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ABSTRACT 23 

Background. Major depressive disorder (MDD) creates debilitating effects on a wide range of 24 

cognitive functions, including reinforcement learning (RL). In this study, we sought to assess 25 

whether reward processing as such, or alternatively the complex interplay between motivation 26 

and reward might potentially account for the abnormal reward-based learning in MDD. 27 

Methods. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls 28 

(HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, 29 

computational modeling and event-related brain potentials (ERPs) data.  30 

Results. MDD patients showed comparable learning rate compared to HCs. However, they 31 

showed decreased lose-shift responses as well as blunted subjective evaluations of the 32 

reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal 33 

internal (at the level of error related negativity, ERN) but abnormal external (at the level of 34 

feedback related negativity, FRN) reward prediction error (RPE) signals during RL, 35 

selectively when additional efforts had to be made to establish learning. 36 

Conclusions. Collectively, these results lend support to the assumption that MDD does not 37 

impair reward processing per se during RL. Instead, it seems to alter the processing of the 38 

emotional value of (external) reinforcers during RL, when additional intrinsic motivational 39 

processes have to be engaged. 40 

 41 

Keywords: depression, EEG/ Evoked potentials, cognition 42 
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INTRODUCTION 43 

In an attempt to shed light on the  defining emotional deficit characterizing MDD, many bets 44 

in the state of the art research are currently placed on anhedonia, one of the cardinal 45 

symptoms of this mental illness. Defined as a “loss of pleasure or lack of reactivity to 46 

pleasurable stimuli”
[1]

, anhedonia is hypothesized to account for learning deficits visible in 47 

MDD when reward processing and utilization is crucial, such as in reinforcement learning 48 

(RL). Using this framework, two studies previously showed the reduced development of an 49 

implicit positivity bias (or active pursuit of rewarding outcomes) across time in MDD patients 50 

with high anhedonia 
[2,3]

. However, in these earlier studies, monetary/secondary reward was 51 

used 
[4]

. Unlike monetary reward for which a fixed value is usually provided to the participant, 52 

goal attainment relates to the (subject-specific) hedonic experience encountered (or 53 

anticipated) when a cue signals that the task at hand has been fulfilled, and self-efficacy is in 54 

turn transiently reinforced 
[5,6]

.  55 

Because reward-related cues informing about self-efficacy (e.g. feedback on task 56 

performance) necessarily provide potent motivational signals to the organism, their swift use 57 

to guide learning might be compromised by MDD. The goal of this study was to test this 58 

prediction, using a multi-methods approach. RL is paradigmatic example of a situation where 59 

internal and external cues have to be used timely to guide the course of learning. At the 60 

electrophysiological level, this process has been associated with the generation of the ERN 61 

(response-locked) and FRN (feedback-locked) event related potential (ERP) component, 62 

respectively 
[7]

. The ERN and FRN are thought to reflect phasic reward prediction error (RPE) 63 

signals (either based on an internal/motor or external cue)  64 

In this study, we tested a well-defined cohort of treatment resistant MDD patients 65 

(with high level of anhedonia) and compared their learning performance and RPE signals 66 
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(using conventional EEG/ERP methods) during a probabilistic learning task 
[8,9]

 to a group of 67 

age and education-level matched healthy controls (HCs). We assessed if MDD could impair 68 

internal (ERN) and/or external (FRN) RPE signals, and whether it would be associated with 69 

decreased RL (at the behavioral level) compared to HCs in this task 
[2]

. Given that we used 70 

motivationally significant (self-efficacy related) reward and punishment cues as learning 71 

signals 
[10, 11]

, we surmised that MDD might very well influence it in a  way that directly 72 

depends on reward probability and effort investment to achieve learning
 [12]

