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Abstract

In benchmarking studies with simulated data sets in which two or more statisti-
cal methods are compared, over and above the search of a universally winning
method, one may investigate how the winning method may vary over patterns of
characteristics of the data or the data-generating mechanism. Interestingly, this
problem bears strong formal similarities to the problem of looking for optimal
treatment regimes in biostatistics when two or more treatment alternatives are
available for the same medical problem or disease. It is outlined how optimal
data-analytic regimes, that is to say, rules for optimally calling in statistical meth-
ods, can be derived from benchmarking studies with simulated data by means of
supervised classification methods (e.g., classification trees). The approach is il-
lustrated by means of analyses of data from a benchmarking study to compare two
different algorithms for the estimation of a two-mode additive clustering model.
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1. Introduction

For any statistical or data-analytic process, many choice options are available
on the level of the method of preprocessing of the input, of the actual method
of data analysis, and of the method of post-processing the output. An obvious
question in such cases reads which choice alternatives are optimal in some sense.
This comes down to a question of comparative evaluation, the goal of which being
to identify the optimal method. This question is crucial for practitioners who
may wish to make good choices in statistical practice. A typical setting to study
such a comparative evaluation is that of benchmark studies, in which simulated
or empirical data are used to evaluate several methods under study. A possible
result of such studies is the identification of a universal winning method (i.e., a
gold standard).

However, often the winning method varies across types of data sets, with the
data sets in question being typified in terms of structural characteristics (e.g., data
size) or of characteristics of the underlying data-generating mechanism (e.g., noise
structure). As an example, Schepers et al. (2006) performed a benchmarking study
with simulated data sets to investigate the sensitivity of different partitioning algo-
rithms to local optima. In this study, at first sight, there appeared to be a universal
winning method with regard to the criterion “proportion of multistart runs that
return proxy of global optimum”. Yet, subsequently the performance order of the
algorithms appeared to change in case of a different data-generating mechanism
for the residuals (viz., one that implied between-residual dependencies). When
the winning method varies across types of data sets, the question “Which method
is best?” becomes meaningless and should be replaced by “Which method is best
for which type of data set?”. Moreover, the answer to the latter question may
also depend on the evaluation criterion that one is interested in. We will address
this issue by looking for rules that indicate which method one should optimally
use for a data set at hand, given some evaluation criterion, and given characteris-
tics of the data set under study and of its underlying data-generating mechanism.
For reasons that will become clear below, we will further call such rules “optimal
data-analytic regimes”.

The identification of optimal data-analytic regimes is quite a challenge as it
goes with two major problems. The first one pertains to the fact that data sets
under study may differ from one another on a huge number of characteristics,
with the optimal data-analytic method possibly depending on complex patterns of
them. Moreover, often precise hypotheses on the specific relation between pat-
terns of characteristics and method optimality are lacking; this implies that the
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types of data sets across which the winning method varies are to be induced dur-
ing the actual analysis for identifying optimal data-analytic regimes. The second
problem pertains to the risk of sizeable inferential errors that the identification of
optimal data-analytic regimes may be prone to. On the one hand, these include
the possibility that types of data sets across which the winning method varies are
not detected. On the other hand, one should also beware of erroneously ending
up with a nontrivial data-analytic regime while in fact there is a universal winning
method.

As a possible solution for these problems, in this paper, we propose a novel
methodology to identify optimal data-analytic regimes. This novel methodology
is based in part on principles borrowed from the domain of optimal treatment
regime estimation in biostatistics, that is, the identification of rules that indicate
how the optimal treatment alternative may depend on pretreatment or baseline
characteristics of the target patients under study (see, e.g., Zhang et al., 2012).
We primarily focus on optimal data-analytic regimes derived from benchmarking
studies with simulated data in which two methods are compared. Extensions to a
comparison of more than two methods and to studies with empirical data, which
are not fully straightforward, will be addressed in the discussion.

The remainder of this paper has been structured as follows. In Section 2, we
define a conceptual framework in which we formalize the problem at hand, and
we introduce the novel methodology. We illustrate with data from a benchmarking
study to compare two algorithms for estimating a two-mode additive biclustering
model in Section 3. Discussion points and concluding remarks are given in Sec-
tion 4.

2. Framework and methodology

2.1. Benchmarking study with simulated data
In this paper we focus on benchmarking studies with data that have been

simulated according to a full factorial design. The factors X of this design per-
tain to characteristics of the data and the data-generating mechanism (e.g., data
size, nature and complexity of data-generating mechanism, noise level, and noise
structure). For each combination of levels of the factors under study, a number
r of simulated data sets is generated. Subsequently, each simulated data set is
analysed with the two methods that are to be compared. These may be meth-
ods of pre-processing of input, actual methods of data analysis, or methods of
post-processing of output (including model selection heuristics). Subsequently,
some outcome of interest, Y , is evaluated. Variable Y may pertain to optimization
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performance, technical quality (e.g., computational cost, stability, replicability),
recovery performance (i.e., recovery of aspects of the underlying true model, such
as the true level of complexity of this model or true parameter values), or per-
formance with regard to possible other goals of the data analysis (e.g., predictive
quality, relation with external criterion variables). All this implies that the data for
the optimal data-analytic regime estimation are the values of an outcome variable
Y for data from a mixed factorial design with as between-factors characteristics
of the data and the data-generating mechanism (X), with a binary within-factor A
pertaining to method (taking values 0 and 1), and with r replications per cell of
the design.

