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Active nematics are orientationally ordered but apolar fluids composed of interacting
constituents individually powered by an internal source of energy. When activity exceeds
a system-size-dependent threshold, spatially uniform active apolar fluids undergo a
hydrodynamic instability leading to spontaneous macroscopic fluid flow. Here we show that
a special class of spatially nonuniform configurations of such active apolar fluids display
laminar (i.e., time-independent) flow even for arbitrarily small activity. We also show that
two-dimensional active nematics confined on a surface of nonvanishing Gaussian curvature
must necessarily experience a nonvanishing active force. This general conclusion follows
from a key result of differential geometry: Geodesics must converge or diverge on surfaces
with nonzero Gaussian curvature. We derive the conditions under which such curvature-
induced active forces generate thresholdless flow for two-dimensional curved shells. We
then extend our analysis to bulk systems and show how to induce thresholdless active flow by
controlling the curvature of confining surfaces, external fields, or both. The resulting laminar
flow fields are determined analytically in three experimentally realizable configurations that
exemplify this general phenomenon: (i) toroidal shells with planar alignment, (ii) a cylinder
with nonplanar boundary conditions, and (iii) a Frederiks cell that functions like a pump
without moving parts. Our work suggests a robust design strategy for active microfluidic
chips and could be tested with the recently discovered living liquid crystals.
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I. INTRODUCTION

Active liquids [1] are complex fluids with some components individually capable of converting
internal energy into sustained motion. These active components can be subcellular (such as
microtubules powered by molecular motors, and actomyosin networks [2,3]), synthetic (e.g.,
self-propelled colloids [4] or interacting microrobots), or, alternatively, living organisms [5–8],
such as birds, fish [9], microorganisms [10,11], or insects [12]. Hybrid systems composed of
motile rod-shaped bacteria placed in nontoxic liquid crystals have also been realized recently
[13]. All of these systems blur the line between the living and synthetic world, thereby opening
up unprecedented opportunities for the design of novel smart materials and technology. At the same
time, the far-from-equilibrium nature of active matter leads to exotic phenomena of fundamental
interest. Among these are the ability of active fluids to (i) spontaneously break a continuous symmetry
in two spatial dimensions [14–17], (ii) exhibit spontaneous steady-state flow [2,18] in the absence
of an external driving force, and (iii) support topologically protected excitations (e.g., sound modes)
that originate from time-reversal symmetry breaking [19].

A striking example of the phenomenon of spontaneous flow occurs in active nematic liquid
crystals [1,18,20–24]. These materials are orientationally ordered but apolar fluids; that is, the active
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particles share a common axis of motion but, in the homogeneous state, equal numbers of them move
in each of the two directions parallel to this axis. As a result, there is no net motion and no net flow.
However, if the activity parameter α (defined later) exceeds a critical threshold αc, the undistorted
nematic ground state becomes unstable. Once this instability threshold is passed, the active nematics
spontaneously deform their state of alignment, triggering macroscopic turbulent flow [2,18,25–28].
For nematics, this activity threshold αc goes to zero as the system size L → ∞, αc ∼ K

L2 , where K

is a characteristic Frank elastic constant. Equivalently, one can say that the instability-triggered flow

does not occur in systems of characteristic size smaller than Linst ∼
√

K
|α| .

In this paper we describe conditions for active flow that may be realized for systems with length
scales less than Linst, which also corresponds to the limit of small activity. Numerical studies of
active nematics suggest that some nonuniform director configurations can lead to laminar flow for
arbitrarily small activity, i.e., well below the instability threshold [25]. However, no systematic study
of the mechanisms and criteria behind such thresholdless active flow has previously been undertaken.
In this paper we use a well-established hydrodynamic theory of active nematics to identify the class
of surface deformations, boundary conditions, or external fields that induce a nonuniform director
ground state capable of generating such thresholdless laminar flow. We emphasize that not all
spatially nonuniform configurations will induce such flow.

