

Cover Page

The handle http://hdl.handle.net/1887/45045 holds various files of this Leiden University
dissertation.

Author: Vis, J.K.
Title: Algorithms for the description of molecular sequences
Issue Date: 2016-12-21

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/45045
https://openaccess.leidenuniv.nl/handle/1887/1�

Algorithms for the Description of

Molecular Sequences

Jonathan K. Vis

This publication was supported by the Dutch national program COMMIT.

Copyright 2016 by Jonathan K. Vis
Copyright Chapter 3: Oxford University Press
Copyright Chapter 6: Springer Berlin Heidelberg
Open-access: https://openaccess.leidenuniv.nl
Typeset using LATEX, figures generated using TIKZ

Printed by Ridderprint B.V.
ISBN 978-90-9030094-8

Algorithms for the Description of
Molecular Sequences

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 21 december 2016

klokke 11:15 uur

door

Jonathan Klaas Vis
geboren te Leuven, België

in 1983

Promotiecommissie

Promotores prof.dr. J.N. Kok
prof.dr. P.E. Slagboom

Copromotor dr. J.F.J. Laros

Commissieleden prof.dr.ir. F. Arbab
prof.dr. H.J. van den Herik
dr. S.D. Olabarriaga Universiteit van Amsterdam
prof.dr. A. Plaat
dr. P.E.M. Taschner

Contents

1 Introduction 11

1.1 Outline . 12

2 Preliminaries 15

2.1 DNA . 16

2.2 RNA . 17

2.3 Proteins . 18

2.4 Transcription . 19

2.5 The genetic code . 20

2.6 Human Genome Variation Society Nomenclature 22

3 HGVS Description Extraction 25

3.1 Introduction . 26

3.1.1 Transpositions . 27

3.2 Methods . 29

3.2.1 Extraction algorithm . 29

3.2.2 Finding the Longest Common Substring 30

3.2.3 Finding the LCS more efficiently 32

3.2.4 Choosing the size of the of k-mers 34

3.2.5 Adapting the extraction algorithm for inversions, trans-
positions and inverse transpositions 35

3.3 Experiments . 36

3.3.1 Performance on large DNA strings 36

8 Contents

3.3.2 Automated description extraction using
sequences from a gene database 39

3.3.3 Replacing reference sequences for gene variant databases 40
3.4 Discussion . 41

3.4.1 Compression . 41
3.4.2 Transitivity . 41

3.5 Conclusion . 42
3.5.1 Future work . 43

4 HGVS Protein Descriptions 45
4.1 Introduction . 46

4.1.1 Frameshift variants . 47
4.1.2 Complex frameshift variants 48

4.2 Methods . 49
4.2.1 Probability calculation 52
4.2.2 Back-translation . 55

4.3 Experiments . 55
4.3.1 Intra-species frameshifts in E. coli K-12 56
4.3.2 Inter-species frameshifts between E. coli K-12

and S. enterica . 58
4.3.3 Quality of the frameshift annotations 59

4.4 Discussion . 61
4.4.1 Back-translation . 61
4.4.2 Proposed HGVS Descriptions 62

4.5 Conclusions . 64

5 HGVS Short Tandem Repeats 65
5.1 Introduction . 66
5.2 Methods . 68

5.2.1 Finding repeat units . 68
5.2.2 Reference-based description of the repeat structure . . . 69
5.2.3 Relative description of the flanking regions 72

5.3 Experiments . 73
5.4 Discussion . 77

Contents 9

5.4.1 Reference sequence . 77
5.4.2 Repeat unit set per STR locus 78

5.5 Conclusions . 79

6 Disjoint Sets of Attributes in Large Cohort Studies 81
6.1 Introduction . 82
6.2 Problem statement . 83

6.2.1 Anatomy of the data sets 83
6.2.2 Disjoint sets of attributes 84

6.3 Workflows . 84
6.3.1 Classifiers . 87
6.3.2 Quality metrics . 91

6.4 Experiments . 91
6.4.1 Classification power of disjoint sets of attributes 92
6.4.2 Using classifiers across cohort studies 94
6.4.3 Combining all data from different studies 95
6.4.4 Hierarchical approach 95

6.5 Conclusions . 97

7 Conclusions and Future Work 99
7.1 Future Work . 101

Bibliography 103

Samenvatting 109

Curriculum Vitae 113

Dankwoord 115

Publication List 117

Chapter 1

Introduction

Bioinformatics is a a broad research field operating on the boundary between
bio-medical research and computer science and often mathematics and statis-
tics. In particular the automated analysis of biological data and the for that
purposes developed tools are prime research interests. The analysis of genomic
data is one of its main focus points. In this dissertation we will address two
topics in bioinformatics; the analysis of molecular sequences and the applica-
tion of machine learning on large cohort studies. The chapters dealing with
molecular sequences will mainly focus on the development of novel algorithms
(and ultimately tools) which are useful for the automated analysis of those
sequences. Many algorithms and tools have been developed in the past, e.g.,
aligners and variant callers. Here, we target a related subject; the generation of
descriptions which are typically used within a clinical setting. The second part
of this dissertation has a more explorative nature. By using existing tools and
methods we explore the added classification power of adding disjunct groups
of data to a study.

In Chapter 2 we first introduce the basic biological background knowledge
needed when dealing with molecular sequences from a bioinformatics perspec-
tive. Next, the domain specific language that is used for describing variation
within molecular sequences is introduced.

11

12 Chapter 1. Introduction

1.1 Outline

In this dissertation we explore a particular field within the larger bioinformatics
field; we focus on algorithms for generating descriptions for molecular strings.
The first chapters deal specifically with different aspects of the construction of
Human Genome Variation Society Nomenclature (HGVS) descriptions.

The primary research question in Chapter 3 is: “Can we automatically
generate concise, meaningful HGVS descriptions from DNA sequences in linear
time?” This chapter focuses in the most general way on the construction of
genomic description of DNA/RNA sequences. Here, we explore an algorithm
that is able to efficiently compute these descriptions for very large strings, e.g.,
whole chromosomes. The challenge is to generate concise, yet meaningful,
descriptions. This chapter is based on:

Vis, J. K., Vermaat, M., Taschner, P. E. M., Kok, J. N., and Laros, J. F. J. (2015).
An Efficient Algorithm for the Extraction of HGVS Variant Descriptions from
Sequence. Bioinformatics, 31(23):3751–3757.

In Chapter 4 the research question is: “Can we automatically generate
HGVS descriptions from protein sequences as well?”. This chapter builds on
the algorithm presented in Chapter 3 and aims to construct descriptions for
protein sequences. Its main focus is on the detection of so-called frameshift
variants. In this we show that descriptions on DNA/RNA level are generally
insufficient for describing variants on the protein level. And we show that
interesting evolutionary events can be found in real-life data when looking at
frameshift variants.

The research question in Chapter 5 is: “Can we efficiently generate descrip-
tions for regions with repeated sequences?”. We focus on finding so-called
short tandem repeats and describing repeat structures with regard to some
reference sequence in terms of those repeats. Regions with high content of
repeats are common within the genome, at the same time they are difficult
to analyze. A specialized application of the algorithm from Chapter 3 is pre-
sented for constructing accurate and meaningful repeat descriptions free from
any database-based method. A particular focus is given to the application in

1.1. Outline 13

forensic research.
In Chapter 6 we have as primary research questions: “Can we say something

about the relative power of the (combinations of) sets of attributes?” and: “Can
data from different cohort studies be used to augment classifying power for
a single study?”. We take our focus of molecular strings and we explore the
problem of classification in large cohort studies containing heterogeneous data.
This is in many aspects a study of machine learning on a meta level, where we
investigate the added classification power of adding disjunct groups of data
and disjunct cohorts. The data used in these cohorts often contains genomic
data. The algorithms presented in the Chapters 3,4,5 could be applied in these
kind of analyses. This chapter is based on:

Vis, J. K. and Kok, J. N. (2014). Meta-analysis of Disjoint Sets of Attributes
in Large Cohort Studies, pages 407–419. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Finally, in Chapter 7 we summarize the conclusions of the individual chap-
ters and we present directions for future work.

Chapter 2

Preliminaries

The core of every living being is its genetic payload. The genetic inheritance
describes information that is passed down from parents to their offspring. It
contains a blueprint detailing, in essence, how to construct a new individual
from a single cell. This genetic inheritance is physically present in the form of
DNA in almost every living cell.

As a medium of information storage, DNA is complemented by two other
types of molecules in the cell that, respectively, carry out the instructions en-
coded in the DNA by performing specific biochemical functions, and serve as an
intermediary between information storage and execution. The intermediaries,
which are called RNA, copy out specific parts of the complete instructions from
the DNA and carry them to factories that translate the instructions into proteins.
The central dogma of molecular biology states that information is thus trans-
mitted from DNA to RNA, and from RNA to proteins, but never from proteins
back to RNA or DNA [Crick, 1958,Crick et al., 1970]. When first published, the
central dogma concisely summarized the available evidence at the time. Now,
more than half a century later, this still largely holds true.

Over the years, the very high-level view of the central dogma was comple-
mented by a detailed mechanistic description and the efforts to fill in all the
details are still ongoing. The three main roles in the central dogma are fulfilled
by DNA, RNA and proteins, respectively, and we are now going to take a look
at all of them in turn.

15

16 Chapter 2. Preliminaries

2.1 DNA

DNA consists of a long chain of nucleotide molecules consisting of a ribose,
one or more phosphate groups and a nucleobase: adenine (A), cytosine (C),
guanine (G) or thymine (T). Thus, DNA can be thought of as a long string of
four different letters, and that is indeed how it is often represented. Text is
written from left to right in Western cultures. By convention, DNA is written
from 5′ to 3′.

DNA is present in the cell in the form of double-stranded helices: each
DNA molecule consists of two paired chains, wound tightly around each other,
with the bases on each chain pairing up such that every A on one chain is
paired with a T on the other, and each C is paired with a G. This symmetry is
known as Watson-Crick base pairing, after its discoverers [Watson et al., 1953].
Thus, DNA is made up of two complementary strands, redundantly holding the
genetic information, see Figure 2.1. This redundancy is used in DNA copying,
which occurs at every cell division, and is the mechanism by which genetic
information is passed from one cell to its offspring, to synthesize two newly
formed DNA molecules, each of which contains one strand of the parent DNA
molecule [Meselson and Stahl, 1958].

DNA is not made up of one single polymer chain, but rather is partitioned
into several long pieces, called chromosomes. Each chromosome forms a
single molecule. However, even on a chromosome the genetic information is
not stored in one consecutive piece: Rather, DNA consists of relatively short
stretches encoding a specific function, separated by long stretches that do
not directly encode any function. The “function” is what is transmitted, as
per the central dogma, to RNA and, in many cases, on to proteins. Such self-
contained, functional stretches are called genes self-contained stretch of DNA
that is transcribed to perform a function. To perform its function, a gene has to
be transcribed into RNA.

2.2. RNA 17

Figure 2.1: A schematic representation of the helical structure of double-
stranded DNA. Also shown is the complementary nature of the nucleotides.
Image by Forluvoft [Public domain], via Wikimedia Commons.

2.2 RNA

RNA is the product of transcription of a gene from DNA. RNA is an information
carrier like DNA, but unlike the latter, RNA is created as a single strand. This
has two consequences: First, RNA is much less stable than DNA, and slowly
degrades. RNA thus has a finite life-time, and the pool of RNA must be
replenished by continuous transcription. Second, single-stranded ribonucleic
acid spontaneously changes its spatial conformation by forming Watson-Crick
base pairs between nucleotides in its own sequence. The resulting structure,
although not the only factor, can confer biochemical functions to the RNA.
Because the structure is determined by, and exists on a higher level than the

18 Chapter 2. Preliminaries

sequence identity of the RNA, it is called secondary structure.

Another difference between DNA and RNA is the use of slightly different
nucleobases: instead of T, RNA uses U (uracil), which, like T, base-pairs with
A. Despite the fact that the genetic information is encoded in virtually the
same way in DNA and RNA, transcription of DNA into RNA requires a complex
machinery. The core of this machinery is a complex enzyme called an RNA poly-
merase. In eukaryotes, three different, evolutionarily related RNA polymerases
are responsible for transcribing different types of RNA.

RNA performs numerous different functions, but one very important sub-
category of RNA does not perform any function on its own; rather, it is an
intermediary between the genetic information on the DNA and the final pro-
tein product, which in turn performs cellular functions. This class of RNA is
called mRNA. mRNA is the product of the transcription of protein-coding genes.
Transcription of mRNA requires an exquisite control, and many different tran-
scription factors are known to regulate the activity of transcription of different
genes in different cellular conditions.

This results in different mRNA genes being transcribed at highly different
levels, leading to several orders of magnitude of difference in mRNA abundance.
Moreover, the same mRNA can be transcribed at different levels under different
conditions. This forms the basis of cellular differentiation into different cell
types and tissues in multicellular eukaryotes.

2.3 Proteins

Proteins, finally, are the main effectors of cell function. Like DNA and RNA,
they consist of chains of smaller molecules, so-called amino acids, that are
strung together to form polypeptides. Each amino acid is a small molecule
with unique properties which, jointly, dictate the function of the final protein.
Individual amino acids are strung together in a chemical reaction to form a
peptide bond [Alberts et al., 1995]. Polypeptides, like RNA, form secondary
structures via non-covalent bonds between amino acids, which are a function
of the amino acid sequence. Beyond this, proteins form even higher order
three-dimensional structures called tertiary structures. When multiple proteins

2.4. Transcription 19

aggregate into a complex consisting of several subunits this is called quarternary
structure.

All these different levels of spatial organization of proteins lead to the
creation of highly complex structures from originally one-dimensional chains.
It is their intricate structure that allows them to perform precise tasks in
the cell. Because they are the work horses of the cells, proteins are highly
abundant, with some proteins being present million-fold at any given moment.
This is only possible because a single gene is transcribed multiple times, and
each resulting mRNA can be translated several times, and simultaneously,
before being degraded. The path DNA → RNA → protein thus facilitates an
amplification from a single gene copy to many orders of magnitudes more
copies of the resulting protein. Despite the fact that multiple protein copies
can be created from a single mRNA molecule, and that the number varies from
transcript to transcript, protein abundance is predominantly determined by the
abundance of mRNA.

2.4 Transcription

As mentioned previously, different polymerases are responsible for transcribing
genes encoded in the DNA into different types of RNA. The precise ways in
which the different polymerases transcribe genes into their RNA products
differ but the fundamental aspects of transcription are similar. In all cases,
a motif in the DNA sequence initiates binding of a number of transcription
factor proteins to the DNA. Such motifs, called promoters, are found in the
immediate vicinity of the transcription splice site of their target genes — either
upstream of the transcription splice site or following closely after it, inside the
gene body. Once the transcription factors have bound to the DNA on top of
the transcription site, the RNA polymerase attaches to the DNA and is held
in place by the transcription factors. Subsequently, the polymerase pries the
double strand apart and starts synthesizing a new strand of RNA which pairs
complementarily with one of the strands on the DNA (the template strand).
The new RNA sequence is thus identical to the other DNA strand (the coding
strand). The RNA is produced in the direction 5′–3′, implying that the template

20 Chapter 2. Preliminaries

strand is read in the direction 3′–5′ during transcription. Once the first few
nucleotides of the RNA have been synthesized, the polymerase disassociates
from the transcription factor proteins, and the polymerase starts moving along
the gene body, transcribing it as it goes (this may require the presence of other
transcription factors called activators, which are recruited by enhancer motifs
elsewhere on the DNA).

Eukaryotic chromosomes are very long; human chromosome 1 is around
8.5cm stretched from end to end and, to fit into the cell, is tightly packed into
a space-efficient conformation. To achieve this, DNA is coiled around histones,
small protein complexes, to form nucleosomes. Too tight packing, however, has
the side-effect of making the DNA inaccessible to the transcription machinery. It
is thus a common feature of gene regulation to control the chromatin structure,
and thus to control the accessibility of the DNA for transcription factors and
the polymerases. In addition to enhancers and promoters, chromatin structure
and the modification of histones thus regulate the activity of genes.

Finally, the mRNA produced by the transciption from DNA is used by
ribosomes to produce a amino acid chain in a process that is called translation.
This chain later folds into an active protein to perform a biochemical function
in a cell.

2.5 The genetic code

The process by which proteins are created from mRNA transcripts is more
complex than the one-to-one transcription of DNA into RNA, which after all
use a common alphabet to encode the information they carry. By contrast, the
translation of mRNA transcripts into proteins requires a code to interpret the
genetic information.

There are 20 different amino acids that are encoded by just 4 different
nucleotides. To allow this, several nucleotides must be combined to form a
larger unit coding for an amino acid. In the universal genetic code, shared by all
known species, this is accomplished by grouping three consecutive nucleotides
together to form non-overlapping, ungapped triplet codons along the mRNA.
This results in 43 = 64 possible codons, more than three times the number of

2.5. The genetic code 21

amino acids. As a consequence, the genetic code is degenerate: most amino
acids can be encoded by more than a single codon.

Figure 2.2: A schematic representation of the genetic code where the RNA
notation is used. Image by Mouagip [Public domain], via Wikimedia Commons.

Codons furthermore serve as control points by defining where the translated
sequence on the mRNA starts and ends. The codon AUG, in addition to encoding
the amino acid methionine, also marks the start of the coding sequence. Three
codons do not encode any amino acid, and instead signal the end of translation
(UAA, UAG, UGA). As a consequence, every coding sequence starts with AUG, ends
with one of the stop codons, and has a length divisible by 3. Figure 2.2 contains
a representation of the genetic code, which is valid, with only minor variations,
for all domains of life.

22 Chapter 2. Preliminaries

2.6 Human Genome Variation Society Nomenclature

Since the 1990s [Beaudet and Tsui, 1993,Beutler, 1993] attemps have been
made to capture the description of genomic variation. These discussions cul-
minated in the Human Genome Variation Society (HGVS) Nomenclature [den
Dunnen et al., 2000]. Here a set of rules is presented to describe a restricted set
of genomic variations. Many additions and revisions have since been made to
cater for more complex variation, resulting in the current version (15.11) of the
HGVS Nomenclature [den Dunnen et al., 2016] (http://varnomen.hgvs.org).
These recommendations have world-wide acceptance as the standard nomen-
clature for clinical diagnostics and are also widely used in other fields.

The principal characteristics of the nomenclature aim for stability, mean-
ingfulness, memorability and unambiguity. The nomenclature is documented
using natural language and is mainly example-driven (see http://varnomen.

hgvs.org). A formal definition of its syntax has been constructed in [Laros
et al., 2011], however a more formal definition of its semantics is missing.
In this dissertation we frequently refer to the HGVS Nomenclature and when
doing so we have a clear subset of its rules in mind. Usually, we will restrict
ourselves to so-called genomic descriptions, i.e., descriptions based upon a
genomic sequence, e.g. a chromosome, without any additional annotation
for coding regions or genes. Many variants are commonly described on the
gene level, i.e., including annotation for coding regions, exons and genes. The
Mutalyzer tool suite [Wildeman et al., 2008] provides a way of converting
genomic descriptions to other positioning schemes. Furthermore, we consider
only rules that will result in a proper description in the sense that given a
reference sequence and a description one should be able the construct the
observed sequence. This excludes some of the constructions that are part of
the HGVS nomenclature. Most prominently descriptions dealing with ranges of
positions and uncertainty. To give more feeling for what proper descriptions
are it helps to notice that in most of the cases in this dissertation we use an
imaginary substitution operator which substitutes a certain substring in the
reference sequence into a given string. Note that the substitution operator
in the HGVS nomenclature deals only with single nucleotide substitutions (a

2.6. Human Genome Variation Society Nomenclature 23

special case of the imaginary substitution operator). Indeed, most types of
variants within the HGVS nomenclature are special cases of this imaginary
operator. For descriptions on the DNA level we also need an operator that gives
us the reverse complement of a string. In Table 2.1 we give some examples of
the HGVS variant descriptions.

