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Abstract

We consider a multi-colony version of the Wright-Fisher model with seed-bank that was recently intro-
duced by Blath et al. Individuals live in colonies and change type via resampling and mutation. Each
colony contains a seed-bank that acts as a genetic reservoir. Individuals can enter the seed-bank and
become dormant or can exit the seed-bank and become active. In each colony at each generation a
fixed fraction of individuals swap state, drawn randomly from the active and the dormant population.
While dormant, individuals suspend their resampling. While active, individuals resample from their
own colony, but also from different colonies according to a random walk transition kernel representing
migration. Both active and dormant individuals mutate.

We derive a formula for the probability that two individuals drawn randomly from two given colonies
are identical by descent, i.e., share a common ancestor. This formula, which is formulated in Fourier
language, is valid when the colonies form a discrete torus. We consider the special case of a symmetric
slow seed-bank, for which in each colony half of the individuals are in the seed-bank and at each
generation the fraction of individuals that swap state is small. This leads to a simpler formula, from
which we are able to deduce how the probability to be identical by descent depends on the distance
between the two colonies and various relevant parameters. Through an analysis of random walk Green
functions, we are able to derive explicit scaling expressions when mutation is slower than migration. We
also compute the spatial second moment of the probability to be identical by descent for all parameters
when the torus becomes large. For the special case of a symmetric slow seed-bank, we again obtain
explicit scaling expressions.
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1. Introduction

1.1. Background

The Wright-Fisher model with seed-bank aims at modelling the genetic evolution of populations
in which individuals are allowed to achieve a dormant state and maintain it for many generations.
Dormancy is understood as a reversible rest period, characterised by low metabolic activity and inter-
ruption of phenotypic development (see Lennon and Jones [10]). This type of behaviour is observed
in many taxa, including plants, bacteria and other micro-organisms, as a response to unfavourable
environmental conditions. Dormant individuals can be resuscitated under more favourable conditions,
after a varying and possibly large number of generations, and reprise reproduction. This strategy has
been shown to have important implications for population persistence, maintenance of genetic vari-
ability and even stability of ecosystem processes, acting as a buffer against such evolutionary forces as
genetic drift, selection and environmental variability. The importance of this evolutionary trait has led
to attempts at modelling seed-banks from a mathematical perspective.

The mathematical modelling of seed-bank effects has been somewhat challenging. In fact, since
individuals can remain dormant for arbitrarily many generations, it is problematic to retain the Markov
property. The most successful models to date are extensions of the Wright-Fisher model, the classical
model for genetic evolution of a population viewed from a probabilistic perspective. However, so far
these extensions have been able to capture only weak seed-bank effects, resulting in a delayed Wright-
Fisher model, or they have led to extreme behaviours that seem artificial.

The most relevant model was proposed by Kaj, Krone and Lascoux [9], who allowed individuals
in a population of fixed size to select a parent from a random number B of generations in the past,
where B is an N-valued random variable assumed to be independent and identically distributed for
each individual. The authors show that if B is bounded, then after the usual rescaling of time by the
population size the model converges to a delayed Kingman coalescent, where the rates are multiplied
by 1/E[B]2. More generally, it was proven by Blath, Gonzáles Casanova, Kurt and Spanò [3] that
a sufficient condition for convergence to the Kingman coalescent is E[B] < ∞. The sampling from
past generations only leads to a delay in the coalescence process and leaves the coalescent structure
unchanged. Therefore it is not capturing the role of seed-banks in maintaining genetic variability. One
therefore speaks of weak seed-bank effects.

A further extension of the model, which allows for strong seed-bank effects, was proposed in [3]. In
particular, the authors study the case in which the age-distribution χ of B is heavy-tailed, namely,

χ(B ≥ n) = L(n)n−α, n ∈ N, 0 < α <∞, (1.1)

where L is slowly varying as n → ∞. It is proved that for α > 1
2 the most recent common ancestor

(MRCA) of two randomly sampled individuals exists with probability 1, but the expected time to the
MRCA is infinite as soon as α < 1, while for 0 < α < 1

2 with positive probability a MRCA does not
even exist at all.

Such extreme behaviour may seem artificial, and for this reason González Casanova et al. in [6]
and Blath et al. in [2] have studied the case in which B scales with the total population size N . In
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particular, the age-distribution χ of B is given by

χ = (1− ε) δ1 + ε δNβ , 0 < β <∞, ε ∈ (0, 1). (1.2)

For β < 1
3 , this model again shows convergence to the Kingman coalescent, but requires a rescaling

of time by the non-classical factor N1+2β . In other words, this choice of χ considerably increases the
expected time to the MRCA. Still, it leaves the coalescent structure unchanged, and results in other
parameter regimes remain somewhat elusive.

In summary, the mathematical results to date have been effective in modelling weak seed-bank
effects, but for strong seed-bank effects they have so far been unsatisfying in suggesting new limiting
coalescent structures. Blath et al. [4] propose a new model in which individuals can enter and exit
a seed-bank at each generation. While in the seed-bank, individuals suspend their resampling and
preserve their type. The main advantage of this model is that it retains the Markov property, while the
long-term behaviour is in line with our intuition and does not require artificial scaling assumptions. It
also offers a natural interpretation for the scaling limit of both the forward and the backward process,
and the limiting genealogy is given by a new coalescent structure.

1.2. Outline

The goal in the present paper is to study a multi-colony version of the model in [4], where individuals
can migrate between different colonies, each carrying a seed-bank, and are also subject to mutation.
The main quantity we are after is the probability that two individuals drawn randomly from two given
colonies are identical by descent, i.e., share a common ancestor.

The remaining sections are organised as follows. In Section 2 we define the single-colony Wright-
Fisher model with seed-bank. In Section 3 we present the multi-colony version of this model and derive
a formula for the probability that two individuals drawn randomly from two given colonies are identical
by descent. This formula (stated in Theorem 3.4 below) comes in Fourier language and is valid when the
colonies form a discrete torus. In Section 4 we consider the special case of a symmetric slow seed-bank,
for which in each colony half of the individuals are in the seed-bank and at each generation the fraction
of individuals that swap state is small. This leads to a simpler formula (stated in Theorems 4.1 and 4.3
below), from which we are able to deduce how the probability to be identical by descent depends on
the distance between the two colonies and various relevant parameters. Through an analysis of random
walk Green functions, we are able to derive explicit scaling expressions when mutation is slower than
migration (stated in Theorems 4.4–4.7 below). In Section 5 we compute the spatial second moment
of the probability to be identical by descent for all parameters when the torus becomes large (stated
in Theorem 5.3 below). For the special case of a symmetric slow seed-bank, we again obtain explicit
scaling expressions (stated in Theorem 5.4 below).

2. The Wright-Fisher model with seed-bank

In Section 2.1 we recall the standard Wright-Fisher model, the simplest model for population
genetics, where the only evolutionary force at play is resampling. In Section 2.2 we recall the extension
of this model studied in [4], namely, with a seed-bank. In Section 3 we will introduce a multi-colony
version of the extended model, which will be our main object of study. In what follows, we write
N = {1, 2, . . .} and N0 = N ∪ {0}.

2.1. Wright-Fisher model

Consider a population of N haploid individuals, with N fixed. For each genetic locus, an individual
carries one copy of the gene at that locus that is assumed to be one of two types, denoted by a and
A. The model is discrete in time. At each time unit, every individual from the new generation chooses
an individual from the previous population uniformly at random and adopts its type. This choice is
independent of time and of the choices of the other individuals. This type of resampling mechanism
is called parallel updating (all individuals choose an ancestor at the same time and independently of
each other). Let

Xn = number of individuals of type a at time n. (2.1)
3



The sequence X = (Xn)n∈N0
is the discrete-time Markov chain with state space

Ω = {0, 1, 2, . . . , N} (2.2)

and transition kernel

pij =

(
N

j

)(
i

N

)j (
N − i
N

)N−j
, i, j ∈ Ω. (2.3)

The latter follows from the fact that, if at time n there are i individuals of type a, then there will be j
individuals at time n+ 1 if and only if precisely j individuals choose an ancestor of type a and N − j
individuals choose an ancestor of type A. The initial condition can be any state X0 ∈ Ω.

The states 0 and N are traps: p00 = pNN = 1. Consequently, one of the two genetic types eventually
becomes extinct: genetic variability is lost through chance.

2.2. Wright-Fisher model with seed-bank

The model introduced in [4] consists of a haploid population of fixed size N that reproduces in
discrete generations. Each individual carries a genetic type from a generic type space E. In what
follows we will focus on the bi-allelic case, E = {a,A}. Alongside the active population, there is a
seed-bank of fixed size M containing the dormant individuals.

Given M, N ∈ N, take ε ∈ [0, 1] such that εN ≤M and set δ = εN/M . For convenience we assume
that εN = δM ∈ N. The dynamics of the model is as follows (see Fig. 1):

• The N active individuals produce (1− ε)N active individuals in the next generation, where every
new individual randomly chooses a parent from the previous generation and adopts its type.

• The remaining εN(= δM) individuals from the active population produce individuals that become
dormant, i.e., seeds in the next generation.

• From the seed-bank, δM(= εN) individuals become active and leave the seed-bank. Therefore
in the next generation the active population again consists of (1 − ε)N + εN = N individuals,
where the first term comes from the previously active population and the second term from the
previously dormant population.

• The remaining (1− δ)M seeds remain inactive and stay in the seed-bank. Therefore in the next
generation the population in the seed-bank again consists of (1 − δ)M + δM = M individuals,
where the first term comes from the previously dormant population and the second term from
the previously active population.

