
Scientific Annals of Computer Science vol. 27 (2), 2017, pp. 177–212

doi: 10.7561/SACS.2017.2.177

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities

Jetty KLEIJN1, Maciej KOUTNY2,
Marta PIETKIEWICZ-KOUTNY2

Abstract

Assuming that the behavioural specification of a concurrent system
is given in the form of a step transition system, where the arcs between
states are labelled by steps (multisets of executed actions), we focus
on the problem of synthesising a Petri net generating a reachability
graph isomorphic to a given step transition system. To deal with step
transition systems more complicated than those generated by standard
Place/Transition nets, we consider in this paper Petri nets with whole-
place operations, localities, and a/sync places. We adapt and extend
the general approach developed within the framework of τ -nets and
the theory of regions of step transition systems. Building on the results
presented in [23], emphasis here is on the role of a/sync places with
their potential for an instantaneous transfer of tokens within a step.
In a series of results we demonstrate the robustness of the notion of
region for Petri net synthesis.

Keywords: concurrency, theory of regions, transition system, synthe-
sis problem, Petri net, step semantics, locality, whole-place operations,
synchronous and asynchronous communication, a/sync places

1 Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512,
2300 RA, The Netherlands, E-mail: h.c.m.kleijn@liacs.leidenuniv.nl

2 School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG United
Kingdom, E-mail: {maciej.koutny,marta.koutny}@ncl.ac.uk

178 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

1 Introduction

Synthesising systems from behavioural specifications is an attractive way of
constructing implementations which are correct-by-design and thus requiring
no costly validation efforts. In this paper, we assume that the behaviour
of concurrent systems is given in the form of a (step) transition system
where the arcs are labelled by multisets of executed actions. Systems are
modelled by Petri nets. We are, however, interested in transition systems
that may reflect behaviour beyond that which could be expressed by standard
Place/Transition nets (pt-nets).

init : v1

v2

v3

v4

v5

v6

{e}

{a, b, c}

{c, d}

{b, c}

{a}

{c, c, c, d}

{e}

Figure 1: A step transition system.

The transition systems generated by pt-nets satisfy two crucial proper-
ties that might be expected to hold in many modelled systems:

1. Backward determinism, demanding that two arcs labelled by the same
step and incoming to a given state start at the same state.

2. Subset closure for steps enabled at a given state, demanding that for a
step enabled at a state all its subsets are enabled at this state.

Considering the above properties, we conclude that the step transition
system depicted in Figure 1 cannot be generated by any pt-net. Firstly,

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 179

there are two incoming arcs labelled by {e} meeting at the state v1, but
coming from two different states, v3 and v6, violating property (1). Secondly,
at the state v1 we can see step {a, b, c} being enabled without many of its
subsets being enabled at v1, violating property (2).

A Petri net model that could deliver a suitable formal model for beha-
vioural descriptions like that in Figure 1, would incorporate two features
to deal with the constraints imposed by pt-nets mentioned above. The
first added feature that is not present in pt-nets are arcs labelled by li-
near expressions involving places making their weights to depend on the
current marking of places, and in consequence introducing the so called
whole-place operations (see also [16, 18, 1, 23]). This new feature will address
the problem concerning the inability to model backward non-deterministic
behaviour within pt-nets. The second added feature are localities for actions
(net-transitions). All the net-transitions will be assigned their localities and
by that will be divided into groups of transitions that share a locality. A new
semantics will govern the executions of steps in the nets with localities: only
the maximal enabled multisets of net-transitions will be allowed to be execu-
ted within a given locality. This feature will address the problem concerning
the lack of subset closure for steps enabled at a given state. However, we
need yet another net feature to be able to generate the behaviour depicted
in Figure 1. Even having localities at our disposal, we cannot envisage the
right locality mapping that would allow the situation, where two steps like
{a, b, c} and {b, c} are enabled at state v1, as shown in Figure 1, without also
step {a} being enabled at v1. This problem can be combated by introducing
a/sync places that facilitate the instantaneous transfer of tokens between
net-transitions involved in the same step. This last feature, the introduction
of a/sync places, will add extra expressive power to the class of Petri nets
that we considered in [23] in the context of synthesis problem, and is the
major contribution of this paper.

Originally, a/sync places were introduced in [20], in a more restricted
setting as channel places between component nets. Allowing tokens to be
simultaneously produced and consumed (synchronously) provides additional
modelling power and behavioural expressiveness. As, e.g., noted in [11],
synchronous communication is not a primitive concept for standard Petri
nets. The concept of a/sync places provides a succinct abstraction. Such
places can be seen as playing a role similar to zero places [7], supporting
modular translations of concurrent languages. In particular, a/sync places
can model transactions involving several individual transitions through single

180 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

step executions. Potential applications of a/sync places also include channel-
based models for exogenous coordination of (software) components (see, e.g.,
[2]). The idea also proved to be useful in the context of the biologically
inspired tissue systems where the a/sync transfer of tokens motivated a
mechanism for the modelling of instantaneous or fast passing of signals
within the system. In [22], the idea was further generalised by introducing
a/sync connections between places and transitions rather than dedicated
a/sync places.

In [21], a/sync places as we consider them in this paper, were used for
the synchronous transfer of tokens from an input transition to an output
transition. These places moreover allow asynchronous communication, be-
cause tokens that are not consumed instantaneously, remain available as
ordinary tokens.

A class of nets with whole-place operations, a/sync places, and localities
that we will focus on in this paper will be called wpoasl-nets.

The synthesis of wpoasl-nets from step transition system specifications
will build on our previous work [24, 23]. It will be based on a suitably
adapted notion of region of a (step) transition system [17, 4, 3], as well as
their locally maximal execution semantics, a special kind of step firing policy
(see [25, 14]). Regions were introduced in the seminal paper [17] for the class
of Elementary Net Systems (en-systems) with sequential execution semantics.
After that, the original idea has been developed (see, for example, [27]) and
extended in several different directions, including: other Petri net classes
(e.g., bounded pt-nets without loops [6], pt-nets [26], Flip-flop nets [29], nets
with inhibitor arcs [8, 28], and nets with localities [25]); synthesis modules
of implemented tool frameworks (e.g., Petrify [12], ProM [31], VipTool [5],
Genet [9], and Rbminer [30]); application areas (e.g., asynchronous VLSI
circuits [12, 9, 30] and workflows [31]); other semantical execution models
(e.g., step sequences [19, 28], (local) maximal concurrency [25], and firing
policies [14]); and specification formalisms other than transition systems (e.g.,
languages [13] and scenarios [5]). More details concerning the importance and
long term impact of the region concept can be found in the monograph [3].

One of the key advances in the design of region based solutions for
a variety of synthesis problems has been the development of a general
approach [4]. It is founded on so-called τ -nets and corresponding τ -regions.
The parameter τ (called net-type) is a convenient way of capturing the
marking information and different connections between places and transitions
of different classes of Petri nets, removing the need to re-state and re-prove

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 181

the main results every time a new kind of arcs is introduced. This approach
can be applied once a class of Petri nets has been shown to be a class of
τ -nets, i.e., to correspond to a class of τ -nets for some suitable τ . It should
be kept in mind however, that although the theory provides necessary and
sufficient conditions for the existence of a τ -net whose reachability graph is
isomorphic to a given transition system, it does not provide ready answers
for decidability and algorithmic concerns.

The paper is organised as follows. The next section recalls some ba-
sic notions concerning transition systems, pt-nets, and τ -nets. Section 3
introduces wpoasl-nets and discusses their expressive power. Section 4
presents a solution to the synthesis problems for wpoasl-nets, treating them
as a special kind of τ -nets. In Section 5, we discuss a procedure for the
synthesis of a wpoasl-net when the whole-places (the places that influence
arc weights) are known. The paper ends with a conclusion that includes
some directions for future work.

This paper is an extended version of the conference paper [23]. The main
difference is that the latter did not consider a/sync places. By generalising
the concept of region to cater for the instantaneous transfer of tokens and
providing explicit proofs for the thus generalised setting, we demonstrate
the robustness of the notion of region for Petri net synthesis.

2 Preliminaries

An abelian monoid is a set S with a commutative and associative binary
operation +, and an identity element 0. The result of composing n copies
of s ∈ S is denoted by n · s, and so 0 = 0 · s. In this paper, the abelian
monoid SPT = N×N, will represent the (weighted) arcs between places and
transitions in pt-nets; here N denotes all non-negative integers, and SPT has
pointwise arithmetic addition as its operation with (0, 0) as identity element.
Furthermore, the free abelian monoid 〈T 〉 generated by a set T can be seen
as the set of all finite multisets over T . Thus, e.g., abb = bab = bba represents
the multiset {a, b, b}. In particular, 〈T 〉 represents the steps (multisets of
transitions) of nets with transition set T . We use α, β, γ, . . . to range over
the elements of 〈T 〉. For t ∈ T and α ∈ 〈T 〉, α(t) denotes the multiplicity of
t in α, and so we can represent α as α =

∑
t∈T α(t) · t. Then t ∈ α whenever

α(t) > 0, and α ≤ β whenever α(t) ≤ β(t) for all t ∈ T . Moreover, α < β if
α ≤ β and α 6= β. The size of α is given by |α| =

∑
t∈T α(t).

In our example α = {a, b, b}, we could write α(a) = 1, α(b) = 2, and α(c) = 0

182 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

for all other c ∈ T ; thus α = a+ 2 · b and α < 2 · a+ 2 · b = {a, a, b, b}.