Table 2.1: Examples of typical HGVS variant descriptions.

Substitution g.1234A>C A single nucleotide substitution on
a given position in the reference se-
quence.

Deletion g.1234_2143 A deletion of one or more nucleotides
from the reference sequence.

Inversion g.1234_2143inv The reverse complement of the refer-
ence sequence.

Insertion g.1234_1235ATTTA An insertion of a sequence in the refer-
ence sequence.

Duplication g.1234_1243dup One or more nucleotides are inserted
directly 3′ of the original copy of that
sequence in the reference sequence.

Deletion in-
sertion

g1234_2143delinsA One or more nucleotides are replaced
by an inserted sequence.

In the most of the chapters of this dissertation we make extensive use
of the HGVS nomenclature and due to the nature of the topics covered in
these chapters we frequently propose small modifications and additions to
the nomenclature. Most of these are, as now, not officially part of the HGVS
nomenclature.

Chapter 3

An Efficient Algorithm for the
Extraction of HGVS Variant
Descriptions from Sequences

Unambiguous sequence variant descriptions are important in reporting the
outcome of clinical diagnostic DNA tests. The standard nomenclature of the
Human Genome Variation Society (HGVS) describes the observed variant
sequence relative to a given reference sequence. We propose an efficient
algorithm for the extraction of HGVS descriptions from two sequences with
three main requirements in mind: minimizing the length of the resulting
descriptions, minimizing the computation time, and keeping the unambiguous
descriptions biologically meaningful.

Our algorithm is able to compute the HGVS descriptions of complete chro-
mosomes or other large DNA strings in a reasonable amount of computation
time and its resulting descriptions are relatively small. Additional applications
include updating of gene variant database contents and reference sequence
liftovers.

The algorithm is accessible as an experimental service in the Mutalyzer
program suite (https://mutalyzer.nl). The C++ source code and Python
interface are accessible at: https://github.com/mutalyzer/description-

extractor.

25

26 Chapter 3. HGVS Description Extraction

3.1 Introduction

The Human Genome Variation Society publishes nomenclature guidelines [den
Dunnen et al., 2000] for unambiguous sequence variant descriptions in clin-
ical reports, the literature and genetic databases. The Mutalyzer program
suite [Wildeman et al., 2008] has been built to automatically check and correct
these variant descriptions. As many complex variants are supported, the corre-
sponding descriptions are not always straightforward to construct, justifying
the need for the automatic extraction of HGVS descriptions by comparison
of the sequence observed in an individual to the reference sequence speci-
fied in guidelines and databases. Here we approach this from an informatics
perspective as a string comparison problem.

Consider two DNA strings: R, the reference string and S, the sample or
observed string:

R = ATGAT GATCAGATACAGTGTGATACAGGTAGTTAG ACAA

S = ATGATTTGATCAGATACA TGTGATACCGGTAGTTAGGACAA

The string S can be rewritten in terms of string R by using the HGVS descrip-
tion:

g.[5_6insTT;17del;26A>C;35dup]

The string-to-string correction problem calculates the distance between two
strings as measured by the minimum cost of a sequence of edit operations
needed to transform one string into the other. The traditionally allowed
edit operations [Wagner and Fischer, 1974] are exchanging one symbol of a
string for another: a substitution indicated using > between symbols (26A>C),
deleting a single symbol from a string: a deletion indicated using abbrevia-
tion del (17del), and inserting one symbol: an insertion using abbreviation
ins (5_6insTT). There is a specific case: insertion of previous symbol(s) is
described with HGVS term duplication using abbreviation dup (35dup). The
string-to-string correction problem has been extended on in numerous oc-
casions [Wagner and Lowrance, 1975, Tichy, 1984] usually allowing more
powerful edit operations. Here, we solve another extension of this problem by
defining additional edit operators especially suited to the HGVS nomenclature.

3.1. Introduction 27

Formally, our extension can be defined as follows. Given two stringsR and S
over the finite alphabet Σ = {A, C, G, T}, and a set of edit operators with their
corresponding (non-negative) weights, calculate a sequence of edit operations
that transforms a reference string R into a sample string S with a minimum cost
with regard to the weights of the operations given in Table 3.1. The weights in
Table 3.1 are based on the textual length of the HGVS nomenclature. Note that
the length of the description of the position is dependent on the position, i.e.,
towards the end it takes more symbols to describe the position, therefore we
will parameterize all weights making them independent of the positions.

Traditionally, the edit operations are defined on single symbols. To provide
a more intuitive way of describing variants, we extend these operations in a
natural way allowing use of substrings rather than individual symbols. Note
that, in contrast to the insertion operator, the deletion operator on multiple
symbols is not dependent on the length of the deleted substring, thereby
creating an asymmetry between insertion and deletion.

In addition to the traditional edit operators we define two additional opera-
tors: inversion (HGVS abbreviation: inv) matches the reverse complement of
the string and transpositions.

3.1.1 Transpositions

Here we define transpositions to be substrings which are copies of substrings
found either elsewhere in the matched string or elsewhere in the same string.
As we are interested in calculating concise descriptions, we will only consider
insertions to be candidates for transpositions. This will produce favorable
results especially in the case of long insertions that can be described as long
transpositions as their weights are independent of the length of the inserted
substrings. Furthermore, we allow some variants within these transpositions
yielding composite transpositions, e.g.:

g.[5_6ins[GG;17_45;inv46_78]]

This composite transposition consists of three parts: a regular insertion of GG, a
transposition of a substring of the reference sequence from position 17 to 45

28 Chapter 3. HGVS Description Extraction

Table 3.1: Edit operators for HGVS descriptions with their corresponding
weights.

Operator HGVS Description Weight

Deletion (single) pdel x+ 3

Deletion (multiple) pstart_penddel 2x+ 4

Deletion/insertion
(single)

pdelinsw x+ 6 + |w|†

Deletion/insertion
(multiple)

pstart_penddelinsw 2x+ 7 + |w|‡

Insertion pstart_pendinsw 2x+ 4 + |w|‡

Inversion pstart_pendinv 2x+ 4

Substitution pc1>c2 x+ 3

Transposition pstart_pendins[pstart_pend] 4x+ 4

Inverse transposition pstart_pendins[pstart_pendinv] 4x+ 7

where x is the weight of a position description independent of the actual
position.
† w ∈ Σ∗, with |w| > 1
‡ w ∈ Σ∗, with |w| > 0

followed by a transposition found on the reverse complement of the reference
sequence, i.e., an inverse transposition. Note that the alternative would require
the insertion of 62 nucleotides.

The remainder of this chapter is organized as follows. In Section 3.2 we
introduce an algorithm to efficiently compute the HGVS description between
two strings. Section 3.3 describes the experiments, followed by a discussion of
the results in Section 3.4 and the conclusions in Section 3.5.

3.2. Methods 29

3.2 Methods

In order to automatically construct HGVS descriptions we propose an extraction
algorithm. The three main requirements considered for this algorithm are:

1. The length of the descriptions — we try to minimize these;

2. The computational speed — in order to be practically useful we consider
a maximum total computation time of 1 hour for chromosome 1 of the
human genome on a desktop PC (3.4 GHz and 16 GB RAM). Although
this specific timing criterion is arbitrary it serves as a indication for a
responsive desktop environment;

3. The (biological) meaning of the descriptions — given that this algorithm
is developed for genetic data, we want the descriptions to be as close as
possible to the intuition of the people using them.

3.2.1 Extraction algorithm

A trivial way to describe the sample string in terms of the edit operations from
the reference string, is to give the substitution of the whole reference string
with the sample string by means of the deletion/insertion operator. This gives
us an upper bound on the length of the description. We can stop recursively
cutting the strings at the moment when the resulting description exceeds the
trivial description or when we can decide that every possible description from
this point on will result in a longer description.

The underlying idea of the extraction algorithm is to divide the string to be
described into a sequence of unaltered regions and altered regions. The altered
regions are then described according to the HGVS nomenclature. In order to
minimize the length of the resulting descriptions, we apply a greedy approach
by choosing the longest possible unaltered regions. Note that this is a heuristic
which implies that it might be possible to find a more concise description by
choosing a smaller unaltered region.

The algorithm is formulated recursively: given two strings R and S find the
longest string that is a substring of R as well as S. Remove this string from

30 Chapter 3. HGVS Description Extraction

the problem, and continue recursively with both prefixes Rpre and Spre and
both suffixes Rsuf and Ssuf . The recursion ends when either of the two strings
is empty or no common substring could be found, see Figure 3.1. In case of
an empty reference string and a non-empty sample string, the corresponding
variant is an insertion. When the sample string is empty and the reference string
is not, the corresponding variant is a deletion. If no common substring could
be found, depending on the length of both strings we deal with a substitution
in case of a single nucleotide or a larger deletion/insertion.

R
Rpre Rsuf

S
Spre Ssuf

Rpre

Spre

Rsuf

Ssuf

Figure 3.1: Graphical representation of the extraction algorithm with reference
string R and sample string S, with the recursion showing a common substring
in the suffixes (suf), but not in the prefixes (pre). The wavy lines denote the
LCS during that iteration.

3.2.2 Finding the Longest Common Substring

In this section we explain the traditional approach for finding the longest
common substring between two strings as an introduction to the more efficient
version we present in Section 3.2.3.

The problem of finding the longest common substring(s) (LCS) between two
(or more) strings is a well studied problem [Gusfield, 1997]. Traditionally, a
dynamic programming approach for finding the LCS is used. Based on the
recurrence relation (3.1), a table M is built containing at each position (i, j)

the length of the longest common suffix between both prefixes.

Equation (3.2) is used to find the length of the longest common substring.

3.2. Methods 31

Together with the position (i, j) we can easily find the actual string.

M(S1..i, R1..j) =

M(S1..i−1, R1..j−1) + 1 if Si = Rj

0 otherwise
(3.1)

LCS(S,R) = max
1≤i≤|S|,1≤j≤|R|

M(S1..i, R1..j) (3.2)

In order to illustrate the mechanisms of finding the LCS, we will present an
example. Let R = AACACTTA, and S = ACTAACACTT. We construct M according
to the recurrence relation (3.1) as shown in Table 3.2. We fill M from top
to bottom, and from left to right. If the symbols on position (i, j) match, we
look at position (i − 1, j − 1) and extend the matched suffix. For instance,
position (3, 6) has 3, because position (2, 5) has 2 and T matches T.

Table 3.2: Dynamic programming approach for finding the longest common
substring. Here, the LCS is AACACTT, with length 7.

M A A C A C T T A

A 1 1 0 1 0 0 0 1
C 0 0 2 0 2 0 0 0
T 0 0 0 0 0 3 1 0
A 1 1 0 1 0 0 0 2
A 1 2 0 1 0 0 0 1
C 0 0 3 0 2 0 0 0
A 1 1 0 4 0 0 0 1
C 0 0 2 0 5 0 0 0
T 0 0 0 0 0 6 1 0
T 0 0 0 0 0 1 7 0

The number of rows in M corresponds to the length of S, while the number of
columns corresponds to the length of R. By filling M we deduce the runtime
and memory complexity of this algorithm: O(|R| · |S|). Usually |R| ≈ |S|, giving
a quadratic time behavior for this algorithm. We can easily reduce the required

32 Chapter 3. HGVS Description Extraction

amount of memory by storing only the current and previous row of table M ,
which gives us a memory bound of O(min(|R|, |S|)).

Although this dynamic programming approach seems similar to the Smith-
Waterman algorithm [Smith and Waterman, 1981] for local alignment, it is
significantly different. In this phase of the extraction algorithm we focus only
on finding the LCS. This permits us to use more powerful and non-local edit
operators, i.e., inversions and transpositions which are not possible within the
local alignment algorithm.

3.2.3 Finding the LCS more efficiently

In theory an instance of generalized suffix trees could be exploited giving us
a linear bound on runtime. However, the implementations are impractical
both in memory requirements as well as having large constants in the linear
runtime. Instead, we will present an alternative LCS retrieval method based on
the traditional dynamic programming approach in Section 3.2.2.

Although for application to chromosomal sequences we have to calculate
the LCS of two large strings, we expect that these strings within one species
would be very similar to each other. We expect the LCS of those strings to
be very large compared to the length of the strings. Using this knowledge
we propose to encode the strings into a higher alphabet. We split both string
into substrings of length k, called k-mers, one string into non-overlapping
k-mers and the other into overlapping k-mers. Using a k-mer representation is
a well-known optimization for sequence alignment [Compeau et al., 2011].

The size of the table required is greatly reduced by the use of non-overlapping
k-mers. It is, however, impossible to split both strings into non-overlapping
k-mers, because it would impose a constraint on the starting position of the
LCS to be found: only a LCS starting on a kth position can be found. By
splitting one string into overlapping k-mers we remove this constraint while
still reducing the table size.

In Table 3.3 we show the tables M2 and M3 constructed for the same
example as given in Table 3.2 by using a modified version of the recurrence

3.2. Methods 33

relation (3.1):

Mk(S1..i, R1..j) =

Mk(S1..i−k, R1..j−1) + 1 if Si = Rj

0 otherwise
, (3.3)

where Si and Rj are k-mers.

In order to calculate the value of position (7, 2), we have to look at the
position (7 − 3, 2 − 1) to extend the k-mers matched so far. Equation (3.2),
adapted in the natural way, can be used to extract the LCS based on k-mers.
In this case it yields the LCS AACACT with length 6. Consequently, we have to
extend the found LCS, possibly at both ends to find the actual LCS of length 7 as
a post-processing step. In general, the actual LCS can be extended k−1 symbols
to the left, and k − 1 symbols to the right. This implies that for k > 1 the LCS
can be found at a position in the Mk table with a sub-optimal value. To be
precise: one less than the maximum value found using Equation (3.2). All
these positions have to be considered for the LCS as well.

Table 3.3: Dynamic programming approach with overlapping and non-
overlapping 2-mers and 3-mers.

M2 AA CA CT TA

AC 0 0 0 0
CT 0 0 1 0
TA 0 0 0 1
AA 1 0 0 0
AC 0 0 0 0
CA 0 2 0 0
AC 0 0 0 0
CT 0 0 3 0
TT 0 0 0 0

M3 AAC ACT

ACT 0 1
CTA 0 0
TAA 0 0
AAC 1 0
ACA 0 0
CAC 0 0
ACT 0 2
CTT 0 0

In comparison to the original table M , the Mk table is much smaller:
(|S| − k + 1) × b|R|/kc. If we can swap the roles of R and S freely, it is

34 Chapter 3. HGVS Description Extraction

advantageous to choose R to be the longest string. Again, we only have to
store a part of this table: the current row and the k previous ones. All of these
rows contain fewer elements than those in table M . The memory constraints
remain approximately the same as for the original algorithm. The runtime,
however, is greatly reduced for large values of k.

3.2.4 Choosing the size of the of k-mers

If we compare Table 3.2 and Table 3.3, it appears that we cannot find all
arbitrary common substrings of R and S. For instance, the substring ACT

starting in R at position 9 and in S at position 7 is not present in Table 3.3
due to an unfortunate misalignment in the non-overlapping k-mers. Moreover,
all common substrings with a length less than k are not present at all. To
be certain to find a common substring of length `, k has to be at most d`/2e.
Therefore, we can consider k to be a guess for the expected length of the LCS
between R and S.

To achieve the best performance of this algorithm, the initial value for k
has to be chosen carefully. On one hand we like k to be as large as possible to
reduce the runtime as much as possible. On the other hand k has to be small
enough compared to the LCS between the two strings. In general we will not
know the exact length of the LCS.

In case the algorithm returns no result, we lack the guarantee of the
traditional approach, that there is no common substring between both strings.
If k is chosen too large, the whole table will contain zeroes or ones and the
algorithm fails to produce a result. To find the LCS, we have to reduce the value
of k and run the algorithm again until a result is returned or the value of k falls
below a certain threshold. In general, this threshold can be 1 which guarantees
that there exists no common substring between both strings. However, this is
impractical for large strings. Usually, the threshold can be set at the expected
length of the LCS between two random strings over alphabet Σ, trivially bound
by 2 log|Σ| n for strings of length n [Abbasi, 1997].

3.2. Methods 35

3.2.5 Adapting the extraction algorithm for inversions, transposi-
tions and inverse transpositions

So far the extraction algorithm in Figure 3.1 handles only variants of the dele-
tion, insertion, and substitution operations. To add support for the inversion
operator, we have to run the LCS algorithm twice. First, the sample string is
matched to the original reference string. Second, it is matched against the
reverse complement of the reference string (in every instance of the recursion).
If the LCS is found on the reverse complement, the algorithm picks this LCS
and removes it from the solution. In the exceptional case of a tie between
the length of a regular LCS and the length of a reverse complement LCS, the
algorithm prefers the regular one, because of the higher weight associated with
a reverse complement match. In the next step of the recursion a new decision
will be made on whether to use the original or a reverse complement LCS
independent of the current choice. Note that the complexity of the algorithm
does not change essentially as we do twice the amount of work.

In order to find useful transpositions, we consider all insertions of a certain
length. In practice, insertions of two base pairs will usually not be considered
to be transpositions as all occurrences of two base pairs will be present else-
where. With increasing length of the insertions the probability that these exact
sequences are found elsewhere diminishes quickly. Therefore, if we are able
to locate these sequences elsewhere, we can be confident that they are indeed
transpositions. Instead of looking for the exact sequences, we use a modified
recursive instance of the extraction algorithm to find transpositions with small
variations. The main difference between the regular extraction algorithm and
the modified algorithm proposed here is that deletions within a transposition
are not meaningful, i.e., we just describe the actual insertions either as regions
to be found elsewhere in the string or as regular insertions. Likewise, inverse
transpositions are found by matching against the reverse complement string.

36 Chapter 3. HGVS Description Extraction

3.3 Experiments

We performed computer experiments to demonstrate the performance of our
proposed algorithm both in terms of speed and the quality of its output. In the
first experiment we will focus on the performance of the extraction algorithm
on large DNA strings, i.e., whole human chromosomes. The second experiment
aims to minimize the resulting descriptions in a real-life case study. The final
experiment shows the biological quality of the resulting descriptions.

In all experiments we used a fixed initialization and reduction scheme for k
when the algorithm fails to return a solution, as explained in Section 3.2.4. We
initialize k to |R|/4; in case of no solution we reduce k ← k/3. This seems to
be a good balance for maximizing k and miniziming the amount of re-runs for
the LCS_k algorithm. On average 1 to 2 re-runs are sufficient.

For the transposition cut-off discussed in Section 3.2.5, we specify a thresh-
old of 10% of the length of the inserted string. Any matched regions smaller
than this length are considered to be uninteresting as transpositions and are
described as regular deletions/insertions. Modifying this cut-off will greatly
affect the runtime of the algorithm. Again, for our experiments, this cut-off
strikes a good balance between runtime, description length, and biologically
interesting patterns.

