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Abstract

In online convex optimization it is well known that certain subclasses of objective
functions are much easier than arbitrary convex functions. We are interested in
designing adaptive methods that can automatically get fast rates in as many such
subclasses as possible, without any manual tuning. Previous adaptive methods
are able to interpolate between strongly convex and general convex functions. We
present a new method, MetaGrad, that adapts to a much broader class of functions,
including exp-concave and strongly convex functions, but also various types of
stochastic and non-stochastic functions without any curvature. For instance, Meta-
Grad can achieve logarithmic regret on the unregularized hinge loss, even though
it has no curvature, if the data come from a favourable probability distribution.
MetaGrad’s main feature is that it simultaneously considers multiple learning rates.
Unlike previous methods with provable regret guarantees, however, its learning
rates are not monotonically decreasing over time and are not tuned based on a
theoretically derived bound on the regret. Instead, they are weighted directly
proportional to their empirical performance on the data using a tilted exponential
weights master algorithm.

1 Introduction

Methods for online convex optimization (OCO) [28, 12] make it possible to optimize parameters
sequentially, by processing convex functions in a streaming fashion. This is important in time series
prediction where the data are inherently online; but it may also be convenient to process offline data
sets sequentially, for instance if the data do not all fit into memory at the same time or if parameters
need to be updated quickly when extra data become available.

The difficulty of an OCO task depends on the convex functions f1, f2, . . . , fT that need to be
optimized. The argument of these functions is a d-dimensional parameter vector w from a convex
domain U . Although this is abstracted away in the general framework, each function f

t

usually
measures the loss of the parameters on an underlying example (x

t

, y
t

) in a machine learning task.
For example, in classification f

t

might be the hinge loss f
t

(w) = max{0, 1 � y
t

hw,x
t

i} or the
logistic loss f

t

(w) = ln

�

1 + e�ythw,xti
�

, with y
t

2 {�1,+1}. Thus the difficulty depends both on
the choice of loss and on the observed data.

There are different methods for OCO, depending on assumptions that can be made about the functions.
The simplest and most commonly used strategy is online gradient descent (GD), which does not
require any assumptions beyond convexity. GD updates parameters w

t+1 = w

t

� ⌘
t

rf
t

(w

t

) by
taking a step in the direction of the negative gradient, where the step size is determined by a parameter
⌘
t

called the learning rate. For learning rates ⌘
t

/ 1/
p
t, GD guarantees that the regret over T

rounds, which measures the difference in cumulative loss between the online iterates w
t

and the best
offline parameters u, is bounded by O(

p
T ) [33]. Alternatively, if it is known beforehand that the

functions are of an easier type, then better regret rates are sometimes possible. For instance, if the
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functions are strongly convex, then logarithmic regret O(lnT ) can be achieved by GD with much
smaller learning rates ⌘

t

/ 1/t [14], and, if they are exp-concave, then logarithmic regret O(d lnT )
can be achieved by the Online Newton Step (ONS) algorithm [14].

This partitions OCO tasks into categories, leaving it to the user to choose the appropriate algorithm
for their setting. Such a strict partition, apart from being a burden on the user, depends on an extensive
cataloguing of all types of easier functions that might occur in practice. (See Section 3 for several
ways in which the existing list of easy functions can be extended.) It also immediately raises the
question of whether there are cases in between logarithmic and square-root regret (there are, see
Theorem 3 in Section 3), and which algorithm to use then. And, third, it presents the problem that
the appropriate algorithm might depend on (the distribution of) the data (again see Section 3), which
makes it entirely impossible to select the right algorithm beforehand.