Transition systems. A (deterministic) transition system 〈Q,S, δ〉 over
an abelian monoid S consists of a set of states Q and a partial function
δ : Q× S→ Q such that δ(q,0) = q for all q ∈ Q. An initialised transition
system 〈Q,S, δ, q0〉 is a transition system with an initial state q0 ∈ Q such
that each state q ∈ Q is reachable, i.e., there are s1, . . . , sn and q1, . . . , qn = q
(n ≥ 0) with δ(qi−1, si) = qi, for 1 ≤ i ≤ n. For every state q of a transition
system TS , we denote by enbTS (q) the set of all s which are enabled at q,
i.e., δ(q, s) is defined. TS is bounded if enbTS (q) is finite for every state q of
TS . Moreover, such a TS is finite if it has finitely many states.
In diagrams, 0-labelled arcs are omitted and singleton steps are written
without brackets.

Initialised transition systems T over free abelian monoids — called step
transition systems or concurrent reachability graphs — represent behaviours
of Petri nets. Net-types are non-initialised transition systems τ over abelian
monoids used to define various classes of nets.

Let T = 〈Q, 〈T 〉, δ, q0〉 and T ′ = 〈Q′, 〈T 〉, δ′, q′0〉 be step transition
systems. T and T ′ are isomorphic, T ∼= T ′, if there is a bijection f : Q→ Q′

with f(q0) = q′0 and

δ(q, α) = q′ ⇔ δ′(f(q), α) = f(q′), for all q, q′ ∈ Q and α ∈ 〈T 〉 .

Place/Transition nets. A Place/Transition net (pt-net, for short) is
a tuple N = 〈P, T,W,M0〉, where P and T are disjoint sets of places and
transitions, W : (P × T) ∪ (T × P)→ N is a weight function, and M0 is an
initial marking belonging to the set of markings defined as mappings from P
to N, thus assigning a number of tokens to each place. N is finite if both P
and T are finite. We use the standard conventions concerning the graphical
representation of pt-nets, as illustrated in Figure 2(a).

The weight function is extended to steps as follows. For all p ∈ P and
α ∈ 〈T 〉, we let

W (p, α) =
∑
t∈T

α(t) ·W (p, t) and W (α, p) =
∑
t∈T

α(t) ·W (t, p) .

Then a step α ∈ 〈T 〉 is enabled and may be fired at a marking M if, for
every p ∈ P , M(p) ≥ W (p, α). We denote this by α ∈ enbN (M). Firing
such a step leads to the marking M ′, for every p ∈ P defined by

M ′(p) = M(p)−W (p, α) +W (α, p) .

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 183

p1

(a)

a b
2

M0

a, b {b, b, b}
{a, b}, {b, b}

a, b b

{b, b}
(b)

Figure 2: A pt-net (a); and its concurrent reachability graph (b).

We denote this by M [α〉M ′. The concurrent reachability graph CRG(N) of
N is the step transition system formed by firing inductively from M0 all
possible enabled steps, i.e., CRG(N) = 〈[M0〉, 〈T 〉, δ,M0〉 where

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . .Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi}

is the set of reachable markings and δ(M,α) = M ′ iff M [α〉M ′. Figure 2(b)
shows the concurrent reachability graph of the pt-net in Figure 2(a).

Maximal concurrency. One of the issues dealt with in this paper is
maximal concurrency in the executions of Petri nets. To capture this idea
formally, one needs to decide, in particular, which of the steps enabled
at a marking M of a pt-net N are maximal. There is no problem to do
so if the set enbN (M) is finite as one can declare all ≤-maximal steps in
enbN (M) (i.e., no further occurrences of transitions can be added without
destroying the enabledness of the step) as being maximally concurrent. The
situation is more complicated if enbN (M) is infinite. For example, suppose
that enbN (M) = {α1, α2, . . . } and α1 < α2 < . . . holds. In this case, the
intuitive sense of being a maximally concurrent step is lost as none of the
αi’s is ≤-maximal in enbN (M).

The situation just described can arise in pt-nets, for example when
there exist transition(s) without any non-zero input arcs. This is easily
excluded by assuming that N is restricted (i.e., for every transition t, there
is place p such that W (p, t) > 0). However, this situation can also arise in
a net with an infinite set of transitions T . This again can be excluded by
assuming that T is finite. There can, however, also be other reasons for this
unboundedness in the classes of nets considered in this paper. Therefore,
in our treatment of maximal concurrency, we follow a slightly different

184 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

approach by assuming that all steps in enbN (M) are maximally concurrent
if enbN (M) is infinite. This approach does not diminish the generality of our
results since the synthesis problem to be considered takes as inputs bounded
transition systems, and the nets being synthesised will never enable infinitely
many steps at a single marking.

Petri nets defined by net-types. A net-type τ = 〈Q,S,∆〉 is a non-
initialised transition system over an abelian monoid S. It specifies the
values that can be stored in places (Q); the operations and tests that a
net-transition may perform on these values (S); and the enabling condition
and the newly generated values for steps of transitions (∆). It is a parameter
in the definition of τ -nets: A τ -net is a tuple N = 〈P, T, F,M0〉, where P
and T are disjoint sets of places and transitions respectively; F : (P×T)→ S
is a flow mapping ; and M0 is an initial marking belonging to the set of
markings, i.e., mappings from P to Q. N is finite if both P and T are finite.
For all p ∈ P and α ∈ 〈T 〉, we set

F (p, α) =
∑
t∈T

α(t) · F (p, t) .

Thus F (p, α) specifies the combined flow relation of the transition occurrences
forming step α with place p. Step α ∈ 〈T 〉 is enabled at a marking M if,
for every p ∈ P , F (p, α) ∈ enbτ (M(p)). We denote this by α ∈ enbN (M).
Firing such a step produces the marking M ′, for every p ∈ P defined by

M ′(p) = ∆(M(p), F (p, α)) .

We denote this by M [α〉M ′, and then define the concurrent reachability graph
CRG(N) of N as the step transition system formed by firing inductively
from M0 all possible enabled steps.

As demonstrated in [4, 14], it is possible to encode any pt-net N =
〈P, T,W,M0〉 as a τ -net without affecting its concurrent reachability graph.
It is enough to take F (p, t) = (W (p, t),W (t, p)). Thus F (p, t) = (i, o) means
that i is the weight of the arc from p to t, and o the weight of the arc in
the opposite direction. With this encoding, N becomes a τPT -net where
τPT = 〈N,SPT ,∆PT 〉 is the infinite net-type over SPT = N×N as introduced
at the beginning of Section 2, with ∆PT given by

∆PT (n, (i, o)) = n− i+ o

provided that n ≥ i (see Figure 6(a)).

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 185

3 Whole-place Operations and a/sync Places

Assuming an ordering of places, markings can be represented as vectors. The
i-th component of a vector x is denoted by x(i). For x = (x1, . . . , xn) and
y = (y1, . . . , yn), (x, 1) = (x1, . . . , xn, 1) and x⊗ y = x1 · y1 + · · ·+ xn · yn.
Moreover, ⊗ will also denote the multiplication of two-dimensional arrays.

We now introduce a class of Petri nets that extends the class of pt-nets
by allowing the arcs in nets to be annotated with linear expressions involving
places. Thus the weights of arcs will be represented by vectors with n+ 1
entries, where n is the (total) number of places. The entries of such vectors
are coefficients used in the annotating expressions. Moreover, we will allow
for a/sync places in addition to the standard places.

A net with whole-place operations and a/sync places (wpoas-net) is a
tuple

N = 〈P ′, P ′′, T,W,m0〉 , (1)

where:

• P ′ = {p1, . . . , pn′} (n′ ≥ 0) is a finite set of ordered a/sync places and
P ′′ = {pn′+1, . . . , pn} (n ≥ 1) is a finite set of ordered standard places ;

• T is a finite set of transitions disjoint with the ordered set of places
P = P ′ ∪ P ′′ = {p1, . . . , pn};

• W : (P × T) ∪ (T × P)→ Nn+1 is a whole-place weight function; and

• m0 is an initial marking belonging to the set Nn of markings.

Similarly as for pt-nets, we can extend the whole-place weight function to
steps. Thus we denote, for all places p ∈ P and steps of transitions α ∈ 〈T 〉,

W (p, α) =
∑
t∈T

α(t) ·W (p, t) and W (α, p) =
∑
t∈T

α(t) ·W (t, p) .

As for pt-nets, a step can occur at a marking if every input place to the step
(its transitions), has enough tokens assigned to it. How many tokens are
needed is determined by the arc weights. The extended whole-place weight
function relating places and steps defines the dependency of the arc weights
on the current number of tokens in each of the n places (weighted according
to the function’s values first n entries). In case, the first n entries are 0, the
weight is invariant and fully specified by the (n+ 1)-st entry.

186 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

For the a/sync places, the meaning of token flow is different from that
of the token flow through standard places. Whereas in the latter case, all
tokens to be consumed by a step from a place must be already present in
the place, in the former case, some or all of those tokens can be produced
by the firing of the transitions in the step.
Formalising the above, step α is enabled at marking m if, for all p′ ∈ P ′ and
p′′ ∈ P ′′,

m(p′) ≥ (m, 1)⊗ (W (p′, α)−W (α, p′))
m(p′′) ≥ (m, 1)⊗W (p′′, α) .

(2)

We denote this by α ∈ enbN (m). An enabled α can be fired leading to a
new marking such that, for every p ∈ P ,

m′(p) = m(p) + (m, 1)⊗ (W (α, p)−W (p, α)) . (3)

We denote this by m[α〉m′, and define the concurrent reachability graph
CRG(N) of N as one built by firing inductively from m0 all possible enabled
steps.

In net diagrams, an a/sync place is depicted as a circle with double
border.

