural sciences based on observations and exper-
iments, with which predictive mathematical theories can be falsified, the task of answering
these cosmological questions moved beyond religious belief and physical cosmology started
to emerge.

Just about a century ago Albert Einstein presented his field equations of gravity, the key
equations of his theory of general relativity, to the Prussian Academy of Science in Berlin
(Einstein 1915b). Within two years, in 1917, Einstein applied these field equations to the
whole Universe and established the field of relativistic cosmology (Einstein 1917), which
until today is at the very roots of our view on the cosmos.

Nowadays the theory of general relativity is regarded as a triumph of human mind, but at
the time there was really no observational evidence supporting such a major revision of the
prevalent gravity theory of Newtonian mechanics. Only the tiny precession of Mercury’s per-
ihelion hinted already in 1859 at an inconsistency in Newtonian mechanics (Le Verrier 1859),
although astronomical zeitgeist favoured explaining the discrepancy rather with a never-to-be-
detected planet ‘Volcano’.

General relativity could naturally explain the precession of Mercury’s perihelion (Einstein
1915a) and further observational evidence for it became available in 1919. During a solar
eclipse Arthur S. Eddington observed the deflection angles of stars in close projected vicinity
on the sky to the Sun (Eddington 1920). The observations employed the gravitational lensing
effect, the phenomenon that light from a background source is deflected due to the mass
of a foreground lens. In this particular case, the mass of the Sun deflects the light of stars
in close projected vicinity to it on the sky. The observations convincingly showed that the
stars visible during the eclipse did not appear at positions deflected by an angle predicted by
Newtonian gravity. These results made Einstein world famous over night and contributed to
the general acceptance of his new theory of gravity in the scientific community. This triggered
rich theoretical research in this new field by Willem de Sitter (e.g. de Sitter 1917), Alexander
Friedmann (e.g. Friedmann 1922), and Georges Lemaître (e.g. Lemaître 1927), and many
others.

Around the same time, in 1920, the ‘Great Debate’ between astronomers Harlow Shapley
and Heber Curtis was in full progress about what the actual size of the Universe is (Shapley
& Curtis 1921). Shapley argued that the Milky Way represents the entirety of the Universe.
Thus, he was convinced that the peculiar ‘spiral nebulae’, of which more and more were
being observed as bigger and bigger telescopes became available, were contained in the Milky
Way. Curtis, however, believed the nebulae to be ‘island universes’ arguing that they are
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2 1. Introduction

extragalactic and galaxies just like the Milky Way. Eventually, the debate was settled by the
work of Edwin Hubble (Hubble 1925) and others who showed that the ‘spiral nebulae’ were
indeed galaxies of their own. Spectral data of these nebulae taken by Slipher and interpreted
by Lemaître and Hubble showed that almost all galaxies also seemed to be moving away from
us (Slipher 1917; Lemaître 1927; Hubble 1929). This cosmic recession, however, was already
interpreted by Lemaître in a cosmological sense as actually being the effect of an expanding
Universe rather than the Doppler shifted peculiar motions of galaxies. The discovery of the
expansion of the Universe made Einstein admit his ‘greatest blunder’ by which he referred
to the introduction of the cosmological constant in his field equations in order to make the
Universe eternal and static.

Tracing the evolution of an expanding Universe backwards in time leads to the conclusion
that there must have been a point in space-time from which the Universe started its expansion,
the ‘Big Bang’, estimated to have happened about 13.8 billion years ago. The Big Bang cos-
mology also predicts that the Universe was very dense and hot in its beginning and became
cooler and less dense while expanding. When the Universe cooled down to a temperature
that allowed for creating the first neutral hydrogen atoms out of the hot particle and radia-
tion plasma, the Universe became transparent to radiation (around 380 000 years after the Big
Bang). Even today we are able to observe the relics of this thermal radiation, the afterglow
released right after the formation of the first neutral atoms, redshifted to very long (radio)
wavelengths. In 1964, Arno Penzias and Robert Wilson discovered this cosmic microwave
background (CMB) radiation by chance (Penzias & Wilson 1965). Today ever more pre-
cise and accurate measurements of the tiny temperature fluctuations in the CMB, for example
by the Wilkinson Microwave Anisotropy Probe (WMAP; Hinshaw et al. 2013) or the Planck
satellite (Planck Collaboration XIII 2015a), led to a detailed view on the Universe and its
constituents expressed in terms of just a handful of cosmological parameters. The tiny tem-
perature fluctuations, the seeds for all subsequent cosmic large-scale structure, are interpreted
to be due to quantum fluctuations in the primordial plasma present directly after the Big Bang.
These fluctuations are believed to be magnified to cosmic size during inflation, the extremely
short period of exponential expansion of the Universe just 10−36 seconds after the Big Bang.
Moreover, inflation theories whose development started in the early 1980s (Guth 1981; Linde
1982; Steinhardt 1982) also address and solve major problems of Big Bang cosmology:
(i) the horizon problem – the distribution of the tiny temperature fluctuations in CMB maps are
extremely isotropic and homogeneous even for regions of space that must have been causally
disconnected, i.e. behind an observational horizon, due to expansion and the finiteness of the
speed of light by the time the CMB radiation was released.
(ii) the flatness problem – the observed flatness of space today presents a fine-tuning problem
because in the past space must have been even ‘flatter’ in the sense that today’s measured tiny
curvature parameter must have been orders of magnitude tinier in the past.
(iii) the magnetic-monopole problem – in the extreme temperature and density conditions just
after the Big Bang the weak, strong, and electromagnetic forces are believed to be unified,
which is commonly referred to as the grand unification theory (GUT). However, as soon as
the conditions become less extreme the GUT force is expected to undergo a spontaneous sym-
metry breaking into the three forces we know today during which magnetic monopoles are
predicted to have been produced in large abundances. However, these have not been observed
yet.

An extremely short inflationary period right after the Big Bang for about 10−35 to 10−34

seconds solves all three problems: a flat region of space sufficiently small to be isotropic
and homogeneous is magnified to cosmic size which solves the horizon and flatness prob-
lems. If inflation also happened before the density and temperature conditions allowed for the
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Figure 1.1: A brief history of the Universe from the Big Bang to today (Credit: ESA, C. Carreau).

production of magnetic monopoles, then these would form later already separated by cosmic
distances while the Universe continues to expand. Hence, their observable density would be
reduced by many orders of magnitude. Although inflation solves the problems of Big Bang
cosmology, its physical nature is not at all understood yet. Moreover, no direct evidence for
inflation, such as primordial gravitational waves, has been detected yet either (BICEP2 Col-
laboration 2014), but instruments becoming increasingly more sensitive might change this
already in the very near future.

A major revelation of the modern cosmological concordance model is that all atoms and
particles, which we and all the matter interacting with us in daily-life consist of, contribute
only about 20 per cent to the total matter in the Universe. The remaining 80 per cent con-
sists of something that we refer to as ‘dark matter’ (so that at least we have a name for it).
However, the total matter of the Universe represents only about 30 per cent of its total energy
density. The remaining 70 per cent of the energy density is usually attributed to the even more
mysterious ‘dark energy’. This cosmological ingredient is required to explain the accelerated
expansion of the Universe as indicated by the observations of supernovae in the late 1990s
(Riess et al. 1998; Perlmutter et al. 1999). The source of the accelerated expansion is coun-
teracting the tendency of matter to cluster on cosmologically large scales due to gravity. An
attempt of connecting the accelerated expansion of space to the standard model of particle
physics interprets Einstein’s ‘greatest blunder’, the cosmological constant, as the energy den-
sity of the vacuum. The standard model of particle physics predicts that the vacuum possesses
energy due to the constant production and annihilation of particles and antiparticles within
the limits of Heisenberg’s uncertainty principle. Unfortunately, quantitative predictions for
this vacuum energy are off by about 100 orders of magnitude. In principle, this discrepancy
can be explained by postulating an additional symmetry which cancels the effect of vacuum
energy up to the small amount we measure today and attribute to the cosmological constant.
Therefore, alternative explanations for the accelerated expansion are explored (for example it
might be time-dependent) and in order to combine them into a common framework, we call
the physical cause just ‘dark energy’ (a term that is also liked better by funding agencies).
However, any dark energy theory must still explain why the cosmological constant can be set
to zero. Lovelock (1972) showed that the cosmological constant is a fundamental ingredient
to Einstein’s field equations under general mathematical assumptions: Einstein’s field equa-
tions explicitly including the cosmological constant are the only unique formulation of tensor
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equations depending only on the metric up to its second-order derivatives in four dimensional
space-time.

In that regard, explaining the physical nature of dark matter is considered to be a slightly
easier task: although no particle of the standard model possesses the properties of dark matter
one can think of extensions, such as super-symmetry, that predict a stable Weakly Interact-
ing Massive Particle (WIMP), whose properties match the ones of dark matter. However,
even at the currently most powerful particle collider experiment, the Large Hadron Collider
(LHC), super-symmetric particles have not been detected yet. This is either a sign that super-
symmetry is not the correct extension or that the energies reached by the LHC are still just too
low.

Neutrinos, particles that interact only via gravity and the weak force, were once a candi-
date for hot dark matter. Measurements and simulations of the cosmic large-scale structure
formation have shown though, that dark matter must be cold in the sense that their velocity
dispersion is small. Hence, their free streaming length, the distance indicating how far dark
matter particles could move in the early Universe before being affected by gravitational col-
lapse, sets the minimum length scale for subsequent structure formation. Density fluctuations
within this minimum length scale are washed out due to the free streaming of dark matter par-
ticles. In order to explain the observationally established bottom-up scenario of cosmic struc-
ture formation then, potential dark matter particles must be cold. The bottom-up scenario of
structure formation implies that large structures such as galaxy clusters build up from smaller
structures like galaxies and hence they formed later. Despite not being a viable dark matter
candidate anymore, neutrinos are still required as an ingredient for our cosmological model
since they affect the growth of cosmic large-scale structure (cf. Lesgourgues & Pastor 2006
for a review). Large ground experiments such as Super-Kamiokande and the Sudbury Neu-
trino Observatory (SNO) measured neutrino oscillations, i.e. the mixture of neutrino flavour
eigenstates (electron, muon, and tau neutrino) with their mass eigenstates (m1, m2, and m3),
for the first time around the year 2000 (Super-Kamiokande Collaboration 1998; SNO Collab-
oration 2001, 2002). These flavour oscillations imply that neutrinos possess a (tiny) mass,
which is in contradiction with fiducial standard model predictions implying massless neutri-
nos. However, with this kind of experiments it is only possible to measure (squared) mass
differences. The absolute mass scale of neutrinos, however, determines the mass-hierarchy
between the three neutrinos: in the normal hierarchy scenario one mass eigenstate is the low-
est and the other two are increasingly more massive. In contrast to that, the inverted hierarchy
predicts three degenerate mass eigenstates. The lower mass bound is set at Σmν ≥ 0.06 eV by
the lowest measured mass difference. The most stringent upper mass bounds come, however,
from cosmological probes. For example, CMB constraints from Planck set an upper bound
of Σmν < 0.72 eV (Planck Collaboration XIII 2015a), whereas a combination of Lyα power
spectrum measurements with constraints from baryon acoustic oscillations (BAO) yields an
upper bound of Σmν < 0.14 eV (Palanque-Delabrouille et al. 2015). Pushing this boundary
to values lower than ∼0.1 eV in combination with the measured (squared) mass differences
will enable us to determine the absolute values of the three mass eigenstates. Hence, neutrino
masses are yet another current research topic linking once more the cosmological concordance
model and the standard model of particle physics.

In summary, a host of observations can be reconciled within a cosmological concordance
model. It is based on general relativity, and we have very precise and accurate measurements
of the energy densities for the constituents of the Universe. However, we do not at all under-
stand what the physical nature of the two dominant species, dark matter and dark energy, is.
Revealing that is the major motivation behind current cosmological research. An advance in
that direction is also naturally linked to new insights regarding the standard model of particle
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physics and its inevitable extension.

1.2 Gravitational lensing
Already Newtonian gravity predicts the perpendicular deflection of light from a source behind
a mass distribution, a lens, along the line-of-sight towards an observer (assuming a corpuscular
theory of light though). However, general relativity predicts the effect to be twice as large,
which was confirmed by the larger deflection angles observed by Eddington (1920).

Treating the propagation of light in the full framework of general relativity employing
arbitrarily curved space-times is challenging. Employing the space-time of the cosmological
concordance model, which encodes the observationally established isotropy and homogeneity
of the Universe when averaged over sufficiently large scales, reduces the complexity of the
equations substantially. Furthermore, we can assume for a typical configuration of observer,
lens, and source that the diameter of the lens is negligible compared to the distances from
source to lens, from source to observer, and from lens to observer. Moreover, the peculiar mo-
tion of the lens is usually also negligible compared to the speed of light. Then the complexity
of the equations simplifies to the level of geometrical optics: the deflection of light rays from a
background source due to a mass in its foreground can be described by an effective refraction
index, altering the propagation speed of the emitted light in the vicinity of the lens.

The geometrical configuration of the observer-lens-source system and the mass distribu-
tion of the lens determine whether we observe strong image distortions and/or multiple im-
age systems or only weak but coherent deflections in the lensed image(s) of the background
source. We refer to these two regimes as strong and weak lensing, respectively. Mathemati-
cally the image distortions due to gravitational lensing can be described in terms of a mapping
from the plane of each background source to the plane of the lens (or image plane). Curves
in the lens plane along which this mapping becomes singular (and hence where it is locally
not invertible) are called ‘critical curves’. Mapping these critical curves back into the source
plane yields ‘caustic curves’ (following the nomenclature of mathematical singularity theory).
When a source crosses a caustic curve towards the lens a pair of strongly magnified images
is created in the lens plane, which can be observed as a pair of multiple images of the same
source. In general, caustic curves are not smooth and hence more than two images of the same
source can occur in the lens plane. Critical curves and correspondingly strong lensing phe-
nomena only occur in close vicinity to the lens, whereas weak lensing can still be observed at
large distances from the lens. Fig. 1.2a shows an example of a strongly lensed and highly dis-
torted multiple image system forming a ‘horseshoe’ of one and the same background galaxy.
When the mass distribution of the lens is axis-symmetric and the source, observer, and lens
are aligned along the line-of-sight a perfectly circular ‘Einstein ring’ of multiple images can
be observed.

Already in the 1930s when dark matter entered the scientific discussion, Fritz Zwicky
pointed out that clusters of galaxies must contain much more mass than estimated from their
light alone. He reached this conclusion by applying the virial theorem to the Coma and Virgo
clusters of galaxies assuming that the systems are in hydrostatic equilibrium (Zwicky 1937b).
Back of the envelope calculations further show that galaxies or entire clusters of galaxies are
due to their high masses ideal objects to target for observing strong lensing phenomena (e.g.
Zwicky 1937a). It still took until 1979, however, before the first strong lensing object, a
doubly lensed quasar, was discovered (Walsh et al. 1979). The first luminous arcs, i.e. highly
distorted images of background galaxies, were found in galaxy clusters and also attributed to
strong gravitational lensing in 1987 (Lynds & Petrosian 1986; Soucail et al. 1987; Paczynski
1987). Today strong lensing has developed into a major tool for estimating the mass of a
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(a) (b)

Figure 1.2: (a) Horseshoe ‘Einstein ring’ observed with the Hubble Space Telescope. The ‘horseshoe’
is actually the strongly lensed image of a galaxy in the background of the lens, the massive elliptical
galaxy in the centre of the horseshoe (Credit: ESA/Hubble & NASA). (b) Composite image of the
merging Bullet cluster. The hot intra-cluster gas observed through its thermal Bremsstrahlung in X-rays
(red contours) lags behind the dark matter dominated mass component (blue contours) as inferred from
weak lensing (Credit: NASA/CXC/M. Weiss).

lens (e.g. Johnson et al. 2014; Zitrin et al. 2015), which is possible if one can model very
accurately and precisely the lensing geometry including, for example, the positions of where
multiple images or luminous arcs are expected to occur. Moreover, the most massive lenses,
i.e. galaxy clusters, are used as dedicated ‘natural telescopes’ in the search for the light of the
oldest galaxies in the Universe (e.g. Coe et al. 2013; Bouwens et al. 2014). Just like in regular
optics, lensed images are also magnified and thus allow for detailed spectral studies of objects
that are too far away to be resolved even with our current best telescopes.

The effects due to weak lensing are not visible by eye and can only be studied statistically.
Images of objects in the outskirts of lenses, for example, are only very weakly distorted by the
gradient of the lens’ gravitational potential. Assuming that the intrinsic shapes of galaxies are
randomly distributed in the Universe, averaging the shapes of a statistically large sample of
background galaxies around a lens yields the gravitational shear contribution, i.e. the coherent
image distortions due to the lens, since the signal of the randomly distributed intrinsic shapes
averages out. Again this technique can be used to study the mass scale and distribution within
objects such as galaxy clusters very accurately and precisely. However, instead of looking at
single lenses, we can also look at the weak-lensing effect due to the entire cosmic large-scale
structure along the line-of-sight and study its mass distribution, in that sense we use the entire
Universe as a lens. This approach is referred to as ‘cosmic shear’. Cosmic shear signals were
detected for the first time in 2000 (Bacon et al. 2000; Van Waerbeke et al. 2000; Wittman et al.
2000; Kaiser et al. 2000). Studying it also as a function of redshift, for example in tomographic
redshift slices, allows us to infer the growth rate of structures in and the geometry of the
Universe (cf. Kilbinger 2015 for a recent review). Apart from measuring shapes for millions
of galaxies very accurately and precisely this also requires to estimate their redshifts. In
order to measure shapes and (photometric) redshifts at the same time, large dedicated optical
multi-band imaging surveys such as the Kilo-Degree Survey (KiDS; Jong et al. 2012; de Jong
et al. 2015; Kuijken et al. 2015), the Subaru Hyper SuprimeCam survey (HSC), and the Dark
Energy Survey (DES; Flaugher 2005; Jarvis et al. 2015) are carried out right now. They
are expected to cover several 1000 square degrees in the next few years, which presents an
improvement by an order of magnitude compared to weak-lensing surveys that are currently
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available. Within the next decade this development will culminate in nearly all-sky surveys
carried out by spaceborne observatories such as the Euclid satellite (Laureijs et al. 2011).

1.3 Cosmic large-scale structure
The largest gravitationally bound objects in the Universe are clusters of galaxies. The time
it takes for a member galaxy to cross a cluster once is an order of magnitude shorter than
a Hubble time. Therefore, cluster member galaxies had enough time to cross low-redshift
galaxy clusters several times and hence virialized galaxy clusters can be observed in the local
Universe. The application of equilibrium physics to such virialized clusters by Fritz Zwicky
in 1937 showed already that the stellar, i.e. light emitting mass, was not enough to explain
why clusters are gravitationally bound (Zwicky 1937b). Today it is an observationally well-
established fact that indeed galaxy clusters are dominated by dark matter, and intra-cluster gas
together with the stellar mass of the constituent member galaxies make up only a small fraction
of the total mass in a cluster. This makes galaxy clusters ideal objects to study properties of
dark matter, as for example the famous merging ‘Bullet cluster’ in Fig. 1.2b shows: whereas
the baryons of the smaller ‘Bullet cluster’, i.e. mainly the intra-cluster gas as observed in
X-rays (red contours), lag behind due to colliding with the baryons of the bigger cluster, the
dominant dark matter of both clusters (blue contours) passed right through (Markevitch et al.
2002; Clowe et al. 2006), also implying that the cross-section of potential dark matter particles
must be tiny (e.g. Markevitch et al. 2004).

The cosmological concordance model also predicts a universal density profile for an en-
semble of galaxy clusters (Navarro et al. 1997). Although the physical principles behind such
a profile are not fully understood yet, studying the mass distribution of galaxy clusters is an
important cosmological test and strong lensing, for example, can be used to produce very
accurate and precise measurements of the mass distribution in the core region of a cluster.
Moreover, the number of clusters per cosmic volume of a given mass at a given redshift is
strongly dependent on parameters of the cosmological model influencing the growth of struc-
ture. Hence, with the detection of hundreds of massive clusters over recent years mainly due
to applying new observation techniques such as the Sunyaev–Zel’dovich (SZ) effect (Sunyaev
& Zeldovich 1972), cluster counts have become an important independent cosmological probe
(e.g. Planck Collaboration XXIV 2015b). The SZ effect describes the average energy boost a
low-energy CMB photon gains due to inverse Compton scattering with high-energy electrons
of the hot intra-cluster gas when passing through a galaxy cluster. This effect is independent
of the redshift of the cluster and although many massive clusters have already been discovered
employing the SZ effect, it has one shortcoming: in order to estimate the actual mass of the
cluster, which is an essential ingredient for the cluster counts, from the measured strength of
the SZ effect, one has to rely on scaling relations calibrated with other mass measurement
techniques such as weak lensing. The level of uncertainty of the mass estimates for clusters
is fundamentally limited by the accuracy and precision of these scaling relations. Investigat-
ing the statistical uncertainties and systematic errors of different mass calibration methods is
hence an important topic of current research in order to improve the precision and accuracy of
cluster counts as a competitive cosmological probe.

In the big picture of cosmic large-scale structure galaxy clusters are the nodes of the ‘cos-
mic web’: filaments of dark matter, gas, and galaxies extend through space-time in a web-like
structure and the ‘empty’, i.e. extremely under-dense, regions in between are referred to as
‘cosmic voids’. The evolution of the large-scale structure over cosmic time is very sensitive
to the clustering properties of dark and luminous matter. Hence, studying its evolution, for
example by means of measuring the cosmic shear signal as a function of redshift, is a very
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Figure 1.3: A map of the cosmic large-scale structure as seen in the Sloan Digital Sky Survey. Every dot
in this picture represents an entire galaxy (Credit: M. Blanton and the Sloan Digital Sky Survey).

promising cosmological probe, especially in the current era of dedicated large-area imaging
surveys serving as pathfinder missions in anticipation of the close to all-sky surveys of the
next decade.

1.4 This thesis
In the following chapters we present applications of strong and weak gravitational lensing in
a cosmological context.

We start in Chapter 2 with the very detailed study of the strong lens model required to ex-
plain the occurrences of giant luminous arcs and multiple image systems based on high-quality
data from the Cluster Lensing And Supernova survey with Hubble (CLASH; Postman et al.
2012) in the massive and very X-ray luminous merging cluster RX J1347.5–1145. In addition
to presenting a consistent lens model derived with two independent modelling approaches, we
finally measure the mass profile of and the mass distribution in the cluster core.

In Chapter 3 we look at ensembles of galaxy clusters and address the limitations of weak
lensing in deriving mass estimates for ensembles of clusters. We study this with a focus on the
future Euclid mission (Laureijs et al. 2011) and derive the level of statistical uncertainties on
the mass estimates for this mission and study the impact of various sources of bias. In partic-
ular, we investigate the bias due to cluster member galaxies that due to erroneously assigned
photometric redshifts are scattered into the galaxy source sample. For stacks of galaxy clusters
this effect is severe and must be properly accounted for. Finally, we investigate the bias due to
miscentring, the displacement between the true position of the minimum of the gravitational
potential of the galaxy cluster and any observationally defined cluster centre. With respect to
the expected low level of statistical uncertainties this bias is significant. However, comple-
mentary future missions such as the X-ray survey eROSITA (Merloni et al. 2012) will allow us
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to put very informative priors on miscentring parameters, making it possible to mitigate this
bias.

In the final two chapters we take the leap from studying galaxy clusters to studying the
entire cosmic large-scale structure using cosmic shear. Significant advances in computer tech-
nology allow us also to employ a computationally demanding maximum-likelihood algorithm
to extract the power spectrum of cosmic shear in terms of band powers instead of following
the standard approach in the literature of using shear-shear correlation-functions to measure
the cosmic shear signal in real-space. A major advantage of the power-spectrum estimator is
that scale-dependent features such as those caused by massive neutrinos or baryon feedback
can be studied much more cleanly in the cosmic shear power spectrum. In order to improve
cosmological parameter constraints, in Chapter 4 we extend the technique to include red-
shift bins and test it extensively on mock data before applying it to shear catalogues from the
lensing analysis of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLenS; Erben
et al. 2013; Heymans et al. 2012).

Finally, in Chapter 5 we use state-of-the-art shear data based on 450 square degrees of
imaging data from an intermediate data release from KiDS. Again, we apply the cosmic shear
power spectrum estimator to it and derive cosmological parameter constraints. The se results
are in tension with latest CMB results from Planck Collaboration XIII (2015a) but agree well
with other low-redshift probes.
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2
Strong lensing in RX J1347.5–1145

revisited∗

We present a revised strong lensing mass reconstruction of the galaxy cluster RX J1347.5–
1145. The X-ray luminous cluster at redshift z = 0.451 has already been studied intensively
in the past. Based on information of two such previous (strong-)lensing studies by Halkola
et al. and Bradač et al., as well as by incorporating newly available data from the Cluster
Lensing And Supernova survey with Hubble, we identified four systems of multiply lensed
images (anew) in the redshift range 1.75 ≤ z ≤ 4.19. One multiple image system consists of
in total eight multiply lensed images of the same source. The analysis based on a parametric
mass model derived with the software GLAFIC suggests that the high image multiplicity is due
to the source (zphot = 4.19) being located on a so-called ‘swallowtail’ caustic. In addition to
the parametric mass model, we also employed a non-parametric approach using the software
PIXELENS in order to reconstruct the projected mass of the cluster using the same strong lensing
data input. Both reconstructed mass models agree in revealing several mass components and
a highly elliptic shape of the mass distribution. Furthermore, the projected mass inside, for
example, a radius R ∼ 35 arcsec ∼ 200 kpc of the cluster for a source at redshift z = 1.75
is M(< R) ≈ (2.19+0.01

−0.02) × 1014 M� as estimated by GLAFIC. Within the same radius PIXELENS

predicts a mass of M(< R) ≈ (2.47 ± 0.01) × 1014 M� which exceeds the GLAFIC estimate by
≈13 per cent. The difference could be related to the fundamental degeneracy involved when
constraining dark matter substructures with gravitationally lensed arcs.

F. Köhlinger and R. W. Schmidt
2014, MNRAS, Volume 437, Issue 2, pp 1858–1871

∗Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy
Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope
European Coordinating Facility (ST-EFC/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
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2.1 Introduction
In resolving the nature of the two exotic ingredients of current standard Λ-cold dark matter
(ΛCDM) cosmology – dark matter and dark energy – the determination of accurate masses and
mass profiles plays an important role: the mass distribution in galaxy clusters, for example, is a
direct test for predictions of the CDM paradigm (e.g. Bartelmann et al. 2013) since numerical
simulations in the scope of ΛCDM predict a universal mass profile for mass haloes covering
scales from galaxies to clusters of galaxies (Navarro et al. 1997, 2010).

Once the mass and its distribution are determined, dark energy models can be constrained
with various techniques either from using mass-calibrated number counts or scaling relations
(e.g. Allen et al. 2011; Giodini et al. 2013; Planck Collaboration XX 2013 and references
therein) or even using the systems on their own (e.g. Golse et al. 2002, Jullo et al. 2010).
Therefore, mass profiles of galaxy clusters are a valuable probe for putting further constraints
on cosmological parameters such as Ωm, σ8 or the equation-of-state parameter for dark energy
w.

In this paper we scrutinize the evidence for multiple images of background systems and
its implication for the central mass distribution in the system RX J1347.5–1145.

2.1.1 RX J1347.5–1145
The galaxy cluster RX J1347.5–1145 at redshift z = 0.451 is among the most luminous X-ray
clusters known to date (Schindler et al. 1995) and has already been studied intensively in the
past.

Various data sets are available for this cluster ranging from X-ray (Schindler et al. 1995,
1997; Allen et al. 2002; Ettori et al. 2004; Gitti & Schindler 2004; Gitti et al. 2007; Mahdavi
et al. 2013) to optical (Fischer & Tyson 1997; Sahu et al. 1998; Cohen & Kneib 2002; Ravin-
dranath & Ho 2002; Verdugo et al. 2012) and radio observations of the Sunyaev–Zel’dovich
(SZ) effect (Komatsu et al. 2001; Pointecouteau et al. 2001; Kitayama et al. 2004; Plagge et al.
2013). Mass estimates from various studies using different techniques like strong-lensing,
weak-lensing, a combined strong and weak lensing analysis, X-ray measurements, velocity
dispersion measurements from spectroscopic data or the SZ effect often yielded discrepant
results. Particularly, the dynamical mass estimate (Cohen & Kneib 2002), early X-ray mea-
surements (Schindler et al. 1997) and gravitational lensing estimates (Fischer & Tyson 1997)
yielded a discrepancy of factor ∼3.

Possible reasons for the discrepancy between the results of the different mass reconstruc-
tion approaches might be due to the shape of the cluster potential, projection effects or more
complicated gas physics in the cluster which have not been fully taken into account. Moreover,
the different mass reconstruction techniques are also affected by various systematic effects
such as cluster member contamination, unknown or uncertain redshifts for multiply lensed
images, ambiguous identification of multiple image systems and temperature calibrations, and
it is very challenging to quantify the effects of these systematics correctly on the uncertainties
of the respective analysis.

A specific proposal for resolving the discrepancy between the mass estimates in RX
J1347.5–1145 was suggested by Cohen & Kneib (2002) stating that the cluster is likely to
be ongoing a major merger. This would bias the velocity dispersion measurements and also
affect the X-ray results due to special merger dynamics and thus might be the key to recon-
ciling the low velocity dispersion mass estimate with the higher estimates from lensing and
X-ray measurements.

The peculiarity of the cluster RX J1347.5–1145 to contain two bright cD galaxies (cf.
Fig. 2.1; throughout this work we will refer to the western cD galaxy as brightest cluster
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Figure 2.1: The CLASH ACS-IR detection image (cf. Section 2.2). North is up and east is left. For
better visibility of faint multiply lensed images, this image is presented in false colours which encode
brightness information. Denoted are identified multiple image system candidates as used in this work
for the best-fitting models discussed in Section 2.4. Also compare with identifications of multiple image
systems from Bradač et al. (2008) and Halkola et al. (2008) in Table 2.1.

galaxy (BCG) while calling the other just second cD galaxy) at its centre can be taken as
further support for this merger scenario. Moreover, a region of shocked gas in the south-east
of the cluster was observed by Komatsu et al. (2001) using the SZ effect and by Allen et al.
(2002) in X-ray data from Chandra (cf. Fig. 2.6).

All these peculiarities and especially the discrepancies in the mass reconstruction of those
early papers were revised when new deep data from the Advanced Camera for Surveys (ACS)
from the Hubble Space Telescope (HST) became available in 2008. Bradač et al. (2008) pre-
sented a mass reconstruction based on a combined strong and weak lensing analysis and found
their results in accordance to results obtained from an X-ray analysis, also presented in their
paper (cf. Fig. 2.11). Halkola et al. (2008) obtained results solely based on a strong lensing
analysis, but also found their mass results to agree with other results presented in the literature
(cf. Fig. 2.11).

Despite the consistent mass estimates, both studies did not quite present a consistent de-
scription of the cluster with respect to its strong lensing features. First of all, there is a some-
what ambiguous and sometimes even contradictory identification of multiple image systems
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between both papers (cf. Table 2.1). Moreover, in some of the identified multiple image sys-
tems, there are some missing but necessarily expected counter images which will be discussed
in more detail in Section 2.2.1.

Another point was, that there was only one spectroscopically confirmed redshift for only
one multiple image system available at the time of their analyses. The redshifts of other multi-
ple image systems were either fixed using lower precision photometric redshifts or left free for
fitting then. Therefore, as soon as high quality data from the Cluster Lensing And Supernova
survey with Hubble (CLASH; Postman et al. 2012) became available, we started to investigate
the cluster again with strong lensing in order to present a more consistent high detail strong
lensing model. As mentioned before crucial ingredients for a strong lensing mass reconstruc-
tion are fixed redshifts of a multiple image system and the unambiguous identification of such
systems. With the high quality of the provided CLASH data including robust photometry and
reliable photometric redshifts and by having improved the multiple image identification with
this data, we present here a high detail strong lensing model of the cluster RX J1347.5–1145.
This entails a thorough discussion of the known multiply imaged systems, but fortunately does
not alter the consistency with X-ray mass models when allowing for substructure in the core.

The paper is structured as follows. In Section 2.2 we describe the input data used for
our analysis and explain the data fitting further in Section 2.3. The analysis and results are
presented in Section 2.4 and conclusions are finally drawn in Section 2.5.

For comparison of results obtained here with previous work we also adopt a ΛCDM cos-
mology with Ωm = 0.3, ΩΛ = 0.7 and Hubble constant H0 = 70 km s−1 Mpc−1. At the redshift
of the cluster, zlens = 0.451, one arcsecond then corresponds to 5.77 kpc.

2.2 Data
The galaxy cluster RX J1347.5–1145 was re-observed as one out of 25 galaxy cluster targets
of the CLASH programme (cf. Postman et al. 2012 for full details on this survey).

The images were taken in 16 broadband filters of the Wide Field Camera 3 (WFC3)/UVIS1,
WFC3/IR2 and ACS/WFC3 of HST comprising a total spectral range from near-UV to near-
IR, yielding highly reliable photometry. The filters were especially selected for that purpose
based on tests with simulated photometric data in order to achieve a precision on photometric
redshifts of σz ∼ 0.02(1 + z) using the software BPZ (Benítez 2000; Benítez et al. 2004; Coe
et al. 2006).

In addition to images, catalogues including the photometry from all 16 bands and pho-
tometric redshifts for identified sources are also made available to the public. For the cre-
ation of these public catalogues one detection image consisting of the weighted sum of all
ACS/WFC and WFC3/IR images was used in order to run the software SEXTRACTOR (Bertin
& Arnouts 1996) on it for detecting objects and measuring their photometry. A second detec-
tion image was created solely from the WFC3/IR images for the search for highly redshifted
objects, also resulting in a respective second catalogue. Both catalogues are based on the
lower-resolution (i.e. 1 pix = 65 mas) detection images. We will refer to the first catalogue
based on ACS/WFC and WFC3/IR images as ‘CLASH ACS-IR catalogue’ and to the sec-
ond one based on WFC3/IR images only as ‘CLASH IR catalogue’. The detection images are
denoted as ‘CLASH ACS-IR detection image’ and ‘CLASH IR detection image’, respectively.

In the following analysis we primarily consulted the CLASH ACS-IR catalogue due to the
more rigid criteria on object detections. Just for objects not already contained in there (chiefly

1F225W, F275W, F336W and F390W
2F105W, F110W, F125W, F140W and F160W
3F435W, F475W, F606W, F625W, F775W, F814W and F850LP
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multiple image system 1), we used the CLASH IR catalogue.

2.2.1 Multiple image systems in RX J1347.5–1145
As mentioned in Section 2.1, there are already candidates for multiple image systems pub-
lished in the literature (Bradač et al. 2008; Halkola et al. 2008). These served as initial data
input for our early models and we usually followed the identifications and image affiliations
by Halkola et al. (2008).

However, the CLASH data and catalogues and also predictions from early models led to
a new interpretation of some of the multiple image systems. Moreover, we could also include
additional images that were not yet included in previous studies.

We do not consider single image systems of previous studies, because these do not impose
any new constraints on the strong lensing model. We show an overview of all images used
during our final analysis in Fig. 2.1. In Table 2.1 we summarize the properties of these systems
and also indicate for ease of comparison their nomenclature in the studies of Halkola et al.
(2008) and Bradač et al. (2008), if applicable.

The cluster centre is set on the BCG at position RA = 206.◦8775, Dec = −11.◦7526 (J2000).
Furthermore, all photometric redshift estimates for the multiple image systems are derived as
an average over the individual redshifts (cf. Table 2.1) of the images affiliated to the respective
multiple image system. Additionally, we checked colours and surface brightnesses based on
the 16 band photometry of all multiple image systems to be consistent. Exemplarily, we list
one colour (MF475W − MF814W ) and the surface brightness in one filter (S F814W ) in Table 2.1
for each multiply lensed image.
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Table 2.1: Positions (∆RA, ∆Dec), colour (MF475W − MF814W ), surface brightness (S F814W ) and photometric redshifts (zphot) with 95 per cent confidence intervals for
each image of the multiple image systems from the indicated CLASH catalogues. Note that image 1.3 is apparently a drop out (very closely located to BCG) and could
not be identified in the CLASH ACS-IR catalogue either. Therefore, we did not consider it for the calculation of the redshift of the whole system. All coordinates are
given relative to the cluster centre at position RA = 206.◦8775, Dec = −11.◦7526 (J2000). Please refer also to Fig. 2.1. For convenience we also give the nomenclature
from Halkola et al. (2008) (Ha08) and Bradač et al. (2008) (Br08).

Multiple Images ∆RA (arcsec) ∆Dec (arcsec) MF475W − MF814W S F814W (mag arcsec−2) zphot zspec Catalogue Comments
This work Ha08 Br08

1.1 1a I −35.61 −17.70 0.20 ± 0.05 24.42 ± 0.03 2.39+0.03
−0.08 – IR (a)

1.2 1b I −26.96 15.34 0.06 ± 0.05 24.55 ± 0.03 2.19+0.01
−0.13 – IR (a)

1.3 1c I −4.02 −2.54 1.53 ± 0.17 24.71 ± 0.03 0.55+0.01
−0.06 – IR (a), (b)

1.4 1d I 0.01 −24.24 0.29 ± 0.06 24.35 ± 0.03 1.92+0.14
−0.04 – IR (a)

1.5 1e I 28.97 19.06 0.15 ± 0.06 24.54 ± 0.03 2.39+0.03
−0.24 – IR (a)

2.1 2a A −18.00 −42.19 0.20 ± 0.02 23.48 ± 0.01 1.78+0.01
−0.01 1.75 ACS-IR

2.2 – – 19.55 −30.46 – – – – – (c)
2.3 2b A 20.57 −29.46 0.18 ± 0.01 23.47 ± 0.01 1.78+0.01

−0.01 1.75 ACS-IR (c)
3.1 12a B 8.27 28.92 1.62 ± 0.40 23.57 ± 0.09 4.01+0.18

−0.19 – ACS-IR
3.2 – – 12.15 27.32 1.51 ± 0.33 23.75 ± 0.08 4.11+0.13

−0.17 – ACS-IR
3.3 – – 12.45 27.14 3.01 ± 0.74 23.41 ± 0.06 4.36+0.08

−0.10 – ACS-IR (d)
3.4 12b B 16.13 24.72 2.23 ± 0.47 23.34 ± 0.07 4.14+0.11

−0.12 – ACS-IR
3.5 11a B 18.51 22.36 2.00 ± 0.34 23.42 ± 0.06 4.23+0.11

−0.05 – ACS-IR
3.6 11b B 23.35 15.51 1.76 ± 0.26 23.52 ± 0.05 4.15+0.08

−0.08 – ACS-IR
3.7 11c? – 19.38 −16.84 2.06 ± 0.39 23.50 ± 0.07 4.39+0.10

−0.11 – ACS-IR
3.8 11d? – −48.95 −28.36 2.44 ± 0.81 23.49 ± 0.11 4.16+0.14

−0.31 – ACS-IR
4.1 8a C −23.56 39.08 0.98 ± 0.17 23.59 ± 0.06 3.57+0.14

−0.06 – ACS-IR
4.2 8b C −19.05 41.27 1.00 ± 0.14 23.87 ± 0.05 3.62+0.12

−0.06 – ACS-IR
4.3 8c? – −53.14 3.95 1.01 ± 0.18 23.76 ± 0.07 3.71+0.07

−0.12 – ACS-IR

(a) The error bars of the faint IR catalogue magnitudes appear somewhat underestimated.
(b) Affected by BCG.
(c) The object appears as a single source in the catalogue at position 2.3. Due to basic lensing geometry, we decided to split the object up into two components (cf. Section 2.2.1).
(d) SEXTRACTOR may not split the object correctly.
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(a) (b)

Figure 2.2: Zoom-in on multiply lensed images of multiple image system 2. (a) Image 2.1. (b) Images
2.2 and 2.3. Due to the faintness of the arcs we show a false colour version of the CLASH ACS-IR
detection image (cf. Section 2.2).

Multiple image system 1 (five images)

This system consists of five images on four sides of the cluster and one central image (cf.
Fig. 2.1). It was already identified in Bradač et al. (2008) and Halkola et al. (2008), and the
photometric redshift of this system estimated from the CLASH IR catalogue yields zphot =

2.22+0.05
−0.12 which is consistent with the redshift estimates for images ‘1d’ and ‘1e’ by Halkola

et al. (2008) with z1d
phot = 2.19 ± 0.05 and z1e

phot = 2.19 ± 0.15, respectively (cf. Table 2.1 for
nomenclature). The redshift estimate by Bradač et al. (2008) from fitting strong-lensed data
yields zI

fit = 1.7 ± 0.2 though (cf. Table 2.1 for nomenclature).
Note that we did not include image 1.3 in the redshift average, though being a likely

member of the multiple image system, the corresponding photometry seems to be affected by
the BCG (cf. Fig 2.1).

