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Abstract

Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover dis-

tribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems,

e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as

increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part

because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow

depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in

dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence

experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to

increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected

by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition

were significantly altered while in the moist tundra, only community composition changed significantly while rich-

ness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for

labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalci-

trant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric con-

ditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and

C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining

important future interactions between the tundra biosphere and atmosphere.
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Introduction

Artic ecosystems are beginning to exhibit significant

shifts in ecosystem structure and function induced by

changes in climatic conditions (Elmendorf et al., 2012;

Tape et al., 2012). Despite interannual and regional

variability, global mean surface temperature have con-

sistently increased since the late 19th century (Collins

et al., 2013). In the Arctic, temperatures have risen

between 0.06 to 0.1 °C per yr, while the global average

increase has been ca. 0.017 °C per yr during the past

30 years (Comiso & Hall, 2014). These temperature

increases have already had major consequences, includ-

ing accelerated summer ice loss, extended periods of

open water in the Arctic Ocean and delayed autumn

freeze up (Stroeve et al., 2014). At the same time, precip-

itation in the Arctic has increased (greatly exceeding

the global average increase), especially during the cold

season, where most precipitation falls as snow (Kattsov

& Walsh, 2000; Screen & Simmonds, 2012). Addition-

ally, state-of-the-art models predict further increases in

the twenty-first-century, possibly by more than 50% of

the current precipitation, leading to thicker snow cover

(Collins et al., 2013; Bintanja & Selten, 2014). Deeper

snow would have a suite of consequences for tundra

ecosystems. These include protection from the abrasive

wind (Liston et al., 2002; Sturm et al., 2005; Blok et al.,

2015), warmer winter soil temperatures and increased

soil moisture with subsequent effects on thaw depth

and C storage (Natali et al., 2012, 2014), N turnover

(Schimel et al., 2004; DeMarco et al., 2011), plant phe-

nology and mineral nutrition (Borner et al., 2008; Leffler
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& Welker, 2013; Pattison & Welker, 2014), vegetation

composition (Wahren et al., 2005; Welker et al., 2005)

and soil microbial respiration (Aanderud et al., 2013;

Natali et al., 2014). However, with the exception of

Buckeridge & Grogan (2008) that compared bacterial

and fungal biomass growth responses, how arctic soil

fungal communities may respond to changes in winter

snow depth conditions is still largely unknown.

Microbial activity in the Arctic has been shown to

increase due to higher winter soil temperatures induc-

ing changes in the nitrogen (N) cycle dynamics, partic-

ularly in moist tussock tundra and less so in dry heath

tundra in Arctic Alaska (Schimel et al., 2004; DeMarco

et al., 2011; Natali et al., 2014; Pattison & Welker, 2014).

In the Arctic, fungi are considered to constitute the bulk

of soil microorganisms biomass (Callaghan et al., 2005)

and have a key ecological role. Hobbie & Hobbie (2006)

estimated that up to 86% of the N obtained by tundra

plants is via mycorrhizal fungi, in exchange, plants can

allocate between 10 to 20% of their photosynthate-

derived C to their fungal partners (Harley, 1971; Hob-

bie, 2006), constituting an important pool of soil C.

Additionally, these exchanges might be positively cor-

related, i.e., increased allocation of plant C to the myc-

orrhizal partner might lead to increased uptake of N

from the soil pool and subsequent delivery to the plant

host (Talbot & Treseder, 2010). The limiting step in soil

N cycling is the breakdown of macromolecular organic

compounds, particularly the depolymerization of pro-

teins (Schimel & Bennet, 2004; Jones & Kielland, 2012)

that in high-latitude ecosystems has been correlated

with fungal biomass (Wild et al., 2013), and is particu-

larly attributed to ectomycorrhizal (ECM) and ericoid

mycorrhizal fungi (Read & Perez-Moreno, 2003).

Recently, several studies reported major changes in the

arctic fungal mycorrhizal communities in response to

summer warming (Deslippe et al., 2011; Geml et al.,

2015; Morgado et al., 2015; Semenova et al., 2015), with

the fungal community of moist tussock tundra typically

showing more pronounced response than the dry heath

tundra, including potential shifts in functional traits

and the subsequent ecosystem processes. However,

possible effects of increased winter soil temperatures

on the richness and compositional structure of soil fun-

gal communities have not yet been investigated.

Tundra plant community responses to increased win-

ter snow depth include a combination of shifts in com-

munity composition as well as increases in net plant

productivity (Borner et al., 2008; Natali et al., 2014) and

plant N tissue concentrations (Leffler & Welker, 2013).

At the community level, the general trends are

increases in shrub coverage and litter layer and,

decrease in lichens, bryophytes, and leaf C:N ratio

(Welker et al., 2005; Wipf & Rixen, 2010; Pattison &

Welker, 2014). Wahren et al. (2005) and Mercado-D�ıaz

(2011) reported (from the same experimental plots that

we used in our study) an increased coverage of several

species of deciduous and evergreen shrubs, and a sedge

species. Although most of these plants are highly

dependent on root-associated fungi, especially ECM

fungi, to acquire soil nutrients, how soil fungal commu-

nity changes in response to deeper snow remains

uncertain. Here, we focus on ECM fungal community

responses to long-term increased snow depth and the

associated warming soil temperatures across the dry

heath and moist acidic tussock tundra.

Ectomycorrhizal fungi represent the most taxonomi-

cally diverse fungal guild in the Arctic tundra (Gardes

& Dahlberg, 1996; Geml et al., 2012; Timling & Taylor,

2012), and provide crucial roles in soil-root interaction,

particularly in plant N uptake (Read et al., 2004; Ekblad

et al., 2013) and in soil C dynamics (Clemmensen et al.,

2013; Averill et al., 2014). Recently, an increasing

amount of studies on fungal functional traits are amass-

ing valuable insights into the role of the community

structure in potential ecosystem functions (e.g.

reviewed in Fernandez & Koide, 2014; Treseder & Len-

non, 2015). For example, Hobbie & Agerer (2010), gath-

ered evidences from d15N patterns and argued that

ECM fungi have two main strategies for growth and

nitrogen acquisition that match the extramatrical myce-

lium (EMM) characteristics of the ectomycorrhizae.

ECM fungi with low abundance of EMM and hydro-

philic mycorrhizae with contact, short-distance and

medium-distance smooth hyphal exploration types

(ETs) were argued to focus on uptake of labile nitrogen

(N) forms, such as amino acids, ammonium, and

nitrate. Supporting this hypothesis, many taxa compos-

ing this group showed limited growth in media of pro-

tein culture conditions (Lilleskov et al., 2011). On the

other hand, the ECM fungi with high abundance of

EMM with medium-distance fringe, medium-distance

mat and long-distance ETs with hydrophobic rhi-

zomorphs (or mycelial cords), likely focus on widely

dispersed and spatially concentrated soil resources

requiring efficient long-distance translocation. Such

investment in exploratory hyphae is unlikely to rely on

labile substrates under low nutrient availability; there-

fore, this group of taxa likely requires enzymes with

hydrolytic and oxidative capabilities in order to access

nonlabile N forms, such as proteins (Hobbie & Agerer,

2010). Supporting this hypothesis some studies pointed

to increased exoenzyme activity in ECM fungi with

abundant EMM (Tedersoo et al., 2012; Talbot et al.,

2013). Another example of a fungal trait and a potential

ecosystem function is the presence of melanin in hyphal

cell walls, which was thoroughly discussed by Koide

et al. (2014). Therefore, it seems reasonable to com-
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pare community composition of fungi with certain

functional traits in light of contrasting environmental

conditions which in turn might feedback to altered

ecosystem functions.