2.2. Data-analytic regimes
Given data from a benchmarking study as outlined above, a data-analytic re-

gime is a function g that maps the value set of characteristics of the data and the
data-generating mechanism X to the values of A. This function formalizes the rule
that a data set with pattern of data characteristics X is to be analysed with Method
0 if g(X) = 0 and with Method 1 if g(X) = 1.

Let Y a denote the outcome of a data set subjected to Method a. Then, the
outcome that would result from assigning a data-analytic method to a randomly
chosen data set according to g is given by

Y g(X) = Y 1g(X)+Y 0[1−g(X)].

Assuming, without loss of generality, that larger values of Y are more desirable,
the optimal data-analytic regime then is the one leading to the largest expected
outcome E(Y g(X)) when applied to the population of data sets under study. In what
follows, we will focus on a pre-specified class of data-analytic regimes denoted
by G . Given G , we may define the optimal data-analytic regime, gopt(X), as the
one leading to the largest value of E(Y g(X)) among all g ∈ G , that is to say,

gopt(X) = argmax
g∈G

E(Y g(X)).

In estimating the optimal data-analytic regime given data from a benchmark-
ing study with simulated data, different types of characteristics of the data and
the data-generating mechanism can be considered for X. The most obvious type
consists of characteristics that are manipulated in the benchmarking study. At
this point, however, two complications may arise: First, besides the manipulated
characteristics, other sources of variation may be relevant for the optimal data-
analytic regime. As an example, the skewness of some variables in the simulated

4



Table 1: Four types of characteristics of the data and the data-generating mechanism in bench-
marking studies with simulated data.

Known in data-analytic practice

Manipulated in simulation study no yes

yes (a) (b)
no (c) (d)

data might not have been directly manipulated by the investigator, whereas it may
differ across simulated data sets and influence the performance of data-analytic
methods. Otherwise, unmanipulated characteristics can either fluctuate at ran-
dom across the simulated data sets, or they can be manipulated indirectly through
the characteristics of the data and data-generating mechanism that have been var-
ied experimentally by the researcher. Second, characteristics that are known in
a Monte Carlo simulation setting may be unknown in data-analytic practice. As
an example, characteristics such as noise level and noise structure are often ex-
perimentally varied in simulation studies, yet, they are typically unknown for em-
pirical data sets outside a simulation context. If estimated optimal data-analytic
regimes would rely on such characteristics of the data and the data-generating
mechanism that are unknown in data-analytic practice, the regimes in question
could not be readily used by practitioners to determine the optimal method for a
data set at hand.

Summing up, by combining the two facets outlined above, four types of char-
acteristics of the data and the data-generating mechanism may be distinguished
(see Table 1). In the estimation of optimal data-analytic regimes, there is a clear
preference for regimes that rely on characteristics that are known to the practi-
tioner outside a Monte Carlo context (cells (b) and (d) of Table 1). Besides, from
the viewpoint of inferential certainty, there may be some preference for character-
istics that have been manipulated (cells (a) and (b)) over characteristics that have
not been manipulated (cells (c) and (d)).

2.3. Estimation of data-analytic regimes
To obtain an estimator ĝopt for gopt, we will rely in part on earlier work on the

identification of optimal treatment regimes in the field of biostatistics (Zhang et
al., 2012). We will first transform the problem of estimating optimal data-analytic
regimes into a weighted classification problem, which will allow us to use existing
classification techniques to estimate optimal data-analytic regimes. Subsequently,
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we will propose a stepwise procedure to estimate optimal data-analytic regimes
that are useful in data-analytic practice (i.e., that involve characteristics in cells
(b) and (d) of Table 1).

To transform the problem of estimating optimal data-analytic regimes into a
weighted classification problem, we observe that

E(Y g(X)) = E{Y 1g(X)+Y 0[1−g(X)]}
= E{g(X)[Y 1−Y 0]+Y 0}
= E[g(X)C(X)+Y 0],

(1)

where C(X) = Y 1−Y 0 is a so-called contrast function that denotes for each data
set the difference in measured outcome between Method 1 and Method 0. It fol-
lows that gopt(X) = argmaxg∈G E(Y g(X)) = argmaxg∈G E[g(X)C(X)]. Next, be-
cause C(X)= I[C(X)> 0]|C(X)|−I[C(X)≤ 0]|C(X)|, g(X)C(X) can be rewritten
as

g(X)C(X) = g(X)I[C(X)> 0]|C(X)|−g(X)I[C(X)≤ 0]|C(X)|
= I[C(X)> 0]|C(X)|− |C(X)|{[1−g(X)]I[C(X)> 0]

+g(X)I[C(X)≤ 0]}.

As g(X) takes values {0,1},

[1−g(X)]I[C(X)> 0]+g(X)I[C(X)≤ 0] = {I[C(X)> 0]−g(X)}2.

