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ABSTRACT: While the performance of density functional approximations (DFAs) for
gas phase reaction energetics has been extensively benchmarked, their reliability for
activation barriers on surfaces is not fully understood. The primary reason for this is the
absence of well-defined, chemically accurate benchmark databases for chemistry on
surfaces. We present a database of 10 surface barrier heights for dissociation of small
molecules, SBH10, based on carefully chosen references from molecular beam scattering,
laser assisted associative desorption, and thermal experiments. Our benchmarking study
compares the performance of a dispersion-corrected generalized gradient approximation
(GGA-vdW), BEEF-vdW, a meta-GGA, MS2, and a screened hybrid functional, HSE06.
In stark contrast to gas phase reactions for which GGAs systematically underestimate
barrier heights and hybrids tend to be most accurate, the BEEF-vdW functional
determines barriers accurately to within 0.14 eV of experiments, while MS2 and HSE06
underestimate barrier heights on surfaces. Higher accuracy of BEEF-vdW stems from the
fact that the functional is trained on chemisorption systems, and transition states for
dissociation on surfaces closely resemble the final, chemisorbed states. Therefore, a functional that can describe chemisorption
accurately can also reliably predict barrier heights on surfaces.

1. INTRODUCTION

Kohn−Sham density functional theory (KS-DFT)1,2 is an
invaluable tool for enhancing our understanding of molecule−
surface interactions. DFT simulations have found widespread
applications in the fields of heterogeneous catalysis,3 electro-
chemistry,4 spectroscopy,5 and energy storage,6 to name a few.
Generalized gradient approximations (GGAs) have shown
some success in the description of adsorption on transition
metal surfaces.7−10 However, kinetics studies also demand
accurate barrier heights, for which little is known about the
appropriate choice of functional or functional class (GGA,
meta-GGA, hybrid functionals).11 For reactions occurring in
the gas phase, it is well-known that GGAs underestimate barrier
heights as a consequence of self-interaction errors.12 These
errors arise from incomplete cancellation of Coulomb and
exchange interactions of an electron with itself.13 Hybrid
functionals, which include a fraction of exact (Hartree−Fock)
exchange, can partially correct for self-interaction errors and
improve activation barrier estimates.14,15 Extensive benchmark-
ing studies of functional accuracies for reactions in the gas
phase have been made possible by the availability of several
high accuracy barrier heights databases16,17 calculated using the
CCSD(T)18 “gold standard”. Such benchmarks are not
available for reactions on surfaces owing to the prohibitive
cost of CCSD(T) for periodic systems. Therefore, we have to
turn to single-crystal experiments that examine the dissociation

of small molecules on well-defined surfaces in order to collate a
database of benchmark barrier heights.
We propose the construction of such a database, consisting

of accurate barriers for dissociation reactions of molecules on
transition metal surfaces. The references are chosen from three
types of experiments−molecular beam experiments combined
with quantum dynamics studies, laser assisted associative
desorption, and thermal rate measurements. The use of
combined molecular beam experiments and ab initio dynamics
to obtain benchmark barriers on surfaces was proposed
recently.19 In molecular beam experiments, gas molecules of a
particular rotational and vibrational configuration collide with
the surface of a metal, and are either scattered or dissociated as
a result. The dynamics of dissociation are then examined by
mapping the reaction probability as a function of collision
energy.20 Like quasi-classical trajectory studies, quantum
dynamics techniques, which can be used to study H2

dissociation on metals while taking into account motion in all
molecular degrees of freedom, aim to reproduce experimental
probability curves by simulating the dissociation phenomena
from static DFT-based potential energy surfaces.21 The barriers
determined in these dynamics studies, which accurately
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reproduce experimental reactive probabilities, can serve as
accurate benchmarks for DFT performance.
The second type of study, laser assisted associative

desorption (LAAD), experimentally probes the dynamics of
the reverse of dissociative adsorption on transition metal
surfaces.22 A laser beam is employed to induce associative
desorption of atoms adsorbed on a surface. The highest kinetic
energy of the desorbing molecules, when extrapolated to zero
surface temperature, corresponds to the lowest adiabatic
barrier.
The third technique involves thermal rate measurements of