This research focuses on the effects of long-term

increased snow depth on ECM basidiomycete commu-

nities. Based on the evidence previously stated, we

hypothesize that: 1) ECM fungal community composi-

tion is strongly affected by increased snow depth, and

that the response will be more pronounced on the moist

tundra community; and 2) changes in ECM fungal com-

munity composition will reflect altered patterns in veg-

etation, soil nutrient pools and moisture, induced by

the increased snow depth. Therefore, we expect altered

patterns in the ECM fungal community functional

traits.

Material and methods

Study site and experimental design

The International Tundra Experiment (ITEX) (Henry & Molau,

1997; Welker et al., 1997) study site that we sampled is located

on the northern foothills of the Brooks Range, at the Toolik

Lake Field Station. The area lies in the Arctic tundra biome

within the bioclimatic subzone E, which covers approximately

36% of the Arctic dry land surface (Walker et al., 2005). The

mean air annual temperature is �7 °C and annual precipita-

tion ranges between 200 mm and 400 mm with approximately

50% falling as snow. The average snow depth is 50 cm

(DeMarco et al., 2011). The snow fence experiment was estab-

lished in the summer of 1994 in moist tussock and dry heath

tundra (Jones et al., 1998; Walker et al., 1999; Welker et al.,

2000). The snow fences are 2.8 m high and 60 m long, induc-

ing leeward drifts of ca. 60 m long (Walker et al., 1999; Patti-

son & Welker, 2014). Our sampling was focused on the

intermediate zone near the center of the experimental setup,

corresponding to ca. 1–1.5 m winter snow depth. Although

the deeper snow slightly shortens the growing season by ca.

5–8 days, this does not affect plant phenology significantly

(Borner et al., 2008). The average winter soil temperatures at

2 cm depth were �2.9 °C (�0.2) and �4.7 °C (�0.2) in the

increased snow depth plots and in the control plots, respec-

tively (Pattison & Welker, 2014).

We sampled soil at the end of July 2012 from two tundra

types, the dry heath and moist tussock tundra experimental

sites. In each tundra type, we sampled five plots/replicates

with increased snow depth and five plots with ambient snow

depth (‘control plots’). The control plots were located adjacent

to the snow fences (the experimental setup was described in

detail by Walker et al., 1999). Each replicate consisted of five

soil cores of 2 cm diameter and 20 cm depth. Both organic

and mineral layers were included in the soil cores, while

undecomposed litter, moss, and coarse roots were removed.

For each replicate the soil cores were thoroughly mixed and

kept frozen until lyophilization. In total we sampled 100 soil

cores across 20 plots of ca. 1 m2 each.

The vegetation of the dry heath tundra is characterized by

Dryas octopetala, Salix polaris, Vaccinium spp. and fruticose-

lichens, while the moist tussock tundra is dominated by Betula

nana, Salix pulchra, and the sedge Eriophorum vaginatum.

Detailed descriptions of the plant communities can be found

in Walker et al. (1999) and Kade et al. (2005), and their detailed

response to the altered snow depths in Walker et al. (1999),

Wahren et al. (2005), Welker et al. (2005), Mercado-D�ıaz (2011),

Pattison & Welker (2014).

Molecular work and sequence quality control

The DNA extraction, PCR protocol, Ion Torrent sequencing

and data clean-up procedures were described in detail else-

where (Geml et al., 2014a). Briefly, for each sample we carried

out two independent DNA extractions, using ca. 1 ml of lyo-

philized soil and pooled them to optimize extraction homoge-

nization. In the PCR we targeted the ITS2 region of the nuclear

ribosomal internal transcribed spacer that is currently

accepted as the universal barcode marker for fungi (Schoch

et al., 2012). We used primers fITS7 (Ihrmark et al., 2012) and

ITS4 (White et al., 1990). The ITS4 primer was labeled with

sample-specific Multiplex Identification DNA-tags (MIDs).

The amplicon library was sequenced using an Ion

318TM Chip by an Ion Torrent Personal Genome Machine

(PGM; Life Technologies, Guilford, CT, U.S.A.) at Naturalis

Biodiversity Center. For the initial clean-up of the raw

sequence data we used the online platform Galaxy

(https://main.g2.bx.psu.edu/root), in which the sequences

were sorted according to samples. Primers and adapters were

removed. We used a parallel version of MOTHUR v. 1.32.1

(Schloss et al., 2009) for subsequent sequence analyses.

Sequences shorter than 150 bp and longer than 400 bp were

removed following Blaalid et al. (2013), Geml et al. (2014a)

Geml et al. (2014b), Morgado et al. (2015) and Semenova et al.

(2015), because these tend to be low-quality reads. The qual-

ity-filtered sequences were normalized following Gihring et al.

(2012) by random subsampling so that each sample contained

equal number of sequences. We then clustered the sequences

into operational taxonomic units (OTUs) using OTUpipe

(Edgar, 2010) with the simultaneous removal of putatively chi-

meric sequences using de novo and reference-based filtering

using the curated dataset of fungal ITS sequences of Nilsson

et al. (2011), with the default settings. We used a 97% sequence

similarity clustering threshold following many other fungal

ecology studies (e.g. O’Brien et al., 2005; Higgins et al., 2007;

Geml et al., 2008; Geml et al., 2009; Amend et al., 2010; Teder-

soo et al., 2010; Geml et al., 2012; Kauserud et al., 2012; Brown

et al., 2013; Blaalid et al., 2013; Geml et al., 2014b; Davey et al.,

2015). Global singletons were discarded from further analysis.

The reference database published by K~oljalg et al. (2013) was

used to determine the taxonomic affinity of the OTUs using

USEARCH v7 (Edgar, 2010). OTUs with less than 80% similar-

ity to any identified fungal sequence were excluded from the

final analysis due to unreliable classification, and/ or uncer-

tainty regarding their ecological role. A representative

sequence of each OTU was deposited in GenBank under the

accession numbers KP827673 – KP828017. Because GenBank
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only accepts sequences with more than 199 bp, and we

included sequences ranging 150 to 400 bp in our dataset, we

include a representative sequence of each OTU as Supporting

Information (Data S1).

ECM fungal database and EMM determination

We followed Tedersoo & Smith (2013) to determine ECM

basidiomycete genera. For most OTUs we used a ≥ 90%

sequence similarity to determine genera. Because Sebacinales

have a diverse ecology we selected ECM OTUs based on their

supported phylogenetic placement (with ≥70% bootstrap and/

or ≥0.95 posterior probability) among sequences of taxa that

were morphologically confirmed as ECM published by Glen

et al. (2002), Urban et al. (2003), Ryberg et al. (2009) and Teder-

soo & Smith (2013).

To determine the EMM characteristics, we followed the

work of Agerer (2006), Tedersoo & Smith (2013) and consulted

the DEEMY database (http://deemy.de, accessed in Novem-

ber, 2014 – an information system for the characterization and

determination of ectomycorrhizae). In the genus Russula, if no

EMM information was available for the species of interest, we

assumed the EMM characteristics based on the closest species

with known characteristics. To determine the closest species,

we followed the phylogenetic study by Miller & Buyck (2002).

Similarly, for OTUs of the genus Hebeloma, we followed the

phylogenetic study by Boyle et al. (2006).