These issues motivate the development of adaptive methods, which are no worse than O(

p
T ) for

general convex functions, but also automatically take advantage of easier functions whenever possible.
An important step in this direction are the adaptive GD algorithm of Bartlett, Hazan, and Rakhlin
[2] and its proximal improvement by Do, Le, and Foo [8], which are able to interpolate between
strongly convex and general convex functions if they are provided with a data-dependent strong
convexity parameter in each round, and significantly outperform the main non-adaptive method
(i.e. Pegasos, [29]) in the experiments of Do et al. Here we consider a significantly richer class of
functions, which includes exp-concave functions, strongly convex functions, general convex functions
that do not change between rounds (even if they have no curvature), and stochastic functions whose
gradients satisfy the so-called Bernstein condition, which is well-known to enable fast rates in offline
statistical learning [1, 10, 19]. The latter group can again include functions without curvature, like
the unregularized hinge loss. All these cases are covered simultaneously by a new adaptive method
we call MetaGrad, for multiple eta gradient algorithm. MetaGrad maintains a covariance matrix of
size d⇥ d where d is the parameter dimension. In the remainder of the paper we call this version full
MetaGrad. A reference implementation is available from [17]. We also design and analyze a faster
approximation that only maintains the d diagonal elements, called diagonal MetaGrad. Theorem 7
below implies the following:

Theorem 1. Let g
t

= rf
t

(w

t

) and V u

T

=

P

T

t=1 ((u�w

t

)

|
g

t

)

2. Then the regret of full MetaGrad
is simultaneously bounded by O(

p
T ln lnT ), and by

T

X

t=1

f(w
t

)�
T

X

t=1

f
t

(u) 
T

X

t=1

(w

t

�u)

|
g

t

 O
⇣

p

V u

T

d lnT + d lnT
⌘

for any u 2 U . (1)

Theorem 1 bounds the regret in terms of a measure of variance V u

T

that depends on the distance of
the algorithm’s choices w

t

to the optimum u, and which, in favourable cases, may be significantly
smaller than T . Intuitively, this happens, for instance, when there is stable optimum u that the
algorithm’s choices w

t

converge to. Formal consequences are given in Section 3, which shows that
this bound implies faster than O(

p
T ) regret rates, often logarithmic in T , for all functions in the rich

class mentioned above. In all cases the dependence on T in the rates matches what we would expect
based on related work in the literature, and in most cases the dependence on the dimension d is also
what we would expect. Only for strongly convex functions is there an extra factor d. It is an open
question whether this is a fundamental obstacle for which an even more general adaptive method is
needed, or whether it is an artefact of our analysis.

The main difficulty in achieving the regret guarantee from Theorem 1 is tuning a learning rate
parameter ⌘. In theory, ⌘ should be roughly 1/

p

V u

T

, but this is not possible using any existing
techniques, because the optimum u is unknown in advance, and tuning in terms of a uniform upper
bound max

u

V u

T

ruins all desired benefits. MetaGrad therefore runs multiple slave algorithms, each
with a different learning rate, and combines them with a novel master algorithm that learns the
empirically best learning rate for the OCO task in hand. The slaves are instances of exponential
weights on the continuous parameters u with a suitable surrogate loss function, which in particular
causes the exponential weights distributions to be multivariate Gaussians. For the full version of
MetaGrad, the slaves are closely related to the ONS algorithm on the original losses, where each
slave receives the master’s gradients instead of its own. It is shown that d 1

2 log2 T e+ 1 slaves suffice,
which is at most 16 as long as T  10

9, and therefore seems computationally acceptable. If not, then
the number of slaves can be further reduced at the cost of slightly worse constants in the bound.
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Protocol 1: Online Convex Optimization from First-order Information
Input: Convex set U

1: for t = 1, 2, . . . do
2: Learner plays w

t

2 U
3: Environment reveals convex loss function f

t

: U ! R
4: Learner incurs loss f

t

(w

t

) and observes (sub)gradient g
t

= rf
t

(w

t

)

5: end for

Related Work If we disregard computational efficiency, then the result of Theorem 1 can be
achieved by finely discretizing the domain U and running the Squint algorithm for prediction with
experts with each discretization point as an expert [16]. MetaGrad may therefore also be seen as a
computationally efficient extension of Squint to the OCO setting.