The condition for a given set of boundary conditions and applied fields to induce thresholdless
active flow in nematics is most easily expressed in terms of the director field n̂(r) [29], which is
defined as the local orientation of molecular alignment. It can be stated as follows: If the active
force, which is

f a ≡ α[n̂(∇ · n̂) + (n̂ · ∇)n̂] = α[n̂∇ · n̂ − n̂ × (∇ × n̂)], (1)

has nonzero curl, when computed for the director configuration n̂(r) that minimizes the Frank elastic
free energy (including external fields) of the corresponding equilibrium problem [29], then the active
fluid in the same geometry must flow (i.e., the velocity field v �= 0). Note that this condition is far
more stringent than simply requiring that the nematic ground-state orientation be inhomogeneous.
For example, any pure twist configuration (e.g, a cholesteric, or a twist cell) does not satisfy it,
since splay ∇ · n̂ and bend n̂ × (∇ × n̂) both vanish in such configurations. Note that the criterion
∇ × f a �= 0 is a sufficient condition for thresholdless flow.

In the present study we calculate the resulting flow field v(r) explicitly in the frozen director
approximation, in which the nematic director remains in its equilibrium configuration when activity
is turned on. We consider this regime mainly to derive analytical solutions and provide qualitative
insights into the nature of the flow, but it has in fact been realized experimentally in living liquid crys-
tals [30]. We also demonstrate that this approximation is asymptotically exact in the experimentally
relevant limit of weak orientational order. Since many nematic to isotropic transitions are weakly first
order [29] (at least in equilibrium), this frozen director limit may be realized close to such transitions.
Moreover, these solutions provide qualitative insights into the nature of the flow even in systems in
which the frozen director approximation is not quantitatively accurate. Our ideas can also be applied
with some modifications to the recently discovered living liquid crystals [13]. These systems are a
mixture of two components: living bacteria, which provide the activity, and a background medium
composed of nematically ordered nonactive molecules. On symmetry grounds, as we discuss in
more detail in Appendix I, these systems considered in their entirety are active nematics.

The remainder of this paper is organized as follows. In Sec. II we introduce the simplified
model for the hydrodynamics of active nematics adopted in our study. We also discuss some
generalizations of this model and argue that none of our conclusions will be substantively affected
by these generalizations. In Sec. III we derive the general criterion for thresholdless active flow. In
Sec. IV we apply this criterion to the specific case of surfaces of nonzero Gaussian curvature and
show that such surfaces always have nonzero active forces, but need not always have thresholdless
flow. We also derive the additional criteria that must be satisfied for thresholdless flow to occur
in these systems, give a specific example (active nematics on a thin toroidal shell) in which these
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conditions are met, and work out the flow field in this case. In Sec. V we derive similar results
for bulk systems with curved boundaries. Section VI presents calculations, in the frozen director
approximation, of the flow fields that result in microchannels with prescribed anchoring angles on
the surface and Sec. VII presents a design for an active pump in which a Frederiks cell geometry is
used to switch on thresholdless active flow. We summarize in Sec. VIII.

II. HYDRODYNAMICS OF ACTIVE NEMATICS

We take as our model for an incompressible, one-component active nematic fluid the following
three coupled equations [18]:

ρ0
Dvk

Dt
= −∂kP + η∇2vk + α∂j (njnk) + ∂j

(
λijk

δF

δni

)
, (2a)

Dni

Dt
= λijk∂j vk − 1

γ1

[
δF

δni

−
(

δF

δnj

nj

)
ni

]
, (2b)

∇ · v = 0, (2c)

where D/Dt ≡ ∂t + v · ∇ is the convective derivative and the tensor λijk reads

λijk ≡
(

λ + 1

2

)
njδik +

(
λ − 1

2

)
nkδij − λninjnk. (3)

Equation (2a) is a modified Navier-Stokes equation describing the evolution of the velocity field
v(r,t); Eq. (2b) is the nematodynamic equation describing the evolution of the director field n̂(r,t),
which responds both to the flow v and to its own molecular field δF