Statistical analysis

For each replicate, we calculated rarefied OTU accumulation

curves using the R package Vegan (Oksanen et al., 2012) and

determined the Good’s coverage (complement of the ratio

between the number of local singletons and the total sequence

counts) for the fungal OTUs to estimate the exhaustiveness of

our deep sequencing effort. Beta diversity, for all ECM basid-

iomycetes OTUs and for the ECM genera with the highest

OTU richness, in each tundra type and treatment combination

was calculated following Baselga (2010) with the R package

betapart (Baselga & Orme, 2012), with the function beta.multi

using a Sørenson dissimilarity matrix. This function computes

community dissimilarity accounting for the spatial turnover

and nestedness. OTU presence was defined as more than four

sequences on a per sample basis following the suggestion of

Lindahl et al. (2013) to minimize false positives (e.g. OTUs that

are common in one sample, but may be low-abundant contam-

inants in others). Due to uncertainty of sequence abundance

as indicator of species abundance in the samples (Amend

et al., 2010), we carried out analyses with two types of data

transformations. First, we transformed the data into presence–

absence matrix. However, given that the most abundant and

the rarest OTUs have equal weight in presence–absence data-

sets, we also wanted to see if taking read counts in considera-

tion influences the results. Therefore, as a second dataset, we

used square-root transformed sequence abundance to moder-

ate the influence of OTUs with extremely high sequence

counts, while maintaining some approximation of template

abundance that may reflect ecological significance. We used

PC-ORD v. 5.32 (McCune & Grace, 2002) to run nonmetric

multidimensional scaling (NMDS) on a primary matrix of

experimental plots by OTUs and a secondary matrix of plots

by OTU richness per taxon, EMM characteristics and sequence

counts. The dataset was subjected to 500 iterations per run

using the Sørensen similarity (Bray-Curtis index) and a ran-

dom starting number. We also calculated the Pearson’s corre-

lation coefficient (r) values between relative OTU richness per

taxon and axes 1 and 2. We tested whether fungal communi-

ties were statistically different across the treatments using a

multiresponse permutation procedure (MRPP) and deter-

mined any preferences of individual OTUs for either control

or increased snow depth plots in dry and moist tundra using

Indicator Species Analyses (Dufrêne & Legendre, 1997) as

implemented in PC-ORD v. 5.32. We also tested for significant

differences in OTU richness across the dry and moist tundra

control and deeper snow plots, per taxa (genera) and EMM

characteristics using Student’s t-test. Sequence abundance was

also compared between each tundra type and treatment com-

bination using Student’s t-test. Correlation coefficients were

calculated as implemented in Microsoft Excel v. 2010 between

the most OTU-rich genera and the hyphal exploration types

that had been combined in two functional groups: (I) contact,

short-distance, medium-distance smooth, and (II) medium-

distance fringe and long-distance ETs. The Venn diagram for

the whole community and genera with higher OTU richness

was also calculated, using the online version of the publication

by Oliveros (2007).

Results

Through the pipeline: from raw data to taxonomic
diversity

We obtained 3 960 925 sequences with a median length

of 268 bp. After quality control and random subsam-

pling we retained 1 161 160 sequences with a mean

length and standard deviation of 255.1 � 52.7 bp. Clus-

tering the sequences at 97% similarity generated 7015

OTUs, excluding global singletons and putative chi-

meric OTUs, of which 459 ECM basidiomycete OTUs

were retained for further analyses (Data S2). Across all

treatments, ECM fungi were represented by 23 genera

classified in seven orders (Table 1, Fig. 1). Overall,

Cortinarius and Tomentella were the most OTU-rich gen-

era, with 125 (ca. 27%) and 124 OTUs (ca. 27%), respec-

tively, followed by Inocybe (79 OTUs, 17%) and Russula

(40 OTUs, 9%), with the remaining genera having less

than 5% of the OTUs per genus. The order Agaricales

had by far the highest OTU richness (224 OTUs, ca.

49%), followed by Thelephorales (128 OTUs, ca. 28%),

Russulales (57 OTUs, ca. 12%), Cantharellales (33

OTUs, ca. 7%), Sebacinales (11 OTUs, ca. 2%), Boletales

(4 OTUs, ca. 1%), and Atheliales (2 OTUs, ca. 1%). The

analysis with sequence abundance resulted in similar

patterns as the OTU richness analysis (Data S3). The
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recovered OTU richness was higher than in previous

publications that used similar methods to investigate

arctic ECM fungal communities, but genera diversity

and patterns of genera richness were in general agree-

ment (Bjorbækmo et al., 2010; Timling et al., 2012; Geml

et al., 2012; Morgado et al., 2015). The asymptotic rar-

efaction curves (Fig. 2a) and estimated Good’s coverage

(Fig. 2b) indicate that the deep sequencing allowed a

very high OTU coverage and that most fungi in the

samples were sequenced. It is important to note that

OTU delimitation based on sequence similarity cut-off

is a proxy for species delimitation with some inherent

uncertainties. While the methodology we used is rou-

tine practice in fungal ecology and 2–3% ITS sequence

divergence usually delimit different species in many

basidiomycete lineages (Hughes et al., 2009), deep

sequencing may slightly overestimate the number of

species. Therefore, we consider the estimated absolute

number of OTUs of secondary importance; rather, we

think that the extent and direction of changes in rich-

ness among treatments (discussed below) are of pri-

mary importance, because these give us insights into

trends that the fungal groups exhibit in response to

experimental manipulations.

Overall results

The NMDS analyses of the presence–absence and

square-root sequence abundance matrices gave similar

results. However, the final stress values were some-

what lower in the square-root abundance ordinations,

therefore, we continued with these for the main inter-

pretations, while the presence–absence ordinations are

shown in Supporting Information (Data S4). For the

total dataset, the square-root abundance NMDS analy-

sis resulted in a 2-dimensional solution with a final

stress and instability of 0.1062 and <0.00001 respec-

tively. The results of the Monte Carlo test indicated that

the two dimensional solutions using the real data were

significantly better than occurrences by chance

(P < 0.01). The coefficients of determination for the cor-

relations between ordination distances and distances in

the original n-dimensional space were axis 1: r2 = 0.599;

axis 2: r2 = 0.240; total r2 = 0.839; orthogonal-

ity = 88.3%. The NMDS ordination plot was orthogo-

nally rotated by the treatment to visualize correlations

between snow depth effect and fungal community com-

position in general (Fig. 3a). The MRPP analysis indi-

cated a clear distinction between dry and moist ECM

community composition (P < 0.0000001, A = 0.14601).

The NMDS and MRPP analysis with the presence–ab-
sence matrix results were similar (Data S4a). Beta diver-

sity values in the dry tundra were similar among

control and treatment plots and among plots per treat-

ment; while in the moist tundra the values were

generally higher among control and treatment plots

than among plots per treatment. Species turnover was

substantial in all comparisons (Table 2).

Across the ambient snow plots of both dry and moist

tundra, Tomentella had the higher OTU richness with

103 OTU (ca. 29%), followed by Cortinarius with 78

OTUs (ca. 22%), Inocybe with 66 OTUs (ca. 19%) and

Russula with 28 OTUs (ca. 8%). All the other genera had

less than 5% of the OTUs per taxa and combined solely

represented ca. 22% of the OTUs. On the other hand,

across the deeper snow plots, Cortinarius had the higher

OTU richness with 78 OTUs (ca. 36% of all OTUS), fol-

lowed by Tomentella with 45 OTUs (ca. 20%), Inocybe

with 28 OTUs (ca. 13%) and Russula with 24 OTUs

(11%). All the other genera had less than 5% of the

OTUs per taxa (Fig. 1). Differences between the ambi-

ent and deeper snow plots were also evident at the

order level. Agaricales and Russulales had an increased

OTU richness in deeper snow areas, while Thele-

phorales and Cantharellales had a decrease. Approxi-

mately 53% of the OTUs were only present in the

ambient snow plots, ca. 24% were solely found in the

deeper snow plots, and the remainder 23% present in

both (data not shown). There was a significant decrease

in OTU richness from the ambient to the deeper snow

plots (P = 0.0377), with the control plots having on

average 66.2 � 24.5 OTUs, while the deep snow plots

had 43.8 � 28.4 OTUs (Table 1). Together the contact,

short-distance and medium-distance smooth ET repre-

sented the group with highest OTU richness in the con-

trol plots with an average of 46.1 � 17.9 OTUs per plot,

while the medium-distance fringe and long-distance

ETs group had an average of 16.6 � 7.09 OTUs per

plot. Comparing with the OTU richness values of the

deep snow plots, the first group had a significant

decrease (P = 0.0042, 24.6 � 14.05 average OTUs per

plot); whilst the later did not change significantly

(P = 0.36, 15.2 � 12.71 average OTUs per plot) (Data

S5). The overall patterns of changes in functional traits

were also depicted when comparing the OTUs in the

ambient with the deeper snow plots (Fig. 1).

