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Across species, oxytocin, an evolutionarily ancient neuropeptide, facilitates

social communication by attuning individuals to conspecifics’ social signals,

fostering trust and bonding. The eyes have an important signalling function;

and humans use their salient and communicative eyes to intentionally and

unintentionally send social signals to others, by contracting the muscles

around their eyes and pupils. In our earlier research, we observed that inter-

action partners with dilating pupils are trusted more than partners with

constricting pupils. But over and beyond this effect, we found that the

pupil sizes of partners synchronize and that when pupils synchronously

dilate, trust is further boosted. Critically, this linkage between mimicry

and trust was bound to interactions between ingroup members. The current

study investigates whether these findings are modulated by oxytocin and

sex of participant and partner. Using incentivized trust games with partners

from ingroup and outgroup whose pupils dilated, remained static or con-

stricted, this study replicates our earlier findings. It further reveals that

(i) male participants withhold trust from partners with constricting pupils

and extend trust to partners with dilating pupils, especially when given oxy-

tocin rather than placebo; (ii) female participants trust partners with dilating

pupils most, but this effect is blunted under oxytocin; (iii) under oxytocin

rather than placebo, pupil dilation mimicry is weaker and pupil constriction

mimicry stronger; and (iv) the link between pupil constriction mimicry and

distrust observed under placebo disappears under oxytocin. We suggest that

pupil-contingent trust is parochial and evolved in social species in and

because of group life.

provided by Leiden University Scholary Pu
1. Introduction
Pivotal to social life is the ability to trust others—to have a positive expectation

that others will cooperate and not exploit us [1–3]. Sometimes, assessments of

trustworthiness derive from an elaborate evaluation of the risks involved and

the extent to which possible benefits outweigh potential losses [4,5]. Often,

trust is intuitive, affect-based and reflecting a ‘gut feeling’ based on the part-

ner’s physical features [6–10]. Across species, such ‘gut feeling’ may derive

from a variety of sources, such as partners’ bodily scents (in rodents [11,12];

in humans [13]), posture (in rodents [14]; in humans [15,16,17,18]) and

emotional vocalizations (in rodents [19]; in chimpanzees [20]; in humans [21]).

One important yet understudied physical characteristic that may be used

to form intuitive assessments of the partner’s trustworthiness is the eye. In

humans, the eye has a morphology that is unique among primates [22,23].

The eyes are crucially important during social communication and provide

information to regulate interaction, express intimacy, exercise social control,
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and facilitate service and task goals [24]. Not surprisingly, the

making of eye-contact provides a powerful mode of establish-

ing each other’s emotions and intentions [25], which can

influence trust-based decisions [26].

During eye-contact, pupil sizes tend to synchronize across

partners so that dilating pupils induce pupil dilation in the part-

ner, and constricting pupils increase pupil constriction in the

partner [27]. This pupil mimicry is already present during the

first months of life [28] and is an evolutionarily old phenom-

enon shared with other species [29]. Recently, pupil mimicry

in humans has been shown to relate to intuitive assessments

of a partner’s trustworthiness [26], as Dutch participants

played trust-games with partners of whom just the eye region

was visible and in which the pupils were manipulated to

change in size. Results showed that participants’ own pupils

dilated synchronously with their partner’s pupils. Importantly,

this correlated with the extent to which participants trusted their

partner, especially when partners also were from Caucasian

descent (henceforth ingroup). With partners from Japanese des-

cent (henceforth outgroup), there was no linkage whatsoever

between pupil mimicry and trust.

Although pupil mimicry reflects an autonomic response

that emerges outside conscious awareness and deliberate con-

trol, the mechanisms that link pupil mimicry to trust remain

poorly understood [26]. One possibility is that the linkage is

conditioned by oxytocin, an evolutionary ancient neuro-

peptide that acts as hormone and neurotransmitter. This

possibility follows from two lines of evidence. First, the

making of eye contact fosters the release of oxytocin in

humans as well as in other species including dogs [30]. Fur-

thermore, in closely bonded partners such as parents and

their offspring, oxytocin levels tend to synchronize. This

holds for humans [31], as well as for family groups of coop-

eratively breeding marmoset monkeys [32]. Second, oxytocin

is intimately involved in the regulation of social bonding,

affiliation and prosocial behaviour, again across a wide

range of mammalian species. For example, oxytocin boosts

pair-bond formation and paternal behaviour in prairi voles

[33,34], ‘tend-and-defend’ patterns of affiliation in chim-

panzees [35,36], and social approach and affiliation with

conspecifics in dogs [37]. In humans, oxytocin increases

sensitivity to one’s partner’s emotion expressions [38–40].