dissociative adsorption on single crystal transition metal
surfaces, which determine activation barriers from Arrhenius
curves plotted over the experimental temperature range. While
thermal experiments offer the most direct means of
determining adiabatic barriers, they are highly sensitive to the
presence of impurities and defects on the transition metal
surface since the kinetics are often several orders of magnitude
faster at these sites.23 Therefore, thermal experiments provide
accurate references for reactions occurring at defects, while
molecular beam and LAAD experiments are more suited to
reactions occurring on terrace sites of transition metal surfaces.
Our objective is to construct an accurate database of barrier

heights on transition metal surfaces for the purposes of
developing and benchmarking density functionals. The
reference barriers are carefully chosen from molecular beam,
LAAD, and thermal experiments. As a first step toward
understanding accuracies and systematic trends in barrier
height prediction, we calculate barriers for representative GGA-
vdW, meta-GGA, and screened hybrid functionals.

2. PROCEDURE
2.1. Density Functional Approximations. The Vasp

5.3.5 simulation package is employed for all calculations.24−27

The details of model setups and barrier height calculations are
presented in the Supporting Information. Three functionals are
chosen for benchmarking DFT accuracies for the prediction of
barrier heights. Benchmarking studies on commonly used
GGAs and dispersion-corrected GGAs in surface chemistry
have demonstrated that the BEEF-vdW8 functional yields the
lowest errors for chemisorption energies on transition metal
surfaces.9,28 This is because the exchange correlation
parameters in BEEF-vdW have been trained on several
properties relevant to surface chemistry. Therefore, BEEF-
vdW is chosen to represent the second rung (GGA) of Jacob’s
ladder.11 Although the functional consists of a nonlocal method
for calculating dispersion contributions, vdW-DF2,29 this term
can be evaluated efficiently.30 The MS2 functional31 is chosen
as the representative meta-GGA (third rung) functional, since it
improves description of bulk properties relative to GGAs. The
application of hybrid functionals to surface chemistry has been
limited due to both high computational costs as well as the
poor description of metallic systems with Hartree−Fock
exchange.32 Nevertheless, short-range screened hybrid func-
tionals, like the HSE family, have been successfully employed in
studying adsorption on transition metal surfaces.33,34 Therefore,
in order to examine the accuracy of the fourth rung of Jacob’s
ladder,11 we choose the short-range screened hybrid HSE06
functional.35

Transition state energies (ETS), or barriers, are determined as
the zero-point corrected energy difference between the
transition state and the isolated gas phase molecule, as shown
in Scheme 1. Barriers calculated with BEEF-vdW, MS2, and

HSE06 functionals are benchmarked against experimental
references for dissociation reactions in the barrier heights
database described below. Owing to the prohibitive cost
associated with transition state search and optimization with
hybrid functionals, we determine HSE06 barriers only for the
four reactions of the smallest dissociating molecule, H2. Since
HSE06 errors for H2 dissociation barriers are very similar to
MS2 errors, we believe that the analysis of MS2 performance
can be extended to HSE06 as well.

2.2. Benchmark Database of 10 Surface Barrier
Heights: SBH10. The reactions constituting the SBH10
benchmark database of barrier heights on surfaces are listed
in Table 1, along with the chosen reference barriers and the

final adsorption sites of the dissociated species. We describe the
selection procedure for experimental benchmarks for dissoci-
ation reactions of H2, N2, and CH4. We also justify the choice
of experimental reference in situations where multiple, and
sometimes conflicting barrier heights are reported. Although a
single reference value is chosen for each reaction, we account
for the range in reported barriers by estimating experimental
uncertainties (error bars) in our analysis.

2.2.1. H2 Dissociation on Cu(111), Cu(100), Pt(111), and
Ru(0001) Terraces. The dissociation of H2 on Cu is one of the
most widely studied systems in the context of activated
dissociative adsorption for applications in catalysis and
corrosion.36,37 These reactions are ideal benchmarks for
electronic structure methods since an adiabatic potential energy
surface approximation, in the absence of electron−hole pair

Scheme 1. Reaction Path Schematic for Dissociative
Chemisorption on Transition Metal Surfacesa

aBarriers (ETS) are calculated as the difference between the transition
state energy on the surface and the corresponding gas phase reference.
We also compare BEEF-vdW and MS2 barriers for the reverse reaction
(ErevTS), associative desorption.