Dry heath tundra

The NMDS analysis of the square-root sequence abun-

dance matrix resulted in a 2-dimensional solution with

a final stress of 0.0763 and a final instability < 0.00001.

The results of the Monte Carlo test indicated that the

two dimensional solutions using the real data were sig-

nificantly better than occurrences by chance (P < 0.01).

The coefficients of determination for the correlations

between ordination distances and distances in the origi-

nal n-dimensional space were axis 1: r2 = 0.667, axis 2:
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r2 = 0.183, total r2 = 0.849 and orthogonality = 77.8%.

The NMDS ordination plot was orthogonally rotated by

the treatment to visualize correlations between snow

depth and fungal community composition in general,

and the taxonomic groups and EMM characteristics in

particular (Fig. 3c). The MRPP analysis indicated a

clear distinction between control and deep snow ECM

community composition (P = 0.0039, A = 0.04940). The

NMDS and MRPP analysis of the presence–absence
matrix results yielded similar conclusions (Data S4c).

The groups with the strongest negative correlation

(Pearson’s correlations) with the increased snow depth

were OTUs of the contact, short-distance and medium-

distance smooth hyphal ET (r = �0.950), Tomentella

(r = �0.937), OTUs with hydrophilic hyphae (r =
�0.935), Inocybe (r = �0.935), sequence counts (r =
�0.912), total OTU richness (r = �0.896), Sebacina

(r = �0.682), Tulasnella (r = �0.582), Sistotrema (r =
�0.533). None of the groups showed a strong positive

correlation (r > 0.5) with the increased snow depth. The

control plots had on average 54 � 23.29 OTUs per plot,

while the treatment plots had 26.6 � 8.02 OTUs per

plot. This difference was statistically significant

(P = 0.03). The comparison of sequence abundance also

showed a significant decrease, in the same direction as

the OTU richness patterns (Data S6).

Regarding taxonomic groups, Tomentella had the

highest OTU richness in the control plots with

21 � 13.55 OTUs per plot, followed by Inocybe with

10.4 � 5.3. Interestingly, across the deep snow plots,

both genera showed a significant decrease on the aver-

age OTU richness per plot (P = 0.022 and 0.047 respec-

tively). On the other hand, OTU richness in Cortinarius

was nearly unaffected and this genus had the highest

Table 1 Average and standard deviation OTU richness per genus and extramatrical mycelium features

Dry heath tundra Moist acidic tussock tundra

DC DS P MC MS P

Tomentella 21 � 13.55 3.4 � 2.07 0.02* 20.6 � 7.40 12.6 � 8.33 0.07

Cortinarius 9 � 4.12 9.4 � 6.80 0.46 16.6 � 7.13 17.2 � 16.44 0.47

Inocybe 10.4 � 5.32 5.2 � 1.92 0.05* 8.6 � 4.28 3.2 � 1.92 0.02*

Russula 1.8 � 2.48 2.8 � 3.03 0.25 7.6 � 4.16 5.4 � 4.10 0.42

Alnicola – – – 0.8 � 0.84 2.6 � 0.89 0.01*

Amanita 0 � 0 0.2 � 0.45 0.19 – – –
Amphinema – – – 0 � 0 0.2 � 0.45 0.19

Boletus 0.6 � 0.55 0 � 0 0.04* – – –
Ceratobasidium 1.6 � 0.55 1.6 � 0.89 0.50 0 � 0 0.2 � 0.45 0.19

Clavicorona – – – 0.4 � 0.55 0 � 0 0.09

Clavulina 0.6 � 1.34 0.4 � 0.55 0.38 0.6 � 0.89 0.4 � 0.55 0.34

Hebeloma 1.6 � 2.61 0.4 � 0.89 0.19 2.8 � 0.84 2.6 � 1.14 0.38

Hymenogaster – – – 0.6 � 0.55 0 � 0 0.04*

Laccaria – – – 1.4 � 0.89 2.8 � 0.84 0.02*

Lactarius 0.2 � 0.44 0.8 � 0.84 0.10 4.4 � 3.36 1.8 � 0.84 0.08

Leccinum 0.6 � 0.55 0.8 � 0.45 0.27 2.4 � 1.34 1.6 � 1.34 0.19

Membranomyces 0.4 � 0.55 0 � 0 0.09 – – –

Piloderma 0.2 � 0.45 0 � 0 0.19 – – –
Pseudotomentella 0.8 � 1.30 0.4 � 0.55 0.28 – – –
Sebacina 0.8 � 1.79 0.4 � 0.55 0.33 2.6 � 1.34 1.4 � 0.55 0.06

Sistotrema 1.4 � 1.34 0.6 � 1.34 0.19 3 � 4.47 0.6 � 0.89 0.15

Tomentellopsis 0.2 � 0.45 0 � 0 0.19 0 � 0 0.4 � 0.55 0.09

Tulasnella 0.8 � 0.84 0.2 � 0.45 0.10 – – –
C/ S/ MDS 42.2 � 19.82 15.6 � 3.78 0.02* 50 � 17.13 33.6 � 15.08 0.07

MDF/ L 11.8 � 4.82 11 � 6.63 0.42 22 � 5 19.4 � 16.59 0.38

Hi 34.6 � 20.73 12 � 4.69 0.04* 37.4 � 11.68 25.4 � 13.41 0.09

Ho 16.4 � 8.02 11.6 � 7.37 0.18 28.2 � 8.93 22.6 � 17.47 0.27

All ECM OTUs 54 � 23.29 26.6 � 8.02 0.03* 72.4 � 22.02 53 � 31.01 0.15

DC, dry tundra with ambient snow; DS, dry tundra with increased snow depth; MC, moist tundra with ambient snow; MS, moist

tundra with increased snow depth; MDS, medium-distance smooth ET; MDF, medium-distance fringe ET; C, contact ET; S, short-

distance ET; L, long-distance ET; Hi, hydrophilic; Ho, hydrophobic.

*Significant treatment effect (a = 0.05).
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mean richness in the increased snow depth plots

(Table 1). At the order level, there was an abrupt

decrease in the proportion of Thelephorales OTUs,

from 36% in the control plots to 17% in the deep snow

plots, while most other orders had an increase in pro-

portion between the ambient and increased snow depth

plots, with Agaricales having 55% of all OTUs (across

the deep snow plots) (Fig. 1).

In the ambient snow conditions, the functional group

with contact, short-distance and medium-distance

smooth ETs had the highest OTU richness with an aver-

age of 42.2 � 19.82 OTUs per plot; while the group

with long-distance and medium-distance fringed ETs

solely had on average 11.8 � 4.82 OTUs per plot. Inter-

estingly, in the deeper snow plots the first group had a

significant decrease (P = 0.02) in OTU richness, while

the latter group maintained similar OTU richness

(P = 0.42). Regarding relative sequence abundance, the

same patterns were depicted for the above-mentioned

functional groups, although the difference between

control and increased snow depth plots for the contact,

short-distance and medium-distance smooth ETs was

only marginally significant (P = 0.055).The vast major-

ity of OTUs were only present in the control plots

(60%), a smaller percentage was present in both the

control and the increased snow depth plots (20%), and

Fig. 1 Ectomycorrhizal basidiomycetes OTU richness, classified by taxonomic and functional traits in ambient snow and increased

snow depth plots. The legend for each pair of graphics is organized by colors and in a clock-wise disposition. C, contact; S, short-dis-

tance; MDS, medium-distance smooth; MDF, medium-distance fringe; L, long-distance.
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only a minority (18%) was strictly present in the deeper

snow plots (Fig. 4). The two genera with the highest

OTU richness in the control plots, i.e. Tomentella and

Inocybe, also follow this pattern. In comparison the per-

centage of OTUs that are solely present in the control

plots in Cortinarius and Russula is considerably lower

(Fig. 4). Indicator species analysis was significant

(a = 0.05) for five (undetermined) Tomentella OTUs in

the ambient snow plots, while no OTU had significant

values in the deeper snow plots (Table 3).