As an example consider the wpoas-net in Figure 3. Since the weights
of the arcs are all invariant vectors (0, 0, 0, 0, 1), the whole-place weight
function is trivial and its values are not indicated. Moreover, the arcs with a
whole-place weight vector with only 0 as entries are not drawn. The places
p1 and p2 are the a/sync places of this net. Step α = {a, b, c} is enabled
at the given marking m0 because, with (m0, 1) = (1, 1, 1, 1, 1), W (p1, α) =
W (p2, α) = (0, 0, 0, 0, 2) and W (α, p1) = W (α, p2) = (0, 0, 0, 0, 1), we have:

m0(p1) = 1 ≥ 1 = (m0, 1)⊗ (W (p1, α)−W (α, p1))
m0(p2) = 1 ≥ 1 = (m0, 1)⊗ (W (p2, α)−W (α, p2)) .

It is convenient to specify the values of a whole-place weight function
of a wpoas-net using linear expressions involving the pi’s. For example, if
n = 3 and W (p2, t) = (2, 0, 1, 4), then we may write W (p2, t) = 2 ·p1 +p3 + 4.
A place pj (1 ≤ j ≤ n) is a whole-place for place p ∈ P if W (p, t)(j) 6= 0 or
W (t, p)(j) 6= 0, for some t ∈ T . In such a case we also write pj ; p. Note that
it may happen that p = pj ; see, for example, Figure 4(a), where W (p5, e) =
p5. In general, in net diagrams, we will be using for arc annotations linear
expressions involving places rather than vectors with their coefficients.

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 187

p2

p1a

b

c

Figure 3: A wpoas-net.

3.1 WPOAS-nets with Localities

We are now in a position to introduce nets with whole-place operations,
a/sync places, and localities, the central concept of this paper.

A wpoas-net with localities (or wpoasl-net) is a tuple

N = 〈P ′, P ′′, T,W,m0, `〉 (4)

such that N ′ = 〈P ′, P ′′, T,W,m0〉 is a wpoas-net as in (1), and ` : T →
{1, 2, . . . , l}, where l ≥ 1, is the locality mapping of N with {1, 2, . . . , l} the
localities of N . For a multiset of transitions α ∈ 〈T 〉, we write `(α) to denote
the set {`(t) : α(t) > 0} consisting of the localities of the transitions in α. In
diagrams, nodes representing transitions with the same locality are shaded
in the same way (see Figure 4, where a and e share one locality and b, c and
d share another locality).

The locality mapping assigns to each transition of the net a locality.
Grouping the net-transitions in different localities makes it possible to
implement an execution semantics based on locally maximal steps. To define
such semantics of N , we use a step firing policy (see [14]). Step firing policies
are a means of controlling and constraining the potentially huge number of
execution paths generated by a concurrent system. Our step firing policy
here is to forbid at each marking m the occurrence of those enabled steps
that are not locally maximal. So, our step firing policy is given by a control
disabled steps mapping 3 cds lmax : 2〈T 〉 → 2〈T 〉\{0} such that cds lmax(X) = ∅
if X ⊆ 〈T 〉 is infinite — see our remarks on maximal concurrency in Section 2

3Control disabled steps mappings are defined in [14] in the context of τ -nets, and this
is how cds lmax will be used in Section 4.

188 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

— and otherwise:

cds lmax(X) = {α ∈ X \ {0} | ∃β ∈ X : `(β) ⊆ `(α) ∧ α < β} .

Thus if X is finite, cds lmax(X) consists of all steps α in X for which there is a
multiset β 6= α in X which has no other localities than those associated with
the elements of α and which strictly contains α (meaning that α(t) < β(t) for
all t ∈ T). We then apply this idea to the steps enabled at a marking in the
underlying wpoas-net N ′. So, the cds lmax mapping takes as an argument a
set of steps enabled at some marking of N ′ and returns its subset with the
steps rejected by the locally maximal step firing policy of N .

Let m be a marking of N ′ (and thus also a marking of N). The steps
in enbN ′(m) are called resource enabled at m, and the steps in

enbN (m) = enbN ′(m) \ cds lmax(enbN ′(m))

are said to be control enabled at m. A control enabled step α when fired
leads to the marking m′ given, for every p ∈ P , by the formula (3).

We then define the concurrent reachability graph CRG(N) of N as the
step transition system formed by firing inductively from m0 all possible
control enabled steps. This is illustrated in Figure 4 which depicts a wpoasl-
net, N , which generates a concurrent reachability graph isomorphic to that
shown in Figure 1. Note that the concurrent reachability graph of the
underlying net N ′ of the net N in Figure 4(a) would show much richer
behaviour than that depicted in Figure 4(b), as it would contain all resource
enabled steps of N , including those rejected by its locally maximal step firing
policy. For example, resource enabled steps of N at m1 are: 0, {b}, {c},
{b, c}, {a, b}, and {a, b, c}. However, steps {b}, {c}, and {a, b} are rejected
by the locally maximal step firing policy of N , as they can be extended to
other resource enabled steps at m1, {b, c} and {a, b, c}, within their existing
localities: `({b}) = `({c}) = `({b, c}) and `({a, b}) = `({a, b, c}).

3.1.1 Expressiveness of WPOASL-nets

In a wpoasl-net the control enabledness of the step {a, b} at a marking m,
without {a} and {b} being control enabled at m, can be the consequence
either of a and b ‘cooperating’ with each other through a/sync place(s) (and
in this way being dependent on each other), or of being co-located (and
being forced to synchronise according to the locally maximal step firing
policy). However, the first possibility represents a ‘weaker’ coupling than the

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 189

(a)

p1 p2

p3

p4

p5

p6

a

b

c

d

e

p3

p5

2 ·p1 + 1

(b)

init : m1

m2

m3

m4

m5

m6

e

{a, b, c}

{c, d}

{b, c}

a

{c, c, c, d}

e

Figure 4: A wpoasl-net N (a); and its concurrent reachability graph
(b), where m1 = (0, 1, 1, 0, 0, 0), m2 = (0, 0, 1, 1, 1, 0), m3 = (0, 0, 0, 0, 1, 1),
m4 = (1, 0, 0, 0, 0, 0), m5 = (0, 0, 3, 1, 0, 0), and m6 = (0, 0, 0, 0, 0, 1).

second one as transitions would cooperate with each other as a ‘last resort’,
and this is marking dependent, but being co-located is a global property
for transitions that applies at every marking. We also observe that whole-
place operations and a/sync places support, in their unique ways, dynamic
semantics of nets, allowing the enabling conditions for steps to depend on a
current marking, while the localities of transitions help to express a global
behavioural property of steps.

Having said that, each of the three non-standard features of wpoasl-
nets adds to their modelling power. We will now show that dropping either
of them restricts the expressiveness of wpoasl-nets in terms of the generated
concurrent reachability graphs.

Whole-place operations. Consider the wpoasl-net N , with initial mar-
king m0, depicted in Figure 5(a). Suppose that N ′ is a wpoasl-net without
whole-places with initial marking m′0 and having concurrent reachability
graph isomorphic to that of N .

Let m1 be the marking reached in N by firing from m0 {a} followed by

190 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

p

a b

p

(a) a(b)

p3

p2

p1

p4

a

b

c

(c)

Figure 5: A wpoasl-net whose concurrent reachability graph cannot be
generated by: any wpoasl-net without whole-places (a); any wpoas-net
(b); and any wpoasl-net without a/sync places (c).

{b}, and m2 be the marking reached in N by firing from m0 {b} followed
by {a}. Clearly these two markings are different. Hence the corresponding
markings of N ′, m′1 and m′2, must also be different. However, as the arc
weights of N ′ are constant, this is impossible as both {a} and {b} remove
and deposit the same number of tokens in each place of N ′ no matter in
which order they are executed. We thus obtained a contradiction.

Locally maximal semantics. Consider the wpoasl-net N , with initial
marking m0, depicted in Figure 5(b). Observe that in that net a can be
considered to be co-located with itself. Suppose that N ′ is an wpoas-net
with initial marking m′0 and having concurrent reachability graph isomorphic
to that of N .

We have enbN ′(m′0) = enbN (m0) = {0, {a, a}}. Hence there must be a
place p in N ′ which blocks {a} at m′0, but does not block {a, a}. Clearly, p
has to be an a/sync place. Suppose that, in the initial marking, the weight
of arc from p to a evaluates to m, and the weight of arc from a to p evaluates
to n, and there are k tokens in p. Therefore, we must have 2m ≤ k+ 2n and
m > k + n. Hence 2k + 2n < 2m ≤ k + 2n, and so k < 0, a contradiction.

a/sync places. Consider the wpoasl-net N , with initial marking m0,
depicted in Figure 5(c). Suppose that N ′ is a wpoasl-net without a/sync
places with initial marking m′0 and having concurrent reachability graph
isomorphic to that of N .

Let m1 be the marking of N with m1(p1) = m1(p2) = 0 and m1(p3) =
m1(p4) = 1, obtained by executing step {c} at m0. We observe that:

enbN (m1) = {0, {a, b}} and {a}, {a, b} ∈ enbN (m0) .

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 191

Then, there are two markings of N ′, m′0 and m′1, such that:

enbN ′(m′1) = {0, {a, b}} (∗) and {a}, {a, b} ∈ enbN ′(m′0) . (∗∗)

From the definition of enabledness of steps in wpoasl-nets, because N ′ has
no a/sync places, it follows that for every marking m′ in N ′: if a step is
resource enabled at m′ then each of its subsets is resource enabled at m′.
Therefore, if N ′ is to have the same behaviour as N (and satisfy (∗)), it can
only be achieved by its locality mapping. Let `′ be the locality mapping of N ′.
Then, since N ′ does not contain a/sync places and (*) holds, it must be the
case that `′(a) = `′(b) (otherwise we would have {a}, {b} ∈ enbN ′(m′1)). But
this contradicts (**) as in such a case `′({a, b}) = {`′(a)} and {a} < {a, b}.
We therefore obtained a contradiction.