Our focus in this work is on adapting to sequences of functions f
t

that are easier than general convex
functions. A different direction in which faster rates are possible is by adapting to the domain U . As
we assume U to be fixed, we consider an upper bound D on the norm of the optimum u to be known.
In contrast, Orabona and Pál [24, 25] design methods that can adapt to the norm of u. One may also
look at the shape of U . As can be seen in the analysis of the slaves, MetaGrad is based a spherical
Gaussian prior on Rd, which favours u with small `2-norm. This is appropriate for U that are similar
to the Euclidean ball, but less so if U is more like a box (`1-ball). In this case, it would be better
to run a copy of MetaGrad for each dimension separately, similarly to how the diagonal version of
the AdaGrad algorithm [9, 21] may be interpreted as running a separate copy of GD with a separate
learning rate for each dimension. AdaGrad further uses an adaptive tuning of the learning rates that is
able to take advantage of sparse gradient vectors, as can happen on data with rarely observed features.
We briefly compare to AdaGrad in some very simple simulations in Appendix A.1.

Another notion of adaptivity is explored in a series of work [13, 6, 31] obtaining tighter bounds
for linear functions f

t

that vary little between rounds (as measured either by their deviation from
the mean function or by successive differences). Such bounds imply super fast rates for optimizing
a fixed linear function, but reduce to slow O(

p
T ) rates in the other cases of easy functions that

we consider. Finally, the way MetaGrad’s slaves maintain a Gaussian distribution on parameters u
is similar in spirit to AROW and related confidence weighted methods, as analyzed by Crammer,
Kulesza, and Dredze [7] in the mistake bound model.

Outline We start with the main definitions in the next section. Then Section 3 contains an extensive
set of examples where Theorem 1 leads to fast rates, Section 4 presents the MetaGrad algorithm,
and Section 5 provides the analysis leading to Theorem 7, which is a more detailed statement of
Theorem 1 with an improved dependence on the dimension in some particular cases and with exact
constants. The details of the proofs can be found in the appendix.

2 Setup

Let U ✓ Rd be a closed convex set, which we assume contains the origin 0 (if not, it can always
be translated). We consider algorithms for Online Convex Optimization over U , which operate
according to the protocol displayed in Protocol 1. Let w

t

2 U be the iterate produced by the
algorithm in round t, let f

t

: U ! R be the convex loss function produced by the environment and let
g

t

= rf
t

(w

t

) be the (sub)gradient, which is the feedback given to the algorithm.1 We abbreviate the
regret with respect to u 2 U as Ru

T

=

P

T

t=1 (ft(wt

)� f
t

(u)), and define our measure of variance as
V u

T

=

P

T

t=1 ((u�w

t

)

|
g

t

)

2 for the full version of MetaGrad and V u

T

=

P

T

t=1

P

d

i=1(ui

�w
t,i

)

2g2
t,i

for the diagonal version. By convexity of f
t

, we always have f
t

(w

t

)�f
t

(u)  (w

t

�u)

|
g

t

. Defining
˜Ru

T

=

P

T

t=1(wt

� u)

|
g

t

, this implies the first inequality in Theorem 1: Ru

T

 ˜Ru

T

. A stronger
requirement than convexity is that a function f is exp-concave, which (for exp-concavity parameter
1) means that e�f is concave. Finally, we impose the following standard boundedness assumptions,
distinguishing between the full version of MetaGrad (left column) and the diagonal version (right

1If ft is not differentiable at wt, any choice of subgradient gt 2 @ft(wt) is allowed.
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column): for all u,v 2 U , all dimensions i and all times t,
full diag

ku� vk  Dfull |u
i

� v
i

|  Ddiag (2)

kg
t

k  Gfull |g
t,i

|  Gdiag.