Combining these results, g(X)C(X) can be rewritten as

g(X)C(X) = I[C(X)> 0]|C(X)|− |C(X)|{I[C(X)> 0]−g(X)}2.

Therefore, the optimal data-analytic regime can be estimated as

gopt(X) = argmax
g∈G

E[g(X)C(X)]

= argmax
g∈G

[
E{I [C(X)> 0] |C(X)|}

−E
(
|C(X)|{I[C(X)> 0]−g(X)}2)]

= argmin
g∈G

E
(
|C(X)|{I [C(X)> 0]−g(X)}2).

(2)
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At this point, Z = I[C(X)> 0] can be considered a known classification vari-
able that defines two classes of data sets: (a) the class Z = 1 which comprises those
data sets for which the outcome is higher under Method 1 (Y 1 > Y 0), and that
should therefore be preferably analyzed with this method, and (b) the class Z = 0
that comprises those data sets with Y 0 > Y 1, and that should therefore be prefer-
ably analyzed with Method 0. Each data set is also given a weight W = |C(X)|,
which represents the loss that would be incurred if the data set were misclassified.

The above implies that the information contained in C(X) is separated into
two parts: the class label Z, containing the information about the sign of C(X);
and the weight W , containing the information about the magnitude of C(X). The
estimation of the optimal data-analytic regime gopt via (2) then comes down to

ĝopt(X) = argmin
g∈G

N

∑
i=1

Wi[Zi−g(Xi)]
2,

which is a weighted classification problem. This problem can then be solved by
means of a broad range of existing supervised classification methods (e.g., kernel
methods, support vector machines, neural networks, and classification trees).

Importantly, in a benchmarking setting, a single data set can always be sub-
jected to the different method alternatives (which implies that method can act as
a within-subject or repeated measures variable). As a result, the contrast function
C(X) (and hence the class label Z and weight W ) for each data set are fully known.
This is different from the setting of optimal treatment regime estimation, where
the application of different treatment alternatives typically is a between-subject
variable, which implies that the contrast values C(X) are inherently unknown and
are therefore to be estimated from the data (Zhang et al., 2012).

2.4. Procedure to construct workable data-analytic regimes
Taking into account the four types of characteristics of the data and the data-

generating mechanism as summarized in Table 1, in order to arrive at an estimated
optimal data-analytic regime that is workable in data-analytic practice, we propose
the following stepwise procedure:

1. Estimate an optimal data-analytic regime using all manipulated char-
acteristics
The first step is to estimate an optimal data-analytic regime ĝopt(X) using all
manipulated characteristics of the data and the data-generating mechanism
(cells (a) and (b) of Table 1). Optionally, one may include unmanipulated
characteristics, either for exploratory purposes, or because one theoretically
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expects particular such characteristics to influence the performance of the
data-analytic alternatives.

2. Estimate proxies for the relevant characteristics that are unknown in
data-analytic practice, and estimate a second optimal data-analytic re-
gime using only known characteristics
As mentioned before, the estimated optimal data-analytic regime resulting
from Step 1 may possibly involve characteristics of the data and the data-
generating mechanism that are unknown in data-analytic practice (cell (a)).
As a result, the resulting data-analytic regime may not be workable for prac-
titioners to determine the optimal method for data sets in empirical practice.
The second step is to estimate so-called proxies for the characteristics that
appeared to be relevant in the estimated optimal data-analytic regime result-
ing from Step 1, but that are unknown in data-analytic practice (cell (a) of
Table 1). These proxies are known (and typically unmanipulated) charac-
teristics of the data (cell (d)) that can be considered reasonable estimates of
the unknown characteristics at the basis of the previously derived optimal
data-analytic regimes. As an example, the noise level in the data could be
estimated on the basis of replicates (if present in the data) or on the basis of
some model estimation procedure. After replacing the relevant characteris-
tics in cell (a) by known reasonable estimates in cell (d), one should then
re-estimate the optimal data-analytic regime while using only characteris-
tics that are known in data-analytic practice (cells (b) and (d)). Optionally,
one could force the classification algorithm to use the proxies in the esti-
mation process. In case the re-estimated data-analytic regime would not be
similar to the original data-analytic regime derived in Step 1, one may wish
to look for other proxies of the relevant characteristics in cell (a).

3. Testing the resulting regimes (optional)
If the estimation results in a nontrivial data-analytic regime, this suggests
the presence of a qualitative or disordinal data set type by method inter-
action, meaning that for some types of data sets Method 1 outperforms
Method 0, whereas for other types of data sets the reverse holds true. Rather
than considering at this point tests for specific data types (which are prone
to multiple testing problems - see, e.g., Lagakos, 2006), one may wish to
check this by a global test of the null hypothesis of absence of a qualitative
or disordinal interaction. For this purpose, one may make use of suitable
test statistics such as the one proposed by Gail & Simon (1985). Two issues
should be taken into account at this point: Firstly, the test in question would
be a pseudo test as the set of types of data sets across which the optimal
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method might differ has been induced by estimating a data-analytic regime
from the same data as the ones used for the hypothesis testing (which in-
flates the probability of false positives). Secondly, tests of the hypothesis
that an interaction is disordinal generally lack statistical power (Brookes et
al., 2001; Rothwell, 2005; Shaffer, 1991). In the context of benchmarking
studies with simulated data sets, however, the latter should not be expected
to be a problem as simulation studies typically allow for large sample sizes.