Multiple image system 2 (three images)

In Fig. 2.2 we show multiple image system 2 which was already identified in Bradač et al.
(2008) and Halkola et al. (2008) as well. It consists of one bright arc south-west of the cluster
centre and one fainter arc south-east of the centre. However, we interpret the brighter arc to
consist of two directly merging images on a tangential critical line due to the general straight
elongated shape and especially due to substructures that seem to be exactly mirrored (cf.
Fig. 2.2). This new interpretation has significant consequences for the entire mass distribution
of the cluster and will be discussed further in Section 2.3.1. Halkola et al. (2008) determined
the spectroscopic redshift of this system to be zspec = 1.75. This is also consistent with the
photometric redshift estimate from the CLASH ACS-IR catalogue (zphot = 1.78+0.01

−0.01).

Multiple image system 3 (eight images + 1)

The main part of this system (cf. Fig. 2.3) is located in the north-west of the cluster centre and
is identified in Halkola et al. (2008) as image systems 11 and 12, respectively. However, we
interpret the system to originate from just one single source due to the consistent photometric
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(a) (b)

(c)

Figure 2.3: Zoom-in on multiply lensed images of multiple image system 3. (a) Images 3.1 to 3.6.
(b) Image 3.7. (c) Image 3.8. Due to the faintness of the arcs we show a false colour version of the
CLASH ACS-IR detection image (cf. Section 2.2).

redshifts of the images (cf. Table 2.1). Furthermore, we also include the two merging images
(cf. images 3.2 and 3.3 in Fig. 2.3) that were not yet considered in previous studies. Nev-
ertheless, their redshifts and location suggest their affiliation to the system, and we interpret
them as two merging images on a tangential critical line. Altogether, this part of the system
(cf. Fig. 2.7) resembles strongly the massive arc structure in A370 (cf. Richard et al. 2009).

Additionally to the north-western arc structure, there are two more images (cf. Fig. 2.3):
one in the south-west and one in the south-east with respect to the cluster centre. Our model
predicts further a ninth image directly in the cluster centre, which we were not able to detect
yet due to confusion with the BCG.

The photometric redshift of the image system is derived from the CLASH ACS-IR cata-
logue to be zphot = 4.19+0.12

−0.14. This redshift estimate is neither consistent with the photometric
redshift estimates presented in Halkola et al. (2008) (z11a

phot = 2.94 ± 0.23, z11b
phot = 3.61 ± 0.20,

z11c?
phot = 2.80 ± 0.73 and z12a

phot = 2.79 ± 0.75, z12c?
phot = 1.75 ± 1.09; cf. Table 2.1 for nomencla-

ture) nor with the estimates from fitting strong-lensed data (zB
fit = 1.2 ± 0.1; cf. Table 2.1 for

nomenclature) by Bradač et al. (2008).
Further implications of this system will be discussed in Section 2.4.1.

Multiple image system 4 (three images)

This system (cf. Fig. 2.4) is identified in Halkola et al. (2008) as system 8 consisting of a two-
image system merging on a tangential critical line, and we confirm the third image (image
4.3) of this system predicted by Halkola et al. (2008) as ‘8c?’. In Bradač et al. (2008) the two
merging images are identified as well. All images are located in the north-east with respect
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(a) (b)

Figure 2.4: Zoom-in on multiply lensed images of multiple image system 4. (a) Image 4.1. (b) Images
4.2 and 4.3. Due to the faintness of the arcs we show a false colour version of the CLASH ACS-IR
detection image (cf. Section 2.2).

to the centre of the cluster. Our model predicts the position of the third image (image 4.3)
as well. We checked the redshifts of all images in the CLASH ACS-IR catalogue, and found
them to be consistently around zphot = 3.63+0.11

−0.08, which is also consistent with the photometric
redshift estimate of image ‘8c?’ (z8c?

phot = 3.68 ± 0.11; cf. Table 2.1 for nomenclature), but not
consistent with the redshift of image ‘8a’ (z8a

phot = 1.88± 0.19; cf. Table 2.1 for nomenclature)
both estimated by Halkola et al. (2008). Neither is it consistent with the redshift estimate from
fitting strong-lensed data (zC

fit = 2.0 ± 1.0; cf. Table 2.1 for nomenclature) by Bradač et al.
(2008).

2.3 Methods
The analysis of strong lensing data can be performed either with parametric or non-parametric
modelling software. For the parametric approach a certain (physically or observationally mo-
tivated) mass distribution has to be assumed already a priori. The analysis then consists of
finding appropriate values for the parameters of the initially assumed mass model. In con-
trast to that, non-parametric approaches do not require any initial assumptions about the mass
distribution. Note, however, the regularization is done as described below.

2.3.1 Parametric – GLAFIC

For the parametric mass reconstruction we have used the publicly available software GLAFIC4

(Oguri 2010). Similar to other parametric software packages like LENSTOOL (Kneib et al. 1996;
Jullo et al. 2007; Jullo & Kneib 2009), GLAFIC offers to set up a multiple component mass
model where each component can be described by a large variety of different density pro-
files. These profiles are usually defined by six to seven parameters (e.g. velocity dispersion,
orientation angle and so on).

4We have used version 1.1.5 for our analysis. The software can be downloaded from: http://www.slac.
stanford.edu/~oguri/glafic/

http://www.slac.stanford.edu/~oguri/glafic/
http://www.slac.stanford.edu/~oguri/glafic/
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The final parametric model we used to obtain the mass estimates presented further below
consists of two smooth mass components for the dark matter including the mass of the ICM,
two profiles for the cD galaxies, profiles for further cluster members and finally two additional
perturbers (cf. Section 2.4.1). In the following we will discuss the particular types of profiles
used for each component in more detail.

Cluster galaxies and perturbers

For modelling the mass distribution of cluster member galaxies we employ a pseudo-Jaffe
ellipsoid (‘Jaffe’ in GLAFIC) whose three-dimensional radial density profile is given by

ρ(r) ∝
σ

(r2 + r2
core)(r2 + r2

trunc)
, (2.1)

with velocity dispersionσ, core radius rcore and truncation radius rtrunc. We apply this profile in
particular for modelling both cD galaxies individually, as well as both perturbers. In contrast
to that the parameters of the other remaining cluster member galaxies are linked according to
the following scaling relations

σi

σ∗
=

(
Li

L∗

) 1
4

and
rtrunc,i

rtrunc,∗
=

(
Li

L∗

) 1
2

, (2.2)

thus yielding a constant mass-to-light ratio M/L (Natarajan & Kneib 1997). This approach
was also performed by Bradač et al. (2008) and Halkola et al. (2008).

The luminosities Li were derived from the F814W magnitudes taken from the provided
CLASH ACS-IR catalogue as well as the other parameters needed. Only the position angles
θi are not provided in the catalogue, but can be easily estimated from a SEXTRACTOR (Bertin
& Arnouts 1996) run on one of the respective detection images. The reference values for L∗,
σ∗ and rtrunc, ∗ were chosen such that a galaxy with magF814W

AB = 20.5 has a velocity dispersion
σ = 260 km s−1 and a truncation radius rtrunc = 5 kpc which is the same normalization as given
in Bradač et al. (2008).

This catalogue of cluster member galaxies contains 24 out of the 48 spectroscopically
confirmed cluster members from Lu et al. (2010) that are within radius R ≤ 75 arcsec from the
cluster centre. Additionally, we also included the brightest galaxies that are also within radius
R ≤ 75 arcsec from the cluster centre with redshifts in the range 0.4 ≤ zgal ≤ 0.5 and that are
not already contained in the previous sample of 24 galaxies. In total, we compiled a catalogue
(cf. Table 2.2) of 101 cluster member galaxies.

Smooth mass component

Considering the merger history of the cluster as mentioned in Section 2.1 and the studies from
Halkola et al. (2008) and Bradač et al. (2008), we introduced two smooth cluster components
in our parametric model right from the beginning as well. Although the topic is still under
discussion, one of the most appropriate types of profiles for the dark matter dominated smooth
cluster component seems to be the Navarro–Frenk–White (NFW) profile (Navarro et al. 1997).
This form of universal mass halo is predicted by cosmological dark matter simulations. Its
three-dimensional radial density profile is given as

ρnfw(r) =
ρs

(r/rs)(1 + r/rs)2 , (2.3)

with the characteristic density ρs and the scale radius rs.
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Table 2.2: Cluster member galaxies as used for our analysis in GLAFIC. Positions are given with respect
to the cluster centre at position RA = 206.◦8775, Dec = −11.◦7526 (J2000). Spectroscopically confirmed
cluster members by Lu et al. (2010) are marked with ‘asterisk (∗)’. The complete Table 2.6 is listed in
Appendix 2.A.

∆RA (arcsec) ∆Dec (arcsec) LF814W
i /LF814W

∗ e θ (◦) Lu et al. (2010)

−39.7217 48.1187 3.53737 0.288 76.6772
17.8258 −53.1457 2.94307 0.251 20.6834
41.5544 −44.2282 2.53396 0.206 −42.7160 ∗

50.8514 −33.4127 2.46740 0.275 −87.0736 ∗

−27.2336 79.3580 2.24430 0.362 24.1564 ∗

... ... ... ... ... ...

The concentration parameter c is defined as the ratio of the virial radius rvir to the scale
radius rs,

c =
rvir

rs
. (2.4)

Oguri (2010) defines the virial mass M in GLAFIC as

M =
4π
3

r3
vir∆(z)ρ(z) =

∫ rvir

0
4πr2ρnfw(r) dr , (2.5)

where the expression ∆(z)ρ(z) describes the mean overdensity inside a sphere with radius rvir.
The non-linear overdensity ∆(z) is evaluated by adopting the fitting formula of Nakamura &
Suto (1997).

Optimization and uncertainties

The optimization of the parameters of the assumed mass profiles is based on a χ2-minimization
with a downhill-simplex algorithm (Nelder & Mead 1965), described in more detail in Oguri
(2010). Due to the complexity of the mass model we restrict all calculations to the source
plane, where we approximate the χ2 of the ith image per multiple image system as (Oguri
2010)

χ2
pos ≈ χ

2
pos, src =

∑
i

(ui, obs − u)T M2
i (ui, obs − u)

σ2
i, pos

. (2.6)

This ‘corrected’ source-plane χ2 follows from the assumption that the fitted image plane po-
sition is close to the observed image position. Then, the magnification tensor Mi = dxi/du
can be used to approximately relate the image positions x to the source-plane positions u
(Kochanek 1991), i.e.

xi, obs − xi ≈ Mi(ui, obs − u) . (2.7)

We set the positional uncertainties σi, pos of multiply lensed images to 0.5 arcsec which is
higher than the typically observed value of ∼0.1 arcsec for measurements by HST (e.g. Golse
et al. 2002). However, setting the uncertainties that low during the optimization process was
too restrictive for the optimization routine. This is in fact necessary because of the unknown
matter distribution along the line-of-sight, which may change positions by this amount on the
scale of galaxy clusters (M. Bartelmann, private communication).
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For the estimation of uncertainties of model parameters, GLAFIC provides built-in functions
in order to perform a Bayesian likelihood interpretation employing a Monte Carlo Markov
Chain (MCMC) approach. However, a non-trivial complication arises, due to the limitation of
all calculations to the source plane. Although GLAFIC also provides routines in order to perform
MCMC calculations in the source plane in general, a test run of the built-in MCMC routine
of GLAFIC in the source plane revealed that a fair fraction of the models did not correspond to
the observations, for example, predicting an incorrect amount of images per multiple image
system or incorrect image positions. The reason is that equation (2.7) is not valid in the direct
vicinity of a caustic. In regions of strongly clustered caustics this leads sometimes to wrong
models, which we needed to discard.

Since a direct inversion for each single χ2-calculation is too time consuming (e.g. one
sequence of χ2-minimizations of the mass model presented in Section 2.4.1 in the image plane
takes about one month on a typical work station5), we employed a Monte Carlo approach, i.e.
we varied the input data within the given uncertainties in order to derive uncertainties for the
model parameters including a check for the correct amount and positions of images at the end
of a full χ2-minimization run. In particular, the input data for GLAFIC consists of the positions
of the images in the multiple image systems (cf. Table 2.1). So, the initial positions were
varied by drawing random positions from a Gaussian distribution centred on the observed
position with width σ = 0.5 arcsec corresponding to the assumed positional uncertainties of
the images. Furthermore, the positions of merging images were linked to each other, so that
they were always shifted by the same amount in the same direction in order to avoid shifts of
the images against each other (positional fluctuations due to large scale structure affect larger
scales).

For each set of varied input data we performed a χ2-minimization run of the mass model
in the source plane based on the initial best-fitting parameters. The photometric redshifts for
multiple image systems 1, 3 and 4 were also free to vary within the given errors. In total 500
models were calculated. Finally, the prediction of the correct amount of images per multiple
image system and their positions were checked visually for each such model by performing a
full inversion of the lens equation. This resulted in 366 accepted models (i.e. ≈73 per cent)
from which the 68 per cent confidence intervals for the results obtained with GLAFIC were
calculated.

Since the optimization for a set of varied input data started always from the best-fitting
model parameters, this sampling method is rather insensitive to possibly existing, entirely
different solutions for the mass model, and assumes implicitly that the best-fitting model is
the global minimum in solution space.

2.3.2 Non-parametric – PIXELENS

Detailed information about the functionality of PIXELENS6 is presented in Saha & Williams
(1997, 2004). The non-parametric approach in PIXELENS employs a formulation of the lens
equation in terms of the arrival-time surface. Introducing square mass pixels allows it then
to express the effective lensing potential in terms of the convergence κ such that the lens
equation becomes linear in the unknowns, κ and source plane positions β. Observations of
image positions of multiply lensed systems, and in general also time delay information, then
impose constraints on the linear equation system.

In addition to restricting all calculations again to the source plane, such an equation system

5Four CPUs with 2.66 GHz each and 8 GB RAM. Note that GLAFIC is not parallelized yet.
6We have used version 2.17 for our analysis. The software can be downloaded from: http://www.qgd.uzh.

ch/projects/pixelens/

http://www.qgd.uzh.ch/projects/pixelens/
http://www.qgd.uzh.ch/projects/pixelens/
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remains under-determined which results in a whole family of best-fitting models for a given
image configuration.

In order to deal with this situation, PIXELENS employs a built-in MCMC approach and
creates an ensemble of 100 lens models per given image configuration. Since all equations
are linear in the unknowns, the best-fitting model and its uncertainties are obtained by finally
averaging over the ensemble.

Note that in addition to the standard regularization assumptions of PIXELENS (‘the prior’,
cf. Saha & Williams 2004), we demand further that the tilt of iso-contours is ≤ 60◦.

2.4 Analysis

2.4.1 Parametric – GLAFIC

For the parametric modelling, we did not include all image systems available and all their
respective images at once. Instead, we included them iteratively. Thus, deriving the best-
fitting model in GLAFIC was a sequence of including a multiple image system with subsequent
source plane optimization of the proposed mass distribution, and then checking the predictions
via a full inversion of the lens equation in order to calculate predicted images. If additional
images are predicted by the mass model, these have to be checked carefully by comparing
their position, morphology, colour, surface brightness and redshift with all other confirmed
images of the multiple image system. Here especially, the CLASH catalogues constitute an
invaluable data source and facilitate the decision whether or not to include or refuse such an
additionally predicted image, and hence improve the whole mass model significantly.

Based on the F814W filter, we define a limiting magnitude for a 5σ source detection as
mF814W

lim = ZPF814W−2.5 log10(5
√

Npixσbkg) (e.g. Erben et al. 2009), where ZP is the extinction-
corrected magnitude zeropoint in F814W, Npix the minimal number of continuous pixels that
define a source in the catalogue (i.e. Npix = 9) and σbkg the sky background noise estimation.
The values for the limiting magnitude and surface brightness are then mF814W

lim ≈ 28.4 mag and
S F814W

lim ≈ 24.9 mag arcsec−2, respectively.
If the additional image is indeed a correct prediction (with a candidate source) with respect

to the limits defined above, it will be included as a new constraint for the next optimization
step in addition to the next multiple image system. If the additional image is a false prediction
(no candidate source available), one will vary the input model parameters and start with those
a new optimization run.

Eventually, this whole process converged to a best-fitting model including all four multiple
image systems presented in Section 2.2.1. These provide in total 38 constraints from observed
image positions with which the 28 free model parameters were fit, yielding a reduced χ2

red of
0.68 (9 degrees of freedom). We did not include further constraints from fluxes as a mea-
sure for the magnification ratio, since the systematic errors for flux constraints are still under
discussion (e.g. Kochanek 1991, Liesenborgs & De Rijcke 2012).

The critical curves and caustics with observed and predicted image positions for all mul-
tiple image systems included in the best-fitting model are presented in Fig. 2.5.

In Tables 2.3, 2.4 and 2.5 we present an overview of the fitted values of parameters of the
best-fitting model in GLAFIC including the 68 per cent confidence intervals estimated from the
Monte Carlo sampling as described in Section 2.3.1.

Finally, we show in Fig. 2.6 the convergence contours obtained from the best-fitting model.
The contours are very elliptical and resemble the contours obtained with PIXELENS (cf. Fig. 2.8)
in general.
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Figure 2.5: Critical curves (red, dotted lines) and caustics (grey, solid lines) in RX J1347.5–1145 ob-
tained from the best- fitting model in GLAFIC. The critical curves and caustics are plotted for the redshift
of multiple image system 2 at z = 1.75. Furthermore, we show observed images (orange), predicted
images (cyan) and the respective sources (black) for all four multiple image systems. Different symbols
denote different multiple image systems (system 1: ©; system 2: �; system 3: 4; system 4: ♦). (a) Total
area used for the strong lensing analysis. (b) Zoom-in on central part.

Table 2.3: Parameters for the smooth mass components described by NFW profiles from the best-fitting
model in GLAFIC, the uncertainties are estimated as described in Section 2.3.1. ‘NFW1’ is located close
to the BCG and ‘NFW2’ is in the south-east of the cluster (cf. Fig. 2.6). For a detailed explanation of
the parameters and model please refer to Section 2.3.1.

Model M (M� h−1) ∆RA (arcsec) ∆Dec (arcsec) e θ (◦) c

NFW1 (5.75+0.72
−0.35) × 1014 0.14+0.36

−0.45 5.15+0.59
−0.34 0.15+0.04

−0.02 −144.91+2.11
−4.63 6.08+0.18

−1.15

NFW2 (5.23+0.39
−0.56) × 1014 −8.26+0.41

−0.50 −12.84+0.43
−0.68 0.66+0.02

−0.03 −145.80+0.70
−0.74 4.72+0.24

−0.24

Table 2.4: Parameters for the two cD galaxies in the cluster each modelled separately with a pseudo-Jaffe
profile (cf. Section 2.3.1 also for a detailed explanation of the parameters) from the best-fitting model
obtained in GLAFIC.

Object σ (km s−1) ∆RA (arcsec) ∆Dec (arcsec) e θ (◦) rtrunc (arcsec) rcore (arcsec)

BCG 593.59 0.00 0.00 0.32 2.16 4.89 0.95
2nd cD 344.00 −18.27 −1.95 0.26 44.37 3.87 0.79
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(a) (b)

Figure 2.6: (a) Surface mass density contours (solid, black lines) in units of the critical surface mass
density obtained from the best-fitting parametric model in GLAFIC for redshift z = 1.75. Furthermore,
we show X-ray brightness contours (solid, cyan lines) from Chandra. The contours of the second NFW
profile (NFW2) coincide with the centre of the south- eastern extension of the X-ray surface brightness
contours. (b) Zoom-in on the positions of the NFW profiles (black crosses, showing the 68 per cent
confidence interval for the position), mass and X-ray contours.

The distinct ellipticity may be caused by the new interpretation of the prominent, elongated
arc feature (images 2.2 and 2.3) of multiple image system 2 (cf. Fig. 2.2 and Section 2.2.1) to
count as two merging images, and not just as one image constraint, as it was described in both
Bradač et al. (2008) and Halkola et al. (2008).7 However, when counting this elongated arc as
the result of two merging images, the course of the critical curve in this region must necessarily
change such that it must go straight through the symmetry axis of this arc (cf. Fig. 2.5). This
in turn requires an adjustment of the mass profile accordingly, and this was achieved using
GLAFIC by shifting the second NFW profile away from the position of the second cD galaxy
(where we had placed the second NFW halo initially) towards the south-west. It was necessary
to keep the position of the second NFW profile free [not fixed at the position of the second cD
galaxy], as we already mentioned in Section 2.3.1.

Multiple image system 3 in detail

Apart from the new interpretation of the elongated arc in multiple image system 2 and its
consequences for the mass distribution, another new interpretation was to count images 3.1
to 3.8 as only one multiple image system. This interpretation was not at all clear from the
beginning due to differing interpretations of the affiliation of these images in Bradač et al.
(2008) and Halkola et al. (2008). Initially, we followed the image affiliations presented in the
latter study, since their definitions appeared to be more consistent. This means in particular
that we also affiliated images 3.1 to 3.8 with two different multiple image systems (we want to
emphasize again, that images 3.2 and 3.3 were not at all considered in both studies, although
they were visible in earlier data sets) in the beginning of our analysis.

However, whenever models were employed with system 3 split into two systems, GLAFIC

predicted additional images in the vicinity of images 3.7 (‘11c?’ in Halkola et al. 2008; also

7Halkola et al. (2008) present a simulated image of images 2.2 and 2.3 based on their best-fitting model which
does suggest they also modelled it as two merging images.



28 2. Strong lensing in RX J1347.5–1145 revisited

(a)

−11.4 −11.2 −11.0 −10.8 −10.6 −10.4 −10.2 −10.0
β1  [′′]

−5.4

−5.2

−5.0

−4.8

−4.6

β
2
 [

′′]

source

(b)

Figure 2.7: (a) Critical curves (solid, black lines) close to images 3.1 to 3.6 at redshift z = 4.19 in
RX J1347.5–1145. Furthermore, the positions of the perturbers necessary for this course of the critical
curves are shown. Very close to the position of the object ‘dark halo’ (cyan) is a very faint source
visible, whereas the object ‘galaxy’ (black cross) represents a massive model of a possible overdensity
in this region. Due to the faintness of images 3.1 to 3.6 we use a high contrast, false colour version of
the CLASH ACS-IR detection image. (b) Multiply folded ‘swallowtail’ caustics (solid, grey lines) and
position of the ‘source’ (black) for image system 3 within these. Compare to similar arc feature in A370
(Richard et al. 2009).

cf. Table 2.1 for nomenclature) and 3.8 (‘11d?’ in Halkola et al. 2008), respectively. This is
indeed expected from the small separation of images 3.1 to 3.6.

A search in the CLASH catalogues revealed no second image with appropriate redshift in
the vicinity of image 3.8 (‘11d?’ in Halkola et al. 2008) and the proposed candidate image
(‘12c?’) from Halkola et al. (2008) is included in the CLASH ACS-IR catalogue with a too
low redshift of zphot = 0.87+0.18

−0.36.
Therefore and further because of the redshifts of all images later found to be consistent

due to the then available CLASH catalogues, we finally interpreted all images to originate
from one source only.

Moreover, the north-western arc structures (images 3.1 to 3.6 in Fig. 2.7) of image system
3 strongly resemble the prominent arc feature of A370 (cf. Richard et al. 2009), as mentioned
in Section 2.2.1. The special arc configuration in A370 is caused by the source being located
on a doubly folded caustic (a so-called ‘swallowtail’).

Guided by this resemblance between multiple image system 3 and the multiple image
system in A370, we adopted this swallowtail folding by at first modelling one of the more
luminous neighbouring galaxies separately at a fixed position, making use again of the pseudo-
Jaffe profile (cf. Section 2.3.1). Later the coordinates were left free for fitting as well, because
during the optimization high masses were assigned to this object (i.e. ‘galaxy’ in Table 2.5).
Thus, we rather tend to interpret the object ‘galaxy’ to represent an overdensity in the whole
north-western part of the cluster than just to count it as an individual massive object.

In addition to that, we further included another perturber (i.e. ‘dark halo’ in Table 2.5)
in close vicinity to the two merging images 3.2 and 3.3 modelled again with a pseudo-Jaffe
profile (cf. Section 2.3.1 and Table 2.5) in order to force the critical line to bend exactly
through the merging images (cf. Section 2.2.1). All seven parameters of this additional mass
halo were left free for fitting (of course providing appropriate initial values, especially for
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Table 2.5: Model parameters for the additionally predicted perturbers which were both modelled with
the pseudo-Jaffe profile (cf. Section 2.3.1 also for a detailed explanation of the parameters). In case
the parameters were free for optimization during the error estimation process (cf. Section 2.3.1) the
respective 68 per cent confidence intervals are noted as well.

Object σ (km s−1) ∆RA (arcsec) ∆Dec (arcsec) e θ (◦) rtrunc (arcsec) rcore (arcsec)

galaxy 762.85+40.45
−94.09 32.29+0.46

−0.33 30.29+0.54
−0.26 0.35 −49.16 1.51+0.20

−0.19 0.19+0.09
−0.86

dark halo 290.28+87.71
−66.78 14.04 28.42 0.49 10.94 1.25+0.05

−0.53 1.10+0.69
−0.05

its position). Interestingly, the fitted position for the additional profile coincides with the
position of a very small and faint object (cf. Fig. 2.7). A search for this object in both
CLASH catalogues revealed a redshift limit of zphot > 0.7 and a very high upper limit of
z ≈ 3. Although an unambiguous determination of its photometric redshift is not possible
at the moment, the data rather suggest to assign the object to the background of the cluster
(zcluster = 0.451). Whether this really means that this additional mass halo is not physically
related to the respective faint object at all and thus rather another dark matter overdensity, is
hard to assess at the moment. See also Liesenborgs & De Rijcke (2012) on the degeneracies
involved in modelling cluster lens components.

2.4.2 Non-parametric – PIXELENS

The resolution for the pixel map radius in PIXELENS is limited only by computational power
and time. The highest, still feasible resolution comprised ∼22 mass pixels corresponding to a
physical size of ∼3.2 arcsec × 3.2 arcsec per pixel.

Furthermore and in analogy to the parametric approach, we did not include all four mul-
tiple image systems available in our modelling at once. Instead, we included them again
sequentially in order to check for additional predicted images.

Finally, we included multiple image systems 1 (images 1.1 to 1.5), 2 (images 2.1 to 2.3)
and 4 (images 4.1 to 4.3) in full detail. The very complicated eightfold lensed image system 3,
however, had to be approximated: the north-western part of image system 3 with the sixfold
image (images 3.1 to 3.6) seems to arise due to a complicated caustic folding caused by a
local disturbance in the mass distribution, as discussed in Section 2.4.1. Thus, we decided to
include only the ‘main’ images of this north-western part (i.e. images 3.1, 3.4, 3.5 and 3.6)
and images 3.7 and 3.8 in our PIXELENS analysis.

In Fig. 2.8 we show contours of the convergence in logarithmic spacing derived from this
mass model. From that already a highly elliptical and irregular mass distribution is visible.

It is apparent that PIXELENS finds significant substructure in the south-eastern part of the
cluster. This is coinciding very well with the second NFW component of the GLAFIC model
and the X-ray observations from Chandra (cf. Fig. 2.6). As we have noticed in Section 2.1,
an irregular extension to the south-east of the cluster is visible in X-ray images as well. Thus,
this lensing analysis also provides further support for RX J1347.5–1145 being in a merger
between two subclusters.
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Figure 2.8: Surface mass density contours (solid, black lines) in units of the critical surface mass density
obtained from the best-fitting, non-parametric model in PIXELENS for the total mass. The spacing between
contour levels is logarithmic and the difference between contour levels is 0.5 mag in surface density. The
sixth contour from the outside corresponds to the critical density. Contours are overlaid on a composite
false colour image of RX J1347.5–1145. North is up and east is left.

2.4.3 Mass estimates – PIXELENS and GLAFIC

From the best-fitting models obtained both with PIXELENS and GLAFIC we derived estimates for
the projected mass enclosed by a cylinder of radius R centred on the BCG:

M(< Rn) =

n∑
i=1

κ(Ri, z)Σcrit(z)π(Ri − Ri−1)2 , (2.8)

where the convergence κ is circularly symmetric and R0 = 0.
Apart from deriving a best-fitting model, we also investigated with PIXELENS additional

mass models derived with different image configurations, i.e. less images per image system
and less image systems in total. The results support our simplification regarding image system
3 in the PIXELENS analysis (i.e. not including images 3.2 and 3.3; cf. Section 2.4.2) since
different image configurations do not affect the enclosed mass estimates as shown in Fig. 2.9:
all mass estimates are statistically consistent within their 68 per cent confidence intervals.
Hence, we conclude that the image systems provide enough constraints for deriving consistent
mass estimates with PIXELENS; as expected, the uncertainties become larger for models with
less constraints. We also want to emphasize that nine out of in total sixteen images are located
in a distance range of 150 kpc ≤ Rimg ≤ 200 kpc from the cluster centre, thus, the most robust
estimates for the enclosed mass of the cluster can only be obtained within this range. This
argument holds also for the GLAFIC analysis.

In Fig. 2.10(a) we show the enclosed mass estimates from the best-fitting models of GLAFIC

and PIXELENS, respectively. The errors for the GLAFIC mass estimates were derived using the
Monte Carlo approach described in Section 2.3.1. It is apparent that both estimates are con-
sistent within radii R . 170 kpc best constrained by multiple image systems, but start to
deviate for larger radii where less strong lensing constraints are available.

Additionally, we show in Fig. 2.10b the differential mass dM/dR plotted against the radius
R for the best-fitting models in PIXELENS and GLAFIC, respectively. Note, how well the profiles
agree overall, just in the central region and for larger radii (less strong lensing constraints)
does PIXELENS overestimate the mass as compared to GLAFIC.
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Figure 2.9: Plots of enclosed mass estimates derived from different PIXELENS models. The models differ
by including less and less images per multiple image system and less and less multiple image systems
in total as indicated in the legend. All mass estimates are statistically consistent within their 68 per cent
confidence intervals.
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Figure 2.10: (a) Plots of enclosed mass estimates derived from PIXELENS (red, solid line) and GLAFIC

(blue, dotted line) best-fitting models, respectively. The dashed, vertical line marks the radius R =

200 kpc (i.e. distance from cluster centre of multiple image system 2) where deviations in the profiles
between PIXELENS and GLAFIC arise. (b) Differential mass plots for the best-fitting models of PIXELENS

(red, solid line) and GLAFIC (dotted, blue line), respectively. The central regions seem to be systemati-
cally overestimated by PIXELENS, and in addition PIXELENS assigns also more mass to larger radii. Both
combined results in the observed discrepancy between the enclosed mass estimates of PIXELENS and
GLAFIC, respectively.
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Figure 2.11: Enclosed mass estimates from strong lensing analyses using the non-parametric approach of
PIXELENS (solid, red line), the parametric approach of GLAFIC (blue, dashed line), a parametrized model
(blue, filled triangles) by Bradač et al. (2008) (Br08) and the 68 per cent confidence interval obtained by
Halkola et al. (2008) (Ha08) by using strong lensing data only (black, dashed lines). Additionally, we
show a mass estimate from X-ray data obtained by Bradač et al. (2008) (Br08). The dashed, vertical line
marks the position of images 2.2 and 2.3 at a radius R ∼ 200 kpc from the cluster centre.

Finally, we compare the best-fitting mass estimates from GLAFIC and PIXELENS with the
results presented in Bradač et al. (2008) and Halkola et al. (2008) in Fig. 2.11. Among these
results are projected mass estimates from an X-ray data analysis, a parametric strong lensing
analysis both obtained by Bradač et al. (2008)8 and the 68 per cent confidence interval based
on strong lensing data from Halkola et al. (2008). While the estimates from strong lensing
analyses by Bradač et al. (2008) and by Halkola et al. (2008) and from PIXELENS agree well
within their uncertainties, the estimates from GLAFIC appear to be significantly lower, especially
for radii R & 150 kpc. The estimates based on X-ray measurements performed by Bradač et al.
(2008) are somewhat high compared to the strong lensing analyses.

In order to give a quantitative example, we use the distance Rarc ∼ 35 arcsec ∼ 200 kpc
from the prominent, elongated arc (images 2.2 and 2.3 at redshift z = 1.75) to the cluster
centre for an estimate of the enclosed, projected mass M(< Rarc) within that radius. The
best fit from GLAFIC yields a mass M(< Rarc) ≈ (2.19+0.01

−0.02) × 1014 M�, whereas the PIXELENS

estimate exceeds this by ≈13 per cent with a mass of M(< Rarc) ≈ (2.47 ± 0.01) × 1014 M�.
The PIXELENS estimate is statistically consistent with the estimates by Halkola et al. (2008) M(<
Rarc) ≈ (2.56 ± 0.12) × 1014 M� and Bradač et al. (2008) M(< Rarc) ≈ (2.47+0.06

−0.07) × 1014 M�.

8We want to emphasize that we are only comparing to their parametrized strong lensing model and not to their
combined (non-parametric) strong and weak lensing model, since our focus is on the cluster core only.
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However, the X-ray mass estimate M(< Rarc) ≈ (3.10+0.19
−0.14) × 1014 M� within this radius as

estimated by Bradač et al. (2008) is higher by ≈26 per cent compared to the values from
PIXELENS and Halkola et al. (2008) and it exceeds the result from GLAFIC by ≈42 per cent. Note,
however, that the strong lensing analyses by Bradač et al. (2008) and Halkola et al. (2008)
make different assumptions about the lensing data (cf. Table 2.1).

2.5 Conclusions
Based on image identifications and strong lensing analyses in Bradač et al. (2008) and Halkola
et al. (2008), as well as by interpreting some of the multiple image systems anew and including
new images in the analysis, we present a consistent strong lensing analysis of the cluster RX
J1347.5–1145.

We have reconstructed its mass distribution by employing the parametric software GLAFIC

(Oguri 2010) and the non-parametric software PIXELENS (Saha & Williams 1997, 2004).
The results from these two analyses present further support for the merger scenario and

produced mass maps of the cluster which agree well with each other in revealing several mass
components and a highly elliptical mass distribution. Furthermore, the fitted position of the
second NFW profile from our parametric GLAFIC model coincides very well with a region of
shocked gas visible in X-ray data (Komatsu et al. 2001). Also the non-parametric best-fitting
model obtained with PIXELENS assigns a high amount of substructure to this cluster region. We
find that the mass estimates of PIXELENS and GLAFIC are consistent within ≈13 per cent at radii
best constrained by our data, but deviate stronger for larger radii with less constraints.

This difference inside the arc radii could be due to on the one hand, that the parametric
model used in GLAFIC could be inaccurate in the sense of not assigning sufficient mass to the
profiles in use in this model (or just not containing sufficient additional profiles). This would
imply that this model is not finding physically existent mass in the outer regions of the cluster
which is in contrast well-captured by the other analyses (cf. Fig 2.11).

On the other hand, the mass model in GLAFIC is the only one among all these analyses that
explains the images 3.1 to 3.8 as resulting from only one source. Considering the consistent
redshifts of these images according to CLASH data supports this approach strongly. The
eightfold occurrence of the same image is consistent with being caused by a complicated
swallowtail caustic folding. Such a complicated folding can be caused by two additional mass
components in the vicinity of images 3.1 to 3.6. One of these represents a mass overdensity in
the north-western part of the cluster which is coinciding with a higher concentration of cluster
galaxies in this region. The other perturbing profile is less massive and might be physically
connected to a very faint background object. Hence, introducing these additional components
which leads to the corresponding caustic folding, might be the reason for this particular mass
model to require less mass than the other models.

Note, however, that Schneider & Sluse (2013) have shown that strong lensing observables
(except time delays) are invariant under the so-called ‘source-plane transformation’ which
leads to a certain arbitrariness in the choice of mass models. This invariance is only an ap-
proximate one for asymmetric lenses such as clusters and the comparison of our findings to
previous results obtained with less well-constrained data (e.g. redshifts) and different assump-
tions about the mass profile shows that all these mass profiles are consistent albeit within a
larger scatter not accounted for by the estimated uncertainties (cf. Fig 2.11). This degeneracy
in mass profiles might thus be another hint towards such a fundamental level of systematic
uncertainties immanent in strong lensing due to the source-plane transformation.

To measure cluster masses beyond the arc regime, X-ray masses or weak lensing estimates
are required. In this respect it is also important to note that the weak lensing studies at larger
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radii by Fischer & Tyson (1997) and the one included in Bradač et al. (2008) are consistent
with X-ray measurements by Allen et al. (2002) and Bradač et al. (2008), respectively.
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2.A Additional table
In the following we show all entries of Table 2.2.

Table 2.6: Cluster member galaxies as used for our analysis in GLAFIC. Positions are given with respect
to the cluster centre at position RA = 206.◦8775, Dec = −11.◦7526 (J2000). Spectroscopically confirmed
cluster members by Lu et al. (2010) are marked with ‘asterisk (∗)’.