3.3.1 Performance on large DNA strings

To demonstrate the usefulness and speed of our proposed algorithm we
used all chromosomal RefSeq sequences from human genome build NCBI36
(GCF_000001405.12), GRCh37 (GCF_000001405.13) and
GRCh38 (GCA_000001405.15) and performed three extraction experiments:

1. NCBI36 (sample) vs. GRCh37 (reference);

2. NCBI36 (sample) vs. GRCh38 (reference);

3. GRCh37 (sample) vs. GRCh38 (reference).

We extracted the HGVS descriptions of the differences of the respective sample
sequences relative to the respective reference sequences per chromosome with

3.3. Experiments 37

a total computation time of about 40 hours, see Figure 3.2.
As a preprocessing step we replaced all sequential occurrences of N with a

single N. Large sequences of N are commonly found at the starts and ends of
chromosomes (telomeres) and at their centers (centromeres). We particularly
wanted to avoid transposition matching of sequences of N as they yield no
information.

1
2
3
4
5
67
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M

Ti
m

e
(h

)

Chromosome

NCBI36 vs. GRCh37
NCBI36 vs. GRCh38

GRCh37 vs. GRCh38

Figure 3.2: Performance of the extraction algorithm per chromosome on a
desktop PC (3.4 GHz and 16 GB RAM).

In Figure 3.3 we observe that the maximum description length for any
chromosome is about 1 MB. The descriptions can be calculated in at most
1 hour for most chromosomes except for chromosomes 5, 7, 8, and X. Here,
we observe a large number of relatively small insertions which are just large
enough to be considered for the transposition extraction. This process is very
expensive in terms of calculation time, as a whole chromosome needs to be
matched against a small string, eliminating the speed-up gained when using a
large k.

There seems to be no obvious relation between the calculation time and the
resulting description length; a longer calculation time does not always result in
a more concise description. Again, small insertions seem to contribute most
to this phenomenon. Often the expensive transposition extraction process is
started, but the resulting description in terms of transpositions is, in the end,
longer than the trivial description. This results in an increase in computation

38 Chapter 3. HGVS Description Extraction

100 B
1 kB

10 kB
100 kB

1 MB
10 MB

100 MB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M

S
iz

e

Chromosome

NCBI36 vs. GRCh37
NCBI36 vs. GRCh38

GRCh37 vs. GRCh38
Chromosome size

Figure 3.3: HGVS Description lengths of the extraction algorithm per chromo-
some.

time as well as in the description length.

We should mention that the case of description of one genome build relative
to an other is a very artificial example. In each new version of the human
genome information is added, i.e., gaps representing unsequenced regions have
been replaced with regions that had not been sequenced before and assembly
errors have been corrected. This results in multiple large insertions. Also, these
descriptions yield no useful biological knowledge. However, we can give an
estimate of the amount of information added with every new build.

Parallelization of the algorithm is trivially possible by using threads for each
recursive call. The task of efficiently partioning the work over a fixed number
of threads is non-trivial. The current recursive definition implies that many
calls will terminate relatively quickly. The overhead of starting threads in these
circumstances should be considered carefully. Our algorithm in its current form
is ill-suited for distribution over multiple machines. Apart from the design
of our algorithm we also have to provide an efficient way of accessing global
data as the algorithm uses non-local operators. Moreover, one of our primary
design criteria is the ability of efficiently generating variant descriptions within
a desktop environment.

In Figure 3.4 we present the distribution of the HGVS operators from
the description of Chromosome 2 (NCBI36 vs. GRCh37). This distribution is

3.3. Experiments 39

representative for the distribution of the operators for most of the chromosomes
in this experiment (note that Chromosome M has no variants).

0 100 200 300 400 500

inverse transposition

transposition

substitution

inversion

insertion

duplicate

deletion/insertion

deletion

Frequency

Figure 3.4: The distribution of HGVS operators for Chromosome 2 (NCBI36 vs.
GRCh37).

The distribution in Figure 3.4 shows that almost 74% of all variants are
substitutions. The insertion operators contribute most to the length of the
descriptions (data not shown). The individual variants of composite transpo-
sitions are partitioned into their respective operators, e.g., the transposition
12_13ins[17_51;GC;50_99;CTCTG] contains two transpositions, and two in-
sertions.

3.3.2 Automated description extraction using
sequences from a gene database

For this experiment we used the IMGT/HLA Database [Robinson et al., 2014]
from which we extracted the sequence of 3,588 HLA-B variant genes. For most
of these sequences allele descriptions in HGVS-like format are provided using
coding DNA numbering with RefSeq Gene reference sequence NG_023187.1
(see for example: https://ebi.ac.uk/cgi-bin/ipd/imgt/hla/get_allele_
hgvs.cgi?B*73:01). As all sequences are between 500 and 1,000 bp long, cal-
culation time is not an issue and is in fact dominated by disk access times. For

40 Chapter 3. HGVS Description Extraction

this experiment it took about 1 hour to automatically generate all HGVS de-
scriptions.

The original descriptions contain predominantly substitutions. For substitu-
tions that are very close together it is often more concise to describe them using
a deletion/insertion operator. The HGVS nomenclature forbids the occurrence
of two adjacent substitutions. However, these are commonly found in the
original descriptions. The original descriptions never have deletions at the
beginning or end of the sequence while these variants are all captured by the
automatic extraction process. Because of the missing deletions the resulting
description length of the automated extracted description can be longer than its
corresponding original one. If we disregard these deletions, the automatically
derived description is either the same or of (much) smaller length. Finally, we
have observed some irregularities in the original descriptions with regard to the
HGVS nomenclature, e.g., [960_961dupT;] which contains two mistakes and
an inaccuracy: (1) only one nucleotide is duplicated, so there is no need for a
range of positions, (2) the nucleotide letter(s) do not have to be present for
duplicates, and (3) as there is no variant following the duplicate no separating
symbol (;) is needed. We have communicated the results of our description
extraction with the curators of the IMGT/HLA Database.

3.3.3 Replacing reference sequences for gene variant databases

Gene variant database curators need to update gene-centered reference se-
quences (predominantly RefSeq Gene files) when new (improved) versions are
generated following the release of a new genome build. The current algorithm
can help: variant sequences can be generated from the original descriptions
using the Mutalyzer Name Checker. These sequences can be compared with
the new RefSeq Gene sequence leading to updated HGVS variant descriptions.
These descriptions can replace the old ones in the database.

3.4. Discussion 41

3.4 Discussion

In this section we introduce two additional qualities of automatically generated
HGVS descriptions especially when used in genomic databases.

3.4.1 Compression

HGVS descriptions can be an attractive alternative for compressing DNA se-
quences, especially in a database containing sequences with high similarity
that can be described using a single reference sequence. Often the standard
reference genome can be used. All instances in the database can be stored by
using their HGVS descriptions instead of their sequences and (optionally) one
copy of the reference sequence. The difference between the original chromo-
some size and its corresponding description length is large: up to a million
times smaller, see Figure 3.2. To give an impression of the overall compression
efficiency, storing the complete human genome requires approximately 3 GB,
while storing only the descriptions will take approximately 6 MB per instance
giving a reduction 466 times. [Brandon et al., 2009] introduced a similar way
of compressing genomic sequence data. They achieved similar results in terms
of the compresssion factor as our method. As they focus on developing a com-
pression algorithm, they used a binary encoding scheme for frequent partial
variants. In this respect their algorithm differs from ours: we focus on the
actual variants and we describe the complete variants in a human readable
form.

Traditional compression techniques such as gzip will reduce the size of the
human genome to approximately 800 MB. Apart from a much better compres-
sion rate, the HGVS format is human readable. Furthermore, many useful
queries, e.g., determining the presence of a substitution, can be performed
directly on the HGVS descriptions without the need for decompression.

3.4.2 Transitivity

In principle we could also transform descriptions generated using one spe-
cific reference string to descriptions versus other reference strings. This is a

42 Chapter 3. HGVS Description Extraction

potentially powerful operation for large genomic databases. It enables the
conversion of entire databases to a new version of the reference genome in
considerably less time than generating descriptions versus this new reference
genome from scratch.

This transformation can be done by generating the HGVS description of the
original reference string versus the new reference string, and then computing
the new HGVS description for each instance by combining its description with
the description of the reference genomes. This results in a linear (in terms
of the description) amount of work for each instance. The actual implemen-
tation of the merging is beyond the scope of this chapter. However, to give
an intuition for a possible implementation we provide a small example. Con-
sider the HGVS descriptions g.[5_14inv] and g.[3T>C;9G>C]. The merging
of non-overlapping variants is trivial. Positions might have to be offset based
on the length of insertions and deletions in the prefix. For overlapping vari-
ants we can either construct the corresponding trivial deletion/insertion, i.e.,
g.[5_14delinsCGACCGAT] or alternatively split the inversion into two inver-
sions separated by a substitution: g.[10_14inv; 9G>C;5_8inv]. Although the
resulting description is a valid HGVS description, a more concise description
might be found when running the extraction algorithm directly.

3.5 Conclusion

We introduced an algorithm to extract HGVS descriptions from raw DNA
sequences with respect to reference sequences. We made this algorithm com-
putationally efficient for highly similar strings by introducing an alternative
version of the classic LCS algorithm using overlapping and non-overlapping
k-mers. We showed that the combination of these algorithms is able to com-
pute the HGVS descriptions of large DNA strings in a reasonable amount of
computation time and that the resulting descriptions are relatively small. The
HGVS descriptions yielded by the extraction algorithm are fully compliant with
the Mutalyzer tool suite. The Name Checker tool can be used to generate the
original sample string from the description.

We proposed to extend the HGVS nomenclature with the transposition

3.5. Conclusion 43

operator as it can greatly reduce the lengths of descriptions, while still being
able to efficiently compute these transpositions.

In addition to having a canonical algorithm for generating HGVS descrip-
tions we have shown that these descriptions are useful in genomic databases
for their compression and transitivity properties. The automatic extraction of
descriptions will be of great value to curators of existing databases: it makes
updates using new versions of reference sequences or of the nomenclature and
correction of HGVS descriptions very easy.

3.5.1 Future work

Nesting of variants has been proposed in an extension of the HGVS no-
menclature [Taschner and den Dunnen, 2011]. Our extraction algorithm
does not support nesting (with the exception of complex transpositions). A
possible extension of the extraction algorithm could be made towards finding
simple nested variants.

Breakpoint sequences observed with NGS sequencing technology also need
to be described in sufficient detail to allow reconstruction of their sequence.
The HGVS nomenclature committee is working on new guidelines involving
junctions of more than one chromosome. The current version of our algorithm
does not yet support transpositions involving more than one chromosome.

Other types of strings can be considered as well. We are mainly focussing
on an extraction algorithm for amino acid sequences to describe changes in
proteins using an altered set of edit operators.

Chapter 4

Extraction of HGVS Variant
Descriptions from Protein
Sequences

Frameshift variants are an important class of variants when considering protein
sequences. Small deletions/insertions in DNA sequences may result in (large)
frameshifts thereby large changes in the protein sequence and its function.
We propose a method of finding and annotating frameshift variants, in the
spirit of the standard nomenclature of the Human Genome Variation Soci-
ety (HGVS), from two protein sequences without considering the underlying
DNA sequences. Our method is able to efficiently compute HGVS descrip-
tions for protein sequences with frameshift annotations for all species codon
table. Furthermore, we show that this method can be effectively used to
find promising novel evolutional events. We propose an addition to the HGVS
nomenclature for accommodating the (complex) frameshift variants that can be
described with our method. Our method is available in the Description Extrac-
tor package for Mutalyzer: https://pypi.python.org/pypi/description-

extractor. The C++ source code and Python interface are accessible at:
https://github.com/mutalyzer/description-extractor.

45

46 Chapter 4. HGVS Protein Descriptions

4.1 Introduction

The Human Genome Variation Society publishes nomenclature guidelines [den
Dunnen et al., 2000] for unambiguous sequence variant descriptions used
in clinical reports, literature and genetic databases. To check and interpret
these descriptions the Mutalyzer program suite [Wildeman et al., 2008] has
been built with as main purpose the automatic checking disambiguation and
correction of variant descriptions. In [Vis et al., 2015] an efficient algorithm
for automated DNA/RNA variant description extraction is presented. Here,
we propose an extension of this algorithm which provides the automated
description extraction of protein sequences without direct knowledge of the
underlying DNA/RNA sequences. In particular, it provides frameshift variant
detection. A frameshift variant is introduced by the insertion or deletion in a
coding sequence which length is not divisible by three. In addition, we can
annotate protein sequences formed by an inversion and shifted variants of
inversions as well.

A frameshift variant is a genetic mutation due to insertions or deletions on
a DNA sequence that is consequently translated into a protein by encoding each
triplet of nucleotides into an amino acid. The key to introducing frameshift lies
in this triplet-based structure also known as the reading frame. Any insertion
of deletion with a length not divisible by three introduces a huge effect on
the protein level; all (or most) of the following amino acids will be different
from the unmodified ones. In this chapter we do not consider the transcription
process (DNA to RNA) nor the splicing process. The term DNA level means the
coding region of the DNA for a particular protein.

As protein descriptions are supported by HGVS, there is a need for their
automatic construction. A naive approach could be the HGVS description
extractor from [Vis et al., 2015] on the DNA level and convert its output to the
protein level. Unfortunately this approach is not feasible. First, many different
variants on the DNA level could lead to the same variant on the protein level.
There should be a guarantee that all of these DNA level variants are indeed
converted to the same protein variant. Given the complexity of these variants
it is far from trivial (maybe even impossible) to give such a guarantee. Second,

4.1. Introduction 47

sometimes the DNA level is not accessible or unknown. In this case, a protein
level description would still be useful. Thirdly, considering only the protein
level gives us the possibility of allowing for useful annotation in terms of
frameshifts.

Usually reading frame modifications are analyzed on the DNA level [Sheetlin
et al., 2014], however, we focus here on frameshift detection on the protein
level. Our algorithm is closely related to the methods described in [Gîrdea et al.,
2010]. There, a graph-based approach is used to perform back-translation to
the DNA level and induce frameshift mutation from there. Although theoreti-
cally our approach is the same, we allow for more types of frameshifts and we
simplify the frameshift detection calculation by precalculation of look-up tables
such that the frameshift detection can be performed directly on the protein
level. Furthermore, the alignment step is not part of the frameshift detection
algorithm, but rather performed in advance. In our case the frameshift detec-
tion can be seen as a post-processing step on deletion/insertion variants. These
optimizations result in an efficient algorithm.

4.1.1 Frameshift variants

We extend the traditional definition of frameshift mutations to cater for more
general frameshift variants. Whereas in the traditional definition only two types
of frameshift are recognized, i.e., +1 and +2, we allow also for frameshifts in
combination with inversions on the DNA level. Indeed, the reverse complement
can be regarded as a frame modification in the protein. Furthermore, the
reverse complement can be combined with the usual +1 and +2 frameshifts
bringing the total number of types of frameshifts to five, see Table 4.1.

The +1 and +2 frameshifts are caused by insertions or deletions with a length
modulo 3 6= 0. We have more possibilities for the inverse types; the symmetry
around the frame boundaries is important. For pure inversions the “overhang”,
i.e., the number of bases partially covering a codon, of the frame boundaries
should be equal. When the overhang is symmetrical the inversed inserted
sequence preserves the original frame boundaries. Unequal overhangs result in
inverse +1 or +2 types (see Table 4.1), e.g., if the overhang on the right hand

48 Chapter 4. HGVS Protein Descriptions

Table 4.1: The five types of frameshifts with examples on the DNA sequence and
the resulting protein sequence. AB026906.1 is used as a reference sequence.

Type DNA Variant Protein Sequence

+1 274_275insC ...MALFPGCSPHSSWSLGPWTSCY*

274_275del ...MLFPGCSPHSSWSLGPWTSCY*

+2 274_275insCC ...MATIPWLQPSLFMVTGALDKLLL...

274del ...MTIPWLQPSLFMVTGALDKLLLT...

inverse 274_309inv ...MTMKSEGCSQGIVHWGLGQVVTD...

inverse +1 275_309inv ...MDHEE*

272_309inv ...NHEE*

inverse +2 276_309inv ...MEP*

273_309inv ...IP*

side is larger, the inverted sequence is also shifted to the right and vice versa
for a left hand side overhang.

4.1.2 Complex frameshift variants

Traditionally when a frameshift is detected the remainder of the protein se-
quence is not annotated any further. The assumption being that the resulting
protein will differ substantially from its reference. However, combinations
of variants on the DNA level can alter the frameshift into an other type of
frameshift. They can even restore the original reading frame leaving just a
part of the protein sequence modified. For instance consider the following
combination of DNA level variants: AB026906.1:c.[274del;288del;301del].

4.2. Methods 49

With the corresponding protein sequences:

R = MDYSLAAALTLHGH

S = MTIPWRSPHF-HGH

The first deletion will induce a +2 frameshift variant. This frameshift is later
modified by the second deletion into a +1 frameshift. The third deletion
restores the original reading frame. We propose that the aforementioned
example is annotated as:

2_7|2;7_11|1

The remainder of this chapter is organized as follows. In Section 4.2
we formally introduce the problem of frameshift detection and we introduce
an algorithm to efficiently compute frameshift variants between two protein
sequences. Section 4.3 contains the experiments, followed by a discussion of
additional uses and properties in Section 4.4 and the conclusions in Section 4.5.

4.2 Methods

Based on the extraction algorithm introduced in Chapter 3, we added support
for frameshift variant detection by performing the extraction algorithm in two
phases. The first phase follows the original algorithm: given two strings R
and S find the longest string that is a substring of R as well as S. Remove
this string from the problem, and continue recursively with both prefixes Rpre

and Spre and both suffixes Rsuf and Ssuf . The recursion ends when either of
the two strings is empty or no common substring could be found. For protein
sequences we only use the traditional edit operations: deletion, insertion and
substitution. Transpositions are not considered. Due to the relative short length
of protein sequences there is no benefit in using the LCSk algorithm.

In the second phase, the regions of change (deletions/insertions) are re-
cursively partitioned into frame shifted regions and regions that cannot be
described in terms of frameshifts. We adapted the LCS algorithm from finding
exact string matches to match all possible (combinations) of frameshifts, again
using a greedy approach. Note that we can only add the frameshift variants as

50 Chapter 4. HGVS Protein Descriptions

annotation; not as a true variant without violating the property of unambiguity.
Without the exact amino acid sequence we cannot reconstruct the observed
sequence from the reference given its variants.

Formally the problem can be defined as follows. Let ΣN = {A, C, G, T}
be the nucleotide alphabet and the amino acid alphabet ΣA = {A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, *}. A triplet or codon c = 〈b1, b2, b3〉, where
b1, b2, b3 ∈ ΣN, is mapped to an amino acid (from ΣA) by the surjective transla-
tion function f : ΣN×ΣN×ΣN → ΣA. An example of the translation function is
given in Table 4.2. In general, the codon table can be different for (applications
within) different species as well as within species. For the human genome the
codon table in Table 4.2 is commonly used and shall be used as an example
further in this chapter.

Table 4.2: An inverse DNA codon table for the human genome.