While eye-contact between partners promotes the release

of oxytocin, and oxytocin levels synchronize during close part-

ner interactions and appear to facilitate pro-social exchange

and affiliation, there is evidence also that these effects of

oxytocin are ingroup bounded [41]. In both humans and

chimpanzees, oxytocin increases trust and cooperation with

familiar others and members of one’s ingroup [35,41–45]. At

the same time, oxytocin appears to upregulate defensive

shielding and vigilance vis-à-vis outsiders and unfamiliar

others. This tendency has been observed in humans [43],

marmosets [46], California mice [47], female rats [48], prairie

voles [49] and wild chimpanzees [36]. For example, one

study demonstrated that prairie voles show increased part-

ner-directed grooming toward familiar but not unfamiliar

conspecifics that experienced an unobserved stressor, but

that blocking the oxytonergic circuitry abolished this partner-

directed response [49]. Also, Samuni et al. [36] showed stronger

patterns of oxytocin-mediated ingroup affiliation among wild

chimpanzees prior to intergroup fighting.

Taken together, there is reason to assume that the pupil

dilation mimicry–trust linkage that emerges with ingroup
partners is conditioned by oxytocin. We tested this possibility

here, with healthy males and females. We focused on humans

because of the catching morphology of the human eye, which

sets it apart from most other species [22], and because humans

have frequent encounters with unfamiliar others. We included

both male and female subjects because animal studies show

sex differences in how oxytocin influences behaviour [50,51].

Thus, a more exploratory goal of the present study was to

examine possible sex differences in the interplay between

pupil mimicry, oxytocin and ingroup trust (see also [52–54]).
2. Methods
In two separate sessions, participants received oxytocin or pla-

cebo and made investment decisions in incentivized trust

games with different virtual ingroup or outgroup partners. Per

game or trial, participants could invest E0, E2, E4 or E6 in

their partner, knowing that investments would be tripled (i.e.

E2 becomes E6 for the trustee), and that by the end of the exper-

iment their earnings would be paid out in the form of a bonus.

They did not receive feedback regarding trustees’ payback

decisions during the experiment. Prior to decision-making, par-

ticipants viewed a short clip of their partner’s eye region in

which pupils dilated, constricted or remained static.

(a) Participants
Fifty-nine students (22 years old; 28 males) without neurological

or psychiatric history participated in two 1 h sessions with two

weeks in-between. The sample size is comparable with our ear-

lier study on pupil mimicry [26] as well as with studies on

oxytocin and human decision-making [43,44,55,56]. In both ses-

sions participants were placed in the role of investor, yet in

one session they received oxytocin and in the other placebo

(double-blind, randomized cross-over). All participants were

born and raised in the Netherlands, with Dutch parents.

(b) Medication
Before the experiment, participants completed a medical screen-

ing, and we invited those without a significant neurological or

psychiatric history, who did not use prescription-based medi-

cation, smoked less than five cigarettes per day and did not

report drug or alcohol abuse. Eligible participants were assigned

to a session and instructed to refrain from smoking or drinking

(except water) for 2 h before the experiment. At the beginning

of each session, participants self-administered a single intranasal

dose of 24 IU oxytocin (Syntocinon spray, Novartis; three puffs

per nostril, each with 4 IU oxytocin, with 2 min interval between

puffs) or placebo. To avoid any subjective effects (for example,

olfactory effects) other than those caused by oxytocin, the pla-

cebo contained all the active ingredients except for the

neuropeptide. Placebos were delivered in the same bottles as

Syntocinon. Thus, participants and experimenters were ignorant

about treatment conditions [42].