Here, and throughout the paper, the norm of a vector (e.g. kg
t

k) will always refer to the `2-norm.
For the full version of MetaGrad, the Cauchy-Schwarz inequality further implies that (u� v)

|
g

t


ku� vk · kg

t

k  DfullGfull.

3 Fast Rate Examples

In this section, we motivate our interest in the adaptive bound (1) by giving a series of examples in
which it provides fast rates. These fast rates are all derived from two general sufficient conditions:
one based on the directional derivative of the functions f

t

and one for stochastic gradients that satisfy
the Bernstein condition, which is the standard condition for fast rates in off-line statistical learning.
Simple simulations that illustrate the conditions are provided in Appendix A.1 and proofs are also
postponed to Appendix A.

Directional Derivative Condition In order to control the regret with respect to some point u, the
first condition requires a quadratic lower bound on the curvature of the functions f

t

in the direction
of u:
Theorem 2. Suppose, for a given u 2 U , there exist constants a, b > 0 such that the functions f

t

all
satisfy

f
t

(u) � f
t

(w) + a(u�w)

|rf
t

(w) + b ((u�w)

|rf
t

(w))

2 for all w 2 U . (3)
Then any method with regret bound (1) incurs logarithmic regret, Ru

T

= O(d lnT ), with respect to u.

The case a = 1 of this condition was introduced by Hazan, Agarwal, and Kale [14], who show that
it is satisfied for all u 2 U by exp-concave and strongly convex functions. The rate O(d lnT ) is
also what we would expect by summing the asymptotic offline rate obtained by ridge regression on
the squared loss [30, Section 5.2], which is exp-concave. Our extension to a > 1 is technically a
minor step, but it makes the condition much more liberal, because it may then also be satisfied by
functions that do not have any curvature. For example, suppose that f

t

= f is a fixed convex function
that does not change with t. Then, when u

⇤
= argmin

u

f(u) is the offline minimizer, we have
(u

⇤ �w)

|rf(w) 2 [�GfullDfull, 0], so that

f(u⇤
)� f(w) � (u

⇤ �w)

|rf(w) � 2(u

⇤ �w)

|rf(w) +

1

DfullGfull ((u
⇤ �w)

|rf(w))

2
,

where the first inequality uses only convexity of f . Thus condition (3) is satisfied by any fixed convex
function, even if it does not have any curvature at all, with a = 2 and b = 1/(GfullDfull

).

Bernstein Stochastic Gradients The possibility of getting fast rates even without any curvature
is intriguing, because it goes beyond the usual strong convexity or exp-concavity conditions. In
the online setting, the case of fixed functions f

t

= f seems rather restricted, however, and may in
fact be handled by offline optimization methods. We therefore seek to loosen this requirement by
replacing it by a stochastic condition on the distribution of the functions f

t

. The relation between
variance bounds like Theorem 1 and fast rates in the stochastic setting is studied in depth by Koolen,
Grünwald, and Van Erven [19], who obtain fast rate results both in expectation and in probability.
Here we provide a direct proof only for the expected regret, which allows a simplified analysis.

Suppose the functions f
t

are independent and identically distributed (i.i.d.), with common distribution
P. Then we say that the gradients satisfy the (B,�)-Bernstein condition with respect to the stochastic
optimum u

⇤
= argmin

u2U E
f⇠P[f(u)] if

(w�u

⇤
)

| E
f

[rf(w)rf(w)

|
] (w�u

⇤
)  B

�

(w�u

⇤
)

| E
f

[rf(w)]

�

� for all w 2 U . (4)

This is an instance of the well-known Bernstein condition from offline statistical learning [1, 10],
applied to the linearized excess loss (w � u

⇤
)

|rf(w). As shown in Appendix H, imposing the
condition for the linearized excess loss is a weaker requirement than imposing it for the original
excess loss f(w)� f(u⇤

).
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Algorithm 1: MetaGrad Master
Input: Grid of learning rates 1