. More 73 

specifically, when extra efforts are required to establish learning, abnormal reward prediction 74 

error signals (and hence abnormal RL) should be observed in this condition (see 
[13] 

for 75 

evidence with non-human data). 76 

METHODS 77 

Participants 78 

Sixty non-depressed HCs (35 females, 25 males, mean age: 37.90, SD = 12.82) and forty-two 79 

individuals meeting the Diagnostic and Statistical manual of Mental Disorders 4 criteria 
[14]

 80 

for MDD (30 females, 12 males, mean age: 41.40, SD = 12.04) participated in the current 81 

study. The two groups were matched for age, sex and education. All participants had normal 82 

or corrected to normal vision. 83 

 The patients were all diagnosed with MDD by using the Mini-International 84 

Neuropsychiatric Interview 
[15]

. Depression severity was assessed with the 17-item Hamilton 85 

Rating Scale for Depression (HRSD) 
[16]

, and the 21-item Beck Depression Inventory (BDI) 86 

[17]
 by a certified psychiatrist. They filled in the Snaith-Hamilton Pleasure Scale 

[18]
, and the 87 

Temporal Experience of Pleasure Scale 
[19]

. These patients were classified as at least Stage I 88 

treatment resistant 
[20]

. All patients were free from any antidepressant (AD), neuroleptic and 89 

mood stabilizer for at least two weeks. Exclusion criteria were (a) bipolarity, (b) a history of 90 
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neurological disorders, including epilepsy, head injury, and a loss of consciousness, (c) a 91 

history of electroconvulsive therapy, (d) a past or present substance abuse, (e) past or present 92 

experience of psychotic episodes. Finally, some of those admitted to the study were excluded 93 

a posteriori for the following reasons: (f) balancing average age between the two samples (n = 94 

4 HCs), (g) insufficient or no learning during the RL task, (i.e. below chance level). The data 95 

of 16 participants (11 in the HC and 5 in the MDD group) were excluded accordingly, and (j) 96 

additional 3 (1 in HC and 2 in MDD group) due to excessively noisy EEG signal. Based on 97 

these criteria men were excluded significantly more than women (χ
2
(3) = 9.44, p = .024). The 98 

two groups did not differ significantly for the number of participants excluded (p = .172). 99 

Importantly, inclusion of these participants did not change the results of the analyses reported 100 

below, however it was decided not to include them in these analyses to reduce the noise in the 101 

data. The final sample consisted of 44 HCs and 35 MDD patients. Demographic and clinical 102 

data are presented in Table 1. The study was approved by the ethics committee of the Ghent 103 

University Hospital. 104 

Probabilistic learning task 105 

We used a probabilistic learning task previously devised by Eppinger
[8]

 and used by Bakic
[21]

, 106 

as well as by Unger
[9]

. After a fixation cross of 250 ms duration, and a blank screen (250 ms), 107 

a visual stimulus (S) was presented for 500 ms on each trial against a white homogenous 108 

background on a 17-inch computer screen. Its mean size was 7 cm width x 5 cm height, 109 

corresponding to 5 x 3,6 degrees of visual angle at 80 cm viewing distance. Participants 110 

performed a two-alternative forced choice task and decide (with a 800 ms response deadline) 111 

whether the stimulus was associated with response (R) 1 or 2. After a 500 ms blank, they 112 

received (visual) feedback (500 ms), informing about the accuracy of their action. The inter-113 

trial interval was 500 ms. Unbeknownst to the participant, three stimulus conditions 114 

(corresponding to three different reward probabilities) were used in random order: the S-R 115 
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association was deterministic, probabilistic or random (see supplementary materials). Each 116 

participant completed two blocks of 240 trials. Each block had six different stimuli (there 117 

were each time 2 different stimuli used per condition), each repeated forty times. Trial order 118 

within a block, as well as the order of the two blocks was alternated across participants.  119 