(c) Stimuli
The stimulus material was similar to that used in our previous

study [26]. Pictures of the eye region of Dutch (ingroup)

and Japanese (outgroup) actors were included. Within the

eye region, an artificial pupil was added to dynamically

change in size. Specifically, after static presentation for

1500 ms, the pupil remained either static or dilated or constricted

within the physiological range over 1500 ms. In the last second,

the pupils were static. The eye images appeared life-size on the

computer screen. We verified that images of the partners

http://rspb.royalsocietypublishing.org/
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Figure 1. (a) Stimulus characteristics and (b) sample trial sequence. To create partner stimuli, we removed the eyes from pictures of the eye regions of faces and
then added the same eye white, iris and pupil to each stimulus (independent of partner’s group). In each trial, a scrambled image of a stimulus was presented for
4000 ms. The scrambled image was then replaced by the stimulus itself. In all conditions, the stimulus remained static for the first 1500 ms, but in the dilation and
constriction conditions, the pupils gradually changed in size over the following 1500 ms and then remained at that size during the final 1000 ms (in the static
condition, pupils remained at the same size throughout the trial). Finally, a screen appeared asking participants to decide to transfer E0, E2, E4 or E6 to their
partner. (Online version in colour.)
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reflected ingroup/outgroup differences. (figure 1; electronic

supplementary materials).
(d) Procedure
Participants were seated individually and provided written

informed consent. The experimenter then handed participants

a nasal spray and left after they self-administered oxytocin or

placebo. Because treatment effects tend to emerge especially

after 30 min of loading time [57], participants continued with

otherwise irrelevant questionnaires and survey. After 30 min

elapsed, the actual experiment began. The participant sat at a dis-

tance of 60 cm from the computer screen and read instructions.

They read that they had E6, of which they could invest E0,

E2, E4 or E6 in partners. Each investment would be tripled.

It was emphasized that the partners had participated earlier

and indicated for each possible investment how much they

would reciprocate (this was indeed the case, with additional

participants acting as trustees in an earlier session, and partici-

pants’ investment decisions were coupled to these partner

decisions to calculate actual payoffs). Participants were further

told that recordings had been made of these partners, that

these recordings had been manipulated and that they would

see them before they had to make their investment decision,

to give them an idea about what sort of person they would

interact with. They were further told that Dutch and Japanese

students were participating and were asked to indicate via
button-press whether they themselves were from the University

of Amsterdam or from the University of Tokyo.

After participants had correctly answered three practice

questions, they started with a nine-point calibration of the eye-

tracker (EyeLink, SR Research, Ottawa, Canada; screen-type:

ViewSonic VG732M, 1280 � 1024 pixels), followed by the start

of the first trial. To minimize pupil constriction following new

information that is presented on the screen, a trial started with

the presentation of a unique Fourier-scrambled image of the

actual stimulus. This scrambled image was presented for

3500 ms. After 3500 ms, a fixation cross appeared on top of the

scrambled image and lasted until participants fixated properly.

Next, an image of partners’ eyes with dilating, static or constrict-

ing pupil size was presented for 4000 ms. After the offset of the

image, participants were instructed to make an investment

decision.

After the experiment, participants were asked whether they

had noted anything special about the partners’ eyes and what

they thought the study was about. Although participants indi-

cated being aware of the dynamics in partners’ pupil size, none

of them suspected that we were interested in pupil mimicry

and its link with trust.
(e) Trustee decisions
Participant (investors) payments were based on back-transfer

decisions (i.e. decisions about the amount they would transfer

http://rspb.royalsocietypublishing.org/
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back to their partners) made by 15 other students (2 males,

13 females, mean age 24 years, range 18–55 years old) in the

role of trustee, who were given a form with 10 investment

decisions of others (E0–E10) and asked how much they would

reciprocate given a certain investment. These back-transfer

decisions were randomly chosen and paired to those made by par-

ticipants in the main experiment, to calculate actual earnings. For

each trial, we randomly drew a decision to calculate participants’

earnings after the experiment was over.

( f ) Statistical analyses
Data were analysed with linear mixed multi-level models, allow-

ing the estimation of individual differences by modelling

variances of slopes and intercepts. Model selection started with

a full model including as fixed factors the partner’s group

(ingroup/outgroup), partner’s pupil (dilating/static/constrict-

ing), participant’s treatment (oxytocin/placebo) and their

interactions. After each single removal of one factor, we com-

pared the more parsimonious model with the more complex

model with a log-likelihood ratio test (LLRT). If the result of

the LLRT determined that the term under consideration did

not increase model fit, it was removed; otherwise it was kept.