5DG

� ⌘1 � ⌘2 � . . . with prior weights ⇡⌘1
1 ,⇡⌘2

1 , . . . . As in (8)
1: for t = 1, 2, . . . do
2: Get prediction w

⌘

t

2 U of slave (Algorithm 2) for each ⌘

3: Play w

t

=

P
⌘ ⇡

⌘
t ⌘w

⌘
tP

⌘ ⇡

⌘
t ⌘

2 U . Tilted Exponentially Weighted Average

4: Observe gradient g
t

= rf
t

(w

t

)

5: Update ⇡⌘

t+1 =

⇡

⌘
t e

�↵`
⌘
t (w

⌘
t )

P
⌘ ⇡

⌘
t e

�↵`
⌘
t (w

⌘
t )

for all ⌘ . Exponential Weights with surrogate loss (6)

6: end for

Theorem 3. If the gradients satisfy the (B,�)-Bernstein condition for B > 0 and � 2 (0, 1] with
respect to u

⇤
= argmin

u2U E
f⇠P[f(u)], then any method with regret bound (1) incurs expected

regret E[Ru

⇤

T

] = O
⇣

(Bd lnT )
1/(2��)

T (1��)/(2��)
+ d lnT

⌘

.

For � = 1, the rate becomes O(d lnT ), just like for fixed functions, and for smaller � it is in between
logarithmic and O(

p
dT ). For instance, the hinge loss on the unit ball with i.i.d. data satisfies the

Bernstein condition with � = 1, which implies an O(d lnT ) rate. (See Appendix A.4.) It is common
to add `2-regularization to the hinge loss to make it strongly convex, but this example shows that that
is not necessary to get logarithmic regret.

4 MetaGrad Algorithm

In this section we explain the two versions (full and diagonal) of the MetaGrad algorithm. We will
make use of the following definitions:

full diag

M

full
t

:

= g

t

g

|
t

M

diag
t

:

= diag(g2
t,1, . . . , g

2
t,d

) (5)

↵full
:

= 1 ↵diag
:

= 1/d.

Depending on context, w
t

2 U will refer to the full or diagonal MetaGrad prediction in round t. In
the remainder we will drop the superscript from the letters above, which will always be clear from
context.

MetaGrad will be defined by means of the following surrogate loss `⌘
t

(u), which depends on a
parameter ⌘ > 0 that trades off regret compared to u with the square of the scaled directional
derivative towards u (full case) or its approximation (diag case):

`⌘
t

(u)

:

= � ⌘(w
t

� u)

|
g

t

+ ⌘2(u�w

t

)

|
M

t

(u�w

t

). (6)

Our surrogate loss consists of a linear and a quadratic part. Using the language of Orabona, Crammer,
and Cesa-Bianchi [26], the data-dependent quadratic part causes a “time-varying regularizer” and
Duchi, Hazan, and Singer [9] would call it “temporal adaptation of the proximal function”. The sum
of quadratic terms in our surrogate is what appears in the regret bound of Theorem 1.

The MetaGrad algorithm is a two-level hierarchical construction, displayed as Algorithms 1 (master
algorithm that learns the learning rate) and 2 (sub-module, a copy running for each learning rate ⌘
from a finite grid). Based on our analysis in the next section, we recommend using the grid in (8).

Master The task of the Master Algorithm 1 is to learn the empirically best learning rate ⌘ (parameter
of the surrogate loss `⌘

t

), which is notoriously difficult to track online because the regret is non-
monotonic over rounds and may have multiple local minima as a function of ⌘ (see [18] for a study
in the expert setting). The standard technique is therefore to derive a monotonic upper bound on
the regret and tune the learning rate optimally for the bound. In contrast, our approach, inspired
by the approach for combinatorial games of Koolen and Van Erven [16, Section 4], is to have our
master aggregate the predictions of a discrete grid of learning rates. Although we provide a formal
analysis of the regret, the master algorithm does not depend on the outcome of this analysis, so any
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Algorithm 2: MetaGrad Slave
Input: Learning rate 0 < ⌘  1