4. Cross-validate the results in replication studies (optional)
The proposed optimal regime estimation procedure can be considered an ex-
ploratory post-hoc method. Hence, it should be looked at as an hypothesis-
generating device, the results of which are to be cross-validated in repli-
cation studies. In such replication studies, variables that were not exper-
imentally manipulated in the original benchmarking study (cells (c) and
especially (d) of Table 1), and that showed up in the basis of the regimes
resulting from Step 1, should be experimentally manipulated.

As a final note, it is important to emphasize that optimal data-analytic regimes
should preferably go with sound theoretical justifications. For this purpose, it is
also important to include in the design of simulation research for benchmarking
characteristics that can theoretically be expected to influence the performance of
the data-analytic methods under study.

3. Illustrative application

3.1. Data
We applied the newly proposed method for optimal data-analytic regime esti-

mation to data from a benchmarking study by Wilderjans et al. (2013b) on additive
biclustering. The authors considered (real-valued) object by variable data sets, for
which they wanted to estimate an additive biclustering model (Baier et al., 1997;
DeSarbo, 1982). This model implies: (a) (possibly overlapping) biclusters (i.e.,
Cartesian products of object and variable clusters), (b) a (real-valued) weight for
each bicluster, and (c) that the reconstructed value for object i on variable j equals
the sum of the weights of all biclusters to which (i, j) belongs. In the associated
data analysis, the additive biclustering model is fitted to a given data set by means
of minimizing a least squares loss function.

More formally speaking, additive biclustering with K object clusters and L
variable clusters implies that a real-valued I×J object by variable data matrix X is
approximated by an I×J real-valued model matrix M that can be decomposed into
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a binary (0/1) object cluster membership matrix A and a binary variable cluster
membership matrix B of sizes I×K and J× L, respectively, and a real-valued
K×L weight matrix V:

M = AVB′.

Given an I × J data matrix X, and numbers of underlying object and variable
clusters K and L, the aim of an additive biclustering analysis is to estimate bi-
nary matrices A and B and a real-valued matrix V such that the least squares loss
function

F(A,B,V) = ||X−AVB′||2F , (3)

is minimized, with ||X−AVB′||2F denoting the Frobenius norm of a matrix. To this
end, two alternating least squares algorithm (ALS) have been proposed: PEN-
CLUS (Both & Gaul, 1985, 1987; Gaul & Schader, 1996), and the Clusterwise
ALS approach of Baier et al. (1997). The main difference between these two ap-
proaches is that PENCLUS works with a penalized (auxiliary) loss function and
operates in a (relaxed) continuous space, whereas Clusterwise ALS optimizes the
original biclustering loss function in Equation (3) directly and operates in the orig-
inal solution space. Wilderjans et al. (2013b) evaluated the performance of these
ALS algorithms in a simulation study.

The simulation study involved a full factorial design that was set up as fol-
lows. Data sets X were generated by independently generating true object cluster
membership matrices Atrue, true variable cluster membership matrices Btrue, true
weight matrices Vtrue, and noise E. We refer to Wilderjans et al. (2013b) for de-
tails on how the entries of Atrue, Btrue, Vtrue, and E were drawn. A data set X
was then obtained as X = T+E, with T = AtrueVtrue(Btrue)′ and T being the true
underlying clustering model. In the data set generation, six factors were manip-
ulated: the shape of X (three levels), the number of object clusters (three levels),
the number of variable clusters (three levels), the amount of object cluster overlap
(three levels), the amount of variable cluster overlap (three levels), and the amount
of noise (five levels). Regarding the shape of X, this was defined in terms of the
ratio I/J of the number of objects to the number of variables, and took values of
1/4,1, and 4. The total number of entries in X was kept fixed at 4096, which im-
plied three different values for I× J: 32×128, 64×64, 128×32. Regarding the
number of object and variable clusters, these both took values of 2,3, and 4 (which
can be considered a rather restricted set of numbers of clusters). The amount of
both object and variable cluster overlap was defined as the probability of an object
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(variable) belonging to more than one object (variable) cluster, and was put equal
to 25%, 50%, or 75%. Regarding the amount of noise, this factor was defined as
the proportion ε of the total variance in the data X accounted for by E and was
either 0, .15, .30, .45 or .60. Note that the shape of X is a characteristic of type
(b) (known in data-analytic practice, see Table 1), whereas the other factors ma-
nipulated in the simulation study are of type (a) (i.e., not known in data-analytic
practice).