After defining the fixed factors, model selection proceeded

with the random factors. We first added four random factors

(a random slope and intercept for each subject and for each

subject � trial) and similar to the back-fitting process of the

fixed factors, defined the random factors. Crucially, we were

able to include time as a repeated factor with a first-order

autoregressive (AR1) covariance structure to control for auto-

correlation with regard to time in the pupillometry analyses.

These models additionally included linear, quadratic and cubic

polynomials as fixed and random factors to precisely model

the slope of participants pupil size. Given the large number of

factors, we focus on effects that include the factor partner

pupil. Especially the pupillometry models contain a large

number of fixed factors due to the interactions with the poly-

nomials. For that reason, when modelling participants’ pupil

size, we additionally limit ourselves to effects that survive a

threshold of p , 0.005 (full reports are provided in the electronic

supplementary material, Results).

Pupil responses were analysed over the last 2500 ms of stimu-

lus presentation (i.e. from the moment partners’ pupils started to

change in size). Pupil-size data were down-sampled to 100 ms

timeslots and smoothed with a 10th-order low-pass Butterworth

filter. The 500 ms just before the partners’ pupils started to

change were used as baseline and subtracted from subsequent

data points.
3. Results
(a) Investments
Effects of partner pupil (F2,5.213 ¼ 247,184, p , 0.001) and

group (F1,5.213 ¼ 18,332, p , 0.001) showed that partners

with dilating pupils and partners from the ingroup were

trusted more than partners with static or constricting pupils

and partners from the outgroup. The significant treatment �
partner pupil interaction (F2,5.213 ¼ 6.683, p ¼ 0.001) showed

that participants given oxytocin invested less in partners

with constricting pupils than participants given placebo

(figure 2a). This effect was further qualified by a treatment �
sex participant � pupil partner interaction. The effect shown

in figure 2a was present for male, but not for female partici-

pants (males p ¼ 0.005; females p ¼ 0.276). In addition,

whereas males given oxytocin rather than placebo trusted

partners with dilating pupils ( p ¼ 0.010), females trusted
partners with dilating pupils less under oxytocin than

under placebo ( p ¼ 0.031). There were no effects of treatment

on investments when partner’s pupils remained static (all

ps . 0.602; electronic supplementary material, figure S1

and table S1).

(b) Pupil mimicry
To examine whether the current experiment replicates the

results reported in [26], we computed their analytic model

(i.e. first without the factors treatment and sex). As in that

study, we find evidence for pupil mimicry, as is demon-

strated by a main effect of partner pupil (F2,5630.400 ¼ 9.731,

p , 0.001) and a two-way interaction between pupil partner

and the linear term (F2,82975.646 ¼ 75.904, p , 0.001). Thus,

participants’ pupils were larger and dilated faster when

observing a partner with dilating as compared with static

or constricting pupils (electronic supplementary material,

table S2). These effects were independent of looking times

(electronic supplementary material, tables S8 and S9) or

potential differences between the sexes or treatment groups

in their level of tonic arousal (electronic supplementary

material, table S10). With this successful replication of earlier

findings, we proceeded with testing the moderating influence

of oxytocin, and explored effects of partner and participant

sex. Results are described separately for pupil dilation

mimicry and for pupil constriction mimicry.

(c) Pupil dilation mimicry
A main effect of pupil partner showed that participants’

pupils were larger when viewing partners with dilating as

compared to static pupils (F1,3736.291 ¼ 16.263, p , 0.001).

A pupil partner � linear term interaction showed that partici-

pants’ pupils also increased faster over stimulus presentation

time than when viewing static pupils (F1,56039.191 ¼ 111.880,

p , 0.0001). A treatment � pupil partner interaction, in con-

junction with the significant treatment � pupil partner �
linear term interaction (F1,50754.286 ¼ 16.839, p , 0.001 and

F1,3736.808 ¼ 8.877, p ¼ 0.003) showed that pupil dilation

mimicry was weaker under oxytocin as compared with

placebo (figure 2b; electronic supplementary material,

table S3). Effects of sex of partner and participant on pupil

mimicry did not survive our statistical threshold and are

reported in electronic supplementary material, table S3.