5DG

, domain size D > 0

1: w

⌘

1 = 0 and ⌃⌘

1 = D2
I

2: for t = 1, 2, . . . do
3: Issue w

⌘

t

to master (Algorithm 1)
4: Observe gradient g

t

= rf
t

(w

t

) . Gradient at master point w
t

5: Update ⌃⌘

t+1 =

⇣

1
D

2 I + 2⌘2
P

t

s=1 Ms

⌘�1

e

w

⌘

t+1 = w

⌘

t

�⌃⌘

t+1

�

⌘g
t

+ 2⌘2M
t

(w

⌘

t

�w

t

)

�

w

⌘

t+1 = ⇧

⌃⌘
t+1

U
�

e

w

⌘

t+1

�

with projection ⇧

⌃
U (w) = argmin

u2U
(u�w)

|⌃�1
(u�w)

6: end for
Implementation: For M

t

= M

diag
t

only maintain diagonal of ⌃⌘

t

. For M
t

= M

full
t

use rank-one
update ⌃⌘

t+1 = ⌃⌘

t

� 2⌘2⌃⌘
t gtg

|
t ⌃

⌘
t

1+2⌘2
g

|
t ⌃

⌘
t gt

and simplify ew⌘

t+1 = w

⌘

t

� ⌘⌃⌘

t+1gt (1 + 2⌘g|
t

(w

⌘

t

�w

t

)).

slack in our bounds does not feed back into the algorithm. The master is in fact very similar to
the well-known exponential weights method (line 5), run on the surrogate losses, except that in the
predictions the weights of the slaves are tilted by their learning rates (line 3), having the effect of
giving a larger weight to larger ⌘. The internal parameter ↵ is set to ↵full from (5) for the full version
of the algorithm, and to ↵diag for the diagonal version.

Slaves The role of the Slave Algorithm 2 is to guarantee small surrogate regret for a fixed learning
rate ⌘. We consider two versions, corresponding to whether we take rank-one or diagonal matrices
M

t

(see (5)) in the surrogate (6). The first version maintains a full d⇥ d covariance matrix and has
the best regret bound. The second version uses only diagonal matrices (with d non-zero entries),
thus trading off a weaker bound with a better run-time in high dimensions. Algorithm 2 presents
the update equations in a computationally efficient form. Their intuitive motivation is given in the
proof of Lemma 5, where we show that the standard exponential weights method with Gaussian prior
and surrogate losses `⌘

t

(u) yields Gaussian posterior with mean w

⌘

t

and covariance matrix ⌃⌘

t

. The
full version of MetaGrad is closely related to the Online Newton Step algorithm [14] running on the
original losses f

t

: the differences are that each Slave receives the Master’s gradients g
t

= rf
t

(w

t

)

instead of its own rf
t

(w

⌘

t

), and that an additional term 2⌘2M
t

(w

⌘

t

�w

t

) in line 5 adjusts for the
difference between the Slave’s parameters w⌘

t

and the Master’s parameters w
t

. MetaGrad is therefore
a bona fide first-order algorithm that only accesses f

t

through g

t

. We also note that we have chosen
the Mirror Descent version that iteratively updates and projects (see line 5). One might alternatively
consider the Lazy Projection version (as in [34, 23, 32]) that forgets past projections when updating
on new data. Since projections are typically computationally expensive, we have opted for the Mirror
Descent version, which we expect to project less often, since a projected point seems less likely to
update to a point outside of the domain than an unprojected point.