Procedure 120 

Prior to the actual testing session, participants were asked not to consume any caffeine or 121 

nicotine. After the EEG preparation, they first performed a practice of 20 trials, after which 122 

the experimental session began. After each block, participants were asked to indicate, for each 123 

of the 6 stimuli, the clarity and certainty of each of the six S-R associations, by means of a 124 

horizontal 10-cm visual analogue scale (VAS). Furthermore, they were asked to rate the 125 

amount of positive vs. negative feedback they thought they received during this last block 126 

(using a 10 cm VAS going from “exclusively negative” to “exclusively positive”), as well as 127 

how much they liked or disliked this positive vs. negative feedback when receiving them 128 

(using a Likert scale spanning from 0 to 100).  129 

EEG recording 130 

EEG was recorded continuously using 64-channels by means of a Biosemi Active Two 131 

system (www. Biosemi.com). The EEG was sampled at 512 Hz, with CMS-DRL serving as 132 

the reference-ground. The EEG signal was filtered off line, using a 0.016 to 70 Hz filter 133 

(12db/oct), with a 50 Hz notch and re-referenced using the linked (average) mastoids. For 134 

response-locked ERPs (ERN), individual epochs were segmented using a -/+ 500 ms interval 135 

around the response (see ref [22-24]). For feedback-locked ERPs (FRN), epoching was made 136 

200 prior to until 800 ms following feedback onset. Eye blinks were removed automatically 137 

via vertical ocular correction 
[25]

, using two electrodes, placed above and below the right eye. 138 

Individual epochs were baseline corrected using the first 200 ms of the pre-response time-139 
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interval for the ERN (i.e. from -500 to -300 ms prior to response onset) and the entire pre-140 

stimulus time interval for the FRN (i.e. 200 ms). 141 

Artifact rejection was based on a ± 100 μV amplitude cutoff. For response-locked 142 

segments, it led to 84.64% of the individual segments being kept and eventually included in 143 

the individual averages. No significant group difference [HCs: M = 84.46, SEM = 0.84; MDD 144 

patients: M = 84.39, SEM = 1.08; t (84) = 0.51, p = .96] was found for this metric. For 145 

feedback–locked segments, 84.86% of the individual epochs were kept. No group difference 146 

was found for this metric either [HCs: M= 85.25, SEM= 0.97; MDD: M= 84.42, SEM= 1.22, t 147 

(75) = 0.54, p=.59]. Finally, individual epochs were averaged separately for the different 148 

conditions and subjects, and an additional low pass filter set to 30 Hz was applied on the 149 

individual averages before grand-averaging. 150 

Data analysis 151 

Behavioral data (accuracy and switch after negative feedback) were analyzed by 152 

means of a mixed model ANOVA with group as a between subjects factor, and condition 153 

(n=3) and bin (n=4, where trials were grouped in four parts of 60 trials, 20 per condition) as a 154 

within subject factor. Switch after negative feedback captures the sensitivity to negative 155 

feedback and has been described as a change of lose-shift strategy (see ref [26,27]). Where 156 

necessary, Greenhouse-Geisser correction for sphericity was performed, and corrected p-157 

values were reported, together with the effect size and the 95% confidence interval (CI) 158 

around this value. Description of the reinforcement learning model can be found in 159 

supplementary materials. The resulting learning rate (α), calculated separately for positive and 160 

negative feedback, was analyzed using an ANOVA, followed up by an independent sample t-161 

test. Possible changes in the concurrent exploration parameter (β) between the two groups 162 

were assessed by an independent sample t-test. 163 
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For the ERN, the mean amplitude was calculated in an interval spanning 100 ms after 164 

response onset at electrode FCz. For the FRN, we used a similar 100 ms time interval 165 

(centered around the peak; 50 ms prior and 50 ms after it) and calculated the mean amplitude 166 

of this component at the same fronto-central electrode (see ref [8]). The FRN peak was 167 

defined as the most negative deflection arising at electrode FCz in the 230-350 ms time 168 

window following feedback onset. A mixed-model ANOVA was performed on the average 169 

mean amplitudes with group as between subjects and condition and response accuracy as 170 

within subject factors. In a second step, we computed difference waveforms by subtracting the 171 