δn (described in more detail
below); and (2c) is the incompressibility condition, which is required since we take the density
ρ0 to be constant. We denote by P the dynamic pressure, by η the shear viscosity, which we take
to be isotropic for simplicity, and by γ1 the director field rotational viscosity. The dimensionless
flow-alignment parameter λ captures the anisotropic response of the nematogens to shear. Note that
the key difference between Eqs. (2a)–(2c) and the equations of motion for an equilibrium nematic
[29] is the active force term α∂j (njnk) in the Navier-Stokes equation (2a), which may be contractile
(α > 0) or extensile (α < 0), depending on the system [18]. The molecular field δF

δn , derived from
the Frank free energy

F = 1

2

∫
d3r{K1(∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2 + K3|n̂ × (∇ × n̂)|2}, (4)

is parametrized respectively by three independent elastic constants K1,2,3 for splay, twist, and bend
deformations of the director.

Many experimental realizations of active nematics, such as the living liquid crystals [13], are
multicomponent systems. This leads to several differences between their hydrodynamic theories
and that embodied by Eqs. (2a)–(2c); in particular, the concentration of each additional component
must be added as a new hydrodynamic variable. However, the resulting hydrodynamic equations are
sufficiently similar to the one-component case we consider here that our criteria for thresholdless
flow remain valid; a demonstration of this is beyond the scope of the present paper. We discuss the
applicability of a multicomponent generalization of the hydrodynamic equations presented here to
living liquid crystals in Appendix I.

We also note that, strictly speaking, Eqs. (2a)–(2c) are not the most general set of equations for a
one-component active nematic. Specifically, there are two ways in which they could be generalized.

(i) The free energy F that appears in the velocity equation of motion (2a) need not, in a
nonequilibrium system, be the same as that in the director equation of motion (2b). Both free
energies have to have the same form as (4), since that form is required by rotation invariance, but
the Frank constants K1,2,3 that appear in them need not be equal.
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(ii) The viscosity need not be isotropic: There are in general six Leslie coefficients [31]
characterizing this anisotropic response.

In Appendix A we show that, for small activity, the former effect is negligible: The Frank
constants in the velocity equation of motion (2a) approach those in the director equation of motion
(2b) as activity goes to zero. Hence, since we are interested here in the limit of small activity,
this difference becomes negligible. Furthermore, for weak orientational order, our approximation
of isotropic viscosity becomes asymptotically exact. Indeed, Kuzuu and Doi [32] showed that the
anisotropic parts of the viscosities vanish as the amplitude of the nematic order parameter goes to
zero (the isotropic viscosity does not vanish in the same limit since a completely isotropic liquid
has a nonvanishing isotropic viscosity). To sum up, the hydrodynamic theory we employ is exact for
low-activity, weakly ordered nematics.

Most of our conclusions are independent of this limit; in particular, our criteria for thresholdless
active flow are dictated only by the form of the active force f a , which is unchanged by making the
viscosity tensor anisotropic and is furthermore independent of the assumption that the two Frank
energies Fn and Fv are the same.

III. THRESHOLDLESS FLOW IN ACTIVE NEMATICS

At the heart of our study lies a simple observation: The constitutive equations (2a)–(2c) of
active nematics inevitably imply that, in certain geometries, an arbitrarily small activity induces
steady-state macroscopic fluid flow. We will prove this by contradiction. If there is no fluid flow
(i.e., if the velocity field v = 0), then the equation of motion (2b) for the director field implies that,
in a steady state, for which Dni

Dt
= 0, δF

δn − (n̂ · δF
δn )n̂ = 0 (which also holds in the case of anisotropic

viscosity). This is simply the Euler-Lagrange equation for minimizing the Frank free energy F

subject to the constraint |n̂| = 1. The contradiction arises when we insert such an equilibrium
solution for the nematic director into the equation of motion for the velocity field (2a).