All design factors were fully crossed, which yielded 1215 combinations. For
each combination, 10 replicates were generated, yielding N = 12150 simulated
data sets in total. Subsequently, each simulated data set X was analysed with
PENCLUS and Clusterwise ALS, resulting in estimates Â, B̂, V̂ for both algo-
rithms. Outcome variables in the simulation study included a measure of recovery
of T by M = ÂV̂B̂′, recovery of the true overlapping clustering Atrue by Â (object
cluster recovery), recovery of the true overlapping clustering Btrue by B̂ (vari-
able cluster recovery), and recovery of the weights matrix Vtrue by V̂. In order
to not confound the evaluation of the outcome variables with a possibly inade-
quate model selection procedure for selecting the number of object and variable
clusters, in the simulation study the algorithms were assumed to be applied with
a perfect model selection procedure. As such, the algorithms were applied to the
simulated data sets with the number of object and variable clusters put equal to
their true values; hence, the recovery of the true structure underlying the data sets
could be evaluated in a meaningful way. In the present application, we focus on
goodness-of-recovery of the weights matrix Vtrue (GOW) as outcome variable. To
evaluate GOW, the following measure was calculated:

1− ∑
K
k=1 ∑

L
l=1(v̂kl− vtrue

kl )2

∑
K
k=1 ∑

L
l=1(v

true
kl − v̄true)2

, (4)

with v̄true the average value of Vtrue. GOW was then defined as the minimum
value of Equation (4) over all possible row and column permutations of V̂; this
measure takes values in the interval (−∞,1], with a value of 1 meaning perfect
recovery.

3.2. Analysis strategy
We estimated optimal data-analytic regimes through the stepwise procedure

proposed in Section 2.4. That is, as a first step, we estimated the optimal data-
analytic regime using all manipulated characteristics. As a second step, we subse-
quently estimated proxies for the characteristics that appeared to be relevant in the
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estimated regime resulting from Step 1 but that would be unknown to practitioners
outside a Monte Carlo context. That is, we replaced the relevant characteristics in
cell (a) of Table 1 by related variables in cell (d), and we subsequently estimated
an optimal data-analytic regimes involving only characteristics that are known in
data-analytic practice (cells (b) and (d)).

In order to estimate optimal data-analytic regimes using all manipulated char-
acteristics, we first constructed a contrast function C(Xi) for i = 1, . . . ,N. As
contrast function C(X), we calculated for each data set the difference in GOW
between Clusterwise ALS and PENCLUS. Once we obtained the contrast func-
tion for each data set, C(Xi), we derived the class labels Zi = I[C(Xi) > 0], and
the weights Wi = |C(Xi)| for each data set, to obtain the classification data set
{Zi,Xi,Wi}.

Subsequently, we estimated gopt(Xi) as ĝopt(Xi)= argming∈G ∑
N
i=1Wi[Zi−g(Xi)]

2,
where the minimization is across all regimes in the class of regimes under study.
For this minimization, we used classification trees (e.g., Hastie et al., 2009), which
yield tree-based data-analytic regimes; such regimes are of particular interest as
they go with a straightforward and most insightful representation of the decision
structure underlying the regimes in question. In particular, we focused on regimes
based on a tree structure with binary splits defined in terms of dichotomized char-
acteristics of the data and the data-generating mechanism. The splits result in a
finite set of nodes, which comprises a root node, internal nodes and leaves (or
terminal nodes). Data-analytic regimes that rely on such a tree structure imply
that decisions with regard to assignment of the methods under study are based
on leaf membership. Let S`(` = 1, . . . ,L) be the leaves associated with such a
tree, with the leaves being defined in terms of conjunctions of thresholded char-
acteristics of the data and the data-generating mechanism, such as, for example,
[(X1 > b) and (X2 ≤ c)]. A tree-based data-analytic regime gT can then be formal-
ized as a function, gT : {S1, . . . ,S`, . . . ,SL}→ {0,1}.

The procedure for estimating tree-based data-analytic regimes was implemen-
ted in R, using the rpart package for fitting a classification tree (Therneau et al.,
2013). We input the classification data set {Zi,Xi,Wi} into rpart and adopted
the default settings, except that we put the weights equal to the entries of Wi.
The resulting classification tree was finally pruned back using the cross-validation
procedure described by Hothorn & Everitt (2009).

Finally, if the estimation would end up in a nontrivial data-analytic regime,
this would suggest that the data sets are involved in a qualitative or disordinal
interaction, implying that for some types of data PENCLUS would outperform
Clusterwise ALS, whereas for other types it would be the other way around. In
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this case, we will test the hypothesis that the interaction is disordinal, indeed.

3.3. Results and discussion
The classification tree resulting from the first step is displayed in Figure 1. It

appears that for data sets with a higher amount of noise one should preferably use
Clusterwise ALS. This also holds for data sets with a lower amount of noise if
the true number of object clusters is small. On the other hand, for data sets with
a lower amount of noise one should preferably use PENCLUS if the true number
of object clusters is not too small. We may thus conclude that the most important
moderators of the differential performance of Clusterwise ALS and PENCLUS
are amount of noise and number of object clusters. Regarding the number of ob-
ject clusters, this result may be related to the fact that PENCLUS operates in a
(relaxed) continuous space while Clusterwise ALS operates in the original solu-
tion space. When there is only a small number of underlying clusters, that is to
say, when the original solution space is small, operating in this space appears to
be better than operating in some (relaxed) continuous space. However, when there
are many underlying clusters (i.e., when the original solution space is large), Clus-
terwise ALS may not be moving in an efficient way throughout that space and may
get lost in it. Making use of the test for disordinal interactions developed by Gail
& Simon (1985), we can reject the null hypothesis of no disordinal interaction at
significance level α = .001.