Amino Acid Codon(s) Amino Acid Codon(s)
A GCA, GCC, GCG, GCT N AAC, AAT

C TGC, TGT P CCA, CCC, CCG, CCT

D GAC, GAT Q CAA, CAG

E GAA, GAG R AGA, AGG, CGA, CGC, CGG, CGT

F TTC, TTT S AGC, AGT, TCA, TCC, TCG, TCT

G GGA, GGC, GGG, GGT T ACA, ACC, ACG, ACT

H CAC, CAT V GTA, GTC, GTG, GTT

I ATA, ATC, ATT W TGG

K AAA, AAG Y TAC, TAT

L CTA, CTC, CTG, CTC, TTA, TTG * (stop) TAA, TAG, TGA

M (start) ATG

Now we define the frameshift functions:

fs+1 (c1, c2, cs) =

true if 〈b13 , b21 , b22〉 = cs,with b1i ∈ c1 ∧ b2j ∈ c2

false otherwise

f̂s+1 (a1, a2, as) = ∨
∀c1∈f−1a1
∀c2∈f−1a2
∀cs∈f−1as

fs+1 (c1, c2, cs) .

The functions for +2 frameshifts are analogous to fs+1 and f̂s+1.

4.2. Methods 51

fs inv (c, cs) =

true if 〈inv(b3), inv(b2), inv(b1)〉 = cs,with bi ∈ c

false otherwise

where inv is the complement of a nucleotide, i.e., A⇔ T and C⇔ G.

f̂s inv (a, as) = ∨
∀c∈f−1a
∀cs∈f−1as

fs inv (c, cs)

In Figure 4.1, an example frameshift calculation is given.

R = MDYSLAAALTLHGH

S = MTIPWRSPHF-HGH

D Y

GAC TAC

GAC TAT

GAT TAC

GAT TAT

+2

G ACT AC

G ACT AT

G ATT AC

G ATT AT

T = {ACA, ACC, ACG, ACT}

fs+2 (GAC, TAC, ACT) = true→ f̂s+2 (D, Y, T) = true

Figure 4.1: Example calculation of a +2 frameshift. This example can be
continued by calculating f̂s+2 (Y, S, I), etc.

The functions for the inverse frameshifts are analogous to fs+1 and f̂s+1 with
the inverse codon reordering analogous to fs inv.

The results of all frameshift functions can be precomputed and stored in a
look-up table. Moreover, all types of frameshift can be simultaneously checked
by encoding the five types as a bit array. We use a |ΣA| × |ΣA| × |ΣA| look-up
table corresponding to the signature of the f̂s functions. Although the signature

52 Chapter 4. HGVS Protein Descriptions

of the inverse frameshift functions is different, we can still use the same look-up
table. This renders a frameshift check equivalent to character matching in
string comparison. As a consequence frameshift detection is efficient. Note that
frameshift types can be overlapping for a certain combination of amino acids,
e.g., P can be found as either frameshift +1 or +2 in SL.

For each deletion/insertion a frameshift extraction is started based on the
aforementioned frameshift functions. Again we follow a greedy approach:
we select the the longest same-type frameshift. In the event of a multi-type
frameshift it is annotated as such. The frameshift extraction is then continued
on the remaining prefixes and suffixes of the original deletion/insertions until
one of the prefixes of suffixes is empty, much like the original extraction routine.
The possibility of having multi-type frameshifts introduces an uncertainty of
the actual frameshift type boundary when considering a complex frameshift
variant. When we consider a variant where a frameshift +2 is altered to a
frameshift +1 for instance by deleting a single nucleotide on the DNA level we
cannot accurately predict the actual frameshift type boundary when some of
the amino acids show a multi-type frameshift, i.e., +2 and +1. The longest
part of the complex frameshift will be dominant in this case by including as
much amino acids as possible. As we assume no knowledge of the DNA level
this is optimal in this situation.

4.2.1 Probability calculation

To add to the frameshift annotation we can estimate the probability of the
frameshift by using information from the codon table as well as additional
information about the distribution of codon usage in a species. When this addi-
tional information is absent, we can approximate the probability by using the
distribution of the amino acids and assume a uniform probability distribution
for each amino acid over its codons. If this information is also absent, we can
still approximate the probability by assuming a uniform distribution of amino
acids. This calculation can be refined by incorporating different distributions
when comparing two different species. In general, the most simple approxima-
tion, i.e., no extra information (only using the codon table), will yield a usable

4.2. Methods 53

approximation of the frameshift probability:

1− 1

|ΣA|`

where ` is the length of the frameshift. As is apparent, the probability will
increase strongly with the length of the frameshift.

Next, we consider an example LR with frameshift +2. We take from Ta-
ble 4.2 L = {CTA, CTC, CTG, CTT, TTA, TTG} andR = {AGA, AGG, CGA, CGC, CGG, CGT}
and we assume a uniform distribution over the codons. The probability calcu-
lation follows the original frameshift calculation quite closely. The following
frameshifted codons are observed:

8× TAC (Y)

8× TGC (C)

4× TAA (*)

4× TCC (S)

4× TGA (*)

4× TTC (F)

2× TCA (S)

2× TTA (L)

This corresponds to the following probabilities P (cs|c1c2):

P (C|LR) = 8
64

P (Y|LR) = 8
64

P (*|LR) = 4+4
64

P (S|LR) = 4+2
64

P (F|LR) = 4
64

P (L|LR) = 2
64

The probability of a frameshifted sequence is the product of the individual
probabilities. In the event of a multi-type frameshift the combined probabilities
can be precomputed. When we consider the aforementioned example with
added codon distributions P (c):

54 Chapter 4. HGVS Protein Descriptions

L =

CTA 0.22

CTC 0.20

CTG 0.28

CTT 0.15

TTA 0.05

TTG 0.10

R =

AGA 0.10

AGG 0.05

CGA 0.20

CGC 0.22

CGG 0.15

CGT 0.28

We can calculate the frameshift +2 probability:

P (cs|a1a2) =
∑

∀c1∈f−1a1 where b12=bs1 ,b13=bs2

P (c1) ·
∑

∀c2∈f−1a2 where b21=bs3

P (c2)

Again we observe the following codons:

8× TAC (Y) (0.22 + 0.05)(0.2 + 0.22 + 0.15 + 0.28) ≈ 0.23

8× TGC (C) (0.28 + 0.1)(0.2 + 0.22 + 0.15 + 0.28) ≈ 0.32

4× TAA (*) (0.22 + 0.05)(0.1 + 0.05) ≈ 0.04

4× TCC (S) 0.2(0.2 + 0.22 + 0.15 + 0.28) ≈ 0.17

4× TGA (*) (0.28 + 0.1)(0.1 + 0.05) ≈ 0.06

4× TTC (F) (0.05 + 0.1)(0.2 + 0.22 + 0.15 + 0.28) ≈ 0.13

2× TCA (S) 0.2(0.1 + 0.05) ≈ 0.03

2× TTA (L) 0.15(0.1 + 0.05) ≈ 0.02

With the resulting probabilities on the protein level:

P (as|a1a2) =
∑

∀cs∈f−1as

P (cs|a1a2)

Given below:
P (C|LR) ≈ 0.32

P (Y|LR) ≈ 0.23

P (*|LR) ≈ 0.04 + 0.06 ≈ 0.11

P (S|LR) ≈ 0.17 + 0.03 ≈ 0.20

P (F|LR) ≈ 0.13

P (L|LR) ≈ 0.02

4.3. Experiments 55

The afore mentioned example is quite extreme in its given (fictitious) codon
distribution. Real-life examples are usually much closer to the uniformly
distributed estimations.

As before with the frameshift loop-up table, we can precalculate the prob-
ability loop-up table as well. This results in an efficient calculation of the
frameshift annotations. For implementations using floating point arithmetic
one should be aware of the small numbers that result from this calculation
and its inherently corresponding errors. In our implementation we prefer fixed
point calculation using binary scaling.

4.2.2 Back-translation

The technique we have employed to calculate frameshifts and its probabilities
can also be used for accurately predicting the DNA sequences underlying the
protein. The process of translating amino acid sequences to DNA sequences
is known as back-translation. In general, the surjective codon function makes
it difficult to accurately predict the underlying DNA sequence, i.e., there is
a lot of ambiguity resulting in an explosion of the possible DNA sequences.
Consider the protein sequence DYSLA, with no further information we can
translate this sequence to its underlying DNA: GAYTAYWSNYTNGCN, where we
used the degenerate form to encode the nucleotide variation. When we count
the number of DNA sequences they amount to 2,048.

When we know (or we just calculated) that the protein sequence DYSLA is
actually a frameshift +2 with the sequence TIPWR, we can, for both sequences,
construct a much more accurate back-translation: GACTATTCCYTGGCG, with only
two possible DNA sequences and ACTATWCCYTGGCGG, with four DNA sequences.
The possibilities for each nucleotide are considerably reduced by the restriction
of the partially overlapping codons.

4.3 Experiments

We performed computer experiments to demonstrate the performance of our
algorithm and its corresponding annotation. All experiments involve multiple

56 Chapter 4. HGVS Protein Descriptions

genes that are pair-wise analyzed for frameshift overlap. We use the descrip-
tion extraction algorithm from Chapter 3, but we report only on frameshift
variants. In all experiments where multiple genes are pair-wise analyzed we
use Bonferroni correction for multiple testing with the significance threshold:

1− α

m
,

where m is the number of tests that are performed and α is fixed at 0.05. This
gives us a conservative bound on the statistical significance. For a pair-wise
analysis with n genes we typically do n2 − n tests. Although the Bonferroni
correction is too restrictive, we consider a full analysis of multiple testing on
this data beyond the scope of this chapter.

4.3.1 Intra-species frameshifts in E. coli K-12

In this experiment we analyze 4,305 genes1 pair-wise of E. coli K-12 taken from
Uniprot [UniProt Consortium, 2015]. We are interested in the self overlap
(in terms of frameshifts) of this species. For this species we obtained a codon
frequency table from [Nakamura et al., 2000] and we used this additional
information for the probability calculation as described in Section 4.2.1. Af-
ter Bonferroni correction, we selected every pair that contained at least one
statistically significant frameshift variant.

The average gene length (on the protein level) is approximately 315 amino
acids. The total computation time was around 48 hours on a desktop PC
(3.4 GHz and 16 GB RAM) using a single thread. Which results in an average
extraction time of 0.01 per pair of genes. This process could trivially be
parallelized.

Out of the 18,528,720 pair-wise tests, 245 pairs had a significant frameshift
overlap. Within these pairs 359 unique proteins are present. In principle the
frameshift overlap property is symmetrical, however, it is often possible to
extend a frameshift with one amino acid in one of the directions. In such a
case the added amino acid has the same frameshift overlap by chance. Often
we see symmetrical frameshift overlaps with a length difference of one. For

1Not all of the annotated protein sequences encode for a gene.

4.3. Experiments 57

large frameshifts this is usually not a problem in terms of its significance, but
smaller frameshifts can be selected as being significant by adding one amino
acid. This accounts for the odd number of significant pairs as well as the larger
than expected number of unique proteins. In Table 4.3 the top 10 frameshift
overlaps are given.

Table 4.3: The 10 most significant frameshift overlaps in E. coli K-12. Only
unique pairs are given. For all these pairs the corresponding symmetrical
overlap is also present and significant. The calculated numerical significance is
1 for all of these pairs.

Protein Protein Type Length

P75617_YAAW P28697_HTGA inverse +2 195

Q9Z3A0_YJGW P39349_YJGX inverse 84

P0AE48_YTFP P08339_Y4223 inverse +1 84

P76158_RZPQ C1P601_RZOQ +2 83

P27838_CYAY P11291_Y3808 inverse 68

P77551_RZPR P58042_RZOR +2 61

P75719_RZPD P58041_RZOD +2 59

P75712_ALLP P75711_YBBV +2 45

Q47536_YAIP P75697_YAIX +2 42

P76066_YDAW P77551_RZPR +1 36

The longest significant result in Table 4.3, the pair P75617_YAAW and
P28697_HTGA, is described as an overprinting event in [Delaye et al., 2008]. In
this case, the protein P28697_HTGA forms a complete frameshift overlap with
part of the P75617_YAAW protein. Another striking observation is the relative
long lengths of the frameshift overlaps especially when taking into account the
corresponding DNA sequences, given the expected length of longest common
substring between two random strings [Abbasi, 1997]. The technique for
finding frameshifts can be applied to initiate further research like [Delaye et al.,
2008] aimed towards finding evidence for the evolution of novel genes. The
names containing RZ seem to be somewhat related genes, however, although

58 Chapter 4. HGVS Protein Descriptions

the selected pairs show a strong significance, no other combinations have
a significant frameshift overlap, suggesting that frameshift variants are an
important evolutionary mechanism. Finally, from the data from the complete
experiment (data not shown in Table 4.3), we observe that almost all pairs
of proteins show a longer than expected frameshift overlap; around 15 amino
acids on average.

The significant proteins were used to check whether any clustering of
frameshift overlaps could be found. We calculated a 359× 359 distance matrix,
where distance is defined as d(r, s) = rfs/max(|r|, |s|), with rfs the length of
the longest frameshift variant. It turns out that almost all of the frameshift
overlaps occur in pairs. And, in contrast to what the RZ proteins in Table 4.3
might suggest, there are no clusters to be found.

4.3.2 Inter-species frameshifts between E. coli K-12
and S. enterica

The results from the experiment in Section 4.3.1 show a strong evidence for
intra-species frameshift overlaps. In this experiment we investigate whether the
same evidence can be found inter-species. We use the same data for E. coli as in
Section 4.3.1 and we added 4,533 protein sequences from S. enterica taken from
Uniprot [UniProt Consortium, 2015]. Instead of a full pair-wise comparison
we calculated the maximum frameshift overlap for each of the 4,305 E. coli
proteins with any of the 4,533 S. enterica proteins. For the frameshift probability
calculation we used the same codon probabilities for E. coli as in Section 4.3.1.
No such data was available for S. enterica, so we used a slightly less accurate
probability calculation based on the probabilities of the occurrence of the amino
acids (taken from the actual protein sequences). The top 10 frameshift overlaps
are given in Table 4.4. The significance of the frameshift overlaps is given as
1− P , where P is the probability of the frameshift.

Although the results are not as striking as in Section 4.3.1, there are still
significant inter-species frameshift overlaps. Again, this method can be used to
identify promising candidates for further evolutional research.

From the data from the complete experiment (data not shown in Table 4.4),

4.3. Experiments 59

Table 4.4: The 10 most significant frameshift overlaps between E. coli K-12 and
S. enterica. Only unique pairs are given. For all these pairs the corresponding
symmetrical overlap is also present and significant. The significance is given as
1− P in order to show some meaningful value.

E. coli S. enterica Type Significance Length
P08339_Y4223 Q7CP87_Q7CP87 inverse +1 1.06e−42 59

P75712_ALLP Q8ZR81_Q8ZR81 +2 5.83e−30 34

P0CF79_INSF1 Q8ZRJ4_Q8ZRJ4 inverse 6.75e−27 30

P11291_Y3808 P56978_CYAY inverse 3.69e−24 28

Q79CP2_YGIA Q7CPS1_YGIB +2 6.62e−21 27

P0ADP5_YIGM P0A2Q4_MESALTY inverse +1 3.12e−19 27

P0ACW2_YDBJ Q8ZP90_Q8ZP90 inverse +1 3.15e−19 26

P0AC96_GNTU Q8ZLG4_Q8ZLG4 inverse 4.32e−23 26

P76323_INTG P26462_FLIE inverse 1.73e−22 25

P58042_RZOR Q8ZQ98_Q8ZQ98 +1 3.11e−21 25

only 16 protein sequences from E. coli do not have any non-trivial frameshift
overlap with any other protein sequence of S. enterica. The shortest non-trivial
overlap is of length 7. The average length of frameshift overlaps is slightly less
than in our previous experiment; around 12 amino acids.

4.3.3 Quality of the frameshift annotations

In this experiment we look at the quality of the reported frameshifts. We
selected 578 DNA variants reported in the LOVD DMD Database [Aartsma-Rus
et al., 2006]2 in coding regions that lead to a (predicted) frameshift variant.
For all of these variants we checked whether the frameshift variant reported
by our method corresponds to the frameshift variant that can be inferred from
the DNA variant. The variants can be classified into 4 disjunct sets: deletions
with 394 variants, duplications with 194 variants, insertions with 19 variants,
and deletions/insertions with 26 variants. Note that there are no complex
frameshift variants present in this database as it contains mainly on simplex

2https://www.dmd.nl/nmdb/home.php?select_db=DMD

60 Chapter 4. HGVS Protein Descriptions

DNA variants. These variants can possibly be combined to construct a complex
frameshift.

For this experiment we do not consider (predicted) frameshift variants
with a length 1 or 2, because no reasonable annotation based on only the
protein sequence can be expected. These amount to 15 cases in this dataset. In
these cases often an ambiguous result is returned with our method. Usually,
a combination of type +1 and type +2 is reported. One could argue that a
frameshift with a length less than a certain length, depending on the input size,
should not really be considered to be a frameshift. In either case it is in general
impossible to distinguish such small frameshifts by looking only at the protein
sequences, in particular frameshift variants of length 1 or 2.

Deletions

Of all 394 deletion variants, only 2 unexpected results were found: c.980del

with length 8 and c.3747del with length 6. Both should be characterized as
type +2, however type inverse +1 was reported. Interestingly, the average
length of frameshift variants is around twice the length of the misreported
variants.

Duplications

Of the 194 duplication variants we have 3 wrongly reported type inverse +1

frameshifts all resulting in frameshifts of length 6: c.4634dup, c.5697dup, and
c.6848dup. In addition, we have one variant for which no frameshift was
detected: c.1540dup, instead the trivial deletion/insertion was returned.

Insertions and deletion/insertions

A minority of the variants in the DMD database leading to a frameshift variant
is either an insertion or a deletion/insertion. There are 2 mis-classified variants
reported for insertions: c.9672_9673ins with length 6, and c.10406_10407ins

with length 4. Again, inversions were reported.

Overall, 7 of the 578 generated frameshifts seem to be unexpected when taking

4.4. Discussion 61

the DNA variant into account. All of these frameshifts have a length of 8 amino
acids or less, which is much less than the average frameshift length (21) of
all variants in the LOVD DMD Database. Note that in all cases the reported
frameshift annotation was not wrong (on the protein level), just unexpected
from the inference of the DNA variants.

4.4 Discussion

In this section we explore the effects of the back-translation method described in
Section 4.2.2 and we provide a suggestion for the extension of the HGVS nomen-
clature [den Dunnen et al., 2000] for the description of frameshift variants.

4.4.1 Back-translation

Here we elaborate on the back-translation method at its effects on real-life data.
When considering a naive back-translation, i.e., no additional information
available, a striking pattern is observed when measuring the ambiguity, i.e.,
the number of codons that represent a particular amino acid, per amino acid,
see Figure 4.2.

Figure 4.2: The ambiguity of the first 66 nucleotides of protein P28697_HTGA
of E. coli. The first two nucleotides of each codon typically have a low ambiguity
(one or two), while the last nucleotide has a high ambiguity.

In Table 4.5 we show the average ambiguity for each nucleotide on each of the
three positions in a codon using the five different frameshift types. We selected

62 Chapter 4. HGVS Protein Descriptions

the most significant frameshift for the intra-species frameshifts overlaps in
E. coli. Note that for the naive method the selection should not make any
difference. The different types of frameshift show no significant variation in
the distribution of the ambiguity.

Table 4.5: The ambiguity per nucleotide position in a codon.