The last term on the right-hand side of Eq. (2a), involving δF
δn , vanishes when δF

δn ‖ n̂, which is
the case when the director field is in its ground state. Since the velocity field v vanishes, Eq. (2a)
reduces to ∇P = α(n̂ · ∇n̂ + n̂∇ · n̂) ≡ f a . Hence the pressure gradient must cancel the active
force to prevent flow, but this is not possible if the active force has a nonvanishing curl. In such
cases, v = 0 can never be a solution in the presence of activity; the fluid must flow, no matter how
small the activity. Thus, a sufficient condition for thresholdless active flow is

∇ × f a �= 0, (5)

which has also been implicit in other work such as [33].
One class of director configurations for which the condition in Eq. (5) is not satisfied is that of pure

twist configurations, that is, configurations in which the twist does not vanish [i.e., n̂ · (∇ × n̂) �= 0],
but the splay and bend do [i.e., ∇ · n̂ = 0 and n̂ × (∇ × n̂) = 0, respectively]. This can be seen by
using the vector calculus identity [n̂ × (∇ × n̂)]

i
= nj∇inj − n̂ · ∇ni = 1

2∇i |n̂|2 − n̂ · ∇ni = −n̂ ·
∇ni , where in the last equality we have used the fact that n̂ is a unit vector to set ∇i |n̂|2 = ∇i1 = 0.
Using this, the active force f a may be rewritten as

f a = α[n̂∇ · n̂ − n̂ × (∇ × n̂)], (6)

which implies that a director field with pure twist has zero active force and hence no flow for
sufficiently small activity.

When we consider specific examples of thresholdless active flow in the remainder of this paper,
we will determine analytically the velocity field v(r,t). In general, this is a difficult nonlinear
calculation, since the flow field reorients the nematic director. However, in the frozen director
limit γ1 	 η, turning on activity (and thereby inducing thresholdless flow) does not lead to an
appreciable change in the nematic director configuration from that in equilibrium, which is obtained
by minimizing the Frank free energy. We show in Appendix B that there is a very natural, generic,
and well-defined limit in which γ1 will always be much less than η, namely, the limit of weak nematic
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FIG. 1. (a) Volume V ′ of arbitrary cross section with torsional symmetry. The normal to the bounding
surface is N̂ and two orthonormal sets of unit vectors are shown: (i) director field n̂ tangential to the bounding
surface with t̂ = N̂ × n̂ and (ii) direction of symmetry ν̂ also tangential to bounding surface with τ̂ = N̂ × ν̂.
(b) Distance between geodesics 	(s) as a function of the arc length s in the case of planar anchoring of the
director n̂ on a surface with Gaussian curvature.

order. Although we initially conceived the frozen director regime for calculational convenience to
derive analytical expressions for the flow, this regime has in fact been realized experimentally in
living liquid crystal systems in which bacteria are subjected to a preimposed director field that is
effectively frozen in the experiment [30].

IV. TWO-DIMENSIONAL CURVED SYSTEMS

A. General considerations

Consider an active nematic material confined to a curved monolayer shell, such as that shown
in Fig. 1. Such systems are of special interest since many active nematics synthesized to date are
monolayers or thin shells with planar anchoring [20,23]. In this section we will show that, in general,
a shell with nonvanishing Gaussian curvature G generates a nonvanishing active force f a . To prove
this result, we first assume that, if the shell is very thin, the component of n̂ perpendicular to the
surface is negligible everywhere inside the shell [34–36], i.e., planar anchoring conditions. In this
case, we can decompose the active force f a(x) at position x along three orthogonal directions:
(i) the local surface normal N̂ , (ii) the nematic director n̂, and (iii) the tangent vector t̂ perpendicular
to both N̂ and n̂, shown in Fig. 1(a) [which in addition shows a second orthonormal set of unit
vectors (N̂,ν̂,τ̂ ) used below in Sec. V]. The active force reads

f a(x) = α[n̂(x)∇ · n̂(x) + t̂(x)κg(x) + N̂(x)κn(x)], (7)

where κn = N̂ · (n̂ · ∇)n̂ defines the local normal curvature of the nematic director field n̂(x) and
κg = t̂ · (n̂ · ∇)n̂ defines its geodesic curvature [37,38], which quantifies deviations from the local
geodesic tangent to n̂. In particular, it is a theorem of differential geometry [37] that, if κg = 0 for
the director field lines everywhere, the nematic director must lie on geodesics.