ERP activity of incorrect from correct trials, separately for the ERN and FRN components, 172 

following standard practice 
[8]

. The FCz electrode was selected based on previous work 
[8,10]

 173 

showing the strongest expression of these two ERP components at this fronto-central location.  174 

RESULTS 175 

  Behavioral results 176 

The number of too late responses was modest (M = 3.45, SD = 1.83) and significantly higher 177 

for the MDD group than for the HC group (F (1, 77) = 9.51, p =.003, ηp
2 

= .11, 95% CI [.02, 178 

.22]).  179 

The analysis of the proportions of correct responses (Figure 1a) showed a significant 180 

Condition x Bin interaction (F(4.72, 363.30) = 31.92, p<.001, ηp
2 

= .29, 95% CI [.22, .34]), as 181 

well as significant main effects of condition (F(2, 154) = 295.14, p<.001, ηp
2
= .79, 95% CI 182 

[.75, .82]) and bin (F(2.74, 210.86) = 73.86, p<.001, ηp
2 

= .49, 95% CI [.33, .48]). These 183 

effects translated a steep learning across time in the deterministic condition, lower and 184 

intermediate in the probabilistic condition, and with no such learning in the random condition. 185 

Groups did not differ significantly with respect to these gross accuracy scores, F (1, 77) = 186 

1.68, p=.20, ηp
2 

= .02, 95% CI [.00, .09]).  187 
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The analysis performed on the mean number of switches after negative feedback 188 

showed a significant Group x Bin interaction (F(3, 231) = 3.47, p = .015, ηp
2 

= .04, 95% CI 189 

[.00, .08]; see Figure 1 b). Independent t-tests showed that in the first half of the task the 190 

difference between the two groups was not significant (t (77) = 0.25, p = .804, d = -0.082), 191 

while during the second half of the experimental session the MDD group (M = 0.24, SD = 192 

0.10) had a lower number of switches after negative feedback compared to the HCs (M = 193 

0.30, SD = 0.10), (t (77) = 2.88, p = .013, d = -0.6). There was a significant main effect of 194 

condition (F (2, 154) = 8.13, p = .002, ηp
2 

= .10, 95% CI [.03, .17]), and bin (F(3, 231) = 2.89, 195 

p = .034, ηp
2 

= .04, 95% CI [.00, .07]). Main effect of group was not significant (F (1, 77) = 196 

1.82, p = .181, ηp
2 

= .023, 95% CI [.00, .10]). 197 

Clarity ratings (Figure 1c) showed a significant Group x Condition interaction (F (2, 198 

154) = 3.04, p = .051, ηp
2 

= .04, 95% CI [.00, .09]) and a main effect of condition (F (2, 154) 199 

= 311.70, p <.001, ηp
2 

= .80, 95% CI [.76, .83]). Independent t-tests showed that in the 200 

deterministic condition, the HC group (M = 77.09, SD = 11.33) rated the S-R associations to 201 

be clearer than the MDD group (M = 70.78, SD = 13.93), (t (77) = 2.22, p = .029, d = 0.50). 202 

There was no significant group difference for the two other conditions (all p’s > .05). 203 

Certainty ratings (Figure 1d) revealed a significant main effect of group (F (1, 77) = 5.23, p 204 

=.025, ηp
2
= .06, 95% CI [.00, .17]). Additionally, the HC group (M = 40.73, SD = 10.67) rated 205 

that they had received overall significantly more positive feedback than the MDD group (M = 206 

25.74, SD = 9.84), (t (77) = 4.68, p<.001, d = 1, 47). The HC group (M = 52.74, SD = 9.84) 207 

also reported liking the positive feedback significantly more than the MDD group (M = 44.39, 208 