Method Nucleotide 1 Nucleotide 2 Nucleotide 3

Naive 1.25 1.07 3.15
Frameshift 1.10 1.01 1.06

The results in Table 4.5 show that back-translation method, explained in
Section 4.2.2, using frameshift information results in a near perfect prediction
of the individual nucleotides.

4.4.2 Proposed HGVS Descriptions

The HGVS nomenclature [den Dunnen et al., 2000] dealing with protein
descriptions is, in our opinion, less well defined and structured as its DNA
counter part. Especially so for the description of frameshift variants. Our main
objection is the fact that in the current standard, information is lost when
describing a frameshift variant because only the length of the frameshift is
included in the description, but the actual amino acid sequence is omitted,
e.g., p.Arg97ProfsTer23. Furthermore, all description regarding protein se-
quences are rather verbose using the 3-letter abbreviations for amino acids
(including capitalization). This makes human interpretation difficult, e.g.,
p.Lys2_Met3insGlnSerLys, especially since most of the HGVS operators are
also described by a 3-letter symbol (del, ins, etc.).

Currently, only two types of frameshift can be described with the HGVS
nomenclature: +1 and +2, but they are not distinguished, and there is no way
of describing a complex frameshift variant.

In order to accommodate for more comprehensive and complex frameshift
variants, we propose the following structure and properties for protein descrip-
tions:

4.4. Discussion 63

• all protein sequences are described using the single letter codes for amino
acids;

• positions are not prefixed with the (redundant) reference amino acid (c.f.
DNA descriptions);

• the same basic operators are used as for DNA description with the excep-
tion of inversion;

• frameshift descriptions are given as deletions/insertions with extra anno-
tation so that no information is lost when describing a protein sequence.

Given a HGVS frameshift description using the current standard:
p.Cys10Valfs ∗ 16 can be written as: q.10_3685delins10_24VMKEKMFKRKHSQNG|2.
In this format the transposition notation from Chapter 3 is used to denote
the frameshifts reference coordinates; the reference sequence from position
10 until position 3685 is replaced by the reference sequence from position
10 until position 24 with a frameshift of type +2 denoted by the operator |.
These operators can be chained for the annotation of a multi-type frameshift
variant. The actual amino acid sequence is also included (VMKEKMFKRKHSQNG)
as in general many of such sequences could exist.

For more complex frameshift variants we can use to full transposition
notation for alleles: q.10_3685delins[QSHK; 10_15KEKFMS|1|2; AAA]. In this case
some parts of the inserted sequence could not be (effectively) described as
frameshifts. A frameshift variant is described as 10_15KEKFMS|1|2. In this case
this is a multi-type frameshift variant; type +1 and type +2. Note that the frame
numbering of the NCBI is different: both frame 0 and 1 denote the ‘normal’
reading frame, 2 corresponds to the second base offset, and 3 corresponds
to the third base offset. This numbering is quite different from the current
HGVS nomenclature. At this point it is unclear how to harmonize the different
numberings.

The proposed format is implemented in the Description Extractor package
for Mutalyzer [Wildeman et al., 2008] (see Chapter 3) and is available at:
https://github.com/mutalyzer/description-extractor.

64 Chapter 4. HGVS Protein Descriptions

4.5 Conclusions

We introduced a method for efficiently finding different types of frameshift
variants in protein sequences without using any DNA level information. This
method has as additional advantage that it can calculate the probability of
a frameshift on several different levels depending sometimes on additional
information available. It can use any codon table as basis, and the frameshift
calculations can be precomputed for such a codon table resulting in efficient
computation of the description and annotation.

This method can also be effectively used to generate a back-translation to
DNA sequences, both for the reference sequence and for observed sequence.

We have suggested that large frameshifts are relatively common intra-
species within E. coli and to a lesser extent inter-species. This method is able to
identify promising candidates for evolutional research.

The generated frameshift descriptions on a real-life LOVD database show
that the quality of the reported descriptions is high with only few unexpected
results for very short length frameshifts.

The HGVS nomenclature has to be updated to accommodate for these new
(complex) frameshift variants.

Chapter 5

Extraction of HGVS Variant
Description for Short Tandem
Repeat Structures

Characterization of complex variants such as short tandem repeats (STRs)
is an important tool in forensics. Historically, these variants are difficult to
characterize. Here, we propose a method that can automatically construct
a description following the philosophy of the standard nomenclature of the
Human Genome Variation Society (HGVS). Within these descriptions there is
also a way of describing variation in the flanking regions relative to the repeat
structure.

We accurately detect repeat units in a (reference) sequence and we can
use these repeat units to generate a meaningful reference-based description.
We propose an alternative repeat variant that can be added to the existing
HGVS nomenclature and finally, we provide an implementation of our proposed
methods as part of the Description Extractor package for Mutalyzer: https:

//pypi.python.org/pypi/description-extractor. The Python source code
is available at: https://github.com/mutalyzer/description-extractor.

65

66 Chapter 5. HGVS Short Tandem Repeats

5.1 Introduction

A considerable part of the genome consists of repeated regions that occur
in many forms. In this chapter we focus on a particular from of repetition
in genomic sequences called Short Tandem Repeats (STRs) also known as
microsatellites or simple sequence repeats. STRs contain small motifs or units
ranging from 2–5 base pairs which are repeated in tandem, i.e., immediately
adjacent, typically 5–50 times. The combination of the lengths and different loci
of STRs is a powerful tool in population genetics and forensics. The analysis
of repeated sections of the genome have always been problematic not only
on the sequencing level, but also in automated analysis [Weischenfeldt et al.,
2013]. In this chapter we present a method for the automatic construction of
descriptions of repeated structures, especially tailored for forensic applications.
These descriptions are based on the recommendations of the Human Genome
Variation Society (HGVS) [den Dunnen et al., 2000,Taschner and den Dunnen,
2011]. While the HGVS nomenclature currently provides a way to describe one
repeat unit in tandem, forensic applications demand a more rigorous construct
to describe the repeated structures, possibly containing multiple repeat units,
as a whole. In any case, the detection of repeated sequences including the
repeat unit is a non-trivial task.

The STR allele descriptions need to maintain compatibility with existing
databases including the definition of the repeat units, annotation on the forward
or reverse strand, etc. In Section 5.3 of [Gettings et al., 2015] an attempt
is made to create a uniform representation of commonly used STR alleles in
terms of strands and repeat units. They also envision three possible methods
for describing STR alleles:

1. complete sequence strings;

2. a bracketed description;

3. unique identifiers.

A description method based on the use of complete sequence strings entails the
direct use of Next Generation Sequencing output. This output is deemed to be

5.1. Introduction 67

large and complex and therefore not necessary tailored to the intended purpose
here. In particular, storage in databases will become more costly and matching
techniques is expected to require more computational power. On the other
hand, more relevant data can be stored; small variants in the “flanking” region
are also present in this approach. The bracketed description is often informally
used in reports and is especially useful in describing the actual repeat units
and the number of occurrences, e.g., TCTA[9], where the unit TCTA is repeated
9 times. Having this kind of descriptions means that comparison on (allele)
length is relatively straightforward. However, combinations with changes in
the flanking regions are more difficult to express as no real guidelines exist at
the moment. Finally, one could consider unique identifiers for each STR allele.
In [Gettings et al., 2015] it is suggested that a somewhat meaningful identifier
can be assigned. While based on the number of repeats and its flanking
variations these identifiers give no proper description. Unique identifiers will of
course be superior when performing database searches. However, this approach
requires more administration as these identifiers need to be globally unique.
Furthermore, humans (in a laboratory setting) can have difficulties in dealing
with these kind of descriptions. In particular, partial searches are impossible.

Other attempts of automatically characterizing STR alleles have been made.
Most importantly in [Anvar et al., 2014] where a sequence can be matched
against a pre-defined database of STR allele descriptions given as regular
expressions. Some small variants in the flanking regions are tolerated, but no
part of the description. Amongst other reasons, this method does not result in
a full description of the observed sequence. In [Hoogenboom et al., 2016] the
results from [Anvar et al., 2014] are used and improved upon by focusing on
the reduction of PCR stutter noise. An accurate estimate of repeat lengths can
be given and there is some support for the characterization of unknown STR
alleles.

In this chapter we propose a method for the automatic generation of
reference based descriptions for STR alleles. In essence this is closest to
the aforementioned bracketed approach. Apart from giving descriptions for
the repeat structure, we also incorporate the classical extraction method from
Chapter 3 for the description of the flanking, and possibly interspersing, regions

68 Chapter 5. HGVS Short Tandem Repeats

in such a way that the variation within these flanking regions is described
relative to the repeat structure, cf. the descriptions of coding regions in the
HGVS nomenclature. This approach combines the strengths of both methods
while eliminating their respective drawbacks.

The remainder of this chapter is structured as follows. In Section 5.2 we
present a method for a reference sequence based description for STR alleles.
This method is in principle database-free, but can also be used in combination
with a DNA data bank yielding descriptions that are closer to the annotation
used in the literature. In Section 5.3 we introduce the data and experiments,
followed by a discussion of the results of these experiments in Section 5.4 and
the conclusions in Section 5.5.

5.2 Methods

First we focus on the detection (or extraction) of repeat units from a string.
Later we combine these results and an adaptation of the HGVS extraction algo-
rithm in [Vis et al., 2015] to generate a reference-based HGVS-like description.
Finally, we address the problem of generating descriptions relative to the repeat
structure following a similar approach as is used in the HGVS nomenclature
when describing variants in the 5′ and 3′ UTR relative to the coding region of a
transcript.

5.2.1 Finding repeat units

In order to have a database-free method we must be able to find candidate
repeat units in a string. For the concrete application at hand, STRs, we can take
advantage of the properties of STRs. The tandem, i.e., immediately adjacent,
property of these repeats is of primary concern. Often suffix trees are used
for finding substrings with certain properties. However, as we deal with non-
overlapping directly adjacent repeats, a more straightforward method can be
used; a variation on classical run-length encoding [Golomb, 1966]. In the
classical run-length encoding algorithm, the length of the repeat unit is fixed
at 1. The algorithm can easily be extended to arbitrary fixed-length repeat

5.2. Methods 69

units. For this particular application we do not know the length of the repeats
units for a certain string a-priori. As the repeat units within STRs are of limited
length, i.e., 2–5, one can easily try to find repeat units of all of these sizes.
Special care has to be taken when dealing with self-similar repeat units, e.g.,
TATA, because an other, smaller unit exists, TA describing the same repeated
sequence. In these cases we are interested in the smallest unit describing the
repeated sequence. Algorithm 1 is an implementation of such a variation on
the run-length encoding algorithm.

In Algorithm 1, we iterate over the length of the string (line 3). Every
candidate length of the repeat unit (k) is tried for the given position in the
string (line 5). Candidates are limited by the optional parameters min_length
and max_length. The number of repeats for this particular unit is tracked
(line 11). If for the given repeat unit length we obtain a larger covered region
in the string, this is considered the “best” candidate repeat unit at this position
in the string (line 13). Ultimately, the selected repeat unit for this position
is added to the repeat unit set (line 17), and the next possible position for a
repeat unit is considered. In the end we can end up with a repeated region
at the end of the string, so we need to add that as necessary (line 21). The
algorithm returns a partitioning of the string in repeat units.

On the resulting partitioning it is trivial to filter for a specific minimum
or maximum number of occurrences, as well as constructing a set of unique
repeat units with characterized lengths and counts. Such a set can be used in
the second stage of our method.

An implementation in Python of our proposed method is provided at:
https://github.com/mutalyzer/ssr-extractor.

5.2.2 Reference-based description of the repeat structure

The purpose of this method is to yield a bracketed type of description, similar
to the existing HGVS nomenclature for repeated sequences, given a set of
repeat units. This set could be generated by the application of Algorithm 1, or
alternatively, a set from a database or literature can be used. As further input
the method expects a reference string as well as the observed string.

70 Chapter 5. HGVS Short Tandem Repeats

Algorithm 1 SHORTTANDEMREPEAT

1: input: string , [min_length = 2,max_length = 5] (optional unit length)
2: output: repeats (partitioning in repeat units)

3: while 0 ≤ i < |string | do
4: max_count = 0,max_k = 1

5: for k ∈ [min_length, . . . ,max_length] do
6: count = 0

7: for i+ k ≤ j ≤ |string | − k + 1 step k do
8: if string i...i+k 6= stringj...j+k then
9: break

10: end if
11: count ← count + 1

12: end for
13: if count > 0 and count ≥ max_count then
14: max_count ← count ,max_k = k

15: end if
16: end for
17: repeats.add({i,max_k ,max_count})
18: i← i+ max_k(max_count + 1)

19: end while
20: if max_count > 0 then
21: repeats.add({i,max_k ,max_count})
22: end if

23: return repeats

As we try to follow the current nomenclature standard closely, the resulting
textual output of these descriptions will be resembling the HGVS nomencla-
ture. However, we introduce a new type of variant, for describing repeated
sequences, with slightly stricter defined semantics. As none of this is part
of the official HGVS nomenclature we will, for now, use a different notation
to avoid confusion. The newly introduced type of variant is a form of the
deletion/insertion operator in HGVS. For its notation we list the repeat unit

5.2. Methods 71

(in bases) once, followed by the number of its consecutive occurrence in the
observed sequence in parentheses, e.g., ATCT(4). This denotes that at a certain
position in the reference sequence all tandem occurrences of this particular
repeat unit are deleted and the specified number of occurrences is inserted in
the observed sequence, for the given example, 4.
Consider the example:

R = ATCTATCTATCTGGATCT

S = ATCTATCTATCTGGATCTATCT,

where R is the reference sequence and S the observed sequence and we
choose {ATCT} as repeat unit set. The aim is to come to a description that
shows that the repeat unit is present 4 times in the observed sequence. The
repeat unit is present only 3 times in the reference sequence. The remainder
of both sequences is a complete match. We propose to describe this STR
allele as: [ATCT(4);13_14;ATCT(2)], giving an unambiguous description from
the reference sequence to the observed sequence. Note that the identical
(matching) part of the reference sequence is described using our transposition
notation defined in Section 3.1.1. Indeed, the whole description should be
interpreted as a deletion of the complete reference string with the observed
string inserted expressed as transpositions of the reference string and repeat
units. Small variants, e.g., single nucleotide substitutions can be described
in the classical way. One could remark that the repeat unit itself can also be
expressed as a transposition, however, in order to be closer to both the currently
used notation in databases as well as the HGVS nomenclature, we prefer the
notation in bases for the repeat unit. Furthermore, it might be required to
give a description of an STR allele where the repeat unit is not present in the
reference sequence, in which case there is no valid transposition.

The extraction of the description follows the method described in Sec-
tion 3.2 with a slight alteration; we introduce a so-called masking character,
i.e., a character not part of any of the molecular alphabets with the added
property that this masking character does not match any character (including
itself). We denote this character by $. The first step of our method masks all the
occurrences of the repeats from the repeat unit set with the masking characters

72 Chapter 5. HGVS Short Tandem Repeats

in both the reference and the observed sequence. In this way we can abstract
from the actual sequence without losing the positioning information which is
needed to construct the description. Following the aforementioned example
R and S are transformed into GG$$$$$$$$$$$$G and GG$$$$$$$$$$$$$$$$G

respectively. These masked strings are used as input for the variant description
extraction (VDE) method presented in Chapter 3. In this particular case, the
variant extraction does not yield any variants as both prefixes and suffixes
are identical, but as mentioned before, small variants can be described in the
classical way.

Regular substring matching is used to fill in the masked regions with repeat
units from the repeat unit set, e.g., at position 3 of the observed sequence we
find 4 occurrences of the unit ATCT. The descriptions resulting from the VDE
and the masked regions are then merged, where identical regions are trans-
formed into transpositions. When dealing with multiple variants, the VDE will
sometimes combine multiple atomic variants into larger deletions/insertions
based on the description length of the HGVS nomenclature. In particular in-
stances it may happen that variants are combined while spanning a repeat unit
as well. In these cases we have to split the combined variant and interleave it
with the repeat variant in order to perform the merging step.

5.2.3 Relative description of the flanking regions

The final part of our method deals with the automatic generation of relative
descriptions, i.e., positioning relative to some part of the reference sequence,
for describing variation in the flanking regions. These relative descriptions
are similar to the coding region oriented descriptions used in HGVS for the
description of 3′ and 5′ UTR variants, e.g., c.-56C>T and c.*32G>A. As the
variation in the flanking regions can be characteristic for certain STR alleles
(in combination with the repeat structure) this is an important element of the
STR allele description. A naive approach could be generating a description
that is a composite deletion/insertion, containing transpositions and insertions,
of the whole reference sequence, including the flanking regions. However,
the resulting descriptions can become quite complex and difficult to interpret,

5.3. Experiments 73

especially when variable length flanking regions are used. Furthermore, these
descriptions distract the attention from the actual repeat structure, making
it more difficult to identify. In our method we propose to solve this problem
by using a relative description, i.e., we describe the variation in the flanking
regions relative to a predefined region. In practice, we use the repeat structure,
but in general this can be any substring of the reference sequence. A uniform
way of defining the repeat structure would be from the first occurrence of any of
the repeat units in the repeat unit set to the last occurrence of any of the repeat
units. This results, when applying the steps in Section 5.2.2, in descriptions
that look like [-15A>T;ATCT(4);*4_5insAT], cf. the HGVS nomenclature by
using the minus operator to describe variation before the repeat structure and
the star operator to describe variation after the repeat structure.

The Mutalyzer tool suite [Wildeman et al., 2008] module that deals with
the generation of relative descriptions is called the Crossmapper. This module
performs the non-trivial conversion between the different positioning schemes
in HGVS. In particular it is used to convert variant descriptions on different
transcripts, i.e., from genome to transcript and vice versa. We can make use
of this module for our purpose by introducing an artificial coding region that
represents the repeat structure. After generating a naive (genomic) description
of the complete reference sequence, we can apply the Crossmapper, given this
artificial transcript, providing us with a view relative to the repeat structure,
e.g., TPOX(122_142):[-50G>T;TGAA(6)], where the selected transcript is made
explicit in the notation of the reference sequence. In this example, the repeat
structure is selected from position 122 to 142. In the flanking region there is a
single nucleotide substitution 50 bases before the start of the repeat structure.
The flanking region after the repeat structure contains no variants in this case.

5.3 Experiments

In this section we describe the experiments designed to illustrate the perfor-
mance of our proposed method for the generation of STR allele descriptions.
We focus on forensic use cases. In Table 5.1 we introduce a set of 24 STR
loci that are commonly used with their repeat structure annotation as found

74 Chapter 5. HGVS Short Tandem Repeats

in [Gettings et al., 2015]. For each locus only one STR allele is annotated,
which can serve as the reference sequence for that locus. We have a dataset
containing 1,631 STR alleles from the loci in Table 5.1, including the reference
sequence. In Table 5.2 we give a characterization of the dataset.

Table 5.1: A set of 24 frequently used STR loci with their respective repeat struc-
ture. All repeat structure characterizations are normalized following [Gettings
et al., 2015], but do not include any flanking regions.