The correlation coefficient between the taxonomic

groups and ETs revealed significant positive and nega-

tive correlations among specific groups (Data S7).

Across the ambient snow depth plots, Inocybe OTU rich-

ness showed a significantly negative correlation with

Russula, and a significantly positive correlation with

Tomentella. Interestingly, across the increased snow

depth plots, the negative correlations of OTU richness

between the previously mention genera decreased shar-

ply to nonsignificant values. The correlations for sub-

sampled sequence abundance were all nonsignificant.

Moist tussock tundra

The NMDS analysis of the square-root sequence abun-

dance matrix resulted in a 2-dimensional solution with

a final stress and instability of 0.0759 and <0.00001
respectively. The results of the Monte Carlo test indi-

cated that all two dimensional solutions using the real

data were significantly better than occurrences by

chance (P < 0.01). The coefficients of determination for

the correlations between ordination distances and dis-

tances in the original n-dimensional space were axis 1:

r2 = 0.607; axis 2: r2 = 0.265; total r2 = 0.872; orthogo-

nality = 93.1%. The NMDS ordination plot was orthog-

onally rotated by the treatment to visualize correlations

between snow depth effect and fungal community com-

position in general, and the taxonomic groups in partic-

ular (Fig. 3b). The MRPP analysis indicated a clear

distinction between ambient and deeper snow ECM

community composition (P = 0.0017, A = 0.0943). The

NMDS and MRPP analysis of the presence–absence
matrix yielded similar results (Data S4b). Inocybe and

the group of OTUs with short-distance exploration type

had a strong negative correlation with the increased

snow depth plots, r = �0.757 and �0.775, respectively,

as well as the OTUs with hydrophilic hyphae

(r = �0.540) and Lactarius (r = �0.536). On the other

hand, Alnicola and Laccaria OTU richness had the stron-

gest positive correlation with the deeper snow plots

with r = 0.696 and r = 0.510, respectively. The control

plots had on average 72.4 � 22.02 OTUs per plot, while

the deep snow plots had 53 � 31.01 OTUs per plot.

Despite the considerable decrease, the difference was

not statistically significant (P = 0.15). Overall sequence

abundance showed a similar pattern with a nonsignifi-

cant decreasing trend from the control to the increased

snow depth plots.

The genus with the highest OTU richness in the

ambient snow areas was Tomentella with 20.6 � 7.4

OTUs per plot, followed by Inocybe with 10.4 � 5.3. On

the deeper snow areas, while Tomentella had only a

marginally significant (P = 0.07) decrease on the aver-

age OTUs per plot to 12.6 � 8.33, Inocybe had a signifi-

cant (P = 0.02) decrease to 3.2 � 1.92 OTUs per plot.

On the other hand, Cortinarius was the genus with

higher OTU richness in the deeper snow plots with

9.4 � 6.8, and showed no significant changes (P = 0.47)

on OTU richness compared with the ambient snow

plots (Table 1). Interestingly, in the deeper snow plots,

on the order ranking, Thelephorales increased the per-

centage of OTUs while all the remaining orders

decreased (Fig. 1), mainly due to the decrease in Ino-

cybe, Russula, and Lactarius OTU richness. Regarding

EMM characteristics, in the control plots the contact,

short-distance and medium-distance smooth had on

average 50 � 17.13 OTUs per plot, while the long-dis-

tance and medium-distance fringed had 22 � 5 OTUs
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per plot. In the deeper snow plots the first group had a

marginally significant decrease (P = 0.07) to

33.6 � 15.08 OTUs per plot, while the latter group did

not change significantly (P = 0.38, 19.4 � 16.59 OTUs

per plot). Most OTUs, 45% were only present across the

ambient snow plots, 25% were present in both the con-

trol and deeper snow plots and 30% were only present

in the deeper snow plots (Fig. 4). Tomentella and Rus-

sula followed the overall OTU distribution pattern.

Conversely, Cortinarius had a contrary pattern, with a

higher percentage of OTUs solely recovered from the

deep snow plots – 41%, 33% solely present on the con-

trol plots and 25% present in both the control and dee-

per snow areas. On the other hand, Inocybe had 63% of

OTUs only recovered from the ambient snow plots,

23% recovered solely from the deeper snow areas and

only 13% were found in both the ambient and deep

snow plots (Fig. 4). OTUs from seven different genera

had significant P-values (a = 0.05) in the indicator spe-

cies analysis. Of these 13 OTUs were indicator of ambi-

ent snow plots and eight OTUs were indicator of

deeper snow plots (Table 3).

Fig. 3 Nonmetric multidimensional scaling (NMDS) ordination plots of ECM basidiomycetes communities from the ambient and

increased snow depth plots based on OTU sequence square-root abundance in (a) the whole community (dry and moist tundra), (b) the

moist tundra, (c) the dry tundra. Vectors with |r| 0.5 are represented on the ordination plot. C, contact; S, short-distance; MDS, med-

ium-distance smooth; MDF, medium-distance fringe; L, long-distance; Hi, hydrophilic; Seq counts, sequence reads.
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The correlation coefficient of OTU richness between

the taxonomic groups and ETs revealed a significant

positive correlation among two groups in the ambient

snow plots: Cortinarius – Russula, and between the

group of OTUs with contact, short-distance and

medium-distance smooth ET, and the group of OTUs

with medium-distance fringe and long-distance ET

(Data S7). In the increased snow depth plots, the sig-

nificant positive correlation, among these groups, was

also observed, and further extended to the pairs

Tomentella – Cortinarius, and (marginally significantly)

for Russula – Tomentella. None of the groups tested

had a negative correlation either at the control or the

deeper snow plots. The correlation patterns for sub-

sampled sequence abundance were similar in the

increased snow depth plots, and all nonsignificant in

the control plots.

Discussion

The results presented here clearly show that long-term

increase in snow depth alters ECM fungal community

composition in moist tussock and dry heath tundra,

with a considerable portion of OTUs not being resistant

to the resulting changes in environmental conditions.

Such local extinction of many taxa is inferred from the

significant decrease in average OTU richness with

increased snow depth and from the high compositional

turnover among the control and deep snow treatment

in both tundra types. We find the strong decrease in

ECM fungal richness surprising, because vegetation

studies revealed a strong increase in shrub cover and

size in the moist and to a lesser extent in the dry tundra

that is presumably coupled with greater root biomass,

i.e. more colonizable habitat for ECM fungi. Although

our results suggest that only a subset of ECM fungi can

withstand the altered environmental conditions caused

by the increased snow depth, there were some species

present in the deep snow treatment that were not

detected in the control plots. It is plausible that some of

the taxa characteristic of the deep snow plots may be

Table 2 Beta diversity values using a Sørensen dissimilarity

index, for all ECM basidiomycetes OTUs and the genera with

the highest richness

DC DS D MC MS M

Cortinarius 0.985 0.984 0.984 0.788 0.806 0.871

Inocybe 0.974 0.979 0.976 0.738 0.833 0.883

Russula 0.957 0.961 0.958 0.650 0.682 0.821

Tomentella 0.981 0.988 0.982 0.638 0.739 0.830

All OTUs 0.995 0.996 0.995 0.701 0.719 0.836

DC, dry heath tundra with ambient snow; DS, dry heath tun-

dra with increased snow depth; MC, moist acidic tussock tun-

dra with ambient snow; MS, moist acidic tundra with

increased snow depth; D, Dry control and increased snow

depth; M, moist acidic tundra control and increased snow

depth.
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snow bank specialists and may, therefore, be absent

from the zonal (moist) and ridge-top (dry) control plots.