Total run time As mentioned, the running time is dominated by the slaves. Ignoring the projection,
a slave with full covariance matrix takes O(d2) time to update, while slaves with diagonal covariance
matrix take O(d) time. If there are m slaves, this makes the overall computational effort respectively
O(md2) and O(md), both in time per round and in memory. Our analysis below indicates that
m = 1 + d 1

2 log2 T e slaves suffice, so m  16 as long as T  10

9. In addition, each slave may
incur the cost of a projection, which depends on the shape of the domain U . To get a sense for the
projection cost we consider a typical example. For the Euclidean ball a diagonal projection can be
performed using a few iterations of Newton’s method to get the desired precision. Each such iteration
costs O(d) time. This is generally considered affordable. For full projections the story is starkly
different. We typically reduce to the diagonal case by a basis transformation, which takes O(d3) to
compute using SVD. Hence here the projection dwarfs the other run time by an order of magnitude.
We refer to [9] for examples of how to compute projections for various domains U . Finally, we
remark that a potential speed-up is possible by running the slaves in parallel.
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5 Analysis

We conduct the analysis in three parts. We first discuss the master, then the slaves and finally their
composition. The idea is the following. The master guarantees for all ⌘ simultaneously that

0 =

T

X

t=1

`⌘
t

(w

t

) 
T

X

t=1

`⌘
t

(w

⌘

t

) + master regret compared to ⌘-slave. (7a)

Then each ⌘-slave takes care of learning u, with regret O(d lnT ):
T

X

t=1

`⌘
t

(w

⌘

t

) 
T

X

t=1

`⌘
t

(u) + ⌘-slave regret compared to u. (7b)

These two statements combine to

⌘

T

X

t=1

(w

t

� u)

|
g

t

� ⌘2V u

T

= �
T

X

t=1

`⌘
t

(u)  sum of regrets above (7c)

and the overall result follows by optimizing ⌘.

5.1 Master

To show that we can aggregate the slave predictions, we consider the potential �

T

:

=

P

⌘

⇡⌘

1e
�↵

PT
t=1 `

⌘
t (w

⌘
t ). In Appendix B, we bound the last factor e�↵`

⌘
T (w⌘

T ) above by its tangent at
w

⌘

T

= w

T

and obtain an objective that can be shown to be equal to �

T�1 regardless of the gradient
g

T

if w
T

is chosen according to the Master algorithm. It follows that the potential is non-increasing:
Lemma 4 (Master combines slaves). The Master Algorithm guarantees 1 = �0 � �1 � . . . � �

T

.

As 0  � 1
↵

ln�

T


P

T

t=1 `
⌘

t

(w

⌘

t

) +

�1
↵

ln⇡⌘

1 , this implements step (7a) of our overall proof
strategy, with master regret �1

↵

ln⇡⌘

1 . We further remark that we may view our potential function �

T

as a game-theoretic supermartingale in the sense of Chernov, Kalnishkan, Zhdanov, and Vovk [5],
and this lemma as establishing that the MetaGrad Master is the corresponding defensive forecasting
strategy.

5.2 Slaves

Next we implement step (7b), which requires proving an O(d lnT ) regret bound in terms of the
surrogate loss for each MetaGrad slave. In the full case, the surrogate loss is jointly exp-concave, and
in light of the analysis of ONS by Hazan, Agarwal, and Kale [14] such a result is not surprising. For
the diagonal case, the surrogate loss lacks joint exp-concavity, but we can use exp-concavity in each
direction separately, and verify that the projections that tie the dimensions together do not cause any
trouble. In Appendix C we analyze both cases simultaneously, and obtain the following bound on the
regret:
Lemma 5 (Surrogate regret bound). For 0 < ⌘  1

5DG

, let `⌘
t

(u) be the surrogate losses as defined
in (6) (either the full or the diagonal version). Then the regret of Slave Algorithm 2 is bounded by

T

X

t=1

`⌘
t

(w

⌘

t

) 
T

X

t=1

`⌘
t

(u) +

1

2D2
kuk2 + 1

2

ln det

 

I + 2⌘2D2
T

X

t=1

M

t

!

for all u 2 U .