In a separate linear mixed multi-level model, we investi-

gated the effects of pupil dilation mimicry, partner group,

treatment and their interactions (fixed factors) on investment

decisions (dependent variable). As in [26], we find that pupil

dilation mimicry increased partner–pupil contingent trust

in interactions with ingroup partners (F1,718.900 ¼ 4.367, p ¼
0.037), but not in interactions with outgroup partners

(F1,710.885 ¼ 0.000, p ¼ 0.989). Treatment did not modulate

this general tendency, and nor did sex of partner or sex of

participant (electronic supplementary material, tables S4

and S5).

(d) Pupil constriction mimicry
A pupil partner � quadratic term interaction showed that

when viewing partners with constricting pupils, partici-

pants’ pupils initially increased in size and then quickly

decreased, resulting in a greater curvature of the slope as

compared with when viewing partners with static pupils

http://rspb.royalsocietypublishing.org/
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(F1,15.381 ¼ 225966.099, p , 0.001). The treatment � pupil

partner � linear term interaction, in conjunction with the

treatment � pupil partner � quadratic term interaction,

showed that pupil constriction mimicry was stronger under

oxytocin as compared with placebo (F1,15.975 ¼ 22590.950,

p , 0.001; F1,9.794 ¼ 225963.865, p ¼ 0.002; figure 2b).

As noted, our design enabled us to explore effects of sex

of partner and participant on pupil mimicry. We observed,
first of all, a sex participant � sex partner � pupil partner

interaction, showing that pupil constriction mimicry was

stronger during interactions with a partner of the opposite

as compared to the same sex (F1,9.040 ¼ 225748.689, p ¼
0.003). Second, there was a sex participant � pupil partner �
group partner � quadratic term interaction (F1,8.981 ¼

225972.102, p ¼ 0.003). This effect was mainly driven by

male participants whose pupils, after an initial increase in

http://rspb.royalsocietypublishing.org/


Table 1. Summary of results. Overview of the main results of the study. dil., dilating; con, constricting; n.s., not significant.

fixed factors investments/trust dil. mimicry con. mimicry

partner pupil dil. . static . con. dil. . static n.s.

treatment oxytocin ¼ placebo n.s. n.s.

partner pupil � partner group n.s. n.s. n.s.

partner pupil � treatment oxytocin lowers trust in con. pupils dil. mimicry:

oxytocin , placebo

con. mimicry:

oxytocin . placebo

partner pupil � partner sex n.s. n.s. n.s.

partner pupil � participant sex n.s. n.s. n.s.

treatment � pupil partner � sex

participant

oxytocin boosts trust in dil. pupils in males,

but lowers it in females

n.s. n.s.

sex participant � sex

partner � pupil partner

n.s. n.s. con. mimicry:

opposite . same sex

pupil dil. mimicry—trust linkage pupil dil. mimicry predicts trust in ingroup

pupil con. mimicry—distrust

linkage

pupil con. mimicry predicts distrust under

placebo
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size, started to constrict following outgroup eyes with static

pupils (electronic supplementary material, table S6).

In a separate model, we investigated the putative relation-

ship between pupil constriction mimicry, partner group,

treatment (fixed factors) and investments (dependent vari-

able). Results showed an interaction between treatment and

pupil constriction mimicry (F1,1441.258 ¼ 7.053, p ¼ 0.008),

demonstrating that among participants given placebo, more

constriction mimicry associated with lower trust (F1,716.611 ¼

8.445, p ¼ 0.004); under oxytocin, this linkage disappeared

(F1,735.116 ¼ 0.002, p ¼ 0.965; figure 2c; electronic supplemen-

tary material, table S7).

A summary of the key findings is provided in table 1.
4. Discussion
Across species, oxytocin can promote a wide range of affiliative

behaviours including cooperation and trust [35,37,46], but

depending on the context, can also have antisocial effects and

reduce cooperation and trust [36,45,58,59]. The current study

confirmed that quick and intuitive decisions to trust are influ-

enced by (i) group membership of the trustee, (ii) trustee’s

pupil size and (iii) participants’ tendency to mimic changes

in trustees pupil size, and (iv) that both oxytocin and sex of

participant and trustee further moderated these effects. We

show that pupil size plays an important role during social inter-

actions. Below we argue that pupil size may be a physiological

marker of trust in other social species than humans as well.