∆RA (arcsec) ∆Dec (arcsec) LF814W
i /LF814W

∗ e θ (◦) Lu et al. (2010)

−39.7217 48.1187 3.53737 0.288 76.6772
17.8258 −53.1457 2.94307 0.251 20.6834
41.5544 −44.2282 2.53396 0.206 −42.7160 ∗

50.8514 −33.4127 2.46740 0.275 −87.0736 ∗

−27.2336 79.3580 2.24430 0.362 24.1564 ∗

−27.2876 5.4396 2.12051 0.503 68.8246 ∗

38.9794 −42.0250 1.71759 0.041 7.2478 ∗

−18.6095 2.6698 1.64847 0.270 82.6778 ∗

−23.0746 −8.5878 1.49927 0.458 −62.4015 ∗

−22.9846 77.2931 1.48977 0.244 80.3499 ∗

−62.4737 8.0971 1.18424 0.362 55.7281 ∗

48.2256 −47.0963 1.17274 0.484 53.5377 ∗

9.6149 −10.1434 1.17090 0.499 −6.3700 ∗

−32.0951 −65.1452 1.15910 0.058 −5.4457
−26.7350 0.7272 1.07567 0.680 −59.2898

40.8006 −34.2792 1.06033 0.036 −40.7785
62.1922 −18.8874 0.85373 0.074 −82.5937 ∗

13.9342 68.6970 0.75977 0.324 −84.1649
−75.8858 7.5272 0.75900 0.080 44.2637 ∗

−23.1970 −45.5094 0.73228 0.213 −34.2751 ∗

−3.1057 −16.9722 0.59189 0.258 80.0946
5.1408 −27.2938 0.54215 0.339 30.0499

−25.8224 −24.7194 0.54095 0.474 61.7621
3.8887 −60.0559 0.50896 0.253 18.7992
−5.7607 −32.0206 0.50573 0.207 54.1367 ∗

28.9566 −42.3590 0.48856 0.339 −79.5943
−53.0543 7.4660 0.48453 0.240 81.2871
−47.2295 −36.3085 0.46868 0.072 56.5533 ∗

−15.9278 8.4848 0.46860 0.416 −74.2166
−13.0075 −1.2845 0.46187 0.344 23.7418 ∗

−18.6862 −66.6648 0.45541 0.182 4.6530 ∗

−7.5478 −38.0369 0.43160 0.094 74.3849
−31.6991 −3.4474 0.42760 0.243 −55.9427 ∗

http://dx.doi.org/eprintid: arXiv:astro-ph/9603037
http://dx.doi.org/10.1111/j.1365-2966.2012.20396.x;
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Table 2.6: continued

∆RA (arcsec) ∆Dec (arcsec) LF814W
i /LF814W

∗ e θ (◦) Lu et al. (2010)

−44.8387 −60.8540 0.40513 0.222 3.6020 ∗

−26.0035 −26.3999 0.40216 0.102 −61.3636
−19.5642 0.2246 0.38765 0.111 43.2441

1.9955 −60.8836 0.38655 0.378 −67.2284
−17.7185 −13.6811 0.38191 0.549 84.9119
−52.5830 16.9200 0.33309 0.085 −33.2646 ∗

29.7619 −7.6406 0.32982 0.505 −60.7757
−58.3528 −40.0529 0.31880 0.531 −82.0882

8.9842 −54.9277 0.30300 0.065 −45.5450
32.1199 51.3749 0.29739 0.284 9.0851 ∗

−24.6413 54.6966 0.29363 0.464 80.4998
−0.3146 35.7246 0.29078 0.041 75.7230 ∗

−14.0767 16.9405 0.28912 0.094 47.2299
18.8204 7.3458 0.28655 0.254 −75.9544
17.3351 8.2289 0.28447 0.125 −68.1228
−34.4671 −5.4950 0.25740 0.167 41.4702

3.9514 −15.7673 0.25340 0.247 65.0552
−2.6658 0.6980 0.25082 0.075 87.1044 ∗

32.6365 −42.9257 0.24783 0.090 57.7627
10.8637 −7.9333 0.23997 0.103 −59.4769
−8.8783 −20.7349 0.23072 0.112 −80.4163
17.2854 −16.6738 0.21380 0.042 −18.4828

2.7256 1.9094 0.21016 0.051 75.8719
22.1011 −62.2321 0.19803 0.136 22.9194
57.2216 −36.4100 0.19252 0.136 89.5199
37.9386 −20.3072 0.18835 0.044 −76.2698
−54.7258 −20.0372 0.18535 0.113 47.8401
−24.1916 25.5038 0.17072 0.372 −21.7318

9.7229 35.1166 0.15801 0.301 48.3972
2.5528 20.3393 0.15474 0.099 −5.8698
1.7910 2.9520 0.13709 0.050 −64.0061

22.9975 −70.2680 0.13250 0.121 −50.8443
−39.5417 −39.1147 0.11678 0.175 −59.3118

10.9807 −37.1243 0.10986 0.406 14.2908
−14.9234 24.3425 0.10463 0.431 −85.2151
−14.9328 −30.8290 0.10425 0.015 11.1597
−35.2274 26.9813 0.08856 0.061 17.4453
−69.1319 2.3112 0.07864 0.547 63.6670

12.4600 36.2452 0.07686 0.079 46.7527
39.4042 22.2937 0.07577 0.502 59.9982
−62.1860 −41.0461 0.07261 0.419 −72.9015

0.7589 −22.6274 0.06982 0.156 85.2696
5.2020 −68.8057 0.05878 0.597 −59.1124
−2.3281 45.8604 0.05568 0.284 5.9754
−56.8631 31.1900 0.05509 0.135 63.2858
−19.8497 33.0401 0.05491 0.024 −58.9078
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Table 2.6: continued

∆RA (arcsec) ∆Dec (arcsec) LF814W
i /LF814W

∗ e θ (◦) Lu et al. (2010)

−39.5248 −19.5721 0.04921 0.078 −11.8005
−0.3427 53.2843 0.04693 0.376 49.9376
29.5290 −13.4928 0.04544 0.347 8.9301
−7.2450 −28.8295 0.03917 0.174 49.6536
15.0674 −49.0504 0.03284 0.270 −83.0496
−13.3826 50.3690 0.03279 0.254 38.7964

14.7866 67.4824 0.03002 0.072 −9.1470
13.5407 44.1558 0.02587 0.053 −89.7780
21.2461 38.5002 0.02559 0.079 −49.9459
−0.3931 −42.9325 0.02498 0.103 7.0096
10.1135 −22.9244 0.02323 0.199 75.2114
15.7316 3.4700 0.02205 0.636 67.8657

6.7050 35.8884 0.02072 0.662 64.8444
−50.1448 12.9622 0.02056 0.042 −84.3996
−66.1730 19.5286 0.02019 0.177 −19.5957
−41.2027 −25.6763 0.01996 0.288 74.7811
−23.2420 −20.2432 0.01929 0.159 −86.2468
−57.6760 −20.0243 0.01855 0.180 64.3086

48.2353 48.0218 0.01829 0.535 −69.3042
−17.4762 −50.7308 0.01779 0.301 −15.2939
−67.1695 7.2493 0.01704 0.280 −5.9881

71.1990 −11.0092 0.01592 0.574 −2.1017



3
Statistical uncertainties and

systematic errors in weak lensing
mass estimates of galaxy clusters

Upcoming and ongoing large area weak lensing surveys will also discover large samples of
galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for
cosmology, for example, in establishing well-calibrated observational halo mass functions for
comparison with cosmological predictions. We investigate the level of statistical uncertainties
and sources of systematic errors expected for weak lensing mass estimates. Future surveys that
will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide
the largest weak lensing cluster samples with the lowest level of statistical noise regarding
ensembles of galaxy clusters. However, the expected low level of statistical uncertainties
requires us to scrutinize various sources of systematic errors. In particular, we investigate
the bias due to cluster member galaxies which are erroneously treated as background source
galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant
when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e.
the displacement between any observationally defined cluster centre and the true minimum
of its gravitational potential. The impact of this bias might be significant with respect to
the statistical uncertainties. However, complementary future missions such as eROSITA will
allow us to define stringent priors on miscentring parameters which will mitigate this bias
significantly.

F. Köhlinger, H. Hoekstra and M. Eriksen
2015, MNRAS, Volume 453, Issue 3, pp 3107–3119
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3.1 Introduction

Galaxy clusters play an important role in testing cosmological models, for example, by con-
fronting the observed number of galaxy clusters with predictions of the halo mass function
(e.g. Tinker et al. 2008, 2010 and references therein). This test is especially sensitive to the
values of the matter content of the Universe, Ωm, and the normalization of the primordial
power spectrum of matter density fluctuations, σ8. Values for both parameters obtained from
recent Sunyaev–Zel’dovich cluster counts by Planck Collaboration XX (2014b); Planck Col-
laboration XXIV (2015a) are in tension with other independent measurements (e.g. Planck
Collaboration XVI 2014a; Planck Collaboration XIII 2015b). To relate the observed cluster
counts to predictions for the mass function a conditional scaling relation was used. The analy-
sis in Planck Collaboration XX (2014b) was based on X-ray mass proxies. The uncertainty in
the absolute cluster mass scale remains the largest source of uncertainty in the Planck cluster
count analyses and is quantified by the mass bias. New priors on this mass bias were incorpo-
rated in Planck Collaboration XXIV (2015a) based on small overlapping cluster samples with
masses measured by employing gravitational lensing (von der Linden et al. 2014; Hoekstra
et al. 2015), the deflection of light due to mass as a consequence of Einstein’s equivalence
principle. Although these improved priors do not fully lift the observed tension yet, scaling
relations entirely based on and not only gauged by gravitational lensing measurements are
advantageous. This is due to lensing masses being unaffected by the dynamical state of matter
or its physical properties (e.g. being dark or baryonic) in general. One disadvantage though is
that lensing only yields estimates for a two-dimensional surface mass density, but with simu-
lations it is possible to propagate these reliably into three-dimensional mass estimates in order
to compare them with results from other probes (e.g. Becker & Kravtsov 2011; Meneghetti
et al. 2014).

In the strong limit gravitational lensing is characterised by the occurrence of multiply
lensed images or arcs of background sources behind the cluster. Employing these lensed
images allows a very detailed determination of the mass and mass profile of the cluster core
(e.g. Chapter 2, Medezinski et al. 2013, ; Bartelmann et al. 2013 and references therein). In
the weak limit small differential deflections of background galaxies are used in a statistical
sense to infer the mass of the cluster (e.g. Hoekstra et al. 2013 and references therein).

The primary source of statistical uncertainty in weak lensing based cluster mass estimates
is shape noise because galaxies are not intrinsically round. For weak lensing it is necessary
to measure shapes accurately from observed images in order to derive ellipticity components
which serve as shear estimators (cf. Section 3.2.3). The accumulated errors arising from
measuring shapes eventually propagate into weak lensing analyses as shape noise.

Another source of statistical uncertainty is arising from the fact that mass as measured
from gravitational lensing is always weighted by the lensing kernel along the line-of-sight and
projected into the plane on the sky of the deflecting mass. The effect of this projected fore-
and background mass – or cosmic noise – on the accuracy of weak lensing masses has already
been studied extensively in the past (e.g. Hoekstra 2001, 2003; Dodelson 2004; Hoekstra et al.
2011). However and in particular for the cosmological test described above, one is interested
in a stack of clusters within a given mass (and redshift) range, thus, statistical uncertainties on
properties of the stack will scale inversely with the square root of the total number of clusters
within these bins.

In the next decade data from a multitude of ground-based weak lensing surveys, for ex-
ample, the Kilo-Degree Survey (KiDS;1 de Jong et al. 2012), the Dark Energy Survey (DES;2

1http://kids.strw.leidenuniv.nl
2www.darkenergysurvey.org

http://kids.strw.leidenuniv.nl
www.darkenergysurvey.org
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Flaugher 2005), and the Subaru Hyper SuprimeCam lensing survey (HSC3) will become avail-
able and eventually culminate in the surveys carried out by the Large Synoptic Survey Tele-
scope (LSST;4 Ivezic et al. 2008) and the spaceborne Euclid5 mission (Laureijs et al. 2011).
Although the major focus of these surveys will be cosmic shear – the much weaker weak
lensing due to cosmological large-scale structure – they will also produce large cluster sur-
veys as ‘by-products’ and allow mass estimates employing shear measurements (cf. Sartoris
et al. 2015). Since all of these weak lensing surveys will provide superior statistics in terms
of the expected number of clusters to be found due to an orders of magnitude increase in sur-
vey area, it is important to scrutinize sources of statistical and systematic uncertainties in the
determination of cluster masses using weak gravitational lensing.

In this paper, we will be especially focusing on the Euclid survey because it will yield one
of the largest cluster samples with a very low level of statistical uncertainties based on weak
lensing. This allows us to scrutinize the impact of major sources of uncertainties and biases,
eventually answering whether these large cluster surveys will be more affected by statistical
uncertainties or systematic errors. Note, however, that the survey design for LSST is very
similar to Euclid so that our results will also be applicable to this survey and to lesser extent
to smaller surveys such as, for example, DES.

Due to the large increase in survey area, we expect large samples of clusters to be detected
in ongoing and upcoming weak lensing surveys and hence the statistical uncertainties are
expected to decrease to levels on which systematic errors will no longer be negligible but
instead might even dominate over statistical uncertainties. As we have mentioned already,
gravitational lensing always yields a projected mass due to the line-of-sight integration over
the lensing kernel. Preferably, the redshifts of (all) background source galaxies should be
used in the integration over the lensing kernel (cf. Section 3.2.3) which thus requires to take
redshifts of even larger samples of galaxies. In the ongoing and upcoming surveys this will be
achieved by employing photometric redshift estimates based on multiband observations since
spectroscopy is not feasible anymore given the typical survey areas (at least several thousand
square degrees).

However, photometric redshift estimates are less precise and accurate and photometric
misidentifications, for example in the cluster member galaxy assignment, will propagate into a
biased mass estimate via the lensing kernel. Similarly, the effect of miscentring – the displace-
ment between any observationally defined cluster centre and the minimum of the gravitational
potential of the cluster – can also be propagated into a bias of weak lensing mass estimates.
On the scale of a single cluster these biases are negligible but this might not be anymore the
case once we turn to studying the masses of large ensembles of clusters.

In this paper, we will determine the level of expected statistical uncertainties first and then
continue to study possibly important sources of bias. Eventually, these biases will have to
be assessed much more rigorously through extensive (numerical) simulations, the aim of this
paper is, however, to provide a guideline for the design of these simulations by identifying the
most significant sources of bias with respect to the expected level of statistical uncertainties
for stacks of galaxy clusters.

The structure of the paper is as follows: in Section 3.2 we establish the level of expected
statistical uncertainties on the mass estimates of stacks of galaxy clusters from the Euclid
survey while describing the weak lensing formalism used in this study at the same time. In
Section 3.3 we scrutinize various sources of bias, most importantly the effect of photometric
redshift outliers as well as miscentring and compare them to the level of statistical uncertain-

3www.naoj.org/Projects/HSC/
4www.lsst.org
5www.euclid-ec.org

www.naoj.org/Projects/HSC/
www.lsst.org
www.euclid-ec.org
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ties derived in the previous section. Finally, we present our conclusions in Section 3.4.
Throughout this paper we employ a spatially flat ΛCDM cosmology with Ωm = 0.308,

ΩΛ = 0.692, H0 = 100 h km s−1 Mpc−1 with h = 0.678, σ8 = 0.826 and ns = 0.961 following
results from Planck Collaboration XVI (2014a).

3.2 Statistical uncertainties
Estimating the total number of haloes in redshift and cluster mass bins is the first step in
answering the question of whether a Euclid cluster survey will be limited by statistics or
systematics since the statistical uncertainty on a stack of clusters scales inversely with the
square root of the total number of haloes in the stack. In a real data analysis one has to stack
the clusters according to an observational proxy (e.g. luminosity). This will introduce an
Eddington bias (Eddington 1913) in the stacked quantity as a function of decreasing number
density. Hence, the average halo masses on the high mass end will be lowered. This in turn
reduces the signal-to-noise ratio of the weak lensing measurement. However, this would only
weaken the constraints on systematic errors we derive below. Therefore, we do not assume
a proxy for the stacking but stack the clusters directly in mass in order to derive the tightest
constraints on systematic errors.

The Euclid survey will cover an area of 15 000 deg2 on the sky and is expected to detect
30 galaxies per square arcminute (Laureijs et al. 2011) for which accurate shapes can be
determined. For the subsequent analysis we will assume that all clusters within this area will
be detected down to redshifts of z = 1.5 spanning masses between 6.78 × 1013h−1M� and
2.70 × 1015h−1M�. This assumption is deliberately optimistic because it leads to the tightest
constraints on systematic errors. Note, however, that for example Gladders et al. (2007) have
found their high-redshift sample of clusters from the Red-Sequence Cluster Survey (RCS) to
be complete to ≈88 per cent.

3.2.1 Halo abundance
The halo abundance can be expressed in the functional form (Tinker et al. 2008, 2010)

n(M, z) =
dn
dM

=
ρ̄m,0

M
f (ν)

dν
dM

. (3.1)

The function f (ν) is motivated from extended Press-Schechter theory and can explicitly be
written as (Tinker et al. 2008, 2010)

f (ν) = α[1 + (βν)−2φ]ν2η e−γν
2/2 , (3.2)

where the parameters α, β, γ, η, and φ are redshift-dependent and have to be calibrated against
numerical simulations for the corresponding overdensity ∆ = 200 with respect to ρ̄m (cf.
Tinker et al. 2008, 2010 for explicit values of these parameters).

The halo abundance is predicted as a function describing the mass fraction of matter in
peaks of a given height, ν ≡ δc/σ(M, z), in the linear density field smoothed at a scale R =

(3M/(4πρ̄m,0))1/3 (Press & Schechter 1974), where M and z refer to the cluster mass and
redshift, respectively, and ρ̄m,0 is the mean matter density of the Universe today. The constant
δc = 1.686 denotes the critical overdensity for collapse in linear theory and σ(M, z) is the
root-mean-square (rms) variance of the linear density field smoothed on a scale R(M), which
is defined as

σ2 =

∫ ∞

0
P(k)|Ŵ(kR)|2k2 dk . (3.3)
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Here, P(k) is the linear matter power spectrum, which we calculate with the fitting formulas
provided by Eisenstein & Hu (1999) and Ŵ is the Fourier transform of the top-hat filter with
radius R in real space.

Using equation (3.1) we can now predict the (expected) abundance of haloes per redshift
bin i and mass bin j by evaluating

Ni j =

∫ zhigh,i

zlow,i

∫ Mhigh, j

Mlow, j

∫
V

n(M j , zi) dz dM dVcom , (3.4)

where we integrate over the expected comoving volume of the Euclid survey. The subscripts
‘low’ and ‘high’ refer to the lower and upper bounds of the bin, respectively.

3.2.2 Mass model
Next we have to specify a mass model for galaxy clusters from which we will derive shears that
can then be compared to the measured shear around galaxy clusters. Numerical simulations
of cosmological volumes show that the Navarro–Frenk–White (NFW)-profile (Navarro et al.
1997, 2010) is a good description of the average density profile of an ensemble of haloes over
several orders of magnitude in mass when adjusting the halo concentration accordingly.

In the following analysis we assume only a single halo component and a spherically sym-
metric distribution of the cluster mass. In general, this assumption is over-simplifying and
especially for unrelaxed single haloes far from correct (e.g. Shaw et al. 2006). However, since
we focus in our analysis on a stacked signal from an ensemble of clusters, this simplification
holds, because non-spherical symmetric cluster geometries will average out in the stacking
process provided that the selection of the cluster sample is unbiased. An unbiased cluster
sample is an important assumption here in order to derive upper limits on systematic errors,
but in a real data analysis the cluster selection function has to be fully taken into account, e.g.
in a subsequent cosmological analysis.

In this case the radial profile of such an idealized halo can then be expressed as an NFW-
profile:

ρ(r) =
δρ̄m(z)

r/rs(1 + r/rs)2 , (3.5)

where ρ̄m(z) is the mean matter density of the Universe at the redshift z of the halo. The
parameter δ describes the overdensity of the halo and is related to the concentration parameter
c through

δ =
200

3
c3

ln(1 + c) − c/(1 + c)
. (3.6)

The scale radius rs is a characteristic radius of a cluster and can be related to the virial radius
r200 and concentration parameter c via rs = r200/c. We define the virial radius here as the
radius of a sphere which contains a mass overdensity of 200ρ̄m(z). Thus, the corresponding
mass M200 within this sphere is given by

M200 =
800π

3
ρ̄m(z)r3

200 . (3.7)

Furthermore, numerical simulations hint at a (noisy) relation between halo concentration and
mass. By applying such a concentration–mass relation, we can reduce the free parameters of
the model to only one: the mass M200.

For the concentration–mass relation we use the results of Dutton & Macciò (2014), i.e.

log10(ĉ200(M̂200)) = a + b log10(M̂200/(1012 h−1M�)) (3.8)
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with the redshift-dependent functions a = 0.520 + (0.905 − 0.520) exp(−0.617z1.21) and b =

−0.101+0.026z. The concentration ĉ200 and mass M̂200 are defined with respect to the critical
density of the Universe. We convert between this definition and our definition of mass and
concentration given with respect to the mean matter density employing the algorithm from
Hu & Kravtsov (2003). Note that at an earlier stage of the subsequent analysis we employed
the concentration–mass relation from Duffy et al. (2008) which qualitatively did not affect
any of our subsequent results or conclusions. That is expected because the weak lensing
signal depends to first order on mass only. Moreover, we do not assume any scatter in the
concentration–mass relation, because scatter will mainly affect the shape of the profile at
small scales. However, our analysis always assumes that we measure the weak lensing signal
of a stack and that these these small-scale fluctuations from halo to halo due to scatter in the
concentration–mass relation average out.

3.2.3 Weak-lensing formalism
Analytical formulas for the calculation of the weak lensing convergence and shear signal from
a spherically symmetric NFW-profile were derived in Bartelmann (1996) and are conveniently
re-expressed in Wright & Brainerd (2000). Following these references, we write the conver-
gence as

κNFW(x) =
ΣNFW(x)

Σcrit
, (3.9)

which is thus the ratio of the surface density ΣNFW(x) at projected position x = R/rs scaled by
the critical surface density

Σcrit =
c2

4πGDl(zl)
β−1(z) , (3.10)

where β(z)−1 = Ds(z)/Dls(z, zl) is the inverse of the lensing efficiency β(z). Here Ds, Dl, and
Dls denote the angular diameter distances between observer and source, observer and lens, and
lens and source, respectively. The constants c and G are the speed of light and gravitational
constant, respectively. For explicit formulas of the surface density ΣNFW(x) of an NFW-profile
we refer the reader to the original literature (Bartelmann 1996; Wright & Brainerd 2000).

As we have hinted at already in Section 3.1, weak lensing requires the knowledge of
the redshift of the lens and every background source which are entering as variables in the
corresponding angular diameter distances. However, instead of considering a redshift for
every single background galaxy one assumes or measures a source redshift distribution:

psrc(z) =
β

z0Γ( 1+α
β

)

(
z
z0

)α
exp(−(z/z0)β) , (3.11)

where we have adopted the functional form presented in Vafaei et al. (2010) and use α = 0.96,
β = 1.70, and z0 = 1.07 corresponding to a median redshift of zmed = 0.91 to simulate the
Euclid survey. Employing this source redshift distribution lets us rewrite the critical surface
density as

Σcrit =
c2

4πGDl(zl)

∫ zmax

zmin

dz β−1
eff (z) , (3.12)

with the inverse of an effective lensing efficiency βeff = p(z)β(z). Note that the source distri-
bution p(z) has now to be renormalized over the range zmin ≤ z ≤ zmax.

In case of Euclid and all other ongoing and upcoming lensing surveys, photometric red-
shifts will also be available. Hence, we will only consider galaxies as sources for the lensing
signal with redshifts zmin = zphot > zcluster + 0.15 where we choose an offset of 0.15 because



3. Statistical uncertainties and systematic errors 45

the lensing contribution of sources close to the cluster redshift is negligible and for low red-
shifts the offset of 0.15 corresponds to the expected 3σ uncertainty in photometric redshift
σz = 0.05(1 + z).

The tangential shear due to an NFW-profile can be expressed as

γNFW
T (x) =

Σ̄NFW(x) − ΣNFW(x)
Σcrit

, (3.13)

i.e. as a scaled density contrast between the average surface density inside projected radius x
and the surface density at radius x. However, observationally, it is only possible to measure
the reduced tangential shear gT , i.e.

gT =
γT

1 − κ
. (3.14)

A parametrized model based on the equations above can then be used to derive the mass of
the halo from the measured shear signal. Here, we will also include the effect of cosmic
noise. This is important in order to derive more realistic uncertainties on the mass estimates
(Hoekstra 2001, 2003; Dodelson 2004; Hoekstra et al. 2011). The most straightforward im-
plementation in order to achieve that is fitting the parametric model directly to a pixelized map
of the two Cartesian projections of the reduced shear gT in the lens plane. These are related to
gT through

g1 = gT cos(2φ) (3.15)
g2 = gT sin(2φ) . (3.16)

For the implementation of cosmic noise contributions we follow Oguri et al. (2010) and cal-
culate the χ2 as

χ2 =

2∑
α,β=1

Npixel∑
k,l=1

[gα(θk) − gm
α (θk; p)][C−1]αβ,kl[gβ(θl) − gm

β (θl; p)] , (3.17)

where Greek indices run over the two components of the reduced shear g and Roman indices
run over the pixel positions (k, l = 1, ...,Npixel). The matrix C denotes the covariance matrix
and C−1 is its inverse.

By minimizing the χ2-value given the distortion ‘data’, we find the best-fitting model
parameters. Of course, with data we are referring to the shear components derived from a
fiducial parametric model.

We consider now two contributions in the covariance matrix: the dominating intrinsic
ellipticity noise, i.e. shape noise, and cosmic noise due to large-scale structure along the
line-of-sight. Thus, we write the covariance matrix as

C = Cshape
+ CLSS. (3.18)

The intrinsic ellipticity noise between different galaxies is uncorrelated, thus, the shape noise
covariance matrix consists only of diagonal terms

[Cshape]αβ,kl = δαβδkl σ
2
shape , (3.19)

where δi j denotes the Kronecker delta and σ2
shape = σ2

int/Nk is the shape noise in pixel k. We
estimate the number Nk of background galaxies per pixel as:

Nk = Apix n
∫ zmax

zmin

dz psrc(z) , (3.20)
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where Apix stands for the area of one pixel and the source redshift distribution psrc(z) is the
one given in equation (3.11). We employ a number density of background sources of n =

30 arcmin−2 which is expected for the Euclid survey (Laureijs et al. 2011). Furthermore, we
assume an intrinsic ellipticity noise per galaxy of σint = 0.25 per component.

In contrast to that, large-scale structure along the line-of-sight introduces correlated noise
which can be expressed as (Hoekstra 2003; Dodelson 2004)

[CLSS]αβ,kl = ξαβ(r = |θk − θl|) , (3.21)

where ξαβ denote the cosmic shear correlation functions. Since the universe is statistically
isotropic, we express ξ as a function of the length r of the vector connecting the two posi-
tions θk and θl. In particular, the shear correlation functions constructed from the two shear
components are given by

ξ11(r) = cos2(2φ)ξ++(r) + sin2(2φ)ξ××(r) , (3.22)

ξ22(r) = sin2(2φ)ξ++(r) + cos2(2φ)ξ××(r) , (3.23)
ξ12(r) = ξ21(r) = cos(2φ) sin(2φ)[ξ++(r) − ξ××(r)] , (3.24)

where φ is the position angle between the coordinate x-axis and the vector r = θk−θl. ξ++ and
ξ×× denote the tangential and cross-component shear correlation functions (e.g. Bartelmann
& Schneider 2001), respectively. For the calculation of these shear correlation functions we
have to calculate the non-linear matter power spectrum Pδ(k) folding in the source redshift
distribution defined in equation (3.11). We calculate the non-linear matter power spectrum
with the publicly available Boltzmann-code CLASS6 (Blas et al. 2011; Audren & Lesgourgues
2011).

In all of our subsequent analyses, we fit the shear signal on a regular grid with constant
side length Npixel = 20 which is set to correspond to a square with side length 2 × 2 Rvir. Fur-
thermore, we cut out the cluster centre in a square of side length 2 × 0.2 Rvir (we will refer
to that more conveniently as fitting ‘from 0.2 Rvir to 2 Rvir’ from now on). Larger scales than
2 Rvir are avoided since these are completely dominated by cosmic noise due to the smallness
of the cluster signal there. In addition to that, two-halo contributions will also bias the NFW-
fit on these scales (Becker & Kravtsov 2011). Smaller scales than 0.2 Rvir are omitted since
this is usually done for practical purposes when dealing with real data in order to minimize
the residual contamination by cluster members. Furthermore, the accuracy of shape measure-
ments in high-density and hence high-shear regions is also an issue one tries to circumvent in
practice. Finally, we also do expect deviations from the simple NFW-profile on these scales
due to effects of substructure (Becker & Kravtsov 2011).

3.2.4 Results
With the formalism outlined above we can now turn to determining the statistical precision
of mass estimates from weak lensing measurements. Most importantly, we emphasize that
realistic estimates of the statistical uncertainties must include cosmic noise (cf. equation 3.18).

This is demonstrated by Fig. 3.1a and Fig. 3.1b which show the likelihoods P(M) and P(c)
as functions of the halo mass M and concentration c, respectively, resulting from the fitting
procedure described above for three halo masses in the range 0.87 ≤ M/(1014 h−1M�) ≤ 8.76,
all at the same redshift z = 0.1875. In the derivation of P(M) we use the concentration–mass
relation given in equation (3.8). In the derivation of P(c) the mass was fixed at the fiducial

6Version 2.4.0 from www.class-code.net

www.class-code.net
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Figure 3.1: (a) Likelihood as a function of halo mass M and concentrations derived through the
concentration–mass relation of equation (3.8) for single haloes of masses M1 = 0.87 × 1014 h−1M�
(red), M2 = 3.50×1014 h−1M� (blue) and M3 = 0.87×1015 h−1M� (black). (b) Likelihood as a function
of concentration c at fixed fiducial mass M for the same three haloes as in panel (a) (fiducial concen-
trations are set by employing the concentration–mass relation of equation 3.8). In both panels vertical
lines indicate the fiducial values of mass and concentration, respectively. Dashed lines do not include,
and solid lines do include large-scale structure contributions in the covariance (cf. equation 3.18).

value for each cluster and the fiducial concentration again derived through employing equa-
tion (3.8). We then fit for the concentration c and demonstrate the importance of accounting
for large-scale structure contributions in the data covariance.

The dashed lines show the distributions only taking into account shape noise, whereas
for the solid lines the effect of large-scale structure is additionally taken into account (cf.
equations 3.18, 3.19, 3.21). This results in a significant broadening of the corresponding
distributions P(M) and P(c), which in turn increases the uncertainties in the halo mass and
concentration significantly. This effect is expected because large-scale structure contributions
reduce the weight of large scales on the weak lensing signal. Therefore, it is more pronounced
for lower mass haloes since there the lensing signal is much weaker on larger scales compared
to high mass haloes.

We continue the analysis by looking further at the stacked weak lensing signal of clusters
in eight mass bins from 6.78× 1013h−1M� to 2.70× 1015h−1M� and in four different redshift
bins in the range 0 < z < 1.5.

The relative error of the stacked lensing signal of a halo in each redshift bin i ∈ 0, ..., 3 and
mass bin j ∈ 0, ..., 7 is estimated by

∆Mleft/right
i j = |M(∆χ2 = 1)left/right − M j(zi)| , (3.25)

σi j =
1
2

(∆Mleft
i j + ∆Mright

i j )

M j(zi)
, (3.26)

where the χ2 is calculated again as defined in equation (3.17). The minimal χ2 is centred on
the central value of each mass and redshift bin, respectively.

In Fig. 3.2 we show the expected statistical relative uncertainty on the mass for a stacked
weak lensing signal from galaxy clusters in each of the mass and redshift bins specified above.
The solid lines correspond to the total relative error including also large-scale structure contri-
butions in the error budget. These are most important for clusters at low redshifts z ≤ 0.75 and
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Figure 3.2: Relative uncertainties for masses of galaxy clusters as estimated from a stacked weak lensing
signal for different mass and redshift bins. The solid lines take large-scale structure contributions into
account whereas the dashed lines only include shot noise contributions (cf. Section 3.2.3). The eight
mass bins (vertical, dashed lines) span a range from 6.78×1013h−1M� to 2.70×1015h−1M� and the four
redshift bins are in the range 0 < z < 1.5. The horizontal grey line indicates the required upper bound
on the multiplicative bias m for Euclid (cf. Section 3.3).
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Table 3.1: Relative uncertainties in mass.

Mlow (×1014 h−1M�) Mhigh (×1014 h−1M�) σstat σstat/
√

N σ σ/
√

N N

0.678 1.075 0.432 0.0024 0.605 0.0034 32509
1.075 1.703 0.322 0.0025 0.477 0.0037 16861
1.703 2.699 0.239 0.0027 0.378 0.0042 7999
2.699 4.278 0.178 0.0031 0.302 0.0052 3363
4.278 6.780 0.132 0.0038 0.242 0.0070 1200
6.780 10.75 0.098 0.0053 0.196 0.0106 342
1.075 17.03 0.073 0.0086 0.159 0.0187 72
17.03 26.99 0.054 0.0170 0.130 0.0410 10

Notes. The relative errors σ/
√

N for each mass bin of Fig. 3.2 are given for the lowest redshift
bin (i.e. zmean = 0.1875). N refers to the number of haloes in each mass bin and Mlow and
Mhigh denote the lower and upper value of each mass bin, respectively.

increase with increasing halo mass driven mainly by the lower abundances of these high-mass
clusters.

In Table 3.1 we provide the quantitative values for the relative uncertainties in all mass
bins for the lowest redshift bin since these ultimately set the requirements on the precision.

3.3 Systematic errors

So far, our analysis did not include any sources of bias. However, given the expected small
statistical uncertainties as estimated in the previous section (cf. Fig. 3.2 and Table 3.1), any
source of systematics might become important.

In general, the simplest parametrization of systematic deviations of the observed shear γobs
from the true shear γ can be written as (Heymans et al. 2006)

γobs = (1 + m)γ + c , (3.27)

where m refers to the multiplicative bias and c to the additive bias (e.g. Huterer et al. 2006;
Massey et al. 2013 and references therein).

The multiplicative bias can arise from a variety of different sources. For example, the
shear is derived from an observed image which is a convolution of a point spread function
(PSF) of finite size with the true shape of the observed object. This convolution introduces a
multiplicative error. The additive bias, for example, can result from anisotropies of the PSF.
We expect these to largely average out when referring to a stack of galaxy clusters which
implies taking an average over many cluster–source pairs.

Since the requirement on the multiplicative bias for Euclid is m < 2 × 10−3 (Laureijs
et al. 2011), we find that the statistical uncertainties are still larger and thus this source of
systematic can be neglected henceforth. Therefore, the primary observational sources of bias
in weak lensing can both be neglected for our subsequent analysis in which we will focus then
on other possible sources of bias instead.
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Table 3.2: The SN = 5 limiting (apparent) magnitudes for extended objects used in the photometric
redshift estimation.

g r i z Y J H

24.65 24.15 24.35 23.95 23.3 23.3 23.3

Notes. These limits assume DES ground-based observations (g, r, i, z) and Euclid NIR
observations (Y, J, H). The limiting magnitudes for extended objects are assumed to be
0.7 mag shallower than for point sources.

3.3.1 Photometric redshift bias

For all ongoing and upcoming weak lensing surveys photometric redshifts of large samples
of galaxies will be available. Equations (3.10) and (3.12) show the dependence of the cluster
lensing signal on redshifts of the cluster itself and all background sources or a source redshift
distribution, respectively. Since it would simply require too much time to obtain spectroscopic
redshifts for all galaxies in and around each cluster in these large samples of galaxy clusters,
photometric redshift estimates present the only feasible alternative. However, the techniques
for estimating photometric redshifts from multiband observations are not as precise as spec-
troscopic redshifts. They might even yield catastrophic outliers, for example, due to misinter-
pretations or confusion of emission or absorption features (e.g. Lyα break; cf. Jouvel et al.
2011).

This is also important for the weak lensing signal since cluster member galaxies that are
scattered to higher redshifts will now be treated as source background galaxies in the measure-
ment of the weak lensing signal. In comparison to the case of a perfect assignment of cluster
members and background source galaxies the weak lensing signal will be diluted because
erroneously scattered cluster members are not gravitationally sheared by the cluster. In this
context another bias might arise due to cluster members being intrinsically aligned although
Sifón et al. (2015) showed no evidence for this. Note that any member galaxy scattered to a
redshift in the foreground of the cluster does not change the lensing signal, though, because
the photometric redshift distribution will be cut for all redshifts lower than zcut = zclus + 0.15.

In order to quantify the level of contamination, we need an estimate of the number of
cluster members we expect. For that reason, we adopt a Schechter-type cluster luminosity
function (Schechter 1976) which follows the scaling relations with respect to cluster mass
(or richness) derived from a large sample of groups and clusters from the Sloan Digital Sky
Survey (SDSS) as presented in Hansen et al. (2009). For simplicity we only assume a passive
redshift evolution of the luminosity function. The absolute magnitudes sampled from this
cluster luminosity function are converted to apparent magnitudes which will then serve as
input for an estimation of photometric redshifts for the cluster member galaxies.

In general, observed magnitudes include noise from a variety of sources, for example, er-
rors in the background subtraction, CCD readout noise, zodiacal light, and photometric errors.
However, in our simulations it is sufficient to only use fixed magnitude limits. In Table 3.2 we
show the signal-to-noise (SN) limits for different bands, combining DES optical photometry
(e.g. Banerji et al. 2015) and Euclid near-infrared (NIR) observations (Laureijs et al. 2011).
The photometric redshifts are estimated from the apparent magnitudes by employing a tem-
plate based photo-z code derived from BPZ (Benítez 2000). A single redshift is estimated by
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finding the peak of

χ2(z) =
∑
i,T

(
f̃i − fi(z,T )

)2

σ2
fi

, (3.28)

where the sum is taken over the different filters i and different types of spectral energy dis-
tributions (SED) T for mimicking different types of galaxies. Here f̃i is the observed flux in
filter i, σ fi is the flux error, and fi(z,T ) is a model flux constructed from the template library.
In the estimation of the photometric redshifts, we do not include the Euclid visual (VIS) band.
Furthermore, no priors are included and the templates equal the ones used to generate the
simulations.

This yields a catalogue of photometric redshift estimates for cluster members for which
we do know the true cluster redshift by construction. We cut the catalogue by imposing a
detection limit for extended objects of mVIS < 24.5 (10σ) in apparent magnitude following the
requirement for lensing sources as given in Laureijs et al. (2011). After having applied this cut
we use the catalogue to construct a photometric redshift distribution for the cluster members,
pclus(z), which we use to define the modified total source redshift distribution pi

mod(z) per radial
bin i:

pi
mod(z) ∝ N i

src psrc(z) + N i
clus pclus(z) . (3.29)

Here N i
src denotes the total number of source galaxies per radial bin, i.e. N i

src = (1− f scat
src ) Ai

fit n.
The number density of sources is again assumed to be n = 30 arcmin−2 and with Ai

fit we denote
the area of an annulus defined by the borders of the radial bin. Note that the actual number of
source galaxies per radial bin entering in the weak lensing analysis is again calculated as in
equation (3.20) with psrc replaced by a properly normalized pmod.

Moreover, we account for the fact that background source galaxies are also scattered into
the cluster foreground by introducing f scat

src , the fraction of background sources scattered into
the foreground of the cluster. These additional source scatterers intensify the effect of cluster
galaxies scattered into the background twofold: firstly, the number of sources per bin is low-
ered which increases the uncertainty of the weak lensing signal and secondly the last term of
pi

mod(z) modified by the scattered cluster galaxies gets a higher, relative weight. We estimate
f scat
src from an additionally simulated source redshift distribution employing the photometric

redshift estimation algorithm described above but using now luminosity functions from Martí
et al. (2014).

The source redshift distribution has the same functional form as in equation (3.11). We
estimate the number of cluster members in the same radial bin i as

N i
clus = f i

fit N tot
clus(≤ 2 Rvir) , (3.30)

where f i
fit is the fraction of cluster members in the radial bin i, i.e.

f i
fit =

∫ Ri
high

Ri
low

Σ(R)R dR∫ 2 Rvir

0 Σ(R)R dR
. (3.31)

The surface mass distribution Σ(R) is derived from the NFW-profile given in equation (3.5)
(e.g. van der Burg et al. 2014). The number of cluster members is estimated by integrating
the luminosity function up to the absolute magnitude corresponding to the detection limit in
visual apparent magnitude mVIS multiplied with the volume of a cylinder with radius 2 Rvir and
height 4 Rvir. Note that the calculations as presented above are slightly inconsistent with our
approach of effectively fitting within squares enclosing the corresponding annulus. However,
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Figure 3.3: Upper panel: effective lensing efficiencies βeff(z) for the reference source background distri-
bution (black, dashed line; cf. equation 3.11) and for a modified source redshift distribution (red, solid
line; cf. equation 3.29) for a cluster of mass M = 8.76 × 1014 h−1 M� at redshift zl = 0.56 in the fitting
range of the first radial bin, i.e. 0.2 Rvir ≤ r ≤ 1 Rvir. The modified source redshift distribution con-
sists only of elliptical galaxies (i.e. SED type ‘Ell01’). Lower panel: relative difference between both
effective lensing efficiencies.

as can be seen in Fig. 3.4, the bias decreases with increasing radius and thus this approach
does not change our conclusions below.

When we fit masses, we cut and normalize pmod(z) over the range zcut ≤ z ≤ zmax, where
zmax should be formally set to infinity. We use here, however, a high enough redshift beyond
which pmod(z) = 0 ∀z ≥ zmax. The fiducial model to which we compare in the fitting makes
use of the same normalizations in pmod(z), but with the cluster redshift distribution pclus(z) set
to 0.

We compare the effective lensing efficiencies (cf. equation 3.12) derived from these two
distributions over the fitting range of the first radial bin between 0.2 Rvir ≤ r ≤ 1 Rvir in
Fig. 3.3 for a cluster of mass M = 8.76×1014 h−1 M� at redshift z = 0.56. The cluster redshift
distribution is assumed to consist entirely of elliptical galaxies (i.e. SED type ‘Ell01’) in this
case. In the lower panel we show the excess in effective lensing efficiency due to an excess
in the cluster redshift distribution based on misidentified photometric redshift estimates. In
general, applying the foreground cut p(z ≤ zcluster + 0.15) = 0 already removes a large fraction
of cluster members from the source background distribution. However, there still remains a
small fraction of cluster members with wrongly assigned (higher) photometric redshifts which
are then erroneously treated as members of the source redshift distribution. This affects the
lensing efficiency as shown in the lower panel of Fig. 3.3. The modified lensing efficiency then
leads to a bias in a weak lensing based mass derivation. Hence, we study the impact of this
effect by repeating our previous weak lensing analysis by replacing the analytic expression
from equation (3.11) for psrc(z) with pmod(z) for two fiducial clusters with masses of M =

0.88×1014 h−1 M� and M = 8.76×1014 h−1 M� at 11 equidistant redshifts between 0.1875 ≤
zcluster ≤ 0.9375. We always include large-scale structure contributions in the error budget.
Moreover, we consider two radial bins i per cluster, where the first bin spans radii in the range
0.2 Rvir ≤ r ≤ 1 Rvir and the second bin extends from 1 Rvir to 2 Rvir. Typical numbers we find
for the fraction of cluster members within these bins are ≈50 and ≈32 per cent, respectively.
The remainder of cluster galaxies is concentrated in the very centre of the cluster, i.e. between
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∼0 ≤ r ≤ 0.2 Rvir.
The results of this analysis are summarized in Fig. 3.4 and reveal that the impact of cluster

members scattered into the lensing source sample is a minor concern for an individual cluster
as indicated in the upper panels where we show the relative mass bias, b, as a function of
true cluster redshift, zclus. When we compare the relative uncertainties for stacks of galaxy
clusters, σ/

√
N, as obtained in the previous section (cf. Fig. 3.2 and Table 3.1) with the level

of expected relative bias b due to imperfect photometric redshift estimates of cluster members
as shown in the lower panels of Fig. 3.4, we find that the bias is strongly dependent on the
radial bin under consideration, as expected. For the first bin between 0.2 Rvir and 1 Rvir the bias
can be severe for certain combinations of SED type and redshift. In the second bin between
1 Rvir to 2 Rvir the bias is always within the expected statistical uncertainties though for all
SED types and redshifts but it can amount up to 40 per cent of the statistical uncertainties.

