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Combining cell-based hydrodynamics with hybrid
particle-field simulations: efficient and realistic
simulation of structuring dynamics

G. J. A. Sevink,*a F. Schmid,b T. Kawakatsuc and G. Milanod

We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step

to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique

is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the

sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent

field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves

particle coordinates by the usual Newton’s equation of motion. Since collisions are seriously affected by

the softening of non-bonded interactions that originates from their evaluation at the coarser continuum

level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging

MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of

computational cells and at the same time properly account for the momentum transfer that is important

for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular

coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and

the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic

finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD,

as properly accounting for hydrodynamic interactions considerably speeds up the phase separation

dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method

enables realistic simulations of large-scale systems that are needed to investigate the applications of self-

assembled structures of lipids in nanotechnologies.

Introduction

Shared amongst many processes in chemistry and biology is the
property that the emergent (deterministic) behaviour associated
with basic observable functionality is deeply rooted in a fluctuating
network of interactions that are active on many lower microscopic
levels, sometimes down to electronic states. Ideally, one should
thus pursue a holistic (experimental or computational) multi-scale
approach to reach the truly fundamental understanding that is
needed for the progress of knowledge, i.e. an approach in which all
relevant scales are observed or accounted for realistically and
simultaneously, and on an equal footing. The key dilemma in
computational modelling, however, is that system size (either
in space or time) is inversely proportional to the number of

degrees of freedom in the representation, meaning that the
maximum size is fixed by the chosen resolution. Any realistic
computational investigation of a multi-scale phenomenon
should thus make an inspired choice to sacrifice either one
of them to some extent.

Historically, the community studying emergent behaviour in
heterogeneous biological/chemical systems has valued resolu-
tion over size, and primarily relied on classical molecular
simulation. The class of models to which classical all-atom
molecular dynamics (AA-MD) belongs – known as particle-
based simulations – has the benefit that chemical detail
directly translates into specific molecular fragments, atoms in
AA-MD1,2 or small groups of (heavy) atoms in coarse-grained
MD (CGMD)3 and dissipative particle dynamics (DPD),4 all in
full agreement with standard concepts in chemical research.
Nevertheless, the necessity of calculating pair interactions
for each small (femtosecond) time steps, required for stable
numerical integration of the equations of motion, remains a
serious restriction for the upper scales of any trajectory in terms
of absolute time and length scales. Particle-based approaches
that go beyond the mild coarsening employed in CGMD/DPD
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have also been published recently. A prime example is the
ultra coarse-grained (UCG) method,5,6 which systematically
represents complete molecular domains by only a small
number of degrees of freedom. Methods like UCG are more
particular than the available finer-grained models in the sense
that they rely on the development of molecule-specific force-
fields prior to any application. Although this brings along a
substantial effort compared to the tabulated CGMD force fields
of, for instance, Martini,7 they are particularly advantageous for
studying self-assembly and dynamics in systems containing
proteins and other molecules that feature substantial internal
(secondary) structure.

On the other side of the spectrum is a class of continuum
or field-based methods that trade resolution for efficiency, by
replacing individual particles, and thus pair interactions,
by particle concentration fields and mean-field interactions.
Molecular field theories like self-consistent field (SCF) theory
and density functional theory (DFT) are computationally superior
to particle models in terms of amenable (re)structuring path-
ways and system sizes, and have been successfully employed to
investigate mesoscopic properties of soft structured synthetic
materials like block copolymers. Nevertheless, as a result
of several factors – their conceptual complexity, restrictions
in the underlying molecular representation, the absence of
a straightforward parametrisation and the inherent loss of
(molecular) detail – only a small community has adapted this
type of approaches for bio-inspired simulation. The majority of
this work has concentrated on understanding the energetic and
kinetic factors that regulate the self-assembly kinetics and
equilibrium behaviour of vesicles formed by flexible amphiphiles
in an aqueous environment, see for instance ref. 8–10 for early
studies, ref. 11 for a model with hydrodynamics, and ref. 12 for
an early extensive review, as a minimal model for membranes/
liposomes in biology.

Structured interfaces and membranes represent a true
challenge in terms of this balance between size and resolution,
since they feature two very disparate dimensions – one,
perpendicular to the structure, on a molecular scale and
the other, along the structure, on a (collective) macroscopic
scale – that should ultimately be acknowledged in any model
to enable fully realistic simulation, e.g. of liposome fusion
that is induced by fusogenic molecules. Cellular membranes,
playing a key role in the functioning of biological systems,
are prime examples of the significance of such structures
in biology. The need for a computational description of
membrane properties and dynamics that accounts for this
inherent multi-scale nature has prompted a number of develop-
ments that go beyond the standard pure particle- or field-based
treatments, and hold a promise for being capable of accounting
for internal structuring, e.g. rafts in prototypical lipid bilayers,
and external factors, e.g. the interplay of membranes with
membrane-bound proteins and protein complexes. As molecular
detail is essential, all new developments start from particle-
based models.

The most popular route assumes that detail due to solvent
degrees of freedom is fairly redundant and thus can be replaced

by a coarsened ‘effective’ description. This route has the impor-
tant computational advantage that sizing results in a quadratic
instead of a cubic increase of the number of degrees of freedom,
as a membrane, in contrast to the solvent phase, is essentially
a two-dimensional structure. In the effective description, the
hydrophobic action of the solvent is represented by a continuum
variable (a solvent field, giving rise to an immersed boundary
method)13,14 or only by an additional potential for the lipids,
often determined by a numerical fitting procedure (implicit-
solvent methods).15–17 Depending on the force field (atomistic
or coarse-grained), several of these effective models have been
developed in recent years, see ref. 18 and 19 for recent reviews of
standard and effective approaches for membrane modelling.
The main drawbacks of this route are the loss of resolution in
the solvent domain and, usually, the loss of momentum transfer
via the solvent phase, which is after all only represented effec-
tively. Since hydrodynamics is known to play an important role
in membrane formation and remodelling, several groups have
proposed and tested solutions that re-introduce mass transfer
through the solvent phase by introducing proper dynamics at the
continuum level, for implicit-solvent via an auxiliary solvent field
(for an example, see ref. 20). Proper treatment at the boundaries,
required for a consistent coupling of field-based (solvent) and
particle-based dynamics (solutes), remains a delicate issue.

An alternative route, avoiding boundary issues and allowing
one to retain the solvent degrees of freedom, is to replace all
pair interactions by mean-field interactions – particles moving
in fields generated by all others – and thus circumvent the most
elaborate part of the scheme for particle evolution. The idea
draws from the detailed agreement found between particle-
(DPD) and field-based (SCF) simulation of block copolymer
phase behaviour, suggesting that these conceptually different
approaches can be related and, for some well-understood cases,
mapped onto each other rather consistently.21 Several groups
have recently proposed such hybrid mergers, and we shortly
review the key concepts. Müller and Smith initially developed
their Single Chain in Mean Field (SCMF) method to go beyond a
field-based Langevin model with Onsager coefficients and more
realistically capture the phase separation dynamics in dense
polymers and polymers/solvent mixtures.22,23 SCMF performs a
Monte Carlo (MC) simulation of independent (particle) chains
in an external field obtained from the density distribution
generated by the ensemble of independent chains. When this
distribution changes significantly, a property that is usually
imposed by an update frequency, this external field is updated
from the instantaneous density distribution. The same concept,
i.e. representing non-bonded interactions via a particle-derived
density distribution in a field-based Hamiltonian, was later
used to device an efficient solvent-free simulation method
for lipid membranes.24,25 Also the MD-SCF method of Milano
and Kawakatsu26 uses (field-based) chemical potentials to
derive intermolecular particle forces, but now for the standard
Newton’s equations of motion employed in CGMD. In parti-
cular, the condition of local equilibrium with respect to a
slowly varying external field is satisfied at the particle level,
via (Martini) CGMD, while the remainder of the SCF free
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energy, the non-ideal part which only depends on projected
particle density fields, is minimised by consistent forces on
particles. Hence, the calculation of pair interactions is circum-
vented in such approaches and direct access to the (non-ideal)
free energy granted. Apart from that fact that softening enables
a significantly larger time step for stable numerical integration
of Newton’s equations of motion, the simulation algorithm can
also be parallelised efficiently, since it only considers fields and
individual particle chains.27 The transferability between CGMD
and MD-SCF was validated for a number of cases, including for
phospholipid membranes.29

By selecting a global Andersen thermostat for the particle
evolution,26 however, the advantage of retaining solvent degrees
of freedom has not been fully exploited. Improving the kinetic
description, such that it realistically addresses phenomena
that play a key role both in the early stage of phase separation
and in membrane dynamics and remodelling, would make
the method stand out among competitors, and introduce the
option to simulate lipid structures of truly relevant dimen-
sions with proper resolution and dynamics. Here, we adapt
the original method by coupling hybrid MD-SCF to cell-based
multi-particle collision dynamics (MPCD), thereby reinserting
collisions that have been removed by the introduction of
soft (field-based) potentials. Although this new approach is
applicable to any molecular representation, we analyse the
new hybrid method for an existing lipid–water representation
taken from DPD, which allows us to benefit from established
mappings, and compare results to both DPD and the original
MD-SCF method. The advantage compared to the original
MD-SCF is that the coarsening dynamics is significantly
enhanced by MPCD, while the advantage to DPD is enhanced
efficiency (roughly a factor of two) and a much more direct
control of fluid properties, e.g. viscosity as a function of local
composition, than DPD.30,31

General theory
MD-SCF

The MD-SCF method follows the approach of SCF in treating
the inter- and intramolecular interactions in a particle-based
molecular description separately. In particular, the Hamiltonian
of a system composed of M molecules is split into

Ĥ(G) = Ĥ0(G) + Ŵ(G) (1)

where G specifies a point in phase space, i.e. a set of positions
of all particles (atoms or chemical fragments) in the system,
and �̂ indicates that the associated physical quantity is a function
of all microscopic states described by G. The first term in (1),
Ĥ0(G), is the Hamiltonian of a reference ideal system of non-
interacting chains. Instead of the usual Hamiltonian for Gaussian
chains of SCF, it represents all intra-molecular – bond, angle,
torsion and non-bonded (Lennard-Jones) – interactions in a
particle-based representation of choice. The second term, Ŵ(G),
is the deviation from the reference system stemming from the

intermolecular interactions. In a NVT ensemble, the partition
function of this system is

Z ¼ 1

M!

ð
dGe�b Ĥ0ðGÞþŴðGÞ½ � (2)

with the usual definition of b = 1/kBT.
From a microscopic point of view, the density distribution of

particles can be defined as

f̂ðr;GÞ ¼
XM
p¼1

XSðpÞ
i¼0

d r� r
ðpÞ
i

� �
(3)

where S( p) is the number of particles in the p-th molecule and
r( p)

i is the center of mass of the i-th particle in the p-th molecule.
For the particular lipid-water system considered further on,
S( p) = Nl is the number of particles in a lipid chain and S( p) = 1
for water particles. To determine the intermolecular interactions,
it is assumed that

Ŵ(G) = W[f̂(r,G)] (4)

and one can, after some calculus,26 rewrite the partition func-
tion (2) as

Z ¼ 1

M!

ð
DffðrÞg

�
ð
DfwðrÞge

�b �Mb ln zþW ½fðrÞ�� i
b

Ð
wðrÞfðrÞdr

h i
;

(5)

where z is the single molecule partition function, and w(r)
a conjugate field of f(r). In particular, the external poten-
tial VðrÞ ¼ ði=bÞwðrÞ has been made explicit to clarify the
w-dependence of the integrand. Next, one employs the saddle
point or stationary phase method to approximate the partition
function, providing the relations

VðrÞ ¼ dW ½fðrÞ�
dfðrÞ

fðrÞ ¼ �M
bz

dz
dVðrÞ ¼ f̂ðr;GÞ

D E
(6)

Equations (1)–(6) simply follow the original derivation of
Milano and Kawakatsu;26 the extension to the general case of
different particle types (labeled by K ) is straightforward. The
interaction term W [f(r)] is yet unspecified, and we follow the
original approach in considering the standard non-ideal free
energy of SCF

W fKðrÞf g½ � ¼
ð
V

kBT

2

X
KK 0

wKK 0fK ðrÞfK 0 ðrÞ
"

þ kH
2

X
K

fKðrÞ � f0

 !2
3
5dr

(7)

where V is the simulation volume, fK (r) is the coarse-grained
density of particle type K at position r and wKK 0 = wK 0K is
the mean-field interaction strength of a particle of type K
with the surrounding density field for particle type K 0 known
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as the Flory–Huggins (FH) parameters. The second term in (7)
is the Helfand penalty function that allows for small variation
of the total density field around a constant (background)
value f0, allowing one to control the excluded volume inter-
actions. The strength kH = 1/k, labeled H to denote its Helfand
origin, sets the tolerated deviation from the constant total
number density of segments f0. We selected kH over the
original incompressibility parameter, k in ref. 26, to relate
our results in the remainder more directly to previous work
based on an alternative hybrid description for the same
lipid model.14

For completeness, we note that an alternative and legitimate
option is to simply start from the Hamiltonian (7) for inter-
molecular interactions on a coarse level, thereby avoiding
any misconceptions that may appear in the use of the inter-
mediate density distribution (3). In combination with an appro-
priate smoothing procedure for the particle-to-field mapping,
which we will address below, this Hamiltonian defines the
hybrid model.

One can now easily determine the mean field (chemical)
potential VKðrÞ as

VK ðrÞ ¼
dW fKðrÞf g½ �

dfK ðrÞ

¼ kBT
X
K 0

wKK 0fK 0 ðrÞ þ kH
X
K

fKðrÞ � f0

 ! (8)

For instance, for the H3(C4)2/W (lipid/water) representation of
ref. 44 considered here, with three particle types (K A {H, C, W}),
the mean field potentials are given by

VKðrÞ ¼ kBT wKHfHðrÞ þ wKCfCðrÞ þ wKWfWðrÞ½ �

þ kH fHðrÞ þ fCðrÞ þ fWðrÞ � f0½ �
(9)

and the resulting forces FKðrÞ ¼ �rrVKðrÞ on a particle of type
K at position r

FK ðrÞ ¼ � kBTwKH þ kHð ÞrrfHðrÞ

� kBTwKC þ kHð ÞrrfCðrÞ

� kBTwKW þ kHð ÞrrfWðrÞ

(10)

The density fields fK(r) are defined on a uniform cubic
grid with spacing l. There is some flexibility of choice in the
particle-to-field projection, and we assign particle fractions
to neighbouring grid points using properly normalised
Gaussians instead of the previous employed trilinear func-
tions. This projection generates a less fluctuating field for the
force calculation. Although these particle forces could be
determined via a variational approach, we rely on the original
grid-based method that calculates field gradients numerically
using a staggered grid (see the appendix for more details) and
we additionally consider another, more isotropic discrete
gradient operator. In the remainder, we assume that the mass
m for all particles is the same and set it to unity. Moreover, we
also set kBT = 1.