Table 1. SBH10 Database of Experimentally Observed
Reference Barrier Heights (eV) for Dissociation Reactions
on Transition Metal Surfaces

dissociation reaction, site type experiment barrier (eV)

1 H2/Cu(111), terrace molecular beam65,66,19 0.63
2 H2/Cu(100), terrace molecular beam67,19 0.74
3 H2/Pt(111), terrace molecular beam68,45,46 0.00
4 H2/Ru(0001), terrace molecular beam69,43 0.00
5 N2/Ru(0001), terrace molecular beam70,51 1.84
6 N2/Ru(0001), step thermal23 0.40
7 CH4/Ru(0001), terrace LAAD60 0.80
8 CH4/Ni(100), terrace molecular beam58 0.76
9 CH4/Ni(111), terrace molecular beam55 1.01
10 CH4/Ni(111), step thermal56 0.80
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excitations and phonon interactions, provides an accurate
description of the dissociating system.38,39,37

Experimental reactive scattering probabilities of H2 dissoci-
ation on Cu(111) and Cu(100) have been successfully
reproduced using full-dimensional quantum dynamics methods,
based on potential energy surfaces calculated using the specific
reaction parameter approach to density functional theory (SRP-
DFT).21,36,40 Therefore, we employ these barriers, 0.63 and
0.74 eV for Cu(111) and Cu(100), respectively, as references
for H2 dissociation on Cu.19 Rasmussen et al. carried out
thermal rate measurements for H2 dissociation on Cu(100),
and reported a lower barrier, 0.5 eV.41 There is a noticeable
curvature at high temperatures in the Arrhenius relationship
described in Figure 2 of their work.41 Using the low
temperature results in this data, we recalculate the barrier to
compare more directly with our adiabatic electronic structure
calculations. The barrier at the low temperature limit is 0.6 eV.
This result is also in agreement with thermal measurements of
H2 dissociation on Cu(100), which determine a barrier of 0.62
eV.42 While the reactive scattering barrier is employed as
reference for H2/Cu(100), both scattering and thermal barriers
are used to estimate the uncertainty in experiments.
In computational scattering studies of H2 dissociation on

Ru(0001), reaction probabilities from DFT potential energy
surfaces obtained with DFAs of the GGA-vdW type yield good
agreement with experiments.43 This is a weakly activated
process, and barriers determined using both dynamics (≈4
meV)43 and LAAD44 are close to zero. H2 is also weakly
activated on Pt(111) with minimum barrier heights of 0.06
eV45 and −8 meV46 determined from quantum dynamics
comparison to beam experiments. Therefore, the reference
barriers for the dissociation of H2 on Ru(0001) and Pt(111) are
both set to 0 eV.
2.2.2. N2 Dissociation on Ru(0001) Terrace and Step. The

best catalysts for the Haber−Bosch process for the synthesis of
ammonia are ruthenium-based.47 Since the dissociation of N2 is
the rate-limiting step on Ru catalysts, it has been the subject of
several single crystal experiments. Thermal experiments by
Dahl et al.23,48 have demonstrated that the dissociative
chemisorption of N2 is completely dominated by step sites,
over which the barrier is 0.4 eV.
The barriers reported for N2 dissociation on Ru(0001)

terrace sites vary widely depending on the underlying
experimental technique. While thermal experiments48,49 report

a barrier of 1.3 eV, it is difficult to deduce whether this is a
consequence of N2 dissociation on terraces or displacement of
Au atoms that were used to block the step sites. LAAD
experiments, carried out using a Ru(0001) surface that is
already covered with chemisorbed N, determine the barrier at
the lowest N precoverage (0.23) to be 1.8 eV.22 Dissociation
curves determined using quasi-classical dynamics using a barrier
of 2.27 eV are in qualitative agreement with molecular beam
experiments.50 Quantitative agreement between scattering
experiments and theory is achieved with a barrier of 1.84 eV
in a more recent dynamics study that uses a neural network
potential model of the potential energy surface.51 We employ
this barrier as the reference for N2 dissociation on Ru(0001)
terrace sites.