The dependence of the bias on the SED type used for the galaxy templates in the derivation
of the photometric redshift estimates is exaggerated for most SED types because we always
consider all members to consist of only one SED type. Galaxies with irregular SED types
show the strongest bias whereas the lowest bias is found for elliptical SED types although it
is then of equal strength as the statistical uncertainties. In real clusters though, the majority of
member galaxies will consist of (red) elliptical galaxies with rising fractions of (blue) spiral
galaxies as a function of increasing cluster redshift (Butcher–Oemler effect, Butcher & Oem-
ler 1984). Hence, the total bias will be dominated by a combination of the individual biases
of these SED types, whereas contributions from irregular galaxies, which create the strongest
bias in our analysis, will be much smaller in reality. Furthermore, a mass estimate derived
over the full fitting range will be less affected by this bias since such an analysis corresponds
to taking the average over both radial bins. The same conclusions will also hold for a mea-
surement of cluster density profiles so that the photometric redshift bias will be negligible in
this case, too.

For high-redshift clusters most of the photometric misidentifications will be scattered to
redshifts in the foreground of the cluster, especially when considering the imposed detection
limits. Thus the ratio of the bias over the statistical uncertainties will flatten towards higher
cluster redshifts (cf. lower panels of Fig. 3.4).

3.3.2 Miscentring bias
The position of the minimum of the cluster potential, its centre, is unknown in general. The
position of the brightest cluster galaxy (BCG) or the centre of the X-ray emission can be used
as a tracer for the cluster centre, but they do not have to coincide with the centre as determined
by weak lensing, especially not in unrelaxed haloes. Hence, we need to consider a distribution
in offsets.

For a two-dimensional offset rs we can calculate the azimuthally averaged convergence
profile κ(r) (Yang et al. 2006):

κ(r|rs) =
1

2π

∫ 2π

0
κNFW

(√
r2 + r2

s + 2rrs cos(θ)
)

dθ , (3.32)

where κNFW is the convergence for a spherically symmetric NFW-profile as given in equa-
tion (3.9).

Based on SDSS-like mock catalogues for the maxBCG BCG finder algorithm, Johnston
et al. (2007) found that the distribution of offsets follows a two-dimensional Gaussian distri-
bution. Although the miscentring in these mock catalogues can only be caused by misidenti-
fications due to the algorithm by construction, we still consider their results to be sufficiently
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Figure 3.4: Upper panels: relative bias b due to imperfect assignment of photometric redshifts of cluster
members which thus contaminate the source redshift distribution as a function of true cluster redshift
zcluster, SED type (i.e. ‘Ell01’ corresponding to elliptical, ‘Sbc01’ and ‘Scd01’ corresponding to spi-
ral, and various ‘Irr’ corresponding to irregular galaxy SED templates), and cluster mass. Panels (a)
and (c) show the lowest and highest mass in the first radial bin, whereas panels (b) and (d) show the
corresponding masses in the second radial bin. Lower panels: comparison of the relative bias b from the
upper panels with the corresponding relative uncertainties derived for a stack of galaxy clusters σ/

√
N

(cf. Fig. 3.2 and Table 3.1) again as a function of cluster redshift, SED type and cluster mass. Note the
different scale of the y-axis between the radial bins.
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Figure 3.5: Reduced shear signals (blue) for a perfectly centred ( f = 1) halo (solid line) of mass M =

8.76×1014 h−1M� and its maximally miscentred ( f = 0) equivalent (dashed line) with σs = 0.42 h−1Mpc
(see text for details). The convergence is shown in red. The vertical dashed lines indicate the region
which we include for fitting in our subsequent analysis (0.2 Rvir ≤ r ≤ 2 Rvir).

good approximations since in practice one would also employ algorithms to determine mis-
centring offsets in samples as large as expected to be found in the Euclid survey. Therefore, we
follow Johnston et al. (2007) by assuming a two-dimensional Gaussian distribution of offsets,

P(rs) =
rs

σ2
s

exp(−0.5(rs/σs)2) , (3.33)

where the effective scale length was typically found to be σs = 0.42 h−1Mpc independent of
cluster richness. The resulting convergence for miscentred clusters is then a convolution of
the above equations which yields

κs(r) =

∫
P(rs) κ(r|rs)drs . (3.34)

From this convolved convergence we can derive the reduced shear gs for a miscentred cluster
and employ the lensing formalism of Section 3.2.3. The total shear signal for a stack of
miscentred clusters must be weighted by the fraction f of correctly centred clusters though,
i.e.

gtot = f g + (1 − f ) gs . (3.35)

In Fig. 3.5 we show both the reduced shear signal and the convergence of a maximally miscen-
tred halo ( f = 0 and σs = 0.42 h−1Mpc) and compare it to the expected signal of a perfectly
centred halo of the same mass. The effect of miscentring is to dilute the shear signal in the
inner regions of the cluster. Hence ignoring this will bias masses low with a dependence on
the innermost radius used while fitting.

Before considering strategies for mitigating the bias, we first examine its size further in
Fig. 3.6a and Fig. 3.6b. Here, the miscentred shear signal is parametrized by the mass of the
halo M and the two miscentring parameters. In Fig. 3.6a we fit a fiducial, centred cluster signal
to the signal of a miscentred halo with a varying fraction of centred haloes (0 ≤ f ≤ 1) for
three fiducial masses in the range 0.87 ≤ M/(1014 h−1M�) ≤ 8.76 (dashed lines). The width of
the miscentring distribution is kept fixed at σs = 0.42 h−1Mpc. Miscentring introduces a bias
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Figure 3.6: (a) Bias in halo mass introduced by miscentring as a function of the fraction of centred
haloes f (for a fixed width σs = 0.42 h−1Mpc of the miscentring distribution) again with (solid lines)
and without (dashed lines) large-scale structure contribution. The bias is shown for halo masses of
M1 = 8.76 × 1013 h−1M� (blue), M2 = 3.50 × 1014 h−1M� (red) and M3 = 8.76 × 1014 h−1M� (black).
(b) Bias in halo mass as a function of the width σs of the miscentring distribution for a fixed fraction
of centred haloes of f = 0.75 again with (solid lines) and without (dashed lines) large-scale structure
contribution for the same halo masses as in (a).

Table 3.3: Requirements on the precision of the fraction of centred haloes f and the relative error ∆σs/σs

of the width σs of the miscentring distribution.

Mtrue (×1014 h−1M�) ∆ fmax

(
∆σs
σs

)
max

(σs = 0.42 h−1Mpc)
(

∆σs
σs

)
max

(σs = 1 h−1Mpc)

0.876 0.0060 0.019 0.032
3.500 0.0171 0.032 0.036
8.763 0.0747 0.088 0.064

Notes. We refer the reader to the text for details on the calculation of these requirements.

in the recovered mass and increases with decreasing fraction of centred haloes f . Furthermore,
the bias is dependent on the fiducial halo mass and increases from high halo masses (of the
order of 1015 h−1M�) to low halo masses (of the order of 1014 h−1M�). The dependence of the
bias on the fiducial halo mass (for fixed σs) is caused by that the dilution of the shear signal
due to miscentring is higher for low-mass haloes. Taking then again large-scale structure into
account increases the mass bias even further (blue, solid lines) because cosmic noise reduces
the relative contribution of large scales to the shear signal.

We repeat these calculations, but this time we keep the fraction of centred haloes fixed at
f = 0.75 and leave the width of the miscentring distribution, σs, free to vary. The results are
shown in Fig. 3.6b for the same fiducial masses. The functional behaviour is this time more
complex, but again it is apparent that including large-scale structure contributions (solid lines)
also increases the bias caused by miscentring.

Thus, the combined effect of large-scale structure and miscentring is to increase the un-
certainties in the determination of the halo mass and to introduce a mass bias (towards lower
masses). By comparing the findings of Fig. 3.6a and Fig. 3.6b to the relative uncertainties on
the cluster mass as provided in Table 3.1, we conclude that for the mass estimate of a single
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cluster the bias due to miscentring is negligible compared to the relative uncertainty σ. For a
stacked signal with statistics such as will be provided by the Euclid survey, this is no longer
the case, since the statistical error σ will be reduced by a factor 1/

√
N (cf. Table 3.1). Hence,

it will be necessary to determine the miscentring parameters f and σs to within a few per cent
in order to derive accurate mass determinations.

In order to quantify this, we calculate upper limits for the precision to within which f and
the relative error on σs must be known such that the bias due to miscentring is smaller than
the 1σ-error in mass (cf. Table 3.1). The upper bound on the precision of f is thus defined as

∆ fmax =
σ
√

N

(
d∆M
d f

)−1

. (3.36)

Furthermore, the upper bound on the relative error ∆σs/σs of the width σs is given as(
∆σs

σs

)
max

=
σ
√

N

(
d∆M
dσs

∣∣∣∣∣
σs

)−1

. (3.37)

The values corresponding to the three fiducial masses Mtrue of Fig. 3.6b including large-scale
structure contributions are provided in Table 3.3.

Next, we explore if these conclusions also hold if we marginalize over the miscentring
parameters expressing our lack of knowledge about them. Note as well, that we still assume
equation (3.33) to hold which in itself is an important assumption in this regard. Hence,
we explore the parameter space by fitting a miscentred shear signal to the shear signal of a
fiducial model with mass M = 8.75 × 1014 h−1M�, f = 1 at redshift z = 0.1875 for different
values of M, σs, and f . All three parameters are varied for 50 different masses in the range
2.03×1014 h−1M� ≤ M ≤ 2.03×1015 h−1M�, 40 different values of σs in the range 0 ≤ σs ≤

2 h−1Mpc, and 20 different values of the fraction of centred haloes in the range 0 ≤ f ≤ 1,
respectively.

For the fitting we adopt again the formalism of Section 3.2.3 always including large-scale
structure contributions. We have repeated these calculations for a second halo with fiducial
mass M = 3.50 × 1014 h−1M� (where we adjust the mass ranges accordingly).

In Fig. 3.7a we compare the marginalized probability distributions assuming flat priors on
σs and f over the ranges indicated above for the two haloes with their perfect fit counterparts
(cf. Fig. 3.1a). The marginalization over f and σs, respectively, introduces a small bias due to
the truncation of the prior on σs at 2 h−1Mpc. However, the assumption of flat priors on both
miscentring parameters is too pessimistic.

Already with current data it is possible, particularly for the most massive clusters, to derive
more realistic priors for the miscentring parameters than flat ones. Based on measurements
of the displacement between the BCG and the maximum of the X-ray radiation from the
intracluster medium from a sample of 53 massive galaxy clusters presented in Bildfell et al.
(2008), we have estimated errors on f and σs by bootstrapping the distribution of measured
off-centre radii. We find ∆ f = 0.04 and ∆σs = 0.01 h−1Mpc independent of the number of
bootstraps once this exceeds ∼1000. Interpreting these errors then as widths of Gaussian priors
on f and σs, respectively, yields qualitatively unbiased mass estimates when marginalizing
over these priors instead of flat priors, as shown in Fig. 3.7b.

In the very near future a mapping of the X-ray sky will be carried out by eROSITA (Mer-
loni et al. 2012) which is also aimed at detecting a large sample (∼105) of galaxy clusters.
This sample can then be used to derive even better priors on the miscentring parameters which
will mitigate the effect of the miscentring bias for Euclid weak-lensing cluster masses en-
tirely. Moreover, the combination of the eROSITA and Euclid cluster surveys will also allow
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Figure 3.7: Comparison of likelihoods for two haloes of masses M = 8.75 × 1014 h−1M� (left) and
M = 3.50 × 1014 h−1M� (right), respectively (blue, dashed lines) and likelihoods for the same mass
haloes but marginalized over miscentring parameters σs and f (red, solid lines) assuming the following
priors for both parameters: (a) flat priors, (b) Gaussian priors. The grey, solid line shows the fiducial
mass for each halo and we always account for large-scale structure contributions in the error budget. All
haloes are at redshift z = 0.1875.

to reduce the uncertainty on the hydrostatic mass bias between X-ray and weak-lensing mass
estimates so far that determining the sum of neutrino masses will be possible with cluster
counts (cf. figure 12 from Planck Collaboration XXIV 2015a).

3.4 Conclusions
We have investigated the level of statistical uncertainties and scrutinized various sources of
systematic errors in the determination of masses for stacks of galaxy clusters employing weak
gravitational lensing. Throughout the analysis we have been focussing on future large area
surveys, in particular the Euclid survey, so that the predominant source of statistical uncer-
tainty, i.e. shape noise, is as small as possible when referring to (large) stacks of galaxy
clusters.

In Section 3.2 we have established the level of expected statistical uncertainties on the
mass of (stacks of) galaxy clusters. We emphasize that contributions of cosmic noise must
be included in realistic statistical uncertainties. However, the level of expected statistical
uncertainties is very low (cf. Table 3.1 and Fig. 3.2). Thus, at this level of expected statistical
precision sources of systematic errors become important which are still negligible compared
to shape noise in current and ongoing surveys. Furthermore, the Euclid survey poses an upper
limit of m < 2× 10−3 (Laureijs et al. 2011) on one of the predominant biases of weak lensing,
i.e. the multiplicative bias m. The other predominant bias, i.e. the additive bias, is negligible
when referring explicitly to stacks of clusters due to the averaging process involved in that
kind of analysis. Hence, we expanded our analysis to other sources of bias instead.

We have addressed one of these additional biases in Section 3.3.1 in which we investi-
gated the effect on the accuracy of lensing masses when accounting for imperfect photometric
redshift assignment to cluster member galaxies. Typically, a small fraction of these will be
scattered to higher redshifts and thus mimic background source galaxies. This leads to a de-
creased weak lensing signal and thus requires the assignment of higher cluster masses during
the fitting. We have shown that this bias is significant, especially for analyses using radii be-
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tween 0.2 Rvir and 1 Rvir. However, even including larger radii out to 2 Rvir will still require
to properly account for this bias in the full analysis and we strongly recommend to study the
impact of this effect further in the context of more detailed simulations.

Another source of systematic error is the effect of miscentring, i.e. the ambiguity in the
choice of an observational cluster centre. In general, a displacement of the observed cluster
centre and the true cluster centre leads again to a dilution of the shear signal and thus to
higher mass estimates. Already with currently available data it is possible though to derive
realistic priors for the miscentring parameters, so that it will be possible to mitigate this bias
entirely even in the case of Euclid when taking complementary missions such as eROSITA
into account.

Finally, we want to emphasize that our analysis of these additional sources of systematic
errors are all based on (simple) analytic models. Eventually, these will have to be reassessed
by extensive numerical simulations in order to derive more realistic bounds and quantitative
estimates. Our analysis, however, is meant to point to the relative importance and order of
magnitude predictions of these systematic errors in order to supply the community with a
guideline for these future simulations.
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4
A direct measurement of

tomographic lensing power spectra
from CFHTLenS

We measure the weak gravitational lensing shear power spectra and their cross-power in
two photometric redshift bins from the Canada–France–Hawaii Telescope Lensing Survey
(CFHTLenS). The measurements are performed directly in multipole space in terms of ad-
justable band powers. For the extraction of the band powers from the data we have imple-
mented and extended a quadratic estimator, a maximum likelihood method that allows us to
readily take into account irregular survey geometries, masks, and varying sampling densities.
We find the 68 per cent credible intervals in the σ8–Ωm plane to be marginally consistent with
results from Planck for a simple five-parameter Λ cold dark matter (ΛCDM) model. For the
projected parameter S 8 ≡ σ8(Ωm/0.3)0.5 we obtain a best-fitting value of S 8 = 0.768+0.045

−0.039.
This constraint is consistent with results from other CFHTLenS studies as well as the Dark
Energy Survey. Our most conservative model, including modifications to the power spectrum
due to baryon feedback and marginalization over photometric redshift errors, yields an upper
limit on the total mass of three degenerate massive neutrinos of Σmν < 4.53 eV at 95 per cent
credibility, while a Bayesian model comparison does not favour any model extension beyond
a simple five-parameter ΛCDM model. Combining the shear likelihood with Planck breaks
the σ8–Ωm degeneracy and yields σ8 = 0.818 ± 0.013 and Ωm = 0.300 ± 0.011 which is fully
consistent with results from Planck alone.

F. Köhlinger, M. Viola, W. Valkenburg, B. Joachimi, H. Hoekstra and K. Kuijken
2016, MNRAS, Volume 456, Issue 2, pp 1508–1527
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4.1 Introduction
The physical nature of the major components of current cosmological models is still unknown.
Nevertheless, a simple six-parameter model including dark matter and dark energy – the Λ-
dominated cold dark matter model (ΛCDM) – has been proven very successful in explaining
a multitude of cosmological observations ranging from the radiation of the cosmic microwave
background (CMB, e.g. Planck Collaboration XIII 2015a) to supernovae (e.g. Riess et al.
2011) and large-scale structure (LSS) probes (e.g. Aubourg et al. 2014).

The energy densities of dark matter and dark energy, at present, are very well constrained
by the aforementioned observations. The next frontier is pinning down the evolution of both
dark species, and observing effects from massive neutrinos. One promising probe is the
growth of structure as inferred from cosmic shear: the (very) weak-lensing effect due to cos-
mic large-scale structure bending the light perpendicular to the line-of-sight between observer
and background galaxies according to Einstein’s equivalence principle. The coherent image
distortions – the shear – due to the gravitational potential of a deflector can only be measured
statistically, which requires averaging over large numbers of sources. Therefore, wide-field
surveys covering increasingly larger volumes on the sky are required in order to improve the
precision of the measurements. An analysis of the weak-lensing signal as a function of red-
shift is sensitive to the growth of structure, and is thereby indirectly sensitive to the expansion
rate of the Universe as well as to the clustering behaviour of various matter species: massive
neutrinos, dark energy, cold dark matter, etc.

In order to constrain the dark energy equation-of-state and its possible time evolution it is
hence crucial to measure the cosmic shear signal in different redshift slices (Heymans et al.
2013; Benjamin et al. 2013; DES Collaboration 2015) or directly in 3D (Kitching et al. 2014).

Massive neutrinos also leave their distinct physical imprints on the matter power spectrum
and hence can be probed using weak lensing (e.g. Lesgourgues & Pastor 2006 and references
therein). Theoretically it is straightforward to study these features directly in Fourier space,
i.e. in terms of shear–shear power spectra. Traditionally, lensing analyses employ real-space
correlation functions for measuring cosmic shear. This introduces further complications in
the comparison of observations with theory (cf. section 4.3.2 of Planck Collaboration XIV
2015b), because different scales are highly correlated. Hence, the signal at very non-linear
scales requires proper modelling in order to avoid any bias in the cosmological parameters.
This is generally challenging due to our limited understanding of the effect of baryons on
the non-linear matter power spectrum (e.g. Semboloni et al. 2011, 2013). Therefore, in this
paper we apply a method for extracting the data in multipole space and in different redshift
bins in terms of band powers of the lensing power spectrum. In order to achieve this we
have implemented and expanded the quadratic estimator method originally formulated in the
context of weak lensing by Hu & White (2001). The first applications of this technique to
measured shear data were presented in Brown et al. (2003) and Heymans et al. (2005) using
the COMBO-17 and GEMS data sets, respectively. More recently, Lin et al. (2012) applied
the quadratic estimator technique to shear data measured from the Sloan Digital Sky Survey
(SDSS) Stripe 82. Other recent direct shear power spectrum analyses include the Dark En-
ergy Survey (DES; Becker et al. 2015) analysis and the SDSS-FIRST cross-power spectrum
analysis of Demetroullas & Brown (2015). All these studies did not split the power spectrum
analysis into redshift bins yet and the latter two studies employed a pseudo-C(`) power spec-
trum approach, the other major technique for direct power spectrum measurements. Alsing
et al. (2015) recently presented a hierarchical inference method that also makes direct use of
the shear power spectrum.

In this paper we apply our expanded tomographic version of the quadratic estimator to
publicly available data from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS;
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Heymans et al. 2012). CFHTLenS is currently the statistically most constraining weak lensing
data set and covers an area of about 154 deg2 on the sky. The data include also photometric
redshifts which thus allow us to carry out a tomographic analysis. As a further benefit to
the state-of-the-art data, CFHTLenS has already been used before in cosmological analyses
(Heymans et al. 2013; Benjamin et al. 2013; Kilbinger et al. 2013; Kitching et al. 2014) which
enables us to directly cross-check our results with the literature.

The paper is structured as follows: in Section 4.2 we introduce the weak-lensing formalism
in terms of power spectra. In Section 4.3 we describe the theory of the quadratic estimator
approach and generalize it to include tomography. Section 4.4 provides a brief overview of
the CFHTLenS data and how to perform shear measurements with it. Before presenting the
extracted lensing power spectra in Section 4.6, we test and validate the method on mock data
in Section 4.5. From the shear power spectra we derive cosmological parameters and discuss
our results in Section 4.7. Finally we present our conclusions in Section 4.8.

4.2 Theory
The deflection of light due to mass is a consequence of Einstein’s principle of equivalence and
is termed gravitational lensing. One particular case of gravitational lensing is weak lensing,
the very weak but coherent image distortions of background sources due to the gradients of
the gravitational potential of a deflector in the foreground.

These image distortions can only be measured in a statistical sense, given the fact that
galaxies are intrinsically elliptical, by averaging over large numbers of background sources.
The resulting correlations in the galaxy shapes can be used to study the evolution of all the
intervening large-scale structure between the sources and the observer, in that sense the whole
Universe acts as a lens. This particular form of weak lensing is called cosmic shear and studied
best in terms of wide-field surveys covering increasingly more volume in the sky (cf. Kilbinger
2015 for a recent review). We intentionally skip a more basic, mathematical introduction of
gravitational lensing and weak lensing in particular and refer the reader for details on that to
the standard literature (e.g. Bartelmann & Schneider 2001).

A wide-field observation of the sky as part of a weak-lensing survey yields two main
observables: the ellipticity of galaxies and their (photometric) redshifts. The estimates of the
ellipticity components e1, e2 at angular positions ni can be binned into pixels i = 1, ..., Npix

and (photometric) redshift bins zµ. The averages of the measured ellipticities in each pixel are
unbiased estimates of the two components of the spin-2 shear field, γ1(n, zµ) and γ2(n, zµ),
which is sourced by the convergence field κ. In the limit of the flat-sky approximation the
Fourier decomposition of this field can be expressed as

γ1(n, zµ) ± iγ2(n, zµ) =

∫
d2`

(2π)2

[
κ(`, zµ) ± iβ(`, zµ)

]
W(`)e±2iϕ`ei`·n , (4.1)

where ϕ` is the angle between the two-dimensional vector ` and the x-axis. To first order for
the lensing of density perturbations the field β vanishes in the absence of any systematics.
However, we still want to measure it as a systematic test and therefore include it in our nota-
tion. The Fourier transform of the pixel window function is denoted as W(`). This function
can explicitly be written out for square pixels of side length σpix in radians as

W(`) = j0

(
`xσpix

2
cosϕ`

)
j0

(
`yσpix

2
sinϕ`

)
, (4.2)

where the zeroth-order spherical Bessel function is defined as j0(x) = sin(x)/x.
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The two-point statistics of the shear field can either be expressed in real-space correlation
functions or equivalently in terms of their Fourier transforms, the shear power spectra.

Following Hu & White (2001) and expanding the notation to also include tomographic
bins we write out the shear correlations between pixels ni and nj in terms of their power
spectra as:

〈γ1iµγ1 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) cos2 2ϕ` + CBB

µν (`) sin2 2ϕ` −CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ2iµγ2 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) sin2 2ϕ` + CBB

µν (`) cos2 2ϕ` + CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ1iµγ2 jν〉 =

∫
d2`

(2π)2

[
1
2 (CEE

µν (`) −CBB
µν (`)) sin 4ϕ` + CEB

µν (`) cos 4ϕ`
]

W2(`)ei`·(ni−nj) , (4.3)

where we have suppressed the arguments of the shear components γa(ni, zµ) for clarity.
In the absence of systematic errors and shape noise the cosmological signal is contained

in the E-modes and their power spectrum is equivalent to the convergence power spectrum,
i.e. CEE(`) = Cκκ(`) and CBB(`) = 0 = CEB(`). Shot noise will generate equal power in E- and
B-modes.

The E-mode or convergence power spectra can be predicted for a given cosmological
model:

CEE
µν (`) =

9Ω2
mH4

0

4c4

∫ χH

0
dχ

gµ(χ)gν(χ)
a2(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (4.4)

where χ is the radial comoving distance, χH the distance to the horizon, a(χ) the scale factor,
Pδ(k; χ) is the three-dimensional matter power spectrum, and the angular diameter distance is
denoted as fK(χ). Note that we use the Limber approximation (Limber 1954) in the equation
above and the indices µ, ν run over the tomographic bins.

The lensing kernels gµ(χ) are a measure for the lensing efficiency in each tomographic bin
µ and can be written as

gµ(χ) =

∫ χH

χ

dχ′ nµ(χ′)
fK(χ′ − χ)

fK(χ′)
, (4.5)

where nµ(χ) dχ = pµ(z) dz is the source redshift distribution.

4.3 Quadratic estimator
We summarize here the method originally proposed by Hu & White (2001) but make also
extensive use of the summary provided by Lin et al. (2012). Furthermore, we generalize the
approach to include tomographic redshift bins.

We start by assuming that the likelihood of the measured shear field in terms of band
powers B is Gaussian over most scales of interest for our analysis, i.e.

L =
1

(2π)N |C(B)|1/2
exp

[
− 1

2 dT[C(B)]−1d
]
, (4.6)

where d denotes the data vector with components

dµai = γa(ni, zµ) . (4.7)

It contains the two components of the measured shear in each pixel ni per redshift bin zµ
(note that the indices are all interchangeable as long as the order is consistent throughout the
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algorithm below). The full covariance matrix C is the sum of the cosmological signal Csig and
the noise Cnoise. The latter includes the contribution from shape and measurement errors. We
use the set of equations (4.3) to build up the lensing signal correlation matrix, where we label
the shear components with indices a, b, pixels with indices i, j, and redshift bins with indices
µ, ν:

Csig
= 〈γa(ni, zµ)γb(nj, zν)〉 . (4.8)

Furthermore, the contribution of shape noise to the signals can be encoded in the matrix

Cnoise
=
σ2
γ

Niµ
δi jδabδµν , (4.9)

where σγ denotes the root-mean-square intrinsic ellipticity per ellipticity component for all
the galaxies and Niµ is the effective number of galaxies per pixel i in redshift bin zµ.1 Thus we
assume that shape noise is neither correlated between different pixels ni, nj, and shear com-
ponents γa, γb, nor between different redshift bins zµ, zν. This is a well-motivated assumption
as long as the pixel noise of the detector is uncorrelated.

We approximate the angular power spectra Cθ
µν(`) with piecewise constant band powers

Bζθβ(`) of type θ ∈ (EE,BB,EB) spanning a range of multipoles `within the band β. The index
ζ runs only over unique redshift bin correlations. This enables us to write the components of
the cosmic signal covariance matrix as a linear combination of these band powers:

Csig
(µν)(ab)(i j) =

∑
ζ,θ,β

BζθβMζ(µν)

∫
`∈β

d`
2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
. (4.10)

The term in brackets in the above equation encodes the geometry of the shear field including
masks and its decomposition in Fourier space. The matrices Mζ map the redshift bin indices
µ, ν to the unique correlations ζ possible between those: for nz redshift bins there are only
nz(nz + 1)/2 unique correlations because zµ × zν = zν × zµ. The explicit expressions for these
matrices and the matrices Iθ and Qθ are given in Appendix 4.A.

The best-fitting band powers Bζθβ are determined by finding the cosmic signal Csig which
describes the measured shear data the best. For that purpose we use the Newton–Raphson
method iteratively in order to find the root of dL/dBA = 0 (Bond et al. 1998; Seljak 1998).
An improved estimate for the band powers BA is found by evaluating the expression

δBA ∝
∑

B

1
2 (F−1)AB Tr[(ddT

− C)(C−1DAC−1)] , (4.11)

where we have introduced now the superindex A for a particular index combination (ζθβ).
The matrices DA are derivatives of the full covariance matrix with respect to any band-power
combination. We skip here a rigorous definition of DA and refer the reader to Appendix 4.A
for derivations of these expressions. The elements of the Fisher matrix F can be calculated as
(Hu & White 2001)

FAB = 1
2 Tr(C−1DAC−1DB) . (4.12)

In previous work (cf. Hu & White 2001; Lin et al. 2012), the inverse of the Fisher matrix
was used as an estimator of the covariance between the extracted band powers. We refrain
from following this approach since the inverse Fisher matrix is only an approximation of the
true covariance in the Gaussian limit. Hence, we decided to estimate the covariance of the

1The effective number of galaxies per pixel can be calculated using equation (4.17) multiplied by the area of the
pixel Ω.
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band powers from mock data instead. We present a detailed discussion of this approach in
Section 4.5.2.

For the comparison of the measured band powers to theoretical predictions, we have to
take into account that each measured band power BA = Bζθβ samples the power spectra with
its own window function. This can be computed by noting that the expectation value of the
band power, 〈Bζθβ〉, is related to the power spectrum at each wave number Bζθ(`) = `(` +

1)Cζθ(`)/(2π) through the band power window function Wζθβ(`) (Knox 1999; Lin et al. 2012),
i.e.

〈Bζθβ〉 =
∑
`

Wζθβ(`)Bζθ(`) , (4.13)

where the sum is calculated for integer multipoles `.2 The elements of the window function
matrix can be derived as (Lin et al. 2012)

Wζθβ(`) =
∑
χ,η,λ

1
2 (F−1)(ζθβ)(χηλ)Tχηλ(`) , (4.14)

where F−1 denotes the inverse of the Fisher matrix (cf. equation 4.12). The trace matrix T is
defined as

Tζθβ(`) = Tr(C−1DζθβC−1D`) . (4.15)

The derivative D` denotes the derivative of the full covariance C with respect to the power at
a single multipole `. We write it out explicitly in Appendix 4.A (cf. equation 4.46).

The likelihood-based quadratic estimator automatically accounts for any irregularity in
the survey geometry or data sampling while it still maintains an optimal weighting of the data.
This is important when dealing with real data because it allows for employing sparse sampling
techniques and it can deal efficiently with (heavily) masked data. The whole method and in
particular its ability to deal with masks are tested extensively in Section 4.5 before we apply
it to data from CFHTLenS in Section 4.6.

4.4 CFHTLenS measurements
In the following analysis we use the publicly available data3 from the lensing analysis of the
Canada–France–Hawaii Legacy Survey, hereafter referred to as CFHTLenS (Heymans et al.
2012). The survey consists of four patches (W1, W2, W3, W4) covering a total area of
≈154 deg2. Due to stellar haloes or artifacts in the images 19 per cent of the area is masked.
The lensing data we use in this work are a combination of data processing with THELI (Erben
et al. 2013), shear measurements with lensfit (Miller et al. 2013), and photometric redshift
measurements with PSF-matched photometry (Hildebrandt et al. 2012). A full systematic
error analysis of the shear measurements in combination with the photometric redshifts is
presented in Heymans et al. (2012), with additional error analyses of the photometric redshift
measurements presented in Benjamin et al. (2013). One of the main results of those extensive
systematic tests was the rejection of 25 per cent of the CFHTLenS tiles (1 deg2 each) for
cosmic shear studies. In this work we only use the 75 per cent of the tiles which passed
the systematic tests as outlined in Heymans et al. (2012). Note that this causes considerable
large-scale masking in each patch.

2For the cosmological analysis we employ a range 80 ≤ ` ≤ 2600. The lower limit is set by the smallest multipole
` included in the analysis and the upper limit must include multipoles ` higher than the maximum ` used in the
analysis (cf. Section 4.4).

3http://www.cfhtlens.org/astronomers/data-store

http://www.cfhtlens.org/astronomers/data-store
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Photometric redshift measurements have also been extensively tested (Hildebrandt et al.
2012; Benjamin et al. 2013) and they were found reliable in the range 0.1 < ZB < 1.3, where
ZB is the peak of the photometric redshift posterior distribution as computed by BPZ (Benítez
2000). In our analysis we only use galaxies in this redshift range.

We compile all tiles associated to a particular CFHTLenS patch into a single shear cat-
alogue. Coordinates in these catalogues are given in right ascension α and declination δ of
a spherical coordinate system. We deproject these spherical coordinates into flat coordinates
via a tangential plane projection. We centre the projection, its tangent point, on the central
pointing of each patch. In order to measure shears from the ellipticity components e1, e2
as measured by lensfit, we first divide the deprojected patch into square pixels of side length
σpix. We estimate the shear components ga per pixel at position n = (xc, yc) from the ellipticity
components ea inside that pixel:

ga(xc, yc) =

∑
i wi(ea,i − ca,i)

(1 + m)
∑

i wi
, (4.16)

where the index i runs over all objects inside the pixel and the index a is either 1 or 2 for
the two shear and ellipticity components, respectively. The weights w are computed during
the shape measurement with lensfit and they account both for the intrinsic shape noise and
measurement errors. The subscript of the coordinates indicates that the position of the average
shear is taken to be at the centre of the pixel. Note that we assume the galaxies are distributed
uniformly in the shear pixels. Although this is a simplifying assumption we argue that it has
only minor effects in the measurement considering the general width of the band powers. We
define distances ri j = |ni − nj| and angles ϕ = arctan (∆y/∆x) between all pixels i, j which
enter eventually in the quadratic estimator algorithm (cf. Section 4.3 and Appendix 4.A).

In each pixel we apply an average multiplicative correction (1 + m) to the measured shear.
This is necessary because of noise bias in shear measurements (Melchior & Viola 2012; Re-
fregier et al. 2012; Miller et al. 2013). The multiplicative correction has been computed from
a dedicated suite of image simulation mimicking CFHTLenS data (Miller et al. 2013). More-
over, we apply to each measured ellipticity an additive correction ca which is computed from
all the pass-tiles by requiring that the average ellipticity must vanish across the survey as a
function of galaxy size and signal-to-noise (Heymans et al. 2012). For CFHTLenS c1 was
found to be zero but for c2 a correction per object has to be applied (Heymans et al. 2012).

The highest multipole `pix up to which we want to extract band powers employing the
quadratic estimator method (cf. Section 4.3) is on the one hand set by the scales we want to
investigate because of expected modifications due to baryon feedback or massive neutrinos
(cf. Section 4.7.1). On the other hand the simplifying assumptions of the algorithm such as
Gaussianity also limit the maximum `pix. Hence, we only probe into the mildly non-linear
regime and consider a multipole `pix ≈ 2400 as the maximal physical scale resolved. This
corresponds to an angular scale of 0.◦15 = 9 arcmin and thus sets the pixel size σpix. We keep
parameters fixed throughout all CFHTLenS patches such as the side length of the shear pixels,
σpix, measured intrinsic shape noise per ellipticity component, σγ = 0.279, and band power
intervals. Because the sizes of the CFHTLenS patches are very different, the largest distance
between shear pixels differs. Therefore, we limit our analysis to `field ≥ 80 (corresponding
to an angular separation of pixels of about ∼4.◦5), but note that even lower multipoles suffer
from more sample variance. In summary, the physical scales for our analysis are 80 ≤ ` ≤
2300, which corresponds to angular scales 0.◦15 ≤ ϑ ≤ 4.◦5. In total, we choose seven band-
power intervals enclosing these physical scales as shown in Table 4.1 for the E-mode signal
extraction. The width of each band should at least be two times as wide as `field in order to
minimize correlations between the bands (Hu & White 2001). The band powers for the B-
mode signal extraction are the same except that we omit the lowest band power. Note that the
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Table 4.1: Band-power intervals.

Band No. `-range ϑ-range Comments

1 30–80 720–270 arcmin (a), (b)
2 80–260 270–83 arcmin –
3 260–450 83–48 arcmin –
4 450–670 48–32 arcmin –
5 670–1310 32–16.5 arcmin –
6 1310–2300 16.5–9.4 arcmin (a)
7 2300–5100 9.4–4.2 arcmin (a)

Notes. (a) Not used in cosmological analysis. (b) No B-mode extracted.
The ϑ-ranges are just an indication and cannot be compared directly to ϑ-ranges used in real-
space correlation function analyses due to the non-trivial functional dependence of these anal-
yses on Bessel functions.

Table 4.2: Effective number densities.

redshift bin W1 W2 W3 W4

z1: 0.50 < ZB ≤ 0.85 3.36 2.80 3.48 3.25
z2: 0.85 < ZB ≤ 1.30 2.86 2.00 2.63 2.22

Notes. Shown is the effective number density of galaxies neff (cf. equation 4.17) in arcmin−2

for all four CFHTLenS patches per tomographic redshift bin used in this analysis.

first band power includes scales below `field intentionally in order to absorb any DC offsets in
the data. The last band should include multipoles above `pix, because the window function of
square pixels has a long tail to high multipoles. In that sense the enclosing bands are designed
to catch noise and therefore they are dropped in the cosmological analysis. We compute the
effective number density of galaxies that is used in the lensing analysis and in the creation of
mock data (cf. Section 4.5) following the definition of Heymans et al. (2012):

neff =
1
Ω

(
∑

i wi)2∑
i w2

i

, (4.17)

where Ω is the unmasked area used in the analysis and w is again the lensfit weight. We show
all effective number densities per patch and redshift bin in Table 4.2.

Following the conclusions from Benjamin et al. (2013) regarding intrinsic galaxy align-
ments, which we discuss in more detail in Section 4.6, we define two redshift bins z1 and z2
in the ranges z1 : 0.50 < ZB ≤ 0.85 and z2 : 0.85 < ZB ≤ 1.30. These cuts are performed
with respect to the peak of each galaxy’s photometric redshift distribution ZB. For each of the
two tomographic bins we compute the galaxy redshift distribution by summing the posterior
photometric redshift distribution of all galaxies in the bin, weighted by the lensfit weight:

p(z) =

∑
i wi pi(z)∑

i wi
. (4.18)
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Table 4.3: Fiducial cosmology of the CFHTLenS Clone and the GRFs.

Ωm ΩΛ Ωb h ns σ8 Σmν

0.279 0.721 0.046 0.701 0.96 0.817 0 eV

Notes. Cosmological parameters used in the creation of the CFHTLenS Clone (Heymans et al.
2012) which were also used to create the Gaussian random field (GRF) realizations.

The full galaxy redshift distribution is required in the calculation of the theoretical lensing
power spectrum (cf. equation 4.5) and it is also needed in the creation of additional mock data
(cf. Section 4.5).

4.5 Method validation and covariances
In order to test and validate the algorithm outlined in Section 4.3 we employ two types of mock
data: first we make use of the publicly available CFHTLenS Clone4 (Heymans et al. 2012)
and second we use Gaussian random fields (GRFs). This twofold approach is necessary since
the multipole scales we employ in the cosmological analysis of Section 4.7 are not covered in
the CFHTLenS Clone.

The CFHTLenS Clone is a mock galaxy catalogue that consists of 184 independent line-
of-sight shear (and convergence) maps with a side length of ≈3.◦58. These were extracted
via ray-tracing through the TCS simulation suite (Harnois-Déraps et al. 2012) which was
produced with the CUBEP3M N-body code (Harnois-Déraps et al. 2013). The CFHTLenS Clone
is especially tailored to CFHTLenS in terms of the redshift distribution of lensing sources
and the noise properties including, for example, realistic small scale masks (due to stars etc.).
In addition to these small scale masks, we randomly mask out three non-overlapping tiles of
≈1 deg2 each per shear field in order to mimic the effect of the additional ‘bad field’ masks
also employed in the data. These mask typically 25 per cent of the total area of a patch (cf.
Section 4.4 and Heymans et al. 2012) and their distribution over a patch does not show any
systematic preferences. The input cosmology used in the creation of the CFHTLenS Clone
is WMAP5-like (Komatsu et al. 2009) and summarized in Table 4.3. Eventually, we want to
extract scales on the order of several degrees from the data. Kilbinger et al. (2013) showed,
however, that the power on large scales is significantly underestimated in the CFHTLenS
Clone.