5.3 Composition

To complete the analysis of MetaGrad, we first put the regret bounds for the master and slaves together
as in (7c). We then discuss how to choose the grid of ⌘s, and optimize ⌘ over this grid to get our main
result. Proofs are postponed to Appendix D.
Theorem 6 (Grid point regret). The full and diagonal versions of MetaGrad, with corresponding
definitions from (2) and (5), guarantee that, for any grid point ⌘ with prior weight ⇡⌘

1 ,

˜Ru

T

 ⌘V u

T

+

1
2D2 kuk2 � 1

↵

ln⇡⌘

1 +

1
2 ln det

⇣

I + 2⌘2D2
P

T

t=1 Mt

⌘

⌘
for all u 2 U .
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Grid We now specify the grid points and corresponding prior. Theorem 6 above implies that any
two ⌘ that are within a constant factor of each other will guarantee the same bound up to essentially
the same constant factor. We therefore choose an exponentially spaced grid with a heavy tailed prior
(see Appendix E):

⌘
i

:

=

2

�i

5DG
and ⇡⌘i

1 :

=

C

(i+ 1)(i+ 2)

for i = 0, 1, 2, . . . , d 1
2 log2 T e, (8)

with normalization C = 1 + 1

�

(1 + d 1
2 log2 T e) . At the cost of a worse constant factor in the

bounds, the number of slaves can be reduced by using a larger spacing factor, or by omitting some
of the smallest learning rates. The net effect of (8) is that, for any ⌘ 2 [

1
5DG

p
T

, 2
5DG

] there is an
⌘
i

2 [

1
2⌘, ⌘], for which � ln⇡⌘i

1  2 ln(i + 2) = O(ln ln(1/⌘
i

)) = O(ln ln(1/⌘)). As these costs
are independent of T , our regret guarantees still hold if the grid (8) is instantiated with T replaced by
any upper bound.

The final step is to apply Theorem 6 to this grid, and to properly select the learning rate ⌘
i

in the
bound. This leads to our main result:
Theorem 7 (MetaGrad Regret Bound). Let S

T

=

P

T

t=1 Mt

and V u

T,i

=

P

T

t=1(ui

� w
t,i

)

2g2
t,i

.
Then the regret of MetaGrad, with corresponding definitions from (2) and (5) and with grid and prior
as in (8), is bounded by

˜Ru

T



s

8V u

T

✓

1

D2
kuk2 + ⌅

T

+

1

↵
C

T

◆

+5DG

✓

1

D2
kuk2 + ⌅

T

+

1

↵
C

T

◆

for all u 2 U ,

where

⌅

T

 min

(

ln det

✓

I +

D2
rk(S

T

)

V u

T

S

T

◆

, rk(S
T

) ln

 

D2

V u

T

T

X

t=1

kg
t

k2
!)

= O(d ln(D2G2T ))

for the full version of the algorithm,

⌅

T

=

d

X

i=1

ln

 

D2
P

T

t=1 g
2
t,i

V u

T,i

!

= O(d ln(D2G2T ))

for the diagonal version, and C
T

= 4 ln

�

3 +

1
2 log2 T

�

= O(ln lnT ) in both cases. Moreover, for
both versions of the algorithm, the regret is simultaneously bounded by

˜Ru

T



v

u

u

t

8D2

 

T

X

t=1

kg
t

k2
!

✓

1

D2
kuk2 + 1

↵
C

T

◆

+5DG

✓

1

D2
kuk2 + 1

↵
C

T

◆

for all u 2 U .

These two bounds together show that the full version of MetaGrad achieves the new adaptive guarantee
of Theorem 1. The diagonal version behaves like running the full version separately per dimension,
but with a single shared learning rate.

6 Discussion and Future Work

One may consider extending MetaGrad in various directions. In particular it would be interesting
to speed up the method in high dimensions, for instance by sketching [20]. A broader question is
to identify and be adaptive to more types of easy functions that are of practical interest. One may
suspect there to be a price (in regret overhead and in computation) for broader adaptivity, but based
on our results for MetaGrad it does not seem like we are already approaching the point where this
price is no longer worth paying.
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