2.2.3. CH4 Dissociation on Ni(111) Terrace and Step,
Ni(100) and Ru(0001) Terraces. The dissociation dynamics of
CH4 on Ni and Ru catalysts are of significant interest to
industry since dissociation constitutes the first step in the steam
reforming of natural gas to produce syngas for alcohol synthesis
and the Fischer−Tropsch process. Activation energies for CH4
dissociation are highly sensitive to experimental conditions,
including gas and surface temperatures and pressures.38,52,57

Since the barrier heights are also strongly coupled to the
motion of the lattice, dynamics studies that account for lattice
coupling in their models are desirable as references.53

Thermal experiments report a barrier of 0.77 eV on
Ni(111),54 while molecular beam studies combined with
SRP-DFT and lattice-coupled dynamics report 1.01 eV.55

Interestingly, the difference between molecular beam and
thermal barriers corresponds almost exactly to the difference
between terrace and step site barriers, 0.21 eV, determined by a
combined experimental and theoretical study.56 Therefore, we
use 1.01 eV as the reference for Ni(111) terrace sites and 0.8
eV (=1.01−0.21 eV) as the reference for Ni(111) step sites.
Similar differences are observed for Ni(100) where thermal
experiments57 and molecular beam dynamics58 report 0.61 and
0.76 eV, respectively. We employ the latter as reference for
CH4 dissociation on Ni(100) terrace sites.
For dissociation of CH4 on Ru(0001), thermal, molecular

beam, and LAAD studies report barrier heights of 0.53,54

0.38,59 and 0.8 eV,60 respectively. The difference between
LAAD and thermal barriers are similar to the difference
observed between terrace and step sites on Ni(111). The
barrier determined for the dynamics model with molecular

Table 2. Comparison between Experimental Reference and Calculated (Zero-Point Corrected) ETS Using BEEF-vdW, MS2, and
HSE06 Functionalsa

ETS, DFT (eV)

dissociation reaction, site type barrier, reference (eV) zero-point correction (eV) BEEF-vdW MS2 HSE06

1 H2/Cu(111), terrace 0.63 −0.06 0.71 0.29 0.20
2 H2/Cu(100), terrace 0.74 −0.08 0.72 0.34 0.58
3 H2/Pt(111), terrace 0 0.00 0.12 −0.32 −0.44
4 H2/Ru(0001), terrace 0 −0.03 −0.16 −0.54 −0.69
5 N2/Ru(0001), terrace 1.84 −0.04 1.61 1.02 −
6 N2/Ru(0001), step 0.40 −0.05 0.60 0.18 −
7 CH4/Ru(0001), terrace 0.80 −0.11 0.82 0.71 −
8 CH4/Ni(100), terrace 0.76 −0.12 0.90 − −
9 CH4/Ni(111), terrace 1.01 −0.12 1.14 1.06 −
10 CH4/Ni(111), step 0.80 −0.14 0.84 0.38 −

aBEEF-vdW zero-point energy corrections are reported. The transition state geometry for CH4 dissociation on Ni(100) could not be calculated with
the MS2 functional using either fixed bond length or dimer methods, possibly due to the shallow nature of the potential energy surface close to the
transition state.
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beam experiments is not entirely reliable since it assumes a
simplified quasi-diatomic 2D system and neglects lattice
motion. Mortensen et al.60 report the results of both molecular
beam dissociation as well as LAAD experiments in order to
examine dissociation from both sides of the reaction barrier.
The molecular beam barrier for dissociative adsorption
obtained indirectly from calculation of the sticking threshold,
0.85 eV, is in good agreement with the LAAD adiabatic barrier,
0.8 eV. Therefore, we employ the LAAD barrier as reference for
methane dissociation on Ru(0001) terrace sites.
We acknowledge that this database is not comprehensive.