STR locus Repeat structure
Amel† none
CSF1P0 AGAT(13)

D10S1248 GGAA(13)

D12S391 AGAT(11) AGAC(7) AGAT

D13S317 TATC(11) AATC(2)

D16S539 GATA(11)

D18S51 AGAA(18)

D19S433 AAGG AAAG AAGG TAGG AAGG(12)

D1S1656 TAGA(16) TAGG TG(5)

D21S11 TCTA(4) TCTG(6) TCTA(3) TCA TCAT(2) TCCATA TCTA(11)

D22S1045 ATT(14) ACT ATT(2)

D2S1338 TGCC(7) TTCC(13) GTCC TTCC(2)

D2S441 TCTA(12)

D3S1358 TCTA TCTG TCTA(14)

D5S818 AGAT(11)

D7S820 GATA(13)

D8S1179 TCTA TCTG TCTA(11)

DYS391 TCTA(11)

FGA TTTC(3) TTTT TTCT CTTT(14) CTCC TTCC(2)

PentaD AAAGA(13)

PentaE AAAGA(5)

TH01 AATG(7)

TPOX AATG(8)

vWA TCTA TCTG(5) TCTA(11) TCCA TCTA

† Amelogenin (Amel) is not an STR, but often included as a way to determine sex.

5.3. Experiments 75

The automatic extraction of the repeat unit set in Table 5.2 is performed by
applying Algorithm 1 on each of the STR alleles belonging to a certain STR
locus. An aggregated repeat unit set is then created for each locus by only
selecting the repeat units that are present in all separate repeat unit sets. In
addition, the total count for each repeat unit should be more than 5. This
selection is rather arbitrary, but in practice it yields reasonable repeat unit sets.
Although a comprehensive method of finding the “best” repeat unit set given a
set of STR alleles is outside the scope of this chapter, some improvements are
discussed in Section 5.4.

As can be observed from Table 5.2, the majority of the repeat units is
of length 4. Two repeat units are of length 5, one of length 2 and one of
length 3. The automatically extracted repeat units correspond in most cases to
the ones that are described in literature, especially when taking into account
the possible rotations of the pattern (i.e., ATCT can also be described as TCTA,
CTAT and TATC). In multiple cases, i.e, CSF1P0, D13S317, D21S11, D8S1179
and FGA, two rotations of the same repeat unit are automatically extracted
(usually ATCT), this phenomenon usually arises when the same repeat unit
occurs in multiple, separate, repeated regions, where the surrounding bases
have an influence on the selection of the particular rotation. In some cases,
i.e., D13S317, D16S539 and D7S820, a novel repeat unit is extracted. This
unit is present in the STR allele, but it may not occur in a variable number
over the STRs, i.e., they occur always a fixed number of times. This is not a
property that can be intrinsically detected by Algorithm 1. For one locus, TH01,
our dataset clearly contains the opposite strand from the one that is commonly
used in literature.

As a second experiment we applied the full description generator method
on the full dataset from Table 5.2, once using the automatically extracted
repeat units and once using the repeat units taken from [Gettings et al., 2015]
(where we used the reverse complement for TH01). As reference sequence
we selected the STR allele with the repeat structure from Table 5.1. Note that
even when we extract a STR description for the reference sequence itself, our
method gives a description in terms of repeat units, where, on the other hand,
the VDE would result in the idem description. The repeat structure location

76 Chapter 5. HGVS Short Tandem Repeats

Table 5.2: Characterization of the dataset used for the experiments. For each
STR locus the number of variant alleles is given as well as their annotated
repeat unit set (from [Gettings et al., 2015]) and the automatic extracted
repeat unit set.

Repeat unit set Repeat unit set
STR locus Count (literature) (extracted)
Amel 3 none none
CSF1P0 22 {AGAT} {TAGA, AGAT}
D10S1248 16 {GGAA} {GGAA}
D12S391 107 {AGAT, AGAC} {CAGA, TAGA}
D13S317 81 {TATC} {AATC, ATCT, TATC}
D16S539 43 {GATA} {ACAG, GATA}
D18S51 41 {GAAA} {AGAA}
D19S433 56 {AAGG} {AGGA}
D1S1656 76 {TAGA, TG} {GT, TAGA}
D21S11 323 {TCTA, TCTG} {TCTG, TATC, TCTA}
D22S1045 34 {ATT} {ATT}
D2S1338 176 {TGCC, TTCC} {TGCC, TTCC}
D2S441 28 {TCTA} {TCTA}
D3S1358 48 {TCTA} {TGTC, TATC}
D5S818 60 {AGAT} {AGAT}
D7S820 112 {GATA} {GATA, TTT}
D8S1179 66 {TCTA} {TCTA, TATC}
DYS391 13 {TCTA} {TATC}
FGA 69 {TTTC, CTTT, TTCC} {TCCT, TTTC, TCTT}
PentaD 49 {AAAGA} {AAGAA}
PentaE 36 {AAAGA} {AAAGA}
TH01 32 {AATG} {GTCT, ATCT, ATCC}†

TPOX 26 {AATG} {TGAA}
vWA 114 {TCTG, TCTA} {TATC}

† Our sequence data contains the opposite strand from the one that is used in literature.

is automatically designated by the method described in Section 5.2.3. In the
general case the start and end positions of the repeat structure could be chosen

5.4. Discussion 77

based on literature, however, currently there is no consensus on these positions.

When comparing the generated descriptions using both versions of the re-
peat unit set, we observe that in the majority of cases either the descriptions are
identical (when the repeat unit set was identical) or highly similar, especially
when considering the length of the description, or the total number of repeat
units covered in repeated sequences, e.g.:

D19S433(37_75) : [AAGG(1);5_6;AAGG(1);11_14;AAGG(6)]

D19S433(38_83) : [AGGA(1);5_10;AGGA(7);39_41;AGGA(1)],

where the same sequence is described by two different rotations of the same
repeat unit: For the top description AAGG from literature is used, while AGGA is
automatically extracted using Algorithm 1 and is used for the bottom descrip-
tion. The absolute length of both descriptions is very similar; the top one is
one character shorter. However, the number of repeat units covered by the
respective descriptions is in favor of the bottom description, where 9 units are
covered as opposed to 8 in the top description. Both descriptions obviously
yield the same observed sequence, but this might not be immediately clear.
The location of the repeat structure is slightly different for both and so are the
descriptions of this structure, not only the repeat unit itself (which is clear),
but, more importantly, the interleaving transpositions. When storing these
descriptions in databases unambiguous descriptions might be preferred.

5.4 Discussion

In this section we discuss some of the issues of the application of our method
for the automatic generation of descriptions for STR alleles. In particular the
usefulness of these descriptions in forensics.

5.4.1 Reference sequence

When the goal is to have easily comparable and meaningful descriptions with-
out the need of resorting to tools, there must be a fixed reference sequence for
each STR locus. As this kind of information is stored for relatively long times,

78 Chapter 5. HGVS Short Tandem Repeats

these reference sequences have to be invariant over time. General reference
sequences deal with the whole genome, whole chromosomes or genes. None
of these is particularly useful; the interesting regions are very small compared
to chromosomes and usually not situated inside or near genes. We advocate
the use of so-called Locus Reference Genomic (LRG) reference files [MacArthur
et al., 2014]. LRGs are fixed references that do not change over time, fur-
thermore, they can contain transcript annotation, which can be used for the
specification of the location of the repeat structure. This has the additional
advantage that the annotation of the repeat structure is explicitly present
in the reference sequence. LRGs can be easily requested via the webpage:
http://www.lrg-sequence.org/.

5.4.2 Repeat unit set per STR locus

After choosing a suitable reference sequence, there should also be a consensus
on the repeat unit set that is used for a specific STR locus. Note that Algorithm 1
does not necessarily give the same repeat unit set for each allele of the same
STR locus. This can be regarded as a potential problem for having unambiguous
descriptions. Unfortunately, it is impossible to explicitly include this information
in an LRG reference sequence. This means that either an additional database
has to be curated, or an extension of the LRG sequences should be proposed
containing the repeat unit set for each STR locus.

As we observed from the experiments in Section 5.3, repeat units can be
rotated. The chosen rotation in literature seems to be, to a certain extent,
arbitrary, e.g., the “best” fitting rotation for a certain (reference) allele. In the
case of the FGA locus, the literature gives two rotations of the same repeat unit
as part of the repeat unit set: TTTC and CTTT. Rotated versions of the same
repeat unit occur more frequently when considering multiple STR loci. One
could argue that, at least per locus, only one rotation of the same repeat unit
can be present. On the other hand, considering that “best” fitting is rather
ill-defined, an arbitrary selection could be made. e.g., the lexicographical
smallest. This provides as an advantage that repeat structures over different
loci can be easily compared.

5.5. Conclusions 79

The automatic selection of the repeat unit set used in Section 5.3 could be
improved upon by disallowing rotations of the same repeat unit, as well as,
disregarding any of the static repeat units, i.e., repeats that always occur a fixed
number of times. Considering these improvements, the automatic extraction of
the repeat unit set would result in the same set as is currently used in literature
except for its rotations. Given the need for backwards compatibility we expect
that no universal decision can be reached on the selection of the rotations. For
this reason our approach has only a loose coupling between the automatic
extraction of repeat units and the generation of the corresponding descriptions.

5.5 Conclusions

We introduced a method for the automatic generation of reference-based
descriptions for STR alleles. Our method consists of two parts: 1) the automatic
detection of a repeat unit set given a sequence and 2) the automatic generation
of a reference based description given a repeat unit set, a reference sequence
and an observed sequence. The automatic detection of repeat units uses a
variation of the well-known run-length encoding algorithm and performs well
on STR alleles with many small repeats. The results from this method can
be used as input for the second part. Alternatively, repeat unit set defined in
literature can be used.

The resulting descriptions are easily interpretable and can be made un-
ambiguous for use in databases. We have discussed the application of our
proposed method for a forensic use case with special attention regarding the
unambiguity. We advocate the creation and use of specialized LRG reference
sequence files.

Our proposed repeat variant, including its semantics and notation, should
be proposed and added to the HGVS nomenclature.

Chapter 6

Meta-analysis of Disjoint Sets of
Attributes in Large Cohort
Studies

We will introduce the problem of classification in large cohort studies containing
heterogeneous data. The data in a cohort study comes in separate groups,
which can be turned on or off. Each group consists of data coming from one
specific measurement instrument. We provide a “cross-sectional” investigation
on this data to see the relative power of the different groups. We also propose a
way of improving on the classification performance in individual cohort studies
using other cohort studies by using an intuitive workflow approach.

81

82 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

6.1 Introduction

Cohort studies are frequently used in the biomedical field. The aim is to identify
so-called risk factors correlated to a phenotype, usually a disease. A cohort
is a group of people sharing a common characteristic during a certain period.
Within this period some people either develop the studied phenotype or already
exhibit it from the start. This subgroup is referred to as the case group, while
the remainder of the people are designated as controls.

Nowadays a variety of different types of biomedical data can be gathered.
Often physiological data such as gender, age, blood pressure and heart rate are
present together with genomics data either consisting of the complete genomic
sequence, but more often, in the form of single nucleotide polymorphisms (SNPs).
While some diseases have a clear and simple genomic origin, many others are
caused by a more complex combination of effects, therefore, data about the
presence or concentration of all kinds of substances within the body such as
metabolites are also important.

As new data generating methods become available during the period of a
cohort study data is accumulated. Different types, e.g., genomics or metabolites,
of data are collected from the same group of people resulting in more of less
disjoint data sets describing a self-contained set of attributes of the same
individual. It is unclear whether these data sets have the power to augment
each other or whether they express the same knowledge. For example, due to
a genomic defect a certain substance (metabolite) is under- or overexpressed.

The abundance of attributes per person results often in a skewed data set;
a few instances versus a lot of attributes. As a consequence finding correlations
in the data becomes tricky This effect is enhanced by the fact that widening
(adding attributes) a data set is cheaper then adding more individuals. Which
is even impossible at a later stage of the study.

Adding data is never free. This is especially the case in the biomedical field.
The preparation and construction of these data sets are labor intensive and
expensive in a financial sense. Furthermore, this process imposes a burden on
the individuals from whom the samples must be taken. This results in a clear
motivation to study the usefulness of the gathering of groups of additional

6.2. Problem statement 83

data.

In this chapter we investigate three cohort studies which each consists of a
number of sets of attributes. In contrast to the more generally applied feature
selection, we add whole sets of features instead of single features. We are
primarily not so much interested in the absolute classification, but more in the
added improvement on the classification of these separate sets. In addition, we
propose a method of improving classification in one cohort study by adding
data from different cohort studies.

The remainder of the chapter is organized as follows. In Section 6.2 we
formalize a problem statement as well as introduce the cohort studies used in
the experiments. Section 6.3 describes the workflow and tooling. We present
the experiments in Section 6.4, and the conclusions to the study in Section 6.5.

6.2 Problem statement

In contrast to the classic feature selection problem, we have a number of
disjoint sets of attributes that can either be included as a whole or they can
be completely excluded from the study. Furthermore, we have a number of
separate studies (concerning the same phenotype and covering the same sets of
attributes) that can be pooled together in order to augment classifying power
on a separate study. Given this setting, we define two meta-analysis problems:

1. Can we say something about the relative power of the (combinations of)
sets of attributes?

2. Can data from different cohort studies be used to augment classifying
power for a single study?

6.2.1 Anatomy of the data sets

As we are dealing with humans represented in these cohort studies, we must
observe caution not to accidentally expose any details of these individuals
nor are we authorized to publish any identifying details about the studies

84 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

themselves. Therefore we choose not to describe the actual cohort studies used,
but we will give a feeling for the characteristics of these studies.

In the cohort studies we are interested in the classification of a certain
phenotype: an aging-related disease. Earlier attempts to characterize this
disease have resulted in a reasonably small (about 10) set of so-called risk
factors which seem highly correlated with this disease. These risk factors are all
physiological (e.g., age and sex), and, compared to many of the other attributes,
easily gathered as they require minimal processing and analyzes.

In this study we will use three real cohort studies. The typical number of
instances per study is between 1,000 and 2,000 of which approximately 25% is
an identified case example (an individual exhibiting the disease).

6.2.2 Disjoint sets of attributes

The data in these cohort studies can be partitioned in disjoint sets of attributes
describing a certain type of features. The first set we consider is the set of risk
factors derived from earlier studies. We use this as a baseline for our study.
Next, we have a set of several dozens of general physiological and behavioral
characteristics. Both sets are rather easily constructed and therefore commonly
present in similar studies. We have a set of genetic data containing several
hundreds of SNPs, which are already selected as promising candidates for
correlation regarding this disease. And finally, two sets of metabolitic data:
concentration levels of several dozens of Free Fatty Acids (FFA), and about
a hundred metabolites measured with NMR (nuclear magnetic resonance)
spectroscopy, represented as areas under curve.

As the last three sets of data are considerably more difficult in terms of
labor and finances to gather we are especially interested in their “added value”
with regard to the general study and each other.

6.3 Workflows

To find answers to the problems stated in Section 6.2, we consider all possible
combinations of the disjoint sets of attributes (except for selecting no data at

6.3. Workflows 85

Figure 6.1: Schematic representation of the mining space. Each cube represents
the classification power for the corresponding classifier on a combination of
disjoint sets of attributes from a certain cohort study.

all) from all combinations of cohort studies. For each partition of the data we
calculate the classification power of all classifiers, see Figure 6.1.

We propose an automated workflow for the calculation of all data points in
Figure 6.1 and Figure 6.2. As a first approach all workflows are implemented as
batch scripts using the pipes and filters design pattern. In particular, a selection
of the standard Unix tools is used to perform the splitting of the respective
data sets, the creation of folds, and data cleaning. We often augment the
pipes and filters pattern [Gamma et al., 1995] by the data-driven pattern of
the make utility. Commonly make is used to automatically build executables
from source code, however it is not limited to building software. Indeed its
data-driven paradigm combined with the power of declarative programming
makes it especially useful in data centric workflows as described in [Robinson
and Thain, 2013].

Although workflows have been introduced in the biomedical field, e.g.,
[Oinn et al., 2004], we observe that ad hoc solutions are frequently used
preferring agile development over reusability and scalability. In our particular
case, we want to combine data from separate data sets making the need
for scalability more important. Furthermore we acknowledge that our first
approach is highly technical and probably difficult to maintain in the biomedical

86 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

Figure 6.2: Graphical representation of the automated mining process. It shows
the partitioning of the data and its distribution over the classifiers.

field. Most researchers in this field dealing with the data mining tasks on large
cohort studies are not computer scientists or programmers. In order to enable
them to conduct their independent research on these data sets, we have to
provide them with high-level and easy to understand formal workflows.

To make our workflow accessible and reusable we introduced a more formal
workflow. As most of our classifiers (see Section 6.3.1) are taken from the Weka
toolbox [Hall et al., 2009], it seems natural to use the Weka KnowledgeFlow
environment to design our workflows. Even though this environment is hardly
a general workflow tool, our primary tasks are data mining related further
advocating the use of this specialized toolkit.

To cater for a number of different recurring subtasks we designed four

6.3. Workflows 87

separate workflows in the Weka KnowledgeFlow environment, see Figure 6.3:

(a) Data cleaning — In order to link several data sets together it is imperative
that corrupt and inaccurate instances and attributes are detected and
corrected;

(b) Data selection — Usually a single data set is used for training and validation
purposes, here we deal with data from separate sets. This workflow enables
the preselection of instances from these separate sets;

(c) Classifier training — This is the backbone of the actual data mining process.
It is a fairly standard classifier training workflow;

(d) Meta-learning — To effectively combine the results from the individual
mining processes, we use the meta-learning workflow. It deals in particular
with the hierarchical approach discussed in Section 6.4.4.

These separate workflows can in turn be combined into larger workflows
if desired. Note that the meta-learning workflow is similar to the normal
learning workflow, making the meta-level concept easier to understand, which
is visualized in the actual workflows.

Although the Weka KnowledgeFlow environment might not be a full-scale
workflow modelling language, it is well-suited for the analyses in this chap-
ter. By using mostly classifiers from the Weka toolbox we avoid issues of
incorporating different data mining tools. In a more general case it is often
advantageous to use many different tools. Under this precondition it becomes
difficult to solely use the Weka toolkit as a workflow modelling language and
it is recommended to use a general workflow modelling framework like Tav-
erna [Wolstencroft et al., 2013]. For this chapter we will consider this to be
future work.

6.3.1 Classifiers

In our case we are interested in classification: to find causal attributes for the
presence of a phenotype. The data at our disposal is highly heterogeneous
in nature, therefore, we will use a variety of classifiers each especially suited

88 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

(a) Data cleaning workflow. A simplified version is shown here: not
all filters are present.

(b) Data selection workflow.

6.3. Workflows 89

(e) Classifier training workflow. Not all classifiers are included in this
representation.

(f) Meta-learning workflow.

Figure 6.3: Weka KnowledgeFlow workflows.

90 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

to one or more types of attributes. We include also two techniques from the
statistical field for comparison: regression analysis. Statistics are widely used
within the biomedical field and therefore included here as a baseline.

We acknowledge the fact that there are many more methods available,
however, we tried to create a “cross-section” of the many types of classifiers
existing today. A clear focus is on the more widely used methods. We present
each method together with a motivation why this particular method seems to
be useful on our data as well as the tool/implementation used:

• Logistic regression [Hosmer Jr et al., 2013] — often used in statistical
analysis, here used as comparison;

• Least squares [Borowiak, 2001] — often used in statistical analysis, here
used as comparison;

• Bayesian network [Pearl, 2000] — often used in the medical field;

• Decision tree (C4.5) [Rokach, 2007] — baseline for many knowledge
discovery methods;

• Random forest [Breiman, 2001] — baseline for many knowledge discov-
ery methods;

• Neural network (multilayer perceptron with one hidden layer) [Rosen-
blatt, 1961] — especially useful for the large quantities of numerical
data;

• Support vector machine (linear) [Cristianini and Shawe-Taylor, 2000] —
baseline for many knowledge discovery methods;

• Subgroup discovery [Lavrač et al., 2004, Meeng and Knobbe, 2011] —
identifying subgroups might be useful in describing possibly different
forms of the disease.