As the true number of object clusters and the amount of noise are manipulated
characteristics of the data that are not known in data-analytic practice (cell (a)
of Table 1), we identified proxies for these characteristics in order to estimate a
data-analytic regime that can be usable in data-analytic practice. (For clarity’s
sake, these proxies are characteristics in cell (d) of Table 1.) To identify a proxy
for the number of object clusters we fitted a one-mode clustering model (viz., an
additive profile clustering model, ADPROCLUS: Depril et al., 2008; Wilderjans
et al., 2011) to the simulated data sets along with an automated convex hull-based
procedure (Ceulemans & Kiers, 2006; Wilderjans et al., 2013a) to determine the
number of underlying object clusters. The latter number then serves as proxy for
the number of object clusters Kproxy. It should be noted that this proxy was used in
the estimation of the second data-analytic regime but not for the number of object
clusters used in the analyses of the simulated data sets with Clusterwise ALS and
PENCLUS. This means that the proxy was only used to decide on the optimal
type of method, and not to choose the number of clusters in the application of this
method. It should further be noted that, in practice, a model selection procedure
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   Number of 
object clusters 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.858 
GOWPENCLUS = 0.831 

 

Noise 

{.45, .60} {0, .15, .30} 

{2} {3, 4} 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.808 
GOWPENCLUS = 0.676 

 

𝑔opt =PENCLUS 

GOWC-ALS = 0.786 
GOWPENCLUS = 0.880 

 

Figure 1: Optimal data-analytic regime for the additive biclustering data resulting from the newly
proposed method using classification trees. The ellipses in the figure represent the internal nodes
containing the split variables, with the corresponding split point shown below each ellipse. The
upper ellipsis represents the root node, which corresponds to the complete set of data sets from the
benchmarking study. The rectangles represent the leaves of the tree, with each rectangle containing
the assigned method, and the conditional mean outcomes under Clusterwise ALS (C-ALS) and
PENCLUS.

should be specified to estimate the number of object and variable clusters in order
to analyse a data set with Clusterwise ALS or PENCLUS.

To identify a proxy for the percentage of noise in the data, we relied on the
object cluster membership matrix Â that resulted from the ADPROCLUS analysis
mentioned above with Kproxy object clusters. To obtain also a variable cluster
matrix B̂ for each data set, we subjected the transposed data XT to ADPROCLUS,
while again using the automated CHull procedure to select the number of variable
clusters. We subsequently calculated V̂ as

V̂ = (ÂT Â)+ÂT XB̂(B̂T B̂)+,

with (P)+ being the Moore-Penrose pseudoinverse of P. Next, we calculated as a
proxy for the percentage of noise in the data,

ε
proxy =

||X− ÂV̂B̂T ||2

||X||2
,

where ||P||2 indicates the squared matrix norm of P.
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Proxy `Noise’ 

≥ .75 < .75 

{2} {3, 4, 5} 

Proxy `Number of 
object clusters’ 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.809 
GOWPENCLUS = 0.684 

 

𝑔opt =PENCLUS 

GOWC-ALS = 0.787 
GOWPENCLUS = 0.895 

 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.835 
GOWPENCLUS = 0.819 

 

Figure 2: Optimal data-analytic regime with replacement of noise and true amount of object clus-
ters by proxies that are known in data-analytic practice.

The classification tree resulting from the second analysis with the proxies for
‘amount of noise’ and ‘true number of object clusters’ as predictors is displayed
in Figure 2. Interestingly, this tree has the same structure as the tree based on the
originally manipulated characteristics, which gives confidence in the result and the
quality of the estimated proxies. The expected outcome of the estimated optimal
data-analytic regime in Figure 2 using Equation (1) is 0.844. For comparison, the
expected outcome would equal 0.809 if the marginally best method, Clusterwise
ALS, were applied to all 12150 data sets, and 0.788 if PENCLUS were applied
to all of them. This means that, although the strategy of analyzing all data sets
with Clusterwise ALS would result in an improved outcome relative to analyzing
them with PENCLUS, there is added benefit to analyze them on the basis of the
estimated optimal data-analytic regime.

By way of comparison, we also estimated optimal data-analytic regimes on the
remaining three outcome variables included in the simulation study by Wilderjans
et al. (2013b) (the trees are given in the Appendix). It appears that the estimated
regime based on outcome variable GOW (Figure 1) and the estimated regime
based on the recovery of T by M = ÂV̂B̂′ imply two (almost) identical splits on
‘amount of noise’ and ‘true number of object clusters’. The two estimated regimes
based on object cluster recovery and variable cluster recovery are also interrelated
in many ways. However, these regimes are considerably more complex compared
to the regimes based on GOW and on the recovery of T. This nicely illustrates
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that the optimal regime may depend on the chosen outcome measure.
A final remark pertains to the classification tree method that we used to esti-

mate the data-analytic regimes in the application. Such methods are cursed by a
limitation: Their search space is very large by the large number of possible split
variables and the large number of possible split points per variable. This may
result in instable solutions. There are several ways in which the instability of clas-
sification trees can be quantified. Examples include using a bagging procedure,
where a set of trees is grown based on different bootstrap samples or subsamples
of the data (Breiman, 1996), and subsequently calculating a measure of instability
on this set of trees (Chipman et al., 2006). A previously suggested solution for
the instability problem is the use of random forests. However, a key advantage
of tree-based regimes (i.e., an insightful representation of the underlying decision
structure) then gets lost. An interesting potential course of action to overcome this
could be to look for a precis of a random forest in terms of a single summary tree.