Definition 2.1. Let M , N , ε, δ and E be as above. Given an initial genetic type configuration (ξ0, η0)
with ξ0 ∈ EN , η0 ∈ EM , denote by

ξk = (ξk(i))i∈[N ], ηk = (ηk(j))j∈[M ], k ∈ N0, (2.4)

the random genetic type configuration of, respectively, the active individuals and the dormant individuals
in generation k. The discrete-time Markov chain (ξk, ηk)k∈N0

with state space EN × EM is called the
type configuration process of the Wright-Fisher model with geometric seed-bank component.

Note that the time a dormant individual stays in the seed-bank before becoming active is a random
variable with a geometric distribution with parameter δ, and that the times for different dormant
individual are i.i.d. Similarly, the probability that an active individual becomes dormant is ε.

We want to understand the behaviour of the frequency of a alleles in both the active population
and the seed-bank. We therefore define

XN
k =

1

N

∑
i∈[N ]

1{ξk(i)=a}, YMk =
1

M

∑
j∈[M ]

1{ηk(j)=a}, (2.5)
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Figure 1: Evolution over 4 generations of a population with N +M = 10 individuals, of which N = 6 are
active and M = 4 are inactive (in the seed-bank). The lines indicate the genealogy of the population. The bold
line shows a single line of ancestry.

which represent the fraction of individuals having type a in generation k in, respectively, the active
population and the dormant population. Together they form a discrete-time Markov chain taking
values in IN × IM , with

IN =

{
0,

1

N
,

2

N
, . . . , 1

}
⊂ [0, 1], IM =

{
0,

1

M
,

2

M
, . . . , 1

}
⊂ [0, 1]. (2.6)

Abbreviate
Px,y(·) = P( · |XN

0 = x, YM0 = y), (x, y) ∈ IN × IM . (2.7)

The transition probabilities of this Markov chain can be characterised through the following proposition.

Proposition 2.2. Let c = εN = δM ∈ N. For (x, y), (x̄, ȳ) ∈ IN × IM ,

Px,y(XN
1 = x̄, YM1 = ȳ)

=

c∑
i=0

Px,y(Z = i) Px,y(U = x̄N − i) Px,y(V = ȳM + i), (2.8)

where Z, U , V are independent under Px,y, with Z ∼= HypM,c,yM (hypergeometric distribution), U
∼= BinN−c,x and V ∼= Binc,x (binomial distributions).

Proof. The random variables have a simple interpretation:

• Z is the number of individuals of type a that become active in the next generation or, equivalently,
the number of individuals at generation 1 that are offspring of an individual of type a at generation
0.

• U is the number of individuals that are offspring of individuals of type a in the previous generation
(and therefore are themselves of type a).

• V is the number of individuals that are offspring of individuals of type a in the previous generation.

With this interpretation the distributions of Z, U and V are immediate from Definition 2.1. By
construction, XN

1 = U+Z
N and YM1 = y + V−Z

M , and so the claim follows.
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3. A multi-colony extension

In this section we analyse a spatial version of the model introduced in Section 2. Namely, we add
migration, i.e., we allow individuals to adopt the type of individuals in colonies different from their own
(in the literature this is called the stepping stone model). In Section 3.1 we define the model without
mutation, in Section 3.2 we add mutation. In Section 3.3 we turn to our key object of interest, the
probability that two individuals drawn randomly from two given colonies are identical by descent. We
derive a formula for this probability involving convolutions of matrices. In Section 3.4 we simplify this
formula by turning to Fourier analysis, which leads to our first main theorem: Theorem 3.4.

3.1. Migration

Consider the discrete torus T in any dimension d ∈ N. This may be identified with the lattice
Zd∩ [0, L]d, L ∈ N, with periodic boundaries. At each lattice site there is a colony, which consists of an
active population of size N and a seed-bank of size M . At each generation, every individual chooses a
colony according to a random walk transition kernel p(x, y), x, y ∈ T, and chooses from that colony an
individual that was active in that colony in the previous generation. We assume that p(x, y), x, y ∈ T,
depends only on the distance between the two colonies x and y, not on their position. This makes our
system translation invariant. An example for a transition kernel that satisfies this assumption is

p(x, y) = (1− ν)δx,y + νq(x, y), x, y ∈ T, (3.1)

with δx,y = 1{x=y} and q(x, y), x, y ∈ T, a random walk transition kernel that controls the migration.
The parameter ν ∈ (0, 1] is the migration probability. An example is the uniform nearest-neighbour
model

q(0, z) =

{
1
2d , if ‖z‖ = 1,

0, otherwise,
(3.2)

where ‖ · ‖ is the lattice norm. This corresponds to a simple random walk on T.

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

Figure 2: A 5×5 torus, with edges connecting neighbouring vertices. The boundary is periodic: opposite ends
horizontally and vertically are connected. Simple random walk corresponds to transitions north, east, south
and west, each with probability 1

4
.

We are interested, for the system in equilibrium, to compute the probability ψ((x, a), (y, b)) that two
individuals drawn uniformly at random from two colonies x, y ∈ T in states a, b ∈ {0, 1} are identical
by descent, i.e., their lineages coalesce. The states a, b ∈ {0, 1} indicate whether the individual is drawn
from the dormant population (state 0) or the active population (state 1), e.g. (x, 0) means that an
individual is drawn from the seed-bank in colony x ∈ T. If x = y, then we require the two individuals
to be distinct. We want to find an expression for the 4-vector

Ψx,y =


ψ((x, 0), (y, 0))
ψ((x, 0), (y, 1))
ψ((x, 1), (y, 0))
ψ((x, 1), (y, 1))

 , x, y ∈ T. (3.3)

6



Note that, since p(x, y) depends on x− y only, the same is true for Ψx,y. Naturally, since T and N are
finite we have

Ψx,y =


1
1
1
1

 , x, y ∈ T. (3.4)

Indeed, no matter what colonies the individuals are drawn from, their lineages move in and out of the
seed-bank and migrate to other colonies in T. Eventually, going infinitely far back in time, the lineages
coalesce. The problem becomes more interesting when we modify the dynamics to include mutation.

3.2. Migration and mutation

Assume that at each generation, every individual with probability µ ∈ (0, 1) mutates to a new type
and with probability 1−µ does not mutate and proceeds to become either active, respectively, dormant
(with probability δ, respectively, ε). In addition, if an individual is active and remains active, then it
chooses an individual from any colony y ∈ T (with probability (1− ε)p(x, y)) and adopts its type. More
precisely, a dormant individual in the seed-bank may

• mutate to a new type, with probability µ,

• maintain its type and remain in the seed-bank, with probability (1− µ)(1− δ),

• maintain its type and become active, with probability (1− µ)δ.

Similarly, an active individual may

• mutate to a new type, with probability µ,

• remain active and choose a random ancestor from colony y ∈ T (possibly y = x), with probability
(1− µ)(1− ε)p(x, y),

• maintain its type and become dormant, with probability (1− µ)ε.

Since a lineage is interrupted when a mutation occurs, we define two individuals to be identical by
descent if their lineages coalesce before a mutation affects either lineage. Our goal is to compute the
4-vector Ψx,y in (3.3) in the presence of mutation, again for the system in equilibrium. This will be
achieved in several steps, resulting in Theorem 3.4 below. Note that individuals may change their type
multiple times. What matters for Ψx,y is that the lineages of the two individuals drawn at x and y
meet without encountering a mutation.

3.3. Computation of the probability to be identical by descent

We begin by deriving a recursive relation for the family {Ψx,y}x,y∈T.

Proposition 3.1. For x, y ∈ T,

Ψx,y = Φx,y +Ax,yΨ0,0 +
∑
w,z∈T

Bw−x,z−yΨw,z, (3.5)

where

Φx,y = (1− µ)2(1− ε)2


0
0
0

p2(x, y) 1
N

 , (3.6)

Ax,y = − (1− µ)2(1− ε)2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 p2(x, y) 1

N

 , (3.7)

Bw−x,z−y = Cδx,wδy,z +Dw−x,z−y, (3.8)

7



with

C = (1− µ)2 ×
(1− δ)2 (1− δ)ε (1− δ)ε ε2

δ(1− δ) 0 δε 0
δ(1− δ) δε 0 0
δ2 0 0 0

 , (3.9)

Dw−x,z−y = (1− µ)2(1− ε)×
0 0 0 0
0 (1− δ)p(y, z)δx,w 0 εp(y, z)δx,w
0 0 (1− δ)p(x,w)δy,z εp(x,w)δy,z
0 δp(y, z)δx,w δp(x,w)δy,z (1− ε)p(x,w)p(y, z)

 . (3.10)

Proof. We begin by writing down a recursion relation for

Ψ(n)
x,y =


ψn((x, 0), (y, 0))
ψn((x, 0), (y, 1))
ψn((x, 1), (y, 0))
ψn((x, 1), (y, 1))

 , x, y ∈ T, (3.11)

the probability at time n that two individuals randomly drawn from colonies x, y are identical by
descent. This reads as follows:

ψn+1((x, 0), (y, 0)) = (1− µ)2
[
(1− δ)2ψn((x, 0), (y, 0)) + ε2ψn((x, 1), (y, 1))

+ ε(1− δ) [ψn((x, 1), (y, 0)) + ψn((x, 0), (y, 1))]
]
,

ψn+1((x, 1), (y, 0)) = (1− µ)2

[
δ(1− δ)ψn((x, 0), (y, 0)) + δεψn((x, 0), (y, 1))

+
∑
w∈T

(1− ε)(1− δ)p(x,w)ψn((w, 1), (y, 0)) + ε(1− ε)p(x,w)ψn((w, 1), (y, 1))

]
,

ψn+1((x, 0), (y, 1)) = (1− µ)2

[
δ(1− δ)ψn((x, 0), (y, 0)) + δεψn((x, 1), (y, 0))

+
∑
z∈T

(1− ε)(1− δ)p(y, z)ψn((x, 0), (z, 1)) + ε(1− ε)p(y, z)ψn((x, 1), (z, 1))

]
,

ψn+1((x, 1), (y, 1)) = (1− µ)2

[
δ2ψn((x, 0), (y, 0))

+
∑
z∈T

δ(1− ε)p(y, z)ψn((x, 0), (z, 1))

+
∑
w∈T

δ(1− ε)p(x,w)ψn((w, 1), (y, 0))

+
∑
w,z∈T
w 6=z

(1− ε)2p(x,w)p(y, z)ψn((w, 1), (z, 1))

+
∑
z∈T

(1− ε)2p(x, z)p(y, z)

[
1

N
+

(
1− 1

N

)
ψn((z, 1), (z, 1))

]]
. (3.12)

The reasoning behind the above expressions comes from considering the possible choices of the two
individuals. In the first expression, for example, the drawn individuals are both in the seed-bank and
there are three scenarios:

8



• they were both in the seed bank in the previous generation (with probability 1 − δ each, inde-
pendently of each other),

• they are both offspring of active individuals (with probability ε each),

• one was in the seed-bank in the previous generation and did not become active (with probability
1− δ), and the other is offspring of an active individual (with probability ε).