On a daily basis, social animals decide quickly and intui-

tively whether or not to trust an interaction partner. Especially

in humans, this is an important ability given that most people

live in large cities where they know only a very small percentage

of those they encounter in daily life. Yet although the way

humans live today is unique compared with other animals,

where unfamiliar individuals often pose genuine threats to the

sorts of small, tightly bound groups of intimates, it is important

to note that the human genome developed within much smaller,
closely bound groups of people where encounters with strangers

were more rare [60]. It stands to reason that both the neurocogni-

tive mechanisms and the types of conspecifics’ signals humans

use when making trust decisions regarding strangers are

shared with other social species.

In the instance of being confronted with a stranger, we

mostly rely on the physical characteristics of the other. In

humans and non-human primates one heuristic for whether

to trust another individual is to categorize him or her as

ingroup or outgroup, labels which often predict the tone of

a social interaction and the behaviours employed [61,62].

Apart from physical characteristics pointing to familiarity

and group membership, other characteristics trust decisions

can be based upon are expressions of emotions, social inten-

tions and interest. In that respect the eye region is most

expressive and attracts most attention [22,23]. We use the

eyes to quickly identify who is who [63], and who belongs

to what group [64]; and although humans have particularly

expressive eyes, this tendency is not limited to humans. For

example, dogs also recognize conspecifics and humans by

paying special attention to the eyes [65]. Apart from identity

recognition, the eye region is crucially important during

social interactions and owes its expressiveness to the fine

muscles around the eyes and to the pupils, both expressing

internal states of mind including emotions, social interest

and trust [66]. Our recent research suggests that these posi-

tive signals are partly derived through pupil mimicry. That

is, by looking into another’s dilated pupils, our own pupils

dilate in response, providing some sort of feedback signal

that presumably helps us to trust the other person better

[26]. In a study comparing humans and chimpanzees, Kret

et al. [29] demonstrated that chimpanzees mimicked the

pupil sizes of chimpanzees but not humans, and that

humans mimicked the pupil sizes of humans but not chim-

panzees. Thus, pupil mimicry, like other forms of mimicry

[67], is not uniquely human but is present in at least one

other species as well. Because pupil size can provide very

useful information about the cognitive or emotional state of
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the expressor, it is likely to be a physiological marker of trust

in a broader range of social species.

The current paper investigated the social and neurobiologi-

cal boundaries of the relationship between pupil mimicry and

trust in humans. Data replicated the effects reported in [26]. As

observed earlier, participants trusted partners with dilating

pupils more than partners with static or constricting pupils,

and trusted partners with constricting pupils less than part-

ners with static pupils (figure 2a). Moreover, participants’

pupils mimicked the pupil size of their partner (figure 2b).

Finally, pupil dilation mimicry correlated with higher invest-

ments in partners with dilating as compared with static

pupils, and this effect was bound to interactions with the

ingroup (figure 2c).

Data extend this earlier work in three ways. First, oxyto-

cin led male but not female participants to withhold trust

from partners with constricting pupils (figure 2a). This fits

with recent accounts that in case of untrustworthy or unreli-

able partners, oxytocin can dampen trust [68]. Nature has

never rewarded naivety and from an evolutionary perspec-

tive it can be inferred that oxytocin does not boost trust

unconditionally, but rather that it increases vigilance and a

stimulus-congruent ‘sharpening’ of perceived social signals

(in humans [46,69,70]; in different species of rodents

[46–49]). Along similar lines, Lambert et al. [71] observed

that oxytocin improved humans’ discriminatory ability of

untrustworthy but not trustworthy faces. Previous studies

in humans investigating the somewhat disputed link between

oxytocin and trust mostly included male participants (i.e.

[72]). In line with that earlier work, we here find that under

oxytocin, male participants trusted partners with dilating

pupils more than under placebo. However, as often observed

in animal studies [50,51], an opposite pattern was observed

for females who trusted these partners less under oxytocin

than under placebo (although still more than partners with

static or constricting pupils). Similarly, in humans Feng

et al. [54] showed that oxytocin increased the salience of posi-

tive social cues in men, while decreasing their reward value

in women (see also [73]).