4. General discussion

In the present paper we introduced a novel conceptual framework and method-
ology, inspired by principles of optimal treatment regime estimation, to derive op-
timal data-analytic regimes from benchmarking studies with simulated data. Over
and above the search of a universally winning method, this methodology provides
the user with a more refined answer to questions of benchmarking in terms of how
the winning method may vary over patterns of characteristics of the data and the
data-generating mechanism.

In general, optimal regime estimation is fairly challenging due to the high
risk of inferential errors. The underlying reason for this high risk is that (non-
trivial) optimal regimes critically depend on qualitative or disordinal interactions,
which imply that for some types of data, method A outperforms B, whereas for
other types it is the other way around. This type of interactions is typically hard
to replicate (Rothwell, 2005). The reason for this does not reside in particular
methods, but in the mere fact that a reliable estimation of qualitative or disordinal
interactions requires (very) large sample sizes (Lee et al., 2015). A particular ad-
vantage of benchmarking studies with simulated data that may provide the basis
for optimal data-analytic regime estimation is that they rather easily allow for large
sample sizes, with the primary cost being computational in nature only (which in
the present era of supercomputers has become less prohibitive than ever before).

A related issue is that exploratory post-hoc methods like the optimal regime es-
timation methods discussed in the present paper should be looked at as hypothesis-
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generating devices, the results of which are to be cross-validated in replication
studies. Once again such replication studies are cheaper and therefore easier to
realize in the benchmarking area compared to the area of randomized clinical tri-
als. Two special types of replication deserve to be singled out at this point: (a)
replication studies with stratified sampling schemes, with strata corresponding to
the data types identified during the optimal data-analytic regime estimation, and
(b) replication studies in which variables that were not experimentally manipu-
lated in the original benchmarking study (cells (c) and especially (d) of Table 1)
and that appeared to be involved in the regime resulting from that study, are ex-
perimentally manipulated in the follow-up replication study.

In this paper, we focused on benchmarking studies in which two methods are
compared. We showed that in such cases, optimal data-analytic regimes can be
estimated by using existing classification techniques that minimize some misclas-
sification cost. In our case, the misclassification cost is data set-dependent and de-
notes the loss in outcome would a data set be assigned to its non-optimal method
alternative. In the illustrative application, we further focussed on methods to es-
timate optimal tree-based data-analytic regimes. Typical tree-based classification
techniques assume misclassification costs to be the same for all objects that are to
be classified (viz., in our case, for all data sets). As a solution to work around the
issue of data set-dependent costs, we made use of the fact that in quite a few tree
algorithms every object can be assigned a weight. By putting these weights equal
to the individual misclassification costs, application of the tree-based classifica-
tion techniques in question will imply a minimization of the total misclassification
cost.

One may wonder how benchmarking studies in which more than two meth-
ods are compared could be dealt with, and whether our proposed approach to
estimate data-analytic regimes could be extended to such cases. At this point it
is relevant to know that Doove et al. (2016) recently showed that optimal treat-
ment regime estimation in the context of more than two treatment alternatives is
also a classification problem in which some total misclassification cost is to be
minimized. As in the binary case, the misclassification cost is object-dependent.
In addition, the costs now also depend on the alternative to which an object is
assigned. Importantly, to solve the resulting object- and alternative-dependent
classification problem within a context of the estimation of tree-based regimes, it
is no longer possible to rely on an object-based weighting. However, Doove et
al. (2016) proposed an extension of a set of tree-based classification techniques to
deal with object-and alternative-dependent classification costs, and implemented
for this extension an R code add-on to a well-established package for classification
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tree estimation, rpart (the code of which can be obtained from the first author).
The proposed method may be further extended in two ways. First, as method

acts as a within-subject variable in benchmarking studies, a difference score can
be used as a straightforward estimator of the contrast function C. In optimal treat-
ment regime estimation, however, the use of more involved estimators, which
include an augmentation with a term borrowed from an outcome model, may be
necessary (Zhang et al., 2012). It would be meaningful to explore whether a simi-
lar augmentation could still further improve the quality of estimated optimal data-
analytic regimes.