Note that if individuals are in the seed-bank, then the individuals they are offsping of cannot be from
a different colony, which is why the transition kernels do not always appear in the recursive relations.
When they appear, they are always multiplied by 1 − ε, since the transition kernels are probabilities
conditional on the event that the individuals were not in the seed-bank in the previous generation.
In the last term of ψn+1((x, 1), (y, 1)) we are looking at the event in which the ancestors of the two
individuals are in the same colony: either they are the same individual (with probability 1/N and the
iteration ends) or they are two distinct individuals (with probability 1− 1

N ). In this equation we add
and subtract the term (1 − µ)2(1 − ε)2p(x,w)p(y, z)ψn((w, 1), (z, 1)) for w = z (the expression in the
fourth line) to obtain

ψn+1((x, 1), (y, 1)) = (1− µ)2

[
δ2ψn((x, 0), (y, 0))

+
∑
z∈T

δ(1− ε)p(y, z)ψn((x, 0), (z, 1))

+
∑
w∈T

δ(1− ε)p(x,w)ψn((w, 1), (y, 0))

+
∑
w,z∈T

(1− ε)2p(x,w)p(y, z)ψn((w, 1), (z, 1))

+
∑
z∈T

(1− ε)2p(x, z)p(y, z)

[
1

N
− 1

N
ψn((z, 1), (z, 1))

]]
. (3.13)

By ergodicity, we have
lim
n→∞

Ψ(n)
x,y = Ψx,y ∀x, y ∈ T. (3.14)

9



Therefore, in equilibrium, we may drop the time indices from the above expressions and obtain
ψ((x, 0), (y, 0))
ψ((x, 0), (y, 1))
ψ((x, 1), (y, 0))
ψ((x, 1), (y, 1))



= (1− µ)2


(1− δ)2 (1− δ)ε (1− δ)ε ε2

δ(1− δ) 0 δε 0
δ(1− δ) δε 0 0
δ2 0 0 0



ψ((x, 0), (y, 0))
ψ((x, 0), (y, 1))
ψ((x, 1), (y, 0))
ψ((x, 1), (y, 1))


+
∑
w,z∈T(1− µ)2(1− ε)×
0 0 0 0
0 (1− δ)p(y, z)δx,w 0 εp(y, z)δx,w
0 0 (1− δ)p(x,w)δy,z εp(x,w)δy,z
0 δp(y, z)δx,w δp(x,w)δy,z (1− ε)p(x,w)p(y, z)



ψ((w, 0), (z, 0))
ψ((w, 0), (z, 1))
ψ((w, 1), (z, 0))
ψ((w, 1), (z, 1))


−
∑
z∈T(1− µ)2(1− ε)2×
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 p(x, z)p(y, z) 1

N



ψ((z, 0), (z, 0))
ψ((z, 0), (z, 1))
ψ((z, 1), (z, 0))
ψ((z, 1), (z, 1))



+
∑
z∈T(1− µ)2(1− ε)2


0
0
0

p(x, z)p(y, z) 1
N

 .

(3.15)

After using that
∑
z∈T p(x, z)p(y, z) =

∑
z∈T p(x, z)p(z, y) = p2(x, y), and Ψz,z = Ψ0,0 by translation

invariance, we obtain the expression in (3.5).

Now that we have a recursive relation for Ψx,y as expressed in Proposition 3.1, we proceed to solve
this relation to find a closed form expression for Ψx,y. To do so, we iterate (3.5) and, after noting that
the last summand tends to 0 as the number of iterations tends to infinity (since 0 < µ < 1), we obtain
the following expression.

Proposition 3.2. For all x, y ∈ T,

Ψx,y =
1−Ψ

(4)
0,0

N

∑
n∈N0

(B ∗ Γ)(n)
x,y, (3.16)

where Ψ
(4)
0,0 is the 4-th entry of the 4-vector Ψ0,0 and (with 1 the (4× 4)-identity matrix)

(B ∗ Γ)(n)
x,y =

∑
w,z∈T

B
(n)
w−x,z−yΓw,z, (3.17)

B
(n)
w−x,z−y =

∑
w′,z′∈T

B
(n−1)
w′−x,z′−yBw−w′,z−z′ , (3.18)

B
(0)
w−x,z−y = 1δx,wδy,z, (3.19)

Γw,z = (1− µ)2(1− ε)2


0
0
0

p2(w, z)

 . (3.20)
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Proof. The claim follows by repeatedly substituting Ψw,z into (3.5). Indeed,

Ψx,y = Φx,y +Ax,yΨ0,0 +
∑
w,z∈T

Bw−x,z−yΨw,z

= Φx,y +Dx,yΨ0,0 +
∑
w,z∈T

Bw−x,z−y

Φw,z +Aw,zΨ0,0 +
∑

w′,z′∈T
Bw′−z,z′−zΨw′,z′


=

1δxwδyz +
∑
w,z∈T

Bw−x,z−y

Φw,z +

1δxwδyz +
∑
w,z∈T

Bw−x,z−y

Aw,zΨ0,0

+
∑
w,z∈T

∑
w′,z′∈T

Bw−x,z−yBw′−z,z′−zΨw′,z′

=

1∑
k=0

∑
w,z∈T

B
(k)
w−x,z−y (Φw,z +Aw,zΨ0,0)

+
∑

w′′,z′′∈T
B

(2)
w′′−x,z′′−yΨw′′,z′′ , (3.21)

where B
(0)
w−x,z−y is defined by (3.19) and B

(n)
w−x,z−y is defined recursively as in (3.18). After n substi-

tutions we obtain

Ψx,y =

n∑
k=0

∑
w,z∈T

B
(k)
w−x,z−y (Φw,z +Aw,zΨ0,0) +

∑
w′′,z′′∈T

B
(n+1)
w′′−x,z′′−yΨw′′,z′′ . (3.22)

Letting n → ∞ and noting that limn→∞B
(n)
w−x,z−y = 0 (each term is finite and is multiplied by

(1− µ)2n with 0 < µ < 1), we see that the summand in the second line of the last equality tends to 0.
We therefore obtain

Ψx,y =
∑
k∈N0

∑
w,z∈T

B
(k)
w−x,z−y (Φw,z +Aw,zΨ0,0) . (3.23)

We can rewrite

Φw,z +Aw,zΨ0,0 = (1− µ)2(1− ε)2


0
0
0

1−Ψ
(4)
0,0

N p2(w, z)

 =
1−Ψ

(4)
0,0

N
Γw,z (3.24)

with Γw,z given by (3.20), and the claim follows.

Taking x = y = 0 in (3.23), we get

Ψ0,0 =

(
1−

∑
n∈N0

(B ∗A)
(n)
0,0

)−1(∑
n∈N0

(B ∗ Φ)
(n)
0,0

)
. (3.25)

This can be substituted into (3.16) to obtain an explicit expression for Ψx,y. Since this expression
contains convolutions, we turn to Fourier analysis to gain more insight into the properties of Ψx,y.
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3.4. Fourier analysis

Let T̂ = {0, 1
L , . . . ,

L−1
L }

d. Define for f : T× T 7→ R, x, y ∈ T and θ, η ∈ T̂,

f̂(θ, η) =
∑
x,y∈T

fx,y e
2πi(x·θ+y·η), (3.26)

fx,y =
1

|T̂|2
∑
θ,η∈T̂

f̂(θ, η) e−2πi(x·θ+y·η). (3.27)

Proposition 3.3. For θ, η ∈ T̂,

Ψ̂(θ, η) =
1−Ψ

(4)
0,0

N

(
1− B̂(θ, η)

)−1
Γ̂(θ, η). (3.28)

Proof. By the linearity of the Fourier transform and the convolution theorem, we get from (3.16) that

Ψ̂(θ, η) =
1−Ψ

(4)
0,0

N

∑
n∈N0

B̂(n)(θ, η) Γ̂(θ, η). (3.29)

Since B
(n)
x−w,y−z is defined by the recursion in (3.18), we have

B̂(n)(θ, η) = B̂(n−1)(θ, η)B̂(θ, η) =
(
B̂(θ, η)

)n
, (3.30)

and therefore ∑
n∈N0

B̂(n)(θ, η)Γ̂(θ, η) =
∑
n∈N0

(
B̂(θ, η)

)n
Γ̂(θ, η) =

(
1− B̂(θ, η)

)−1
Γ̂(θ, η). (3.31)

The claim follows after substitution of (3.31) into (3.29).