For practical reasons mostly implementations from the Weka toolbox are used.
We believe that the actual implementation of the algorithm is not affecting the
results. Nor are we primarily interested in the actual classifying power, but
more in the added value of the disjoint sets of attributes.

6.4. Experiments 91

6.3.2 Quality metrics

A lot of different quality metrics have been used to describe the performance of
classifiers. Most of them are defined in term of the confusion matrix containing
the number of true positives, true negatives, false positives, and false negatives.
Commonly used metrics include: precision and recall, sensitivity and specificity,
and receiver operating characteristic. As we are trying to characterize the
relative performance of several methods, we choose a method that can be
expressed as a single number. We used the so-called weighted relative accuracy
(WRAcc) [Todorovski et al., 2000]:

WRAcc(Class← Cond) = p(Cond) · (p(Class|Cond)− p(Class)).

The WRAcc embodies a trade-off between standard accuracy and generality
without sacrificing to much accuracy. Often this metric performs well and tends
to yield fewer and simpler patterns, which are considered to be an asset in the
biomedical field as usually the resulting patterns have to be explained in this
field.

6.4 Experiments

In this section we will describe the computer experiments. Note that we are not
primarily interested in the classification performance of the disease, but rather
to investigate the effects of augmenting the separate sets with each other with
regard to this classification problem.

In all experiments we use stratified 10-fold cross-validation. Each data set
is randomly partitioned into ten equal size subsamples in such a way that the
proportion of the cases versus the controls is constant. A single subsample is
designated to be the validation data for the trained model, while the remaining
nine subsamples are combined to train the model.

As a baseline we use the current standard risk prediction method derived
from earlier studies, which is a non-linear function over all features captured
within the risk factor set. The performance of this method on our three studies
is described in Table 6.1.

92 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

Table 6.1: The performance of the current standard risk prediction method.

Study WRAcc

Cohort Study I 79.08
Cohort Study II 84.90
Cohort Study III 87.13

6.4.1 Classification power of disjoint sets of attributes

As a first experiment we investigate the additional classification power gained
by adding each disjoint data set. We did this for all three cohort studies.
We took all combinations of the disjoint sets and calculated their respective
predictive power, see Table 6.2. We do not show the combinations where
the risk factors are included, because they result in every case in a WRAcc
that is very close to the WRAcc of the risk factors alone. With the notable
exception of the “all” data set, where all attributes (including the risk factors)
are considered. Note that the set of FFAs is not available for Cohort Study II.

As can be observed from Table 6.2, the small set of risk factors is able to
outperform all of the other combinations of (much larger) sets of attributes in
term of absolute predictive power regardless of the classifier. However, some
classifiers are able to outperform the risk factors at specific sets. For instance,
neural networks seem to perform better on some of the sets of attributes that
contain predominantly numerical data. Furthermore, in all cases providing all
data to the classifier improves its prediction power. This is not generally true.
As most classifiers use a heuristic method to combine certain attributes, it can
be the case that adding data obscures the underlining patterns, which result
in a reduced performance. This effect can also be observed in Table 6.2, e.g.,
when combining {NMR, SNP, FFA} which results sometimes in a lower WRAcc
than the combination {NMR, FFA}.

Based on the results for the three cohort studies, we cannot draw statistically
significant conclusions about the relative power of the groups of attributes. For
this we should include additional cohort studies. The meta-analysis method

6.4. Experiments 93

Table 6.2: The WRAcc for combinations of the disjoint sets of attributes.

Cohort Study I
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 80.98 73.98 59.96 74.63 78.07 58.09 66.59 62.03
risk factors 73.08 64.55 55.26 71.79 71.14 51.22 63.99 57.38
NMR 62.63 57.45 50.08 62.40 65.08 50.00 57.02 56.44
SNP 65.74 60.01 59.00 63.87 61.79 51.52 56.41 56.04
FFA 66.56 56.29 54.14 62.98 64.01 53.74 58.00 57.25
{NMR, SNP, FFA} 70.15 57.78 50.26 63.57 70.60 52.59 61.15 55.80
{NMR, SNP} 65.12 62.59 50.11 65.21 64.09 53.97 62.05 51.09
{NMR, FFA} 68.07 63.67 53.28 62.20 61.52 54.07 59.22 54.31
{SNP, FFA} 65.57 58.73 58.21 58.40 66.93 53.99 58.49 54.73

Cohort Study II
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 90.02 81.05 67.80 86.18 88.42 54.92 85.05 58.51
risk factors 89.98 76.50 74.61 85.98 83.60 52.76 83.73 68.59
NMR 75.61 61.57 56.47 65.99 70.52 57.63 67.72 55.76
SNP 69.61 67.13 60.66 72.61 72.98 57.01 77.53 61.25
{NMR, SNP} 72.70 60.01 57.51 72.93 72.65 59.13 63.17 51.81

Cohort Study III
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 93.97 79.32 77.60 84.72 87.35 70.88 83.85 77.35
risk factors 89.98 72.22 52.07 85.05 77.61 65.65 75.56 67.04
NMR 74.45 68.23 51.72 72.05 82.16 58.47 71.61 50.99
SNP 73.85 61.91 57.59 69.72 70.94 57.81 69.79 53.21
FFA 73.55 57.78 52.76 79.89 76.33 58.66 69.61 67.46
{NMR, SNP, FFA} 77.14 66.07 54.45 70.60 78.21 56.98 70.11 57.00
{NMR, SNP} 75.21 71.43 58.61 73.98 66.89 53.47 75.36 58.25
{NMR, FFA} 77.86 70.45 72.20 78.76 76.51 50.73 69.56 60.79
{SNP, FFA} 76.63 65.84 62.97 65.41 76.33 63.89 66.48 51.66

can then provide very useful insights for the classification problems of the
cohort studies.

94 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

6.4.2 Using classifiers across cohort studies

In this second experiment, we are interested in the performance of the classifiers
(trained and validated on their respective cohort studies) in Table 6.2 on other
studies. We hope to acquire insight in the generality of the classifiers. In
Table 6.3, we present the measured predictive power of the classifier trained
and validated on Cohort Study I (as this is the largest) tested on Cohort
Study II and Cohort Study III. Note that the set of FFAs is not available for
Cohort Study II.

Table 6.3: The performance (WRAcc) of the classifiers trained on Cohort Study I
and tested on Cohort Study II and Cohort Study III.

Cohort Study II
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 75.69 58.03 51.74 60.76 69.65 53.13 56.37 57.93
risk factors 61.08 61.34 52.49 63.13 64.85 49.70 67.97 56.05
NMR 59.90 51.00 50.93 62.85 67.60 52.88 56.62 49.10
SNP 58.35 66.65 59.59 59.47 60.93 53.54 53.12 45.64
{NMR, SNP} 56.67 54.11 36.01 63.43 72.22 48.28 68.04 52.32

Cohort Study III
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 54.01 49.98 36.72 53.84 57.42 64.42 48.44 43.47
risk factors 57.77 42.50 28.42 52.18 67.53 55.16 61.57 49.83
NMR 55.31 50.87 32.19 59.29 64.09 46.22 61.01 53.77
SNP 41.52 46.40 42.65 50.71 61.71 59.21 58.38 38.71
FFA 46.46 47.73 53.07 52.13 63.96 59.29 55.50 40.19
{NMR, SNP, FFA} 51.80 55.18 47.43 50.43 47.54 58.22 52.49 44.19
{NMR, SNP} 52.83 50.86 37.63 56.65 69.83 55.98 50.20 34.31
{NMR, FFA} 48.39 39.44 30.73 49.68 65.93 58.51 50.64 49.15
{SNP, FFA} 58.05 44.58 29.26 59.19 55.67 58.19 58.49 50.07

The results in Table 6.3 are not as good as expected. Although the per-
formance on Cohort Study I is reasonable good, the performance on Cohort

6.4. Experiments 95

Study III is not very good, as, most scores are just above 50%. Apparently
the model for Cohort Study I is not capable of predicting the disease in more
general cases. The predictive power maintained on Cohort Study I is notably
better. A possible explanation being the low number of cases in Cohort Study III.
It might even be possible that these cases are of a different type with regard to
the predominant cases characterized in Cohort Study I as overfitting seems not
to be the problem when training on the Cohort Study I.

The remaining forms of cross model testing are not shown here as they
yield significantly less performance results. Again presumably because of the
low ratio of cases versus controls in this study.

6.4.3 Combining all data from different studies

As is apparent from the experiments in Section 6.4.2, the generality of the
constructed classifiers can be improved. We introduce a new experiment:
instead of training and validating on a separate study we will combine all data
into a single data set. 90% of this data set is used to train and validate the
classifiers (as usual using 10-fold cross validation). The resulting classifiers are
then tested on the respective 10% of the disjoint sets from their original cohort
studies. Thus avoiding the pitfall of overfitting. These results are shown in
Table 6.4.

The predictive power described in Table 6.4 is indeed more promising than
in Table 6.3. However, we lose a lot of accuracy on all of the separate studies at
the benefit of a more stable (general) classifier. We feel that the added benefit
of stability does not outweigh the medical consequences of losing that much
performance, and is, therefore, not satisfactory in practice.

6.4.4 Hierarchical approach

Next we present a hierarchical approach to improve the overall performance
of the classifiers on the disjoint sets of attributes. Based on the observation in
Table 6.2 that some classifiers yield better results on certain sets. We want to
make use of this feature by applying the best performing classifier on each of
the disjoint sets, and combine their predictions in some way. Note that we will

96 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

Table 6.4: WRAcc of the classifiers trained on all data combined and tested on
disjoint sets of attributes.

Cohort Study I
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 58.23 59.19 51.70 62.63 65.30 69.52 58.04 46.51
risk factors 54.40 58.03 45.04 57.28 57.56 57.10 55.21 40.09
NMR 52.12 42.76 45.95 57.91 59.58 49.18 52.54 40.94
SNP 44.50 43.31 50.86 53.83 50.53 62.42 56.36 36.24
{NMR, SNP} 52.87 40.10 49.21 58.85 48.43 54.47 39.50 43.53

Cohort Study II
set(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 78.60 62.16 62.75 69.94 72.45 59.24 70.33 65.39
risk factors 73.15 53.76 45.12 57.57 60.89 56.31 50.48 58.42
NMR 64.36 59.89 59.15 62.02 67.19 52.38 65.13 55.43
SNP 61.82 62.74 54.49 60.99 66.53 50.89 50.69 56.50
{NMR, SNP} 68.79 54.79 62.04 65.00 64.20 48.63 69.18 50.98

Cohort Study III
sets(s) logistic re-

gression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
net-
work

SVM subgroup
discovery

all 65.20 59.21 64.09 66.01 70.45 58.88 65.83 62.41
risk factors 59.50 59.41 62.51 55.83 69.86 58.14 54.11 47.66
NMR 60.81 52.77 50.66 53.76 68.82 49.10 56.10 58.86
SNP 55.78 51.16 45.95 63.36 66.35 54.66 45.71 45.90
{NMR, SNP} 60.16 51.57 61.45 59.84 55.08 52.61 65.55 59.26

consider the single sets only. Applying this method to all combinations of the
disjoint sets will be regarded as future work. Reminding the results from the
experiments performed in Section 6.4.2 and Section 6.4.1, we will once again
consider the studies separately.

We will use two methods of combining the predictions of the individual
classifiers: majority voting and a linear perceptron, a simple form of a neural
network consisting of only an input layer (the predictions) and an output layer

6.5. Conclusions 97

of one node: the ultimate prediction based on the predictions of the individual
classifiers. In case of majority voting we do not need to train the hierarchical
method, so no addition data is required. This is not the true for in case of the
linear perceptron that needs to be trained as well. We use the same partitioning
strategy as used in Section 6.4.3 in order to avoid overfitting. In Table 6.5
we present the performance of the hierarchically linked classifiers trained on
their respective studies, but selected based on their individual performance on
Cohort Study III, and, in case of the classifiers trained on the Cohort Study III
data, the data from Cohort Study I.

Table 6.5: The WRAcc of the hierarchically linked classifiers.

study majority linear perceptron

Cohort Study I 73.43 82.83
Cohort Study II 83.28 90.74
Cohort Study III 92.33 94.55

As is apparent in Table 6.5, we are able to improve upon the predictive
power of the individual classifiers as is shown in Table 6.2 when using a linear
perceptron. The majority voting approach seems to be inferior to using the flat
data. Probably, this is caused by the fact that all data sets are weighted equally,
where as analyzing the data directly retains the possibility of weighting groups
and individual attributes differently. The (small) increase in performance of
the hierarchical approach by using a linear perceptron might be explained by a
divide-and-conquer argument. By presenting the classifiers with smaller data
set they are more easily capable of fitting a model there on. Apparently, these
individual models can be combined just by using a simple weighting scheme.

6.5 Conclusions

In this chapter we investigated the added benefits of augmenting large cohort
studies with disjoint sets of attributes and data from other studies. We provided

98 Chapter 6. Disjoint Sets of Attributes in Large Cohort Studies

a “cross-sectional” study of different classifiers on the heterogeneous data
available within these studies. As expected, knowledge discovery on this kind
of studies is not a trivial task. We compared our results with a baseline standard
risk prediction method used in literature. We shown that our methods are
able to match its performance, and, in some cases, are able to outperform
it. In particular an hierarchical approach seem to yield good results. We
have demonstrated that applying machine learning techniques combined with
workflow tooling are valuable in solving this task.

As this is rather a small preliminary study, extending this research onto more
large cohort studies, and investigating for different phenotypes is regarded to
be a valid pointer towards future research.

Chapter 7

Conclusions and Future Work

In this chapter we summarize the findings of the previous chapters in relation
to the research questions presented in Chapter 1. Furthermore, we present
some directions for future work.

99

100 Chapter 7. Conclusions and Future Work

In Chapter 3 we asked the research question: “Can we automatically generate
concise, meaningful HGVS descriptions from DNA sequences in linear time?”.
We have designed and implemented an algorithm to extract HGVS descriptions
from raw DNA sequences and we made this algorithm efficient for highly similar
sequences, i.e., expected linear run-time for whole chromosomes. One of the
focal points is the length of the resulting descriptions. Using a weighting scheme
our algorithm tries to minimize these. In general, we cannot guarantee that
a generated description is minimal, however, we have proven the usefulness
of our descriptions by the automatic curation of databases. In addition, we
proposed an extension of the HGVS nomenclature for the description of so-
called transpositions.

We shifted our focus to protein sequences in Chapter 4, were we asked
the research question: “Can we automatically generate HGVS descriptions
from protein sequences as well?”. Based on the algorithm from Chapter 3,
we developed a method that can automatically generate protein sequence
descriptions following the HGVS nomenclature. A particular emphasis lies on
the detection and annotation of so-called frameshift variants. One of the most
important results from this chapter is that our method is able to effectively
detect and annotate these frameshift variants from the raw protein sequences
without having access to the underlying DNA sequences. This is a prerequisite
first step towards unambiguous protein variant descriptions. In addition to
the detection of frameshift variants, we can also accurately calculate their
corresponding probabilities. The experiments show that, in particular within a
species, large frameshift variants commonly exist, which may be an indication
of their evolutional significance.

Chapter 5 deals with the research question: “Can we efficiently generate
descriptions for regions with repeated sequences?”. In this chapter we present
a method, again based on the algorithms from Chapter 3, that automatically
generates reference based descriptions for regions with short tandem repeats.
We presented an Algorithm to automatically detect the repeat units present
in a sequence. These repeat units can then be used to generate a description.
Alternatively, annotated repeat units from literature can be used. In addition
to the description of the repeat structure, we have an integrated approach

7.1. Future Work 101

that also describes the flanking regions relative to this repeat structure. We
advocated the use of LRG reference sequences for generating descriptions for
short tandem repeats.

Finally, in Chapter 6, we moved away from the generation of descriptions
and we explored disjoint sets of attributes in large cohort studies. We asked
the research questions: “Can we say something about the relative power of
the (combinations of) sets of attributes?” and “Can data from different cohort
studies be used to augment classifying power for a single study?”. We provided
a “cross-sectional” study of different classifiers on the heterogeneous data
available within these cohort studies. As expected, knowledge discovery on this
kind of studies is not a trivial task. We compared our results with a baseline
standard risk prediction method used in literature. We shown that our methods
are able to match its performance, and, in some cases, are able to outperform
it.

7.1 Future Work

In Chapters 3, 4 and 5 we propose extensions to the HGVS nomenclature.
Currently none of these proposed extensions are part of the nomenclature.
Some effort will be required to either make our propositions part of the HGVS
nomenclature or to adapt our algorithms and methods to the nomenclature. In
any case, in the current situation the nomenclature and the tooling to not match
completely. In order to effectively develop and reason about the nomenclature
we foresee that a formal specification of the nomenclature is needed.

Many features of the HGVS nomenclature are unsupported in our imple-
mentations. In particular, there is no support for nested variants. Whether
nested variants are appropriate in descriptions remains an open question. As
yet, we do not support transpositions involving more than one chromosome.
As the HGVS nomenclature committee is working on new guidelines involving
junctions of more than one chromosome, support will become necessary in the
foreseeable future. As sequencing technology is evolving quickly, other topic
will gain importance and momentum, e.g., graph based reference genomes.

Our work in Chapter 5 needs to be evaluated in a forensic setting before the

102 Chapter 7. Conclusions and Future Work

proposed extensions can be implemented in the HGVS nomenclature. This also
means a strategy for reference sequences for STR alleles and their respective
repeat region annotation and the repeat unit set standardization per locus.

Finally, with regard to the explorative study in Chapter 6, the observations
and results should be validated; extending this research onto more large cohort
studies, and investigating for different phenotypes is regarded to be a valid
pointer towards future research.

Bibliography

[Aartsma-Rus et al., 2006] Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema,
I. F., Van Ommen, G.-J. B., and Den Dunnen, J. T. (2006). Entries in the
leiden duchenne muscular dystrophy mutation database: An overview of
mutation types and paradoxical cases that confirm the reading-frame rule.
Muscle & nerve, 34(2):135–144.

[Abbasi, 1997] Abbasi, S. (1997). Longest common consecutive substring in
two random strings. Technical report, Center for Discrete Mathematics &
Theoretical Computer Science.

[Alberts et al., 1995] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K.,
Watson, J. D., and Grimstone, A. V. (1995). Molecular biology of the cell
(3rd edn). Trends in Biochemical Sciences, 20(5):210–210.

[Anvar et al., 2014] Anvar, S. Y., van der Gaag, K. J., van der Heijden, J. W. F.,
Veltrop, M. H. A. M., Vossen, R. H. A. M., de Leeuw, R. H., Breukel, C.,
Buermans, H. P. J., Verbeek, J. S., de Knijff, P., et al. (2014). TSSV: a tool
for characterization of complex allelic variants in pure and mixed genomes.
Bioinformatics, 30(12):1651–1659.