Dynamics. As usual, new configurations are obtained by
integrating the equations of motion from time t to t + Dt by a
velocity Verlet (VV) algorithm

riðtþ DtÞ ¼ riðtÞ þ viðtÞDtþ 1
2
f iðtÞDt2 (11)

viðtþ DtÞ ¼ viðtÞ þ 1
2
f iðtÞ þ f iðtþ DtÞð ÞDt

for all particles in the system, where ri and vi represent the
position and velocity of the ith particle, and the force fi is
the sum of the intra-molecular forces and the mean field
force, i.e. fi(r) = fintra

i (r) + FK(r), with K the type of particle i.
For water particles, the absence of intra-molecular forces is
reflected in fi(r) = FW(r), meaning that solvent particles only
experience forces due to the density fields.

Although the MD-SCF model is essentially off-lattice, mole-
cules only interact via smoothed potentials that are defined on
a (coarse) regular lattice. As a consequence, the contribution
of particle collisions to the relaxation dynamics is largely
underestimated, especially when the gradient terms practically
vanish, for instance at large densities f0. In the original
MD-SCF approach,26 the VV-algorithm was combined with a (local)
Andersen thermostat to mimic the effect of particle collisions and
maintain a constant (kinetic) simulation temperature, by replacing
the velocity of a number of randomly selected particles by a
velocity drawn from a Maxwell distribution. However, such a
local thermostat does not properly account for momentum
transfer, as a result of a violation of Galilean invariance,30,32

and thus the relaxation dynamics is less realistic and generally
very slow (see results section for examples). In principle, we
could introduce Galilean invariance by another choice of the
thermostat, see, for instance, the one developed in ref. 30, but
this will not fundamentally resolve the discussed smoothing
effect on collisions, and the computational penalty is consider-
able, as such thermostats rely on computationally expensive
pairwise velocity-difference calculations.

Multi-particle collision dynamics (MPCD)

The class of algorithms known as MPCD or stochastic rotation
dynamics (SRD), a name that was used when the method was
first formulated, combines discrete time with continuous space,
and represents a fluid by point-like particles that undergo
ballistic motion

ri(t + dt) = r(t) + vi(t)dt, (12)

with dt a well-chosen time increment (streaming step). Particles
only interact during collision steps, when momentum exchange
takes place. Several energy and momentum conserving collision
schemes have been proposed36 and share the property that,
instead of pairwise velocity differences, only the center of
mass velocity in each cell of a coarse grid needs to be calculated
for a velocity update. It was shown that MPCD is Galilean
invariant, provided that all cell positions are shifted by a
well-chosen random vector prior to each collision step.35

Consequently, MPCD can be seen as a very simple and efficient
numerical approach for solving the Navier–Stokes equations
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and describing the hydrodynamics of viscous systems on a
mesoscopic level.

Focussing on the collision step, the three-dimensional simula-
tion volume V is coarse-grained into cells of size a � a � a, with a
setting the resolution of the hydrodynamics. After shifting particle
positions, by a random vector t = (tx, ty, tz)

T with components
tj A [�a/2, a/2] ( j = x, y, z) taken from a uniform distribution,35

particles are sorted to the cells and, for each cell, a center of
mass velocity for the nc particles in the cell

vcm ¼
1

nc

Xnc
j¼1

vj (13)

is calculated. The velocity update is given by

viðtþ dtÞ ¼ vcmðtÞ þ R viðtÞ � vcmðtÞð Þ; (14)

with vcm the value for the cell in which particle i is located, dt a
time interval between collisions and R a 3 � 3 matrix that
rotates vectors by a fixed angle a around an axis that is
generated randomly for each cell.36 After this update, particles
are shifted back using the same random vector. The total
number of particles, and thus the average number of particles
per cell ns, is a freedom of choice but remains constant during
simulation. The algorithmic simplicity enables an analytic
derivation of hydrodynamic properties in terms of parameters
ns, a and dt, via the Green–Kubo relations,37,38 opening up a
possibility of mapping to real systems.

Hybrid MPCD/MD. Despite its advantageous computational
efficiency, standard MPCD does not apply to phase separating
systems. In contrast to CGMD or DPD, where each particle
represents a cluster of 3–4 solvent molecules with a base
(excluded volume) repulsion in addition to non-ideal inter-
actions, MPCD particles are point-like fictitious entities without
potential-based interactions or relation to molecular detail. In
other words, MPCD solvent can act as a momentum-conserving
heat bath for any solute,39 where solute particles can experience
bonded interactions and should be included in the collision
step, but the overall description remains that of an ideal and
compressible gas. In particular, the lack of explicit interactions
results in unphysical particle trajectories.

Fortunately, MPCD was recently extended to include
the non-ideal interactions that play a role in many systems
containing both solvent and solutes. One route, which was
later formally linked to an equation of state for a system
containing two particle types,40 is to introduce a new set
of collision rules that acknowledges the different nature of
colliding particles.41 The resulting algorithm was numerically
tested by considering the phase behaviour of binary mixtures,
analysing the spectra of capillary wave fluctuations on a droplet,
and even by simulating phase separation in a ternary surfactant
mixture.40 Generalisation to many particle types, however, is not
straightforward.

The second route is a hybrid MPCD/MD scheme developed
and analysed by Malevanets and Kapral,42 which couples a force-
field based description for solute–solute and solute–solvent

interactions to an effective MPCD description for the solvent–
solvent interactions. In short, the ballistic streaming step (12)
is replaced by the VV scheme of MD, assuming that there are
no solvent–solvent interactions besides collisions, and the two
descriptions evolve on a different time scale. This hybrid
MPCD/MD model serves as a basis in the present study.

Hybrid MD-SCF/MPCD scheme

An attractive solution for the very weak coupling between solvents
and solutes in MD-SCF is to re-introduce particle collisions via
the off-grid multi-particle collision dynamics (MPCD) method, in
which averaged particle velocities, calculated in lattice cells, are
used to perform effective collisions between individual particles.
By combining MPCD and MD-SCF, the implementation of
which is discussed next, we restore the effect of particle colli-
sions on the relaxation dynamics. At the same time, the method
can be seen as a natural extension of the SRD/MPCD framework
to complex and multicomponent fluids, reminiscent of the way
Lattice Boltzmann (LB) was extended to complex fluids, by
coupling it to a free energy functional.33,34

Our new hybrid scheme is very similar to the MPCD/MD
scheme of Malevanets and Kapral,42 but differs in the handling
of the solvent, which is treated on the same footing as the solute
during the streaming step. In the collision step, governed by the
time interval dt of MPCD, only solvent particles collide according
to the update (14). In the streaming step, associated with a
smaller time step Dt, both solute and solvent evolve according to
the VV scheme (12). The force acting on each solute particle
contains intramolecular (bond, angle, torsion) terms as well as
non-bonded (intermolecular) contributions due to other solutes
and due to solvent particles. In the MPCD/MD scheme of
Malevanets and Kapral, the force acting on solvent particles
stems only from the solutes, which is numerically efficient but
can also be seen as artificial. In the new scheme, the forces on
solvent particles are simply given by fi(r) = FW(r) of (10). Thus,
besides the ‘standard’ contributions due to the solutes, albeit in
terms of their density fields, there is another term �kHrrfW(r)
(note that a standard value for wWW = 0) that renders the force
dependent on spatial variations of the solvent density field and
stems from excluded volume interactions on the field level. This
scheme reduces to MPCD/MD only for kH = 0. For kH a 0, any
spatial variation of the total density fðrÞ ¼

P
K

fKðrÞ from the

reference value f0 will induce particle forces consistent with a
reduction of this variation. Particularly in solvent-rich phases,
fW E f0, this additional force term perturbs the solvent particle
dynamics. By thus combining the MPCD/MD concept with the
MD-SCF Hamiltonian, we obtain a more consistent description
of the hydrodynamics of complex fluids, where one no longer
has to distinguish between different components of the complex
fluid. In the results section, we will quantify the effect of these
additional force terms on the dynamics.

Momentum conserving thermostat. Momentum conservation
is exact in standard MPCD, and the hybrid MPCD/MD scheme
of Malevanets and Kapral42 conserves energy, meaning that a
thermostat is superfluous when kinetic energy dominates, for
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instance when solute particles interact only very weakly or when
there is a strong mass misbalance between solute and solvent
particles. For balanced systems, however, a thermostat may be
essential for maintaining a constant temperature during simula-
tion and, more in general, for the stability of the trajectory. This
thermostat could be introduced at the MD level, for instance in
the form of a Langevin-thermostat that couples to the relative
velocity of the particles with respect to the mean velocity in their
cell. Nevertheless, we select the Maxwell–Boltzmann scaling
(MBS) thermostat,43 which leaves the total momentum of a cell
unchanged, since a thermostat on the MPCD level is most
efficient. In this thermostat, the relative velocities Dvi = vi � vcm

of the particles in a collision cell are scaled by a constant x during
the collision step, with x a particular value for each collision
cell. In MBS, the factor is defined as

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Êk

�
Ek

q
; (15)

where Ek ¼ 1=2
Pnc
j¼1

mDvj2 is the kinetic energy of the nc particles

in a cell and Êk is selected from an appropriate distribution
function for each collision cell.43 In particular, the selected G
distribution converges to a Gaussian function with proper
values for its mean and variance when f = 3(nc � 1), the number
of degrees of freedom of the fluid particles in the considered
collision cell, goes to infinity. Solute particles are also thermo-
statted during the collision step via vi(t + dt) = vcm(t) + x(vi(t)� vcm(t)).
In particular, they are subjected to a velocity scaling that leaves
the total momentum per cell unchanged, but not to rotation.
After each thermostatting stage, any net momentum is removed
by rescaling the mean particle velocity to zero.

On Galilean invariance. We should note that even though the
underlying continuum Hamiltonian (7) is Galilean invariant, the
sum over all forces (10) is not strictly zero due to discretization
effects, hence momentum is not strictly preserved. Strict
total momentum conservation can be imposed by adding an
additional constraining force (a Lagrangian parameter) in each
step. We have tested this and found that this may affect the
results if we use the gradient operator introduced by Milano
and Kawakatsu,26 but not if we use a more isotropic gradient
operator introduced in this paper. Furthermore, we found that
discretization effects could be reduced significantly if the
inertial frame of the simulation was chosen such that the
discretization grid moves with a constant background speed.
Details are discussed in Appendix C.

Practical implementation of MD-SCF/MPCD for a lipid model

It is good to realise that one may select any coarse-grained
molecular representation in the hybrid approach. Whereas the
original MD-SCF approach benefits from selecting a familiar
Martini representation for which many biomolecules/solvents
have been parameterised, it introduces the necessity to deter-
mine a map between the Martini force fields and effective FH-
parameters.26 For the purpose of illustration, we instead select
the DPD representation of Shillcock and Lipowsky,44 i.e. lipids
are represented by a H3(C4)2 chain (Nl = 11 particles), for which

a mapping to FH-parameters already exists. Like in CGMD, 3–4
water molecules constitute one W particle. In particular, since
the hybrid method represents all intermolecular interactions at
a field level, the treatment of the solvent phase (as single
particles) is equivalent in both representations.

We distinguish dimensionless variables from physical quan-
tities by an asterix. As usual in DPD,44 we scale length and time

as r* = r/rc and t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mrc2

p
, with rc the cutoff distance of

DPD. This scaling corresponds to the choice m = 1, rc = 1 and
kBT = 1 of reference units. Important SRD/MPCD variables are the
cell size aMPCD = rc (aMPCD* = 1), unless specified otherwise, and

mean free path l ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=maMPCD

2
p

(l* = dt* for aMPCD* = 1).
Initially, all N particles are placed in a cuboidal system of
constant volume V = LxLyLz (all sizes in units of rc), so that
the overall particle density f0* = N/V* (V* = V/rc

3) is fixed.
The first lipid head (H) particle and all solvent particles are
usually placed at random. In setting up a simulation, choices
for the density f0* and size V* provide N = f0*V*, whereas a
choice for the number of lipid chains nl defines the number of
water particles as nw = N � Nlnl. All simulations start from a
Maxwell–Boltzmann distribution for the particle velocities at a
given (kinetic) temperature T, with an average kinetic energy
mhv2i = 3kBT. The configurational temperature is sometimes
advocated as a better measure,45 but it is based on the gradient
and Laplacians of the interaction potentials, so we rely on
the standard procedure of monitoring the kinetic tempera-
ture h(v*)2i/3 instead. In all simulations, periodic boundary
conditions are used. Although all simulations for lipid/water
systems were repeated with 3 different noise seeds to check
consistency, all reported results are for individual simulation
trajectories.

The strength of the ‘soft’ (quadratic) DPD interaction poten-
tials is given by the expression aij* = aii* + Daij* (using a* = arc/kBT),
with aii* = 75/r0*.21 For the usual density of r0* = 3 (aii* = 25),
Groot and Warren developed a mapping between the mean-
field FH parameters (w 4 2) and Da* for mixtures of single
particles as21

w = (0.286 � 0.002)Da* (16)

or, for short chains,

w = (0.306 � 0.003)Da*. (17)

Using expression (16) for the water–lipid and (17) for the lipid–
lipid interaction to convert the Da* for the chosen DPD parameters,
i.e. DaKK* = 0 for K A {H, C, W}, DaHC* = 25, DaHW* = 10 and
DaCW* = 50,44 we obtain the values shown in Table 1. Matching
the equation of state for the pressure, a value for the

Table 1 The dimensionless interaction wKK0 for particles of type K inter-
acting with a density field due to particle of type K0. Mean-field interactions
between the same particle types are zero by definition

H C W

H 0.00 7.65 2.86
C 7.65 0.00 14.30
W 2.86 14.30 0.00
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dimensionless kH* was previously obtained as kH* = kHnp/kBT =
5.0 (with np the particle volume) for the same particle density.14

The FH parameters of Table 1 have been used in all simula-
tions for the lipid–water system discussed in the results section.
However, these parameters relate to the usual situation where the
average of the total field is conveniently scaled to unity (via
multiplication by an appropriate particle volume). In the projec-
tion algorithm, density fields are obtained from a particle-wise
assignment of particle fractions to neighbouring grid points
(summing up to one), followed by an additional point-wise multi-
plication of the density fields by a factor 1/(l*)3, which has the
purpose of rendering the average total field �f* independent of the
grid size l. In particular, defining nx = Lx/l, ny = Ly/l and nz = Lz/l,
and writing r = (i, j,k) in units of the mesh size l, it is easy to show

�f� ¼ 1

nx � ny � nz
X
K

Xnx ;ny;nz
i;j;k¼0

fK
�ði; j; kÞ
l�ð Þ3

¼ N

l� � nxð Þ l� � ny
� �

l� � nzð Þ

¼ N

Lx
�Ly
�Lz
� ¼

N

V�
¼ f0

�

(18)

Since we are working with this non-unitary total field, we have to
scale wKK

0 by 1/f0*.
MD-SCF/MPCD is based on the Hamiltonian (7) and evolved

using MD (velocity Verlet) and MPCD, which both conserve
energy, so we simply conclude that our method is energy
conserving. Focussing on numerical stability, the ‘safe’ upper
bound for Martini CGMD, i.e. Dt = 30 fs,28 was consistently used
for all MD-SCF simulations (with an Andersen thermostat) that
employed a Martini representation for their constituents.26

When applying MD-SCF/MPCD instead, this value seems a
conservative but safe choice. However, since bonded interac-
tions are not affected by the hybridisation, a DPD-like time step
can be expected for the current lipid/water representation,
which is adopted from DPD. As discussed by Groot and
Warren,21 the choice of the dimensionless time step Dt* in
DPD is determined by the amount of increased/artificial tem-
perature kBT* � 1 that one is willing to accept: they define the
safe Dt* as the one for which this increase is 2%. For brevity, we
refrain from showing all temperature evolutions in the Results
section, but we only note here that our choice for Dt* = 0.01 was
based on a quick levelling of the simulation temperature to a
constant value that is consistently about 2% higher for this
time step, for all lipid/water MD-SCF/MPCD simulations con-
sidered. We thus conclude that Dt E 3 ps, which is estimated
via the properties of water particles, is a safe choice: it is indeed
in the same range as the earlier reported DPD value of 5 ps for
this lipid model.44 However, as field projection is usually not
performed every time step in MD-SCF/MPCD, e.g. for the
solvent (lipid/solvent) systems, it is performed every tenth
(fifth) VV step respectively, see discussion at the end of this
section, selecting even larger Dt* may result in instability. We
indeed find that Dt* = 0.02, the value employed for all DPD
simulations in this study, results in a fluctuating, non-

monotonic evolution of the simulation temperature when used
in MD-SCF/MPCD for the lipid/solvent systems. However, when
the field is projected every time step instead ( fup = 1), we
recover proper behaviour with kBT* � 1 o 2%. Since dt*/Dt*
is necessarily an integer, we also tried Dt* = 0.05 (stable,
kBT* � 1 E 2%) and Dt* = dt = 0.1 (unstable), quantifying the
direct relation between the maximum safe time step and the
field projection frequency. Also in the MD-SCF/MPCD simula-
tions for pure solvents, where the field is updated every tenth
time step for Dt* = 0.01, the temperature increase is less than
2% for all values of kH considered.