Our next objective is to compute the right-hand side of (3.28). We obtain

B̂(θ, η) =
∑
u,v∈T

Bu,v e
2πi(θ·u+η·v) =

∑
u,v∈T

(C δu,0 δv,0 +Du,v) e
2πi(θ·u+η·v) = C + D̂(θ, η), (3.32)

where C is given in (3.9) and

D̂(θ, η) = (1− µ)2(1− ε)


0 0 0 0
0 (1− δ)p̂(η) 0 εp̂(η)
0 0 (1− δ)p̂(θ) εp̂(θ)
0 δp̂(η) δp̂(θ) (1− ε)p̂(θ)p̂(η)

 , (3.33)

with
p̂(θ) =

∑
z∈T

p(0, z)e2πiθ·z. (3.34)

Computing (1− B̂(θ, η))−1, we find

(
1− B̂(θ, η)

)−1
=

1

r0(θ, η)


r1,1(θ, η) r1,2(θ, η) r1,3(θ, η) r1,4(θ, η)
r2,1(θ, η) r2,2(θ, η) r2,3(θ, η) r2,4(θ, η)
r3,1(θ, η) r3,2(θ, η) r3,3(θ, η) r3,4(θ, η)
r4,1(θ, η) r4,2(θ, η) r4,3(θ, η) r4,4(θ, η)

 , (3.35)

where the 17 functions in the above expression are polynomials of degree ≤ 4 in p̂(θ) and p̂(η) whose
coefficients depend on the parameters δ, ε. Since (1−B̂(θ, η))−1 pre-multiplies Γ̂(θ, η), whose first three
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entries are 0, we only need the entries in the fourth column. These are given by the following, where
we abbreviate m = (1− µ)2:

r0(θ, η) = (1−m2δ2ε2)
(

1−m
(

1− δ
(
2− 2ε− δ(1−mε2)

)))
−m2(1− ε)2p̂(η)2

(
δε− (1− δ)(1− ε)p̂(θ)

)
×
(

1−m(1− δ(2− δ − ε))−m
(
1−m(1− δ)2

)
(1− δ)(1− ε)p̂(θ)

)
−m(1− ε)(1− δ)

(
1−m

(
1− δ

(
2− ε+ δ(1−mε2(1−mδε))

)))(
p̂(η) + p̂(θ)

)
+m2δε(1− ε)2

(
1−m

(
1− δ(2− δ − ε)

))
p̂(θ)2

−m(1− ε)2p̂(η)p̂(θ)
((

1−m(1− δ)2
)2 − 2mδε+m2δ2ε2

−m(1− δ)(1− ε)
(
1−m(1− δ)2(1 +mδε)

)
p̂(θ)

)
(3.36)

and

r1,4(θ, η) = mε2
(
(1−mδε)2 −m2(1− δ)2(1− ε)2p̂(θ)p̂(η)

)
,

r2,4(θ, η) = mε
(
mδε(1− δ)(1−mδε) + (1− ε)p̂(η)

(
1−m(1− δ(2− δ − ε))

−m(1−m(1− δ)2)(1− δ)(1− ε)p̂(θ)
))
,

r3,4(θ, η) = mε
(
mδε(1− δ)(1−mδε) + (1− ε)p̂(θ)

(
1−m(1− δ(2− δ − ε))

−m(1−m(1− δ)2)(1− δ)(1− ε)p̂(η)
))
,

r4,4(θ, η) = −m2δε(1− δ)2
(
1−mδε− (1− δ)(1− ε)p̂(η)

)
+
(

1−m(1− δ(2− δ − ε))−m
(
1−m(1− δ)2

)
(1− δ)(1− ε)p̂(η)

)
×
(

1−mδε−m(1− δ)(1− ε)p̂(θ)
)
. (3.37)

Looking at Γ̂(θ, η), we have

Γ̂(θ, η) = (1− µ)2
∑
w,z∈T

Γw,ze
2πi(θ·w+η·z)

= (1− µ)2
∑
w,z∈T


0
0
0

(1− ε)2 1
N p

2(w, z)

 e2πi(θ·w+η·z)

=
1

N
(1− µ)2(1− ε)2


0
0
0

p̂(θ)p̂(η)

 δθ,−η. (3.38)

Therefore we get

(
1− B̂(θ, η)

)−1
Γ̂(θ, η) =

(1− µ)2(1− ε)2

N

1

r0(θ, η)


r1,4(θ, η)
r2,4(θ, η)
r3,4(θ, η)
r4,4(θ, η)

 p̂(θ)p̂(η)δθ,−η, (3.39)

Note that, because of the multiplicative factor δθ,−η, Ψ̂(θ, η) in (3.28) actually depends on θ only.
This is in agreement with the fact that Ψx,y actually depends on x − y only. Henceforth we write
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Ψ̂(θ,−θ) = Ψ̂(θ), and similarly for the other symbols.
At this point, all the terms in (3.28) are known objects, except for Ψ0,0. In order to compute Ψ0,0,

we take the Fourier transform of (3.23) to obtain

Ψ̂(θ) = (1− B̂(θ))−1
(
Φ̂(θ) + Â(θ)Ψ0,0

)
. (3.40)

We then use the Fourier inversion formula (3.27), which gives

1

|T̂|

∑
θ∈T̂

Ψ̂(θ) = Ψ0,0. (3.41)

Substitution of (3.40) therefore yields

Ψ0,0 =

1− 1

|T̂|

∑
θ∈T̂

(1− B̂(θ))−1Â(θ)

−1 1

|T̂|

∑
θ∈T̂

(1− B̂(θ))−1Φ̂(θ)

 . (3.42)

With (3.39) and (3.42) we have obtained an explicit expression for Ψ̂(θ) in (3.28), which we sum-
marise in a theorem. Abbreviate

K =
(1− µ)2(1− ε)2

N
, (3.43)

let

si,4(θ) = K p̂(θ)2 ri,4(θ)

r0(θ)
, i = 1, 2, 3, 4, (3.44)

where r0(θ) and ri,4(θ) = ri,4(θ), i = 1, 2, 3, 4, are defined in (3.36) and (3.37), and let

si,4 =
1

|T̂|

∑
θ∈T̂

si,4(θ), i = 1, 2, 3, 4. (3.45)

.

Theorem 3.4. For every θ ∈ T̂,

Ψ̂(θ) =
∑
x∈T

Ψ0,x e
2πi(x·θ) =

1−Ψ
(4)
0,0

N


s1,4(θ)
s2,4(θ)
s3,4(θ)
s4,4(θ)

 (3.46)

with
Ψ

(4)
0,0 =

s4,4

1− s4,4
. (3.47)

Proof. The vector Φ̂(θ) and the matrix Â(θ) are simple, namely, (3.6) and (3.7) give

Φ̂(θ) = K p̂(θ)2


0
0
0
1

 , Â(θ) = −K p̂(θ)2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (3.48)

Hence (3.35) gives (3.46) with

Ψ0,0 =

1−


0 0 0 s1,4

0 0 0 s2,4

0 0 0 s3,4

0 0 0 s4,4



−1

s1,4

s2,4

s3,4

s4,4

 =

1+
1

1− s4,4


0 0 0 s1,4

0 0 0 s2,4

0 0 0 s3,4

0 0 0 s4,4




s1,4

s2,4

s3,4

s4,4

 . (3.49)
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The latter in turn yields (3.47).

The formula in (3.46) is difficult to analyse. The θ-dependence sits in the quotients of ri,4(θ),
i = 1, 2, 3, 4, and r0(θ). These are second-degree and fourth-degree polynomials in p̂(θ), respectively,
with coefficients that depend on the parameters δ, ε and µ. In order to find Ψ0,x we need to Fourier
invert the 4-vector in the right-hand side of (3.46).

Remark 3.5. The result in Theorem 3.4 is general. Our colonies form a discrete torus T, but we could
arrange them on any regular lattice, since only translation invariance and periodicity are needed. The
formulas are also valid for a generic random walk transition kernel p(x, y), x, y ∈ T, beyond the special
case considered in (3.1)–(3.2). Moreover, if we would have had K ∈ N seed-banks instead of one, then
we would have to work with (K+ 1)2× (K+ 1)2 matrices rather than 4× 4 matrices, but the structure
would be the same.

4. Special choice of parameters

In Section 4.1 we look at the special case M = N , for which δ = εMN = ε, and that 0 < δ � 1. We
refer to this case as the symmetric slow seed-bank ( see Fig. 3). This choice will allow us to simplify
the polynomials ri,4(θ), i = 1, 2, 3, 4, and r0(θ) appearing in (3.44), and deduce from Theorem 3.4
a more manageable formula for Ψ0,x, x ∈ T, stated in Theorems 4.1 and 4.3, in terms of the Green
function associated with the random walk q in (3.1). In Section 4.2 we recall what is known for this
Green function, both on the infinite torus and the finite torus. In Section 4.3 we use this information
to obtain explicit scaling expressions when 0 < µ/ν � 1 (= slower mutation than migration). In
Sections 4.4–4.5 we use these expressions to discuss various regimes for Ψ0,x, x ∈ T, as a function of
N , L and µ/ν, stated in Theorems 4.4–4.7.

N N

-

�

δ

δ

active dormant

Figure 3: Symmetric slow seed-bank: equal size N for the active and the dormant population, with equal and
small crossover rate 0 < δ � 1 in both directions.