[Beaudet and Tsui, 1993] Beaudet, A. L. and Tsui, L.-C. (1993). A suggested
nomenclature for designating mutations. Human Mutation, 2(4):245–248.

[Beutler, 1993] Beutler, E. (1993). The designation of mutations. American
journal of human genetics, 53(3):783.

[Borowiak, 2001] Borowiak, D. (2001). Linear Models, Least Squares and
Alternatives. Technometrics, 43(1):99–99.

103

104 Bibliography

[Brandon et al., 2009] Brandon, M. C., Wallace, D. C., and Baldi, P. (2009).
Data structures and compression algorithms for genomic sequence data.
Bioinformatics, 25(14):1731–1738.

[Breiman, 2001] Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.

[Compeau et al., 2011] Compeau, P. E. C., Pevzner, P. A., and Tesler, G. (2011).
How to apply de Bruijn graphs to genome assembly. Nature biotechnology,
29(11):987–991.

[Crick, 1958] Crick, F. H. C. (1958). On protein synthesis. In Symposia of the
Society for Experimental Biology, volume 12, page 8.

[Crick et al., 1970] Crick, F. H. C. et al. (1970). Central dogma of molecular
biology. Nature, 227(5258):561–563.

[Cristianini and Shawe-Taylor, 2000] Cristianini, N. and Shawe-Taylor, J.
(2000). An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press.

[Delaye et al., 2008] Delaye, L., DeLuna, A., Lazcano, A., and Becerra, A.
(2008). The origin of a novel gene through overprinting in escherichia coli.
BMC Evolutionary Biology, 8(1):31–41.

[den Dunnen et al., 2000] den Dunnen, J. T., Antonarakis, S. E., et al. (2000).
Mutation nomenclature extensions and suggestions to describe complex
mutations: A discussion. Human Mutation, 15(1):7–12.

[den Dunnen et al., 2016] den Dunnen, J. T., Dalgleish, R., Maglott, D. R.,
Hart, R. K., Greenblatt, M. S., McGowan-Jordan, J., Roux, A.-F., Smith, T.,
Antonarakis, S. E., and Taschner, P. E. M. (2016). Hgvs recommendations
for the description of sequence variants: 2016 update. Human mutation.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

105

[Gettings et al., 2015] Gettings, K. B., Aponte, R. A., Vallone, P. M., and Butler,
J. M. (2015). STR allele sequence variation: current knowledge and future
issues. Forensic Science International: Genetics, 18:118–130.

[Gîrdea et al., 2010] Gîrdea, M., Noé, L., and Kucherov, G. (2010). Back-
translation for discovering distant protein homologies in the presence of
frameshift mutations. Algorithms for Molecular Biology, 5(6).

[Golomb, 1966] Golomb, S. (1966). Run-length encodings (corresp.). IEEE
Transactions on Information Theory, 12(3):399–401.

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on strings, trees and sequences:
Computer science and computational biology. Cambridge University Press.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA Data Mining Software: An Update.
SIGKDD Explor. Newsl., 11(1):10–18.

[Hoogenboom et al., 2016] Hoogenboom, J., van der Gaag, K. J., de Leeuw,
R. H., Sijen, T., de Knijff, P., and Laros, J. F. J. (2016). FDSTools: A software
package for analysis of massively parallel sequencing data with the ability
to recognise and correct STR stutter and other PCR or sequencing noise. in
preparation.

[Hosmer Jr et al., 2013] Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X.
(2013). Applied Logistic Regression. Wiley.

[Laros et al., 2011] Laros, J. F. J., Blavier, A., den Dunnen, J. T., and Taschner,
P. E. M. (2011). A formalized description of the standard human variant
nomenclature in extended backus-naur form. BMC bioinformatics, 12(Suppl
4):S5.

[Lavrač et al., 2004] Lavrač, N., Kavšek, B., Flach, P., and Todorovski, L.
(2004). Subgroup discovery with CN2-SD. The Journal of Machine Learning
Research, 5:153–188.

[MacArthur et al., 2014] MacArthur, J. A. L., Morales, J., Tully, R. E., Astashyn,
A., Gil, L., Bruford, E. A., Larsson, P., Flicek, P., Dalgleish, R., Maglott,

106 Bibliography

D. R., et al. (2014). Locus Reference Genomic: reference sequences for
the reporting of clinically relevant sequence variants. Nucleic acids research,
42:873–878.

[Meeng and Knobbe, 2011] Meeng, M. and Knobbe, A. (2011). Flexible En-
richment with Cortana Software Demo. In Proceedings of BeneLearn, pages
117–119.

[Meselson and Stahl, 1958] Meselson, M. and Stahl, F. W. (1958). The repli-
cation of dna in escherichia coli. Proceedings of the National Academy of
Sciences, 44(7):671–682.

[Nakamura et al., 2000] Nakamura, Y., Gojobori, T., and Ikemura, T. (2000).
Codon usage tabulated from international dna sequence databases: status
for the year 2000. Nucleic acids research, 28:292–292.

[Oinn et al., 2004] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M. R., Wipat, A., and Li, P.
(2004). Taverna: A Tool for the Composition and Enactment of Bioinformat-
ics Workflows. Bioinformatics, 20(17):3045–3054.

[Pearl, 2000] Pearl, J. (2000). Causality: Models, Reasoning and Inference,
volume 29. Cambridge University Press.

[Robinson and Thain, 2013] Robinson, C. and Thain, D. (2013). Automated
packaging of bioinformatics workflows for portability and durability using
makeflow. In Proceedings of the 8th Workshop on Workflows in Support of
Large-Scale Science, WORKS ’13, pages 98–105, New York, NY, USA. ACM.

[Robinson et al., 2014] Robinson, J., Halliwell, J. A., Hayhurst, J. D., Flicek, P.,
Parham, P., and Marsh, S. G. E. (2014). The IPD and IMGT/HLA database:
Allele variant databases. Nucleic Acids Research, pages 423–431.

[Rokach, 2007] Rokach, L. (2007). Data Mining with Decision Trees: Theory
and Applications, volume 69. World Scientific.

107

[Rosenblatt, 1961] Rosenblatt, F. (1961). Principles of Neurodynamics. Per-
ceptrons and the Theory of Brain Mechanisms. Technical report, DTIC
Document.

[Sheetlin et al., 2014] Sheetlin, S. L., Park, Y., Frith, M. C., and Spouge, J. L.
(2014). Frameshift alignment: statistics and post-genomic applications.
Bioinformatics, 30(24):3575–3582.

[Smith and Waterman, 1981] Smith, T. F. and Waterman, M. S. (1981). Iden-
tification of Common Molecular Subsequences. Journal of molecular biology,
147(1):195–197.

[Taschner and den Dunnen, 2011] Taschner, P. E. M. and den Dunnen, J. T.
(2011). Describing structural changes by extending HGVS sequence varia-
tion nomenclature. Human Mutation, 32(5):507–511.

[Tichy, 1984] Tichy, W. F. (1984). The string-to-string correction problem with
block moves. ACM Transactions on Computer Systems (TOCS), 2(4):309–321.

[Todorovski et al., 2000] Todorovski, L., Flach, P., and Lavrač, N. (2000). Pre-
dictive Performance of Weighted Relative Accuracy. Springer.

[UniProt Consortium, 2015] UniProt Consortium (2015). UniProt: a hub for
protein information. Nucleic acids research, 43:204–212.

[Vis and Kok, 2014] Vis, J. K. and Kok, J. N. (2014). Meta-analysis of Disjoint
Sets of Attributes in Large Cohort Studies, pages 407–419. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[Vis et al., 2015] Vis, J. K., Vermaat, M., Taschner, P. E. M., Kok, J. N., and
Laros, J. F. J. (2015). An Efficient Algorithm for the Extraction of HGVS Vari-
ant Descriptions from Sequence. Bioinformatics, 31(23):3751–3757.

[Wagner and Fischer, 1974] Wagner, R. A. and Fischer, M. J. (1974). The
string-to-string correction problem. Journal of the ACM (JACM), 21(1):168–
173.

108 Bibliography

[Wagner and Lowrance, 1975] Wagner, R. A. and Lowrance, R. (1975). An
extension of the string-to-string correction problem. Journal of the ACM
(JACM), 22(2):177–183.

[Watson et al., 1953] Watson, J. D., Crick, F. H. C., et al. (1953). Molecular
structure of nucleic acids. Nature, 171(4356):737–738.

[Weischenfeldt et al., 2013] Weischenfeldt, J., Symmons, O., Spitz, F., and
Korbel, J. O. (2013). Phenotypic impact of genomic structural variation:
insights from and for human disease. Nature Reviews Genetics, 14(2):125–
138.

[Wildeman et al., 2008] Wildeman, M., van Ophuizen, E., den Dunnen, J. T.,
and Taschner, P. E. M. (2008). Improving sequence variant descriptions in
mutation databases and literature using the Mutalyzer sequence variation
nomenclature checker. Human Mutation, 29(1):6–13.

[Wolstencroft et al., 2013] Wolstencroft, K., Haines, R., Fellows, D., Williams,
A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher,
P., et al. (2013). The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic acids
research, 41(W1):W557–W561.

Samenvatting

In dit proefschrift wordt een onderdeel van de bio-informatica bestudeerd.
Er is bijzondere aandacht voor het berekenen van beschrijvingen van molec-
ulaire sequenties. Hierbij wordt een (geobserveerde) sequentie beschreven
ten opzichte van een referentiesequentie. Moleculaire sequentie komen veel
voor in de biologie. Hieronder wordt onder andere verstaan: DNA (en RNA)
sequenties en eiwitsequenties. In een klinische omgeving worden veelal de indi-
viduele verschillen van deze sequentie bestudeerd en in verband gebracht met
allerlei fenotypen (onder andere aandoeningen). Tijdens dit proces spelen de
beschrijvingen een belangrijke rol. Veelal worden deze beschrijvingen gegeven
in een domein specifieke taal; de HGVS nomenclatuur. Deze schrijft voor hoe
bepaalde typen varianten, zoals substituties, inserties en deleties, dienen te
worden omschreven. Het streven hier is een ondubbelzinnig uitlegbare beschri-
jving voor alle varianten in een bepaald individu. Deze HGVS beschrijvingen
worden al geruime tijd intensief gebruikt, maar een effectieve methode voor
het berekenen (construeren) van deze beschrijvingen ontbrak.

In Hoofdstuk 3 wordt een effectieve methode beschreven voor het genereren
van dit soort beschrijvingen. Daarin zijn kwaliteiten zoals de lengte van de
berekende beschrijving, de complexiteit van de berekening, maar ook de
biologische betekenis van de beschrijving van belang. Zo wordt er onder
meer rekening gehouden met het complementaire karakter van DNA. In dit
hoofdstuk wordt ook een aanvulling op de HGVS nomenclatuur voorgesteld;
(samengestelde) transposities, waarin delen van de referentiesequentie kunnen
worden verplaatst en/of gekopieerd. Wij laten zien dat onze methode in staat
is beschrijvingen te genereren voor complete chromosomen en dat de door

109

110 Samenvatting

onze methode gegenereerde beschrijvingen nuttig kunnen worden ingezet voor
het cureren van databases.

In Hoofdstuk 4 verleggen wij de aandacht van DNA naar eiwitsequenties.
Eiwitten worden in tripletten gecodeerd in bepaalde delen van het DNA. Juist
deze tripletcodering zorgt ervoor dat veranderingen in het DNA leiden tot
zogenaamde verschuivingen in de eiwitsequentie, omdat de tripletten op een
andere manier over de DNA-sequentie zijn verdeeld. Deze verschuivingen
geven aanleiding tot het maken van beschrijvingen op eiwitsequenties. In dit
hoofdstuk gebruiken wij deels technieken uit Hoofdstuk 3 en deels nieuwe
technieken voor het genereren van beschrijvingen voor eiwitsequenties. In
het bijzonder valt te berekenen van de waarschijnlijkheid is wanneer een
kandidaatverschuiving wordt beschouwd. Vervolgens tonen wij aan dat deze
verschuivingen, in het bijzonder binnen een soort, veelvuldig voorkomen.

In Hoofdstuk 5 kijken wij naar een bijzondere vorm van DNA-sequenties; se-
quenties waarin vele kleine herhalingen voorkomen. Deze herhalingen hebben
een bijzonder gebruik in forensisch onderzoek. Op de eerste plaats geven wij
een methode voor het vinden van kandidaatherhalingen in een sequentie. Ten
tweede presenteren wij een methode die, gebruikmakend van een verzameling
van herhalingen, een beschrijving van een herhalingsstructuur geeft. En ten
slotte, kan deze beschrijven worden gecombineerd met een beschrijving van
de omliggende sequenties ten opzichte van de herhalingsstructuur. Naast de
methoden voor het maken van deze beschrijvingen, geven wij ook aanwijzingen
voor het correct gebruik van referentiesequenties in de forensische toepassing.

Wij nemen afstand van het berekenen van beschrijvingen in Hoofdstuk 6.
In dit hoofdstuk kijken wij op een exploratieve manier naar het datalandschap
waarin de bio-informatica veelal opereert. De analyse van grote cohortstudies,
waarin groepen heterogene data kunnen worden samengebracht, staat cen-
traal. Het effect van het samenvoegen van verschillende groepen data wordt
onderzocht in het kader van het kunnen classificeren van een fenotype uit deze
data. Hiertoe worden enkele veelgebruikte classificatietechnieken toegepast.
Daarnaast wordt ook gekeken naar het samenvoegen van data uit andere (on-
gerelateerde) cohortstudies, wederom met als doel het classificeren van een
fenotype. De resultaten worden steeds vergeleken met klassieke risicofactoren

111

voor dat fenotype. Het blijkt dat deze risicofactoren veelal goede classificatiekri-
teria zijn en dat naïef het toevoegen van groepen data niet direct tot een beter
resultaat leidt. Slecht wanneer alle beschikbare data wordt gecombineerd in
een hiërarchische manier wordt een marginaal beter resultaat behaald.

Curriculum Vitae

Jonathan Vis is geboren op 25 juli 1983 te Leuven (België). Hij behaalde in 2001
zijn VWO-diploma aan het Johan de Witt gymnasium te Dordrecht. Vervolgens
voltooide hij de studie Werktuigbouwkunde aan de Hogeschool Rotterdam &
Omstreken in 2006. In 2009 behaalde hij zijn bachelor Informatica aan de
Universiteit Leiden, gevolgd door de master Computer Science eveneens te
Leiden. Naast zijn studie voltooide hij in 2000 de vakopleiding Edelsteenkunde
van het Nederlandsch Genootschap voor Edelsteenkunde te Gouda en was hij
actief lid van het Genootschap en later bestuurslid van het Gemmologisch Gilde
Nederland te Utrecht.

Jonathan was ook betrokken als assistent bij de vakken Computerarchitec-
tuur, Programmeermethoden, Algoritmiek en Kunstmatige Intelligentie allen
vakken van de opleiding Informatica te Leiden. Van 2011 tot 2015 deed hij
promotieonderzoek aan de Universiteit Leiden onder leiding van prof. dr. Eline
Slagboom, prof. dr. Joost Kok en dr. Jeroen Laros. De resultaten van dat
onderzoek zijn samengebracht in dit proefschrift.

Tijdens zijn promotieonderzoek heeft Jonathan ook onderzoek gedaan naar
de complexiteit van spellen hetgeen in een aantal publicaties heeft geresulteerd.

113

Dankwoord

Ik bedank mijn collegae van het LIACS waaronder de leden van de “koffieclub”:
Frans Birrer, Hendrik Jan Hoogeboom, Jan van Rijn, Marijn Schraagen, Frank
Takes en mijn kamergenoot Jurriaan Rot voor de onderhoudende en interes-
sante discussies. Mijn bijzondere dank gaat uit naar Walter Kosters die mij
heeft overtuigd aan het promotietraject te beginnen.

Jonathan Vis

115

Publication List

van Rijn, J.N., Takes, F.W. & Vis, J.K. (2015), The Complexity of Rummikub
Problems. In: Proceedings of the 27th Benelux Conference on Artificial Intelligence

Vis J.K., Vermaat M., Taschner P.E.M., Kok J.N. & Laros J.F.J. (2015), An efficient
algorithm for the extraction of HGVS variant descriptions from sequences,
Bioinformatics 31(23): 3751–3757.

Hoogeboom H.J., Kosters W.A., Rijn J.N. van & Vis J.K. (2014), Acyclic Constraint
Logic and Games, ICGA Journal 37(1): 3–16.

van Rijn, J.N., Vis & J.K. (2014), Endgame Analysis of Dou Shou Qi, ICGA Journal
38: 120–124.

Vis J.K. & Kok J.N. (2014), Meta-analysis of Disjoint Sets of Attributes in Large
Cohort Studies. In: Proceedings ISoLA 2014 no. LNCS 8803: Springer. 407–419.

van Rijn J.N. & Vis J.K. (2013), Complexity and Retrograde Analysis of the Game
Dou Shou Qi. In: Proceedings of the 25th Benelux Conference on Artificial
Intelligence. 239–246.

Vis J.K., Kosters W.A. & Batenburg K.J. (2011), Discrete Tomography: A Neural
Network Approach. In: Proceedings of 23rd Benelux Conference on Artificial
Intelligence. 328–335.

Vis J.K., Kosters W.A. & Terroba A. (2010), Tennis Patterns: Player, Match and
Beyond. In: Proceedings of 22nd Benelux Conference on Artificial Intelligence.

117

118 Publication List

Terroba A., Kosters W.A. & Vis J.K. (2010), Tactical Analysis Modeling through
Data Mining: Pattern Discovery in Racket Sports. In: International Conference
on Knowledge Discovery and Information Retrieval.

	Introduction
	Outline

	Preliminaries
	DNA
	RNA
	Proteins
	Transcription
	The genetic code
	Human Genome Variation Society Nomenclature

	HGVS Description Extraction
	Introduction
	Transpositions

	Methods
	Extraction algorithm
	Finding the Longest Common Substring
	Finding the LCS more efficiently
	Choosing the size of the of k-mers
	Adapting the extraction algorithm for inversions, transpositions and inverse transpositions

	Experiments
	Performance on large DNA strings
	Automated description extraction using sequences from a gene database
	Replacing reference sequences for gene variant databases

	Discussion
	Compression
	Transitivity

	Conclusion
	Future work

	HGVS Protein Descriptions
	Introduction
	Frameshift variants
	Complex frameshift variants

	Methods
	Probability calculation
	Back-translation

	Experiments
	Intra-species frameshifts in E. coli K-12
	Inter-species frameshifts between E. coli K-12 and S. enterica
	Quality of the frameshift annotations

	Discussion
	Back-translation
	Proposed HGVS Descriptions

	Conclusions

	HGVS Short Tandem Repeats
	Introduction
	Methods
	Finding repeat units
	Reference-based description of the repeat structure
	Relative description of the flanking regions

	Experiments
	Discussion
	Reference sequence
	Repeat unit set per STR locus

	Conclusions

	Disjoint Sets of Attributes in Large Cohort Studies
	Introduction
	Problem statement
	Anatomy of the data sets
	Disjoint sets of attributes

	Workflows
	Classifiers
	Quality metrics

	Experiments
	Classification power of disjoint sets of attributes
	Using classifiers across cohort studies
	Combining all data from different studies
	Hierarchical approach

	Conclusions

	Conclusions and Future Work
	Future Work

	Bibliography
	Samenvatting
	Curriculum Vitae
	Dankwoord
	Publication List