Recently it has been shown that ECM fungi are also

sensitive to summer warming with the communities of

the moist tundra showing a more evident response to

summer warming in terms of altered community com-

position, trait patterns and OTU richness levels (Geml

et al., 2015; Morgado et al., 2015).

The strongest response to increased snow depth was

observed in the dry heath tundra, where besides com-

munity composition, there was also an overall signifi-

cant decrease in abundance (sequence reads) and

richness of the ECM fungal community in response to

increased snow depth. The richness and read abun-

dance of the moist tundra also showed a decreasing

trend but did not change in a significant manner. This

was surprising, as we anticipated that ECM fungal

community in the moist tussock tundra would have a

stronger response to deeper snow, because the plant

community and N dynamics had been reported to be

more strongly affected by the increased snow depth in

the moist tundra (Schimel et al., 2004; Wahren et al.,

Table 3 Indicator OTUs (resultant from indicator species analysis, a = 0.05) per treatment (correlated site), with classification,

similarity and origin of the reference sequence

OTU

Correlated

site

K~oljalg et al. (2013) and UNITE

classification

Similarity

(%) Best match sequence origin

473 DC Tomentella sp. (JX630707) 97.4 Happy Valley, AK

6290 DC Tomentella sp. (UDB018363) 92.4 North India

6579 DC Tomentella sp. (JX630707) 95.3 Happy Valley, AK

6686 DC Tomentella sp. (FJ581421) 95.6 China: southwestern alpine meadow

8011 DC SH108139.05FU Tomentella sp. (HQ211689) 93.8 Toolik Lake, AK

6073 MC SH106684.05FU Tomentella sp. (EF218830) 96.5 British Columbia Interior Cedar Hemlock Forest,

Canada

1991 MC Tomentella sp. (JQ347212) 97.8 Subalpine medow, China

55 MC Tomentella sp. (JX630431) 97.5 Thule, Greenland

12782 MC Tomentella sp. 33E (FN687652) 95.2 Mid alpine environment, Sweden

1354 MC Tomentella sp. (JX630589) 100 Prince Patrick Island, Canada

12656 MC SH103086.05FU Tomentella badia (JQ711987) 93.6 BC, Canada

251 MC SH108158.05FU Tomentella sp. (JF304372) 97.6 North America Arctic Transect

390 MC SH166458.05FU Cortinarius huronensis

(UDB015917)

100 Kilingi-N~omme, Estonia

80 MC SH105172.05FU Cortinarius cf. flos-paludis

(FJ039560)

98.1 Canada

1030 MC SH099601.05FU Inocybe leiocephala

(AM882793)

99.2 Sweden

872 MC SH111588.05FU Inocybe nitidiuscula

(HQ604382)

95.4 BC, Canada?

301 MC SH102330.05FU Russula renidens

(UDB011117)

99.1 Kilpisj€arvi, Finland

828 MC SH164699.05FU Lactarius torminosus

(UDB011509)

99.4 Estonia

10373 MS Laccaria sp. (JX630414) 97.9 Ellef Ringnes Island, Canada

328 MS Inocybe sp. (JX630878) 96.8 Baffin Island, Canada

3465 MS SH105206.05FU Cortinarius sp. 17C

(FN687635)

94.3 Sweden

11539 MS SH101144.05FU Russula sp. (HQ212276) 96.9 Toolik Lake, AK

1165 MS SH101328.05FU Alnicola sp. (FJ197860) 98.4 Primary successional glacier foreland soil,

Austria

7259 MS SH101328.05FU Alnicola sp. (FJ197860) 96 Primary successional glacier foreland soil,

Austria

7802 MS SH101328.05FU Alnicola sp. (FJ197860) 95.9 Primary successional glacier foreland soil,

Austria

1058 MS SH112490.05FU Tomentella lapida (JQ724049) 99.6 Natural/naturalized willow site, Sweden

DC, dry heath tundra with ambient snow; MC, moist acidic tussock tundra with ambient snow; MS, moist acidic tundra with

increased snow depth.
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2005; Mercado-D�ıaz, 2011). Together with our previous

results (Morgado et al., 2015), we argue that the dry

tundra ECM fungal community likely is more sensitive

to changes in snow depth than to summer warming.

The increased snow depth not only elevates winter soil

temperature, but also increases soil moisture content as

well (Wipf & Rixen, 2010), the effect of which likely is

greater in the dry tundra. Because ambient snow in dry

tundra areas is very shallow and provides little protec-

tion against cold and desiccating winds, the above com-

positional differences of fungal communities between

ambient and deep snow may be partly caused by both

temperature and moisture level differences. Our corre-

lation analysis of OTU richness and sequence abun-

dance with the different snow depths showed different

patterns among the tundra types. For example, in the

moist tundra OTU richness and sequence abundance

between Cortinarius and Tomentella showed a significant

positive correlation in the increased snow depth plots,

while no significant correlation was observed in the

control plots. On the other hand, in the dry tundra no

correlation was observed between these two groups in

either snow depths. This suggests that in our study the

interaction between OTU richness and potential species

abundance likely are habitat-specific, and are in agree-

ment with studies that addressed species-species inter-

actions (Kennedy et al., 2007; Simard et al., 2012;

Fransson et al., 2013). Collectively, our findings reflect

the complexity of arctic tundra responses to predicted

changes in summer and winter climate and the need to

undertake comparative studies that include multiple

ecosystem types even at reduced spatial scales (Welker

et al., 2000; Walker et al., 2008; Sullivan et al., 2008a,b;

Rogers et al., 2011; Christensen et al., 2013; Leffler &

Welker, 2013; Sharp et al., 2013; Lupascu et al., 2014).

Tomentella, the genus with the highest richness in the

control plots of both tundra types, showed a sharp neg-

ative response to increased snow depth, with a signifi-

cant sixfold decrease in average OTU richness and a

majority of the OTUs disappearing in the dry tundra,

as well as an overall decrease in proportional sequence

counts. In the moist tundra, Tomentella richness also

showed a decreasing trend, but in a less striking man-

ner than in the dry tundra. The higher beta diversity in

the increased snow plots, especially in the moist tun-

dra, reflects an increase in species turnover and intra-

generic community dissimilarity indicating potential

species-specific responses to the altered conditions and

patchiness distribution of this group of species. Never-

theless, the elevated number of indicator OTUs associ-

ated with the control plots (five in the dry and seven in

the moist tundra) point to the sensitivity of this group

to altered conditions. Moreover, two of these OTUs

were very closely related with an OTU (KJ792685) that

was negatively affect by increased summer tempera-

tures in the dry tundra (Morgado et al., 2015), further

indicating that besides the general trends for the genus,

at least one species of Tomentella, which is potentially

widespread across the dry tundra, is very sensitive to

summer and winter warming. Potential explanations to

the observed patterns in our study may be linked with

their functional traits and potential ecological roles.