4.1. Symmetric slow seed-bank

Let

α̂(θ) =
mp̂(θ)2

1−mp̂(θ)2
, β̂(θ) =

m2p̂(θ)3

(1−mp̂(θ))(1−mp̂(θ)2)
, γ̂(θ) =

mp̂(θ)2

(1−mp̂(θ)2)2
, (4.1)

and

α(x) =
1

|T̂|

∑
θ∈T̂

α̂(θ) e−2πi(θ·x), β(x) =
1

|T̂|

∑
θ∈T̂

β̂(θ) e−2πi(θ·x), γ(x) =
1

|T̂|

∑
θ∈T̂

γ̂(θ) e−2πi(θ·x). (4.2)

Theorem 4.1. For every x ∈ T, M = N , ε = δ, µ ∈ [0, 1) and ν ∈ [0, 1], as δ ↓ 0,

Ψ0,x = cN




0
0
0

α(x)

+ δ


0

β(x)
β(x)

2cNα(x)γ(0)− 2γ(x)


+O(δ2), (4.3)
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where

cN =
1

N + α(0)
. (4.4)

In particular,

1−Ψ
(4)
0,0

N
= cN

[
1 + δ

2α(0)γ(0)

N
+O(δ2)

]
. (4.5)

Proof. Taylor expand in δ the expressions in (3.46) and (3.47), and take the inverse Fourier transform.

Remark 4.2. The first vector in the right-hand side (4.3) must have all entries in [0, 1] because Ψ0,x

is a probability. However, the second vector may in principle take values in R because the seed-bank
has a tendency to increase and decrease Ψ0,x. Indeed, while in the seed-bank, individuals are dormant
and continue to mutate, yet at the same time are more easily traced by other individuals. Thus, there
are two competing effects, exemplified by the different signs in the fourth entry of the second vector.

We next compute α(x), β(x), γ(x) for the uniform nearest-neighbour model in (3.2). For x ∈ T
and l ∈ N0, let ql(x) be the probability that simple random walk starting from the origin is at site x
at time l. The Green function of simple random walk at site x is

Gx(z) =
∑
l∈N0

ql(x)zl, |z| ≤ 1. (4.6)

Theorem 4.3. For q as in (3.2),

α(x) =
1

2(1− b)
Gx

(
a

1− b

)
+

1

2(1 + b)
Gx

(
− a

1 + b

)
− δ0,x,

β(x) =
1− µ

2µ

1

1− b
Gx

(
a

1− b

)
− 1− µ

2(2− µ)

1

1 + b
Gx

(
− a

1 + b

)
− 1

1− (1− µ)2

1

1− (1− µ)b
Gx

(
(1− µ)a

1− (1− µ)b

)
+ δ0,x,

γ(x) =
b

4(1− b)2
Gx

(
a

1− b

)
+

a

4(1− b)3
G′x

(
a

1− b

)
− b

4(1 + b)2
Gx

(
− a

1 + b

)
− a

4(1 + b)3
G′x

(
− a

1 + b

)
(4.7)

with a = (1− µ)ν, b = (1− µ)(1− ν) and G′x the derivative of Gx.
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Proof. From (3.1) we have p̂(θ) = (1− ν) + νq̂(θ). Substituting this into the first sum in (4.2), we get

δ0,x + α(x) =
∑
k∈N0

mk 1

|T̂|

∑
θ∈T̂

p̂(θ)2k e−2πi(θ·x)

=
∑
k∈N0

mk
2k∑
l=0

(
2k

l

)
(1− ν)2k−lνl

1

|T̂|

∑
θ∈T̂

q̂(θ)l e−2πi(θ·x)

=
∑
k∈N0

mk
2k∑
l=0

(
2k

l

)
(1− ν)2k−lνlql(x)

=
∑
l∈N0

ql(x) al
∞∑

k=dl/2e

(
2k

l

)
b2k−l

=
∑
l∈N0

ql(x) al
∞∑
k′=l

(
k′

l

)
bk
′−l 1

2 [(+1)k
′
+ (−1)k

′
]

=
∑
l∈N0

ql(x) al 1
2

[
(+1)l(1− b)−l−1 + (−1)l(1 + b)−l−1

]
=

1

2(1− b)
Gx

(
a

1− b

)
+

1

2(1 + b)
Gx

(
− a

1 + b

)
,

(4.8)

which gives the formula for α(x). Next, define

δ̂(θ) =
mp̂(θ)

1−mp̂(θ)
(4.9)

and write the second term in (4.1) as β̂(θ) = α̂(θ)δ̂(θ). Then the second sum in (4.2) becomes

β(x) =
∑
y∈T

α(x− y)δ(y). (4.10)

A computation similar to (4.8) yields

δ0,x + δ(x) =
∑
k∈N0

mk 1

|T̂|

∑
θ∈T̂

p̂(θ)k e−2πi(θ·x)

=
∑
k∈N0

mk
k∑
l=0

(
k

l

)
(1− ν)k−lνl

1

|T̂|

∑
θ∈T̂

q̂(θ)l e−2πi(θ·x)

=
∑
k∈N0

mk
k∑
l=0

(
k

l

)
(1− ν)k−lνlql(x)

=
∑
l∈N0

ql(x) a′l
∞∑
k=l

(
k

l

)
b′k−l

=
∑
l∈N0

ql(x) a′l (1− b′)−l−1

=
1

1− b′
Gx

(
a′

1− b′

)

(4.11)

with a′ = (1− µ)2ν = (1− µ)a and b′ = (1− µ)2(1− ν) = (1− µ)b. Moreover, for any |z|, |z′| ≤ 1 with
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z 6= z′ we have the identities∑
x∈T

Gx(z) =
∑
l∈N0

∑
x∈T

zlql(x) =
∑
l∈N0

zl = (1− z)−1,

∑
y∈T

Gx−y(z)Gy(z′) =
∑
l,l′∈N0

zlz′l
′∑
y∈T

ql(x− y)ql′(y) =
∑
l,l′∈N0

zlz′l
′
ql+l′(x)

=
∑
k∈N0

qk(x)
∑
l,l′∈N0
l+l′=k

zlz′l
′

=
∑
k∈N0

qk(x)zk
1− ( z

′

z )k+1

1− ( z
′

z )
=

1

z − z′
[
zGx(z)− z′Gx(z′)

]
.

(4.12)

Inserting (4.8) and (4.11) into (4.10) and using (4.12), we get the formula for β(x) after a short

computation. Finally, note from (4.1) that γ̂(θ) = m∂α̂(θ)
∂m , θ ∈ T̂. After substitution into the third

sum in (4.2) this gives γ(x) = m∂α(x)
∂m = 1

2 (1− µ) ∂α(x)
∂(1−µ) , x ∈ T. Inserting the formula for α(x), we get

the formula for γ(x) after a short computation.

By combining Theorems 4.1 and 4.3, we obtain a formula for Ψ0,x (up to leading order in δ for
δ ↓ 0) in terms of the Green function of simple random walk. The latter has been studied extensively
in the literature. We recall the relevant formulas.

4.2. Green functions

The following properties are collected from Montroll [11], [12], Montroll and Weiss [13], Spitzer [14,
Sections I.1, III.15], den Hollander and Kasteleyn [7], Hughes [8, Section 3.3, Appendix A.1], Abramowitz
and Stegun [1, Items 9.6.12, 9.6.13,9.7.2].

• Infinite torus.. For L =∞, we have T = Zd. For d = 1, the Green function is known in closed form:

Gx(z) = y(z)|x| (1− z2)−1/2, x ∈ Z, 0 < |z| < 1, (4.13)

where y(z) = [1 − (1 − z2)1/2]/z. For d ≥ 2 no closed form expression is available, but there are
asymptotic formulas for z ↑ 1. For d = 2,

Gx(z) =
1

π

[
log

(
1

1− z

)
− C(x) + C̄(x)(1− z) log

(
1

1− z

)
+O(1− z)

]
, x ∈ Z2, (4.14)

where
C(0) = 0, C̄(0) = − 1

2 , (4.15)

and

C(x) = log ‖x‖2 + (2γ + log 8) +O

(
1

‖x‖2

)
, C̄(x) = ‖x‖2 +O(1),

‖x‖ → ∞, ‖x‖ =
√
x2

1 + x2
2,

(4.16)

with γ = 0.57721 . . . Euler’s constant. In particular, C(k, k) = 4
∑|k|
l=1

1
2l−1 , k ∈ Z. For d = 3,

Gx(z) = C(x)− C̄(x)(1− z)1/2 +O(1− z), x ∈ Z3, (4.17)

where

C(0) = 1.51638 . . . , C̄(0) =
3
√

3

π
√

2
,

C(x)

C(0)
=
C̄(x)

C̄(0)
, x ∈ Z3, (4.18)

and

C(x) =
3

2π‖x‖

[
1 +

1

8‖x‖2

(
−3 + 5

x4
1 + x4

2 + x4
3

‖x‖4

)
+O

(
1

‖x‖4

)]
, ‖x‖ → ∞. (4.19)
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For d ≥ 4 the second term in the right-hand side of (4.17) is of higher order. For d = 1, 2 the Green
functions show diffusive scaling:

d = 1: lim
z↑1

√
2(1− z)Gy/√1−z(z) = e−

√
2 |y|, y ∈ R,

d = 2: lim
z↑1

Gy/
√

1−z(z) =
2

π
K0(2‖y‖), y ∈ R2 \ {0},

(4.20)

where K0 is the modified Bessel function (of the third kind) of order 0. The latter satisfies K0(u) =
[log(2/u)−γ](1+ 1

4u
2 +O(u4))+ 1

4u
2 +O(u4), u ↓ 0, and K0(u) = e−u

√
π/2u [1− 8

u +O(u−2)], u→∞.
The diffusive scaling also holds for the derivative of the Green functions.