Finally, we have to select a proper grid size l = l*�rc for the
projection of particles to density fields (see the appendix for
more details). Among other, this defines the resolution of the
fields and forces in the hybrid model, which should be chosen
wisely given the application in mind. First, we note that we are
limited in the range of l-values at the lower end if we stick to the
standard choice for the particle density f0* = 3 of DPD.
The average number of particles per MPCD cell should be in
the range 3–20,46 so this is a proper choice also for MPCD.
However, since the projection algorithm only considers neigh-
bouring grid points, field gradients and thus the effective forces
on the particles will become increasingly noisy for smaller l*.
For l* o 1 and f0* = 3, for instance, there will be less than three
particles per grid cell on average, and it is easy to understand that
very minute particle displacements will have a tremendous effect
on the field gradients. As a compromise between resolution and
smoothness, we choose l = rc or l* = 1, meaning that 5 grid points
should suffice to describe the lipid profile (as well as field
gradients for the force calculation) for a lipid membrane, which
has a thickness of roughly 5 nm. Moreover, we use a Gaussian,
evaluated on 27 points around the closest grid point to the
particle, rather than the original trilinear interpolation on 8
points, for the reasons discussed before. From these considera-
tions, it is clear that we do not expect to reproduce the membrane
profile of DPD in full detail. However, we note that a CGMD lipid
representation is better resolved in space, enabling a smaller
choice of l*. Moreover, smaller values of l* are possible for
our DPD lipid representation, either by selecting a projection
algorithm with additional grid points, which has the effect of
further smoothing, or by choosing a larger particle density r0*
(or, equivalent, a smaller rc). As the particle-to-field projection is
the most compute intensive procedure, both will be at the
expense of a reduced computational efficiency.

The frequency with which the projection algorithm is called,
fup, is an important parameter for the computational efficiency; an
update frequency of fup = 10, i.e. in which the projection algorithm
is called every tenth time step, was considered in the original
MD-SCF model, and even larger values were found suited in
specific cases.29 This value is determined by the optimum between
efficiency and both the effective particle dynamics and field
resolution, in particular how fast the density fields at the chosen
resolution changes given the underlying particle dynamics. The
value fup = 10 was considered a conservative choice,29 and we will
use it as the initial value. Nevertheless, later on, we discuss the
need for using smaller values.
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Flow diagram for the current method, with X and V denoting
the position and velocities of all particles, n an (arbitrary)
integer, dt the time step for collision and fup the update
frequency for the field projection.

Computational analysis

When evaluating the performance of new methodology, one
should be careful in separating the various aspects that contribute
to efficiency. The first is the implementation into a computer
algorithm, which enables a useful quantitative evaluation of
efficiency in terms of the number of floating point operations
(or the CPU time that they require) per time step in comparison
to reference methods. The second are the conceptual steps made
to generate a more efficient description of the underlying physics,
here via (partial) coarsening and by accounting for the long-range
hydrodynamic interactions.

The algorithmic advantage of hybrid MD-SCF/MPCD over
pure-particle reference methods like (CG)MD and DPD, is the

replacement of the force calculation for particle pairs by one
that stems from particles interacting with chemical potential
fields, after particle-to-field projection, which reduces the
costs of this step and enables more efficient parallelisation.27

Nevertheless, the key advantage is the alternative physical descrip-
tion: since we replace the ‘hard’ Lennard-Jones interactions in
(CG)MD by ‘soft’ mean-field interactions in MD-SCF/MPCD, we
may replace the usual time step Dt B fs that is required for stable
integration in (CG)MD by the Dt B ps time step of methods that
consider soft-core interactions, like DPD. As a consequence, the
sampling in the time domain is enhanced by several orders of
magnitudes, unless bonded interactions dictate otherwise or
the reference methods is already based on soft-core potentials.
Since MD-SCF/MPCD inherits this property from MD-SCF, we
refer to the literature for a detailed analysis.29 Furthermore,
coupling MD-SCF to MPCD substantially accelerates the self- and
re-organisation kinetics, see Results and discussion section, by
restoring the hydrodynamic contribution to such processes.

We simulated a lipid/water system in two different volumes,
V1 = 223l3 and V2 = 443l3, containing N1 = 31 944 particles
(764 lipids) and N2 = 255 552 particles (3058 lipids), respectively.
The number of lipids agrees with a flat membrane that spans the
volume along two Cartesian coordinates. Table 2 shows timing
results for algorithms that only differ in the implementation of
the force update, the thermostat and/or the collision step. The
depicted timings for a single time step ts(V) (in CPU seconds)
were obtained by averaging over a total of 104 time steps for each
simulation. We find that MD-SCF/MPCD is roughly a factor of
two faster than DPD: 1.7 for V1 and 2.3 for V2. Since N2 = 8N1,
perfect scaling relates to a scaling factor z = ts(V2)/ts(V1) = 8, if we
disregard the costs of the intramolecular forces calculation.
Apparently, updating neighbour lists is demanding, as we find
z = 10.86 for DPD, while z = 8.00 for both other methods. The
costs of the MPCD collision step are modest (E1% of the total).
A comparison of MD-SCF/MPCD for fup = 5 or 10 shows that
considerable computational gain can be obtained by performing
fewer updates of the projection algorithm.

Results and discussion
Pure solvent systems

The hydrodynamic properties of a fluid simulated by MPCD/
SRD were considered in detail.47 This study identified two

Table 2 Time (averaged over 104 time steps) in CPU seconds required for
performing one (time) step with each of the three considered methods/
algorithms. Results were obtained using very similar serial codes, on a
2.8 GHz Intel Core i5 node with (shared) 8 GB 1333 MHz DDR3 memory

Volume V (in l3) ts(V) (in s)

DPD 223 0.2261
DPD 443 2.4561
MD-SCF, Andersen 223 0.1311
MD-SCF, Andersen 443 1.0473
MD-SCF/MPCD, fup = 5 223 0.1321
MD-SCF/MPCD, fup = 5 443 1.0530
MD-SCF/MPCD, fup = 10 443 0.7206
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regimes, a gas-like and fluid-like, quantified by the Schmidt
number Sc = n/D, i.e. the ratio between viscous (kinematic
viscosity n) and diffusive (diffusion coefficient D) transport
coefficients. Moreover, it was found that the combined value
of l*, the scaled mean free path, and a, the rotation angle in
the collision step, regulates this character. By considering the
predicted Schmidt number Scp, i.e. using the n and D estimated
from simulations, a fluid-like collective regime with Scp c 1
was identified for large a and small l*, and for small a and large
l* a gas-like particle regime with Scp r 1. The microscopic
motions underlying the dynamical behaviour of the fluid were
analysed via the normalised discrete velocity autocorrelation
function (VACF) for l* = 0.1 (collective regime) and 1.0 (particle
regime), i.e.

CvðtÞ ¼
viðtÞ � við0Þh i
við0Þ � við0Þh i; (19)

where t = ndt* is the discrete time relative to the starting time
n0dt* at the origin, and h�i denotes an ensemble average over all
particles and n0.

To test our implementation, we calculated the VACFs
for both l* for the same parameter set (with angle of rotation
a = 1301) of the earlier study,47 see Fig. 1. Since this system is
ideal and the collision rules (14) conserve momentum and
kinetic energy exactly for a fixed angle of rotation a, a thermostat
is not needed. All VACFs in this section were obtained by simple
averaging over the last 4.9 � 104 consecutive time steps and over
10 independent simulations, each of which is started with a
different noise seed. We note that especially the long time VACF
behaviour is sensitive to the sampling statistics. From a comparison
of Fig. 1 to Fig. 3 in ref. 47, we find that we reproduce the older
results in this time regime.

Another important test is to analyse self-diffusion. Diffusion
coefficients can be derived from the Green–Kubo formalism,
but Ripoll et al mention that a linear fit of the mean-square
displacement (MSD) for long times provides equivalent
results.47 Fitting the MSD for our simulated systems, we find
D* = 0.64 for l* = 1.0 and D* = 0.080 for l* = 0.1. Explicit values
were not reported before, but we may compare the relative
deviation DD = (Dsim � D0)/D0, with D0 an analytical prediction
obtained using the Brownian approximation for the VACF in the
Green–Kubo relation.47 We find DD = 0 for l* = 1.0 and DD = 0.25
for l* = 0.1, which is fully consistent with known results for the
same parameter set, shown in Fig. 7 of the earlier study.47

Turning back to the VACF, for l* = 1.0 and short times it
closely follows the exponential decay that was predicted for a
dense gas, in agreement with the system being in the particle
regime. For l* = 0.1, however, the behaviour of the VACF at
shorter times deviates considerably from a gas-like exponential
decay, signalling that cooperative effects play a role in slowing
down the loss of velocity correlations over time. However, the
VACF does not exhibit the typical negative region associated
with backscattering or collective relaxation, i.e. transient caging
imposed by neighbouring particles. At longer times, both
VACFs decay algebraically as t�3/2,47 in agreement with the

theoretical universal scaling relation for fluids in thermal
equilibrium,48 see Fig. 2.

Backscattering or a negative region in the VACF is also absent
for DPD simulations with only excluded volume interactions,45

whereas it was already observed in MD simulations of liquid
water by Rahman and Stillinger,49 where non-bonded inter-
actions are represented by Lennard-Jones potentials. The distinct
oscillatory behaviour of the VACF of liquid water around the
origin in the latter study, compared to simpler liquids that only
carry one negative minimum, was attributed to hydrogen bonding,
which results in a greater structural rigidity.49 We note that
the particulars of the monotonic VACFs in DPD depend on
numerical parameters, e.g. the chosen time step, and can be
tuned by the choice of the friction coefficient g. For the usual
DPD value g = 4.5, the VACF is visually very similar to the one
obtained for MPCD and l* = 0.1.45

The effect of caging on the short-time transport properties is
clearly not captured by the coarse treatments like MPCD and
DPD, which lack the interactions that are responsible for this
effect. One could, however, wonder what role compressibility
plays in this phenomenon. Although the standard MPCD/SRD
method does not impose incompressibility in any way, by
design, the deviations of the solvent field fW*(r) (obtained
using the projection algorithm) from the reference value f0*
are limited at all times in practice. We may, using the same
notation as before, monitor the time-dependent variance O(t) of
the solvent field, i.e.

OðtÞ ¼
Xnx ;ny;nz

i; j;k¼0
fW
�ði; j; k; tÞ � f0

�ð Þ2 (20)

Fig. 1 The normalised VACF versus dimensionless time t* (half log plot)
for two values of the scaled mean free path: l* = 0.1 (collective regime,
dashed line) and l* = 1.0 (particle regime, solid line). For both l*, all other
parameters are the same. In particular, we selected the same MPCD and
volume parameters as in Fig. 3 in ref. 47 to test our implementation: cell
size aMPCD* = 1.0, density r0* = 5, a = 1301 and Lx* = Ly* = Lz* = 20. This
choice for the cell size implies that dt* = l*. The shown graphs were
obtained by averaging over the last 4.9 � 104 consecutive time steps and
over 10 independent simulations, each of which is started with a different
noise seed.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
5 

Ja
nu

ar
y 

20
17

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
L

ei
de

n 
/ L

U
M

C
 o

n 
09

/0
2/

20
17

 1
1:

40
:2

7.
 

View Article Online

http://dx.doi.org/10.1039/c6sm02252a


Soft Matter This journal is©The Royal Society of Chemistry 2017

to analyse the compressibility. Since MPCD solvent behaves
as an ideal gas, the discrete probability P(nc) for finding nc

particles per lattice cell is theoretically given by a Poisson
distribution

P ncð Þ ¼
nch inc e� nch i

nc!
; (21)

with nc the number of particles per cell and hnci = ns = f0* their
average value. As a consequence of the variance per lattice cell
being f0* in the steady state, we find that O(t) = Ost = V*f0*.

Analysing O(t) from the simulations for V* = 4000 and
f0* = 5, the first observation is that O(t) quickly reaches a
plateau value �O that does not depend on l*, consistent with it
being an equilibrium property. However, �O is lower than the
theoretical value Ost = 40 000, namely �O= 2606 with standard
deviation sO= 99 for l* = 1 and �O = 2607 and sO = 103 for l* = 0.1.
This deviation can be understood in terms of smoothing due to
the particle-to-field projection, which assigns particle fractions
instead of particles to lattice positions. As a result, the number of
particles per cells Np is usually a fractional number and thus the
probability P(Np) is a continuous instead of a discrete function.
In particular, if we enforce discrete particle assignment, by
projecting each particle fully to the closest lattice position, both
the Poisson distribution and the theoretical value �O = V*f0* are
recovered. From simulations with the original trilinear and the
new Gaussian projection schemes, for different values of f0* and
V*, we find the relation �O = sV*f0*, containing an additional
constant s which is fitted as 0.295 (E3/10) for trilinear and 0.064
(E1/15) for Gaussian interpolation. We note that the particle
evolutions, and thus the equations of state, do not depend on
this projection: they are the same in all considered cases. It just
show that the variance of the projected solvent field depends on
the projection algorithm. As expected, the smoothing is most
significant for the Gaussian projection algorithm.