SD = 23.73), (t (77) = 2.12, p = .037, d = -0.48). The two groups did not differ significantly 209 

with respect to how much they disliked receiving negative feedback (t (77) = -1.27, p=.208, d 210 

= -0.29). 211 

Computational modeling 212 
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For the learning rate, there was a significant main effect of feedback valence (F (1, 77) = 213 

145.93, p<.001, ηp
2 

= .66, 95% CI [.55, .72]) showing higher values following positive 214 

feedback (M = 0.32, SD = 0.23) than negative feedback (M = 0.04, SD = 0.08), replicating 215 

previous results 
[21]

. The interaction with group was non-significant (F (1, 77) = 0.78, p=.380, 216 

ηp
2 

= .01, 95% CI [.00, .07]), nor the main effect of group (F (1, 77) = 0.23, p=.631, ηp
2 

= 217 

.003, 95% CI [.00, .09]). The group comparison performed on the inverse-gain 218 

parameter/exploration (𝛽) revealed no significant effect (t (77) = 0.63, p=.532, d = 0.14). 219 

ERP results 220 

The analysis carried out on the ERN mean amplitudes showed a significant Condition x 221 

Accuracy interaction (F(1.84, 139.98) = 34.59, p<.001, ηp
2 

= .31, 95% CI [.21, .40]), and main 222 

effects of condition (F(2,152) = 9.32, p <.001, ηp
2 

= .11, 95% CI [.03, .18]) and accuracy 223 

(F(1,76) = 49.25, p<.001, ηp
2 

= .39, 95% CI [.25, .50]). The main effect of group was not 224 

significant (F (1,76) = 0.90, p=.347, ηp
2 

= .01, 95% CI [.00, .08]), (see Figure 2). As can be 225 

seen from the Table 2, the ERN was large and significant in the deterministic condition, 226 

intermediate in the probabilistic condition and merely absent in the random condition, with 227 

this (internal) reward probability effect being balanced between the two groups.  228 

By comparison, for the FRN, the analysis revealed a significant Group x Accuracy x 229 

Condition interaction (F(2,138) = 3.84, p=.025, ηp
2 

= .05, 95% CI [.06, .11]), as well as 230 

significant main effects of condition (F(2,138) = 22.45, p<.001, ηp
2 

= .25, 95% CI [.10, .28]) 231 

and accuracy (F(1,69) = 10.32, p<.001, ηp
2 

= .213, 95% CI [.09, .34]). The main effect of 232 

group was not significant (F (1,69) = 0.13, p=.718, ηp
2 

= .00, 95% CI [.00, .06]). As can be 233 

seen from the Table 2, while reward probability yielded opposite effects on the ERN and FRN 234 

components for HCs (with the FRN effect being the highest for the random and probabilistic 235 

condition), MDD patients did not show the normal amplitude variation of the FRN depending 236 

on reward probability. When computing difference waves (i.e. negative – positive feedback), 237 
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we found that reward probability did influence the amplitude of the FRN in the HC group in 238 

the expected direction (F (2, 78) = 3.18, p=. 047, ηp
2 

= .075, 95% CI [.00, .17]), while it did 239 

not in the MDD group (F (2, 52) = 1.37, p=. 26, ηp
2 

= .050, 95% CI [.00, .15]). Strikingly, 240 

when the S-R association was probabilistic or random (and hence RL was more difficult to 241 

achieve), no reliable FRN effect was detected in this latter group (see Table 2). Importantly, 242 

this lack of normal (external) reward probability effect in MDD patients could not be imputed 243 

simply to noisy feedback-locked ERP waveforms in this group, as can be seen from Figure 3. 244 

Relation to Anhedonia 245 

We assessed whether these abnormal RL effects seen in MDD (i.e., switches after 246 

negative feedback and FRN) might be related to anhedonia severity in this sample. To this 247 

aim, we recalculated the ANOVAs presented here above using the SHAPS, TEPS, or the 248 

subscale of the BDI as covariate in separate analyses. None of these analyses showed 249 

significant results, however.  250 

DISCUSSION 251 

The MDD patients had more too late responses than the HCs, which is often reported 252 

in the literature 
[1, 2]