• Finite torus.. For L <∞, the analogue of (4.13) reads

Gx(z) =
y(z)x + y(z)L−x

1− y(z)L
(1− z2)−1/2, x ∈ {0, 1, . . . , L− 1}, 0 < |z| < 1, (4.21)

while the analogue of (4.14) reads

Gx(z) = L−d(1− z)−1 + CL(x)− C̄L(x)(1− z) +O((1− z)2), x ∈ T. (4.22)

The latter expansion also holds for d = 1. Namely, inserting into (4.17) the expansion

y(z) = 1− [2(1− z)]1/2 + 1
2 [2(1− z)]− 3

8 [2(1− z)]3/2 +O((1− z)2), (4.23)

we find, after a short computation,

CL(x) = CL(0)− x(L− x)

L
,

C̄L(x) = C̄L(0)− x(L− x)

6L

[
x(L− x)(L2 − 2)− (L2 − 5)

]
,

(4.24)

with

CL(0) =
L2 − 1

6L
, C̄L(0) =

(L2 − 1)(L2 − 19)

180L
. (4.25)

For d = 2 it is known that CL(0) = 2
π logL + O(1), C̄L(0) = cL2 − 1

π logL + O(1), L → ∞, with
c = 0.06187 . . ., while for d = 3 it is known that limL→∞ CL(0) = C(0) and C̄L(0) = cL4[1 + o(1)] for
some c ∈ (0,∞). No formulas are available for CL(x), C̄L(x), x 6= 0, for d ≥ 2.

4.3. Slower mutation than migration

Return to Theorem 4.3. Let
ρ = µ/ν. (4.26)

In terms of this ratio, we have a = ν(1− νρ) and b = (1− ν)(1− νρ). We analyse what happens in the
limit as ρ ↓ 0. To do so, we abbreviate

u =
a

1− b
, v =

(1− µ)a

1− (1− µ)b
. (4.27)

Substitution of (4.27) into (4.7) gives, for ρ ↓ 0 uniformly in ν and x,

α(x) =
1

2ν

[
1

1− νρ
uGx(u)

]
+O(1),

β(x) =
1

2ν2

1

ρ

[
uGx(u)− 1

(1− νρ)2(1− 1
2νρ)

vGx(v)

]
+O(1),

γ(x) =
1

4ν2

[
1− ν

1 + (1− ν)ρ
uGx(u) +

1

[1 + (1− ν)ρ]2
uG′x(u)

]
+O(1).

(4.28)
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Here, the error terms O(1) are valid as long as ν remains bounded away from 1 (to make sure that the
singularity of Gx(z) at z = −1 does not contribute via the term with z = −a/(1 + b)). For ν ↓ 0 these
error terms can be refined to, respectively,

− 3
4δ0,x +O(ν), − 1

16δ0,x +O(ν), 7
8δ0,x +O(ν). (4.29)

To investigate the leading order terms in (4.28), we expand

u = 1− ρ+ (1− ν)ρ2 − (1− ν)2ρ3 +O(ρ4),

v = 1− 2ρ+ (4− 3ν)ρ2 − 4(1− ν)(2− ν)ρ3 +O(ρ4).
(4.30)

In what follows we derive expansions in ρ for fixed ν and keep track of how the coefficients in these
expansions depend on ν. The various expansions given below are pushed to the lowest order in ρ for
which the x-dependence becomes visible via the functions C(x), C̄(x) and CL(x), C̄L(x) in the Green
function formulas in Section 4.2. The result is a list of formulas for α(x), β(x), γ(x) that are technical,
but we will see in Section 4.4 that the latter lead to simple explicit scaling expressions in various
interesting limiting regimes.

• Infinite torus.. For d = 1, (4.13) and (4.28)–(4.30) give, for ρ ↓ 0 uniformly in ν and x,

α(x) =
1

2ν

1 +O(ρ)√
2ρ

e(−
√

2ρ+O(ρ)) |x| +O(1),

β(x) =
1

2ν2

1

ρ

[
1 +O(ρ)√

2ρ
e(−
√

2ρ+O(ρ)) |x| − 1 +O(ρ)√
4ρ

e(−
√

4ρ+O(ρ)) |x|
]

+O(1),

γ(x) =
1

4ν2

(
1

2ρ
+
|x|√
2ρ

)
1 +O(ρ)√

2ρ
e(−
√

2ρ+O(ρ)) |x| +O(1),

(4.31)

where in the last line we use that G′x(z) = [ z
1−z + |x|y

′(z)
y(z) ]Gx(z) with y′(z)

y(z) = 1
zG0(z). The scaling in

(4.31) gives us control over the dependence on x, uniformly in |x| = O(1/
√
ρ). Similarly, for d = 2,

(4.14) and (4.28)–(4.30) give, for ρ ↓ 0 uniformly in ν and x,

α(x) =
1

2πν

[
log

(
1

ρ

)
− C(x) +

[
− (1− ν) + C̄(x)

]
ρ log

(
1

ρ

)
+O(ρ)

]
+O(1),

β(x) =
1

2πν2

[
log 2

ρ
−
[
(1− 5

2ν)− C̄(x)
]

log

(
1

ρ

)
− (1− 5

2ν)C(x)

− [(2− 5
2ν) + 2C̄(x)] log 2 +O

(
ρ log

(
1

ρ

))]
+O(1),

γ(x) =
1

4πν2

[
1

ρ
+
[
(1− ν)− C̄(x)

]
log

(
1

ρ

)
−
[
(3− 2ν) + (1− ν)C(x)− C̄(x)

]
+O

(
ρ log

(
1

ρ

))]
+O(1).

(4.32)

The scaling in (4.32) gives us control over the dependence on x, uniformly in ‖x‖ = o(1/
√
ρ) (recall

(4.16)). In order to make sure that the error terms O(1) are negligible compared to the terms containing
C(x) and C̄(x), we need to let ν ↓ 0 afterwards. For d = 3, (4.17) and (4.28)–(4.30) give, for ρ ↓ 0
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uniformly in ν and x,

α(x) =
1

2ν

[
C(x)− C̄(x)

√
ρ+O(ρ)

]
+O(1),

β(x) =
1

2ν2

[
(
√

2− 1)C̄(x)
√
ρ

+ (1− 5
2ν)C(x) +O(

√
ρ)

]
+O(1),

γ(x) =
1

4ν2

[
C̄(x)

2
√
ρ

+ (1− ν)C(x) +O(
√
ρ)

]
+O(1).

(4.33)

The scaling in (4.33) gives us control over the dependence on x uniformly in ‖x‖ = O(1) (recall (4.19)),
provided we let ν ↓ 0 afterwards.

• Finite torus.. For d ≥ 1, (4.21) and (4.28) combine to give, for ρ ↓ 0 uniformly in ν and x,

α(x) =
1

2ν

[
1

Ldρ
+ CL(x)− 1− ν

Ld
+

{
ν(1− ν)

Ld
− (1− ν)CL(x)− C̄L(x)

}
ρ+O(ρ2)

]
+O(1),

β(x) =
1

2ν2

[
1

2Ldρ2
− 5ν

4Ldρ
+

{
ν(20− 17ν)

8Ld
+ (1− 5

2ν)CL(x) + C̄L(x)

}
+O(ρ)

]
+O(1),

γ(x) =
1

4ν2

[
1

Ldρ2
+

2− ν
Ldρ

+

{
(2ν − 3)(ν − 1)

Ld
+ (1− ν)CL(x) + C̄L(x)

}
+O(ρ)

]
+O(1).

(4.34)

Again these formulas give us sharp control over the dependence on x, provided we let ν ↓ 0 afterwards.

In Sections 4.4–4.5 we use the above expansions to compute Ψ0,x, x ∈ T, in the limit as δ, ρ, ν ↓ 0
(in that order). Again, we derive expansions in ρ whose coefficients depend on ν, and compute these
coefficients up to order O(ν2).

4.4. Regimes: no seed-bank

We first consider the case δ = 0, i.e., there is no exchange between the active population and the
seed-bank. Theorem 4.1 gives

Ψ
(1)
0,x = Ψ

(2)
0,x = Ψ

(3)
0,x = 0, Ψ

(4)
0,x =

α(x)

N + α(0)
. (4.35)

Indeed, if at least one of the two individuals is in the seed-bank, then there cannot be coalescence of their
lineages, while if both individuals are active, then they remain active at all times and behave exactly
like in the standard Wright-Fisher model. By inserting the expansions of α(x) found in (4.31)–(4.33)
and (4.34), we obtain the following.

Theorem 4.4. For δ = 0, in the limit as ρ, ν ↓ 0 (in that order):
(1) For L =∞,

d = 1: Ψ
(4)
0,x =

e(−
√

2ρ+O(
√
ρ)) |x| − [ 3

2δ0,xν +O(ν2)]
√

2ρ+O(ρ)

1 + [(2N − 3
2 )ν +O(ν2)]

√
2ρ+O(ρ)

uniformly in |x| = O(1/
√
ρ),

d = 2: Ψ
(4)
0,x =

[log(1/ρ)− [C(x) + 3
2πδ0,xν +O(ν2)] + [−(1− ν) + C̄(x)]ρ log(1/ρ) +O(ρ)

log(1/ρ) + [π(2N − 3
2 )ν +O(ν2)] + [−(1− ν) + C̄(0)]ρ log(1/ρ) +O(ρ)

uniformly in ‖x‖ = o(1/
√
ρ),

d = 3: Ψ
(4)
0,x =

[C(x)− 3
2δ0,xν +O(ν2)] +O(

√
ρ)

[C(0) + (2N − 3
2 )ν +O(ν2)] +O(

√
ρ)

uniformly in ‖x‖ = O(1). (4.36)
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(2) For L <∞,

d ≥ 1: Ψ
(4)
0,x =

1 + [CL(x)− 3
2δ0,xν −

1−ν
Ld

+O(ν2)]Ldρ+O(ρ2)

1 + [CL(0) + (2N − 3
2 )ν − 1−ν

Ld
+O(ν2)]Ldρ+O(ρ2)

uniformly in x ∈ T.
(4.37)

The expansions in (4.36)–(4.37) are refinements of what is known from the literature (see e.g.
Durrett [5, Chapter 5]). They simplify in various limiting regimes, corresponding to N,L → ∞ in
combination with ρ, ν ↓ 0.