These numerically obtained values for an ideal gas can be
used for a comparison to the new hybrid MD-SCF/MPCD method,
which includes a field-based compressibility term. For the
same a and l* = 0.1, we replace the ballistic motion of MPCD
by the velocity Verlet (VV) scheme (12) with a non-ideal force
fi(r) = �kHrrfW(r) for all particles and a time step Dt. The
collision step, carrying a time step dt, is the same as in (14).
Note that we recover the original MPCD scheme when the
compressibility term is omitted (kH = 0). Due to the excluded
volume interactions, the kinetic energy is not necessarily con-
served, and we apply the MBS thermostat during the collision
step to maintain a constant simulation temperature. The time
increment for the VV-scheme is Dt* = 0.01. For r0* = 5, a value of
kH* = 3 was determined earlier,14 which sets a realistic range for
the Helfand parameter. The field fW is updated with fup = 10,
i.e. at every collision step.

Fig. 3 shows the short-time VACF for these systems for
different values of the Helfand compressibility parameter kH

in this range. We find that adding excluded volume interac-
tions gives rise to effective caging, as can be concluded from the
presence of negative regions in the VACF. The origin of this
phenomenon lies in the understanding that particles experi-
ence a force that drives them towards a situation where the
variance of fW(r), the field derived from the instantaneous
particle positions, decreases in between collision steps, i.e. large
fluctuation of the solvent field are suppressed. In particular,
�O(kH*) decreases for increasing kH*, see Fig. 4, as one may expect,
indicating also that sound waves are not an issue. Since these
forces oppose the build-up of regions of too low and high

Fig. 2 Log–log plot of the same data as in Fig. 3, for l* = 0.1 (triangles) and
l* = 1.0 (circles), including the long-time tails. A: full time range, and B: zoom
of tails. Lines relate to the predicted algebraic Bt�3/2 decay of the VACF, with
an amplitude a0 that is either obtained from the best fit to data points in a
selected range (t* A [6,20], solid line) or explicitly derived from mode-
coupling theory as a0 = ((d � 1)/dr) � (4p(D + n))�d/2 (dashed-dot line), see
also Fig. 4 and discussion in ref. 47. To evaluate the latter expression,
diffusion coefficients D extracted from simulations were used and the
kinematic viscosity n was estimated from Fig. 1 and 2 in ref. 47 and the
relation Sc = n/D, giving rise to n* = 0.80 for D* = 0.080 (l* = 0.1, Sc E 10)
and n* = 0.64 for D* = 0.64 (l* = 1.0, Sc E 1), inserting d = 3 and r* = r0* = 5.
Like in the previous study,47 we find that the predicted amplitude is exact
within error bounds for l* = 1.0 and that it is about 10% larger than the fitted
one for l* = 0.1. Nevertheless, the zoom shows that the predicted decay
(dashed-dot line) is reproduced for l* = 0.1 at late times, i.e. next to the time
range (t* Z 20) where finite size effects start to dominate.47 Since we are
interested in analysing how compressibility modulates the VACF, we will use
both functions as a reference in the remainder.
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particle densities, particles experience an effective caging by
their surroundings.

Our treatment deviates in this aspect from the original
hybrid approach of Malevanets and Kapral,42 which neglects
all solvent–solvent interactions in the MD propagation scheme
between collision steps. Their theoretical analysis of MD/SRD
as a numerical solver for the Navier–Stokes equations starts

from the ballistic streaming step for solvent particles, and it is
not directly apparent if and how including direct solvent–
solvent interactions in the MD updates, like the ones advocated
here, affect this hydrodynamic description. Padding and Louis50

did introduce additional terms in the inner MD loop for a pure
solvent system, but they restrict themselves to external forces
(due to gravity, fixed or moving boundary conditions) on solvent
particles and disregard any direct force between solvent particle
pairs. Disregarding them, however, seems to be purely a matter
of convenience and not a methodological constraint.50 After all,
representing solvent–solvent interaction only by collisions is
favoured in terms of computational efficiency and analytical
tractability.

Instead of a formal justification, we may study the longer-
time scaling for the simulated systems with kH* 4 0. In Fig. 5,
we have plotted the absolute value of VACF versus t* for the
three considered values of kH* on a log–log scale. The algebraic
fitting functions shown in Fig. 2, i.e. a0t�3/2 with a0 determined
either by regression or from mode-coupling theory, both for
l* = 0.1, are added to enable a direct comparison to the results
of the original MPCD scheme. We note that, as before, the
behaviour starting from t* E 15–20 can be attributed to the
finite system size and should be disregarded in this analysis.47

Although the trends are certainly less well-defined than for
kH* = 0, the known algebraic t�3/2 decay is reproduced reason-
ably well by the simulations results for kH* a0, most clearly for
kH* = 1 and 2. This analysis suggests that the hydrodynamics on
a larger scale is not significantly affected by the introduction of
the (weak) particle pair interactions, but a formal derivation is
left for the future. Also intuitively one could expect this finding,
since the original collision scheme is conserved. The diffusion
coefficient, obtained from the MSD for these simulations,

Fig. 3 The normalised VACF versus dimensionless time for a non-
cohesively interacting gas (w = 0) in the new MD-SCF/MPCD approach,
where compressibility is penalised via the Helfand compressibility term in
the non-ideal free energy. For kH* = 0, standard MPCD is recovered. The
graphs show results for increasing compressibility parameter: kH* = 1 (black,
circles), kH* = 2 (red, squares) and kH* = 3 (blue, diamonds). The latter value
relates the compressibility of the system to that of liquid water at room
temperature. We used the same system parameters as before and a MPCD
time step dt* = l* = 0.1 (collective regime). The time step for the VV scheme
(12) is Dt* = 0.01. The shown graphs were obtained by averaging over the
last 4.9 � 104 consecutive time steps and over 10 independent simulations,
each of which is started with a different noise seed.

Fig. 4 The mean value �O of O(t) in (20) for different values of kH*, as
determined over the whole trajectory. In the simulations, O(t) very quickly
levels off to a constant value around which it fluctuates. Bars reflect the
standard deviation sO of these fluctuations. From the observation that �O
monotonically decreases for increasing kH*, we conclude that sound
waves play no role when compressibility is accounted for. In particular,
unphysical sound waves are absent for kH* = 0 (standard MPCD).

Fig. 5 Log–log plot of the absolute value of the normalised VACF shown
in Fig. 3, for kH* = 1 (black, circles), kH* = 2 (red, squares) and the realistic
value kH* = 3 (blue, diamonds), zooming in on the long time tails
behaviour. Taking the absolute value is required because of the negative
regions in the VACF. The algebraic decay a0t�3/2 of standard MPCD is
added for comparison, see Fig. 2. Solid line: with numerically fitted a0;
dashed-dotted line: for a0 calculated using mode-coupling theory.
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is D* = 0.079 for all kH* a 0 (compare to D* = 0.080 for standard
MPCD with kH* = 0). This finding confirms that self-diffusion is
hardly affected by the additional control of the compressibility.

In addition to fup = 10, where the field is projected every tenth
VV step or every collision step, we have performed simulations
for kH* = 3 and field updates every fifth VV step, i.e. fup = 5, the
standard value in the next sections, and even every VV step,
i.e. fup = 1 (fully synchronised). The original model of Milano
and Kawakatsu generally employed much fewer updates, i.e.
fup B 10–100,29 based on the observation that projected fields
are usually only slowly fluctuating. Although fewer updates are
certainly computationally attractive, it also signals that the
underlying particle dynamics in the MD-SCF model is rather
slow. Selecting fup = 1 can be seen as a test for the consistency
between the field projection and the underlying particle
dynamics in the current treatment.

Fig. 6 compares the short time and long-time behaviour
of the VACFs for fup = 10, fup = 5 and fup = 1. Again, we may
disregard the very long-time tails, where the restricted system
size becomes an issue. It is clear that also the VACF for the fully
synchronised case contains a negative region and that the
graph oscillates, albeit that the amplitude of these oscillations
is significantly smaller than for fup = 10. The latter can be
understood in terms of the temporarily static nature of the
concentration field for fup 4 1. Since the particle dynamics is
driven by this field, updating the field less frequently ( fup = 10)
is equivalent to increasing the equilibration time towards an
optimal particle configuration given that (static) field, which
clearly enhances the caging. The position of the local VACF
minima, however, does not notably depend on fup, and filtering
these VACFs, to damp the oscillations, shows that they feature
equivalent long-time behaviour. The algebraic long-time decay
(Bt�3/2) is already quite apparent for fup = 1.

Lipid–solvent systems

Next, we consider systems containing nl H3(C4)2 lipids and nw

single-bead W solvent in a volume V* = Lx*Ly*Lz* of varying size,
subject to periodic boundary conditions. The grid size l for
the particle-to-field projection is usually set to l = rc (l* = 1), but
we will also consider other values. As mentioned before, we
renormalise the overall particle density, which varies with l, to
f0* after every particle-to-field projection. Here, we consider
the standard value f0* = 3 for DPD. The total number of
particles N is constant and given as N = nw + 11nl = 3V*. The
FH parameters are fixed in all simulations, i.e. wHC = 7.65/3,
wHW = 2.86/3 and wCW = 14.30/3 (see the Simulation setup
subsection). The average area per lipid A for a tensionless
membrane was previously determined as A0 ¼ 1:26 (in units
of rc

2).44 We determined an equivalence between the compres-
sibility parameter kH = 5 and the DPD aii = 25 for a particle
density f0* = 3, via the equation of state for the pressure,
although we used kH = 4.6 before.14 Since this parameter
controls the lipid spacing within a membrane, we will vary its
value within this small range.

To test whether our set of thermodynamic parameters {wKK
0,kH}

provide a proper mapping between the hybrid MD-SCF/MPCD

and the reference DPD model, we initially distribute a well-
chosen number of lipids, i.e. nl ¼ 2LxLy=A0, at random locations
in the volume. By selecting nl consistent with a flat or planar
tensionless DPD bilayer along two Cartesian directions, the sensi-
tivity of the surface tension to the average area per lipid A44 in our
NVT ensemble is exploited. Spontaneous self-assembly in the
hybrid model should give rise to a planar bilayer; if another
(tensionless) structure is formed, either it is a metastable state
or our parameters should be tuned. For reasons of efficiency,
we avoid a field update at every time step, but instead select a
small value fup = 5, assuming that the field does not signifi-
cantly change between updates for this value. It was deter-
mined from test simulations for different fup and it is actually

Fig. 6 Comparison of the normalised VACF for fup = 10 (blue, diamonds),
fup = 5 (red, squares) and fup = 1 (black, circles) for kH* = 3. The time step
for the VV scheme (12) is Dt* = 0.01 and l* = dt* = 0.1 in the MPCD part. All
other parameters are the same as in Fig. 3. A: the normalised velocity
autocorrelation function versus dimensionless time. B: log–log plot of the
long-time tails of the absolute value of the normalised velocity auto-
correlation function versus dimensionless time. The algebraic decay a0t�3/2

of standard MPCD is added for comparison, see Fig. 2. Solid line: with
numerically fitted a0; dashed-dotted line: for a0 calculated using mode-
coupling theory. The shown graphs were obtained by averaging over the
last 4.9 � 104 consecutive time steps and over 10 independent simulations,
each of which is started with a different noise seed.
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smaller than the usual minimal choice in MD-SCF,29 in line
with our expectation that the field evolution is accelerated
by accounting for collisions. The cell size a in the MPCD scheme
is initially chosen as small as possible, a* = l* = 1, to maximise the
resolution of MPCD. We note that this choice relates to roughly
3 particles per collision cell, which is fairly small compared to the
usual values of 5–15,47 but within the range where MPCD is
valid.46 The rotation angle a and collision time step dt in MPCD
are set to a = 901 and dt* = 0.1, which positions the dynamics
in the solvent domain in the fluid-like regime.47 The time step
used in the VV-scheme is Dt* = 0.01, with collisions (and
thermostatting) thus taking place every 10 steps of the inner loop.

Consistency of the MD-SCF/MPCD parameters. We start
with a small cubic volume V* (Lx,y,z* = 22) containing nl = 764
lipids and nw = 23 540 solvent particles. The reference DPD
simulation, using parameters of Shillcock et al.,44 shows that a
planar membrane readily forms by breakup and coarsening
of an initially interconnected structure. Close examination of
the structural evolution, however, shows that the limiting factor
is the diffusion and uptake of solvated lipid micelles (here: one
micelle) that result from this breakup process. After approxi-
mately 105 time steps, with Dt* = 0.02, this process is completed
(see Fig. 7A and A0).

Next, we consider the same system using our new hybrid
model, varying the compressibility parameter between kH = 4.6
(ref. 14) and kH = 5.0, the theoretically predicted value for this

density. When both the changes in the non-ideal free energy
W [f] and the lipid structure are negligible beyond a certain
stage, we denote that structures as equilibrium. For kH = 4.6,
lipids rapidly assemble from a mixed phase, via intermediate
spherical and cylindrical micellar phases, into a stable space-
filling interconnected structure on a large scale, see Fig. 7B,
while a planar lipid bilayer, aligned with two of the Cartesian
axes, rapidly assembles for kH = 5.0 (Fig. 7C). Considering the
structure for kH = 4.6, which is exemplary for a (meta)stable
structures in the range kH A {4.7,4.8,4.9}, more carefully, we find
that the lipid–water interface is reminiscent of a unit cell of a
Schwarz minimal surface type P, i.e. a triply periodic surface with
minimal surface area and vanishing mean curvature, albeit that
it is slightly distorted. We note that continuing this simulation,
up to a total of 2 � 105 time steps confirms that the structure
shown in Fig. 7B is (meta)stable.

To obtain a better insight in the peculiarities of the simulation
results, we quantify all structures in terms of geometrical and
topological features of the lipid–water interface via a procedure
that determines the four Minkowski functionals (MFs) for the
total lipid field, fl(r) = fH(r) + fC(r).51,53 For the interconnected
equilibrium structure shown in Fig. 7B, one of the MFs, the Euler
characteristic wMF, is indeed �2, which is the theoretical value for
the unit cell of a P-surface.52,54 Other theoretical MF values for a
P-surface unit cell are 0.5 (volume), 2.345 (surface area), and 0
(integral mean curvature).54 For the planar membrane, we find
wMF = 0 as a result of the periodic boundary conditions, which
relate this structure to a vesicle, i.e. a spherical object with
one internal cavity.51 Before analysing the geometrical MFs, we
note that our procedure overestimates actual values for curved
surfaces because of the two-fold discretisation, from particles-
to-field and field-to-voxels, that is needed for our procedure,54

unlike the topological Euler characteristic, which has an integer
value that is not affected by the discretisation procedure. We
nevertheless consider our procedure sufficient for the current
analysis. For more sensitive analysis, e.g. to properly analyse the
geometrical properties of the bicontinuous connection region
that forms upon fusion between two membranes, the calcula-
tion procedure could in principle be improved by using a finer
grid to project particles directly to voxels instead of using field
values on the fixed computational grid.

Comparison of the MFs that are related to the total surface
area and integral mean curvature, along the pathway for the
two values of kH, shows that the characteristics of structure
evolution overlap in the initial stages, see Fig. 8. Moreover, the
decrease of the integral mean curvature to zero with time
for kH = 5 confirms the completion of a planar bilayer around
104 time steps.