A second key finding of the current study is that oxytocin

weakened pupil dilation mimicry, and strengthened pupil con-

striction mimicry (figure 2b). This finding is similar to a recent

study on facial mimicry where oxytocin increased the mimicry

of angry faces but had no effect on the mimicry of happy faces

[74]. Another recent study showed that oxytocin enhanced

inter-brain synchrony during a social coordination but not a

control task. This effect, however, was bound to male subjects

and was not observed in females as they already had high base-

line levels of synchrony [75]. Somewhat relatedly, a recent

magneto-encefalogram (MEG) study showed that oxytocin

modulated social brain processes differently in combat veterans

than in controls when watching images probing social synchrony

(in the case of this particular study, coordinated combat action

[76]). Thus, oxytocin’s effect on mimicry or synchronization

may be valence- and saliency-dependent. Research on the

effect of oxytocin on synchronous behaviour in other animals

is scarce. One study in pigs found no effects of oxytocin on the

mimicry of positive or negative emotions, yet some effects

were found on the non-treated observing pigs [77].

Finally, whereas pupil dilation mimicry and ingroup part-

ner–pupil contingent trust were not conditioned by oxytocin,

oxytocin did condition pupil constriction mimicry and its link

with distrust. Specifically, the link between constriction
mimicry and lower levels of trust was present under placebo,

and absent under oxytocin. Possibly, under oxytocin trust

was already so low in interactions with partners with con-

stricting pupils that constriction mimicry could not add

much to it.

The current study included only humans, and although

we presume similar processes are at stake in other social ani-

mals as well, comparative research is needed to confirm this

presumption [78]. In a recent study, Engelmann et al. [79]

tested chimpanzees on a trust game. The results demonstrate

that in interacting with a conspecific, chimpanzees showed

spontaneous trust in a novel context, flexibly adjusted their

level of trust to the trustworthiness of their partner and devel-

oped patterns of trusting reciprocity over time. At least in

some contexts, then, trust in reciprocity is not unique to

humans, but rather has its evolutionary roots in the social

interactions of humans’ closest primate relatives. As trust

and cooperation among human strangers is common [80,81]

and evolutionarily advantageous [82], an important question

for future studies is whether chimpanzees will trust unfami-

liar conspecifics in a trust game and, if so, which cues they

rely on when deciding to do so. In fact, our other closest

living relatives, bonobos, show striking tolerance towards

strangers and share food with them [83,84]. However, we

lack experimental evidence regarding how trust develops

and whether relationship formation differs between related

species with diverse social backgrounds.

Another topic of interest for future studies is the usage of

pupillary signals across species. In all mammals, pupillary

responses are involuntary, and apart from responding auto-

matically to light levels, also reflect cognitive emotional states

(e.g. in macaques [85,86]). But the avian eye is different in this

regard, as pupillary size is under voluntary control. Rapid fluctu-

ations in pupil size are used in communication, and depending

on the context, they indicate positive or negative excitement [87].

How and whether these pupillary signals are picked up by

conspecifics and are used in social decisions is not known.

In summary, this study investigated the relationship

between pupil mimicry and trust, and its socio-endocrine

boundaries in humans. Oxytocin lowered trust extended to

partners with constricting pupils and also enhanced the mimi-

cry of this signal. Although oxytocin dampened pupil dilation

mimicry, this had no effect on the level of trust that was

extended to partners with dilating pupils. Whereas pupil

dilation mimicry boosted trust in ingroup members, pupil con-

striction mimicry related to distrust in ingroup and outgroup

partners alike, but only in the placebo condition. The results

of the current study underline the importance of the eyes and

their subtle and autonomic expressions, reflecting one’s own

and mirroring others’ state of mind during social interactions.

Moreover, this study demonstrates that group membership

matters even at very basic levels of interaction, and that oxytocin

treatment can profoundly change this fundamental relationship

between pupil mimicry, on the one hand, and the emergence of

interpersonal trust on the other. Pupil mimicry may be a par-

ticularly relevant tool for humans to use when trusting

strangers, as interactions with strangers occur so frequently.

Nonetheless, the mechanism itself may be phylogenetically

older and shared across species.
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