There are systems which are excluded owing to difficulties in
either interpreting experiments or determining the model
surface for dissociation. For instance, dissociation of CO on
step sites of Ni is not included since it has been shown that
barriers are highly sensitive to both the choice of adsorption
site as well as coverage.61 However, there is ample scope for
expansion of the database of barrier heights, to include
dissociation of CH4 on Pt(111) and Pt(211),62 NH3 on
Ru(0001),63 and H2O on Ni(111).64

3. RESULTS AND DISCUSSION
3.1. SBH10 − Benchmarking Functionals. Table 2

summarizes the results of functional benchmarking for the
SBH10 database, and Table 3 reports errors and error statistics.

The parity plots between experiment and theory for BEEF-
vdW, MS2, and HSE06 functionals, are depicted in Figure 1. In
cases where several experimental barriers are reported, the
variances are depicted as experimental (horizontal) error bars.
Scattering experiments coupled with quantum dynamics

studies predict essentially barrierless dissociation for H2 on
Ru(0001) and Pt(111) surfaces. However, DFT calculations
sometimes predict negative ETS for these reactions. Since this is
in direct contradiction with the measurement of sizable
diffraction probabilities for both systems,43,71 the large negative
barriers resulting mostly from MS2 and HSE06 calculations are
erroneous. The gray arrows in Figure 1 correspond to these
results and indicate that the functional estimates an unphysical

Table 3. SBH10 errors for BEEF-vdW, MS2 and HSE06
functionals. σBEE corresponds to the scaled Bayesian error
estimate for the BEEF-vdW functional. The average error
statistics are also reported

errors, DFT - experiment (eV)

dissociation reaction, site
type

BEEF-
vdW

σBEE,
scaled MS2 HSE06

1 H2/Cu(111), terrace 0.08 0.15 −0.34 −0.43
2 H2/Cu(100), terrace −0.02 0.16 −0.40 −0.16
3 H2/Pt(111), terrace 0.12 0.13 −0.32 −0.44
4 H2/Ru(0001), terrace −0.16 0.12 −0.54 −0.69
5 N2/Ru(0001), terrace −0.23 0.26 −0.82 −
6 N2/Ru(0001), step 0.20 0.32 −0.22 −
7 CH4/Ru(0001), terrace 0.02 0.13 −0.09 −
8 CH4/Ni(100), terrace 0.14 0.16 − −
9 CH4/Ni(111), terrace 0.13 0.14 0.05 −
10 CH4/Ni(111), step 0.04 0.18 −0.42 −

mean signed error, MSE, eV 0.03 0.17 −0.34 −0.43
mean absolute error,
MAE, eV

0.12 0.36 0.43

root mean square
error, RMSE, eV

0.14 0.42 0.47

Figure 1. Parity plots benchmarking the accuracies of DFA’s for
transition state energies (ETS) constituting the SBH10 database. (a)
BEEF-vdW, (b) MS2, and (c) HSE06 functionals. The gray arrows,
when present, indicate that the functional estimates an unphysical
negative barrier, which should, in principle, lie on the parity line.
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negative barrier, which should, in principle, lie on the parity
line.
3.1.1. BEEF-vdW. GGAs and meta-GGAs severely under-

estimate barrier heights in gas phase reactions owing to self-
interaction errors that lead to incorrect charge separation at the
transition state.31 Hybrid functionals, by virtue of including a
fraction of exact exchange, alleviate the problem of self-
interaction and improve the description of the transition
state.72

The trends are reversed for reactions occurring on transition
metal surfaces. BEEF-vdW energies are in excellent agreement
with experiments, exhibiting the lowest errors among the three
functionals. The root-mean-square error (RMSE) for BEEF-
vdW is 0.14 eV, demonstrating that this is an excellent
functional for estimating barriers. In contrast, gas phase barriers
with BEEF-vdW are systematically underestimated, with an
RMSE of 0.33 eV.8 The Bayesian error estimates (BEE)
determined with the BEEF-vdW functional are denoted by σBEE
in Table 3. The error estimates represent the uncertainty in
calculated barriers arising from the choice of BEEF-vdW
exchange correlation model parameters, scaled by a factor of 2/
3 to reflect uncertainties in the prediction of chemisorption on
transition metal surfaces.73 It must be noted that these
uncertainties do not take into account errors arising from
incompleteness of the exchange correlation model. σBEE values
are also plotted as y error bars in Figure 1a. In general, the error
estimates are of the right order of magnitude, and in line with
those determined in a benchmarking study of chemisorption
energies on transition metal surfaces.9 The BEEF-vdW
transition state geometries are presented as Vasp POSCAR
files in the Supporting Information.
3.1.2. MS2 and HSE06. As seen in Tables 2 and 3 and Figure