In order to also validate the signal extraction on large scales, we created 184 Gaussian
random field realizations (GRFs) of shear fields in two tomographic bins. The fields are
20 × 20 deg2 each and generated from convergence power spectra that have been computed
for the same cosmology as the clone, using the measured redshift distributions of our two
tomographic bins and the modified HALOFIT version of Takahashi et al. (2012) for the non-
linear contributions to the matter power spectrum. Source galaxies are placed randomly in
the fields with an arbitrary but high enough density of 10 arcmin−2 per tomographic bin, and
the shears are linearly interpolated to these positions. We apply the mosaic masks of each
CFHTLenS patch to all GRF realizations in turn, and also apply the patch-specific ’bad field’
mask pattern masking about 25 per cent of the total area of a CFHTLenS patch. When we
compile the actual input mock catalogues from the GRF shear fields, we also add shape noise

4http://vn90.phas.ubc.ca/jharno/CFHT_Mock_Public/

http://vn90.phas.ubc.ca/jharno/CFHT_Mock_Public/
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Figure 4.1: Residuals between the mean of measured E-mode band powers and predicted band powers
for 184 Gaussian random field realizations of patch W3. The 1σ-error on the mean includes the scaling
by 1/

√
N for N = 184 measurements. The predicted band powers use the known input cosmology (cf.

Table 4.3) and take the convolution with the band window function into account. The residuals of each
redshift correlation are shown from left to right.

by resampling the GRF shear from a Rayleigh distribution with width σγ = 0.279 as measured
from the data. Furthermore, we randomly sample lensfit weights from the corresponding
tomographic data catalogues such that the effective number densities (cf. equation 4.17) in
the GRF mock catalogues match the ones in the data (cf. Table 4.2).

The (inverse) Fisher matrices calculated in the quadratic estimator algorithm (cf. Sec-
tion 4.3) are only an approximation of the true (inverse) covariance of the extracted band
powers in the Gaussian limit. In the context of a cosmological interpretation of the band
powers, however, additional non-Gaussian contributions due to the non-linear evolution of the
underlying matter power spectrum are expected (cf. Takada & Jain 2009). Hence, we will use
our mock data also for estimating a more realistic band-power covariance matrix.

4.5.1 Signal extraction validation

The input cosmology is known for the GRFs and the Clone, and we apply a realistic CFHTLenS
mask to both sets of mock data. We extract the lensing power spectrum using the quadratic es-
timator from the GRFs and the Clone and compare it to the input power spectrum. In Fig. 4.1
we show the residuals between the mean of the extracted band powers and the predicted band
powers for the input cosmology for patch W3. The 1σ-errors on the mean include the scaling
by 1/

√
N for N = 184 GRFs for each tomographic bin correlation. The binning in multipoles

` is the same as the one we employ in the final data extraction (cf. Section 4.4 and Table 4.1).
Note that for this test we only extracted E-modes. For the calculation of the band-power
predictions we take the convolution with the band window matrices (cf. equation 4.14) into
account but these are computed for only one randomly drawn realization of a GRF. This is due
to long run-time and we have confirmed for patch W2 that the randomly drawn band window
matrix is a fair representation of the ensemble (since the noise properties of all GRFs are very
similar). Fig. 4.1 demonstrates that the quadratic estimator algorithm reproduces the input
signal to sufficient accuracy and precision, especially given the actual noise level of the data
(cf. Fig. 4.4).
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4.5.2 Band-power covariance
The extracted band powers for each of the 184 shear fields from the Clone or 184 GRFs per
patch can be used to estimate the run-to-run covariance of the band powers:

ĈB(`)(A, B) =
1

Ascale(nµ − 1)

nµ∑
µ

(BµA − B̄A)(BµB − B̄B) , (4.19)

where nµ is the total number of independent realizations per patch, B̄ is the mean of each band
power per band over all realizations, Bµ are the extracted band powers per realization, and
Ascale is the scaling factor between each line-of-sight clone realization and the actual size of a
CFHTLenS patch.5 The indices A and B denote again the previously introduced superindices
and run over all bands and redshift correlations.

In order to combine the small-scale covariance estimated from the Clone and the large-
scale covariance based on the GRFs, we stitch both matrices together per patch by using the
GRF covariance and then replacing all values associated with a band index for which we want
to use the Clone covariance. Based on the extensive analysis of the Clone and the estimation
of covariances from it in Kilbinger et al. (2013), we decide to use values from the Clone
covariance for multipoles ` ≥ 670 which corresponds to bands 5, 6, and 7 (cf. Table 4.1).
Note that bands 7, 6, and 1 are not included in any cosmological data analysis though (cf.
Section 4.7 and Table 4.1).

Due to noise the measured inverse covariance Ĉ
−1
B(`) is not an unbiased estimate of the true

inverse covariance matrix C−1
B(`) (Hartlap et al. 2007). In order to derive an unbiased estimate

of the inverse covariance we need to apply a correction derived in Kaufmann (1967) so that
C−1
B(`) = αKĈ

−1
B(`). Assuming a Gaussian distribution of the measured band powers B(`), this

correction factor is:

αK =
nµ − p − 2

nµ − 1
, (4.20)

where nµ is the total number of independent mocks, i.e. 184 in our case, and p is the number
of data points used in the analysis. In Section 4.7 we combine the data of all four CFHTLenS
patches consisting of four band powers in three tomographic power spectra per patch, thus
p = 12 for each ‘patch covariance’.

We compare the correlation matrix derived from the stitched covariance matrix with the
correlation matrix based on the inverse Fisher matrix which is calculated in the quadratic
estimator algorithm (cf. equation 4.12) in Fig. 4.2 for patch W3. The correlation matrices are
calculated by normalizing the corresponding covariance matrix with the factor (MAA MBB)−1/2,
with MAB = CB(`)(A, B) or MAB = F−1

AB. We only include E-mode bands employed later in the
cosmological analysis in this comparison and find that the matrix structure in both approaches
is very similar albeit with the correlation based on the Fisher estimate being smoother, as
expected. Finally, we compare both approaches in terms of their variance as shown in Fig. 4.3
for each patch individually again only for E-modes used in the cosmological analysis. From
this comparison we conclude that given the noise level in our data the Fisher approach still
yields compatible error estimates. Nevertheless, we decide to use the stitched covariance
for our subsequent analysis. This is also motivated by the fact that future surveys will yield
significantly improved statistical noise levels and thus require a proper covariance estimation
beyond the Fisher approach.

5Note that Ascale = 1 in the case of GRFs by construction. For the clones we follow (Kilbinger et al. 2013) by
matching 90 per cent (due to overlapping area between the tiles) of 16 CFHTLenS tiles (minus three due to the ‘bad
field’ masking also employed in the clones) into one clone field. The ratio of this number over the number of used
tiles in one patch (i.e. excluding the ‘bad fields’) is then 1/Ascale.
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Figure 4.2: Comparison of correlation matrices for CFHTLenS patch W3: the stitched correlation matrix
(upper right) is compared to the correlation matrix based on the inverse of the Fisher matrix (lower
left; cf. equation 4.12). We show only tomographic E-mode bins that enter in the final cosmological
likelihood analysis, i.e. bins 0–3 correspond to 80 ≤ ` ≤ 1310 in the low-redshift auto-correlation bin,
bins 4–7 correspond to the same `-range in the redshift cross-correlation bin, and bins 8–11 correspond
to the high-redshift auto-correlation bin (cf. Tables 4.1 and 4.2).
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4.5.3 Computing resources

We want to comment on the computational requirements for our tomographic quadratic esti-
mator approach: the generalization of the method to include tomographic redshift bins is com-
putationally demanding. The dimension of the covariance matrix defined in equation (4.8) is
set by the size of the shear field (times two for the two shear components) and the pixel scale.
Introducing also two redshift bins increases the number of entries in this matrix by a factor of
4. While this is still efficiently calculated in parallel for smaller patches like W2 (≈22.6 deg2)
and W4 (≈23.3 deg2), it becomes demanding for patches W3 and W1 (e.g. dim(CW2) = 30762

versus dim(CW1) = 93402) even when exploiting multiprocessing and optimized libraries such
as the Intel c© Math Kernel Library (MKL6). Nevertheless, the data extraction including the cal-
culation of the band window matrices takes at most a day on typical cluster machines.7 The
computationally most demanding part in our current analysis, however, is the estimation of the
covariance between the band powers. This required 184 runs on clones and 184 runs per GRF
realization per patch. The total runtime for these calculations was on the order of a month on
the same cluster configuration for one set of 184 realizations.

Ongoing and upcoming weak-lensing surveys come with the advantage of at least an or-
der of magnitude increase in survey area compared to CFHTLenS and more regular survey
geometries. Therefore, it will be possible to split these surveys into a statistically meaningful
number of patches still containing scales up to several degrees. This will allow for estimating
the patch-to-patch covariance directly from the data via resampling techniques as an alterna-
tive to estimating it from mock data alone. However, this approach limits the lowest multipole
scale to the patch-size and the run-to-run covariance will be underestimated at scales close
to the patch-size. Finally, the rapid advance in terms of number of cores, clock speed, and
internal memory of graphics processing units (GPUs) presents a solution to the increase in
complexity when extending our approach to more redshift bins, and/or more band powers,
and/or larger contiguous patch sizes. The advantage of GPUs lies in their customized design
to solve linear algebra problems very efficiently and massively in parallel which meets exactly
the requirements of the tomographic quadratic estimator approach. We leave an update and
porting to GPU programming languages for future work.

4.6 The CFHTLenS shear power spectrum

For each of the four CFHTLenS patches we extract seven E-mode and six B-mode band pow-
ers enclosing an interval of physically interesting scales of 80 ≤ ` ≤ 2300 (cf. Section 4.4
and Table 4.1). Moreover, we consider two broad mid- to high-redshift bins (cf. Table 4.2)
per CFHTLenS patch in order to perform a tomographic analysis following Benjamin et al.
(2013). Doing so, we attempt to decrease the expected contamination due to intrinsic galaxy
alignments which is dominant at low redshifts and high multipoles `. Benjamin et al. (2013)
concluded that any contamination due to intrinsic alignments is at most a few per cent for
each redshift bin combination. We cross-check this conclusion with state-of-the-art intrinsic
alignment models constrained by recent data from Sifón et al. (2015). For the three intrinsic
alignment models8 employed in there we do not find a significant contribution of intrinsic
alignments to the cosmological signal in any of the redshift bin correlations and `-scales em-
ployed in our subsequent cosmological analysis. Based on these results intrinsic alignments

6Version number 11.0.4
724 cores @2.4 GHz, 256 GB RAM
8These models include intrinsic alignment due to intrinsic ellipticity correlations, i.e. II, and also intrinsic align-

ment due to a gravitational shear–intrinsic ellipticity correlation, i.e. GI.
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Figure 4.4: Measured E-mode band powers in tomographic bins averaged with inverse variance weights
over all four CFHTLenS patches for illustrative purposes only. From left to right we show the auto-
correlation signal of the low-redshift bin (blue), the cross-correlation signal between the low- and the
high-redshift bin (orange), and the auto-correlation signal of the high-redshift bin (red). The low-redshift
bin contains objects with redshifts in the range 0.5 < z1 ≤ 0.85 and the high-redshift bin covers a
range 0.85 < z2 ≤ 1.3. The 1σ-errors in the signal are derived from a run-to-run covariance over 184
independent mock data fields (cf. Section 4.5.2) whereas the extent in `-direction is the width of the
band. Band powers in the shaded regions (grey) to the left and right of each panel are excluded from the
cosmological analysis (cf. Fig. 4.5). The solid line (black) shows the power spectrum for the best-fitting
five-parameter ΛCDM model derived in the subsequent analysis (cf. Section 4.7 and Table 4.4). Note,
however, that the band powers are centred at the naive `-bin centre and thus the convolution with the
band window function is not taken into account in this plot, in contrast to the cosmological analysis. We
present the E-mode signal for each individual CFHTLenS patch in Appendix 4.B.

will be ignored in the modelling of the signal in our subsequent analysis.
In Fig. 4.4 we show the extracted E-mode band powers for each tomographic bin. For

illustrative purposes we combine the band powers extracted from each patch by averaging
them with inverse variance weights. The errors on the signal are estimated from the stitched
covariance matrix (cf. Section 4.5.2) whereas the extension of the box in `-direction is just the
width of the band. Only bands outside the (grey) shaded areas enter in the cosmological anal-
ysis (thus we omit explicitly the ‘noise catcher’ bands, cf. Section 4.4 and Table 4.1). Note,
however, that for the cosmological likelihood analysis we do not use the averaged signals, but
instead sum the likelihood of each patch as described in Section 4.7.2.

We extract E- and B-modes simultaneously. As described in Section 4.2 the cosmological
signal is contained in the E-modes in the absence of systematic errors. Hence, we use the
B-mode signal as a systematic cross-check and generally expect it to be zero within errors.
We do not extract the EB-modes, which would hint at parity-violation in the data, because
Kitching et al. (2014) found no evidence for EB-modes in the CFHTLenS data. Hence, we
decided to only include the extraction of B-modes as a non-trivial systematic check. We show
the extracted B-mode signal per tomographic bin in Fig. 4.5. For illustrative purposes we
averaged the B-mode signal again with inverse variance weights over all four CFHTLenS
patches. In contrast to the E-modes, the 1σ-errors on the B-modes are derived from the B-
mode part of the Fisher matrix (cf. equation 4.12). This is a very conservative approach since it
will generally underestimate the errorbars. The masking in the data might cause leakage of E-
mode power into B-mode power. In principle, this should also be captured by the Fisher matrix
but as we argued in Section 4.5.2 the Fisher matrix underestimates the E-mode error in the
intermediate multipole regime due to the mildly non–Gaussian intrinsic field. This propagates
into an underestimated B-mode Fisher-error when compared directly to a run-to-run B-mode
error. However, that does not pose a problem as long as we can establish that the B-modes are
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Figure 4.5: Same as Fig. 4.4 but for B-mode band powers. Note, however, the different scale (linear) and
normalization used here with respect to Fig. 4.4; for reference we also plot the best-fitting E-mode power
spectrum as solid line (black). We show the measured B-modes as (black) dots with 1σ-errors derived
from the inverse Fisher matrix. Based on these signals we define the shaded regions (grey) to the left and
right of each panel. E-mode band powers in these regions are excluded from the cosmological analysis
(cf. Fig. 4.4 and see text for details). We present the B-mode signal for each individual CFHTLenS
patch in Appendix 4.B.

consistent with zero using the underestimated errorbars. We assess the consistency of the B-
modes with zero via a χ2-goodness-of-fit measure and find: χ2

red(W1) = 1.54, χ2
red(W2) = 0.93,

χ2
red(W3) = 1.07, and χ2

red(W4) = 0.24 for 15 degrees of freedom, i.e. including all B-mode
bands except the last one, which was designed to catch only noise due to the long tail of the
window function of square pixels beyond `pix. However, further tests conducted on the GRF
mock data show that noise from the last band leaks into the second-to-last band depending
on the pixel-scale, σpix, employed. This is due to the strong oscillatory behaviour of the
Fourier-transform of a real-space square pixel (cf. fig. 2 in Hu & White 2001) around `pix
corresponding to σpix. The oscillations are amplified if the band is noise-dominated. For that
reason the B-mode in the second-to-last band appears to be more significant than the B-modes
in the other bands. Removing the second-to-last B-mode band power from the χ2-goodness-
of-fit measure yields the following improved reduced χ2-values for 12 degrees of freedom:
χ2

red(W1) = 0.92, χ2
red(W2) = 0.80, χ2

red(W3) = 0.61, and χ2
red(W4) = 0.23. Hence, we

conclude that the B-modes in these remaining bands are consistent with zero. Therefore, we
only use bands 2–5 in the cosmological analysis of the E-mode signal.

Following Becker et al. (2015) we define the signal-to-noise ratio, S/N, of our band-
power measurements with respect to the cosmological signal in the mock data from which we
estimate the covariance:

S/N =
dT

measC
−1
B(`)dmock√

dT
mockC−1

B(`)dmock

. (4.21)

Considering only the band powers used in the cosmological analysis (cf. Table 4.1), we detect
a cosmic shear signal in W1 at 7.1σ, in W2 at 5.5σ, in W3 at 5.7σ, and in W4 only marginally
at 2.5σ. Note, however, that the above definition of S/N depends on the cosmology employed
in the mocks. A discrepancy between the mock cosmology and the actual cosmology preferred
by the data decreases the significance in general.



78 4. The CFHTLenS shear power spectrum

4.7 Cosmological inference
After having extracted the shear power spectrum and having derived a more robust estimate
of the data covariance, we can proceed to the next step: the cosmological interpretation of the
tomographic signals, employing a Bayesian framework. We estimate cosmological parameters
p by sampling the likelihood L(p) with a Monte Carlo Markov Chain (MCMC) method. In
addition to the parameter estimation we also want to compare various model extensions to a
baseline model.

The Bayesian evidence Z is simply the normalization factor of the posterior over the
parameters p:

Z =

∫
dn pL(p)π(p) , (4.22)

where n denotes the dimensionality of the parameter space and π(p) is the prior. Since the
evidence is the average of the likelihood over the prior it automatically implements Occam’s
razor: a simpler theory with fewer parameters, i.e. a more compact parameter space, will have
a higher evidence than a more complicated one requiring more parameters, unless the latter
model explains the data significantly better. If we wish to decide now between models M1
and M0, we can compare their posterior probabilities given the observed data D and define
the Bayes factor:

K1,0 ≡
Z1

Z0

Pr(M1)
Pr(M0)

, (4.23)

where Pr(M1)/Pr(M0) is the a priori probability ratio for the two models, usually set to unity
unless there are strong (physical) reasons to prefer one model over the other a priori. In our
subsequent analysis we always assume Pr(M1)/Pr(M0) = 1. A Bayes factor K1,0 > 1 implies a
preference of model M1 over model M0. Kass & Raftery (1995) have proposed a quantitative
classification scheme for the interpretation of the Bayes factor K (or equivalently 2 ln K).

Evaluating the usually high-dimensional integral of equation (4.22) is a challenging com-
putational and numerical task. Here, we employ the nested sampling algorithm MULTINEST9

(Feroz & Hobson 2008; Feroz et al. 2009, 2013) via its PYTHON-wrapper PYMULTINEST (Buch-
ner et al. 2014) in the framework of the cosmological likelihood sampling package MONTE

PYTHON10 (Audren et al. 2012).

4.7.1 Theoretical power spectrum
In Section 4.2 we described the calculation of the tomographic lensing power spectra (cf.
equation 4.4). These encode the 3D matter power spectrum smoothed by tomographic lensing
kernels (cf. equation 4.5). For the calculation of the matter power spectrum, Pδ(k; χ), we
employ the Boltzmann-code CLASS11 (Blas et al. 2011; Audren & Lesgourgues 2011). This
already includes the non-linear corrections for which we chose to use the HALOFIT algorithm
including the recalibrations by Takahashi et al. (2012). Furthermore, CLASS allows us to in-
clude (massive) neutrinos (Lesgourgues & Tram 2011). The main effect of massive neutrinos
is a redshift- and scale-dependent reduction of power which also propagates into the lensing
power spectra CEE

`, µν but is smoothed by the lensing kernels of the corresponding tomographic
bins (cf. Fig. 4.6). Over the multipole range of interest massive neutrinos lower the lens-
ing power spectrum by an almost constant factor. This introduces a degeneracy with other
cosmological parameters that affect the normalization of the lensing power spectrum.

9Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
10Version 2.1.4 from www.montepython.net
11Version 2.4.3 from www.class-code.net

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
www.montepython.net
www.class-code.net
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We follow Harnois-Déraps et al. (2015) to describe the modifications of the power spec-
trum due to baryon feedback:

b2(k, z) ≡
Pmod
δ (k, z)

Pref
δ (k, z)

, (4.24)

where Pmod
δ and Pref

δ denote the power spectra with and without baryon feedback, respectively.
The baryon feedback can be computed from hydrodynamical simulations. We use in this

work the fitting formula for the baryon feedback derived by Harnois-Déraps et al. (2015) using
the OverWhelmingly Large Simulations (OWLS; Schaye et al. 2010, van Daalen et al. 2011):

b2(k, z) = 1 − Abary(Aze(Bz x−Cz)3
− DzxeEz x) , (4.25)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez are functions of the scale
factor a = 1/(1 + z) which are also dependent on the baryonic feedback model (cf. Harnois-
Déraps et al. 2015 for the specific functional forms and constants). Additionally, we introduce
here a general free amplitude Abary which we will use as a free parameter to marginalize over
while fitting for the cosmological parameters. In Fig. 4.6 we show the effect of including
baryonic feedback on the matter and lensing power spectrum, respectively. In contrast to the
effect of massive neutrinos baryon feedback causes a significant reduction of power in the
lensing power spectrum only at high multipoles. However, this is also degenerate with the
effect of massive neutrinos on these scales. Hence, a proper anchoring of the main cosmo-
logical parameters at low multipoles with high precision is paramount if one wants to break
degeneracies between all these effects. Operating directly in multipole space with respect to
both theory and data facilitates the identification of distinct features in the power spectra.

4.7.2 The shear likelihood
To compare the measured, tomographic band powers Bi

α (cf. Section 4.6) to predictions
〈Bi

α〉
model (cf. Section 4.2), we define the shear likelihood as a function of cosmological pa-

rameters p:
−2 lnL(p) =

∑
i

∑
α, β

di
α(p)(C−1)i

αβ di
β(p) , (4.26)

where the index i runs over the four CFHTLenS patches (cf. Section 4.4) and the indices
α, β run over the tomographic bins. Note that we follow all previous CFHTLenS studies in
ignoring any covariance between the individual CFHTLenS patches.

The components of the data vector per patch are calculated as

di
α(p) = (Bi

α − 〈B
i
α(p)〉model) , (4.27)

where the predicted band powers, 〈Bi(`)〉model, depend on the cosmological parameters p.
They are calculated with equations (4.13) and (4.4), i.e. the band window functions are prop-
erly taken into account. The inverse of the covariance matrix C−1 is estimated from a large
suite of mock data especially tailored to CFHTLenS as described in detail in Section 4.5.2.

4.7.3 Models and discussion
In the first part of this cosmological analysis we consider the shear likelihood without further
combining it with any other external cosmological probe. The lensing power spectrum is most
sensitive to cosmological parameters modifying its normalization and slope. Therefore, the
normalization of the primordial power spectrum, ln(1010As), and the fraction of cold dark
matter, Ωcdm, are the primary parameters of interest. For an easier comparison of our results
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Figure 4.6: Upper panel: the ratio of modified matter power spectra over the dark matter only power
spectrum. The dashed line (blue) shows the effect of the baryon feedback bias in the AGN model
from OWLS (Schaye et al. 2010; van Daalen et al. 2011) using the implementation by Harnois-Déraps
et al. (2015) (cf. equation 4.25). The modifications due to three degenerate massive neutrinos with
total mass Σmν = 0.18 eV is demonstrated by the dash–dotted line (red). The redshift for the power
spectrum calculation is z = 1.05 corresponding to the median redshift of the high-redshift bin used in
the subsequent analysis (cf. Table 4.2). Lower panel: same as upper panel but for the lensing power
spectrum of the high-redshift bin z2 : 0.85 < ZB ≤ 1.30 (cf. Table 4.2).
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with the literature, we also derive the root-mean-square variance of the density field smoothed
with the Fourier transform of a top-hat filter on a scale R = 8 h−1Mpc in real-space, i.e.
σ8, and the total fraction of matter in the Universe, Ωm. Our baseline model to which we
refer subsequently only as ‘ΛCDM’ includes in addition to these parameters three more free
variables: the Hubble parameter h, the slope of the primordial power spectrum ns, and the
fraction of baryonic matter Ωb. The ranges for the flat priors on these parameters are listed in
Table 4.4. They follow mostly the ranges employed in the CFHTLenS studies by Benjamin
et al. (2013) and Heymans et al. (2013) in order to assure a fair comparison of our results with
these studies.

Data from particle physics experiments indicate that neutrinos have mass (e.g. Lesgour-
gues & Pastor 2006 and references therein). Hence, we follow Planck Collaboration XIII
(2015a) in including already two massless and one massive neutrino with the (fixed) mini-
mal mass of Σmν = 0.06 eV (assuming a normal mass hierarchy with one dominant mass
eigenstate) in our baseline ΛCDM model. Moreover, we always assume a flat cosmological
model.

The first extension of the baseline model is to introduce a free total mass Σmν for three
degenerate massive neutrinos. We refer to this model as ‘ΛCDM+ν’. Since we expect the
effect of massive neutrinos to be degenerate with the effect of baryonic feedback, especially at
high multipoles (cf. Section 4.2 and Fig. 4.6) we investigate this effect in the model ‘ΛCDMa’:
here, we additionally include the fiducial baryon feedback model of equation (4.25) with
Abary = 1 for the AGN model taken from the OWLS project (Schaye et al. 2010; van Daalen
et al. 2011). The degeneracy between baryonic feedback and massive neutrinos is investigated
in the model ΛCDMa+ν, where Σmν is free to vary but which includes the fixed fiducial baryon
feedback model. We relax the assumption of a fixed baryon feedback model in the model
‘ΛCDM+Abary’ by allowing the amplitude of the feedback Abary to vary (cf. equation 4.25).
Combining the assumption of a free amplitude in the baryon feedback model and a free total
mass of three degenerate massive neutrinos, Σmν in the model ‘ΛCDM + ν + Abary’ yields a
maximally degenerate model in baryonic feedback and neutrinos. In total this model consists
of seven free parameters.

Moreover, we want to test the effect of a photometric redshift bias which causes a coher-
ent shift of the photometric redshift distributions per tomographic bin (cf. equation 4.5) by
∆zµ. Hildebrandt et al. (2012) showed that the bias on photometric redshifts in CFHTLenS
is ∆z < 0.02 (cf. their fig. 8). However, this estimate does not account for outliers which
can increase the photometric redshift bias significantly. Therefore, we make a more conser-
vative assumption and treat the photometric redshift biases ∆zµ within a flat prior range of
−0.05 ≤ ∆zµ ≤ 0.05 as nuisance parameters to marginalize over. In the most complex model
ΛCDM + ν + Abary + ∆zµ, which we abbreviate subsequently to ‘ΛCDM + all’, we include
a free amplitude for the baryon feedback model, massive neutrinos and treat the photometric
redshift biases ∆zµ as nuisance parameters.

All models, their prior ranges and the parameter estimates derived from the likelihood
sampling are summarized in Table 4.4, where we always quote the weighted median value
for each varied parameter. The errors denote the 68 per cent credible interval of the posterior
distribution after marginalization over all other free parameters.
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Table 4.4: Cosmological parameters from shear likelihood only.

Model Ωcdm ln(1010As) Ωm σ8 Ωb ns h Σmν (eV) Abary ∆z1 ∆z2

Prior ranges [0., 1.] [0., 10.] derived derived [0., 0.1] [0.7, 1.3] [0.4, 1.] [0.06, 6.] [0., 10.] [−0.05, 0.05] [−0.05, 0.05]
ΛCDM 0.21+0.09

−0.15 3.53+1.49
−1.52 0.26+0.09

−0.15 0.84+0.24
−0.23 0.05+0.03

−0.03 1.01+0.29
−0.23 0.62+0.09

−0.22 ≡ 0.06 – – –
ΛCDMa 0.21+0.09

−0.14 3.50+1.43
−1.62 0.25+0.11

−0.15 0.85+0.24
−0.24 0.05+0.02

−0.03 1.00+0.26
−0.22 0.64+0.10

−0.22 ≡ 0.06 ≡ 1. – –
ΛCDM + ν 0.21+0.08

−0.13 3.65+1.52
−1.44 0.30+0.09

−0.14 0.75+0.16
−0.15 0.04+0.02

−0.03 1.05+0.25
−0.28 0.70+0.18

−0.16 1.37+0.69
−1.31 – – –

ΛCDMa + ν 0.21+0.09
−0.13 3.69+1.37

−1.52 0.29+0.11
−0.14 0.76+0.16

−0.16 0.04+0.02
−0.03 1.05+0.25

−0.27 0.71+0.22
−0.18 1.34+0.60

−1.28 ≡ 1. – –
ΛCDM + Abary 0.21+0.10

−0.14 3.62+1.51
−1.47 0.26+0.10

−0.14 0.85+0.25
−0.26 0.05+0.02

−0.03 1.00+0.19
−0.24 0.60+0.09

−0.20 ≡ 0.06 2.90+1.54
−2.90 – –

ΛCDM + ν + Abary 0.22+0.08
−0.13 3.69+1.44

−1.42 0.30+0.09
−0.15 0.76+0.15

−0.15 0.04+0.02
−0.03 1.06+0.24

−0.28 0.69+0.17
−0.17 1.29+0.67

−1.23 2.51+1.19
−2.51 – –

ΛCDM + ∆zµ 0.24+0.10
−0.14 3.26+1.28

−1.32 0.29+0.10
−0.15 0.80+0.21

−0.22 0.05+0.03
−0.03 0.98+0.19

−0.21 0.62+0.10
−0.21 ≡ 0.06 – 0.03+0.02

−0.01 −0.02+0.02
−0.03

ΛCDM + all 0.24+0.09
−0.13 3.57+1.34

−1.44 0.32+0.10
−0.13 0.74+0.14

−0.14 0.04+0.02
−0.03 1.04+0.26

−0.25 0.67+0.16
−0.17 1.32+0.56

−1.26 2.49+1.17
−2.49 0.03+0.02

−0.01 −0.02+0.02
−0.03

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution.

Table 4.5: Cosmological parameters from a combined analysis of the shear and Planck likelihoods.

Model Ωcdm ln(1010As) Ωm σ8 Ωb ns h τreio APlanck

Prior ranges [0.1, 0.4] [2., 4.] derived derived [0., 0.1] [0.8, 1.2] [0.5, 0.8] [0.04, 0.12] [90., 110.]
Planck (TT+lowP) 0.263+0.012

−0.013 3.093+0.037
−0.034 0.313+0.013

−0.014 0.830+0.014
−0.015 0.049+0.001

−0.001 0.966+0.007
−0.006 0.674+0.010

−0.010 0.079+0.018
−0.019 100.04+0.27

−0.26

Planck+Shear 0.251+0.010
−0.010 3.077+0.037

−0.035 0.300+0.011
−0.011 0.818+0.013

−0.013 0.048+0.001
−0.001 0.971+0.006

−0.006 0.684+0.008
−0.009 0.074+0.020

−0.018 100.02+0.27
−0.26

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution. For the model Planck (TT+lowP) we resampled a simplified version of the original likelihood that includes only one additional
nuisance parameter, APlanck.
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We compare the 68 and 95 per cent credible intervals for the baseline ΛCDM model and
the most complex ΛCDM + all model in Fig. 4.7. Both models are marginally consistent with
the 68 per cent credible interval from Planck Collaboration XIII (2015a, TT+lowP) and the
most complex ΛCDM + all model is fully consistent with Planck at 95 per cent credibility.
This model is very conservative because it also accounts for a possible photometric redshift
bias per tomographic bin, and thus is expected to yield the largest errorbars. For this model we
show marginalized 1D posteriors for every free parameter (cf. Table 4.4) and marginalized 2D
contours for every parameter combination in Fig. 4.8. From this figure but also from Table 4.4
it is apparent that our parameter constraints are weaker than those derived from Planck. The
shear data are also unable to constrain the slope of the primordial power spectrum, ns, espe-
cially once the models also include massive neutrinos, since both parameters influence the
slope of the lensing power spectrum in a similar way. Hence, the estimate on ns is following
the flat prior distribution. From our most conservative model extension, ΛCDM+all, we derive
an upper limit on the total mass of three degenerate massive neutrinos at 95 per cent credibility
of Σmν < 4.53 eV. In contrast, Planck Collaboration XIII (2015a, TT+lowP) derive an upper
limit (95 per cent) on the total mass of three degenerate massive neutrinos of Σmν < 0.72 eV.
Combining the primary CMB data with secondary data and/or other external probes lowers
the upper limit to <0.17 eV.

In the σ8–Ωm plane we can directly compare to the results from the CFHTLenS analysis
by Heymans et al. (2013). They employed a 6-bin tomographic real-space correlation ap-
proach and in Fig. 4.9 we show the 68 per cent credible intervals for their conservative model
including a marginalization over intrinsic alignments. The 68 per cent credible intervals of our
baseline ΛCDM model is consistent with the one derived by Heymans et al. (2013). However,
the contours of our model are generally broader because we use only two tomographic bins.

The shear power spectrum is most sensitive to the parameters Ωcdm and ln(1010As) or
equivalently to Ωm and σ8. However, as can be seen in, for example, Fig. 4.7 the relation
between Ωm and σ8 is degenerate and what lensing can actually constrain best is the combina-
tion of both parameters in the projected quantity σ8(Ωm/0.3)α. The value of α depends on the
scales probed and is connected to the width of the likelihood contour. We derive it from fitting
the function lnσ8(Ωm) = −α ln Ωm+const. to the likelihood surface in theσ8–Ωm plane. Since
we find it to be consistent with ≈0.5 in all our models, we follow DES Collaboration (2015) in
defining the quantity S 8 ≡ σ8(Ωm/0.3)0.5. We present values for this parameter combination
obtained from the above shear-only likelihood sampling in Table 4.6. We compare the values
of S 8 for all our models in Fig. 4.10, where we also show the constraint on that parameter
combination by Planck Collaboration XIII (2015a, TT+lowP). For this combination all our
tested models are consistent with each other. However, all models are in mild tension with the
constraint on S 8 derived from Planck (TT+lowP).

Moreover, we present in Fig. 4.10 the constraints on S 8 of other lensing studies. In par-
ticular, we compare to the recent constraint from DES Collaboration (2015, ‘Fiducial DES
SV cosmic shear’). This study employed a real-space correlation function approach in three
tomographic bins. We find our constraints to be consistent with theirs which is mainly due
to the large errorbars of the measurement on S 8 from the Dark Energy Survey (DES). In ad-
dition to their own results DES Collaboration (2015) also resampled the likelihoods of the
CFHTLenS studies from Kilbinger et al. (2013) and Heymans et al. (2013) and derived con-
straints on S 8. We show these constraints also in Fig. 4.10. Kilbinger et al. (2013) employed
a non-tomographic real-space correlation function approach and their constraint in Fig. 4.10
employs ‘all scales’ out to large angular scales ϑ ≈ 350 arcmin. The constraint from Heymans
et al. (2013) in Fig. 4.10 uses only the ‘original conservative scales’. Our results are consistent
with both these studies, as was already the case for Heymans et al. (2013) in the full σ8–Ωm



84 4. The CFHTLenS shear power spectrum

0.0 0.2 0.4 0.6 0.8 1.0

m

0.2

0.4

0.6

0.8

1.0

1.2

1.4

¾
8

¤CDM

¤CDM+all

Planck 2015

Figure 4.7: Shown are 68 and 95 per cent credible intervals (blue, inner and outer contour, respectively)
for our baseline ΛCDM model where Ωm, σ8, h, ns, and Ωb are free to vary. Additionally shown are
the 68 and 95 per cent credible intervals (red, respectively) for our most complex model ΛCDM+all
where also the total mass of neutrinos Σmν, the amplitude for the Baryon feedback model Abary, and a
systematic photometric redshift bias per tomographic bin ∆zµ are free to vary. We marginalize over all
other free parameters. Finally, we plot the 68 and 95 per cent credible intervals derived from Planck
Collaboration XIII (2015a, TT+lowP).

Table 4.6: Constraints on S 8 and σ8(Ωm/0.3)α.

Model S 8 ≡ σ8(Ωm/0.3)0.5 Mean error on S 8 σ8(Ωm/0.3)α α

Shear likelihood only
ΛCDM 0.768+0.045

−0.039 0.042 0.762+0.044
−0.038 0.538

ΛCDMa 0.770+0.047
−0.039 0.043 0.765+0.044

−0.038 0.533
ΛCDM + ν 0.737+0.057

−0.054 0.056 0.737+0.057
−0.055 0.479

ΛCDMa + ν 0.741+0.055
−0.047 0.051 0.741+0.056

−0.046 0.465
ΛCDM + Abary 0.777+0.048

−0.040 0.044 0.773+0.046
−0.040 0.531

ΛCDM + ν + Abary 0.748+0.055
−0.049 0.052 0.748+0.054

−0.050 0.479
ΛCDM + ∆zµ 0.771+0.050

−0.039 0.045 0.767+0.045
−0.037 0.555

ΛCDM + all 0.755+0.059
−0.059 0.059 0.755+0.059

−0.059 0.491

Notes. We quote median values for the constraints on S 8 ≡ σ8(Ωm/0.3)0.5 and σ8(Ωm/0.3)α.
The errors denote the 68 per cent credible interval derived from the marginalized posterior
distribution.
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Figure 4.8: Shown are all parameter constraints from sampling the likelihood of model ΛCDM+all. The
dashed lines in the marginalized 1D posteriors denote the weighted median and the 68 per cent credible
interval (cf. Table 4.4). The contours in each 2D likelihood contour subplot are 68 and 95 per cent
credible intervals smoothed with a Gaussian.
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Figure 4.9: We show the 68 per cent credible interval (blue) for our baseline ΛCDM model. Additionally
shown is the 68 per cent credible interval for the 6-bin tomographic real-space analysis from Heymans
et al. (2013, cf. also their fig. 4) where intrinsic alignments are marginalized over (red). Finally, we plot
the 68 per cent credible interval from Planck Collaboration XIII (2015a, TT+lowP).

plane (cf. Fig. 4.9).
For the comparison of our results to other CFHTLenS studies and the originally published

constraints from Kilbinger et al. (2013) and Heymans et al. (2013) we have to resort to the
parameter combination σ8(Ωm/0.3)α. The exponent α is in general quite similar between the
quoted lensing studies but not the same, which the reader should bear in mind when looking
at Fig. 4.11. For completeness, we show again the constraints on that parameter combination
from Heymans et al. (2013) and Kilbinger et al. (2013). Kitching et al. (2014) employed
a 3D lensing approach which allows for control over the k-scales included in the analysis.
However, their constraint on σ8(Ωm/0.3)α for which we quote the value including large scales,
i.e. k ≤ 5 hMpc−1, yields by far the largest errorbars due to which their constraint is consistent
with all other CFHTLenS studies and also consistent with the Planck constraint. The analysis
by Benjamin et al. (2013) is the most similar to the one presented here: although their analysis
employed a real-space correlation function approach and did not include scales as large as the
ones used here, the two redshift bins in their tomographic analysis are exactly the same ones
employed in this analysis. The constraints are also consistent with each other and especially
our ΛCDM model also yields comparable errorbars.

In summary, all models are consistent with each other mainly due to increasing errorbars
for increasingly more free parameters. For the comparison of our analysis to other cosmic
shear studies we derived a constraint on the projected parameters S 8 or σ8(Ωm/0.3)α. In
general, we find consistency in these projected parameters with all other CFHTLenS studies
and DES. Employing the Bayesian model comparison framework, we can decide which of the
tested models describes the shear data best: in Table 4.7 we present the natural logarithms of
the evidence for each model. Comparing these models in terms of their Bayes factor K with
respect to the simplest models ΛCDM or ΛCDMa, we find no evidence for any of the tested
extensions except for a very weak preference of the model ΛCDM+∆zµ over our baseline
model which is according to the interpretation scheme of Kass & Raftery (1995) ‘not worth
more than a bare mention’.

Hence, we conclude that the extracted band powers of the tomographic shear power spectra
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Figure 4.10: Shown are 1σ-constraints on the parameter combination S 8 ≡ σ8(Ωm/0.3)0.5 for all of our
tested models (cf. Tables 4.4 and 4.6). We compare them to constraints from other lensing analyses and
to the constraint from Planck Collaboration XIII (2015a, TT+lowP). Note that for Heymans et al. (2013)
and Kilbinger et al. (2013) we quote the values derived in DES Collaboration (2015) for the ‘original
conservative scales’ and for ‘all scales’, respectively. ‘DES 2015’ refers to the fiducial result from DES
Collaboration (2015, ‘Fiducial DES SV cosmic shear’).
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Figure 4.11: Shown are 1σ-constraints on the parameter combination σ8(Ωm/0.3)α for our ΛCDM and
ΛCDM+all models (cf. Table 4.4). We compare them to constraints from other lensing analyses and to
the constraint from Planck Collaboration XIII (2015a, TT+lowP). Note that for Heymans et al. (2013)
we quote the value derived by marginalising over intrinsic alignments. For Kilbinger et al. (2013) and
Kitching et al. (2014) we cite values including the largest scales in their analyses.
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Table 4.7: Evidences from shear likelihood only.

Model lnZ 2 ln K (K ≡ Zi/ZΛCDM) Interpretation

ΛCDM −40.96 ± 0.06 0 –
ΛCDMa −41.07 ± 0.06 −0.22 Support for ΛCDM

ΛCDM + ν −41.63 ± 0.07 −1.34 Support for ΛCDM
ΛCDMa + ν −41.83 ± 0.07 −1.74 Support for ΛCDM

ΛCDM + Abary −41.66 ± 0.06 −1.40 Support for ΛCDM
ΛCDM + ν + Abary −42.48 ± 0.07 −3.04 Support for ΛCDM

ΛCDM + ∆zµ −40.75 ± 0.07 0.42 Preference over ΛCDM ‘not worth more than a bare mention’
ΛCDM + all −42.19 ± 0.07 −2.46 Support for ΛCDM

Notes. For each model we calculate the global log-evidence, lnZ, and compare all evidences
in terms of the Bayes factor K (or equivalently 2 ln K) to the baseline ΛCDM model. The
interpretation of the Bayes factor is following the scheme proposed by Kass & Raftery (1995).

measured over a range 80 ≤ ` ≤ 1310 are described sufficiently well within their errors by a
standard five-parameter ΛCDM model.