4 Synthesis of WPOASL-nets

The net synthesis problem we consider here aims to devise a procedure which
constructs a wpoasl-net with a concurrent reachability graph (based on
the locally maximal step firing policy) that is isomorphic to a given step
transition system T = 〈Q, 〈T 〉, δ, q0〉.

The synthesis problem was first investigated in the literature for indivi-
dual classes of Petri nets, and later a general approach was developed for
τ -nets, where each class of nets is represented by its own net-type τ . The
key aspect of any solution to the synthesis problems is to discover all the
necessary net places and their connections with transitions of T using T
and τ . All information needed to construct a place in a net that realises
T , is encapsulated in the notion of region, which depends on the parameter
τ . Before we give the definition of a region relevant to our problem, we
need to realise that for nets with whole-place operations like wpoasl-nets,
discovering places for the net to be constructed is complicated by the fact
that the (new) markings of places dynamically depend on the markings
of other places. Therefore, instead of discovering individual places of the
net to be constructed, one needs a procedure to discover clusters of related
places, each cluster containing places that depend only on one another. We
will therefore re-define wpoasl-nets as nets containing clusters of related
places, each containing at most k′ a/sync and at most k′′ standard places
(k′/k′′-wpoasl-nets) and express them as τ -nets, so that we can synthesise
them as τ -nets, using the general approach for τ -nets.4

4 Note that by including an extra parameter k′ for a/sync places, we extend the results

192 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

The re-definition with clusters of places, as described above, requires
extra information about the net to be synthesised: the values k′ and k′′ must
be given upfront. This simplifies the synthesis problem. The consequence of
this simplification is that if we solve the synthesis problem for a given step
transition system and obtain a k′/k′′-wpoasl-net, we can then express it
as an equivalent wpoasl-net by combining clusters of places. However, if
the solution is not found in the class of k′/k′′-wpoasl-nets, then it is still
possible that there is a solution in the class of arbitrary wpoasl-nets.

4.1 k’/k”-WPOASL-nets and their Net-type

A k′/k′′-restricted wpoasl-net (or k′/k′′-wpoasl-net), where k′ + k′′ ≥ 1,
is a wpoasl-net N for which there is a partition P1] · · ·] Pr of the set of
places such that each Pi has at most k′ a/sync places, at most k′′ standard
places and, for all p ∈ Pi and p′ /∈ Pi, p 6; p′ 6; p. In other words, the places
can be partitioned into clusters of bounded size (in terms of both a/sync
and standard places) so that there is no exchange of whole-place marking
information between different clusters.

Strictly speaking, k′/k′′-wpoasl-nets (nor wpoasl-nets) are not τ -nets
as the newly generated marking of a place does not only depend on its
current marking and its connections to transitions. Thanks to the clustering
of the places, however, they still fit the ideas behind the definition of τ -nets
and we can define a suitably extended net-type capturing the behaviour
of sets of several places rather than the behaviour of single places. More
precisely, for all k′, k′′ ≥ 0 with k′ + k′′ ≥ 1, the k′/k′′-wpoasl-net-type is
a transition system τk

′/k′′ — generalising the net-type τkwpo introduced and
used in [24, 23] — defined in the following way.

Let k = k′ + k′′. Then :

τk
′/k′′ = 〈Nk, (Nk+1)k × (Nk+1)k,∆k′/k′′〉

where
∆k′/k′′ : Nk × ((Nk+1)k × (Nk+1)k)→ Nk

is a partial function such that ∆k′/k′′(x, (X,Y)) is defined if, for all j′ ∈
{1, . . . , k′} (indices for a/sync places) and j′′ ∈ {k′ + 1, . . . , k} (indices for
standard places):

x(j′) ≥ ((x, 1)⊗ (X − Y))(j
′)

x(j′′) ≥ ((x, 1)⊗X)(j
′′) (5)

from [23].

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 193

0 1 2

(0 , 2)

(2 , 0)

(0 , 1)

(1 , 0)

(0 , 1)

(1 , 0)

(1 , 2)

(2 , 1)

(1 , 0)

(0 , 0) (0 , 1) (0 , 2)

(1 , 2)(2 , 1)

B

A D

EFC

(a) (b)

A =

 0 0
0 0
1 1

 ,
 0 0

1 0
0 0

 B =

 0 0
0 0
0 1

 ,
 0 0

1 0
0 0


C =

 0 0
0 0
1 0

 ,
 0 0

0 0
0 0

 D =

 1 0
0 1
1 0

 ,
 2 1

1 2
0 0


E =

 0 1
0 0
0 0

 ,
 0 2

1 1
0 0

 F =

 0 1
0 0
0 0

 ,
 0 2

1 0
1 0



Figure 6: Fragments of two infinite net-types: τpt (a); and τ1/1 (b).

and, if that is the case,

∆k′/k′′(x, (X,Y)) = x + (x, 1)⊗ (Y −X) .

Note that here we treat tuples of vectors in (Nk+1)k as (k + 1)× k arrays.

Having defined the net-type τk
′/k′′ , we can now define a τk

′/k′′-net as
a tuple N = 〈P, T, F,M0, `〉, where P = {P1, . . . , Pr} is a set of disjoint
sets of implicitly ordered places comprising exactly k′ a/sync places and k′′

standard places each, T is a set of transitions being different from the places

194 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

in the sets of P,

F : (P × T)→ (Nk+1)k × (Nk+1)k

is a flow mapping, M0 is an initial marking belonging to the set of markings
defined as mappings from P to Nk, and ` is a locality mapping for the
transitions in T .

For all Pi ∈ P and α ∈ 〈T 〉, we set

F (Pi, α) =
∑
t∈T

α(t) · F (Pi, t) .

Then a step α ∈ 〈T 〉 is resource enabled at a marking M if, for every Pi ∈ P ,
F (Pi, α) ∈ enbτk′/k′′ (M(Pi)). We denote this by α ∈ enbN (M).

Firing such a step (for now we ignore the firing policy) produces the
marking M ′, for every Pi ∈ P, defined by

M ′(Pi) = ∆k′/k′′(M(Pi), F (Pi, α)) .

We denote this by M [α〉M ′, and then define the concurrent reachability graph
CRG(N) of N as the step transition system formed by firing inductively
from M0 all possible resource enabled steps.

However, we want to execute N under the locally maximal step firing
policy. The related control disabled steps mapping cds lmax, when applied to
N , would control disable at each marking M all the resource enabled steps
that belong to cds lmax(enbN (M)). That is,

enbN ,cdslmax
(M) = enbN (M) \ cds lmax(enbN (M)) (6)

is the set of control enabled steps at a reachable marking M under cds lmax.
We then use CRGcdslmax

(N) to denote the induced reachable restriction of
CRG(N), which may be finite even for an infinite CRG(N).

As an example of a τk
′/k′′-net we can take the net N in Figure 7(a).

It can be treated as τ1/1-net, N = 〈P, T, F,M0, `〉, where we have only one
cluster of places P1 = {p1, p2} (so P = {P1}), T = {a, b}, M0(P1) = (0, 1),
` can be defined in two different ways (leading to two different concurrent
reachability graphs of N , as depicted in Figure 7(b, c)), and the flow mapping
is defined as follows:

F (P1, a) =

 0 0
0 0
1 0

 ,
 0 0

0 0
0 0

 F (P1, b) =

 0 0
0 0
0 1

 ,
 0 0

1 0
0 0


A fragment of the net-type τ1/1, capturing the behaviour of clusters of places
in τ1/1-nets, is depicted in Figure 6(b).

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 195

(a)

p1 p2

a b

p2

N

M0 (P1) = (0 , 1)

M1 (P1) = (0 , 0)

{a, b}

(b)

(c)

M0 (P1) = (0 , 1)

M1 (P1) = (0 , 0) M2 (P1) = (1 , 0)

{a, b} b

a

Figure 7: A τ1/1-net N (a); its CRGcdslmax
(N) with `(a) = `(b) (b); and

its CRGcdslmax
(N) with `(a) 6= `(b) (c).

4.2 Synthesising k’/k”-WPOASL-nets as τ k
′/k′′-nets

First we need to express a k′/k′′-wpoasl-net N = 〈P ′, P ′′, T,W,m0, `〉,
with set of places P = P ′ ∪ P ′′ = {p1, . . . , pn} and clusters P1, . . . , Pr, as a
τk

′/k′′-net.

Suppose that each set Pi in the partition has exactly k′ a/sync places and
k′′ standard places. (We can always add dummy empty places disconnected
from the original transitions and places, if needed.) We then define N̂ =
〈P, T, F,M0, `〉 so that P = {P1, . . . , Pr} and, for all Pi ∈ P and t ∈ T :

• F (Pi, t) = (X,Y) where X and Y are arrays respectively obtained
from the arrays [W (p1, t), . . . ,W (pn, t)] and [W (t, p1), . . . ,W (t, pn)],
where the W (·, ·) are column vectors, by deleting the rows and columns
corresponding to the places in P \ Pi; and

• M0(Pi) is obtained from m0 by deleting the entries corresponding to
the places in P \ Pi.