We may alternatively view our membrane as a thin elastic
sheet, and write a Helfrich effective surface Hamiltonian H for
a symmetric bilayer membrane

H ¼
ð
A

dS sþ 2kcH2 þ �kK
� 	

; (22)

with s the surface tension, A the total surface area, kc and �k the
bending modulus and Gaussian bending modulus, respectively,

Fig. 7 Simulation snapshots after 20 000 (A) and 100 000 (A0) time steps
of DPD (Dt* = 0.02). Just prior to the stage shown in the right hand side,
a long-lived lipid micelle has merged with the bilayer. (B) Simulation
snapshot after 10 000 steps of the new hybrid method for kH = 4.6.
(C) Simulation snapshot after 10 000 steps of the new hybrid method for
kH = 5.0. The mean-field free energy for the structures in the bottom row,
obtained using Dt* = 0.01, has reached a constant value, suggesting that
they are equilibrium structures. For clarity, only H3(C4)2 lipids are shown,
with red/blue representing H/C particles. In all simulations, periodic
boundary conditions were employed.
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and H = (c1 + c2)/2 and K = c1�c2 the local mean and Gaussian
curvature, with c1 and c2 the local principal curvatures.
Although a thin elastic sheet representation is not adequate
for small lipid domains with high curvature, i.e. some of
the simulated structures in this study, it is not uncommon to
seek additional insight by employing Helfrich theory also for
these cases. For the membrane considered here, the bending
modulus was previously determined as kc = 25kBT and the
number of lipids consistent with a tensionless flat membrane,60

although one could wonder if these values are also appropriate
for MD-SCF/MPCD. The term �kK in (22) is usually omitted, as it
is constant when the Euler characteristic does not change, via
the Gauss–Bonnet theorem. Moreover, it vanishes for a structure
with K = 0, like a planar or cylindrical structure, if we neglect
shape fluctuations that are unimportant for our analysis. The
challenge here is that the Euler characteristic for a plane and

a P-surface are different, and the Gaussian curvature for the
P-surface is non-zero, meaning that the extra term should be
added to compare the Helfrich energy for these two structures.

A planar membrane (H = 0) that is tensionless (s* = 0) for
an average area per lipid A 4 A0, as a result of an unmatched
kH, will experience a non-zero (positive) surface tension s when
assembled from a number of lipids consistent with A0.44

A mismatch of kH will therefore destabilise a planar membrane
in favour of structure associated with lower surface tension, as
long as the topology does not change. The number of accessible
structures or states, however, is limited by the forced periodicity in
all three dimensions, which rules out simple tilting to relieve
surface tension, and will thus affect the barriers between accessible
states. The quadratic term in (22) vanishes for a triply-periodic
P-surface, which pairs a minimal surface area to a vanishing
mean curvature. Fig. 8 shows that both MFs for kH = 4.6 are
indeed quite small, particularly if we consider that the structure is
curved and the voxel-based calculation procedure over-estimates
these MF values. In combination with visual inspection, we
therefore conclude that this interface bears many features of a
triply-periodic P-surface.

The finding that the surface area for the P-like structure is
nevertheless larger than for a planar membrane, see Fig. 8, is
somewhat surprising, as it is a minimal surface structure.
Although this can be seen in terms of an over-estimation of the
surface area, it can also be understood in terms of periodicity
constraints. In particular, the space-filling property is not satisfied
for a planar membrane, which is periodic in only two dimensions.

Direct comparison of the Helfrich free energy for perfect planar
and P-type structures is not straightforward, since it requires
reliable information of the principal curvatures, surface tensions
and �k. Nevertheless, combining K = �c1

2 (for a perfect P-surface,
c2 = �c1) and the experimentally consistently found relation
�k E �(0.8 � 0.9)kc, we may conclude that the surface tension
for the triply-periodic structure is likely smaller than for its
planar counterpart in the case of a kH-mismatch, as one would
expect for a structure that forms by spontaneous assembly.
This indicates that the surface tension is indeed non-zero for
kH a 5.0.

For kH = 4.6, we do have direct access to the non-ideal
free energy W [f] for a pre-assembled (stable) planar membrane
and the defected triply-periodic membrane of Fig. 7B. Close
comparison (not shown) indicates that the difference is indeed
very marginal, albeit that the planar membrane has the lowest
non-ideal free energy. Apparently, the connections in the inter-
connected structure that always quickly forms upon quenching
a lipid/solvent mixture cannot be broken for kH = 4.6, and
coarsening proceeds by minimising the mean curvature and
surface area, resulting in a (meta)stable P-like structure. The
energy barrier separating the two states can only be surpassed
for kH = 5.0.

Setting kH = 5.0, we first focus on the concentration profiles
perpendicular to the planar membranes, as obtained from
standard DPD and the hybrid MD-SCF/MPCD model for two
values of the grid size l used in the projection of particles to
concentration fields, see Fig. 9. We note that all profiles were

Fig. 8 Evolution of the Minkowski functionals related to the (total) surface
area (A) and integral mean curvature (B), for structures along the pathways
for kH = 4.6 and 5.0. The MFs were calculated and scaled using the
procedure described in ref. 53. In short, they were calculated from the
22 � 22 � 22 voxels in a binary (b/w) representation of the total lipid field
that is obtained via a thresholding procedure (threshold 1.0). The total lipid
field is the sum of field values for head and tails on the computational grid.
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obtained directly from particle positions (by a binning procedure)
and averaging over the last 160 snapshots; the reference DPD
profiles were determined for the system shown in Fig. 7A and A0

by the same procedure. Comparing these profiles to the ones for
the hybrid model, i.e. the system shown in Fig. 7C, we observe
good agreement, albeit that the particles in the hybrid model are
more localised – the profiles are sharper, see Fig. 9A – and that
there is a solvent enrichment close to the membrane, compared
to the bulk value. Although these deviations seem irrelevant, it
makes sense to trace their origin.

It is useful to compare the profiles for the total concen-
tration, see Fig. 9B, obtained by summing over the profiles for
particle types. For DPD, we observe the characteristic small dip
next to the membrane and a corresponding rise of the total

particle concentration within the membrane. For the hybrid
MD-SCF/MPCD method, the general features of the total concen-
tration profile are comparable, but the rise/dip at the lipid–water
interface are more pronounced, despite the presence of a
compressibility term in the non-ideal free energy that penalises
such localised deviations.

Two remarks can be made. First, these concentration profiles
are directly derived from particle coordinates, while MD-SCF/
MPCD considers the compressibility contribution after particle-
to-field projection, which has the effect of smoothing. Instead,
we may consider field profiles for all particle types, Fig. 10A,
which are only defined at lattice positions of the field grid, and
have been projected onto one direction, perpendicular to the
membrane, to enable a direct comparison. These profiles clarify
that solvent enrichment is completely absent in the coarser field
representation. We thus conclude that inconsistencies between
particle forces and density fields, as a result of finite-difference

Fig. 9 (A) Comparison of the concentration profiles of a self-assembled
membrane simulated using standard DPD (solid lines) with a self-assembled
membrane for the new hybrid model, l = 1.0rc and the cell size for the
MPCD collision step a = l (dashed lines). (B) The total concentration profile,
obtained by summing the individual profiles, for the same two systems and a
pre-assembled membrane with the new hybrid model (l = 0.75rc and a = 2l)
discussed later on. The profiles for solvophilic head (H), solvophobic tail
(C) and solvent (W) particles were determined from binning instantaneous
particle positions and averaging over a large number of simulation snap-
shots. For completeness, we note that a complete overlap of the MD-SCF/
MPCD and DPD profiles is not to be expected, as the methods are based
on different degree of coarsening.

Fig. 10 (A) The density fields fH(r), fC(r) and fW(r), projected on a
direction perpendicular to the membrane and averaged over the same
number of snapshots as before, for the hybrid simulation (l = 1.0rc).
Symbols denote lattice positions, dashed lines are drawn to guide the eye.
(B) The same for the total density field f(r) = fH(r) + fC(r) + fW(r). The total
concentration profile for standard DPD derived from particle positions is
added to enable direct comparison. For completeness, we note that a
complete overlap of the MD-SCF/MPCD and DPD profiles is not to be
expected, as the methods are based on different degree of coarsening.
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(FD) gradient calculation and subsequent interpolation, affect
and slightly shift the force balance compared to a pure particle
or field description, promoting increased occupancy away from
the dividing interfaces and thus resulting in somewhat steeper
interfacial profiles. This effect is most significantly for the thin
H-rich region close to the water–lipid interface. Focussing on
the profile for the total field f(r), see Fig. 10B, we find that the
compressibility in both models, DPD and the new hybrid, is
indeed comparable. We thus conclude that the differences in the
particle profiles are mainly due to coarsening and the way forces
are computed using the field grid.

Reducing the field discretisation parameter l should improve
the representability of rapidly varying density fields on the grid
(note that the thickness of the membrane is B5rc) and increase
the accuracy with which particle forces are obtained from
projected density fields by FD and interpolation. We thus also
simulated for the same thermodynamic parameter set using
a reduced l = 0.75rc and a = 2l. The calculated average of
1.27 particles per lattice cell for this l indicates that there will
be an increased sensitivity to minute particle displacements in
the projection algorithm, giving rise to quickly fluctuating
fields, and thus to fluctuating forces, so we start close to the
equilibrium structure. Starting from a pre-assembled membrane,
we find that the mean-field free energy W[f] indeed rapidly
converges to a constant value. Comparing the averaged concen-
tration profiles and the profiles for DPD, see Fig. 11, shows
that increasing the field resolution indeed provides a better
match between MD-SCF/MPCD and DPD, as expected when the
coarsening is reduced. We thus conclude that the hybrid and
DPD model for the lipids are consistent for this set of hybrid
(thermodynamic) parameters.

Analysing the MD-SCF/MPCD dynamics. Next, we focus on the
dynamics of structure coarsening. The 22-cube system simulated
by the new hybrid MD-SCF/MPCD method for kH = 5.0, see the

final structure in Fig. 7C, and the corresponding structure
evolution in Fig. 12, serves as a starting point or reference.
For brevity, we denote a planar membrane along two Cartesian
basis vectors as an ’aligned’ membrane, and the MD-SCF
method of Milano et al. as the original hybrid method, whereas
the new MD-SCF/MPCD method is the new hybrid method.
Fig. 13 shows simulation snapshots for the same parameter set,
but now simulated using the original hybrid method, which
employs an Andersen thermostat for maintaining a constant
temperature.26 In particular, Velocity Verlet (12) with the same
time step (Dt* = 0.01) is combined with an Andersen thermostat,
with a collision frequency of 5 ps�1, and the same homogeneous
lipid–water mixture is used as a starting structure. Whereas the
formation of a planar membrane in the reference (new hybrid)
model is complete after 104 time steps, see Fig. 12, the structure
simulated using the original hybrid method is a collection of lipid
micelles at this stage, see Fig. 13. With time, these micelles merge
with others to form elongated cylinders that may or may not be
interconnected, see snapshot after 105 time steps, while a single
and stable planar membrane, under an angle with the Cartesian
basis, containing a large circular protrusion has formed after
3–4 times longer simulation (4 � 105 time steps).

The comparison of the evolution of the MFs, see log-normal
plot in Fig. 14, confirms that structure coarsening takes place
on a different pace between the two hybrid models. This
difference is particularly apparent in the early stages, where
convective flows are known to speed up structure coarsening in
reality, even in the absence of external flow fields. The initial
high values for the curvature and surface area, see Fig. 14, can
be attributed to the formation of many isolated micelles from a

Fig. 11 Comparison of the concentration profiles of a self-assembled
membrane simulated using standard DPD (solid lines) with a pre-assembled
membrane for the new hybrid model, l = 0.75rc and a = 2l (dashed lines). The
profiles for solvophilic head (H), solvophobic tail (C) and solvent (W) particles
were determined from binning instantaneous particle positions and averaging
over a large number of simulation snapshots.

Fig. 12 Snapshots after 103 (A), 2� 103 (B), 5� 103 (C) and 104 (D) time steps
of simulation for the new hybrid MD-SCF/MPCD method (Dt* = 0.01),
showing the structural evolution of the system towards an aligned membrane,
which is the same as in Fig. 7 (bottom, right). For clarity, only H3(C4)2 lipids are
shown, with red/blue representing H/C particles.
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homogenous mixture, whereas the relatively fast reduction for
the new hybrid method is a signature for micelle coalescence, a
process that is accelerated by hydrodynamic interactions
between them. The different slopes for both hybrid methods
indicate that hydrodynamics also plays a role at later stages. For
the original method, the MF related to integral mean curvature
decays slowly with time, signalling the formation of a flat membrane
from (cylindrical) micelles, albeit that the final value is positive
due to the presence of the protrusion. The final MF related to
the total surface area for this structure is clearly higher than for
the aligned membrane.

To evaluate which factor is most significant in the phase
separation kinetics, i.e. accounting for effective collisions in
MD-SCF/MPCD or the global Andersen thermostat in MD-SCF,
we also performed MD-SCF simulations with an Andersen
thermostat for a reduced collision frequency of 2 ps�1, as well
as MD-SCF without any thermostat. In the latter case, we simulate
a microcanonical (NVE), for which hydrodynamic interactions
should be correctly represented, instead of the usual canonical
(NVT) ensemble. Since part of the potential energy, which is
high for the starting mixed system with many lipid–water
contacts, flows to kinetic energy during simulation, however,
trajectories may become unstable for a constant time step Dt*.
Such instability originates from intra-molecular interactions, as
the intermolecular interactions are soft.

The evolution of the non-ideal free energy W [f] for MD-SCF
without a thermostat and two small (constant) values of the
time step, Dt* = 5 � 10�4 and Dt* = 10�4, are shown in Fig. 15,

together with data for MD-SCF with an Andersen thermostat
(update frequency 5 ps�1) and MD-SCF/MPCD, both obtained
for Dt* = 0.01. To enable a direct comparison, the energy W [f]
(logarithmic scale) has been plotted versus time t*, with
t* = Dt*�n and n the number of time steps in the simulation.
As expected, the temperature (kinetic energy) in the non-
thermostatted simulations rises with progressing phase separa-
tion and eventually these simulations become unstable, as can
be observed from the rising W[f]. Further decreasing the time
step to Dt* = 5 � 10�5, or starting from a system that is
thermostatted for a short while, does not resolve this issue.
Nevertheless, Fig. 15 clearly shows an enhanced reduction of
W [f] during the initial stages in the absence of a thermostat,
illustrating that it is indeed the use of the Andersen thermostat
that slows down the kinetics.

Turning to the effect of the collision frequency in MD-SCF
simulations with an Andersen thermostat, we compare the evolu-
tion of the non-ideal free energy W [f] for the two considered
update frequencies, see Fig. 16A. We observe that the kinetics is
enhanced for the lowest collision frequency. Since a reduced

Fig. 13 Snapshots after 104 (A), 105 (B) and 106 (C) time steps of simulation
for the original SCF/MD scheme (Dt* = 0.01).29 Both the simulation volume
and the thermodynamic parameters are the same as in Fig. 7. The equilibrium
structure is a slightly bended and considerably tilted membrane, that contains
a stable and large circular protrusion. For clarity, only H3(C4)2 lipids are shown,
with red/blue representing H/C particles.