Theorem 4.5. For δ = 0, in the limit as ρ, ν ↓ 0 (in that order) and N,L→∞:
(1) For L =∞ (recall (4.16) and (4.19)),

d = 1, Nν
√

2ρ→ r : Ψ
(4)

0,y/
√

2ρ
→ e−|y|

1+2r , r ∈ (0,∞), y ∈ R,

d = 2, Nν
log(1/ρ) → r : (1− 2χ) log(1/ρ)

[
Ψ

(4)
0,y/ρχ −

1−2χ
1+2πr

]
→ log( 1

‖y‖2 ),

0 < χ < 1
2 , r ∈ (0,∞), y ∈ R2 \ {0},

d = 3, Nν → r : Ψ
(4)
0,x →

C(x)
C(0)+2r , r ∈ (0,∞), x ∈ Z3,

(4.38)

and (recall (4.20))

d = 2,
Nν

log(1/ρ)
→ r : log(1/ρ) Ψ

(4)
0,y/
√
ρ →

2K0(2‖y‖)
1 + 2πr

, r ∈ (0,∞), y ∈ R2 \ {0}. (4.39)

(2) For L <∞ (recall (4.24)–(4.25)),

d = 1, Nν/L→ r, L2ρ→ s : L1−χ
[
Ψ

(4)
0,yLχ −

1 + 1
6s

1 + ( 1
6 + 2r)s

]
→ sy

1 + ( 1
6 + 2r)s

,

0 < χ < 1, r, s ∈ (0,∞), y ∈ [0,∞).

(4.40)

Theorem 4.5(1) shows the x-dependence of Ψ
(4)
0,x for L =∞, on scale 1/

√
ρ for d = 1 and on scales

1/ρχ, 0 < χ ≤ 1
2 for d = 2. The dependence is modulated by an r-dependent prefactor that is controlled

by the colony size N . The case r � 1 corresponds to the situation where coalescence of the two lineages
is slow because colonies are large and migration is fast. The case r � 1 corresponds to the opposite
situation where the size of the colonies plays no role.

Theorem 4.5(2) does the same for L < ∞, on scales Lχ, 0 < χ < 1, for d = 1, modulated by an
(r, s)-dependent prefactor controlled by the population size N and the torus size L. The case s � 1
corresponds to the situation where the boundary of the torus is not felt: it takes time L2/ν to travel
a distance L and time 1/µ for a lineage to encounter a mutation. The case s � 1 corresponds to the
situation where the system behaves like a homogeneously mixing population, i.e., a single colony with
LN individuals (“panmictic behaviour”).

For L <∞, no result is stated for d ≥ 2 because no formulas are available for the coefficients CL(x),
C̄L(x), x 6= 0, of the Green functions.

4.5. Regimes: slow seed-bank

To monitor the first-order correction in δ, we define

Φ0,x = lim
δ↓0

1

δ

[
Ψ0,x −Ψδ=0

0,x

]
. (4.41)

Theorem 4.1 gives

Φ
(1)
0,x = 0, Φ

(2)
0,x = Φ

(3)
0,x =

β(x)

N + α(0)
, Φ

(4)
0,x = 2

[α(x)γ(0)− α(0)γ(x)]−Nγ(x)

[N + α(0)]2
. (4.42)
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By inserting the expansions of α(x) found in (4.31)–(4.33) and (4.34), we obtain the following.

Theorem 4.6. In the limit as ρ, ν ↓ 0 (in that order):
(1) For L =∞,

d = 1: Φ
(2)
0,x = Φ

(3)
0,x

=
1

νρ

[e(−
√

2ρ+O(ρ)) |x| − 1√
2
e(−
√

4ρ+O(ρ)) |x|] +O(ρ)

1 + [(2N − 3
2 )ν +O(ν2)]

√
2ρ+O(ρ)

,

d = 2: Φ
(2)
0,x = Φ

(3)
0,x

=
1

νρ

log 2 + [−(1− 5
2ν) + C̄(x)]ρ log(1/ρ) +O(ρ)

log(1/ρ) + [π(2N − 3
2 )ν +O(ν2)]− [(1− ν)− C̄(0)]ρ log(1/ρ) +O(ρ)

,

d = 3: Φ
(2)
0,x = Φ

(3)
0,x

=
1

ν
√
ρ

(
√

2− 1)C̄(x) + [(1− 5
2ν)C(x)− 1

8ν
2δ0,x]

√
ρ+O(ρ)

[C(0) + (2N − 3
2 )ν +O(ν2)]− C̄(0)

√
ρ+O(ρ)

,

(4.43)

and

d = 1: Φ
(4)
0,x

=
1 +O(ρ)

ν
√

2ρ
e(−
√

2ρ+O(ρ)) |x| [|x|+ (2N − 3
2 )ν +O(ν2)] + [(2N − 3

2 )ν +O(ν2)]|x|
√

2ρ+O(ρ)

[1 + [(2N − 3
2 )ν +O(ν2)]

√
2ρ+O(ρ)]2

,

d = 2: Φ
(4)
0,x

=
1

ν

[−C(x)− π(2N − 3
2 )ν](1/ρ)− [C̄(0)− C̄(x)] log2(1/ρ) +O(log(1/ρ))

[log(1/ρ) + [−C(x) + π(2N − 3
2 )ν +O(ν2)] +O(ρ log(1/ρ))]2

,

d = 3: Φ
(4)
0,x

=
1

2ν
√
ρ

[C(x)C̄(0)− C(0)C̄(x)− (2N − 3
2 )νC̄(x) +O(ν2)] +O(

√
ρ)

[[(2N − 3
2 )ν +O(ν2)] +O(

√
ρ)]2

.

(4.44)

(2) For L <∞,

d ≥ 1: Φ
(2)
0,x = Φ

(3)
0,x =

1

2νρ

×
1− 5

2νρ+ [2CL(x) + 2C̄L(x) +O(ν)]Ldρ2 +O(ρ3)

1 + [CL(0)− 1−ν
Ld

+ (2N − 3
2 )ν +O(ν2)]Ldρ− [CL(0) + C̄L(0) +O(ν)]Ldρ2 +O(ρ3)

.

(4.45)

and

d ≥ 1: Φ
(4)
0,x =

Ld

ν

1

[1 + [CL(0)− 1−ν
Ld

+ (2N − 3
2 )ν +O(ν2)]Ldρ+O(ρ2)]2

×
(

[CL(x)− CL(0)− (2N − 3
2 (1− δ0,x))ν +O(ν2)]

+ [−2(C̄L(x)− C̄L(0)) +
(
C(x)− CL(0)− (2N − 3

2 (1− δ0,x))
)
ν +O(ν2)]ρ+O(ρ2)

)
.

(4.46)

Again, various limiting regimes are interesting, in analogy with (4.38)–(4.40).
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Theorem 4.7. (1) For L <∞,

d = 1, Nν
√

2ρ→ r : νρΦ
(2)

0,y/
√

2ρ
→

e|y|− 1√
2
e−
√

2|y|

1+2r , y ∈ R,

d = 2, Nν
log(1/ρ) → r : νρ log(1/ρ) Φ

(2)
0,y/ρχ →

log 2
1+2πr , 0 < χ < 1

2 , y ∈ R2,

d = 3, Nν → r : ν
√
ρΦ

(2)
0,x →

(
√

2−1)C̄(x)
C(0)+2r , x ∈ Z3,

(4.47)

and

d = 2,
Nν

log(1/ρ)
→ r : νρ log(1/ρ) Φ

(2)
0,y/
√
ρ →

2[K0(2‖y‖)−K0(2
√

2‖y‖)]
1 + 2πr

, y ∈ R2 \ {0}, (4.48)

and

d = 1, Nν
√

2ρ→ r : 2νρΦ
(4)

0,y/
√

2ρ
→ e−|y| (1+2r)|y|+2r

(1+2r)2 , y ∈ R,

d = 2, Nν
log(1/ρ) → r : νρ log(1/ρ) Φ

(4)
0,y/ρχ → −

2χ+2πr
(1−2χ+2πr)2 , 0 < χ < 1

2 , y ∈ R2,

d = 3, Nν → r : 4ν
√
ρΦ

(4)
0,x →

C(x)C̄(0)−C(0)C̄(x)−2rC(x)
(C(0)+2r)2 , x ∈ Z3,

(4.49)

and

d = 2,
Nν

log(1/ρ)
→ r : ρ log(1/ρ) Φ

(4)
0,y/
√
ρ → −

2‖y‖K ′0(2‖y‖)
(1 + 2πr)2

, y ∈ R2 \ {0}. (4.50)

(2) For L <∞,

d = 1, Nν/L→ r, L2ρ→ s : 2νρΦ
(2)
0,yLχ →

1

1 + ( 1
6 + 2r)s

, 0 < χ < 1, y ∈ [0,∞). (4.51)

and

d = 1, Nν/L→ r, L2ρ→ s : ν
√
ρΦ

(4)
0,yLχ →

r
√
s

1
6 + 2r

, 0 < χ < 1, y ∈ [0,∞). (4.52)

The same observations as made below Theorem 4.5 apply.