. Yet, their learning slope and accuracy were similar to the HCs. 253 

Moreover, neither learning rate, nor exploration differed between the two groups. 254 

Noteworthy, an important difference between our study and previous ones is that monetary 255 

(or secondary) reward was often used 
[2, 34]

, while we did not do so in the present case. Our 256 

reward vs. punishment incentives were primarily related to the perceived task-success/failure 257 

(i.e., self-efficacy
[28]

), as opposed to secondary rewards or punishments, the former of which 258 

presumably activates more abstract motivational processes 
[5]

, and more dorsal prefrontal 259 

cortical areas than the latter 
[4,29]

. 260 
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Notwithstanding the lack of clear group differences for RL when it was assessed using 261 

standard quantitative measures, we found that MDD patients had a lower number of switches 262 

after negative feedback than HCs, during the second phase of the experimental session, 263 

selectively. This difference might stem from a different updating of trial history based on 264 

negative feedback in these two groups. MDD patients became more conservative than HCs, as 265 

demonstrated by their lower exploration of the alternative response option towards the end of 266 

the experiment. Remarkably, despite a learning performance that was matched with the HCs, 267 

these patients judged that they had received less often positive feedback (and they liked them 268 

less) throughout the experimental session than HCs (which was not the case obviously), 269 

unambiguously translating blunted positive affect at the subjective level. They also evaluated 270 

the clarity of the S-R associations in the deterministic condition to be lower than the HCs, and 271 

they felt overall less certain about the accuracy of their responses than the HCs.  272 

Our ERP results show that while internal reward prediction error signals (at the ERN 273 

level) were overall spared in MDD patients relative to HCs, at the external, FRN level, when 274 

it was based on the processing of external evaluative feedback it was abnormal. For the 275 

probabilistic and random conditions, for which extra efforts needed to be exerted by the agent 276 

to learn the complex rule linking the actual R to the preceding S, the FRN was blunted, 277 

irrespective of anhedonia’s severity . Previous studies 
[30,31]

 reported an overactive ERN for 278 

negative affect (MDD or anxiety), an effect that we failed to observe here. This discrepancy 279 

might be explained by the fact that interference tasks (such as Stroop or Flanker) were 280 

primarily used in these earlier studies, as opposed to RL in the present case, where error 281 

making acquires a different meaning (errors provide potent learning signals, as opposed to 282 

mere lapses of attention or concentration). 283 

Lastly, we have to point out that these results were obtained in a cohort of MDD 284 

patients that were qualified as treatment resistant (because they were enrolled in a treatment 285 
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study using intermittent theta burst stimulation (iTBS) and treatment resistance was an 286 

inclusion criterion therein, [see 33]). This feature makes our results not immediately 287 

comparable to earlier studies where no such criterion was met. We also had to exclude some 288 

participants and patients because they failed to show normal RL at the behavioral level. 289 

CONCLUSION 290 

Our new results are compatible with recent theoretical accounts 
[12, 28]

, as well as older animal 291 

models 
[13]

,  stating that MDD (and anhedonia) does not dampen reward processing per se, but 292 

instead it likely alters a core motivational component which in turn decreases or blunts the 293 

processing of the hedonic value of external reinforcers during RL. Abnormal RL as a function 294 

of MDD is confined to externally-based learning in the present case (switches after negative 295 

feedback and FRN), but not visible for internal error monitoring (ERN). Our findings suggest 296 

that ERN and FRN are dissociable since they are differentially sensitive to emotional 297 

disturbances accompanying MDD. We failed however to find evidence for an association with 298 

anhedonia severity.  299 

In this context, clinical interventions meant to improve the timely processing of external 300 

evaluative feedback (self-efficacy related) might ultimately provide a valuable approach to 301 

reduce the burden of negative affect and distress in MDD.  302 
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Table 1. Demographic and Clinical Data. Means (standard deviations) are provided. 406 