Tomentella and closely related genera (e.g. Pseudoto-

mentella and Tomentellopsis) have melanized cell walls

(Agerer, 1987–2002; Agerer, 2006), which is not a com-

mon feature in ECM basidiomycetes (K~oljalg et al.,

2000). Melanins can be produced by fungi, plants, and

animals, and are dark macromolecules composed of

phenolic and indolic monomers, often coupled with

protein and carbohydrates (Butler & Day, 1998). They

usually constitute a considerable portion of total fungal

cell weight and likely require a considerable energetic

investment (Rast & Hollenstein, 1977; Butler & Day,

1998). This feature has been extensively argued and

was recently shown in physiological experiments (Fer-

nandez & Koide, 2013) to increase tolerance to several

environmental stressors, such as freezing (Robinson,

2001) and hydric stress (Singaravelan et al., 2008; Fer-

nandez & Koide, 2013). The increased snow depth not

only elevates winter soil temperature, but also increases

soil moisture content (Wipf & Rixen, 2010), the effect of

which likely is greater in the dry tundra. The deep

snow conditions with elevated soil temperature and

moisture might reduce the competitive advantages of

melanin-producing Tomentella adapted to the above-

mentioned stress factors (e.g., drought, and very low

temperatures). Additionally, Tomentella has either con-

tact, short or medium-distance smooth hyphal ETs,

which have been argued to be adapted to labile N soil

pools (Hobbie & Agerer, 2010). The plant community

responded to increased snow depth with a significant

increase in the shrubs and litter layer (Wahren et al.,

2005; Mercado-D�ıaz, 2011), indicating a potential

change in soil organic matter input and shifts in C:N

ratio, that have been argued to be important regulators

of arctic N dynamics (DeMarco et al., 2011). Therefore,

it is possible that in the altered environmental condi-

tions the combination of traits presented by Tomentella

might not constitute an advantage in scavenging for

soil nutrients, which might lead to a detrimental alloca-

tion of photosynthates by the ECM host and/or to com-

petitive exclusion by other ECM fungi better suited to

the altered conditions.

The decomposition and turnover of ECM fungal bio-

mass likely has a significant role in C and other nutrient

dynamics (Wallander et al., 2001; Clemmensen et al.,

2013; Ekblad et al., 2013). Melanized hyphae have been

argued to be relatively long lived, slow growing

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3080–3096

SNOW DEPTH SHAPES ARCTIC FUNGAL COMMUNITY 3091

http://www.ncbi.nlm.nih.gov/nuccore/KJ792685


(Robinson, 2001) and relatively resistant to decomposi-

tion (Coelho et al., 1997; Butler & Day, 1998; Butler

et al., 2005), potentially representing a stable and recal-

citrant component in the fungal biomass (Treseder &

Lennon, 2015). In two laboratory experiments, Fernan-

dez & Koide (2014) showed that the decomposition rate

of ECM fungi was inversely correlated with the concen-

tration of melanin and that the inhibition of melanin

biosynthesis in an ECM fungi induced faster rates of

decomposition. Moreover, Clemmensen et al. (2015),

observed a correlation between the abundance of taxa

with melanized hyphal content and higher carbon stor-

age in the soil. If future climatic conditions lead to

increased snow depth in the arctic tundra, the decreas-

ing richness and relative abundance of Tomentella might

contribute to soil C loss. Several other groups of root-

associated fungi also have melanized hyphae, such as

ericoid mycorrhizal fungi and dark septated endo-

phytes. We therefore highlight the need to address

responses of those root-associated fungi to increased

snow depth to better understand if the above-men-

tioned warming-induced trend of decreasing richness

is common in melanized fungi or is specific to certain

phylogenetic lineages. Despite the uncertainties, our

evidence and grounded speculations are in line with

the results by Natali et al. (2014) that addressed winter

warming effects on C cycle dynamics and indicated a

net soil C loss due to winter warming.

We observed an abrupt decrease in mean OTU rich-

ness of Inocybe from the control to the increased snow

depth plots in both tundra types. However, a consider-

able proportion of Inocybe OTUs that were found in the

increased snow depth plots were also found in the con-

trol plots, particularly in the moist tundra. These results

suggest that although arctic Inocybe spp. seem to be

very sensitive to climate changes, a resistant subset of

the species may be able to withstand changes in the cli-

matic conditions. Inocybe spp. were previously argued

to be sensitive to altered environmental conditions,

such as soil compaction (Hartmann et al., 2014) and

summer warming (Morgado et al., 2015). Additionally,

there are evidences that in mature plant stands the rate

of root-infection by Inocybe might decrease in sites with

increased soil moisture (Fleming, 1984). It is possible

that in the increased snow depth conditions, the lack of

rizhomorphs and hydrophilic ectomycorrhizae of Ino-

cybe (Agerer, 2006), a set of characteristics hypothesized

to be adapted to labile N uptake (Hobbie & Agerer,

2010), might constitute detrimental traits in relation to

other groups of ECM fungi. However, the increase in

shrubs and litter layer might lead to potential patchi-

ness of nutrient soil pools allowing for some species

with hydrophilic hyphae to thrive in the increased

snow depth.

The lack of significant changes in Cortinarius richness

and the relative increase in overall sequence counts (a

potential surrogate for relative abundance) between the

control and increased snow depth plots indicate that

this group might be more adapted to the altered condi-

tions, and could become more dominant in the warm-

ing Arctic. A similar trend for this group was also

observed in our previous work that reported ECM fun-

gal responses to long-term summer warming (Morgado

et al., 2015). However, in contrast, in the present study

most OTUs are not shared between the two treatments,

indicating that, although average OTU richness does

not change, there seems to be a considerable turnover

in species composition. This suggests that only a subset

of the OTUs present in the control plots are resistant to

increased snow depth and that there is substantial func-

tional variation within the genus that allows for the

exploitation of new niches created in the altered envi-

ronment by incoming species. Species of Cortinarius

form a dense mycelium with medium-distance fringe

ET and hydrophobic rhizomorphs (differentiated myce-

lial cords) (Agerer, 2001). This foraging strategy is

adapted for efficient N absorption and nutrient translo-

cation (Hobbie & Agerer, 2010). Additionally, at least

some Cortinarius spp. were reported to have the capa-

bility to assimilate organically bounded N (Hobbie &

Agerer, 2010), and to transcribe Mn-peroxidase genes

(which are involved in the production of exoenzymes)

in field conditions; these were further linked through

co-localization of DNA abundance with exoenzyme

activity that interacts in complex organic matter break-

down (B€odeker et al., 2014). Another feature that may

play a role is their physiological response to the altered

conditions. Although, only a few studies focused on

ECM fungal physiological responses to extreme cold,

Ma et al. (2011) compared ECM fungi growth responses

to very low temperatures (between �40 and +4 °C) and
freeze-thaw events of four ECM species from distinct

lineages. Their results indicated that Cortinarius had the

lowest tolerance to freeze-thaw events and the fastest

growth when temperatures reach near 0 °C. Because

reduced temperatures, hydric stress, and freeze-thaw

events inhibit the rate of chemical and microbial activ-

ity (Robinson, 2001), and given the characteristics and

potential ecological role of Cortinarius spp., it seems fea-

sible to argue that long-term increased winter soil tem-

peratures, summer moisture, and reduced fluctuations

in soil temperatures might convey advantages to this

group over other ECM fungal groups.

The increasing dominance of fast growing ECM spe-

cies with high EMM production and fast N mobiliza-

tion might lead to increased C storage in the soil pool;

however, this will be determined by biomass turnover.

In an interesting work relating fungal traits, community
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structure and nutrient soil pools, Clemmensen et al.

(2015) found a link between abundance of species with

similar ETs to that of Cortinarius and low accumulation

of root-derived soil C. Briefly, they hypothesized that

the exploratory hyphae of already explored soil patches

could be recycled in an autolytic process, leaving

behind just the long-living rhizomorphs connecting the

exploratory forefront of the EMM and the ectomycor-

rhizae. This strategy would enhance their nutrient

acquisition and maintain or reduce their biomass,

potentially reducing also energetic costs. Due to the

potentially high turnover of this mycelium biomass,

this theory also implies a reduction in stable soil pools,

and therefore the long-term C and N sequestration.