It is straightforward to check that the concurrent reachability graphs of
N and N̂ are isomorphic (when we execute both nets under the cds lmax policy

196 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

or ignore the policy in both nets). Conversely, one can transform any τk
′/k′′-

net into an equivalent k′/k′′-wpoasl-net, and trivially the wpoasl-net as
in (4) is an n′/(n− n′)-wpoasl-net. All this implies that — just as in case
of any synthesis problem that asks for a procedure to construct a τ -net with
a given concurrent reachability graph, see, e.g., [24] — k′/k′′-wpoasl-net
synthesis involves the following two problems of τk

′/k′′-net synthesis.
In the rest of this section we assume that k′ and k′′ are non-negative

integers such that k′ + k′′ ≥ 1, and k = k′ + k′′.

Problem 1 (feasibility) Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transi-
tion system, and ` be a locality mapping for T .
Provide necessary and sufficient conditions for T to be realised by some
τk

′/k′′-net, N̂ , executed under the cds lmax policy defined by `. (That is, it is
required that T ∼= CRGcdslmax

(N̂).)

Problem 2 (effective construction) Let T = 〈Q, 〈T 〉, δ, q0〉 be a finite
step transition system, and ` be a locality mapping for T .
Decide whether there is a finite τk

′/k′′-net realising T when executed under
the cds lmax policy defined by `. Moreover, if the answer is positive construct
such a τk

′/k′′-net.

To address Problem 1, we define a τk
′/k′′-region of T = 〈Q, 〈T 〉, δ, q0〉

as a pair:
〈σ : Q→ Nk, η : T → (Nk+1)k × (Nk+1)k〉

such that, for all q ∈ Q and α ∈ enbT (q),

η(α) ∈ enbτk′/k′′ (σ(q)) and ∆k′/k′′(σ(q), η(α)) = σ(δ(q, α)) ,

where η(α) =
∑

t∈T α(t) · η(t). Moreover, for every state q of Q, we denote
by enbT ,τk′/k′′ (q) the set of all steps α such that

η(α) ∈ enbτk′/k′′ (σ(q)) ,

for all τk
′/k′′-regions 〈σ, η〉 of T . Hence for every state q of T , we have

enbT (q) ⊆ enbT ,τk′/k′′ (q). (7)

In the context of the synthesis problem, a τk
′/k′′-region represents

a cluster of places whose local states (in τk
′/k′′) are consistent with the

global states (in T). Then, to deliver a realisation of T , one needs to

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 197

find enough τk
′/k′′-regions5 to construct a τk

′/k′′-net N̂ satisfying T ∼=
CRGcdslmax

(N̂). The following two regional axioms describe the conditions
that should be satisfied by a desirable set of regions. Together they provide
a full characterisation of realisable transition systems, i.e., those that can
be realised by a τk

′/k′′-net executed under some cds lmax policy, as we later
show in Theorem 1.

T can be realised by a wpoasl-net if and only if Axioms 1 and 2 are
satisfied (see, e.g., [24]).

Axiom 1 (state separation) For any pair of states q 6= r of T , there is
a τk

′/k′′-region 〈σ, η〉 of T such that σ(q) 6= σ(r).

Axiom 2 (forward closure) For every state q of T ,

enbT (q) = enbT ,τk′/k′′ (q) \ cds lmax(enbT ,τk′/k′′ (q)) .

The first axiom links the states of T with markings of the net to
be constructed, making sure that a difference between two states of T is
reflected in a different number of tokens held in the two markings of the net
representing the said states. The second axiom means that, for every state
q and every step α in 〈T 〉 \ enbT (q), we have either of the following:

• there is a τk
′/k′′-region 〈σ, η〉 of T such that η(α) /∈ enbτk′/k′′ (σ(q))

(the step α is not region enabled), or

• α ∈ cds lmax(enbT ,τk′/k′′ (q)) (the step α is not control enabled, meaning
that it is rejected by the cds lmax policy).

Note that when a τk
′/k′′-net under cds lmax realises T , every cluster of places

of the net still determines a corresponding τk
′/k′′-region of the transition

system, without taking cds lmax into account. This is why the same kind of
regions would be used if we are asked to synthesise a wpoas-net (rather
than a wpoasl-net).

Before we prove the main result of the paper that gives the solution to
Problem 1, we need two auxiliary results. The first one presents an important
property enjoyed by control disabled steps mappings, and in particular by
cds lmax.

5 By enough we mean a minimal number of regions to witness the satisfaction of every
instance of Axioms 1 and 2 given next (see also [15]).

198 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

Proposition 1 Let X be a finite set of resource enabled steps at some
reachable marking of some τk

′/k′′-net and Y be its subset (Y ⊆ X). Then:

X \ cds lmax(X) ⊆ Y =⇒ cds lmax(X) ∩ Y ⊆ cds lmax(Y).

Proof: Let α ∈ cds lmax(X) ∩ Y . We need to show that α ∈ cds lmax(Y).
From α ∈ cds lmax(X) it follows that there is β ∈ X such that `(β) ⊆ `(α)
and α < β. We now consider two cases:

Case 1: β ∈ Y . Then α ∈ cds lmax(Y).

Case 2: β ∈ X \ Y . Then, by X \ cds lmax(X) ⊆ Y , we have that β ∈
cds lmax(X). Hence, there is γ ∈ X such that `(γ) ⊆ `(β) and β < γ.
If γ ∈ Y we can continue as in case 1, with γ replacing β and obtain
α ∈ cds lmax(Y) due to the transitivity of ⊆ and <. Otherwise, we continue
as in Case 2 with γ replacing β and so γ ∈ cds lmax(X). Then we can repeat
the same argument. Now, because X is a finite set, one must find sooner
or later in this iteration some step φ ∈ Y such that case 1 holds with φ
replacing β, and so α ∈ cds lmax(Y). 2

The second auxiliary result associates a region of a step transition system
T with a particular cluster of places of the net to be synthesised from T .
The mappings σ and η hold all the information about the associated cluster
of places, their connections to transitions in the net and their markings for
every state of the net. In fact, for the mapping σ, if we know η, it is enough
to know its value for the initial state q0 to uniquely compute the values for
the remaining states of T .

Proposition 2 Let N̂ = 〈P, T, F,M0, `〉 be a τk
′/k′′-net such that T ∼=

CRGcdslmax
(N̂). Then, for each cluster Pi ∈ P (i = 1, . . . , r), there is exactly

one τk
′/k′′-region 〈σ, η〉 of T such that σ(q0) = M0(Pi) and η(α) = F (Pi, α)

for all steps α ∈ 〈T 〉.

Proof: All step transition systems we consider are deterministic. Observe
that both δ and ∆k′/k′′ are functions rather than relations. Also observe
that T is reachable (i.e., each of its states is reachable from the initial one).
Hence,

σ(q0) and η : 〈T 〉 → (Nk+1)k × (Nk+1)k

determine at most one mapping σ : Q→ Nk such that

∆k′/k′′(σ(q), η(α)) = σ(δ(q, α))

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 199

whenever α ∈ enbT (q), and therefore they determine at most one τk
′/k′′-

region of T .
We now define the mapping σ. Let Pi ∈ P (i = 1, . . . , r). By assumption,

T ∼= CRGcdslmax
(N̂) and CRGcdslmax

(N̂) is a sub-graph of CRG(N̂). Let
σ : Q→ Nk be defined as follows: σ(q) = f(q)(Pi), where f(q) is the image
of q through the isomorphism ∼= (f(q) is a marking of N̂). Then, for every
α ∈ enbT (q), we have, from T ∼= CRGcdslmax

(N̂), that α is resource enabled

at f(q) in N̂ , and hence

F (Pi, α) ∈ enbτk′/k′′ (f(q)(Pi))

and the marking of Pi after α is fired is

f(δ(q, α))(Pi) = ∆k′/k′′(f(q)(Pi), F (Pi, α)) .

Therefore, we have, for σ defined as above and η(α) = F (Pi, α) (as stated in
the assumptions), that

η(α) ∈ enbτk′/k′′ (σ(q)) and σ(δ(q, α)) = ∆k′/k′′(σ(q), η(α)) .

Hence 〈σ, η〉, with σ defined as above, is a τk
′/k′′-region of T associated

with Pi. Also,
σ(q0) = f(q0)(Pi) = M0(Pi)

as ∼= is an isomorphism preserving the initial states. Therefore, the result
holds. 2

Theorem 1 Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition system and
cds lmax be the locally maximal step firing policy associated with a locality
mapping ` defined for T .

Then T can be realised by a τk
′/k′′-net under cds lmax iff Axioms 1 and 2

are satisfied.

Proof: (=⇒) Let T be realised by the τk
′/k′′-net N̂ under cds lmax.

We have T ∼= CRGcdslmax
(N̂). Let f : Q → (P → Nk) be a bijection

linking the states of T with the reachable markings of N̂ . First, we show
that:

enbT ,τk′/k′′ (q) ⊆ enb
N̂

(f(q)). (8)

Let α 6∈ enb
N̂

(f(q)). Then there is a cluster Pi ∈ P (1 ≤ i ≤ r) in N̂ such
that

F (Pi, α) 6∈ enbτk′/k′′ (f(q)(Pi)) .

200 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

Let 〈σ, η〉 be the τk
′/k′′-region of T induced by Pi according to Proposition 2.

Then σ(q) = f(q)(Pi) and η(α) = F (Pi, α). Hence,

η(α) 6∈ enbτk′/k′′ (σ(q))

and so α 6∈ enbT ,τk′/k′′ (q).

To show Axiom 1 let q 6= r in Q. As T ∼= CRGcdslmax
(N̂), we have

f(q) 6= f(r), and therefore f(q)(Pi) 6= f(r)(Pi), for some 1 ≤ i ≤ r. Let
〈σ, η〉 be the τk

′/k′′-region of T induced by Pi according to Proposition 2.
Then σ(q) = f(q)(Pi) 6= f(r)(Pi) = σ(r). Hence, σ(q) 6= σ(r).