Fig. 14 Evolution of the MFs related to the (total) surface area (A) and
integral mean curvature (B), for the original MD-SCF approach of Milano
et al.29 (black) and for the new model based on MPCD (red). Note that the
time steps Dt* are equal in both methods and that the horizontal time axis
is plotted on a logarithmic scale. The caption of Fig. 8 provides more
information about the MFs calculation.
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collision frequency implies that the velocities of fewer particles
are rescaled every time step, this finding agrees with the results of
MD-SCF without a thermostat. Concentrating on the long-time
behaviour, W [f] is seen to converge to very comparable values,
showing that the simulated structures are stable and suggesting that
the stable structure does not depend on the particular trajectory.
However, the stable structure for lowest collision frequency is the
interconnected aligned membrane-patches shown in Fig. 16B,
rather than the tilted planar membrane with a protrusion obtained
for the original collision frequency, see Fig. 13. The finding of two
different structures with very comparable W [f] suggests that both
are metastable states of the system.

Self-assembly of a tilted planar membrane can be regarded as a
sign of frustration and a hint that a tensionless membrane is
incommensurate with the size of the simulation volume. To further
investigate whether this plays a role, we have also considered the
stability and non-ideal free energy of the proposed equilibrium
structure, an ‘aligned’ membrane, which was pre-assembled by
positioning lipids in a membrane-like arrangement perpendicular
to the z-direction as a whole, and equilibrated using MD-SCF with
the original Andersen thermostat. Direct comparison of W [f] for
the self-assembled membrane and this pre-assembled membrane,
see Fig. 17, shows that W [f] for the pre-assembled aligned
membrane is the lowest, although the difference is not very large.
This result suggests that the self-assembled membranes discussed
in the previous paragraphs are formed as a result of kinetic
trapping: micellar proto-structure connects by proximity, as a result
of diffusion, into an initial space-spanning structure. Consequently,
minimising the line tension, by reducing the overall curvature
of the structure and fusing all holes into one circular protrusion
(for the original collision frequency) or a connection region (for
the reduced collision frequency) to form a flat but incomplete

membrane, is apparently more likely than the formation of a
complete membrane that is fully aligned with two Cartesian
directions. Apart from the weak thermodynamic driving forces
for such restructuring, one should again be aware that the
condition of 3D periodicity affect energetic barriers and thus
the transitions between accessible states. Overall, we conclude
that these incomplete membranes are metastable states of the
system, and do not form as a result of a parameter mismatch.

Focussing on the concentration profiles for MD-SCF with an
Andersen thermostat, determined from the equilibrated pre-
assembled membrane, we find that they are in good agreement
with the profiles for the membrane simulated using DPD, again
apart from excess solvent close to the membrane–solvent inter-
face, see Fig. 18. Considering the total particle concentration,
like before, we find that the profile (not shown) in the vicinity
of the lipid–water interface has a very similar signature as in
Fig. 9B for MD-SCF/MPCD, albeit that the amplitude of the
oscillations is somewhat smaller.

Finally, we analyse the diffusion rates for all systems in this
section, i.e. for systems simulated using DPD, MD-SCF with an

Fig. 15 Comparison of the evolution of the non-ideal free energy W[f]
simulated using the Andersen thermostat (black) and without thermostat,
for two values of the time step Dt*: 0.0005 (red) and 0.0001 (blue). As a
reference, the data for the MD-SCF/MPCD simulation is added (cyan). The
energy (logarithmic scale) is plotted versus time t*, with t* = Dt*�n and n
the number of time steps. All systems were simulated for 106 time steps in
total from the same starting structure, a lipid/water mixture.

Fig. 16 (A) Comparison of the evolution of the non-ideal free energy W[f]
simulated using the original collision frequency 5 ps�1 (black) and a
reduced frequency 2 ps�1 (red) in the Andersen thermostat (Dt* = 0.01).
(B) Stable structure obtained after 106 time steps for the simulation with a
reduced collision frequency. For clarity, only H3(C4)2 lipids are shown, with
red/blue representing H/C particles.
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Andersen thermostat, or MD-SCF/MPCD. Values for the diffusion
constant D* are obtained from a linear fit of the mean-square
displacement (MSD) for long times, with Dw* the diffusion
coefficient for water particles and Dl* the diffusion coefficient
for the centre of mass of the lipid chains, see Table 3. As these
values are calculated from limiting behaviour, lipid diffusion
in the solvent phase is not considered in this analysis. We do
observe fast, anomalous diffusion in the initial stages, where
lipids start to self-organise, but at later stages the MSD adopts
an (approximately) linear relation with simulation time. The
findings confirm that the kinetics in MD-SCF/MPCD is consider-
ably enhanced compared to the MD-SCF of Milano et al.

Moreover, the different diffusion rates for lipids in DPD and
MD-SCF/MPCD signal that particularly the lipid kinetics is
unmatched between the two models, which agrees well with
earlier observations that the Schmidt number in DPD is always
close to one.30

Lipid–solvent system in increased volumes. Before we
concentrate on the results of hybrid simulation for larger
simulation volumes, we shortly discuss the property of the
considered DPD lipid representation to promote the positioning
of head particles next to other head particles rather than to water
particles (since aHH o aHW), which stimulates the formation of
multilayer structures.55 Indeed, performing a DPD simulation with
a lipid content that is commensurate with a tensionless membrane
along the xy directions in a rectangular simulation volume
(Lx = Ly, Lz o Lx/2), starting from randomly positioned lipids,
the (quasi)equilibrium structure is the defected double bilayer
shown in Fig. 19. This finding is consistent with aHH o aHW

and an approximate matching of double membrane structure
along the shortest dimension of the simulation volume. We
may expect a competition between single- and multilayer struc-
ture, with one layer reflecting a lipid bilayer, also in the hybrid
model.

Next, we consider the hybrid model for a larger cubic volume
V* (Lx,y,z* = 32), containing nl = 1617 lipids and nw = 80 517
solvent particles (N = 98 304). The lipid content is deliberately
chosen consistent with a flat tensionless (DPD) membrane that
spans the cubic simulation volume along two Cartesian direc-
tions. Before we consider the results, we note that the periodic

Fig. 17 Comparison of the evolution (logarithmic time axis) of the mean-
field free energy W[f] for the self-assembled membrane shown in Fig. 12
(black) and a planar pre-assembled (or aligned) membrane (red).

Fig. 18 Comparison of the concentration profiles of a self-assembled
membrane simulated using standard DPD (solid lines) and a pre-
assembled membrane (dashed lines) for the model of Milano et al.29 The
profiles for solvophilic head (H), solvophobic tail (C) and solvent (W)
particles were determined from binning instantaneous particle positions
and averaging over a large number of simulation snapshots.

Table 3 Diffusion rates for the solvent Dw* and the centre of mass of the
lipids Dl*. These values are extracted from a linear fit of the mean-square
displacements that were measured during the last half of 2 � 105 (DPD and
MD-SCF/MPCD) or 106 (MD-SCF) trajectories

Method Dw* Dl*

DPD 0.14 0.0066
MD-SCF, Andersen 0.035 0.0018
MD-SCF/MPCD, fup = 5 0.14 0.096

Fig. 19 Snapshot after 2 � 105 time steps of DPD simulation (Dt* = 0.02)
in a 30 � 30 � 12 simulation volume (all in units of rc). The simulation
volume contains nl = 1422 H3(C4)2 lipids and nw = 16 758 solvent (W)
particles (N = 32 400). All particles are shown, with red/blue/iceblue
representing H/C/W particles.
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boundary conditions play an important role in the forthcoming
discussion. In particular, any free-floating newly formed bicelle
(i.e. an isolated round membrane patch) will experience an ener-
getic penalty due to its edge domain or rim. As a result of the
competition between this and other factors, bicelles that grow
beyond a critical size become unstable and favour a transition into
a stable vesicle, albeit that both states remain separated by an
energetic barrier. Using periodic boundary conditions, however,
this energetic penalty associated with the growing rim can alter-
natively be avoided when a large bicelle connects with its mirror
image, over the simulation volume boundaries, to become one
space-spanning (flat) membrane. This process will not be prevented
by a sudden increase of the surface tension, as the selected
lipid concentrations agrees well with a tensionless membrane;
moreover, the disappearance of the rim enhances the stability of
such a membrane when compared to a bicelle of the same size.
Thus, especially for simulation volumes that are larger than this
critical bicelle size, one may expect a pathway-dependent formation
of space-spanning membranes or vesicular structures.

Depending on the starting conditions, we indeed find two
structures with very similar non-ideal free energy W[f]: a double-
layer structure that spans the simulation volume in one of the
Cartesian directions (and topologically analogous of a vesicle
that is flattened to span the simulation volume along one
direction, see Fig. 20A) forms when starting from lipids that
are randomly distributed in the whole simulation volume, while
a single-layer aligned (planar) membrane forms upon distributing
the lipids initially only in half of the volume (see Fig. 20B).
Assuming that the first is a planar membrane of thickness 2d,
capped by two half cylinders with radius d, we can use volume
conservation to determine the length L̃ of its planar part, as

~L ¼ 1

2
ðL� pdÞ (23)

with L the length of the (cubic) simulation volume. Using this
relation, we can write the Helfrich Hamiltonian for the two cases
as

H1 ¼ 2s1L2

H2 ¼ s2 L2 þ pdL
� �

þ pLkc
d

: (24)

Since both structures have the same non-ideal free energy, we
assume that alsoH1 ¼ H2 for this L. Filling in L = 32rc, as well as
d = 5.5rc and kc = 25kBT, the earlier determined values, we find
that s1* = 0.77s2* + 0.22. The number of lipids was selected to
provide a tensionless aligned membrane, i.e. small s1* o 1.0, so
we find that s2* r s1* as expected for a structure that self-
assembles from a completely dispersed lipid/water mixture.
Moreover, since (24) additionally indicates that H1 oH2 for
L o 32rc and H2 oH1 for L 4 32rc, this analysis agrees with
our previous reasoning and explains the computational finding
that an aligned planar membrane usually forms by self-assembly
in smaller simulation volumes, whereas a multi-layer structure
is consistently found in larger simulation volumes. We note,
however, that the quantitative value of this analysis is restricted,

as we should more carefully single out boundary effects before
drawing any general conclusions.

Improved force calculation

The compact (6-point) discrete gradient operator, see Appendix A
for details, used to calculate particle forces from the mean-field
potentials, has the advantage of being computationally efficient,
but compactness may also bring along undesired effects.
This can be seen clearly from a MD-SCF/MPCD simulation that
starts from a pre-assembled spherical liposome containing a
large hole/protrusion, see Fig. 21A. With time, the hole nicely
disappears, a process that is driven by the undesired line tension
associated with the rim of the hole, but meanwhile, at a larger
scale, the vesicle also adapts its shape, and transforms into an

Fig. 20 Snapshots after 5 � 104 time steps of hybrid simulation in a
32 � 32 � 32 simulation volume (all in units of rc, nl = 1617, Dt* = 0.01). In
both cases, the simulations are started from a mixture of lipids and water,
with lipids initially randomly dispersed throughout: the whole simulation
volume (A) or half of the simulation volume (B). For clarity, only H3(C4)2
lipids are shown, with red/blue representing H/C particles. (C) comparison
of the evolution (logarithmic time axis) of the mean-field free energy W[f]
for the self-assembled structures shown above.
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unexpected, cubic vesicle. Although facets may have a physical
cause, we consider this finding a sign that the discrete gradient
operator is slightly anisotropic, the effect of which is most clearly
seen in larger lipid structures. Here, we redo some of the simula-
tions using a more isotropic discrete gradient operator taken from
literature. For simplicity, we focus on long-term behaviour rather
than formation pathways. All thermodynamic and numerical
parameters are the same as in the referred simulations.

Fig. 22 shows the equilibrated results in a small cubic
volume V* (Lx,y,z* = 22) for both MD-SCF/MPCD and MD-SCF
based on an Andersen thermostat, compare to the result shown
in Fig. 7C and the final snapshot (C panel) in Fig. 13. For
both methods, an aligned planar membrane forms eventually.
Apparently, the choice of the gradient operator is not decisive
for the new hybrid MPCD scheme, because of the small

simulation volumes, although a planar membrane takes some-
what longer to form. For the original hybrid scheme,29 however,
we find that the isotropy of the discrete gradient operator
does matter. Instead of a tilted perforated membrane that we
found before, we obtain an aligned, complete membrane.
Clearly, another factor plays a role in the formation of a tilted
structure, which is the directional bias to the forces introduced
by a less isotropic gradient. Apparently, this bias promotes the
formation of a metastable state in the form of a tilted bilayer,
see Fig. 7 (bottom, right).

The non-ideal free energy for the MD-SCF/MPCD and the
MD-SCF with an Andersen thermostat should be the same
for this aligned membrane for us to firmly conclude that
MPCD indeed samples a correct ensemble. Close comparison
shows that the W [f], which is noisy as a result of thermal
fluctuations, for the two different simulations are close but
slightly offset. To understand the origin of this offset, we
merged both methods by continuing the MD-SCF/MPCD simula-
tion of Fig. 22 by MD-SCF with the usual Anderson thermostat. We
find, see Fig. 23, that the simulation temperature in the first part,
simulated using MD-SCF/MPCD, is slightly higher than T* = 1.

Fig. 21 Snapshots after 200 (A) and 5200 (B) time steps of MD-SCF/
MPCD simulation in a 100 � 100 � 100 simulation volume (all in units of rc,
nl = 36 236, N = 3 � 106, Dt* = 0.01). The discrete gradient operator of
Appendix A is used in the force calculation. Only lipid particles are shown
for clarity, with red/blue representing H/C particles.

Fig. 22 Snapshots after 5 � 104 time steps of hybrid MPCD simulation (A)
and after 1 � 106 time steps of MD-SCF with an Andersen thermostat (B).
In both cases, flat membranes spanning the 22 � 22 � 22 simulation
volume (all in units of rc, nl = 764, Dt* = 0.01) are formed, starting from a
mixture of lipids and water, with lipids initially randomly dispersed.
All particles are shown, with red/blue/iceblue representing H/C/W particles.
(C) Comparison of the evolution (logarithmic time axis) of the mean-field
free energy W[f] for the self-assembled membranes shown above (red:
MPCD, black: Andersen thermostat).
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Switching after 5 � 104 time steps, see Fig. 23, gives rise to an
instantaneous drop in the temperature and in the non-ideal free
energy. In particular, the small offset in W [f] vanishes instanta-
neously and the value is the same in both simulations. Although
one key difference is in the thermostatting – in MD-SCF/MPCD,
thermostatting is only applied at collision time steps, while the
Andersen thermostat in MD-SCF is active at every time step – we
conclude from our stability analysis (see Method section) that the
origin of this decrease lies in the reduced particle mobility for
the same projection frequency fup. Indeed, if we use the same
procedure as before to calculate diffusion coefficients for the new
gradient, we find Dw* = 0.033 and Dl* = 0.0023 for MD-SCF and
Dw* = 0.14 and Dl* = 0.13 for MD-SCF.