5. Spatial second moment

In Section 5.1 we identify the scaling of Ψ̂(θ) for θ → 0. Since θ ∈ T̂ = {0, 1
L , . . . ,

L−1
L }

d, we must
require that L → ∞, i.e., the torus becomes large. In Section 5.2 we use this scaling to compute the
limiting second moment ζ = limL→∞

∑
x∈T |x|2Ψ0,x in closed form for all choices of the parameters,

stated in Theorem 5.3. In Section 5.3 we obtain explicit scaling expressions for the special case of
the symmetric slow seed-back treated in Section 4. The value of ζ is important because it provides
information about the average time until the two lineages coalesce. Namely, we have

lim
L→∞

E(τ) = ζ/2ν, τ = time to coalescence. (5.1)

Indeed, on the infinite torus the second moment of simple random walk (with transition kernel (3.2))
after n ∈ N0 steps equals n. Since ν is the probability that a lineage migrates to a different colony (i.e.,
makes a move like simple random walk), it follows that the second moment of the distance between
the two lineages after n steps equals 2νn. Picking n = τ and taking the expectation, we get (5.1).

5.1. Taylor expansion

Let
∂Ψ̂(θ) = Ψ̂(θ)− Ψ̂(0), ∂B̂(θ) = B̂(θ)− B̂(0), ∂Γ̂(θ) = Γ̂(θ)− Γ̂(0). (5.2)
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Abbreviate U = (1− B̂(0))−1, and let ∆(θ) be the first term in the Taylor expansion of ∂B̂(θ):

∂B̂(θ) = ∆(θ) + o(|θ|2). (5.3)

Proposition 5.1. For θ → 0,

∂Ψ̂(θ) =
1−Ψ

(4)
0,0

N

[
U ∂Γ̂(θ) + U ∆(θ)U Γ̂(0)

]
+ o(|θ|2). (5.4)

Proof. Using (5.3), we get(
1− B̂(θ)

)−1
=
∑
n∈N0

(
B̂(θ)

)n
=
∑
n∈N0

(
B̂(0) + ∆(θ) + o(|θ|2)

)n
=
∑
n∈N0

(
B̂(0)

)n
+
∑
n∈N0

n−1∑
k=0

(
B̂(0)

)n−1−k
∆(θ)

(
B̂(0)

)k
+ o(|θ|2)

=
(
1− B̂(0)

)−1
+
(
1− B̂(0)

)−1
∆(θ)

(
1− B̂(0)

)−1
+ o(|θ|2). (5.5)

Substitution into (3.28) yields

∂Ψ̂(θ)

=
1−Ψ

(4)
0,0

N

((
1− B̂(0)

)−1
∂Γ̂(θ) +

(
1− B̂(0)

)−1
∆(θ)

(
1− B̂(0)

)−1
Γ̂(θ)

)
+ o(|θ|2). (5.6)

Using that Γ̂(θ)→ Γ̂(0) as θ → 0, we obtain (5.4).

To analyse (5.4), we first compute

U =
(
1− B̂(0)

)−1
=

1

u0


u1,1 u1,2 u1,3 u1,4

u2,1 u2,2 u2,3 u2,4

u3,1 u3,2 u3,3 u3,4

u4,1 u4,2 u4,3 u4,4

 =
1

u0


t1 εs1 εs1 ε2s2

δs1 t2 t3 εs3

δs1 t3 t2 εs3

δ2s2 δs3 δs3 t4

 , (5.7)

where

u0 = (1−m) (1−m(1− δ − ε)− 2mδε) (1−m(1− δ − ε))
(
1−m(1− δ − ε)2

)
,

s1 = m(1−m(1− δ − ε)− 2mδε)(1− δ −m(1− ε)(1− δ − ε)),
s2 = m(1−m(1− δ − ε)− 2mδε)(1 +m(1− δ − ε)),
s3 = m(1−m(1− δ − ε)− 2mδε)(1− ε−m(1− ε)(1− δ − ε)),
t1 = (1−m(1− δ − ε)− 2mδε)(1−m(1− ε)2)(1−m(1− δ − ε)),
t2 = 1−m

[
3(1− δ − ε) + (δ + ε)2 −m(1− 6δ + 4δ2 − δ3 + 1− 6ε+ 4ε2 − ε3

+1− δ3ε+ 5δ2ε+ 10δε− 5δε2 + δε3)−m2(1− δ − ε)(δε+ (1− δ − ε))2
]
,

t3 = m2δε
[
(1− ε)2 + (1− δ)2 − 2m(1− δ)(1− ε)(1− δ − e)

]
,

t4 = (1−m(1− δ − ε)− 2mδε)
[
(1−m(1− δ)2)(1−m(1− δ − ε))− 2mδε

]
. (5.8)

Note that there are several symmetries in the entries of the matrix in (5.7), which come from the
symmetries in the model. Next, for the choice of p in (3.1) and (3.2), we have

p̂(θ) =
∑
z∈T

p(0, z) e2πi(θ·z) =
∑
z∈T

[(1− ν)δz,0 + νq(z)] e2πi(θ·z)

= (1− ν) + νq̂(θ) = 1− ν(1− q̂(θ)) = 1− νπ2|θ|2 + o(|θ|2), (5.9)
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where we use that

q̂(θ) = 1− π2|θ|2 + o(|θ|2). (5.10)

When we substitute (5.9) into (3.32), and use (3.9) and (3.33), we get

∆(θ) = −∆0νπ
2|θ|2 + o(|θ|2) (5.11)

with

∆0 = m(1− ε)


0 0 0 0
0 1− δ 0 ε
0 0 1− δ ε
0 δ δ 2(1− ε)

 . (5.12)

Finally, recalling (3.20) we obtain Γ̂(0) = Γ0 with

Γ0 = (1− µ)2(1− ε)2


0
0
0
1

 (5.13)

and

∂Γ̂(θ) = −(1− µ)2(1− ε)2


0
0
0

1− p̂(θ)2

 = −2 Γ0 νπ
2|θ|2 + o(|θ|2). (5.14)

Combining (5.4), (5.7), (5.11) and (5.4), (5.14), we arrive at the following proposition identifying
the asymptotics of ∂Ψ̂(θ).

Proposition 5.2. For θ → 0,
∂Ψ̂(θ) = −ζπ2|θ|2 + o(|θ|2), (5.15)

where ζ is the 4-vector

ζ =
1−Ψ

(4)
0,0

N
ν U (21+ ∆0 U) Γ0 (5.16)

with U,∆0 the (4 × 4)-matrices given by (5.7)–(5.8) and (5.12), Γ0 the 4-vector given by (5.13), and

Ψ
(4)
0,0 the number given by (3.47).

5.2. Fourier inversion
We next use Propositions 5.1 and 5.2 to compute

∑
x∈T |x|2Ψ0,x. Recalling the definition of the

Fourier transform given in (3.26), we have for θ → 0,

Ψ̂(θ) =
∑
x∈T

Ψ0,x e
2πi(x1θ1+x2θ2)

=
∑
x∈T

Ψ0,x cos
(
2π(x1θ1 + x2θ2)

)
=
∑
x∈T

Ψ0,x

(
1− 1

2 4π2(x1θ1 + x2θ2)2
)

+ o(|θ|2)

=Ψ̂(0)− 2π2
∑
x∈T

Ψ0,x

(
x2

1θ
2
1 + x2

2θ
2
2 + 2x1x2θ1θ2

)
+ o(|θ|2), (5.17)

where x = (x1, x2) ∈ T and θ = (θ1, θ2) ∈ T̂. Thus,

∂Ψ̂(θ) =− 2π2
∑
x∈T

Ψ0,x

(
x2

1θ
2
1 + x2

2θ
2
2 + 2x1x2θ1θ2

)
+ o(|θ|2). (5.18)
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Choosing θ1 = θ2, and combining (5.15) and (5.18), we find

ζ =
∑
x∈T

(x2
1 + x2

2 + 2x1x2) Ψ0,x. (5.19)

We have
∑
x∈T x1x2Ψ0,x = 0 when L is odd and

∑
x∈T x1x2Ψ0,x = |T|Ψ0,zL when L is odd, with zL

one of the corner points of T. But Ψ0,zL ≤ (1 − µ)2L and so this term is negligible in the limit as
L→∞. We therefore arrive at the following result.

Theorem 5.3. For all δ, ε, µ,N ,

lim
L→∞

∑
x∈T
|x|2 Ψ0,x = ζ (5.20)

with ζ given by (5.16).

Thus, we have found an explicit formula for the second moment in the limit of a large torus, valid
for any choice of the parameters.

5.3. Symmetric slow seed-bank

We close by investigating how ζ behaves when we return to the special case of the symmetric slow
seed-bank treated in Section 4. In that case we find (recall (5.7)–(5.8))

U = c1+ δ mc2


−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

+O(δ2), c = 1
1−m , m = (1− µ)2, (5.21)

and (recall (5.12)–(5.13))

∆0 = m




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

+ δ


0 0 0 0
0 −2 0 1
0 0 −2 1
0 1 1 −4

+O(δ2)

 , (5.22)

Γ0 = m




0
0
0
1

+ δ


0
0
0
−2

+O(δ2)

 . (5.23)

After substituting these expressions into (5.16) and using (4.5), we obtain the following.

Theorem 5.4. For δ ↓ 0,

ζ = cNν

[
1 + δ

2α(0)γ(0)

N
+O(δ2)

]
mc2




0
0
0
2

+ δ


0

3mc
3mc

−4(2c− 1)

+O
(
δ2
) . (5.24)

After inserting the expansions of α(0) and γ(0) found in Section 4.3, we obtain expressions for ζ that
are analogous to the expressions for Ψ0,x found in Sections 4.4–4.5. The details are left to the reader.
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