To show Axiom 2, we first show that, for all α ∈ 〈T 〉 and q ∈ Q:

α 6∈ enbT (q) =⇒ α 6∈ enbT ,τk′/k′′ (q) \ cds lmax(enbT ,τk′/k′′ (q)). (9)

Let q ∈ Q and α 6∈ enbT (q). From (6) and T ∼= CRGcdslmax
(N̂), either:

(i) α 6∈ enb
N̂

(f(q)) or

(ii) α ∈ enb
N̂

(f(q)) ∩ cds lmax(enb
N̂

(f(q))).

If (i) holds then, by (8), we have α 6∈ enbT ,τk′/k′′ (q) and so (9) holds. In
(ii) two cases are possible. If α 6∈ enbT ,τk′/k′′ (q) we have (9); otherwise
α ∈ enbT ,τk′/k′′ (q) and we set the following:

X = enb
N̂

(f(q)) and Y = enbT ,τk′/k′′ (q) .

By (8), we have Y ⊆ X. Moreover, by (6,7) and T ∼= CRGcdslmax
(N̂), we

have X \ cds lmax(X) ⊆ Y . Hence, by Proposition 1 and the fact that T is
bounded,

α ∈ cds lmax(X) ∩ Y ⊆ cds lmax(enbT ,τk′/k′′ (q)) ,

and so (9) holds.
To finish the proof of Axiom 2, we show that, for all q ∈ Q:

enbT (q) ⊆ enbT ,τk′/k′′ (q) \ cds lmax(enbT ,τk′/k′′ (q)). (10)

By isomorphism T ∼= CRGcdslmax
(N̂) and (6), we have

enbT (q) = enb
N̂

(f(q)) \ cds lmax(enb
N̂

(f(q))) .

Hence
enbT (q) ∩ cds lmax(enb

N̂
(f(q))) = ∅ .

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 201

Thus, by (8) and cds lmax(Y) ⊆ cds lmax(X) (for Y ⊆ X),

enbT (q) ∩ cds lmax(enbT ,τk′/k′′ (q)) = ∅ .

Moreover, by (7), which always holds, we can conclude that (10) holds.
(⇐=) Let R be the set of all τk

′/k′′-regions of T .
Let N̂ = 〈P, T, F,M0, `〉 be a τk

′/k′′-net defined as follows: P = R,
M0(Pi) = σ(q0) and F (Pi, t) = η(t) for any cluster Pi = 〈σ, η〉 ∈ P and t ∈ T .
We will show that if T satisfies Axioms 1 and 2 then T ∼= CRGcdslmax

(N̂).

We denote by RMcdslmax
the set of all markings in CRGcdslmax

(N̂) and

by M
α−−→ M ′ the directed arcs in this graph. We now define a relation

∼ ⊆ Q×RMcdslmax
as the smallest relation that includes q0 ∼M0 and such

that
q ∼M , δ(q, α) = q′ and M

α−−→M ′ implies q′ ∼M ′.

We prove first that ∼ is a partial bijection between Q and RMcdslmax
. By

construction of N̂ , M0(Pi) = σ(q0) for every Pi = 〈σ, η〉 of N̂ . Now let q ∼M
with δ(q, α) = q′ and M

α−−→M ′, and assume for the sake of induction that
M(Pi) = σ(q) for every Pi = 〈σ, η〉 of N̂ . As 〈σ, η〉 is a τk

′/k′′-region of T ,
σ(δ(q, α)) = ∆k′/k′′(σ(q), η(α)). As Pi = 〈σ, η〉 is a cluster of places in N̂
and F (Pi, t) = η(t) for all t ∈ T by construction of N̂ , we have

σ(δ(q, α)) = ∆k′/k′′(M(Pi), F (Pi, α)) .

From M
α−−→M ′, we have M ′(Pi) = ∆k′/k′′(M(Pi), F (Pi, α)). As a result,

M ′(Pi) = σ(δ(q, α)) = σ(q′)

and we have q′ ∼ M ′. So, q ∼ M implies M(Pi) = σ(q) for all Pi = 〈σ, η〉
of N̂ . Furthermore, from Axiom 1, q 6= r implies σ(q) 6= σ(r) for some
τk

′/k′′-region 〈σ, η〉 of T . Therefore, the relation ∼ is a partial bijection
between Q and RMcdslmax

.
Next, we show that the following implication is satisfied:

q ∼M =⇒ enbT ,τk′/k′′ (q) = enb
N̂

(M). (11)

Let α ∈ enbT ,τk′/k′′ (q). This means that η(α) ∈ enbτk′/k′′ (σ(q)), for all

τk
′/k′′-regions 〈σ, η〉 of T . It was shown above that, for every cluster of

places Pi = 〈σ, η〉 of N̂ , M(Pi) = σ(q), where q ∼ M . Furthermore, by
construction of N̂ , F (Pi, t) = η(t), for all t ∈ T , and Pi = 〈σ, η〉. Hence,
η(α) = F (Pi, α). Therefore, F (Pi, α) ∈ enbτk′/k′′ (M(Pi)), for every cluster

202 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

of places Pi of N̂ . This in turn means that α is resource enabled at M in N̂ :
α ∈ enb

N̂
(M).

To show the reverse inclusion, let α ∈ enb
N̂

(M). Then, by the fact that

α is resource enabled at M , in N̂ , we have

F (Pi, α) ∈ enbτk′/k′′ (M(Pi)) ,

for every cluster Pi of N̂ . From the construction of N̂ , it follows that
F (Pi, t) = η(t) for all t ∈ T and Pi = 〈σ, η〉, hence

η(α) ∈ enbτk′/k′′ (M(Pi)) .

For every cluster Pi = 〈σ, η〉 of N̂ , M(Pi) = σ(q) when q ∼M . So,

η(α) ∈ enbτk′/k′′ (σ(q)) ,

for every τk
′/k′′-region of T . Hence,

α ∈ enbT ,τk′/k′′ (q) .

We now observe that q ∼M implies

enbT (q) = enb
N̂ ,cdslmax

(M) ,

which follows from (11), Axiom 2, and (6). Hence ∼ is a bijection between
Q and RMcdslmax

, and so T ∼= CRGcdslmax
(N̂). 2

To solve Problem 2 using the feasibility result provided by Theorem 1
one needs to find an effective representation of the τk

′/k′′-regions of T .
Similarly as in [24, 23], one can define a system of equations and inequalities
encoding the conditions that must be satisfied by τk

′/k′′-regions. Let Q =
{q0, q1, . . . , qm} and T = {t1, . . . , tn} (recall that T is assumed finite in
Problem 2). The encoding employs the following variables:

• x0,x1, . . . ,xm are k-vectors of non-negative integer variables which
encode the mapping σ; and

• X1, . . . ,Xn and Y1, . . . ,Yn are (k + 1) × k arrays of non-negative
integer variables, which encode the mapping η.

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 203

We then define the homogeneous system ST such that, for all δ(qs, α) = qr
in T , for all j′ ∈ {1, . . . , k′}, and for all j′′ ∈ {k′ + 1, . . . , k}:

(xs − (xs, 1)⊗
∑n

i=1 α(ti) · (Xi −Yi))
(j′) ≥ 0

(xs − (xs, 1)⊗
∑n

i=1 α(ti) ·Xi)
(j′′) ≥ 0

xr − xs − (xs, 1)⊗
∑n

i=1 α(ti) · (Yi −Xi) = 0 .

(12)

Then the (non-negative) integer solutions of ST are in a one-to-one corre-
spondence with the τk

′/k′′-regions of T . Therefore, Axioms 1 and 2 can be
checked using the solutions of ST .

In the case of pt-net synthesis, a similar procedure has been shown
to be effective since the homogeneous system considered there was linear
and one could always find a sufficiently representative finite basis for all the
solutions. Here the problem is clearly harder as the system ST is quadratic.
In practice, one would often want to impose bounds on the allowed range of
the whole-place coefficients used in arc annotations. Then Problem 2 has a
solution since one could replace ST by finitely many linear systems that can
be dealt with using the techniques developed for pt-nets. However, one can
consider a modified version of Problem 2 without bounding the whole-place
coefficients and still obtain a solution, as described in the next section.

5 Synthesis with Known Whole-places

We now assume that all the whole-places of the net to be synthesised are
known, that means their markings are known at every state of the initial
step transition system T . However, we still do not know their connections
to the transitions. The discovery of these is a part of the synthesis problem
discussed in this section. Also, we assume that all the whole-places are
standard places. The remaining places to be discovered in the synthesis
procedure can be a/sync or standard places.

Problem 3 (construction with known whole-places)
Let T = 〈Q, 〈T 〉, δ, q0〉 be a finite step transition system, m be a positive
integer, and κ be a mapping assigning tuples in Nm to the elements of
Q. Decide whether there is a wpoasl-net N with implicitly ordered places
p1, . . . , pm, . . . , pn realising T such that:

• p1, . . . , pm are standard places;

204 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

• each whole-place pi of N satisfies i ≤ m; and

• for every state q ∈ Q, it is the case that κ(q) = (µ(q)(1), . . . , µ(q)(m)),
where µ is a bijection from Q to the reachable markings of N establishing
the isomorphism between T and the concurrent reachability graph of
N .

Moreover, if the answer is positive, construct such a wpoasl-net N .

We will now describe how the above problem can be solved using results
from the last section.

Since T is finite, there are only finitely many semantically distinct ways
in which one can assign localities to the transitions in T . We can explore
them all one-by-one, and below we assume that ` is a fixed locality mapping
for T .