Finally, we combine our shear likelihood with the most recent data and likelihood release12

from Planck Collaboration XIII (2015a) in order to break the degeneracy between the parame-
ters Ωm and σ8. In particular we employ the Planck primary CMB temperature data (TT) from
high multipoles ` in combination with the Planck low multipole polarization data (lowP). Due
to long run-time we chose to use the PLIK HIGHL-LITE likelihood code which requires only to
marginalize over one nuisance parameter, APlanck. The Bayesian model comparison showed
no evidence for any model extension beyond a baseline ΛCDM model for describing the shear
likelihood. This implies that we would essentially reproduce Planck-only results if we were
to add parameters for which there is no evidence. Hence, we consider only six cosmologi-
cal parameters and one nuisance parameter for the combined ‘Planck+Shear’ model: Ωcdm,
ln(1010As), h, Ωb, ns, τreio, and APlanck. Again we assume one dominant neutrino mass eigen-
state in the normal hierarchy with Σmν = 0.06 eV and a flat cosmology. In comparison to our
shear-only likelihood analysis we chose to use narrower prior ranges for most parameters (cf.
Table 4.5). Due to the reduced set of nuisance parameters with respect to the original Planck
analysis, we also resample the Planck likelihood for the seven parameter baseline model so
that comparisons of likelihood contours are fair.

Prior ranges and parameter constraints for the resampled Planck likelihood and the com-
bination of Planck+Shear are presented in Table 4.5. Fig. 4.12 demonstrates that combining
the shear likelihood with the Planck likelihood yields improved constraints on σ8 and Ωm and
breaks the degeneracy between the two parameters. The 68 and 95 per cent credible intervals
are largely overlapping and show marginal consistency between the two data sets as already
observed above. We find the constraints σ8 = 0.818 ± 0.013 and Ωm = 0.300 ± 0.011 which
are consistent with the constraints from the resampled Planck-only likelihood (cf. Table 4.5).

4.8 Conclusions
In this work we generalized the original quadratic estimator approach by Hu & White (2001)
to include tomographic bins. We validated the method and its extension to tomographic bins
by applying it to mock data tailored to the survey specifications of CFHTLenS. In particular
we made use of the official CFHTLenS Clone but produced also our own sets of Gaussian

12PLC-2.0 from http://pla.esac.esa.int/pla/

http://pla.esac.esa.int/pla/
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Figure 4.12: We show 68 and 95 per cent credible intervals (red, inner and outer contour, respectively)
derived from sampling only the Planck likelihood (TT+lowP) with the simplified model consisting of six
cosmological parameters and only one nuisance parameter (cf. Table 4.5). We combine the Planck like-
lihood then with the shear likelihood and sample from the combined likelihood for the same simplified
model and derive 68 and 95 per cent credible intervals (blue, inner and outer contour, respectively).

random field realizations in order to test the performance for the larger scales used in our
analysis. We also used the 184 independent shear catalogues from the CFHTLenS Clone and
our GRFs to derive a run-to-run covariance. We applied the method to public shear data from
CFHTLenS in two tomographic bins to extract band powers of the lensing power spectrum.

We use the extracted band powers and the run-to-run covariance estimated from our suite
of mock data in order to sample the shear likelihood. The sampling is performed in a Bayesian
framework. We derive constraints on cosmological parameters as well as the Bayesian evi-
dence for each model. In addition to the five baseline cosmological parameters, our most
conservative model extension includes a free total mass of three degenerate massive neutri-
nos, a free amplitude for the baryon feedback model of the matter power spectrum and pho-
tometric redshift biases to marginalize over. For this model we derive an upper limit on the
total mass of three degenerate massive neutrinos of Σmν < 4.53 eV at 95 per cent credibil-
ity. Based on the analysis of the shear likelihood we find no evidence for any of the tested
model extensions though: a standard, five parameter ΛCDM model is sufficient to describe
the lensing power spectrum band powers measured over a range of 80 ≤ ` ≤ 1310 in two
tomographic bins. The main parameters constrained by the lensing power spectra are σ8 and
Ωm and we find the 68 percent credible intervals in this parameter plane to be marginally
consistent both with Planck Collaboration XIII (2015a) and the CFHTLenS analysis by Hey-
mans et al. (2013). Because the constraints on σ8 and Ωm are degenerate, we combine both
parameters into the projected parameter S 8 ≡ σ8(Ωm/0.3)0.5. For the baseline ΛCDM model
we obtain a best-fitting value of S 8 = 0.768+0.045

−0.039. Marginalization over a photometric red-
shift bias per tomographic bin increases the errorbars on S 8 by ≈7 per cent. Furthermore,
we compare our constraints on cosmological parameters with other CFHTLenS studies and
the recent result from DES and we find general agreement. Combining the shear likelihood
with the Planck likelihood (TT+lowP) and sampling a simple six-parameter ΛCDM model
breaks the degeneracy between Ωm and σ8 and yields the constraints Ωm = 0.300± 0.011 and
σ8 = 0.818 ± 0.013. These constraints are consistent with the ones derived from resampling
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the Planck-only likelihood and the errorbars decrease by ≈19 per cent for Ωm and ≈10 per
cent for σ8.

Data from larger weak-lensing surveys such as the Kilo-Degree Survey13 (de Jong et al.
2013, 2015; Kuijken et al. 2015), the Subaru Hyper SuprimeCam lensing survey,14 and the
DES15 (Flaugher 2005; Jarvis et al. 2015; Becker et al. 2015) are building up right now, and
these surveys will reach full coverage in the next years. This development will culminate
in the surveys carried out by the Large Synoptic Survey Telescope16 (Ivezic et al. 2008) and
the spaceborne Euclid17 survey (Laureijs et al. 2011). Given these surveys, we consider our
analysis also as a proof of concept in preparation for the order(s) of magnitude increase in
survey area, which also implies a significant reduction in statistical uncertainties.
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4.A Indices and derivatives
In Section 4.3 we described the generalization of the quadratic estimator to include tomo-
graphic bins. This requires a great amount of indices in a strict notation. For brevity we
switched rather quickly to a set of superindices and we also refrained from showing the ex-
plicit forms of certain matrices. Here, we give now the explicit forms of these matrices and we
also calculate the derivatives used, for example, in equations (4.11) or (4.15) in index notation.

First, we start with specifying the components of the vector B which contains all band
powers β of type θ for each unique redshift bin correlation ζ as Bζθβ. Note that the total
number of unique correlations between nz redshift bins is ncorr = nz(nz + 1)/2, because all
cross-correlations contain the same information by construction. Likewise we define the com-
ponents of the tensor G which encodes all geometric information of the field depending on the
band power β, the band type θ and the redshift bin correlation ζ as

Gζθβ(µν)(ab)(i j) ≡ Mζ(µν)

∫ `max(β)

`min(β)

d`
2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
. (4.28)

We also note here that each realization of G for a given band power β of type θ and correlation
ζ can be represented as a matrix Gζθβ. We can write out the matrices Iθ and Qθ for the EE-,
BB-, and EB-band powers as (Hu & White 2001)

IEE =

(
J0 + c4J4 s4J4

s4J4 J0 − c4J4

)
, (4.29)

IBB =

(
J0 − c4J4 −s4J4
−s4J4 J0 + c4J4

)
, (4.30)

IEB =

(
−2s4J4 2c4J4
2c4J4 2s4J4

)
, (4.31)

and

QEE
=

(
J0 + 2c4J4 + c8J8 s8J8

s8J8 −J0 + 2c4J4 − c8J8

)
, (4.32)

QBB
=

(
−J0 + 2c4J4 − c8J8 −s8J8

−s8J8 J0 + 2c4J4 + c8J8

)
, (4.33)

QEB
=

(
−2s8J8 2J0 + 2c8J8

2J0 + 2c8J8 2s8J8

)
. (4.34)

http://dx.doi.org/10.1051/0004-6361/201424435
http://dx.doi.org/10.1111/j.1365-2966.2009.14504.x
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1007/s10686-012-9306-1
http://dx.doi.org/10.1051/0004-6361/201526601
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x


94 4. The CFHTLenS shear power spectrum

In these equations we suppressed the argument of the Bessel functions Jn which in each case
is the product ` ri j, where ri j = |ni − nj| is the distance between pixels i, j (cf. Section 4.4).
Moreover, we employ the shorthand notations cn = cos(nϕ) and sn = sin(nϕ), where ϕ is the
angle between the x-axis and the distance vector ri j between pixels i, j (cf. Section 4.4). Note
that in equation (4.33) we corrected the misprint in the original reference pointed out by Lin
et al. (2012). Note also, that each block in the matrices of equations (4.29)–(4.34) defines
again a matrix in the indices i, j.

The matrices Mζ in equation (4.28) map between the redshift bins and their unique corre-
lations. In order to construct them, we start with the standard basis eµν for µ× ν matrices with
µ, ν ∈ (1, ..., nz). For example, the standard basis for nz = 2 can be written explicitly as:

e11 =

(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, (4.35)

e21 =

(
0 0
1 0

)
, e22 =

(
0 0
0 1

)
. (4.36)

The index pairs (µ, ν) can be trivially mapped to only one index ζ′ which yields for the example
above, i.e. µ, ν ∈ (1, 2):

(1, 1)→ 1, (1, 2)→ 2, (2, 1)→ 3, (2, 2)→ 4. (4.37)

Imposing now, however, the symmetry condition (µ, ν) = (ν, µ), which guarantees that for
nz redshift bins we only consider ncorr = nz(nz + 1)/2 independent correlations, yields the
symmetric mapping matrices:

M1 =

(
1 0
0 0

)
= e11, (4.38)

M2 =

(
0 1
1 0

)
= e12 + e21, (4.39)

M3 =

(
0 0
0 1

)
= e22 (4.40)

which implies the following mapping from (µ, ν) to ζ:

(1, 1)→ 1, (1, 2) = (2, 1)→ 2, (2, 2)→ 3. (4.41)

Next we construct the signal matrix Csig as the sum over bands β, band types θ, and redshift-
correlations ζ of the product of the band power vector Bζθβ with the geometry matrices Gβθζ ,

Csig
(µν)(ab)(i j) =

∑
ζ,θ,β

BζθβGζθβ(µν)(ab)(i j) . (4.42)

Note that the full covariance matrix C also includes contributions from the shape noise matrix
Cnoise (cf. equation 4.9) which is constant. Thus if we wish to take the derivative of the
full covariance matrix with respect to every possible band-power combination B(µν)(βθ), this
constant noise term vanishes and we are left with

∂C(µν)(ab)(i j)

∂Bζθβ
=
∂Csig

(µν)(ab)(i j)

∂Bζθβ
(4.43)

= Gζθβ(µν)(ab)(i j)

≡ Dζθβ ≡ DA . (4.44)
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In order to simplify our notation with respect to the Newton–Raphson algorithm we introduced
in the last step the superindex A: each specific index combination (ζθβ) can be mapped to a
single index A18, i.e. we denote a specific derivative matrix now as DA instead of Dζθβ. Hence
the components of the generalized Fisher matrix F can be written as

FAB = 1
2 Tr(C−1DAC−1DB) . (4.45)

All other equations employed in the Newton–Raphson algorithm still hold with respect to this
new set of superindices (A, B).

Finally, it only remains to write out explicitly the derivatives of the full covariance matrix
C with respect to the power at an integer multipole `. This is required for the calculation of
the window function matrix (cf. equation 4.14) in which the derivatives D` enter in computing
the trace matrix T (cf. equation 4.15):

∂C(µν)(ab)(i j)

∂B(`)
=

∑
ζ,θ

Mζ(µν)

2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
≡ D(µν)(ab)(i j)(`) ≡ D` , (4.46)

where we have used that

Csig
(µν)(ab)(i j) =

∑
ζ,θ,`

Bζθ(`)
Mζ(µν)

2(` + 1)

[
w0(`)Iθ(ab)(i j) + 1

2 w4(`)Qθ
(ab)(i j)

]
.

4.B Additional figures
In the following figures we show the extracted E- and B-modes for each CFHTLenS patch
individually. Note that these E-mode signals enter directly in the likelihood sampling whereas
the combined signal presented in Fig. 4.4 serves just for illustrative purposes.

18For example, consider again two redshift bins, i.e. ζ ∈ (1, 2, 3), from which we wish to extract four band powers,
i.e. β ∈ (1, 2, 3, 4), of a single band type EE =̂ θ = 0. Then we can map each unique combination of ζθβ to an integer
A ∈ (0, ..., 12).
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Figure 4.13: Measured E-mode band powers in tomographic bins for the CFHTLenS patch W1. From
left to right we show the auto-correlation signal of the low-redshift bin (blue), the cross-correlation
signal between the low- and the high-redshift bin (orange), and the auto-correlation signal of the high-
redshift bin (red). The low-redshift bin contains objects with redshifts in the range 0.5 < z1 ≤ 0.85 and
the high-redshift bin covers a range 0.85 < z2 ≤ 1.3. The 1σ-errors in the signal are derived from a
run-to-run covariance over 184 independent mock data fields (cf. Section 4.5.2) whereas the extent in
`-direction is the width of the band. Band powers in the shaded regions (grey) to the left and right of
each panel are excluded from the cosmological analysis (cf. Fig. 4.5). The solid line (black) shows the
power spectrum for the best-fitting five-parameter ΛCDM model derived in the subsequent analysis (cf.
Section 4.7 and Table 4.4). Note, however, that the band powers are centred at the naive `-bin centre and
thus the convolution with the band window function is not taken into account in this plot, in contrast to
the cosmological analysis.
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Figure 4.14: Same as Fig. 4.13 but for B-mode band powers. Note, however, the different scale (linear)
and normalization used here with respect to Fig. 4.13; for reference we also plot the best-fitting E-mode
power spectrum as solid line (black). We show the measured B-modes as (black) dots with 1σ-errors
derived from the inverse Fisher matrix. Based on these signals we define the shaded regions (grey) to
the left and right of each panel (cf. Section 4.6 for details). E-mode band powers in these regions are
excluded from the cosmological analysis (cf. Fig. 4.4).
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Figure 4.15: Same as Fig. 4.13 but for CFHTLenS patch W2. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.16: Same as Fig. 4.14 but for CFHTLenS patch W2. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.17: Same as Fig. 4.13 but for CFHTLenS patch W3. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.18: Same as Fig. 4.14 but for CFHTLenS patch W3. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.
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Figure 4.19: Same as Fig. 4.13 but for CFHTLenS patch W4. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.

102 103

`

−1

0

1

2

3

4

C
(`
)
(
£1
0
9
)

z1 £ z1
CBF (`)

102 103

`

z1 £ z2

102 103

`

z2 £ z2

Figure 4.20: Same as Fig. 4.14 but for CFHTLenS patch W4. Open symbols denote negative values
plotted with 1σ-errors centred on the absolute value.



5
KiDS-450: The tomographic weak

lensing power spectrum and
constraints on neutrinos and

cosmological parameters

We present measurements of the weak gravitational lensing shear power spectrum based on
≈450 deg2 of imaging data from the Kilo-Degree Survey (KiDS). We employ a direct quadratic
estimator in two redshift bins and extract band powers of the redshift auto-correlation spectra
and cross-correlation spectrum in the multipole range 76 ≤ ` ≤ 1310. The cosmological
interpretation of the measured shear power spectra is performed in a Bayesian framework
assuming a flat Λ cold dark matter model, while accounting for small residual uncertainties in
the shear calibration, intrinsic alignments, and baryon feedback. This yields the constraint on
the parameter combination S 8 ≡ σ8

√
Ωm/0.3 = 0.742±0.057. This result is in tension at 1.8σ

with the constraint from Planck based on measurements of the cosmic microwave background
radiation. For the extension of the fiducial model with a free total mass of three degenerate
massive neutrinos we derive the upper limit Σmν < 3.46 eV at 95 per cent credibility from the
lensing data only. However, a Bayesian model comparison does not yield any evidence for
extending the baseline model with a free total neutrino mass.

F. Köhlinger and the KiDS Collaboration
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5.1 Introduction

The current cosmological concordance model successfully describes observations spanning
a wide range in cosmic volume from the cosmic microwave background (CMB) power spec-
trum (e.g. Planck Collaboration XIII 2015a), the Hubble diagram based on supernovae of type
IA (SNIa; e.g. Riess et al. 2016), big bang nucleosynthesis (BBN; e.g. Fields & Olive 2006),
to the distance scales inferred from baryon acoustic oscillations imprinted in the large-scale
clustering of galaxies (BAO; e.g. BOSS Collaboration 2015). Based on Einstein’s theory of
general relativity and the application of the Copernican principle to the whole Universe, the
Λ-dominated cold dark matter (ΛCDM) model requires in its simplest form only a handful of
parameters to fit all current observational data. However, the physical nature of two of these
parameters, dark matter and dark energy, is still unknown, although their energy densities at
present are very well constrained by observations. Within current limits dark energy can sill
be interpreted in terms of the cosmological constant Λ, but any observed deviation from a con-
stant value will have profound consequences that might eventually even lead to a revision of
our theory of gravity. The cosmological concordance model is also naturally linked to the stan-
dard model of particle physics and the discovery of the constituents of dark matter will make
its revision inevitable. However, experiments have already shown another shortcoming of the
standard model: the experimental discovery of neutrino oscillations (Super-Kamiokande Col-
laboration 1998; SNO Collaboration 2001, 2002) indicates that neutrinos possess mass, which
is in direct contradiction to its fiducial predictions.

Massive neutrinos affect the growth of cosmological large-scale structure (e.g. Lesgour-
gues & Pastor 2006 and references therein for a review) and hence a measurement of the
growth of large-scale structure yields a constraint on the total mass over all neutrino species
(e.g. Palanque-Delabrouille et al. 2015) which is an important complementary constraint to
particle physics experiments.

Cosmic shear, i.e. the weak gravitational lensing due to all intervening cosmic large-scale
structure between an observer and all sources along the line-of-sight, presents a viable tool
to study the evolution of the dark species. However, the tiny coherent image distortions, the
shear, of background sources caused by the bending of their emitted light perpendicular to the
line-of-sight of a foreground mass need to be studied in statistically large samples. Hence,
wide-field surveys covering increasingly more volume in the sky are the current and future
strategy for improving the precision of the measurements. Data from large weak-lensing
surveys such as the Kilo-Degree Survey (KiDS;1 de Jong et al. 2013, 2015; Kuijken et al.
2015), the Subaru Hyper SuprimeCam lensing survey2, and the Dark Energy Survey (DES;3

Jarvis et al. 2015) are currently building up. These surveys are expected to reach coverage
on the order of (several) 1000 deg2 within the next few years, which presents an order of
magnitude increase compared to currently available survey data (Erben et al. 2013; Kuijken
et al. 2015; Jarvis et al. 2015). Eventually, close to all-sky surveys will be carried out over
the next decade by the ground based Large Synoptic Survey Telescope4 (Ivezic et al. 2008))
and the spaceborne Euclid5 satellite (Laureijs et al. 2011) and the Wide Field Infrared Survey
Telescope.6

The cosmic shear signal as a function of redshift is sensitive to the growth of structure
and the geometry of the Universe and studying its redshift dependence allows us to infer the

1kids.strw.leidenuniv.nl
2www.naoj.org/Projects/HSC/
3www.darkenergysurvey.org
4www.lsst.org
5www.euclid-ec.org
6wfirst.gsfc.nasa.gov

kids.strw.leidenuniv.nl
www.naoj.org/Projects/HSC/
www.darkenergysurvey.org
www.lsst.org
www.euclid-ec.org
wfirst.gsfc.nasa.gov
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expansion rate as well as the clustering behaviour of cosmic species such as cold dark matter,
massive neutrinos, and dark energy.

There are several approaches to measure cosmic shear; the most common one to date is
based on the two-point statistics of real-space correlation functions (e.g. Kilbinger 2015 for a
recent review). The redshift dependence is either considered by performing the cosmic shear
measurement in tomographic redshift slices (e.g. Benjamin et al. 2013, Heymans et al. 2013,
Becker et al. 2015) or by employing redshift-dependent spherical Bessel functions (Kitching
et al. 2014). An alternative and mathematically equivalent approach is to switch to Fourier
space and measure the power spectrum of cosmic shear instead. One particular advantage
of direct shear power spectrum estimators over correlation-function measurements is that the
power spectrum measurements are significantly less correlated on all scales. This is very
important for the clean study of scale-dependent signatures such as, for example, those caused
by massive neutrinos. In addition, proper modelling is needed on non-linear scales in order to
avoid any bias in the cosmological parameters. This, however, is complicated because of the
feedback effects of baryon physics on the matter power spectrum of which we still have an
insufficient understanding (Semboloni et al. 2011, 2013). Direct power spectrum estimators
have already been applied to data, the quadratic estimator for example to the COMBO-17
dataset (Brown et al. 2003) and the GEMS dataset (Heymans et al. 2005). In a more recent
study Lin et al. (2012) applied a quadratic estimator and a direct pseudo-C(`) estimator based
on Hikage et al. (2011) to data from the SDSS Stripe 82. However, the direct power spectrum
estimators in these studies did not employ a tomographic approach. This was done for the first
time in Chapter 4, where we extended the quadratic estimator formalism to include redshift
bins and applied it to shear catalogues from the lensing analysis of the Canada–France–Hawaii
Telescope Legacy Survey (CFHTLenS; Erben et al. 2013, Heymans et al. 2012, Hildebrandt
et al. 2012).

Previous results from a six bin tomographic correlation-function analysis of CFHTLenS
(Heymans et al. 2013) and a re-analysis by Joudaki et al. (2016) incorporating new knowledge
regarding systematic errors in the photometric redshift distributions (Choi et al. 2015) found
cosmological parameter constraints to be in tension with CMB based results from Planck Col-
laboration XIII (2015a). However, our quadratic estimator re-analysis of CFHTLenS from
Chapter 4 using only two tomographic bins at higher redshifts and incorporating larger an-
gular scales, did not reveal any tension with results from Planck, which can be attributed
though to increased errorbars due to the more conservative analysis. Similarly, results from
a correlation-function analysis from DES (DES Collaboration 2015) are not in tension with
Planck either. However, due to the small area coverage of the science verification data their
errorbars are significantly larger compared to results from CFHTLenS.

Results from other low-redshift probes measuring the growth rate such as galaxy cluster
counts (e.g. Planck Collaboration XXIV 2015b, de Haan et al. 2016) or redshift space distor-
tions (e.g. Beutler et al. 2014, Samushia et al. 2014, Gil-Marín et al. 2016) consistently find a
lower amplitude of fluctuations (parametrized as σ8, the root-mean-square variance in spheres
of 8 h−1Mpc) at a given matter density (Ωm) with respect to results from Planck. Hence, there
are also claims in the literature (e.g. Spergel et al. 2015, Addison et al. 2016, Riess et al. 2016)
that systematic errors that are yet unaccounted for in the Planck analysis might be the reason
for the observed tension.

An intermediate data release from the ongoing KiDS covering an area of about 450 deg2

presents an independent dataset to re-evaluate whether or not cosmic shear results are in ten-
sion with Planck. The imaging data are taken with a combination of camera and telescope
designed to yield among the best shear data quality attainable from the ground and the setup
is different from the one employed for CFHTLenS. Latest results from a 4-bin tomographic
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correlation-function analysis employing these data (Hildebrandt et al. 2016) are in tension
with results from Planck, but agree well with results from other low-redshift probes. At the
moment it is yet too premature to decide whether the tension between Planck and low-redshift
probes is due to internal systematics that are yet unaccounted for in each probe (e.g. for low-
redshift probes the proper modelling of the matter power spectrum at very non-linear scales is
a concern) or if the tension is due to new physics implying that the current cosmological con-
cordance model is incomplete and requires physical parameter extensions (e.g. Di Valentino
et al. 2015).

In this paper we follow the fiducial analysis by Hildebrandt et al. (2016) closely but use the
tomographic quadratic estimator instead to measure the cosmic shear power spectrum directly
from the data over the same redshift range, using two tomographic bins. This presents an im-
portant cross-check of the robustness of the results derived with two independent data analysis
pipelines and estimators employing the same shear catalogues. Moreover, we explore model
extensions beyond ΛCDM which might alleviate or even strengthen the tension assuming that
all systematic errors are properly accounted for.

The paper is organized as follows: in Section 5.2 we summarize the theory for cosmic
shear power spectra and in Section 5.3 we present the quadratic estimator algorithm. Sec-
tion 5.4 introduces the KiDS-450 dataset and the most important properties of the lensing
source sample. In Section 5.5 we describe the calibrations applied to the measured shear sig-
nal. Section 5.6 summarizes the details of the employed covariance matrix of the data. In
Section 5.7 we present the measured cosmic shear power spectra and show a qualitative com-
parison to correlation-function measurements. The cosmological interpretation of the cosmic
shear power spectra is discussed in Section 5.8 before we summarize all results and conclude
in Section 5.9.

5.2 Theory
A consequence of Einstein’s principle of equivalence is the deflection of light due to mass.
We call this gravitational lensing and in this paper we will specifically work in the frame-
work of weak gravitational lensing. It is called weak because the gradient of the gravitational
potential of a deflecting foreground mass only induces very weak but coherent distortions of
background sources. The measurement of the image distortions is only possible in a statistical
sense and requires to average over large samples of background galaxies due to the broad dis-
tribution of intrinsic ellipticities of galaxies. The very weak-lensing effect of all intervening
mass between an observer and all sources along the line-of-sight is called cosmic shear. The
resulting correlations of galaxy shapes can be used to study the evolution of the large-scale
structure and therefore cosmic shear becomes an increasingly valuable tool for cosmology
especially in the current era of large surveys (cf. Kilbinger 2015 for a recent review). For
details on the theoretical foundations of (weak) gravitational lensing we refer the reader to the
standard literature (e.g. Bartelmann & Schneider 2001).

The main observables in a weak-lensing survey are the shapes and (photometric) redshifts
of galaxies. The measured galaxy shapes in terms of ellipticity components e1, e2 at angular
positions ni are binned into pixels i = 1, ..., Npix and (photometric) redshift bins zµ. Averaging
then the ellipticities in each pixel yields estimates of the components of the spin-2 shear field,
γ1(n, zµ) and γ2(n, zµ). Its Fourier decomposition can be written in the flat-sky limit as

γ1(n, zµ) ± iγ2(n, zµ) =

∫
d2`

(2π)2

[
κ(`, zµ) ± iβ(`, zµ)

]
W(`)e±2iϕ`ei`·n , (5.1)

with ϕ` denoting the angle between the two-dimensional vector ` and the x-axis. For the lens-
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ing by density perturbations the convergence field κ contains all the cosmological information
and the field β usually vanishes in the absence of systematics. In the subsequent analysis we
will still extract it and treat it as a check for residual systematics in the data.

The Fourier transform of the pixel window function, W(`), can be written out as

W(`) = j0

(
`xσpix

2
cosϕ`

)
j0

(
`yσpix

2
sinϕ`

)
, (5.2)

where j0(x) = sin(x)/x is the zeroth-order spherical Bessel function and σpix is the side length
of a square pixel in radians.

The shear correlations between pixels ni and nj and tomographic bins µ and ν can be
expressed in terms of their power spectra and they define the shear-signal correlation matrix
(Hu & White 2001):

Csig
= 〈γa(ni, zµ)γb(nj, zν)〉 , (5.3)

with components

〈γ1iµγ1 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) cos2 2ϕ` + CBB

µν (`) sin2 2ϕ` −CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ2iµγ2 jν〉 =

∫
d2`

(2π)2

[
CEE
µν (`) sin2 2ϕ` + CBB

µν (`) cos2 2ϕ` + CEB
µν (`) sin 4ϕ`

]
W2(`)ei`·(ni−nj) ,

〈γ1iµγ2 jν〉 =

∫
d2`

(2π)2

[
1
2 (CEE

µν (`) −CBB
µν (`)) sin 4ϕ` + CEB

µν (`) cos 4ϕ`
]

W2(`)ei`·(ni−nj) . (5.4)

In the equations above we introduced the decomposition of the shear field into curl-free and
curl components, i.e. E- and B-modes, respectively. In the absence of systematic errors and
shape noise, the cosmological signal is contained in the E-modes and their power spectrum
is equivalent to the convergence power spectrum, i.e. CEE(`) = Cκκ(`) and CBB(`) = 0.
Shot noise will generate equal power in E- and B-modes. The cross-power between E- and
B-modes, CEB(`), is expected to be zero because of the parity invariance of the shear field.

The theoretical prediction for the convergence power spectrum per redshift-bin correlation
µ, ν can be calculated in the Limber approximation (Limber 1954) as

CEE
µν (`) =

∫ χH

0
dχ

qµ(χ)qν(χ)

f 2
K(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (5.5)

which depends on the radial comoving distance χ, the distance to the horizon χH, the angular
diameter distance fK(χ), and the three-dimensional matter power spectrum Pδ(k; χ).

The weight functions qµ(χ) depend on the lensing kernels and hence they are a measure
for the lensing efficiency in each tomographic bin µ:

qµ(χ) =
3ΩmH2

0

2c2

fK(χ)
a(χ)

∫ χH

χ

dχ′ nµ(χ′)
fK(χ′ − χ)

fK(χ′)
, (5.6)

where a(χ) is the scale factor and the source redshift distribution is denoted as nµ(χ) dχ =

nµ(z) dz. It is normalized such that
∫

dχ nµ(χ) = 1.

5.3 Quadratic estimator
There are two main techniques to extract the shear power spectrum directly from the data: one
is based on a maximum-likelihood technique and employs a quadratic estimator (Bond et al.
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1998; Seljak 1998; Hu & White 2001), whereas the other approach uses a pseudo spectrum
(also pseudo-C(`); Hikage et al. 2011). Moreover, there are pseudo-C(`) methods that are
based on correlation-function measurements (e.g. Becker et al. 2015). These present a hybrid
approach and do not directly estimate the power spectrum from the shear data.

Here we summarize the quadratic estimator algorithm applied to cosmic shear including
its extension to tomographic bins. For that we follow the original literature (Hu & White
2001; Lin et al. 2012) and the description in Chapter 4.

The likelihood of the measured shear field in terms of band powers B is assumed to be
Gaussian over most scales of interest for our analysis, i.e.

L =
1

(2π)N |C(B)|1/2
exp

[
− 1

2 dT[C(B)]−1d
]
. (5.7)

The data vector d with components

dµai = γa(ni, zµ) (5.8)

contains both components of the measured shear γa per pixel ni for each redshift bin zµ. The
covariance matrix C is written as the sum of the cosmological signal Csig (cf. equation 5.3
and the noise Cnoise.

As long as the pixel noise of the detector is uncorrelated, the noise matrix can be assumed
to be diagonal, i.e. shape noise is neither correlated between different pixels ni, nj and shear
components γa, γb, nor between different redshift bins zµ, zν:

Cnoise
=
σ2

e

Niµ
δi jδabδµν , (5.9)

where σe denotes the root-mean-square intrinsic ellipticity per ellipticity component for all
the galaxies and Niµ is the effective number of galaxies per pixel i in redshift bin zµ.7

As noted above we approximate the angular power spectra Cϑ
µν(`) with piecewise constant

band powers Bζϑβ(`) of type ϑ ∈ (EE,BB,EB) that span a range of multipoles ` within the
band β. Note that the index ζ runs only over unique redshift bin correlations: for nz redshift
bins there are only nz(nz + 1)/2 unique correlations because zµ × zν = zν × zµ. Hence, the com-
ponents of the cosmic signal covariance matrix can be decomposed into a linear combination
of these band powers:

Csig
(µν)(ab)(i j) =

∑
ζ,ϑ,β

BζϑβMζ(µν)

∫
`∈β

d`
2(` + 1)

[
w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)

]
. (5.10)

The geometry of the shear field, including its Fourier-space decomposition and masks, is en-
coded in the above expression written in square brackets. The matrices Mζ are required for
mapping the redshift-bin indices µ, ν to the unique correlations ζ possible between those. Ex-
plicit expressions for these matrices and the matrices Iϑ and Qϑ can be found in Appendix 4.A.

In order to find the best-fitting band powers Bζϑβ and the cosmic signal Csig that describes
the measured shear data the best, we employ a Newton–Raphson optimization. The algorithm
finds the root of dL/dBA = 0 (Bond et al. 1998; Seljak 1998), i.e. its maximum-likelihood so-
lution, by iteratively stepping through the expression Bi+1 = Bi +δB in which δB is calculated
in each step as

δBA ∝
∑

B

1
2 (F−1)AB Tr[(ddT

− C)(C−1DAC−1)] . (5.11)

7The effective number of galaxies per pixel can be calculated using equation (5.17) multiplied by the area of the
pixel Ω.
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In the following we simplify our notation by introducing the superindex A for a particular
combination of indices (ζϑβ). The matrices DA are derivatives of the full covariance matrix
with respect to any band-power combination. A rigorous definition of DA can again be found
in Appendix 4.A. The elements of the Fisher matrix F can be calculated as

FAB = 1
2 Tr(C−1DAC−1DB) . (5.12)

An important point for the subsequent cosmological analysis is the estimation of the band-
power covariance. The inverse of the Fisher matrix was used in previous work (cf. Hu &
White 2001; Lin et al. 2012) as an approximation of the true covariance. This, however, holds
only in the Gaussian limit. In this analysis we use a covariance matrix based on an analytical
calculation, which is discussed in more detail in Section 5.6.

For that calculation, but also for a proper comparison of theory to data in the subsequent
cosmological analysis, we also have to take into account that each measured band power
BA = Bζϑβ samples the corresponding power spectrum with its own window function. For a
general estimator we can relate the expectation value of the measured band power, 〈Bζϑβ〉, to
the power spectrum at integer multipole through the band-power window function WA(ζϑ)(`)
(cf. Knox 1999; Lin et al. 2012), i.e.

〈Bζϑβ〉 =
∑
`

W(ζϑβ)(ζϑ)(`)Bζϑ(`) , (5.13)

where W(ζϑβ)(ζϑ)(`) denotes the elements of the block diagonal of WA(ζϑ)(`) (A is again a su-
perindex for single indices over the band types, unique redshift correlations and bands). The
sum is calculated for integer multipoles ` in the range 10 ≤ ` ≤ 3000 since the cosmological
analysis is intended to use multipoles in the range 76 ≤ ` ≤ 2300 (cf. Section 5.4). Therefore,
the lowest multipole for the summation should extend slightly below `field = 76 and the high-
est multipole should include multipoles beyond ` = 2300 in order to capture the full behaviour
of the band window function below and above the lowest and highest bands, respectively.

The elements of the window function matrix can be derived as (cf. Lin et al. 2012)

WA(ζϑ)(`) =
∑

B

1
2 (F−1)ABTB(ζϑ)(`) , (5.14)

where F−1 denotes the inverse of the Fisher matrix (cf. equation 5.12). The trace matrix T is
defined as

TA(ζϑ)(`) = Tr[C−1DAC−1Dζϑ(`)] . (5.15)

The derivative Dζϑ(`) denotes the derivative of the full covariance C with respect to the power
at a single multipole ` (per band type ϑ and unique redshift correlation ζ). We write it out
explicitly in Appendix 5.A (cf. equation 5.32).8

5.4 KiDS-450 measurements
In the following analysis we use the KiDS-450 dataset and only provide a concise summary of
it here. For full details we refer the reader to Hildebrandt et al. (2016) and references therein.

8Note that the definition of Dζϑ(`) has changed with respect to the one presented in Chapter 4. This is due to the
fact that in the previous analysis we only needed the EE to EE part of the band window matrix for convolving the
cosmological signal prediction with it. The approach of an analytical covariance, however, requires us to calculate
the full band window matrix with all possible cross-terms, which is now fully accounted for by the new notation
presented here in this paper.
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KiDS is an ongoing ESO optical survey which will eventually cover 1500 deg2 in four
bands (u, g, r, and i). It is carried out using the OmegaCAM CCD mosaic camera mounted
at the Cassegrain focus of the VLT Survey Telescope (VST). The combination of camera and
telescope was specifically designed for weak-lensing studies and hence results in small camera
shear and an almost round and well-behaved point spread function (PSF). The data process-
ing pipeline from individual exposures in multiple colours to photometric redshift estimates
employs the ASTRO-WISE system (Valentijn et al. 2007; Begeman et al. 2013). For the lensing-
specific data reduction of the r-band images THELI (Erben et al. 2005, 2009, 2013; Schirmer
2013) is used. Finally, the galaxy shapes are measured from the THELI-processed data with
a new version of lensfit described in Fenech Conti et al. (2016). The full description of the
pipeline for previous data releases of KiDS (DR1/2) is documented in de Jong et al. (2015)
and Kuijken et al. (2015). All subsequent improvements applied to the data processing for
KiDS-450 are summarized in Hildebrandt et al. (2016). The lensfit-specific updates including
a description of the extensive image simulations for shear calibrations at the sub-percent level
are documented in Fenech Conti et al. (2016).

The interpretation of the cosmic shear signal also requires accurate and precise redshift
distributions, n(z) (cf. equation 5.6). For the estimation of photometric redshifts the code BPZ

(Benítez 2000) is used following the description in Hildebrandt et al. (2012). In previous KiDS
and CFHTLenS analyses the stacked n(z) based on the redshift probability distributions of
individual galaxies, P(z), as estimated by BPZ was used for that purpose. However, the output
of photometric redshift estimation codes such as BPZ is biased at a level that is intolerable for
current and especially future cosmic shear studies (cf. Newman et al. 2015; Choi et al. 2015
for a discussion).

Therefore, Hildebrandt et al. (2016) employ a weighted direct calibration (‘DIR’) of pho-
tometric redshifts with spectroscopic redshifts. This calibration method employs several spec-
troscopic redshift catalogues from surveys overlapping with KiDS, which are described in
detail in Hildebrandt et al. (2016). In practice, spectroscopic redshift catalogues are neither
complete nor a representative sub-sample of the photometric redshift catalogues currently
used in cosmic shear studies. In order to alleviate these practical shortcomings the photo-
metric redshift distributions and the spectroscopic redshift distributions are re-weighted in a
multi-dimensional magnitude space, so that the volume density of objects in this magnitude
space matches between photometric and spectroscopic catalogues (Lima et al. 2008). The di-
rect calibration is further cross-checked with two additional methods and found to yield robust
and precise estimates of the photometric redshift distribution of the galaxy source sample (cf.
Hildebrandt et al. 2016 for details).

The fiducial KiDS-450 dataset consists of 454 individual ≈1 deg2 tiles (cf. fig. 1 from
Hildebrandt et al. 2016). The median seeing is 0.66 arcsec and no r-band image has a see-
ing larger than 0.96 arcsec. Since the observations prioritized increasing the overlap with the
spectroscopic GAMA survey (Driver et al. 2011) the tiles are grouped into five patches (and
corresponding catalogues) covering an area of ≈450 deg2 in total. Due to stellar haloes or arte-
facts in the images the total area of KiDS-450 is reduced to an effective area usable for lensing
of about 360 deg2. Since the catalogue for an individual KiDS patch does not only consist of
one contiguous (GAMA) field but also contains long stripes (e.g. 1 deg by several degrees)
or individual tiles due to the pointing strategy, we exclude these disconnected tiles from our
analysis, which amounts to a reduction in effective area by ≈36 deg2 compared to Hildebrandt
et al. (2016). Moreover, the individual patches are quite large resulting in long run-times for
the signal extraction. Therefore, we split each individual KiDS patch further into two or three
subpatches yielding 13 subpatches in total with an effective area of 323.9 deg2. Each sub-
patch contains a comparable number of individual tiles and the splitting into subpatches was
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performed along borders that do not split individual tiles, because a single tile represents the
smallest data unit for systematic checks and further quality control tests.

The coordinates in the catalogues are given in a spherical coordinate system measured in
right ascension α and declination δ. Before we pixelize each subpatch into shear pixels, we
first deproject the spherical coordinates into flat coordinates using a tangential plane projection
(also known as gnomonic projection). The central point for the projection of each subpatch,
i.e. its tangent point, is calculated as the intersection point of the two great circles spanned by
the coordinates of the edges of the subpatch.

The shear components ga per pixel at position n = (xc, yc) are estimated from the ellipticity
components ea inside that pixel:

ga(xc, yc) =

∑
i wiea,i∑

i wi
, (5.16)

where the index a labels the two shear and ellipticity components, respectively, and the index
i runs over all objects inside the pixel. The ellipticity components ea and the corresponding
weights w are computed during the shape measurement with lensfit and they account both for
the intrinsic shape noise and measurement errors.