1, parts b and c, MS2 and HSE06 functionals typically
underestimate transition state energies, with negative mean
signed errors (MSE) of −0.34 and −0.43 eV, respectively. On
average, ETS errors for H2 dissociation with HSE06 are similar
for MS2 (−0.4 eV). Therefore, we believe that MS2 errors and
trends for the remaining systems in SBH10 are transferable to
HSE06 as well. MS2 accuracies also appear to be system-
dependent, since the functional exhibits lower errors for some
CH4 dissociation reactions relative to H2 and N2. In the
following sections, we examine the reasons for the superior
performance of the GGA-vdW functional relative to metaGGA
and screened hybrids.
All three functionals in this study predict negative ETS for H2

dissociation on Ru(0001). The calculated transition state
geometry for this reaction corresponds to the later of the two
possible transition states determined at the top site by
Wijzenbroek and Kroes in Figure 2 of their paper.43 They
have demonstrated that, depending on the functional, the two
transition states can differ in energies by up to 0.64 eV. This
uncertainty in transition state geometry, therefore, may also be
contributing to ETS errors for H2 dissociating on Ru(0001).
3.2. Analysis of Barrier Prediction Accuracies.

3.2.1. Associative Desorption. In addition to dissociative
adsorption, we compare barriers to the reverse process,
associative desorption. The BEEF-vdW and MS2 barriers,
given by the difference between electronic energies of the
transition state and dissociated final state, are shown in Figure
2. In general, the difference between MS2 and BEEF-vdW
barriers to associative desorption are much smaller than
dissociative adsorption. Similar intrinsic barriers for associative
desorption across functionals indicates that the differences

arising from varying description of the bulk and surface
properties of the transition metal (such as lattice constants or
density of states) neatly cancel out. It also suggests that the
theoretical description of the transition state closely follows that
of the final state. In other words, the performance of a
functional for barrier heights prediction is reflected in its
accuracy in predicting chemisorption energies.

3.2.2. Chemisorption Energies. Since dissociation reactions
typically occur via transition states that are more final state-like,
errors in ETS must be very similar to errors in chemisorption
energies. This hypothesis is difficult to test since, with the
exception of H2 dissociation on Pt(111) terraces, there is no
overlap between the systems constituting SBH10 and the
systems for which high accuracy single-crystal experimental
chemisorption energies are available (CE39/ADS41).9,74

Nevertheless, we compare both the average errors between
SBH10 and 26 chemisorption systems (CE26) in the
adsorption database, ADS41, as well as systems specific to H2
dissociation.
The comparison between error statistics for the two

databases is presented in Table 4. Since the number of
chemisorbed species produced by the different surface reactions
in the CE26 database can vary between 1 and 3, CE26 errors
are reported on a per adsorbate basis. It is evident that BEEF-
vdW is the best-performing functional, as it predicts both
barrier heights and chemisorption energies to within 0.2 eV. On
the other hand, MS2 and HSE06 both overbind chemisorbed
atoms and molecules, and as a result, underestimate barrier
heights on transition metal surfaces.
Figure 3 is an illustrative example of these trends for

dissociative chemisorption of H2. The H2 dissociation reactions
in the SBH10 database are compared with the H chemisorption
systems in the ADS41 database. BEEF-vdW underbinds H on
transition metal surfaces, which possibly compensates for self-
interaction errors that tend to lower transition state energies,
thereby leading to accurate barriers. In the case of H2/Pt(111),
for which both barriers and chemisorption references are
available, this underbinding leads to overestimation of both the
chemisorption energy and barrier by 0.28 and 0.12 eV,
respectively. On the other hand, MS2 and HSE06 both