We next discuss the coefficients on the arcs adjacent to p1, . . . , pm.
Suppose first that 1 ≤ i, j ≤ m and W (pi, t) = v1 · p1 + · · ·+ vm · pm + v0 in
a net solving Problem 3, and µ is a corresponding bijection. We consider
two cases:

• κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since α is enabled
at µ(q), it must be the case that κ(q)(i) ≥ vj · κ(q)(j) · α(t), and so

vj ≤ min

{
κ(q)(i)

κ(q)(j) · α(t)

∣∣∣∣∣ δ(q, α) = q′ and t ∈ α

}
.

Hence, the range of possible values for vj is finite.

• κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we can assume
vj = 1 + max{κ(q)(i) | q ∈ Q}. This does not ‘contradict’ any of the
arcs in T and, at the same time, ensures a maximal disabling power of
coefficient vj .

Suppose next that i, j ≤ m and W (t, pi) = v1 · p1 + · · ·+ vm · pm + v0. We
again consider two cases:

• κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since executing α
at µ(q) leads to µ(q′), it must be the case that κ(q′)(i) ≥ vj ·κ(q)(j) ·α(t),
and so

vj ≤ min

{
κ(q′)(i)

κ(q)(j) · α(t)

∣∣∣∣∣ δ(q, α) = q′ and t ∈ α

}
.

Hence, the range of possible values for vj is again finite.

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 205

• κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we set vj = 0.

As a result, we need to take into account only finitely many assignments
of values to the whole-place coefficients of arcs between the transitions in
T and p1, . . . , pm. We can consider them one-by-one and, after filtering out
those inconsistent with κ, carry out independent searches for a solution.
Therefore, below we assume that such whole-place coefficients are fixed, and
proceed further unless the net constructed so far is a solution (the initial
marking is κ(q0)).

Having fixed transition localities and whole-place coefficients involving
the potential whole-places, we can proceed with the main part of the decision
procedure, i.e., the construction of additional non-whole-places that can use
p1, . . . , pm in their arc annotations. Moreover, we need to consider two cases
as a new place may be either a standard or an a/sync place.

First, we derive the system ST as in (12) with k = m + 1, implicitly
assuming that the last m components correspond to the standard places
p1, . . . , pm, and the first component corresponds to a generic standard non-
whole-place p being constructed (i.e., we assume that k′ = 0 and k′′ = m+1).
We then replace by concrete values all those variables which are ‘fixed’ by
the mapping κ, and the fact that p must be a non-whole-place. We finally
delete all equations and inequalities which concern p1, . . . , pm, i.e., those

beginning with x
(i)
s , for 2 ≤ i ≤ m+ 1.

The homogeneous system S ′T obtained in this way is linear.

Assume some arbitrary ordering of the variables of S ′T , so that its
solutions can be treated as vectors. Using the results from [10], one can find
a finite set p1, . . . ,pr of non-negative integer solutions of S ′T such that each
non-negative integer solution p of S ′T is a linear combination p =

∑r
l=1 al ·pl

with non-negative rational coefficients al. For every non-negative integer
solution p of S ′T , let ψ(p) be a corresponding τ0/m+1-region.

We then repeat the above construction with one change, namely the first
component is assumed to correspond to a generic a/sync non-whole-place
v, leading to a linear system S ′′T . In this case, we also can find a finite
set v1, . . . ,vu of non-negative integer solutions of S ′′T such that each non-
negative integer solution v of S ′′T is a linear combination v =

∑u
j=1 bj · vj

with non-negative rational coefficients bj . For every non-negative integer
solution v of S ′′T , let ψ(v) be a corresponding τ1/m-region.

The pl’s and vj ’s are fixed and some of them will be turned into
additional places if Problem 3 has a solution under the fixed localities and
coefficients. This, in turn, is the case if we can verify Axioms 1 and 2.

206 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

Clearly, if r = u = 0 then the problem is not feasible for the current fixed
parameters. Otherwise, we proceed as follows.

To check state separation (Axiom 1), let qi and qj be a pair of distinct
states of T . If κ(qi) 6= κ(qj), then we are done. Suppose then that κ(qi) =
κ(qj), and ρ is a τ0/m+1-region separating qi and qj . Then there is a solution
of S ′T , p =

∑r
l=1 al · pl, such that ρ = ψ(p). This means that p assigns

different values to qi and qj . Hence, there must be pl which also assigns
different values to qi and qj . Therefore, ψ(pl) separates qi and qj . Similarly,
if ρ = ψ(v) is a τ1/m-region separating qi and qj , there must be vj which
also assigns different values to qi and qj . We therefore only need to check the
pl’s and vj ’s in order to establish the separation of qi and qj . If a suitable
pl or vj is found, we add a non-whole standard place p corresponding to the
first place of ψ(pl), or we add a non-whole a/sync place v corresponding to
the first place of ψ(vj), to the net being constructed.

Checking forward closure (Axiom 2) is carried out for each state qi, and
considers steps α ∈ 〈T 〉 that are not enabled at qi in T . Moreover, one does
not need to consider α 6= 0 in the following cases:

• α is already disabled by the whole-places, or |α| > max , where max is
the maximum size of steps labelling arcs in T . The latter exclusion is
justified by the fact that one can always add to a net a standard non-
whole-place which is connected with each transition by an incoming and
outgoing arc of weight 1, and is initially marked with max tokens. Such
a non-whole-place disables all steps with more than max transitions,
and does not disable any other steps.

• There is a step β enabled at qi such that `(β) ⊆ `(α) and α < β.

In all other cases, α is not region enabled at qi iff ψ(p) disables α, for
some solution p =

∑r
l=1 al · pl of S ′T , or ψ(v) disables α, for some solution

v =
∑u

j=1 bj · vj of S ′′T . Suppose that the former holds. Then, since the

coefficients al are non-negative, α is not τ0/m+1-region enabled at qi iff there
is pl such that ψ(pl) disables α. We therefore only need to check the pl’s
in order to establish the disabling of α. If a suitable pl is found, we add
a non-whole standard place p corresponding to the first place of ψ(pl) to
the net being constructed. In the latter case, we proceed similarly, and if a
suitable vj is found, we add a non-whole a/sync place v corresponding to
the first place of ψ(vj) to the net being constructed.

Finally, if one can validate all cases of state separation and forward
closure, the resulting net is a solution to Problem 3, and otherwise there is

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 207

no solution.

6 Conclusions

In this paper, we extended the results of [23] by adding a/sync places to the
synthesis procedure for the nets with whole-place operations and localities
(wpol-nets). That new added feature could not have been simulated by any
combination of existing net features of wpol-nets and therefore considered
redundant. In the paper, we showed that indeed it extends the expressive
power of wpol-nets.

Similarly, as with wpol-nets, when designing the synthesis algorithm
for wpoasl-nets, we had to resort to some additional assumptions. Firstly,
the size of the clusters of related places needs to be known in advance.
Secondly, the realisation that the obtained synthesis algorithm involves
solving a quadratic system of equations and inequalities, led us to yet
another simplification: the assumption that the information about the whole-
places is also known upfront, which helped to reduce the quadratic system
of equations and inequalities of the synthesis algorithm to a linear system of
equations and inequalities.

As, in general, the algorithmic solutions to the synthesis problems for
both wpol-nets and wpoasl-nets involve solving a quadratic system of
equations and inequalities, we feel that the following open questions are
worth investigating:

• How to find interesting subclasses of these classes for which the synt-
hesis procedure involves solving a linear system of equations and
inequalities?

• How to find classes of Petri nets of the equivalent expressive power
to these classes (using a/sync connection rather than a/sync places,
perhaps) for which the synthesis procedure involves solving a linear
system of equations and inequalities?

Among other possible directions for future work, we single out two
challenges. The first one is the development of a synthesis approach for
wpoas-nets executed under more general step firing policies, e.g., those based
on linear rewards of steps, where the reward for firing a single transition
is either fixed or it depends on the current net marking [14]. The second
task, more specific to k′/k′′-wpoasl-nets, is to investigate the relationship
between the locality mapping and the grouping of the places into clusters.

208 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

Acknowledgements

We are grateful to the anonymous reviewers for constructive comments and
suggestions.

References

[1] P.A. Abdulla, G. Delzanno, and L. Van Begin. A language-based compa-
rison of extensions of Petri nets with and without whole-place operations.
In A.-H. Dediu, A.-M. Ionescu, and C. Mart́ın-Vide, editors, Language
and Automata Theory and Applications, Third International Conference,
LATA 2009, Tarragona, Spain, April 2-8, 2009. Proceedings, volume
5457 of Lecture Notes in Computer Science, pages 71–82. Springer, 2009.
doi:10.1007/978-3-642-00982-2_6.

[2] F. Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004. doi:10.1017/S0960129504004153.

[3] E. Badouel, L. Bernardinello, and P. Darondeau. Petri Net Synthesis.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2015. doi:10.1007/978-3-662-47967-4.

[4] E. Badouel and P. Darondeau. Theory of regions. In Wolfgang Reisig
and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of Lecture
Notes in Computer Science, pages 529–586. Springer, 1996. doi:10.

1007/3-540-65306-6_22.

[5] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri
nets from scenarios with VipTool. In K.M. van Hee and R. Valk, editors,
Applications and Theory of Petri Nets, 29th International Conference,
PETRI NETS 2008, Xi’an, China, June 23-27, 2008. Proceedings,
volume 5062 of Lecture Notes in Computer Science, pages 388–398.
Springer, 2008. doi:10.1007/978-3-540-68746-7_25.