For the position of the average shear we take the centre of the pixel (hence the subscript ‘c’
in the coordinates). Considering the general width of our multipole band powers it is justified
to assume that the galaxies are uniformly distributed in each shear pixel. Finally, we define
distances ri j = |ni − nj| and angles ϕ = arctan (∆y/∆x) between shear pixels i, j which enter
in the quadratic estimator algorithm (cf. Section 5.3).

The lowest scale of the multipole band powers that we extract is in general set by the
largest separation θmax possible between two shear pixels in each subpatch. In a square-field
that would correspond to the diagonal separation of the pixels in the corners of the patch.
However, this would yield only two independent realizations of the corresponding multipole
`min. Hence, defining the lowest physical multipole `field as corresponding to the distance
between two pixels on opposite sides of the patch ensures that there exist many independent
realizations of that multipole so that a measurement thereof is statistically meaningful. In
general, the subpatches used in this analysis are not square but rectangular and hence we
follow the conservative approach of defining `field corresponding to the shorter side length of
the rectangle. Choosing then the shortest side length among all 13 subpatches yields `field = 76
corresponding to a distance θ ≈ 4.◦74. The lowest multipole over all subpatches is `min = 34
corresponding to a distance θ ≈ 10.◦5 but we set the lower border of the first band power
even lower to ` = 10. That is because the quadratic estimator approach allows us to account
for any leftover DC offset, i.e. a non-zero mean amplitude, in the signal by including even
lower multipoles than `min in the first band power (cf. Section 5.5). The highest multipole
`max available for the data analysis is set by the side length of the shear pixels. The total
number of shear pixels in the analysis is also a critical parameter for the run-time of the
algorithm because it sets together with the number of unique redshift correlations and the
duality of the shear components the dimensionality of the fundamental covariance matrix
(cf. equation 5.3). Moreover, Gaussianity is one of the assumptions behind the quadratic
estimator which naturally limits the highest multipole to the mildly non-linear regime (cf.
Hu & White 2001). Hence, we set σpix = 0.◦14 corresponding to a maximum multipole
`pix = 2571. However, the borders of the last band should extend to at least 2`pix ≈ 5150 due
to the increasingly oscillatory behaviour of the pixel window function (cf. equation 5.2) close
to and beyond `pix. The width of all intermediate bands should be at least 2`field in order to
minimize the correlations between them (cf. Hu & White 2001). Given all these constraints
we extract in total seven E-mode band powers over the range 10 ≤ ` ≤ 5150. However, for the
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Table 5.1: Band-power intervals.

Band No. `-range θ-range Comments

1 10–75 2160.0–288.0 arcmin (a), (b)
2 76–220 284.2–98.2 arcmin –
3 221–420 98.0–51.4 arcmin –
4 421–670 51.3–32.2 arcmin –
5 671–1310 32.2–16.5 arcmin –
6 1311–2300 16.5–9.4 arcmin (a)
7 2301–5150 9.4–4.2 arcmin (a)

Notes. (a) Not used in cosmological analysis. (b) No B-mode extracted.
The θ-ranges are just an indication and cannot be compared directly to θ-ranges used in real-
space correlation function analyses due to the non-trivial functional dependence of these anal-
yses on Bessel functions (cf. Section 5.7.1).

Table 5.2: Properties of the galaxy source sample.

redshift bin zmedian N neff σe

z1: 0.10 < zB ≤ 0.45 0.41 5 923 897 3.63 arcmin−2 0.2895
z2: 0.45 < zB ≤ 0.90 0.70 6 603 721 3.89 arcmin−2 0.2848

Notes. The median redshift zmedian, the total number of objects N, the effective number density
of galaxies neff (cf. equation 5.17), and the dispersion of the intrinsic ellipticity distribution
σe per redshift bin for the KiDS-450 dataset used in our analysis.

cosmological analysis we will drop the first and last band powers due to their potential noise-
contamination which reduces the physical multipole range to 76 ≤ ` ≤ 2300. In addition
to the E-modes we extract six B-mode band powers. Their multipole ranges coincide with
the ranges of the E-mode bands 2–7 (due to the expected strong signal in the first E-mode
band power a potential B-mode contamination is negligible). All ranges are summarized in
Table 5.1 where we also indicate the corresponding angular scales. Note, however, that the
naïve conversion from multipole to angular scales is insufficient for a proper comparison to
correlation function results. An outline of how to compare both approaches properly is given
in Section 5.7.1.

We calculate the effective number density of galaxies used in the lensing analysis follow-
ing Heymans et al. (2012) as

neff =
1
Ω

(
∑

i wi)2∑
i w2

i

, (5.17)

where w is the lensfit weight and the unmasked area is denoted as Ω. In Table 5.2 we list
the effective number densities per KiDS patch and redshift bin. Note that there exist also
alternative definitions for neff but the one used here has the practical advantage that it can be
used directly to set the source number density in the creation of mock data.

In order to compare results later on to Hildebrandt et al. (2016) we only use sources in the
range 0.10 < zB ≤ 0.90, where zB is the Bayesian point estimate of the photometric redshifts.
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Figure 5.1: The normalized redshift distributions for the two tomographic bins employed in this study
and estimated from the weighted direct calibration scheme (‘DIR’) presented in Hildebrandt et al. (2016).
The dashed (grey) vertical lines mark the median redshift per bin (cf. Table 5.2) and the (grey) shaded
regions indicate the target redshift selection by cutting on the Bayesian point estimate for photometric
redshifts zB.

We divide this range further into two broad tomographic bins z1: 0.10 < zB ≤ 0.45 and z2:
0.45 < zB ≤ 0.90 with similar effective number densities (cf. Table 5.2 and Fig. 5.1). Note
that zB is only used as a convenient quantity to define tomographic bins but does not enter
anywhere else in the analysis. The limitation to only two redshift bins is due to run-time since
the dimension of the fundamental covariance matrix (cf. equation 5.3) depends very strongly
on the number of unique redshift correlations as noted already earlier.

5.5 Multiplicative bias correction and sensitivity to large-
scale additive bias

The observed shear γobs, measured as a weighted average of galaxy ellipticities, is generally
a biased estimator of the true shear γ. The bias is commonly parametrized as (Heymans et al.
2006)

γobs = (1 + m)γ + c , (5.18)

where m and c refer to the multiplicative bias and additive bias, respectively.
The multiplicative bias is mainly caused by the effect of pixel noise in the measurements

of galaxy ellipticities (Melchior & Viola 2012; Refregier et al. 2012; Miller et al. 2013), but
it can also arise if the model used to describe the galaxy profile is incorrect, or if stars are
misclassified as galaxies. The latter two effects are generally subdominant compared to the
noise bias. We quantify the amplitude of the multiplicative bias in the KiDS data by means
of a dedicated suite of image simulations (Fenech Conti et al. 2016). We closely follow the
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procedure described in Hildebrandt et al. (2016) and we derive a multiplicative correction for
each tomographic bin, i.e. mfid

z1
= −0.013 ± 0.010 and mfid

z2
= −0.012 ± 0.010. The errorbars

account both for statistical uncertainties and systematic errors due to small differences be-
tween data and simulations. In our likelihood analysis we apply the multiplicative correction
to the measured shear power spectrum and in order to marginalize over the uncertainties on
the m-correction we propagate them into the likelihood analysis. As the errors on the mfid

zµ are
fully correlated (Hildebrandt et al. 2016) we only need to include one free nuisance parame-
ter. We vary mz1 very conservatively within a 2σ tophat prior centred on its fiducial value in
each step i of the likelihood estimation. The value for mz2 is then fixed through the relation
mi

z2
= mfid

z2
+ ∆mi with ∆mi = mi

z1
− mfid

z1
.

Additive biases are mainly caused by a residual PSF ellipticity in the shape of galaxies
(e.g. Hoekstra 2004; van Uitert & Schneider 2016). More generally, any effect causing a
preferential alignment of shapes in the galaxy source sample will create an additive bias. For
example, in an early stage of the KiDS-450 data processing a small fraction of asteroids ended
up in the galaxy source sample. This resulted in strongly aligned shape measurements with
very high signal-to-noise causing a substantial c-term (cf. appendix D4 in Hildebrandt et al.
2016). This example also demonstrates that a potential c-term correction can only be derived
empirically from the data: it is impossible to include every source for an additive bias in image
simulations.

Here we demonstrate how the quadratic estimator can naturally deal with a residual addi-
tive shear in the data. This is a clear advantage over correlation function measurements, where
the residual additive shear needs to be properly quantified and subtracted from the data, usu-
ally hampering the ability of measuring the cosmic shear signal at large angular separations.

If sufficiently low multipoles are included in the extraction of the first multipole band
of the shear power spectrum band powers, this band accounts for any residual DC offset in
the data such as the effect of a global c-term. For a clean demonstration of this feature,
we employ Gaussian random fields (GRFs) with realistic CFHTLenS survey properties (e.g.
masking, noise level; cf. Chapter 4 for details). The GRFs were readily available and for this
demonstration the differences in survey properties are negligible. We extract E- and B-modes
simultaneously from four GRFs that match the W1, W2, W3, and W4 fields from CFHTLenS
in size and shape. The measurements are performed in two broad redshift bins but we use
the same multipole binning and shear pixel size σpix as used in the analysis of the KiDS-450
data (cf. Table 5.1). In a first step we extract a reference signal from the GRFs to which
no additional global c-term was added. In a second step we apply a global additive term of
c = 2 × 10−3 to both ellipticity components and re-extract the shear power spectra. In Fig. 5.2
we show the residuals between these two signals for all tomographic and multipole bins. As
expected, only the first multipole bin is affected substantially by the global c-term, but all
remaining bands are essentially unaffected. Hence, removing the first multipole bin from a
subsequent cosmological analysis replaces a sophisticated global c-correction at reasonable
computational costs.

5.6 Covariance
An important ingredient for an accurate and precise inference of cosmological parameters
from the measured band powers is the covariance matrix. There are several approaches to
estimate the covariance matrix: the brute-force approach of extracting it directly from a sta-
tistically significant number (to reduce numerical noise) of mock catalogues, an analytical
calculation or, as a special feature of the quadratic estimator, the inverse of the Fisher matrix.
Of course, each method has its specific advantages and disadvantages. The brute-force ap-
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Figure 5.2: The residuals between a shear power spectrum extracted from reference Gaussian random
fields (GRFs) and the one extracted from GRFs where a global c-term of c = 2×10−3 was applied to both
ellipticity components. From left to right the unique correlations of the two redshift bins are shown. The
GRFs were created to match the four fields of CFHTLenS in area, shape, noise properties, and redshift
range (i.e. z1: 0.50 < zB ≤ 0.85 and z2: 0.85 < zB ≤ 1.30). The signal extraction, however, employs
the multipole binning that is also used in the subsequent KiDS data analysis and extends to multipoles
significantly below the one set by the field size. The globally applied c-term only affects the band power
estimate of the first multipole bin but has no effect on the remaining bands. Hence, removing the first
band power from a subsequent cosmological analysis is sufficient to account for a leftover global c-term
in the data. The 1σ errorbars are based on the Fisher matrices and the horizontal dashed (grey) lines
indicate ±20 per cent margins.

proach requires significant amounts of additional run-time, both for the creation of the mocks
and the signal extraction. This can become a severe issue especially if the signal extraction
is also computationally demanding, as is the case for the (tomographic) quadratic estimator.
Moreover, if the mocks are based on N-body simulations the particle resolution and box size
of these set fundamental limits for the scales that are available for a covariance estimation
and to which level of accuracy and precision that is possible. In contrast, the Fisher matrix is
computationally the cheapest estimate of a covariance matrix since it comes at no additional
computational costs. However, it is only an accurate representation of the true covariance in
the Gaussian limit and hence the errors for the non-linear scales will be underestimated. More-
over, the largest scale for a Fisher matrix based covariance is limited to the size of the patch.
Therefore, the errors for scales corresponding to the patch size will also be underestimated.
A possible solution to the shortcomings of the previous two approaches is the calculation of
an analytical covariance matrix. This approach is computationally much less demanding than
the brute-force approach and does not suffer from the scale-dependent limitations of the pre-
vious two approaches. Moreover, the non-Gaussian contributions at small scales can also be
properly calculated. Hence, we follow the fiducial approach of Hildebrandt et al. (2016) and
adopt their method for computing the analytical covariance (except for the final integration to
correlation functions). The model for the analytical covariance consists of the following three
components:
(i) a disconnected part that includes the Gaussian contribution to shape-noise, sample vari-
ance, and a mixed noise-sample variance term,
(ii) a non-Gaussian contribution from in-survey modes originating from the connected matter-
trispectrum, and
(iii) a contribution from the coupling of in-survey and super-survey modes.
All cosmology dependent calculations employ a WMAP9 cosmology (Hinshaw et al. 2013)
and a detailed description of the full model will be presented in Joachimi et al. (in prepara-
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tion).
We calculate the analytical covariance matrix C(ζϑ)(γφ)(`, `′) at integer multipoles `, `′ over

the range 10 ≤ `, `′ ≤ 30009 where the index pairs ζ, γ and ϑ, φ label the unique redshift
correlations and band types (EE and BB), respectively. Note that the EE to BB and vice versa
the BB to EE part of this matrix is zero, i.e. there is no power leakage for an ideal estimator.
Finally, we create the analytical covariance matrix of the measured band powers by convolving
C(ζϑ)(γφ)(`, `′) with the full band window matrix:

CAB = W̃Aζϑ(`) C(ζϑ)(γφ)(`, `′) (W̃
T
)Bγφ(`′) , (5.19)

where the superindices A, B run over the band powers, their types (i.e. EE and BB), and
the unique redshift correlations. W̃ is the band window matrix defined in equation (5.14)
multiplied with the normalization for band powers, i.e. `(`+1)/(2π). Note that the convolution
with the band window matrix propagates all properties of the quadratic estimator into the band
power covariance.

5.7 The KiDS-450 shear power spectrum

For each of the 13 subpatches of the five KiDS fields we extract the weak-lensing power
spectrum in band powers spanning the multipole range 10 ≤ ` ≤ 5150 (cf. Section 5.4 and
Table 5.1). The measurement is performed in two redshift bins in the ranges z1: 0.10 <
z ≤ 0.45 and z2: 0.45 < z ≤ 0.90 (cf. Table 5.2). This yields in total two auto-correlation
spectra and one unique cross-correlation spectrum per subpatch. In the subsequent analysis we
combine all spectra by weighting each spectrum with the effective area of the subpatch. This
weighting is optimal in the sense that the effective area is proportional to the number of galaxy
pairs per patch and the number of pairs sets the shape-noise variance of the measurements.
We present the resulting seven E-mode band powers in Fig. 5.3. The errors on the signal are
estimated from the analytical covariance (cf. Section 5.6), which includes contributions from
shape noise, cosmic variance, and super-sample variance. The extension along the multipole
axis indicates the width of the band. The signal is plotted at the naïve centre of the band
whereas for the subsequent likelihood analysis we take the window functions of the bands
into account (cf. equation 5.13). Only the bands between the (grey) shaded areas enter in
the cosmological analysis. We exclude the first band as it contains by construction multipoles
that extend below the lowest physical multipole (i.e. `field ≈ 76) in order to account for any
remaining DC offset in the data (such as an additive global c-term, cf. Section 5.5). The last
band at the highest multipoles is also excluded as it is designed to sum up the oscillating part
of the pixel window function at high multipoles.

We simultaneously extract E- and B-modes. As noted in Section 5.2 the cosmological
signal is contained entirely in the E-modes in the absence of systematics. Hence, the B-mode
signal is used as a test for residual systematics in the data. We show the effective area weighted
six B-mode band powers in Fig. 5.4. The B-mode errors are derived from the B-mode part of
the inverse Fisher matrix as described in Chapter 4. We do not use the B-mode errors derived
from the analytical covariance since they currently do not account for survey-boundary effects
and therefore are underestimated.

In order to use the B-mode band powers as an independent test for residual systematics,
we have to confirm that there is no significant leakage of power from E-modes to B-modes.

9This range is matching the range over which we later perform the summation when we convolve the theoretical
signal predictions with the band window functions.
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From a previous analysis (Lin et al. 2012) we do not expect the quadratic estimator to in-
duce power leakage from E- to B-modes. However, if the shape noise is misestimated we
might expect some power leakage for the highest multipole band powers. We investigate
this using the band window functions derived from the full band window function matrix (cf.
equation 5.14), which is also computed as an average over all subpatches with effective area
weights. In Fig. 5.5 we show (red points) the convolution of a fiducial cosmological E-mode
signal (employing the same WMAP9 cosmology used for the calculation of the analytical co-
variance) for the low-redshift auto-correlation with the corresponding band window functions
of all possible cross-terms (e.g. EE, z1 × z1 to BB, z2 × z2). The fiducial E-mode signal is
plotted as the solid black line and the errorbars are derived from the analytical covariance.
Additionally, we show a second set of errorbars in grey. These indicate the amplitude of the
Fisher matrix based B-mode errors. We expect the signal to appear only in the leftmost panel
depicting the auto-contribution (i.e. from EE, z1 × z1 to EE, z1 × z1). Indeed, the cross-term
contributions are order(s) of magnitude lower than the E-mode band powers and well within
the statistical B-mode errors. Hence, there is no significant power leakage from E- to B-modes
which would introduce a detectable spurious B-mode signal.

Hence, the significance of the measured B-modes can now be used to assess whether or
not there are residual systematics in the data. Qualitatively this is shown in Fig. 5.4. We test
the hypothesis that the B-modes in the first five bands are consistent with zero by means of a
χ2-goodness-of-fit measure. This yields a reduced χ2 of χ2

red = 1.06 for 14 degrees of freedom.
We conclude that the B-modes are consistent with zero over the multipole range used in the
cosmological analysis.

In passing we note that Fig. 5.5 shows that the estimates of the fiducial E-mode power
spectrum with the band window functions for bands 6 and 7 are biased low and high, re-
spectively. This is visible in the auto-contribution (EE, z1 × z1) to (EE, z1 × z1), i.e. the
leftmost panel. Therefore, we decide to conservatively remove band 6 from the subsequent
cosmological analysis, which reduces the available multipole range to 76 ≤ ` ≤ 1310.

5.7.1 Qualitative comparison to correlation functions

Most cosmic shear studies to date employ real-space correlation functions (e.g. Heymans et al.
2013; Becker et al. 2015; Hildebrandt et al. 2016) because they are conceptually easy and fast
to compute. In contrast to direct power spectrum estimates, correlation functions measured
at a given angular separation sum up contributions over a wide range of multipoles. Due to
this mode-mixing it is non-trivial to compare angular scales to multipole ranges, as well as to
cleanly separate linear and non-linear scales.

As an example we qualitatively compare here correlation function measurements based
on the angular scales presented in Hildebrandt et al. (2016) to the direct power spectrum
measurements employing the quadratic estimator. For that purpose we calculate a fiducial
shear power spectrum (cf. equation 5.5) employing a Planck cosmology (Planck Collaboration
XIII 2015a) and the redshift distributions derived for our two tomographic bins. A correlation-
function based estimator such as ξ± is related to the shear power spectrum Cµν(`) through

ξ
µ,ν
± (θ) =

1
2π

∫
d` `Cµν(`)J0,4(`θ) ≡

∫
d` Iξ± (`θ) , (5.20)

where θ is the angular distance between pairs of galaxies and J0,4 is the zeroth- (for ξ+) or
fourth-order (for ξ−) Bessel function of the first kind. In contrast, the quadratic estimator
(QE) convolves the theoretical shear power spectrum with its band window matrix WA(`) (cf.
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Figure 5.3: Measured E-mode band powers in tomographic bins averaged with the effective area per
patch over all 13 KiDS-450 subpatches. From left to right we show the auto-correlation signal of the
low-redshift bin (blue), the cross-correlation signal between the low and the high-redshift bin (orange),
and the auto-correlation signal of the high-redshift bin (red). Note that negative band powers are shown
at their absolute value with an open symbol. The low-redshift bin contains objects with redshifts in the
range 0.10 < z1 ≤ 0.45 and the high-redshift bin covers a range 0.45 < z2 ≤ 0.90. The 1σ-errors in the
signal are derived from the analytical covariance convolved with the averaged band window matrix (cf.
Section 5.6) whereas the extension in `-direction is the width of the band. Band powers in the shaded
regions (grey) to the left and right of each panel are excluded from the cosmological analysis (see text
for details). The solid line (black) shows the power spectrum for the cosmological model from (Planck
Collaboration XIII 2015a). Note, however, that the band powers are centred at the naïve `-bin centre and
thus the convolution with the band window function is not taken into account in this plot, in contrast to
the cosmological analysis.
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Figure 5.5: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the low-
redshift auto-correlation (i.e. z1 × z1) convolved with the corresponding band window functions (red
points) of all possible cross-combinations. The first panel from the left depicts the auto-contribution
from (EE, z1 × z1) to (EE, z1 × z1). The grey errorbars show the statistical uncertainties associated with
the B-modes. Open symbols denote negative values plotted at their absolute value. The corresponding
plots for the remaining (EE, z2 × z1) and (EE, z2 × z2) cross-combinations are shown in Appendix 5.B.

equation 5.14):

BA =
∑
`

`(` + 1)
2π

WA(`)CA(`) ≡
∑
`

IQE(`) , (5.21)

where the superindex A runs again over all multipole bands and unique redshift correlations.
The convolved power spectra as a function of multipoles defined at the right-hand sides of
both equations are shown in Fig. 5.6 for the lowest redshift bin. In the upper panel we indicate
the borders of the bands used in our cosmological analysis (grey dashed lines; cf. Table 5.1).
In the two bottom panels we show the lower and upper limits of our power spectrum analysis.
For the calculation of Iξ± (`θ) we use the central values of the θ±-intervals from the cosmic
shear analysis of Hildebrandt et al. (2016). Fig. 5.6 shows that the ξ+-measurements are
highly correlated and anchored at very low multipoles, whereas the ξ−-measurements show a
high degree of mode-mixing. In contrast, the quadratic estimator measurements of the power
spectrum are much more cleanly separated and the degree of mode-mixing is much lower.
We also note that correlation-function measurements get contributions from lower multipoles
than ` < 76 as well as multipoles larger than ` > 1310, which in contrast do not contribute to
the signal in our power spectrum analysis. Most of the cosmological information is contained
in high multipoles and although the correlation-function measurements extend further into
the high multipole regime, the contributions from these scales are non-negligible only for
angular scales θ < 3 arcmin. Hence, we do not expect significant differences in the precision
of cosmological parameters between both approaches. However, the interpretation of the
correlation-function signal at these scales requires accurate knowledge of the non-linear part
of the matter power spectrum at high wavenumbers k.

5.8 Cosmological inference
The cosmological interpretation of the measured tomographic band powers Bα derived in
Section 5.7 is done in a Bayesian framework. For the estimation of cosmological parameters
p we sample the shear likelihood

−2 lnL(p) =
∑
α, β

dα(p)(C−1)αβ dβ(p) , (5.22)
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Figure 5.6: Top panel: measurement of a fiducial shear power spectrum using the quadratic estimator
(cf. equation 5.21) in five band powers between 76 ≤ ` ≤ 1310. The borders of the bands are indicated
by the vertical dashed (grey) lines. Mid panel: measurement of the same fiducial shear power spectrum
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+ ≤ 50 arcmin. Bottom panel: measurements of the same fiducial shear power spectrum using the ξ−-
statistics for correlation functions (cf. equation 5.20) in an angular range 6 arcmin ≤ θcen

− ≤ 200 arcmin.
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where the indices α, β run over the tomographic bins. The covariance matrix C is the one
calculated in Section 5.6 but employing only its E-mode part. The components of the data
vector are calculated as

dα(p) = (Bα − 〈Bα(p)〉model) , (5.23)

where the dependence on cosmological parameters enters only in the calculation of the pre-
dicted E-mode band powers, 〈Bi(`)〉model (cf. equations 5.13 and 5.5).

In addition to sampling the likelihood for the derivation of cosmological parameter con-
straints, we also intend to compare various model extensions to a baseline model in terms of
the Bayes factor which is based on the evidences of the models. The Bayesian evidence Z is
the normalization of the posterior over the parameters p (and usually ignored if one is only
interested in parameter constraints). In that sense, however, it can also be interpreted as the
average of the likelihood over the prior

Z =

∫
dn pL(p)π(p) , (5.24)

where π(p) is the prior and n is the dimension of the parameter space. Hence, the Bayesian
evidence naturally implements Occam’s razor: a simpler theory with fewer parameters, i.e.
a more compact parameter space, will result in a higher evidence compared to a theory that
requires more parameters, unless the latter explains the data significantly better.

Based on the evidences for models M1 and M0 and the a priori probability ratio for the
two models, Pr(M1)/Pr(M0), the Bayes factor is defined as

K1,0 ≡
Z1

Z0

Pr(M1)
Pr(M0)

, (5.25)

and can be used to make a decision between models M1 and M0 because K1,0 > 1 implies,
for example, a preference of model M1 over model M0. Usually, Pr(M1)/Pr(M0) = 1 unless
there are strong (physical) reasons to prefer one model over the other a priori which is not the
case in our subsequent analysis. Furthermore, we will use the classification scheme of Kass
& Raftery (1995) for the interpretation of the Bayes factor K (or equivalently 2 ln K).

For an efficient evaluation of the high-dimensional integral of equation (5.24) we employ
the nested sampling algorithm MULTINEST10 (Feroz & Hobson 2008; Feroz et al. 2009, 2013).
Conveniently, its PYTHON-wrapper PYMULTINEST (Buchner et al. 2014) is included in the frame-
work of the cosmological likelihood sampling package MONTE PYTHON11 (Audren et al. 2013)
with which we derive all cosmology-related results in this analysis.

5.8.1 Theoretical power spectrum
The calculation of the tomographic shear power spectrum Cµν(`) is described in Section 5.2
and summarized by noting that it is just the projection of the 3D matter power spectrum Pδ

along the line-of-sight weighted by lensing weight functions qµ that take the lensing efficiency
of each tomographic bin into account.

For the calculation of the matter power spectrum Pδ(k; χ) in equation (5.5) we employ the
Boltzmann-code CLASS12 (Blas et al. 2011; Audren & Lesgourgues 2011). The non-linear cor-
rections are implemented through the HALOFIT algorithm including the recalibration by Taka-
hashi et al. (2012). Additionally, the effects of (massive) neutrinos are also implemented in

10Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
11Version 2.2.1 from https://github.com/baudren/montepython_public
12Version 2.5.0 from https://github.com/lesgourg/class_public

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
https://github.com/baudren/montepython_public
https://github.com/lesgourg/class_public
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CLASS following Lesgourgues & Tram (2011). Massive neutrinos introduce a redshift- and
scale-dependent reduction of power in the matter power spectrum Pδ. However, this reduction
of power also propagates into the lensing power spectra Cµν(`), though smoothed by the lens-
ing weight functions qµ. In the multipole range considered in this analysis, we expect massive
neutrinos to decrease the lensing power spectrum by an almost constant factor. Hence, the
effect of massive neutrinos causes a degeneracy with cosmological parameters affecting the
normalization of the lensing power spectrum.

In addition to massive neutrinos, the effect of baryon feedback is another source of a scale-
dependent reduction of power, especially in the non-linear regime. Although the full physical
description of baryon feedback is not established yet, hydrodynamical simulations offer one
route to estimate its effect on the matter power spectrum. In general, the effect is quantified
through a bias function with respect to the dark-matter only Pδ (e.g. Semboloni et al. 2013;
Harnois-Déraps et al. 2015):

b2(k, z) ≡
Pmod
δ (k, z)

Pref
δ (k, z)

, (5.26)

where Pmod
δ and Pref

δ denote the power spectra with and without baryon feedback, respectively.
In this work we make use of the results obtained from the OverWhelmingly Large Simula-

tions (OWLS; Schaye et al. 2010, van Daalen et al. 2011) by implementing the fitting formula
for baryon feedback derived in Harnois-Déraps et al. (2015):

b2(k, z) = 1 − Abary(Aze(Bz x−Cz)3
− DzxeEz x) , (5.27)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez are functions of the scale
factor a = 1/(1 + z). These terms also depend on the baryonic feedback model and we refer
the reader to Harnois-Déraps et al. (2015) for the specific functional forms and constants.
Additionally, we introduce a general free amplitude Abary which we will use as a free parameter
to marginalize over while fitting for the cosmological parameters in some models.

We demonstrate the effects of massive neutrinos and baryon feedback on the 3D matter
power spectrum and the shear power spectrum (employing the KiDS-450 lensing kernel of
our analysis) in Fig. 5.7. Baryon feedback causes a significant reduction of power in the high
multipole regime whereas massive neutrinos lower the amplitude of the shear power spectrum
over all scales by an almost constant value.

In general, the observed shear power spectrum is a biased tracer of the cosmological con-
vergence power spectrum due to the effect of intrinsic alignments (IA):

Ctot
µν (`) = CGG

µν (`) + CII
µν(`) + CGI

µν (`) , (5.28)

where CII is the power spectrum of intrinsic ellipticity correlations between neighbouring
galaxies (termed ‘II’) and CGI is the power spectrum of correlations between the intrinsic
ellipticities of foreground galaxies and the gravitational shear of background galaxies (termed
‘GI’). For the theoretical description of these effects we follow Hildebrandt et al. (2016) and
employ the ‘linear non-linear’ model of intrinsic alignments (Hirata & Seljak 2004; Bridle &
King 2007; Joachimi et al. 2011), so that we can write:

CII
µν(`) =

∫ χH

0
dχ

nµ(χ)nν(χ)F2(χ)

f 2
K(χ)

Pδ

(
k =

`

fK(χ)
; χ

)
, (5.29)

CGI
µν (`) =

∫ χH

0
dχ

qν(χ)nµ(χ) + qµ(χ)nν(χ)

f 2
K(χ)

F(χ)Pδ

(
k =

`

fK(χ)
; χ

)
, (5.30)
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Figure 5.7: Upper panel: the ratio of modified matter power spectra over the dark matter only power
spectrum. The dashed line (blue) shows the effect of the baryon feedback bias in the AGN model from
OWLS (Schaye et al. 2010; van Daalen et al. 2011) using the implementation by Harnois-Déraps et al.
(2015) (cf. equation 5.27 with Abary = 1). The modifications due to three degenerate massive neutrinos
with total mass Σmν = 0.18 eV is demonstrated by the dash-dotted line (red). The redshift for the power
spectrum calculation is z = 0.7 corresponding to the median redshift of the high-redshift bin used in
the subsequent analysis (cf. Table 5.2). Lower panel: same as upper panel but for the lensing power
spectrum of the high-redshift bin z2 : 0.45 < zB ≤ 0.90 (cf. Table 5.2). The vertical dashed (grey) lines
mark the multipole range of the subsequent cosmological analysis (cf. Table 5.1).
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with the lensing weight function qµ(χ) defined as in equation (5.6) and

F(χ) = −AIAC1ρcrit
Ωm

D+(χ)
. (5.31)

Here we also introduce a dimensionless amplitude AIA which allows us to rescale and vary
the fixed normalization C1 = 5 × 10−14 h−2M�−1Mpc3 in the subsequent likelihood analysis.
The critical density of the Universe today is denoted as ρcrit and D+(χ) is the linear growth
factor normalized to unity today. In general, equation (5.31) can include also a luminosity de-
pendence and/or an additional redshift scaling. The majority of the KiDS-450 source sample
consists of late-type galaxies for which no significant detection of intrinsic alignments exists
to date. For massive early-type galaxies, however, a luminosity-dependent alignment signal
has been measured with no indication for a redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). For their re-analysis of CFHTLenS, which is of similar statistical power as KiDS-
450, Joudaki et al. (2016) concluded that the full flexibility of the intrinsic alignment model
including either a luminosity dependence, or a redshift dependence, or both cannot be con-
strained sufficiently by the data. As a cross-check, we select galaxies between 20 < mr < 24
from COSMOS (Laigle et al. 2016) as a proxy for the KiDS sample and study their r-band lu-
minosities. The ratio between the mean luminosities of the two tomographic bins used in this
analysis is 1.03. Therefore, we can indeed neglect any luminosity dependence in the mod-
elling of intrinsic alignments for our galaxy source sample. Hence, we follow Hildebrandt
et al. (2016) and do not consider a luminosity dependence and/or additional redshift scaling.
In order to facilitate the notation of equations (5.29) and (5.30) we have not introduced these
additional terms in equation (5.31). Therefore, only a free amplitude AIA is allowed for the
modelling of intrinsic alignments in the subsequent likelihood analysis.

5.8.2 Models

The two most important parameters entering in the calculation of the shear power spectrum are
Ωm the energy density of matter in the Universe today and As the amplitude of the primordial
power spectrum. These two quantities determine the tilt and the total amplitude of the shear
power spectrum, respectively. However, simultaneous changes in these two parameters have
only a subtle net effect on the shear power spectrum and lead in general to a degeneracy in
these two parameters. Moreover, observationally it is easier to work instead of As with the
quantity σ8 which is the root-mean-square variance of the density field smoothed with the
Fourier transform of a tophat filter on a scale R = 8 h−1Mpc in real-space. Hence, the lensing-
intrinsic degeneracy is usually referred to as a degeneracy in Ωm andσ8 and the 2D projections
of credibility intervals in this parameter plane define the lensing ‘bananas’. The extent of these
degeneracy ‘bananas’ (i.e. the top and bottom of the ‘banana’) is sensitive to the choice of
sampling parameters (e.g. As or ln(1010As)) and their prior ranges. Moreover, a principal
components analysis shows that the parameter combination σ8(Ωm/0.3)α, which essentially
measures the width of the ‘banana’, is most robustly constrained by cosmic shear. In Fig. 5.8
we explicitly show this for two sets of priors as specified in Table 5.3. Increased priors for
Ωbh2 and h have a significant impact on the extent of the ‘banana’ along the degeneracy line
in the Ωm–σ8 plane as shown in Fig. 5.8. However, the increased prior ranges hardly influence
the constraint on the parameter combination σ8(Ωm/0.3)α for which we find σ8(Ωm/0.3)α =

0.709± 0.037 for the fiducial prior ranges and σ8(Ωm/0.3)α = 0.709± 0.039 for the increased
prior ranges. Hence, we adopt the following strategy for the parameter sampling in this paper:
we will sample in ln(1010As) and Ωcdmh2 and treat σ8 and Ωm as derived quantities in order to
calculate the combined constraint σ8(Ωm/0.3)α. As opposed to previous analyses we refrain
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Figure 5.8: The 68 and 95 per cent credibility intervals in the Ωm–σ8 plane for the same baseline
ΛCDM model employing two different sets of priors (cf. Table 5.3). The ‘fiducial priors’ (red con-
tours) artificially cut the extent of the degeneracy ‘banana’ but leave its width unchanged in comparison
to the ‘wider priors’ (blue contours). This results in consistent constraints on σ8(Ωm/0.3)α yielding
σ8(Ωm/0.3)α = 0.709 ± 0.037 for the ‘fiducial priors’ σ8(Ωm/0.3)α = 0.709 ± 0.039 for the ‘wider
priors’.

from showing any further ‘banana’-plots due to their sensitivity to priors as shown in Fig. 5.8
in order to avoid any misleading interpretations (cf. the discussions of that in Joudaki et al.
2016; Hildebrandt et al. 2016).

In addition to the parameter combination σ8(Ωm/0.3)α also the quantity S 8 ≡ σ8
√

Ωm/0.3
is used in the literature based on the observation that the exponent α is usually found to be
≈ 0.5.

In the following likelihood analysis we assume a flat cosmological model and use the
same set of parameters and priors from the analysis in Hildebrandt et al. (2016) for our fidu-
cial model (referred to as ‘ΛCDM’ henceforth): Ωcdmh2, ln(1010As), Ωbh2, ns, h. The value
of the Hubble parameter today is denoted as h, Ωbh2 is the baryonic matter density mul-
tiplied with h2 and ns is the exponent of the primordial power spectrum. Since data from
particle physics experiments indicate that neutrinos have mass, we include two massless and
one massive neutrino with a fixed minimal mass of Σmν = 0.06 eV. Moreover, we include
a nuisance parameter mz1 for the multiplicative correction in the first redshift bin and corre-
late the m-correction for the second redshift bin with it (cf. Section 5.4 for details). Since
Hildebrandt et al. (2016) have shown that the uncertainty in the photometric redshift dis-
tribution is substantially smaller than the measurement errors and sampling variance on the
cosmic shear signal, we do not include any nuisance parameter for the photometric redshift
uncertainties. Having demonstrated the robustness of σ8(Ωm/0.3)α and S 8 under a change of
priors and in the interest of run-time we choose to employ narrow priors on h and Ωbh2. The
prior range on h corresponds to the ±5σ uncertainty centred on the distance-ladder constraint
from Riess et al. (2016) of h = 0.730 ± 0.018. Note that the corresponding prior range of
0.64 < h < 0.82 still includes the preferred value from Planck Collaboration XIII (2015a).
The prior on Ωbh2 is based on BBN constraints listed in the 2015 update from the Particle
Data Group (Olive & Particle Data Group 2014) again adopting a conservative width of ±5σ
such that 0.019 < Ωbh2 < 0.026.

Since we also want to constrain the total mass of massive neutrinos, we introduce as the
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Table 5.3: Set of priors used for Fig. 5.8.

Parameter fiducial priors wider priors

Ωcdmh2 [0.01, 0.99] [0.01, 0.99]
ln(1010As) [1.7, 5.] [1.7, 5.]

Ωbh2 [0.019, 0.026] [0.001, 0.010]
ns [0.7, 1.3] [0.7, 1.3]
h [0.64, 0.82] [0.3, 1.]

Σmν (eV) ≡ 0.06 ≡ 0.06
mz1 [−0.033, 0.007] [−0.033, 0.007]
Ωm derived derived
σ8 derived derived

Notes. The primary cosmological and nuisance parameters for the baseline ΛCDM model for
two sets of prior ranges used for Fig. 5.8. The ‘fiducial priors’ are used in the subsequent
cosmological analysis.

first model extension the free parameter Σmν (the model is referred to as ‘ΛCDM+Σmν’).
However, as we have discussed in Section 5.8.1 there are other physical effects that we need
to take into account because they might create degenerate signatures in the matter and/or shear
power spectra. The first of such physical parameters is the amplitude for the intrinsic align-
ment model, i.e. AIA. We refer to this model subsequently as ‘ΛCDM+AIA’. The second
physical nuisance is baryon feedback and hence the model ‘ΛCDM+Abary’ includes the free
amplitude Abary. We combine both physical nuisance effects and study their combined impact
on cosmological constraints in the model ‘ΛCDM+AIA+Abary’. Finally, we combine all previ-
ous extensions into one model which we dub ‘ΛCDM+all’ for brevity instead of showing all
extensions explicitly, i.e. AIA, Abary, and Σmν.

5.8.3 Results and discussion
The resulting cosmological parameter constraints for all models and the corresponding prior
ranges are summarized in Table 5.4. In order to highlight parameter degeneracies we show
all possible 2D parameter projections in Fig. 5.10 in Appendix 5.B for the model ΛCDM+all.
This model can be considered as the most conservative one as it includes marginalizations
over several nuisance parameters (cf Section 5.8.2). For this model we derive an upper bound
on the total mass for three degenerate massive neutrinos. We find Σmν < 3.46 eV at 95 per
cent credibility from lensing alone. This is very similar to the constraint from our previous
CFHTLenS re-analysis in Chapter 4. In contrast, the upper bound at 95 per cent confidence
found by Planck Collaboration XIII (2015a, TT+lowP) is Σmν < 0.72 eV. Combining the
Planck CMB results with measurements of the Lyα power spectrum and BAO measurements
yields the very stringent upper limit of Σmν < 0.14 eV at 95 per cent confidence (Palanque-
Delabrouille et al. 2015).
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Table 5.4: Cosmological parameter constraints.