From these results, we conclude that the introduction of
a more isotropic gradient resolves the previously obtained
mismatch in terms of stable structures obtained by both hybrid
methods. The time scales at which these stable structures form
still significantly depend on the selected model, i.e. MPCD
or an Andersen thermostat, for the system dynamics. Redoing
the simulation for the punctured vesicle, see Fig. 21, using this
isotropic discrete gradient operator, provides a closed and
perfectly spherical stable vesicle, see Fig. 24.

Although we did not observe a significant effect of aniso-
tropy in the MD-SCF/MPCD results for larger volumes, we also
analyse the effect of replacing the discrete gradient operator for
some of the other previously simulated systems. In a larger
cubic volume V* (Lx,y,z* = 32), we again observe a competition
between aligned (planar) membranes and alternative structures
with equivalent mean-field free energy, see Fig. 25, indicative
of the prominent role of the (periodic) boundary conditions
for this case. Distributing the lipids initially only in half of the
simulation volume gives rise to the formation of an aligned
membrane, while starting a simulation from lipids distributed
randomly over the whole volume gives rise to alternative
structure. For the latter case, two type of structures are obtained
after 105 time steps, depending on the initial lipid distribution,
one of which (structure 2) is very similar to the double-layer
structure found for the old discrete gradient operator, see Fig. 20,
however, in coexistence with a small lipid micelle. Apparently, the
simulation pathway is too short to observe fusion of these two
domains into a single structure. The alternative (structure 1),
slightly higher in non-ideal free energy than structure 2 and
coexisting with a larger lipid micelle, is a multi-layer vesicle. It
can be anticipated that, in both cases, fusion into a single
structure would produce the double-layer structure of Fig. 19,
having a mean-field free energy that is equivalent to that of an
aligned membrane. Overall, these findings show that the new
discrete gradient operator slows down the formation kinetics
compared to the old one. An intuitive understanding for this
phenomenon is that the old discrete gradient operator gives
rise to slightly enhanced diffusion along particular directions.

Finally, we challenge the isotropy of the new discrete gradient
operator by starting from a pre-assembled curved bicelle or half
vesicle, see Fig. 26. Simulating this setup using the original

Fig. 23 Evolution of the temperature T* (A) and non-ideal free energy
W[f] (B) for a special case. In this simulation, the first 5� 104 time steps are
simulated using MD-SCF/MPCD, see Fig. 22 for details. These results are
passed on to MD-SCF, with an Andersen thermostat and a collision
frequency of 5 ps�1, which is used to simulate the system for the last
104 time steps.

Fig. 24 Snapshot after 4000 time steps of MD-SCF/MPCD simulation in a
100� 100� 100 simulation volume (all in units of rc, nl = 36236, N = 3� 106,
Dt* = 0.01), showing a closed up protrusion in a perfectly spherical vesicle.
The simulation was started from the same initial structure as in Fig. 21, and
the new discrete gradient operator of Appendix B is used in the force
calculation. The vesicle was determined stable based on the non-ideal free
energy reaching a plateau value. Only lipid particles are shown for clarity,
with red/blue representing H/C particles.
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slightly anisotropic discrete gradient operator, we found that
lipids along the initially circular rim experience anomalous
diffusion as a result of angle-dependent forces, giving rise to a
quick formation of a stable square rim (no closing up within
the simulated pathway, results not shown). Concentrating on
the more isotropic discrete gradient operator, we find that the
closing up of the pore, resulting in a vesicular structure, is
radially symmetric, and that a spherical vesicle is formed rather
quickly, i.e. within 2 � 104 time steps. The radius of this vesicle,
measured from the centre of mass to the outer leaflet, is
roughly 18 (in units of rc), with 1564/2404 lipids in the inner/
outer leaflet. A recent coarse-grained molecular dynamics study
for DMPC lipids corroborates that vesicle formation from such
an initial structure should be spontaneous.56

Although the code can efficiently be parallelised,27 the
current implementation is serial and all calculations were
carried out on a single 2.8 GHz Intel Core 5 processor (8 GB
memory), with the largest simulation taking roughly 1.5 days.
For this reason, a thorough investigation of even larger systems,
including an analysis of structure formation pathways, is left
for the future.

Conclusions

In this work, we have combined the MD-SCF framework of
Milano and Kawakatsu,26 which gains efficiency with respect to
CGMD by replacing all non-bonded intermolecular interactions
by a force derived from the density distribution or field of the
ensemble of independent particles and particle chains, after
particle-to-field projection, with the hybrid MPCD framework
of Malevanets and Kapral,42 which combines a CGMD scheme
for updating particle positions (streaming step) with a periodic
random rotation of solvent particles in collision cells (collision
step). Compared to the latter hybrid MPCD method, the main
conceptual difference with the current approach is that the
solvent also experiences solvent–solvent interactions, owing to
the SCF-imposed compressibility in the solvent phase. Detailed
analysis for pure solvent shows that this introduces a so-called
caging effect at short times, reflected in an oscillating velocity
auto-correlation function that exhibits regions of negative values,
while the correct hydrodynamic scaling of MPCD was retained
at longer times.

In most simulations, we start from an existing DPD lipid/
water representation and consider a discretisation distance l of

Fig. 25 Snapshots after 1 � 105 time steps of hybrid simulation in a
32 � 32 � 32 simulation volume (all in units of rc, nl = 1617, Dt* = 0.01)
for two different starting configurations. Both simulations are started from
a mixture of lipids and water, with lipids initially randomly dispersed
throughout the volume (A: structure 1; B: structure 2). For clarity, only
H3(C4)2 lipids are shown, with red/blue representing H/C particles.
(C) Comparison of the evolution (logarithmic time axis) of the mean-
field free energy W[f] for the self-assembled structures shown above. As a
comparison, we have added a graph for the case where lipids are initially
randomly dispersed throughout only half of the simulation volume, which
self-assembles into the flat membrane shown in Fig. 19.

Fig. 26 Snapshots of a hybrid simulation in a 60 � 60 � 60 simulation
volume (all in units of rc, nl = 3986, N = 648 000, Dt* = 0.01): after 200 (A),
2000 (B), 3000 (C), 10 000 (D), 20 000 (E) time steps and 20 000 time steps
where part of the vesicle is removed (F), showing the structure of
the bilayer. For clarity, only H3(C4)2 lipids are shown, with red/blue
representing H/C particles.
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the field lattice equal to the cell size a in MPCD, i.e. l = a = rc, the
cut-off in DPD, but other representations and discretisation
values are possible. Since we compared our results to standard
DPD, with f0* = 3 or only three particles per lattice/rotation cell,
there is clearly a lower bound for the field discretisation if we
want to avoid quickly fluctuating fields. For molecular represen-
tations in the CGMD Martini framework, the particle density in
the same volume is usually larger, and this is a lesser issue. Our
projection places correctly normalised Gaussians around every
particle, i.e. such that particle fractions that are projected to the
lattice add up to one, instead of the original trilinear projection.
This results in the desired smoother density field, as becomes
apparent from the simulations for an ideal gas. The MPCD
parameters a and dt, respectively the rotation angle in the
collision step and the time step at which a collision is per-
formed, can be used to tune effective hydrodynamic parameters,
such as viscosity, in the solvent-rich domain. To perform NVT
simulations, a momentum-conserving thermostat was added,
not only to the solvent but also to the solutes.

First, we tested previously derived mappings of DPD para-
meters to Flory–Huggins w and Helfrich compressibility kH para-
meters that we need for the non-ideal free energy and chemical
potential in MD-SCF/MPCD. By selecting a number of lipids
relating to a tension-free flat DPD membrane in the same simula-
tion volume, we were able to conclude, from the finding that a flat
membrane is indeed formed for these hybrid parameters, that the
mapping is consistent. In particular, since the surface tension is
known as very sensitive to the average area per lipid, any mismatch
will destabilise a flat membrane in favour of other structures,
especially for the relatively small simulation volumes considered.

For the original MD-SCF method, which employs a
global Andersen thermostat to maintain a constant simulation
temperature, a defected tilted membrane forms for the same
hybrid (thermodynamic) parameters, but we later showed that
it can be attributed to the slightly anisotropic discrete gradient
operator, which promotes certain directions on the computa-
tional lattice and gives rise to structure that is trapped in a
metastable state. Reducing this anisotropy, the stable structure
obtained by MD-SCF from the same initially homogeneous
mixture is a flat membrane. In all cases, the phase separation
dynamics in simulations with MD-SCF is orders of magnitude
slower than with MD-SCF/MPCD, which we attributed, besides
to the difference between explicit and implicit collisions in the
two methods, to the fact that the Andersen thermostat is not
Galilean invariant, which is known to affect dynamics.

We have also considered larger simulation volumes for the same
(fixed) hybrid parameter set. For a volume V* = 323, containing
approximately 105 particles, we found that the stable structures are
pathway dependent, starting from a lipid concentration consistent
with a tensionless flat DPD membrane. A flat membrane is indeed
formed when all lipids are initially randomly dispersed in only half
of the volume, while alternative structures, with non-ideal free
energies that are equivalent to that of the flat membrane, are formed
from initially more dispersed systems. Since our research code is
serial, we did not further increase system sizes for the initially fully
mixed case, but we considered setups where part of the formation

pathway was trespassed, i.e. starting from a curved platelet for
V* = 603 or a punctured vesicle for V* = 1003. The results, i.e. closing
up into a vesicle for the curved platelet and the self-healing of the
punctured vesicle, are fully consistent with expected mechanisms.

We note, however, that the MD-SCF/MPCD method lends itself
perfectly to efficient parallellisation. Previous MD-SCF simulations
were carried out using the parallel molecular dynamics suite
OCCAM,27 which can be easily adapted to incorporate MPCD and
the improved discrete gradient operator. Since the kinetics is
considerably accelerated by MPCD, and CGMD Martini representa-
tions are readily available for a wide range of biologically-relevant
systems, one can efficiently simulate intricate phenomena in much
larger systems than the current standard. For instance, MD-SCF/
MPCD allows one to extend a recent CGMD study of membrane
binding/self-aggregation of fusogenic lipopeptides, embedded in a
small membrane patch,57 to a realistic study of lipopeptide-induced
fusion of vesicles of experimentally relevant sizes. Here, we have
focussed on the foundations of this new hybrid methodology, and
we leave such exercises for future studies.

Appendix A: the particle-to-field
projection

Since the fields (and their derivatives) are defined on a cubic
mesh and particles positions are essentially mesh-free, we need
to define a projection P̂ of particle fractions to mesh points. We
start by dividing the simulation volume in nx � ny � nz cells
(with ni, i A {x, y, z}, the number of cells in direction i) of size l3.
Periodic boundary conditions apply to this mesh. Using the
particle coordinates rp = (xp, yp, zp) to extract the centre point
(ip, jp, kp) of the local 27-point mesh, with

ip ¼ xp
�
l

� 	
jp ¼ yp

�
l

� 	
kp ¼ zp

�
l

� 	 (25)

and [b] = max{m A Z|m r b}, particle fractions wi are dis-
tributed over this local mesh. To determine the fraction wi for
each of the 27 mesh points, we position a Gaussian at the
particle position rp (with spread rc) and calculate the function
value at the local mesh points, making sure to conserve the

total mass
P27
i¼1

wi ¼ 1 by normalisation. The density field fI(i,j,k)

is then constructed by summing over the particles of type I

fI ði; j; kÞ ¼
Xnp
p¼1

P̂ rp
� �

8p 2 I (26)

where np is the total number of particles. Since the resulting
fields are a collection of truncated Gaussians, they are not
necessarily differentiable. Nevertheless, the huge advantage over
linear interpolation is that fields are considerably less sensitive
to small particle displacements for a small particle density.
Moreover, as the gradients are also calculated numerically using
the same mesh, additional smoothing is not required.
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Field gradients are calculated via second order finite differ-
ence, on a staggered grid, as

rxf i þ 1

2
; j; k


 �
� 1

l
fði þ 1; j; kÞ � fði; j; kÞð Þ

rxf i � 1

2
; j; k


 �
� 1

l
fði; j; kÞ � fði � 1; j; kþ 1Þð Þ

ryf i; j þ 1

2
; k


 �
� 1

l
fði; j þ 1; kÞ � fði; j; kÞð Þ

ryf i; j � 1

2
; k


 �
� 1

l
fði; j; kÞ � fði; j � 1; kÞð Þ

rzf i; j; kþ 1

2


 �
� 1

l
fði; j; kþ 1Þ � fði; j; kÞð Þ

rzf i; j; k� 1

2


 �
� 1

l
fði; j; kÞ � fði; j; k� 1Þð Þ

(27)

and the staggered grid can be used directly to interpolate the
density gradient at the particle position rp, as

rxf rp
� �

¼ Dxp þ
1

2


 �
rxf ip þ

1

2
; jp; kp


 �

þ 1

2
� Dxp


 �
rxf ip �

1

2
; jp; kp


 �

ryf rp
� �
¼ Dyp þ

1

2


 �
ryf ip; jp þ

1

2
; kp


 �

þ 1

2
� Dyp


 �
ryf ip; jp �

1

2
; kp


 �

rzf rp
� �
¼ Dzp þ

1

2


 �
rzf ip; jp; kp þ

1

2


 �

þ 1

2
� Dzp


 �
rzf ip; jp; kp �

1

2


 �

(28)

with Dxp = xp/l � [xp/l], Dyp = yp/l � [yp/l] and Dzp = zp/l � [zp/l].

Appendix B: alternative gradient
stencils

Instead of the efficient 2-point stencil for gradients along
the three Cartesian directions, see the previous appendix, we
may consider alternatives proposed in the recent literature.
The development of isotropic discrete differential operators
remains an important topic for many fields of research, as
the inherent anisotropy associated with a computational grid
implies a directional bias (in our case: to the forces stemming
obtained from the mean-field external potential), which may, if
not taken proper care off, be reflected in distinct grid-related
artefacts and/or unphysical simulation results. Such undesired
effects can be in most cases be sufficiently suppressed by
considering additional points in the direct vicinity of a grid
location and selecting stencil coefficients based on (particular)
considerations of isotropy.

Here, we consider a recent gradient stencil developed for proper
analysis of geophysical data, i.e. for images that are recorded on a
regular grid of pixels, by Alfaraj et al.58 We note that the basics of
these compact stencils is generic and that the particularity is in the
choice of the stencil coefficients, which are subject to further
improvement. Whereas their original stencil calculates gradient
values on the same computational grid as the original data, here we
use a denser grid and calculate gradient values on a staggered grid
as before. Although this introduces the need for interpolation,
it has the advantage of being more appropriate for spiked profiles,
i.e. profiles with a small spacial extend or carrier. Since applying
such gradient operators has the effect of smoothing, considering
the original grid spacing would introduce the risk of mishandling
these localised profiles. In particular, considering data points at
only half the usual distance decreases the spatial extent over which
two adjacent gradient values are calculated from 4 to 3 grid points.