Figure 2. BEEF-vdW and MS2 barrier heights for the reverse reaction,
associative desorption (ErevTS) (eV). The difference between MS2 and
BEEF-vdW barriers are also reported for each reaction.
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overbind H, and they predict more negative chemisorption
energies and hence smaller barrier heights.
Therefore, barrier height accuracies for dissociation reactions

with late transition states can be directly related to
chemisorption accuracies. Benchmarking studies of adsorption
on transition metal surfaces demonstrate that accuracies can
vary widely even within a given DFA class.9,28 As a result,
systematic trends for GGA, metaGGA and hybrid functionals
are difficult to determine for barriers on surfaces without an
exhaustive study of various DFAs within each class. To illustrate
this point, we compare H2 dissociation barriers for BEEF-vdW
with another GGA, PBE.75 A comparison of PBE and BEEF-
vdW errors for chemisorption and barrier heights prediction is
presented in the Supporting Information. Unlike BEEF-vdW,
PBE underestimates barrier heights with an RMSE of 0.33 eV.
While this is consistent with the fact that PBE is less accurate
for chemisorption when compared with BEEF-vdW,9 it also
demonstrates that barrier accuracies can vary within a particular
DFA class.
DFA accuracies, based on the results in Table 3, also appear

to be substrate-specific. Unfortunately, no direct comparison
with chemisorption energies is available for dissociation of CH4,
for which MS2 provides reliable barrier estimates for Ru(0001)
and Ni(111) terrace sites. It is possible that the overbinding of
the H atom by MS2 shown in Figure 3, is compensated by
underbinding of the CH3 fragment, leading to accurate total
chemisorption energies of the dissociated fragments, and hence
reasonable barrier heights. Another possibility is that the
agreement between various DFAs stems from a similar
description of the gas phase CH4 molecule. The calculated

errors in atomization energy per C−H bond with BEEF-vdW,
MS2, and HSE06 are +0.03, −0.03, and +0.03 eV, respectively,
which are negligible compared to errors in atomization energies
of H2 or N2, which are ±0.1 eV or higher across the three
functionals.

4. CONCLUSIONS

The SBH10 database of barrier heights along with the database
of adsorption energies on transition metal surfaces,9,74 will be
invaluable in designing and benchmarking density functionals
for applications in surface chemistry and heterogeneous
catalysis. The reference barriers are carefully chosen from
thermal rate measurements, laser assisted associative desorption
experiments, and molecular beam experiments combined with
quantum dynamics models. The benchmark study shows that
the BEEF-vdW GGA clearly outperforms the MS2 meta-GGA
and HSE06 hybrid, in direct contradiction to the gas phase
barrier accuracies of these functionals. This is because transition
states for dissociative adsorption closely resemble final states,
and errors in barrier heights mirror errors in chemisorption
energies. In other words, these transition states closely interact
with the surface, while gas phase transition states are relatively
isolated species. Therefore, the key driver for functional
accuracies for reactions on catalyst surfaces is the description
of surface−adsorbate interactions, and not charge separation or
self-interaction correction.

Table 4. Comparisona between Error Statistics (eV) across the Three Functionals (BEEF-vdW, MS2, HSE06) for Barrier
Heights in SBH10 and 26 Chemisorption Systems (CE26) in the ADS41 Database74

SBH10 CE26

DFA MSE MAE RMSE MSE MAE RMSE

BEEF-vdW 0.03 (0.02) 0.12 (0.06) 0.14 (0.07) −0.03 0.17 0.20
MS2 −0.34 (−0.17) 0.36 (0.18) 0.42 (0.21) −0.15 0.23 0.27
HSE06 −0.43 (−0.21) 0.43 (0.21) 0.47 (0.23) −0.23 0.34 0.41

aValues in parentheses represent errors scaled to a per fragment basis for the SBH10 database.

Figure 3. Comparison between functional errors (eV) in the prediction of H chemisorption energies in the ADS41 database and barrier heights for
H2 dissociation reactions in the SBH10 database. Chemisorption energy errors (per adsorbate) are scaled by a factor of 2 for appropriate comparison
with barrier heights.
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