[6] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna. On the
synchronic structure of transition systems. In Jörg Desel, editor, Struc-
tures in Concurrency Theory, Workshops in Computing, pages 69–84.
Springer, 1995. doi:10.1007/978-1-4471-3078-9_5.

http://dx.doi.org/10.1007/978-3-642-00982-2_6
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/978-3-540-68746-7_25
http://dx.doi.org/10.1007/978-1-4471-3078-9_5

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 209

[7] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective
and individual token approaches. Information and Computation, 156(1-
2):46–89, 2000. doi:10.1006/inco.1999.2819.

[8] N. Busi and G. Michele Pinna. Synthesis of nets with inhibitor arcs. In
A.W. Mazurkiewicz and J. Winkowski, editors, CONCUR ’97: Concur-
rency Theory, 8th International Conference, Warsaw, Poland, July 1-4,
1997, Proceedings, volume 1243 of Lecture Notes in Computer Science,
pages 151–165. Springer, 1997. doi:10.1007/3-540-63141-0_11.

[9] J. Carmona, J. Cortadella, and M. Kishinevsky. Genet: A tool for the
synthesis and mining of Petri nets. In Ninth International Conference on
Application of Concurrency to System Design, ACSD 2009, Augsburg,
Germany, 1-3 July 2009, pages 181–185. IEEE Computer Society, 2009.
doi:10.1109/ACSD.2009.6.

[10] N. Chernikova. Algorithm for finding a general formula for the non-
negative solutions of a system of linear inequalities. USSR Com-
putational Mathematics and Mathematical Physics, 5:228–233, 1965.
doi:10.1016/0041-5553(65)90045-5.

[11] S. Christensen and N.D. Hansen. Coloured Petri nets extended with
channels for synchronous communication. In R. Valette, editor, Ap-
plication and Theory of Petri Nets 1994, 15th International Confe-
rence, Zaragoza, Spain, June 20-24, 1994, Proceedings, volume 815
of Lecture Notes in Computer Science, pages 159–178. Springer, 1994.
doi:10.1007/3-540-58152-9_10.

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Ya-
kovlev. Logic Synthesis of Asynchronous Controllers and Interfaces,
volume 8 of Springer Series in Advanced Microelectronics. Springer,
2002. doi:10.1007/978-3-642-55989-1.

[13] P. Darondeau. Deriving unbounded Petri nets from formal languages.
In D. Sangiorgi and R. de Simone, editors, CONCUR ’98: Concurrency
Theory, 9th International Conference, Nice, France, September 8-11,
1998, Proceedings, volume 1466 of Lecture Notes in Computer Science,
pages 533–548. Springer, 1998. doi:10.1007/BFb0055646.

[14] P. Darondeau, M. Koutny, M. Pietkiewicz-Koutny, and A. Yakovlev.
Synthesis of nets with step firing policies. Fundamenta Informaticae,
94(3-4):275–303, 2009. doi:10.3233/FI-2009-132.

http://dx.doi.org/10.1006/inco.1999.2819
http://dx.doi.org/10.1007/3-540-63141-0_11
http://dx.doi.org/10.1109/ACSD.2009.6
http://dx.doi.org/10.1016/0041-5553(65)90045-5
http://dx.doi.org/10.1007/3-540-58152-9_10
http://dx.doi.org/10.1007/978-3-642-55989-1
http://dx.doi.org/10.1007/BFb0055646
http://dx.doi.org/10.3233/FI-2009-132

210 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

[15] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta
Informatica, 33(4):297–315, 1996. doi:10.1007/s002360050046.

[16] C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decida-
bility and undecidability. In K.G. Larsen, S. Skyum, and G. Winskel,
editors, Automata, Languages and Programming, 25th International
Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Procee-
dings, volume 1443 of Lecture Notes in Computer Science, pages 103–115.
Springer, 1998. doi:10.1007/BFb0055044.

[17] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part I:
basic notions and the representation problem. part II: state spaces
of concurrent system. Acta Informatica, 27(4):315–368, 1990. doi:

10.1007/BF00264611.

[18] A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework
for analysing Petri net extensions. Information and Computation, 195(1-
2):1–29, 2004. doi:10.1016/j.ic.2004.01.005.

[19] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace
semantics for Petri nets. Information and Computation, 117(1):98–114,
1995. doi:10.1006/inco.1995.1032.

[20] J. Kleijn and M. Koutny. Causality in structured occurrence nets. In
C.B. Jones and J.L. Lloyd, editors, Dependable and Historic Computing -
Essays Dedicated to Brian Randell on the Occasion of His 75th Birthday,
volume 6875 of Lecture Notes in Computer Science, pages 283–297.
Springer, 2011. doi:10.1007/978-3-642-24541-1_22.

[21] J. Kleijn and M. Koutny. Localities in systems with a/sync com-
munication. Theoretical Computer Science, 429:185–192, 2012. doi:

10.1016/j.tcs.2011.12.038.

[22] J. Kleijn, M. Koutny, and M. Pietkiewicz-Koutny. Regions of Petri nets
with a/sync connections. Theoretical Computer Science, 454:189–198,
2012. doi:10.1016/j.tcs.2012.04.016.

[23] J. Kleijn, M. Koutny, and M. Pietkiewicz-Koutny. Synthesis of Petri
nets with whole-place operations and localities. In A. Sampaio and
F. Wang, editors, Theoretical Aspects of Computing - ICTAC 2016 -
13th International Colloquium, Taipei, Taiwan, ROC, October 24-31,

http://dx.doi.org/10.1007/s002360050046
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1016/j.ic.2004.01.005
http://dx.doi.org/10.1006/inco.1995.1032
http://dx.doi.org/10.1007/978-3-642-24541-1_22
http://dx.doi.org/10.1016/j.tcs.2011.12.038
http://dx.doi.org/10.1016/j.tcs.2011.12.038
http://dx.doi.org/10.1016/j.tcs.2012.04.016

Adding A/Sync Places to the Synthesis Procedure
for Whole-Place Operations Nets with Localities 211

2016, Proceedings, volume 9965 of Lecture Notes in Computer Science,
pages 103–120, 2016. doi:10.1007/978-3-319-46750-4_7.

[24] J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny, and G. Rozenberg. Ap-
plying regions. Theoretical Computer Science, 658:205–215, 2017.
doi:10.1016/j.tcs.2016.01.040.

[25] M. Koutny and M. Pietkiewicz-Koutny. Synthesis of Petri nets with
localities. Scientific Annals of Computer Science, 19:1–23, 2009. URL:
http://www.info.uaic.ro/bin/Annals/Article?v=XIX&a=0.

[26] M. Mukund. Petri nets and step transition systems. International
Journal of Foundations of Computer Science, 3(4):443–478, 1992. doi:
10.1142/S0129054192000231.

[27] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary transition
systems. Theoretical Computer Science, 96(1):3–33, 1992. doi:10.1016/
0304-3975(92)90180-N.

[28] M. Pietkiewicz-Koutny. Transition systems of elementary net systems
with inhibitor arcs. In P. Azéma and G. Balbo, editors, Application and
Theory of Petri Nets 1997, 18th International Conference, ICATPN
’97, Toulouse, France, June 23-27, 1997, Proceedings, volume 1248 of
Lecture Notes in Computer Science, pages 310–327. Springer, 1997.
doi:10.1007/3-540-63139-9_43.

[29] V. Schmitt. Flip-flop nets. In C. Puech and R. Reischuk, editors, STACS
96, 13th Annual Symposium on Theoretical Aspects of Computer Science,
Grenoble, France, February 22-24, 1996, Proceedings, volume 1046 of
Lecture Notes in Computer Science, pages 517–528. Springer, 1996.
doi:10.1007/3-540-60922-9_42.

[30] M. Solé and J. Carmona. Rbminer: A tool for discovering Petri nets from
transition systems. In A. Bouajjani and W.-N. Chin, editors, Automated
Technology for Verification and Analysis - 8th International Symposium,
ATVA 2010, Singapore, September 21-24, 2010. Proceedings, volume
6252 of Lecture Notes in Computer Science, pages 396–402. Springer,
2010. doi:10.1007/978-3-642-15643-4_33.

[31] J. M. E. M van der Werf, B.F. van Dongen, C.A.J. Hurkens, and
A. Serebrenik. Process discovery using integer linear programming.

http://dx.doi.org/10.1007/978-3-319-46750-4_7
http://dx.doi.org/10.1016/j.tcs.2016.01.040
http://www.info.uaic.ro/bin/Annals/Article?v=XIX&a=0
http://dx.doi.org/10.1142/S0129054192000231
http://dx.doi.org/10.1142/S0129054192000231
http://dx.doi.org/10.1016/0304-3975(92)90180-N
http://dx.doi.org/10.1016/0304-3975(92)90180-N
http://dx.doi.org/10.1007/3-540-63139-9_43
http://dx.doi.org/10.1007/3-540-60922-9_42
http://dx.doi.org/10.1007/978-3-642-15643-4_33

212 J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny

In K.M. van Hee and R. Valk, editors, Applications and Theory of
Petri Nets, 29th International Conference, PETRI NETS 2008, Xi’an,
China, June 23-27, 2008. Proceedings, volume 5062 of Lecture Notes
in Computer Science, pages 368–387. Springer, 2008. doi:10.1007/

978-3-540-68746-7_24.

c© Scientific Annals of Computer Science 2017

http://dx.doi.org/10.1007/978-3-540-68746-7_24
http://dx.doi.org/10.1007/978-3-540-68746-7_24

	Introduction
	Preliminaries
	Whole-place Operations and a/sync Places
	WPOAS-nets with Localities
	Expressiveness of WPOASL-nets

	Synthesis of WPOASL-nets
	k'/k''-WPOASL-nets and their Net-type
	Synthesising k'/k''-WPOASL-nets as k'/k''-nets

	Synthesis with Known Whole-places
	Conclusions