In the most general form, the discrete gradient operator G
applied to a function f at a position r = (x, y, z), can be written as
a sum over all 27 grid-restricted directions

G½f �ðrÞ ¼
X1
i¼�1

X1
j¼�1

X1
k¼�1

Di;j;kðrÞ (29)

with

Di;j;kðrÞ ¼ ci;j;k

f rþ 1

2
ri; j;k


 �
� f r� 1

2
ri; j;k


 �
ri; j;k
�� �� � l (30)

where ci, j,k are the stencil coefficients. Both r and ri, j,k are defined
in terms of the grid spacing l, hence the additional factor l in
the denominator. The stencil vectors ri, j,k = i�i + j�j + k�k can be
classified by their length 8ri, j,k8 as
	 1 vector of length 0: i = j = k = 0
	 6 vectors of length 1: |i| + | j| + |k| = 1
	 12 vectors of length

ffiffiffi
2
p

: |i| + | j| + |k| = 2
	 8 vectors of length

ffiffiffi
3
p

: |i| + | j| + |k| = 3
It is easy to see that c0,0,0 should be zero, which reduces the

number of directions to 26. Moreover, since r�i,�j,�k = �ri, j,k, it is
clear that the natural condition Di, j,k(r) = D�i,�j,�k(r) provides the
relation c�i,�j,�k = �ci, j,k. The number of independent stencil
coefficients can thus simply be further reduced to 13. Symmetry
arguments are employed to even further reduce the number
of independent variables to three, one for each vector length. We
may take c1,0,0, c1,1,0 and c1,1,1 as these independent variables.

To arrive at gradient stencils along Cartesian directions,
i.e. Dx, Dy and Dz, vectors without components along those
directions are left out of the general expression (29), i.e. c0,j,k = 0
for Dx, ci,0,k = 0 for Dy and ci,j,0 = 0 for Dz. The expression can
thus be simplified to

Dx;y;z ¼ c1 f
ð1Þ
1 � f

ð1Þ
2

� �
þ c2

X4
i¼1

f
ð2Þ
i �

X8
i¼5

f
ð2Þ
i

 !

þ c3
X4
i¼1

f
ð3Þ
i �

X8
i¼5

f
ð3Þ
i

 ! (31)
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in units of 1/l, where c1 = 2c1,0,0, c2 ¼
ffiffiffi
2
p

c1;1;0 and

c3 ¼ 2c1;1;1
� ffiffiffi

3
p

. For simplicity, we have introduced the short-
hand notation of Thampi et al.,59

f
ð jÞ
i ¼ f rþ 1

2
r
j
i


 �
; (32)

with j a counter for the previously introduced class of vectors of
the same length (in units of the discretisation length l) in the
first shell surrounding r. Writing them explicitly for Dx,y,z:
	 Dx: r1

1 = (1,0,0)T and r1
2 = �r1

1; r2
1 = (1,1,0)T, r2

2 = (1, �1,0)T, r2
3 =

(1,0,1)T, r2
4 = (1,0, �1)T, with r2

i+4 = �r2
i (1 r i r 4); r3

1 = (1,1,1)T, r3
2 =

(1,1,�1)T, r3
3 = (1,�1,1)T, r3

4 = (1,�1,�1)T, with r3
i+4 =�r3

i (1 r i r 4).
	 Dy: r1

1 = (0,1,0)T and r1
2 = �r1

1; r2
1 = (1,1,0)T, r2

2 = (�1,1,0)T, r2
3 =

(0,1,1)T, r2
4 = (0,1, �1)T, with r2

i+4 = �r2
i (1 r i r 4); r3

1 = (1,1,1)T, r3
2 =

(1,1,�1)T, r3
3 = (�1,1,1)T, r3

4 = (�1,1,�1)T, with r3
i+4 =�r3

i (1 r i r 4).
	 Dz: r1

1 = (0,0,1)T and r1
2 = �r1

1; r2
1 = (1,0,1)T, r2

2 = (�1,0,1)T, r2
3 =

(0,1,1)T, r2
4 = (0, �1,1)T, with ri+

2
4 = �r2

i (1 r i r 4); r3
1 = (1,1,1)T, r3

2 =
(1,�1,1)T, r3

3 = (�1,1,1)T, r3
4 = (�1,�1,1)T, with r3

i+4 =�r3
i (1 r i r 4).

An essential condition for the discrete gradient operators
Dx,y,z is correctness for linear functions f (r) along the principal
directions on the grid, so we may recast the still unknown stencil
coefficients {c1,c2,c3} into another form {c1,c2,c3} = {d1/(d1 + 4d2 +
4d3),d2/(d1 + 4d2 + 4d3),d3/(d1 + 4d2 + 4d3)}, with {d1,d2,d3} a set of
three random real numbers for which this condition is always
satisfied. For completeness, we note that the normalisation
factor d1 + 4d2 + 4d3 is twice smaller than in Alfaraj et al.58 as
a consequence of taking only half of the grid-restricted vector
length. The freedom offered by these three new variables di can
be exploited to optimise the stencil towards accuracy (scaling
behaviour) and isotropy, and we refer to a recent paper for the
related discrete Laplacian for more information on the condi-
tions that can be employed.60 The 2-point stencil in the previous
Appendix uses the coefficients {d1,d2,d3} = {1,0,0}. In their recent
paper, Alfaraj et al. proposed the alternative coefficients
{d1,d2,d3} = {1,0.245,0.085}, which were obtained based on the
condition of maximum isotropy for specific functions.58 We
select their stencil coefficients for the remainder.

The half-point values are now determined as

rxf i þ 1

2
; j; k


 �
� 1

l
Dxf i þ 1

2
; j; k


 �

rxf i � 1

2
; j; k


 �
� 1

l
Dxf i � 1

2
; j; k


 �

ryf i; j þ 1

2
; k


 �
� 1

l
Dyf i; j þ 1

2
; k


 �

ryf i; j � 1

2
; k


 �
� 1

l
Dyf i; j � 1

2
; k


 �

rzf i; j; kþ 1

2


 �
� 1

l
Dzf i; j; kþ 1

2


 �

rzf i; j; k� 1

2


 �
� 1

l
Dzf i; j; k� 1

2


 �

(33)

where the off-grid values of the density fields f are obtained by
linear interpolation of the (two or four) surrounding field

values on the computational grid. As before, see previous
Appendix, the staggered grid can be used directly to interpolate
the density gradient at the particle position rp.

Appendix C: hydrodynamics

One may claim that the field-based interactions in the MD-SCF
part of the MD-SCF/MPCD scheme necessarily break Galilean
invariance, because they make an explicit reference to the
underlying (field) mesh. Although this is primarily a technical
issue in the development of hybrid particle/field methodologies
like MD-SCF, i.e. it does not relate to the coupling to MPCD
discussed in this study, one may be tempted to conclude that
there is no momentum conservation or hydrodynamic interaction
(in the common sense). The MD-SCF/MPCD scheme indeed does
not rigorously enforce actioQreactio in the non-bonded part
of the particle forces and, as a consequence, local momentum
may not be strictly conserved. Yet, it is unclear to us how we
can evaluate to what extent the continuity equation for the
momentum (r�v = 0) is violated without the use of a computa-
tional mesh. On the other hand, monitoring the total momentum
in our simulations is straightforwards and relevant, since
conservation of local momentum implies that also the total
momentum is conserved. As our scheme represents a discrete
form of a continuum theory, which is strictly momentum conser-
ving, one may assume that hydrodynamic interactions will come
out correctly, apart from errors due to discretisation. To substanti-
ate our claim that our scheme correctly describes hydrodynamic
interactions, we therefore focus on the necessary condition, i.e.
whether our scheme conserves total momentum.

We analyse total momentum via the previously considered
small system, i.e. a cubic volume V* (Lx,y,z* = 22) containing
nl = 764 lipids and nw = 23 540 solvent particles, where we take
all other parameters as before. Since the mass m* of all
particles is set to unity, the dimensionless total momentum
p�h i ¼

P
p

pp (with p = 1,. . .,N the particle index) is given by

hp*i = hv*i = (hvx*i, hvy*i, hvz*i)T (34)

In comparison, the conservative forces in the DPD, which are
derived from a translationally invariant Hamiltonian, as well as
the dissipative and stochastic forces, give rise to particle
momenta that exactly sum up to zero along the three Cartesian
directions, and also for standard MPCD, conservation of total
momentum is guaranteed by construction. Analysing the membrane
forming system in the same volume V* (snapshots shown in
Fig. 7) for Galilean invariant DPD reveals that the three compo-
nents of the total momentum hp*i fluctuate along the simulation
trajectory between 0 and �6 � 10�16, i.e. in agreement with the
machine epsilon of 2.22 � 10�16 for double precision. For the
hybrid MD-SCF/MPCD simulations, we consider four different
setups: for the compact (old) and the isotropic (new) gradient
operator, and with or without a constant background velocity vc

added to all particles, after standard initialisation of particle
velocities from the Maxwell–Boltzmann distribution for T* = 1.
Adding a constant background velocity will change the inertial
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frame and provides information about the effect of the
(stationary) field mesh and the MPCD cells on the particle
forces/momenta; we refer to this setup as moving frame and to
the standard case without background velocity as fixed frame.
In case of Galilean invariance, the system behaviour will be
invariant under this transformation. We analyse results obtained
for vc* = (vc,0,0), with vc a random value drawn from the same
Maxwell–Boltzmann distribution, but also background velocities
along the other Cartesian directions were tested, with equivalent
results.

Fig. 27 shows the evolution of the mean-field free energy, the
simulation temperature Tsim (with Tsim = h(v*)2i/3), and one of
the components of the total momentum hp*i for the four
simulated setups. To enable a direct comparison for fixed
and moving frames, the momentum contribution of the back-
ground velocity has been subtracted in the calculation proce-
dure for the total momentum (but not in the calculation of
Tsim).

The mean-field free energy plots, see Fig. 27A, show that the
trajectories slightly differ between setups, in particular that
they are sensitive to the choice of the discrete gradient operator.
With respect to the fixed or moving frames, it makes sense that
adding a background velocity slightly perturbs the particular
trajectory, as a consequence of the static computational grids
employed in the particle-to-field projection and the MPCD
collision step, but the overall behaviour should be very similar.
Indeed, both visual analysis of final stages and the equivalent
plateau values for the mean-field free energy show that a stable
flat membrane self-assembles for all considered setups (e.g.
snapshot in Fig. 7). Apart from an affine shift due to the
(constant) background velocity, also the evolution of the simu-
lation temperature is rather insensitive to the choice of the
setup. The components of the total momentum – Fig. 27 only
shows the z-component, but the amplitudes of the other
components are comparable for a fixed frame, see extended
discussion later on – which should remain close to the machine
epsilon if conserved, are also comparable for every particular
setup. Yet, although the time-averaged value of the total
momentum is close to vanishing, the amplitude of the fluctua-
tions is many orders higher (B10�3) than the machine epsilon
(B10�16). Nevertheless, a closer look shows that the total
momentum drops to the level of the machine epsilon after
every collision step.

It is a common procedure in MPCD to remove any net
momentum generated by rounding errors during the collision
step, by determining the (vectorial) mean of the velocity dis-
tribution and subtracting it from the velocity for each particle.
The same procedure is always applied after initialisation of the
particle velocities, both in MD-SCF/MPCD and in DPD. Reset-
ting the mean of the velocity distribution to zero is particularly
required to avoid any non-physical drift during simulation. If
we extend this procedure also to the inner loop in MD-SCF/
MPCD, i.e. the VV scheme, for all considered setups, we obtain
the data shown in Fig. 28. Concentrating on the total momen-
tum, we see that the amplitude of the fluctuations has
decreased dramatically, to the level of the machine epsilon.

The removal of net momentum does not notably affect the
evolution of the simulation temperature. The trajectories, as
reflected in the evolution of the mean-field free energy, again
display slightly different features. For the moving frame, the
signatures are comparable to the ones without removal of net

Fig. 27 The SCF free energy (A), kinetic temperature (B) and total
momentum (C, z-component) as determined by MD-SCF/MPCD for the
four considered setups. A snapshot of the stable structure for the old
gradient operator and fixed frame is shown in Fig. 7. Equivalent flat
membranes are found as stable structure for all setups. For the two setups
with moving frames, the momentum contribution of the background
velocity has been subtracted in the calculation of the total momentum.
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momentum. For the fixed frame and a slightly anisotropic (old)
gradient operator, the system gets stuck in a metastable state of
an interconnected membrane, see Fig. 29 which is reminiscent
of a transient structure in the other simulations. Instead, for a
fixed frame and a more isotropic gradient operator, phase
separation into a defect-free planar membrane is rather swift
and accelerated compared to the case when net momentum
was not removed. We conclude that, in the anisotropic case,
adding a fluctuating tiny net momentum apparently helps the
system to cross the energetic barrier between this structure and

the equilibrium planar membrane. Indeed, also for the MD-SCF
method with an Anderson thermostat, a similar effect was observed
after the introduction of a more isotropic gradient operator.

We may analyse the effects of discretisation in detail by
comparing the total momentum along and perpendicular to the
direction in which the reference frame moves with constant
velocity, see Fig. 30 for the isotropic (new) gradient operator.
Clearly, the amplitude of the total momentum along the x-direction
in which the frame moves, h pxi, is about a factor 102 larger (but,
in absolute terms, still tiny, B10�14) than the amplitude for
the total momentum along the perpendicular directions (h pyi
and h pzi), which are comparable to the machine epsilon, see
Fig. 28. Analysis of other setups shows that this is relation is
representative. Although this is clearly due to discretisation
errors, they cannot be attributed specifically to either one of the
underlying coarser representations; a more detailed theoretical
analysis is left for the future. It only shows that Galilean
invariance is indeed broken, albeit only rather mildly.

Fig. 28 The SCF free energy (A), kinetic temperature (B) and total
momentum (C, z-component) as determined by MD-SCF/MPCD with
removal of net momentum at each step for the four considered setups.
Only for the old gradient operator and a fixed frame, the final state is not a
flat membrane, but a metastable structure shown in Fig. 29, which is
usually found as a transient state. For the two setups with moving frames,
the momentum contribution of the background velocity has been sub-
tracted in the calculation of the total momentum.

Fig. 29 The metastable structure obtained for the old gradient operator
and a fixed frame, see Fig. 28. For clarity, only H3(C4)2 lipids are shown,
with red/blue representing H/C particles.

Fig. 30 All three components of total momentum as determined by
MD-SCF/MPCD for the new (isotropic) gradient operator and a moving
frame. These data, which are representative for the case where the frame
moves, show the difference in total momentum along (here: x-direction)
or perpendicular (y, z-directions) to the movement of the frame. For a
fixed frame, the amplitude of all three components is comparable and
equal to the machine epsilon (B10�16). The momentum contribution of
the background velocity has been subtracted in the calculation of the total
momentum.
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Overall, we conclude that the particles in the ‘unscaled’
MD-SCF/MPCD scheme experience a tiny shaking each time step,
which indeed averages out on longer time scales, corroborating
our earlier statement that the hydrodynamic interactions will
come out correctly on a coarser time scale. Removing any net
momentum at every step of the MD-SCF/MPCD scheme gives rise
to total momentum conservation, which is exact up to machine
precision. In short, we have shown that our model indeed
properly captures hydrodynamic interactions.
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