Independent samples t-test differences are provided for HRSD (df = 77), BDI II (df = 72), 407 

Anhedonia subscale of BDI II (df = 77), TEPS with the corresponding subscales (df = 74), 408 

and SHAPS (df = 77). 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

  424 

 HC MDD t-test d 

N 44 35   

Age 37.89 (12.23) 43.00 (11.67) -1.88 -0.43 

Sex 28F/16M 27F/8M   

        *χ
2
 = 1.68, p=.23 

 
Age at onset  24.6 (11.03)   

Lenght of episode (months)  20.81 (32.05)   

Number of episodes  3.14 (2.61)   

HRSD 1.42 (2.37) 21.83 (5.63) -21.79** -4.93 

BDI_II  5.98 (6.75) 30.21 (10.27) -12.16** -2.86 

   Anhedonia 0.98 (1.37) 4.66 (2.25) -8.97** -2.03 

TEPS 75.02 (19.22) 58.97 (17.04) 3.81** 0.88 

  Consumatory 36.05 (9.57) 28.76 (9.02) 3.39** 0.78 

  Inhibitory 38.89 (10.94) 30.21 (8.95) 3.76** 0.89 

SHAPS  0.55 (2.16) 7.31 (4.09) -9.45** -2.14 

*p<.05, **p<.01     
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Table 2. Mean ERP activity (1 standard deviation) for each condition and accuracy 425 

level, separately for each component and group. Results of the direct pairwise comparisons 426 

(degrees of freedom: 43) between the two accuracy levels (correct vs. incorrect), using post-427 

hoc t-tests. * indicates that p-values were Bonferroni corrected for multiple testing (p = .008). 428 

 429 

 430 

 431 

ERP 

component Condition Group 

  HC MDD 

ERN  Correct Incorrect t-test Correct Incorrect t-test 

 Deterministic -1.73 

(4.33) 

-3.89 

(4.79) 

5.97* -1.39 

(3.84) 

-3.62 

(4.64) 

5.71* 

 Probabilistic -2.25 

(4.37) 

-2.52 

(4.58) 

1.18* -1.62 

(3.98) 

-2.00 

(3.70) 

1.57* 

 Random -2.95 

(4.41) 

-2.68 

(4.27) 

-1.31* -1.95 

(3.48) 

-2.03 

(3.12) 

0.43* 

FRN        

 Deterministic 0.47 

(2.10) 

0.35 

(1.97) 

-0.65* 0.90 

(2.11) 

0.29 

(2.68) 

1.76* 

 Probabilistic 1.11 

(2.34) 

0.29 

(3.28) 

2.84* 1.24 

(2.58) 

1.02 

(2.90) 

0.71* 

 Random 1.60 

(2.10) 

1.03 

(2.09) 

2.91* 1.60 

(2.74) 

1.59 

(2.98) 

0.77* 
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FIGURES LEGEND 432 

 433 

Figure 1. a) Accuracy data (i.e. proportion of correct responses) decomposed as a function of 434 

bin, condition and group. b) Mean number of switches after negative feedback (expressed 435 

here in proportion) decomposed as a function of bin and group. c) Clarity and d) Certainty 436 

ratings decomposed as a function of condition and group.  437 

Figure 2. Grand average ERP waveforms and topographical maps (top view) for the response-438 

locked ERP data (electrode FCz), separately for each condition and accuracy level, for a) HCs 439 

b) MDD patients 440 

Figure 3. Grand average ERP waveforms and topographical maps (top view) for the feedback-441 

locked ERP data (electrode FCz), separately for each condition and accuracy level, for a) HCs 442 

b) MDD patients. 443 