Russula did not show any significant change in rich-

ness with increased snow depth, and a considerable

portion of the OTUs were found both in the control and

the treatment plots, indicating that many OTUs were

resistant to altered conditions. While most Russula spp.

lineages have an hydrophilic ectomycorrhizae and con-

tact or short-distance ETs that lack rhizomorphs, other

lineages in Russula have a medium-distance smooth ET

and hydrophobic hyphae (Agerer, 2006). In our dataset,

the Russula OTUs with short or contact ET did not show

change in richness with increased snow depth. How-

ever, one OTU with contact or short-distance ET was

indicator of the moist control plots while another was

indicator of increased snow depth, suggesting species-

specific responses to altered conditions. On the other

hand, in the increased snow depth plots in the moist

tundra, we observed a significant decrease in richness

of OTUs that matched Russula species with hydropho-

bic and medium-distance smooth ET. These results

indicate that even within a closely related group of spe-

cies the functional diversity can differ. While some Rus-

sula species seem to have a considerable fast growth

rate at low temperatures (Ma et al., 2011), others are

considered to have a slow growth rate (Nygren et al.,

2008). Moreover, there is evidence of intrageneric vari-

ability in N usage as well (Avis, 2012). It is possible that

in some species the hydrophilic ectomycorrhizae allows

for the rapid intake of labile N forms by the plants,

without metabolizing, via diffusion through the mantle

of the ectomycorrhizae directly to the plant-host root

via the apoplast. This process would avoid energetic

costs and the necessity of C allocation to the ECM fungi

(Nygren et al., 2008). This may influence the competi-

tive interactions between species with hydrophilic and

hydrophobic mycelia.

In conclusion, our data provide first insights into the

taxon-specific effects of increased snow depth on the

ECM fungal community of Arctic tundra in Northern

Alaska. We detected major shifts in ECM fungal com-

munity composition and its potential functional traits

by coupling changes on fine scale taxonomic groups

with their extramatrical mycelial characteristics. We

postulate that ECM fungal community shifts induced

by long-term increased snow depth likely stimulate C

and N mobilization. However, the final balance

induced by arctic ECM basidiomycete community in

these nutrient pools will likely depend on the changes

in the biomass of specific groups, particularly Tomen-

tella and Cortinarius. Our results also highlight how the

fundamental differences in tundra ecosystems control

the nature of the existing fungal communities and their

responses to deeper snow.

Acknowledgements

Financial support for this project was provided by the NWO-
ALW Open Programme research grant (821.01.016) awarded to
E. Smets and J. Geml and the Naturalis personal research bud-
gets of J. Geml and L. Morgado. The experimental work is lar-
gely supported by NSF grants OPP AON 0856728 and OPP IPY
ITEX 0632184 awarded to JM Welker. The authors thank the
staff of the Toolik Field Station for logistical support, and Mar-
cel Eurlings and Elza Duijm (Naturalis Biodiversity Center) for
conducting the Ion Torrent sequencing. The authors are grateful
to Todd O’Hara and Perry S. Barboza (University of Alaska
Fairbanks) for providing equipment and assistance to lyophilize
the large quantities of soil samples. The authors are also thank-
ful for the insightful comments to an earlier version of the paper
by two anonymous reviewers.

Conflict of interests

The authors declare no conflict of interests.

References

Aanderud ZT, Jones SE, Schoolmaster DR, Fierer N, Lennon JT (2013) Sensitivity of

soil respiration and microbial communities to altered snowfall. Soil Biology and Bio-

chemistry, 57, 217–227.

Agerer R (1987–2002) Colour Atlas of Ectomycorrhizae. Einhorn-Verlag, Schw€abish

Gm€und, d-72525, Germany.

Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomy-

corrhizal mycelial systems according to their patterns of differentiation and puta-

tive ecological importance. Mycological Progress, 11, 107–114.

Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae.

Mycological Progress, 5, 67–107.

Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454

pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555–5565.

Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between

plants and decomposers drives soil carbon storage. Nature, 505, 543–545.

Avis PG (2012) Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic

tendencies of fetid Russula. Mycologia, 104, 998–1007.

Baselga A (2010) Partitioning the turnover and nestedness components of beta diver-

sity. Global Ecology and Biogeography, 19, 134–143.

Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity.

Methods in Ecology and Evolution, 3, 808–812.

Bintanja R, Selten FM (2014) Future increases in Arctic precipitation linked to local

evaporation and sea-ice retreat. Nature, 509, 479–482.

Bjorbækmo MFM, Carlsen T, Brysting A et al. (2010) High diversity of root associated

fungi in both alpine and arctic Dryas octopetala. BMC Plant Biology, 10, 244.

Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013)

ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources,

13, 218–224.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3080–3096

SNOW DEPTH SHAPES ARCTIC FUNGAL COMMUNITY 3093



Blok D, Weijers S, Welker JM, Cooper E, Michelsen A, Elberling B (2015) Deepened

winter snow increases stem growth and alters stem? 13C and 15N in evergreen

dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra. Ecological Research

Letters, 10, 044008.

B€odeker ITM, Clemmensen KE, de Boer W, Martin F, Olson A, Lindahl BD (2014)

Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus

in northern forest ecosystems. New Phytologist, 203, 245–256.

Borner AP, Kielland K, Walker MD (2008) Effects of simulated climate change on

plant phenology and nitrogen mineralization in Alaskan arctic tundra. Arctic,

Antarctic, and Alpine Research, 40, 27–38.

Boyle H, Zimdars B, Renker C, Buscot F (2006) A molecular phylogeny of Hebe-

loma species from Europe. Mycological Research, 110, 369–380.

Brown SP, Callaham MA, Oliver AK, Jumpponen A (2013) Deep Ion Torrent sequenc-

ing identifies soil fungal community shifts after frequent prescribed fires in a

southeastern US forest ecosystem. FEMS Microbiology Ecology, 86, 557–566.

Buckeridge KM, Grogan P (2008) Deepened snow alters soil microbial nutrient limita-

tions in arctic birch hummock tundra. Applied Soil Ecology, 39, 210–222.

Butler MJ, Day AW (1998) Fungal melanins: a review. Canadian Journal of Microbiology,

44, 1115–1136.

Butler MJ, Gardiner RB, Day AW (2005) Degradation of melanin or inhibition of its

synthesis: Are these a significant approach as a biological control of phy-

topathogenic fungi? Biological Control, 32, 326–336.

Callaghan TV, Bj€orn LO, Chernov Y et al. (2005) Tundra and polar desert ecosystems.

In: ACIA. Arctic climate impacts assessment (eds Symon C, Arris L, Heal B), pp. 243–

345. Cambridge University Press, Cambridge, UK.

Christensen JH, Kumar KK, Aldrian E et al. (2013) Climate phenomena and their rele-

vance for future regional climate change. In Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change (eds Stocker TF, Plattner QD, Tignor G-K

et al.), pp. 1217–1311. Cambridge University Press, Cambridge, UK.

Clemmensen KE, Bahr A, Ovaskainen O et al. (2013) Roots and associated fungi drive

long-term carbon sequestration in boreal forest. Science, 339, 1615–1618.

Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015)

Carbon sequestration is related to mycorrhizal fungal community shifts during

long-term succession in boreal forests. New Phytologist, 205, 1525–1536.

Coelho RRR, Sacramento DR, Linhares LF (1997) Amino sugars in fungal melanins

and soil humic acids. European Journal of Soil Science, 48, 425–429.

Collins M, Knutti R, Arblaster J et al. (2013) Long-term climate change: Projections,

commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis.

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change (eds Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK,

Doschung J et al.), pp. 1029–1136. Cambridge University Press, Cambridge, UK.

Comiso JC, Hall DK (2014) Climate trends in the Arctic as observed from space. Wiley

Interdisciplinary Reviews Climate Change, 3, 389–409.

Davey M, Blaalid R, Vik U, Carlsen T, Kauserud H, Eidesen PB (2015) Primary suc-

cession of Bistorta vivipara (L.) Delabre (Polygonaceae) root associated fungi mir-

rors plant succession in two glacial chronosequences. Environmental Microbiology,

17, 2777–2790.

DeMarco J, Mack MC, Bret-Harte MS (2011) The effects of snow, soil microenviron-

ment, and soil organic matter quality on N availability in three Alaskan arctic

plant communities. Ecosystems, 14, 804–817.

Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Long-term experimental

manipulation of climate alters the ectomycorrhizal community of Betula nana in

Arctic tundra. Global Change Biology, 17, 1625–1636.
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