Secondly, we discussed the estimation of optimal data-analytic regimes on
the basis of data from benchmarking studies relying on “synthetic” Monte Carlo
simulations. There are no principled objections against the application of the
methodology proposed in the present paper to benchmarking studies based on
empirical data (which could be considered a sample from a population of data
sets: Boulesteix et al., 2015). Yet, two considerable pragmatic bottlenecks need
to be taken into account: (a) The sample size of benchmarking studies with em-
pirical data is typically prohibitively low, and an increase of that sample size is
considerably more expensive than in the case of simulated data; (b) inferences
may be hampered by correlations between data characteristics across the empir-
ical data sets. Taken these bottlenecks into account, a full estimation of optimal
data-analytic regimes on the basis of benchmarking studies with empirical data
does not look like a realistic option. As a more realistic alternative, the data sets
of such studies could be used as a test bench to investigate optimal data-analytic
regimes that were previously derived from benchmarking studies with simulated
data sets. In case the application to the test bench would lead to unexpected dis-
crepancies with the results of the simulated data sets, this could subsequently give
rise to the setting up of new benchmarking studies with simulated data sets that
mimic in one way or another the empirical data sets of the test bench (for an illus-
tration of this principle, see Schepers et al., 2006). Otherwise, in case the primary
interest of the researcher resides in outcome measures of a recovery type (as in
our illustrative application), a straightforward test on empirical data is not possi-
ble either. Yet, in such cases, too, one could consider to set up “realistic simulation
studies” with a test bench of simulated data sets that mimic in some way empirical
data sets of interest.

A final remark pertains to the emphasis that has been put in this paper on the
perspective of the practitioner who appreciates pragmatic rules to choose the best
data-analytic method for a data set at hand given known characteristics of that
data set (which implies quite some emphasis on the “what” of the optimal data-
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analytic regimes). Yet, the “why” of the regimes in question (i.e., the theoretical
justification of why a particular method outperforms another one for certain types
of data sets) should not be neglected at all. Insight into this “why” may simply
lead to more sound regimes that can be extended more easily to new types of data
sets.
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Appendix

In this Appendix, we present estimated optimal tree-based data-analytic regimes
with as outcome measures a measure of reconstruction of T by M = ÂV̂B̂′ (Fig-
ure A1), object cluster recovery (Figure A2), and variable cluster recovery (Fig-
ure A3).
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   Number of 
object clusters 

Noise 

{.30,.45, .60} {0, .15} 

{2} {3, 4} 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.544 
GOWPENCLUS = 0.525 

 

𝑔opt =PENCLUS 

GOFC-ALS = 0.900 
GOFPENCLUS = 0.915 

 

Noise 

{.15} {0} 

𝑔opt = Clusterwise ALS 

GOWC-ALS = 0.839 
GOWPENCLUS =  0.836 

 

𝑔opt =PENCLUS 

GOFC-ALS = 0.986 
GOFPENCLUS = 0.990 

 

Figure A1: Optimal data-analytic regime for the additive biclustering data resulting from the newly
proposed method using classification trees with as outcome measure a measure of reconstruction
of T (GOF). The rectangles represent the leaves of the tree, with each rectangle containing the
assigned method, and the conditional mean outcomes under Clusterwise ALS (C-ALS) and PEN-
CLUS.
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   Number of 
variable clusters 

Noise 

{.30,.45, .60} {0, .15} 

{2} {3, 4} 

𝑔opt = Clusterwise ALS 

ωAC-ALS = 0.804 
ωAPENCLUS = 0.653 

 

𝑔opt = PENCLUS 

ωAC-ALS = 0.762 
ωAPENCLUS = 0.909 

 

{3,4} {2} 

{2,3} {4} 

𝑔opt = Clusterwise ALS 

ωAC-ALS = 0.804 
ωAPENCLUS = 0.753 

 

𝑔opt = PENCLUS 

ωAC-ALS = 0.451 
ωAPENCLUS = 0.477 

 

   Number of 
variable clusters 

   Number of 
object clusters 

𝑔opt = Clusterwise ALS 

ωAC-ALS = 0.589 
ωAPENCLUS = 0.486 

 

Figure A2: Optimal data-analytic regime for the additive biclustering data resulting from the newly
proposed method using classification trees with as outcome measure object cluster recovery (ωA).
The rectangles represent the leaves of the tree, with each rectangle containing the assigned method,
and the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.
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   Number of 
object clusters 

Noise 

{.30,.45, .60} {0, .15} 

{2} {3, 4} 

𝑔opt = Clusterwise ALS 

ωBC-ALS = 0.711 
ωBPENCLUS = 0.652 

 

𝑔opt = PENCLUS 

ωBC-ALS = 0.762 
ωBPENCLUS = 0.906 

 

{4} {2,3} 

{.25} {.50, .75} 

𝑔opt = PENCLUS 

ωBC-ALS = 0.692 
ωBPENCLUS = 0.732 

 

𝑔opt = Clusterwise ALS 

ωBC-ALS = 0.711 
ωBPENCLUS = 0.683 

 

   Number of 
object clusters 

  
Variable cluster  
        overlap 

 

𝑔opt = Clusterwise ALS 

ωBC-ALS = 0.625 
ωBPENCLUS = 0.546 

 

Figure A3: Optimal data-analytic regime for the additive biclustering data resulting from the newly
proposed method using classification trees with as outcome measure variable cluster recovery
(ωB). The rectangles represent the leaves of the tree, with each rectangle containing the assigned
method, and the conditional mean outcomes under Clusterwise ALS (C-ALS) and PENCLUS.
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