Model Ωcdmh2 ln(1010As) Ωm σ8 Ωbh2 ns h Σmν (eV) mz1 AIA Abary

Prior ranges [0.01, 0.99] [1.7, 5.] derived derived [0.019, 0.026] [0.7, 1.3] [0.64, 0.82] [0.06, 10.] [−0.033, 0.007] [−6., 6.] [0., 10.]
ΛCDM no sys. 0.13+0.06

−0.08 2.60+0.78
−0.90 0.29+0.10

−0.14 0.72+0.19
−0.17 0.022+0.004

−0.004 0.93+0.16
−0.22 0.74+0.08

−0.06 ≡ 0.06 – – –
ΛCDM 0.14+0.06

−0.07 2.61+0.84
−0.91 0.29+0.09

−0.14 0.72+0.12
−0.17 0.023+0.004

−0.003 0.93+0.12
−0.20 0.74+0.08

−0.09 ≡ 0.06 −0.007+0.014
−0.009 – –

ΛCDM+Σmν 0.17+0.06
−0.09 2.53+0.63

−0.83 0.37+0.13
−0.11 0.62+0.08

−0.11 0.022+0.003
−0.004 1.05+0.24

−0.16 0.76+0.06
−0.05 1.67+0.73

−1.61 −0.008+0.015
−0.013 – –

ΛCDM+AIA 0.12+0.05
−0.07 2.73+1.10

−1.03 0.27+0.09
−0.12 0.74+0.16

−0.18 0.023+0.004
−0.003 0.95+0.16

−0.19 0.74+0.08
−0.07 ≡ 0.06 −0.007+0.014

−0.010 −0.22+1.63
−1.34 –

ΛCDM+Abary 0.12+0.06
−0.07 2.80+1.01

−1.10 0.27+0.07
−0.12 0.79+0.14

−0.20 0.022+0.003
−0.003 1.09+0.21

−0.13 0.74+0.08
−0.07 ≡ 0.06 −0.008+0.015

−0.009 – 3.85+1.90
−2.94

ΛCDM+AIA+Abary 0.12+0.05
−0.06 2.91+1.27

−1.21 0.26+0.08
−0.11 0.80+0.18

−0.20 0.023+0.003
−0.003 1.10+0.20

−0.11 0.74+0.08
−0.05 ≡ 0.06 −0.007+0.014

−0.007 −0.34+1.51
−1.33 4.03+2.31

−2.73

ΛCDM+all 0.14+0.05
−0.07 2.82+1.03

−1.12 0.32+0.09
−0.12 0.69+0.10

−0.15 0.022+0.003
−0.003 1.13+0.17

−0.13 0.75+0.07
−0.05 1.16+0.54

−1.10 −0.007+0.014
−0.011 −0.32+1.43

−1.23 3.15+1.81
−3.15

Notes. We quote weighted median values for each varied parameter and derive 1σ-errors using the 68 per cent credible interval of the marginalized
posterior distribution.
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The cosmological main results for each model, i.e. σ8(Ωm/0.3)α and S 8, are summarized
in Table 5.5. We derive the exponent α from fitting the function lnσ8(Ωm) = −α ln Ωm +const.
to the likelihood surface in the Ωm–σ8 plane. Since indeed α ≈ 0.5 for all models, we com-
pare their S 8 values in Fig. 5.9 to each other but also to constraints from other cosmic shear
analyses and CMB constraints. The values we derive for each of the models in this analysis
are consistent with each other and as expected introducing a free total neutrino mass is shift-
ing S 8 to lower values. Most of our models are also consistent with previous results from
CFHTLenS, where we compare in particular to a correlation-function re-analysis employing
six tomographic bins and marginalization over various nuisance parameters from Joudaki et al.
(2016). In addition to that, we show results from our previous quadratic estimator analysis of
CFHTLenS from Chapter 4, which employed two tomographic bins at higher redshift com-
pared to the bins used here. In that study the basic five-parameter model was also labelled
‘ΛCDM’ but did not include a marginalization over the shear calibration uncertainties. The
label ‘ΛCDM+all’ used in that study also refers to an extension of the ‘ΛCDM’ model with
a free total neutrino mass and marginalization over baryon feedback, but does not take in-
trinsic alignments into account. The errors are comparable to the errors in this study, since
CFHTLenS and KiDS-450 have comparable statistical power. The comparison to the KiDS-
450 constraint from the correlation-function analysis with four tomographic bins (Hildebrandt
et al. 2016) shows that the errorbars of that study are about 32 per cent smaller than the ones
derived here. Following the discussion of Section 5.7.1 we attribute this mainly to the in-
creased resolution along the line-of-sight for four tomographic bins, which improves the pre-
cision on the intrinsic alignment modelling. A small increase in the errorbars might also be
explained by the multipole range used in this analysis compared to the effective multipole
range used in Hildebrandt et al. (2016). Our results are also consistent with the result from the
DES science verification (SV) correlation-function analysis (DES Collaboration 2015, ‘Fidu-
cial DES SV cosmic shear’).

More interesting is the comparison of our results to CMB constraints including pre-Planck
(Hinshaw et al. 2013; Calabrese et al. 2013) and Planck (Planck Collaboration XIII 2015a;
Spergel et al. 2015) data. We find them to be most distinctively in tension with the results
from Planck Collaboration XIII (2015a) at 1.8σ. We remind the reader to be cautious when
quantifying tension between datasets based on parameter projections of the multi-dimensional
likelihoods (cf. appendix A in MacCrann et al. 2015) which, for example, suffices to explain
the mild tension in S 8 between our previous CFHTLenS results and Planck. However, this
projection effect can certainly not explain the current tension in S 8 with Planck.

Finally, we want to decide which of our tested models fits the data the best. As indicated in
Section 5.8 we employ for that a Bayesian model comparison framework based on evidences,
their ratios, and the quantitative interpretation scheme of these by Kass & Raftery (1995).
The results for the comparison of all model extensions to the baseline ΛCDM model are
summarized in Table 5.6. In conclusion, none of the model extensions yields any positive
evidence against the baseline ΛCDM model. Only adding a baryon feedback amplitude Abary
yields evidence ‘not worth more than a bare mention’ against the baseline ΛCDM model.

5.9 Conclusions
In this study we applied the quadratic estimator to state-of-the-art shear data from KiDS-
450 in two redshift bins over the range 0.10 < zB ≤ 0.90 and extracted the band powers
of the auto-correlation and cross-correlation shear power spectra for multipoles in the range
76 ≤ ` ≤ 1310. The covariance matrix is based on an analytical calculation which is then
convolved with the full band window matrix. We derive the parameter combination S 8 ≡
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Table 5.5: Constraints on S 8 and σ8(Ωm/0.3)α.

Model S 8 ≡ Mean error σ8 α

σ8
√

Ωm/0.3 on S 8 (Ωm/0.3)α

ΛCDM no sys. 0.707+0.041
−0.036 0.038 0.704+0.038

−0.034 0.544
ΛCDM 0.712+0.039

−0.038 0.039 0.709+0.038
−0.036 0.543

ΛCDM+Σmν 0.696+0.040
−0.036 0.038 0.692+0.039

−0.036 0.468
ΛCDM+AIA 0.703+0.053

−0.044 0.048 0.699+0.051
−0.043 0.542

ΛCDM+Abary 0.754+0.047
−0.050 0.048 0.747+0.044

−0.045 0.563
ΛCDM+AIA+Abary 0.742+0.057

−0.056 0.057 0.734+0.057
−0.050 0.555

ΛCDM+all 0.710+0.053
−0.051 0.052 0.710+0.053

−0.051 0.501

Notes. We quote weighted mean values for the constraints on S 8 ≡ σ8
√

Ωm/0.3 and
σ8(Ωm/0.3)α. The errors denote the 68 per cent credible interval derived from the marginal-
ized posterior distribution.
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Figure 5.9: The 1σ-constraints on the parameter combination S 8 ≡ σ8
√

Ωm/0.3 for all of our tested
models (cf. Tables 5.4 and 5.5). We compare them to constraints from other cosmic shear and CMB
analyses. For cosmic shear analyses we indicate the type of estimator used with ‘CF’ for correlation
functions and ‘QE’ for the quadratic estimator.
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Table 5.6: Evidences from likelihood sampling.

Model lnZ 2 ln K (K ≡ Zi/ZΛCDM) Evidence against ΛCDM

ΛCDM no sys. −10.43 ± 0.06 – –
ΛCDM −10.77 ± 0.06 0 –

ΛCDM+Σmν −11.24 ± 0.06 −0.94 –
ΛCDM+AIA −11.80 ± 0.06 −2.06 –
ΛCDM+Abary −10.74 ± 0.06 0.06 ‘not worth more than a bare mention’

ΛCDM+AIA+Abary −11.76 ± 0.06 −1.98 –
ΛCDM+all −12.74 ± 0.07 −3.94 –

Notes. For each model we calculate the global log-evidence, lnZ, and compare all evidences
in terms of the Bayes factor K (or equivalently 2 ln K) to the baseline ΛCDM model. The
interpretation of the Bayes factor is following the scheme proposed by Kass & Raftery (1995).

σ8
√

Ωm/0.3 for a baseline ΛCDM model and several model extensions including a free total
mass of neutrinos and physical nuisances such as intrinsic alignments and baryon feedback.
All models also include a marginalization over the small uncertainties of the shear calibration.

A Bayesian model comparison yields no evidence against the baseline ΛCDM model
for any of the extensions introduced here including a free total mass for three degenerate
massive neutrinos (Σmν) or physical nuisances such as baryon feedback (Abary) or intrinsic
alignments (AIA). We take the conservative approach of considering the extended model
ΛCDM+AIA+Abary as our fiducial model for which we find S 8 = 0.742 ± 0.057. The flat
five-parameter ΛCDM model without any systematics yields S 8 = 0.707 ± 0.038. Thus,
marginalizing over the shear calibration and the physical nuisance parameters increases the
errorbars by ≈50 per cent.

For the model ΛCDM+all we derive an upper limit on the total mass of three degenerate
neutrinos: Σmν < 3.46 eV at 95 per cent credibility from lensing alone. This constraint is
currently not competitive with respect to constraints derived from CMB or other large-scale
structure measurements or the combination of both, but it is consistent with the constraint we
derived already in our re-analysis of CFHTLenS whose statistical power is comparable to this
analysis.

Most interestingly, the constraint on S 8 is in tension with the constraint from Planck at
1.8σ. This confirms the result from a 4-bin tomographic correlation-function analysis by
Hildebrandt et al. (2016) with lower significance though due to the weaker S 8 constraint of our
study. Moreover, the fact that this study uses less of the very non-linear scales in comparison
to Hildebrandt et al. (2016) also disfavours insufficient modelling of these scales as a possible
explanation for the discrepancy with Planck.
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5.A Updated derivation of the window function matrix
The full index notation for all matrices and tensors used in the quadratic estimator algorithm
can be found in Appendix 4.A. Here, we only update the notation for the derivatives of the
full covariance matrix C with respect to the power at an integer multipole `, i.e. Dζϑ(`). These
are required for the calculation of the window function matrix (cf. equation 5.14) and enter
explicitly in the computation of the trace matrix T (cf. equation 5.15):

∂C(µν)(ab)(i j)

∂Bζϑ(`)
=

Mζ(µν)

2(` + 1)

[
w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)

]
≡ D(µν)(ab)(i j)(ζ)(ϑ)(`) ≡ Dζϑ(`) , (5.32)

where we have used that

Csig
(µν)(ab)(i j) =

∑
ζ,ϑ,`

Bζϑ(`)
Mζ(µν)

2(` + 1)
[w0(`)Iϑ(ab)(i j) + 1

2 w4(`)Qϑ
(ab)(i j)] .

5.B Additional figures
In order to highlight possible parameter degeneracies we show in Fig. 5.10 all 2D projec-
tions of the parameters used in the most extended model ΛCDM+all (cf. Section 5.8.2 and
Table 5.4).

Figures 5.11 and 5.12 show the additional contributions from a fiducial cosmological E-
mode signal (EE, z2 × z1 and EE, z2 × z2) to all possible cross-terms (cf. Section 5.7).

http://dx.doi.org/10.1051/0004-6361/201526601
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
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Figure 5.10: The parameter constraints derived from sampling the likelihood of model ΛCDM+all. The
dashed lines in the marginalized 1D posteriors denote the weighted median and the 68 per cent credible
interval (cf. Table 5.4). The contours in each 2D likelihood contour subplot are 68 and 95 per cent
credible intervals smoothed with a Gaussian for illustrative purposes only.
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Figure 5.11: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the redshift
cross-correlation (i.e. z2 × z1) convolved with the corresponding band window functions (red points) of
all possible cross-combinations. The second panel from the left depicts the auto-contribution from (EE,
z2× z1) to (EE, z2× z1). The grey errorbars show the statistical uncertainties associated with the B-modes.
Open symbols denote negative values plotted at their absolute value.

101 102 103

`

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

`(
`
+

1
)C

(`
)/

2
π

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

EE, z2 × z2

to
EE, z1 × z1

101 102 103

`

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

EE, z2 × z2

to
EE, z2 × z1

101 102 103

`

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

EE, z2 × z2

to
EE, z2 × z2

101 102 103

`

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

EE, z2 × z2

to
BB, z1 × z1

101 102 103

`

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

EE, z2 × z2

to
BB, z2 × z1

101 102 103

`

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

EE, z2 × z2

to
BB, z2 × z2

Figure 5.12: The contribution of a fiducial cosmological E-mode signal (solid, black line) for the high-
redshift auto-correlation (i.e. z2 × z2) convolved with the corresponding band window functions (red
points) of all possible cross-combinations. The third panel from the left depicts the auto-contribution
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6
Samenvatting

6.1 Modern kosmologisch onderzoek
Het huidige kosmologische model is gebaseerd op Einstein’s algemene relativiteits theorie, die
de interactie beschrijft tussen materie (ofwel energie, zoals Einstein’s E = mc2 ons vertelt)
en ruimte-tijd. Hieruit is in de laatste honderd jaar een fysisch model, het kosmologische
model, opgekomen dat het ontstaan en de evolutie verklaart en het uiteindelijke lot van het
universum voorspelt. Dit model beschrijft met succes een verscheidenheid aan waarnemingen
met slechts een paar parameters. Desondanks, blijft een fysische verklaring voor de dominante
bestandsdelen, donkere materie en donkere energie, uit.

Het enige wat bekend is over donkere materie is dat het alleen door middel van zwaar-
tekracht interactie heeft en dat het geen licht uitstraalt (vandaar de toepasselijke benaming
‘donkere’ materie). Echter, donkere materie speelt een belangrijke rol in de formatie van kos-
mologische structuren, die als een spinnenweb over het universum verspreid zijn en dus het
kosmische web worden genoemd. De knopen van dit web bevatten de grootste objecten in
het universum: clusters van honderden melkwegstelsels, die bij elkaar gehouden worden door
hun eigen zwaartekacht. Zulke clusters van melkwegstelsels bestaan voornamelijk uit don-
kere materie en zijn daarom een ideaal laboratorium om de interactie tussen donkere materie
en ‘gewone’ materie in te onderzoeken.

Een grote openbaring die uit het kosmologische model naar voren is gekomen, is dat de
ruimte uitzet (alleen op kosmologische afstanden en astronomische objecten worden bijeen
gehouden door hun eigen zwaartekracht). De uitdijing van het universum met de tijd betekent
ook dat er een punt in het verleden is geweest waarin het universum is begonnen met uitdijen
vanuit het kleinste punt. Er wordt gedacht dat deze oerknal 13,8 miljard jaar geleden heeft
plaats gevonden. Het universum begon met een hoge dichtheid en temperatuur en naarmate
de expansie vorderde, werd het minder dicht en koelde het af. Toen de juiste temperatuur be-
reikt was waarop neutrale (waterstof) atomen uit het plasma van hete subatomaire deeltjes en
straling geformeerd konden worden (ongeveer 380 000 jaar na de oerknal), werd het univer-
sum transparant voor straling. Zelfs in de moderne tijd kunnen we nog de thermische straling
zien die na de formatie van neutraal waterstof vrij rond kon bewegen. Deze gloed wordt de
kosmische achtergrond straling genoemd. Alsmaar preciezere metingen worden gedaan aan
de minieme variaties in temperatuur van de kosmische achtergrond straling door satellieten
in de ruimte zoals WMAP (engelse afkorting voor Wilkinson Microwave Anisotropy Probe) of
Planck. Deze metingen geven ons de sterkste limieten voor de parameters in het kosmologi-
sche model.

Recente waarnemingen laten zien dat het universum versnelt aan het uitdijen is. Deze
versnelling wordt toegeschreven aan ‘donkere energie’. De benaming ‘donkere energie’ is
voornamelijk een beschrijving van hoe wij in het duister tasten over wat dit fenomeen is. Don-
kere energie moet dus vooral gezien worden als een verzamelnaam voor een verscheidenheid
aan theorieën die de versnelde uitdijing proberen te verklaren. Sommige van deze theorieën
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hebben verstrekkende gevolgen, zoals een revisie van Einstein’s theorie van de zwaartekracht.
Hierdoor is de studie naar donkere energie een van de belangrijkste vragen binnen het heden-
daagse kosmologische onderzoek. Hoewel we nog niet weten welke natuurkundige principes
zich achter donkere energie schuilhouden, kunnen we wel de effecten van donkere energie
bestuderen. Donkere materie is de drijvende kracht achter de versnelde uitdijing van het uni-
versum en de uitdijing kan zeer precies worden bestudeerd door te kijken naar de evolutie
van structuren van kosmologische grootte. Bekende subatomaire deeltjes die ook de evolu-
tie van deze enorme structuren beinvloeden zijn neutrinos. Deze deeltjes reizen met bijna
de lichtsnelheid en reageren nauwelijks door middel van de zwakke kracht (een van de vier
fundamentele krachten in de natuurkunde) en de zwaartekracht. De wisselwerking tussen
neutrinos en andere deeltjes is zo zwak dat op dit moment ongeveer 70 miljard neutrinos per
seconde door uw duim nagel gaan. Het onderzoek dat heeft aangetoond dat neutrinos ook
door middel van de zwaartekracht reageren, en dus een massa hebben, is beloond met een
Nobelprijs. Het is echter niet mogelijk om met de huidige techniek met behulp van deeltjes
fysica experimenten de absolute massa van neutrinos te bepalen. De sterkste aanwijzingen
voor de maximale massa die neutrinos kunnen hebben, komen uit studies naar de kosmische
structuren.

6.2 Zwaartekrachtslenzen
Een goede manier om de donkere materie en donkere energie in het universum te bestuderen
is door middel van zwaartekrachtslenzen. Het principe van lenswerking door zwaartekracht
beschrijft hoe licht vanuit een bron, zoals een sterrenstelsel, wordt afgebogen door een verza-
meling van massa, die zich voor de bron bevindt en de ‘lens’ wordt genoemd. Afhankelijk van
de geometrische opstelling van de bron, de lens en de waarnemer en hoe de massa verdeeld
is over de lens, kunnen zulke afbuigingen ‘sterk’ zijn, waardoor de bron vervormd wordt of
te zien is op verschillende posities. Dit soort fenomenen worden effecten van ‘sterke zwaar-
tekrachtslenzen’ genoemd en zijn alleen te zien dicht (in projectie) bij de lens. Op grotere af-
stand van de lens worden alleen lichte vervormingen van de bron waargenomen. Het zwakke
effect van zwaartekrachtslenzen op grote afstand is een van de redenen dat een statistische
aanpak nodig is om het te meten. Een andere reden is dat de intrinsieke vorm van een ster-
renstelsel niet te onderscheiden is van de vervorming door de zwaartekrachtslens. We kunnen
echter aannemen dat voor een grote groep van sterrenstelsels, die elk een willekeurige vorm
hebben, de intrinsieke vormen uit het gemiddelde wegvallen. De enige vorm die overblijft in
het gemiddelde is dan de vervorming ten gevolge van de zwaartekrachtslens. Deze aanpak
wordt zwakke lenswerking door zwaartekracht genoemd.

De massa van de lens kan bepaald worden met behulp van zwakke en sterke lenswerking
door zwaartekracht. Dit maakt zwaartekrachtslenzen een goede manier om kosmologisch
onderzoek mee te doen. Het is namelijk de totale massa van donkere materie en lichtgevende
materie van een lens die de vervorming veroorzaakt. Daarom is het bestuderen van de massa
en massa verdeling van clusters van melkwegstelsels een uitstekende manier om limieten te
zetten op de parameters van het kosmologische model. In het bijzonder is de hoeveelheid
van clusters van sterrenstelsels van een gegeven massa, op een gegeven tijd, in een gegeven
volume, een belangrijke kosmologische test. Deze test is echter alleen mogelijk met precieze
metingen van de massa’s van de clusters.

Het is niet alleen mogelijk om individuele astronomische objecten als zwaartekrachtslen-
zen te gebruiken. Het is ook mogelijk om het hele universum te gebruiken als zwaartekrachts-
lens. Licht dat door verschillende kosmische structuren reist, wordt door de zwaartekracht
ervan aangetast. Door de zwakke lenswerking te bestuderen op verschillende kosmische tijd-
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stippen kan de evolutie van de kosmische structuren worden bepaald. Deze tijdsevolutie kan
ons weer meer vertellen over hoe donkere energie kosmische structuren beinvloedt. De stu-
die naar zwakke lenswerking door kosmische structuren wordt ‘cosmic shear’ in het Engels
genoemd, maar we zullen het hier verder ‘kosmische lenswerking’ noemen. Op het moment
worden verschillende kosmische lenswerking experimenten gedaan met observaties van grote
delen van de hemel. Deze observaties van ongeveer 1000 vierkante graden zijn slechts voor-
lopers van toekomstige observaties van de gehele hemel.

6.3 Dit proefschrift
In dit proefschrift zullen wij toepassingen van zwakke en sterke lenswerking door zwaarte-
kracht presenteren in de context van de kosmologie.

In Hoofdstuk 2 bestuderen wij de massa en de massa verdeling van RX J1347.5–1445, een
van de zwaarste clusters van sterrenstelsels. Daarnaast is dit cluster ook een van de helderste
Röntgen straling objecten in de hemel. Dit komt door de grote hoeveelheid van ‘intra-cluster
gas’, dat zo heet is dat het Röntgen licht uitzendt. De sterke lenswerking door zwaartekracht
van het cluster veroorzaakt grote heldere blauwe bogen en hetzelfde achtergrondstelsel kan
op verscchillende posities waargenomen worden. Voor dit onderzoek gebruiken wij gear-
chiveerde diepe observaties gemaakt met de Hubble Space Telescope. Wij presenteren een
gedetailleerd model van het cluster als een sterke zwaartekrachtslens, dat gemaakt is met be-
hulp van twee onafhankelijke modelleer methodes. Daarnaast meten wij het profiel van de
massa verdeling van de binnenste kern van het cluster.

In Hoofdstuk 3 bekijken wij verzamelingen van clusters van sterrenstelsels en stellen wij
de vraag wat de beperkingen zijn voor zwakke lenswerking door zwaartekracht om massa’s
voor verzamelingen van clusters te bepalen. Deze studie is uitgevoerd met de geplande Eu-
clid missie in gedachten. Wij bepalen het niveau van de statistische onzekerheden in massa
metingen voor de Euclid missie en bestuderen de invloed van verschillende systematische
onzekerheden. Zoals eerder gezegd, zijn precieze metingen van de massa’s een belangrijk
onderdeel voor het bepalen van het aantal clusters van een gegeven massa, op een gegeven
kosmisch tijdstip, in een gegeven volume. Deze hoeveelheid hangt sterk af van de kosmolo-
gie. Wij bestuderen in het bijzonder het effect van het foutief bestempelen van sterrenstelsels,
die bij het cluster horen, als stelsels die zich achter het cluster bevinden. Door deze cluster
sterrenstelsels als bronnen in plaats van lenzen te markeren, wordt het effect van de zwakke
lenswerking door zwaartekracht afgezwakt. Hierdoor zal de meting van de massa lager zijn
dan de werkelijke massa. Dit effect is hevig voor gecombineerde data van clusters en moet
dus worden gecorrigeerd. Een ander effect dat voor foutieve massa metingen zorgt, is het
kiezen van een verkeerd centrum van het cluster van sterrenstelsels. Normaliter wordt het
centrum van het cluster gekozen als de positie van het helderste sterrenstelsel in het cluster, of
als de piek van de Röntgen straling. Het is echter mogelijk dat deze twee posities niet over-
eenkomen met het ware centrum van het cluster, waardoor de massa metingen foutief zouden
kunnen zijn. Aangezien de verwachte statistische onzekerheden van Euclid klein zijn, is deze
onzuiverheid significant. Echter zullen geplande missies, zoals de Röntgen missie eROSITA
(engelse afkorting voor extended ROentgen Survey with an Imaging Telescope Array), helpen
om het effect van een verkeerd centrum te verminderen.

In de laatste twee hoofdstukken nemen we de stap van de studie van clusters van ster-
renstelsels naar de studie van kosmische structuren met de kosmische lenswerking. In plaats
van de standaard aanpak te volgen, meten wij het signaal van de kosmische lenswerking met
behulp van een mathematische transformatie techniek. Deze techniek geeft ons een beschrij-
ving van het signaal van de kosmische lenswerking in hetzelfde kader als wordt gebruikt voor
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theoretische beschrijvingen van het signaal van de kosmische lenswerking. (De theoretische
voorspellingen zijn nodig om de gemeten data te vergelijken met het kosmologische model.)
Een voordeel van deze techniek is dat, bijvoorbeeld, het effect van neutrinos veel gemakkelij-
ker in dit kader beschreven kan worden. Om de limieten voor de parameters van het kosmolo-
gische model beter te kunnen bepalen, kijken wij in Hoofdstuk 4 naar uitbreidingen van het
algorithme om metingen van het signaal van de kosmische lenswerking op verschillende tijd-
stippen mogelijk te maken. We testen dit uitgebreide algorithme in detail met gesimuleerde
data, waarna we het toepassen op vrij toegankelijke data van de zwaartekrachtslens analyse
van de Canada–France–Hawaii Telescope Legacy Survey (CFHTLenS).

Uiteindelijk gebruiken we in Hoofdstuk 5 de modernste data uit de 450 vierkante graden
aan observaties van een tussentijdse data verstrekking van de Kilo-Degree Survey (KiDS). Op-
nieuw gebruiken we ons uitgebreide algorithme om het signaal van de kosmische lenswerking
te meten en de kosmologische parameters te bepalen. Onze resultaten komen niet overeen met
de nieuwste metingen van de kosmische achtergrond straling door Planck.



7
Zusammenfassung

7.1 Moderne Kosmologie

Unser modernes kosmologisches Weltbild basiert auf Einsteins Allgemeiner Relatvitätstheo-
rie, welche die Wechselwirkung zwischen Masse (was nach Einsteins E = mc2 gleichbedeu-
tend ist mit Energie) und der Raumzeit beschreibt. Darauf aufbauend entstand im Verlauf
der letzten Hundert Jahre ein physikalisches Modell für den Ursprung, Verlauf und das Ende
des Universums, ein sogenanntes kosmologisches Modell. Für unser heutiges kosmologisches
Modell benötigt man nur ein paar Parameter, um eine große Spanne von verschiedenen kos-
mologischen Beobachtungen sehr erfolgreich zu beschreiben. Die physikalische Grundlage
für die zwei wichtigsten Parameter des kosmologischen Modells, Dunkle Materie und Dunkle
Energie, ist jedoch noch ein vollkommenes Rätsel.

Zur Zeit wissen wir nur sicher, dass Dunkle Materie allein gravitativ wechselwirkt und
dass sie kein Licht aussendet (von daher ist “dunkel” durchaus passend in diesem Zusam-
menhang). Allerdings spielt Dunkle Materie eine fundamentale Rolle in der Bildung von kos-
misch großräumigen Strukturen. Diese ziehen sich wie ein Netz durchs All, deshalb spricht
man in diesem Zusammenhang auch vom “kosmischen Netz”. An den Knotenpunkten dieses
Netzes befinden sich die größten, durch Gravitation gebundenen Strukturen: Ansammlungen
von Hunderten von Galaxien, sogenannte Galaxienhaufen. Diese bestehen hauptsächlich aus
Dunkler Materie, weshalb Galaxienhaufen ideale “Testlabore” sind, um die Wechselwirkung
von dunkler und gewöhnlicher Materie genau zu untersuchen.

Eine bedeutende Erkenntnis unseres heutigen kosmologischen Modells ist, dass sich der
Raum ausdehnt, allerdings nur auf kosmisch großen Skalen. Durch Gravitation gebundene
Objekte werden dadurch jedoch nicht “auseinander gerissen”. Wenn man die Expansion des
Raumes zeitlich zurück verfolgt, gelangt man zu dem Schluss, dass es einen Anfangspunkt
für die Expansion gegeben haben muss, den sogenannten Urknall. Dieser fand wohl vor un-
gefähr 13,8 Milliarden Jahren statt. Am Anfang war das Universum extrem dicht und heiß
und dadurch, dass sich der Raum weiter ausdehnt, kühlt das All zunehmend ab und dünnt im-
mer weiter aus. Als es dann schließlich soweit abgekühlt war, dass sich aus dem extrem hei-
ßen Teilchen- und Strahlungsplasma die ersten neutralen (Wasserstoff-)Atome bilden konnten,
wurde das Universum durchsichtig für elektromagnetische Strahlung (was ungefähr 380 000
Jahre nach dem Urknall geschah). Selbst heute noch können wir die Überreste dieser Wär-
mestrahlung beobachten. Dieses “Nachglühen” ist die sogenannte “kosmische Hintergrund-
strahlung”. Immer präzisere Messungen der winzigen Temperaturschwankungen in dieser
kosmischen Hintergrundstrahlung, zum Beispiel durchgeführt mit Satellitenobservatorien wie
WMAP (englische Abkürzung für Wilkinson Microwave Anisotropy Probe) oder Planck, lie-
fern momentan die genauesten Werte für eine Vielzahl von kosmologischen Parametern.

Aktuelle Beobachtungen zeigen weiterhin, dass sich der Raum sogar beschleunigt aus-
dehnt. Die Ursache für diese beschleunigte Ausdehnung nennen wir Dunkle Energie, aller-
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dings steht das “dunkel” darin eher für unser Unwissen als für eine echte physikalische Ei-
genschaft. Man sollte Dunkle Energie deshalb eher als abstrakten Begriff sehen, um verschie-
dene Theorien in einem übergeordneten Rahmen zu sammeln. Einige dieser Theorien haben
weitreichende Folgen und würden sogar eine Änderung von Einsteins Allgemeiner Relati-
vitätstheorie nach sich ziehen. Das macht das Studium der Dunklen Energie zu einem der
wichtigsten Schwerpunkte in der heutigen kosmologischen Forschung. Obwohl wir nicht wis-
sen, was genau Dunkle Energie eigentlich ist, können wir ihren Einfluss auf die beschleunigte
Ausdehnung des Raumes beobachten, zum Beispiel durch das genaue Studium der Entwick-
lung von kosmisch großräumigen Strukturen.

Diese Entwicklung wird zudem auch noch von den uns besser bekannten Neutrinos be-
einflusst. Diese Elementarteilchen bewegen sich fast mit Lichtgeschwindigkeit, interagieren
aber nur sehr, sehr schwach durch die schwache subatomare Wechselwirkung (eine der vier
Grundkräfte der Natur). In diesem Augenblick etwa fliegen pro Sekunde um die 70 Milliarden
Neutrinos durch eine Fläche so groß wie ein Daumennagel. Dass Neutrinos gravitativ wech-
selwirken, wurde in nobelpreiswürdigen Teilchenphysikexperimenten herausgefunden. Diese
zeigten, dass Neutrinos eine (winzige) Masse besitzen. Allerdings kann man durch Teilchen-
physikexperimente zur Zeit noch nicht den absoluten Wert der Neutrinomasse messen und die
derzeit genauesten Bestimmungen für die Obergrenze der Neutrinomasse erhält man durch
das Studium des kosmischen Netzes.

7.2 Der Gravitationslinseneffekt
Ein sehr hilfreiches Werkzeug für das Studium von Dunkler Materie und Dunkler Energie ist
der Gravitationslinseneffekt. Dieser beschreibt die Ablenkung des Lichts einer Quelle, zum
Beispiel einer Galaxie, durch eine Masse im Vordergrund, die sogenannte Linse. Abhängig
von der genauen geometrischen Anordnung von Quelle, Linse und Beobachter und der ge-
nauen Massenverteilung der Linse können die Lichtablenkungen so stark sein, dass extrem
verformte oder sogar Mehrfachbilder derselben Quelle entstehen. Dies nennt man dann den
“starken” Gravitationslinseneffekt und dieser tritt nur in kurzem (projiziertem) Abstand zur
Linse auf. Weiter entfernt von der Linse kann man nur noch die Effekte von schwachen Lich-
tablenkungen beobachten. Das ist nur einer der Gründe dafür, warum man einen statistischen
Ansatz zum Studium des schwachen Linseneffekts braucht. Der andere Grund ist, dass man
die wahre, intrinsische Form einer einzelnen Galaxie und die Verformung durch den Gravita-
tionslinseneffekt prinzipiell nicht voneinander trennen kann. Allerdings kann man annehmen,
dass sich für hinreichend große Stichproben von Galaxien deren intrinsische Formen raus-
mitteln (da die intrinsischen Formen der Galaxien zufällig verteilt sind). Deshalb bleibt nach
einer solchen Mittelung nur die durch die Gravitationslinse hervorgerufene Bildverformung
übrig. Dies nennt man den “schwachen” Gravitationslinseneffekt.

Man kann sowohl mit Hilfe des starken als auch des schwachen Gravitationslinseneffektes
die Masse der Linse bestimmen. Dies macht den Gravitationslinseneffekt zu einem sehr wich-
tigen Werkzeug für die Kosmologie, da die Gesamtmasse der Linse, inklusive der Dunklen
Materie, die Lichtablenkungen verursacht. Daher erlaubt uns das Studium der Masse und ih-
rer Verteilung in Galaxienhaufen mit dem Gravitationslinseneffekt kosmologische Parameter
zu bestimmen. Außerdem ist die Anzahl von Galaxienhaufen mit einer bestimmten Masse zu
einer bestimmten kosmischen Zeit pro Volumen ein weiterer wichtiger kosmologischer Test,
der präzise Massenbestimmungen voraussetzt.

Anstatt den starken oder schwachen Gravitationslinseneffekt nur zur Bestimmung der
Masse von einzelnen Linsen, wie Galaxien oder Galaxienhaufen, zu verwenden, kann man
das Universum selbst als Linse benutzen: Licht, das sich durch die kosmisch großräumigen
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Strukturen ausbreitet, wird durch diese schwach abgelenkt. Durch Messung dieser schwachen
Lichtablenkung zu verschiedenen kosmischen Zeiten können wir Rückschlüsse über die Ent-
wicklung von Strukturen im kosmischen Netz ziehen. Da diese Entwicklung von der Dunklen
Energie beeinflusst wird, können wir so etwas über die Eigenschaften der Dunklen Energie
erfahren. Die schwache Lichtablenkung durch das kosmische Netz nennt man im Englischen
“cosmic shear” (wörtlich “kosmische Scherung”), aber wir werden im Folgenden den Aus-
druck “kosmischer Gravitationslinseneffekt” verwenden.

Zur Zeit werden große Himmelsdurchmusterungen durchgeführt, die schließlich mehrere
Tausend Quadratgrad des Himmels umfassen werden, um den kosmischen Gravitationslin-
seneffekt zu messen. Diese dienen als Vorläufer für Durchmusterungen des nahezu gesamten
Himmels, die noch im Verlauf des nächsten Jahrzehnts stattfinden werden.

7.3 Der Inhalt dieser Doktorarbeit
In dieser Doktorarbeit präsentieren wir Anwendungen des starken und schwachen Gravitati-
onslinseneffekts in einem kosmologischen Kontext.

In Kapitel 2 untersuchen wir die Masse und ihre Verteilung in einem der massereichs-
ten Galaxienhaufen, die uns heute bekannt sind, dem Galaxienhaufen RX J1347.5–1145. Der
Galaxienhaufen ist auch besonders leuchtstark im Röntgenbereich, was darauf hindeutet, dass
er sehr viel heißes Gas besitzt. Dieses ist so heiß, dass es Röntgenstrahlung aussendet. Um
die Masse des Galaxienhaufens zu untersuchen, benutzen wir den starken Gravitationslinsen-
effekt, da extrem verformte Bilder, wie zum Beispiel sogenannte helle, blaue Bogen und so-
gar Systeme von Mehrfachbildern um den Galaxienhaufen herum beobachtet werden können.
Diese sehr detaillierten Beobachtungen wurden mit dem Weltraumteleskop Hubble gemacht
und sind in einem Onlinearchiv frei verfügbar. Wir verwenden zwei unabhängige Modellie-
rungsansätze um ein konsistentes und sehr detailliertes Modell des Galaxienhaufens als starke
Gravitationslinse zu erstellen. Außerdem messen wir schließlich das Profil der Masse und ihre
Verteilung im Kern des Galaxienhaufens.

In Kapitel 3 wenden wir uns großen Stichproben von Galaxienhaufen zu, um zu untersu-
chen, was die Genauigkeit der Massenbestimmung mit Hilfe des schwachen Gravitationslin-
seneffektes begrenzt. Dabei konzentrieren wir uns im Besonderen auf die zukünftige Durch-
musterung des fast gesamten Himmels mit dem Euclid–Satelliten. Wir bestimmen, wie präzi-
se man die Masse von Stichproben von Galaxienhaufen in dieser Mission bestimmen werden
kann und studieren weiter den Einfluss von mehreren systematischen Fehlerquellen auf diese
Massenbestimmungen. Wie bereits zuvor erwähnt, sind diese präzisen Massenbestimmungen
sehr wichtig, um die Anzahl von Galaxienhaufen einer bestimmten Masse zu einer bestimmten
kosmischen Zeit pro Volumen zu messen. Diese Zahl wiederum hängt sehr stark vom kosmo-
logischen Modell ab und erlaubt es uns deshalb kosmologische Parameter zu bestimmen. Im
Besonderen untersuchen wir, welchen Effekt Galaxien des Galaxienhaufens haben, die irr-
tümlich als Quellen für den schwachen Graviationslinseneffekt genommen werden, obwohl
sie in Wahrheit Linsen sind. Diese “falschen” Quellen schwächen das durch den schwachen
Gravitationslinseneffekt hervorgerufene Signal ab, wodurch man eine niedrigere als in Wirk-
lichkeit vorhandene Masse misst. Für das kombinierte Signal von großen Stichproben von
Galaxienhaufen ist dieser Effekt nicht zu vernachlässigen und muss sorgfältig berücksichtigt
werden. Schließlich untersuchen wir noch die Auswirkung einer fehlerhaften Bestimmung
des Zentrums des Galaxienhaufens auf die Massenbestimmung. Normalerweise nimmt man
die Position der hellsten Galaxie im Galaxienhaufen als Zentrum oder die Position, an der
die Röntgenstrahlung am höchsten ist. Diese Positionen müssen aber nicht notwendigerweise
mit dem wahren Zentrum des Galaxienhaufens übereinstimmen, was dann wiederum die Mes-
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sung des schwachen Gravitationslinseneffekts beeinflusst. Da wir für Euclid nur sehr kleine
statistische Ungenauigkeiten in der Massenbestimmung erwarten, muss auch dieser systema-
tische Effekt genau berücksichtigt werden. Komplementäre Missionen, wie zum Beispiel die
geplante Himmelsdurchmusterung im Röntgenbereich durch eROSITA (englische Abkürzung
für extended ROentgen Survey with an Imaging Telescope Array), werden es jedoch ermögli-
chen den Effekt eines falsch angenommenen Zentrums des Galaxienhaufens zu korrigieren.

In den letzten beiden Kapiteln gehen wir über das Studium von Galaxienhaufen hinaus und
studieren stattdessen die Strukturen des kosmischen Netzes mit Hilfe des kosmischen Gravi-
tationslinseneffekts. Anstatt den Standardansatz zur Messung des kosmischen Linseneffekts
zu folgen, benutzen wir eine mathematische Transformationstechnik, die eine Beschreibung
des Signals in derselben mathematischen Formulierung der theoretischen Vorhersagen liefert
(theoretische Vorhersagen werden benötigt, um die Messungen mit dem kosmologischen Mo-
dell zu vergleichen). Ein besonderer Vorteil dieses Ansatzes ist, dass zum Beispiel die Effekte
von massebehafteten Neutrinos in dieser mathematischen Formulierung klarer und eindeuti-
ger studiert werden können. Um die Bestimmung von kosmologischen Parametern mit Hilfe
dieser Technik noch genauer zu machen, erweitern wir den Algorithmus in Kapitel 4, sodass
wir mit ihm auch Messungen des kosmischen Gravitationslinseneffekts zu unterschiedlichen
kosmischen Zeiten machen können. Wir testen den erweiterten Algorithmus gründlich mit
simulierten Daten, bevor wir ihn schließlich auf echte und frei zugängliche Daten der Him-
melsdurchmusterung CFHTLS (englische Abkürzung für “Canada–France–Hawaii Telescope
Legacy Survey”) anwenden.

Schließlich verwenden wir in Kapitel 5 aktuellste Kataloge der Himmelsdurchmusterung
KiDS (englische Abkürzung für “Kilo-Degree Survey”), die auf Beobachtungen des Himmels
mit einer Fläche von ungefähr 450 Quadratgrad basieren. Mit diesen Daten messen wir wieder
den kosmischen Gravitationslinseneffekt mit unserem erweiterten Algorithmus und extrahie-
ren außerdem kosmologische Parameter. Unsere Resultate stimmen nicht mit den aktuellsten
Messungen der kosmischen Hintergrundstrahlung durch Planck überein.
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