Since the set of vectors (N̂,n̂, t̂) is orthonormal, the active force can only vanish if all three of its
components vanish. In particular, this implies that κg = 0. However, we now show that the condition
κg = 0 forces the n̂ component of f a (which is proportional to ∇ · n̂) to be nonzero, on any surface
with nonzero Gaussian curvature. To prove this statement, note that if κg = 0, the nematic director
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must lie on geodesics everywhere on the surface, as illustrated in Fig. 1(b). Consider an infinitesimal
patch bounded by two geodesics (along which the nematic director is aligned) and their normals,
shown in Fig. 1(b). These perpendicular arcs have length equal to the distance 	(s) between the two
geodesics parametrized by the arc length s along one of them. We now apply the divergence theorem
to the director field n̂ on this small patch, whose area is approximately given by ds times 	(s). The
n̂ flux vanishes along the two geodesics and is equal to 	(s + ds) and −	(s) along the two normal
arcs, which yields

∇ · n̂ = 1

	

d	

ds
. (8)

The right-hand side of Eq. (8) cannot be identically zero because d2	
ds2 = −G(x)	 on an arbitrary

surface with nonvanishing G(x) [39]. Intuitively, Gaussian curvature forces geodesics to either
converge or diverge, which in turn implies that ∇ · n̂ �= 0. The converse statement also holds,
namely, that ∇ · n̂ = 0 requires κg �= 0. Thus we have proved that nonvanishing Gaussian curvature
G implies a nonvanishing active force f a . The incompatibility relation derived above has a purely
geometric origin and it is also responsible for the geometric frustration of nematic (and more
generally orientational and crystalline) order in curved space. This general result is independent of
specific choices of elastic constants and other material parameters, such as the viscosity tensor.

We can therefore state the sufficient condition for thresholdless flow

G(x) �= 0 (9)

at some point x on the shell and ∮
C

d l · f a �= 0 (10)

for some closed loop C on the shell. As we have argued above, Eq. (9) guarantees that f a �= 0 and
Eq. (10) implies that f a cannot be balanced by ∇P , since ∇P is by definition a conservative force.
Thus, if the conditions (9) and (10) are satisfied, there must be flow.

Our derivation of this condition never assumed that the director configuration was free of
topological defects (i.e., disclinations); hence the active force must be nonzero for any surface
with nonvanishing Gaussian curvature, even if, as often happens [40,41], that Gaussian curvature
induces disclinations on the surface. Indeed, topological defects, far from preventing flow, probably
make it inevitable (a result first noted in Refs. [21,22] for flat surfaces), since they induce large
director gradients near their core. Note, however, that the condition (10) will not be satisfied in
general for all surfaces with nonzero Gaussian curvature. In the next section, we consider a specific
example that illustrates this point.

B. Chiral symmetry breaking and flow in toroidal shells

Let us focus our analysis on the case of a curved nematic monolayer with the molecules aligned
tangent to the surface of a torus, but free to determine their local in-plane orientation. Since the torus
is a surface of nonzero Gaussian curvature, there must be a nonvanishing active force based on our
previous reasoning. We now demonstrate that, as the aspect ratio of the torus is changed, this active
force results in no net flow for very slender tori (which are nearly cylinders), while for fatter tori,
there is a transition to a chiral director configuration in which the active force does have a nonzero
line integral. Hence, by the criteria of the preceding section, flow must ensue. We compute such flow
in the aforementioned frozen director approximation.

Consider the set of toroidal coordinates (ρ,φ,ψ) shown in Fig. 2(a), where ρ is the dimensionless
radial coordinate set to 1 on the monolayer surface, ψ is the poloidal angle, and φ is the toroidal
or azimuthal angle. The slenderness of the torus ξ ≡ R1/R2 is the aspect ratio of its major (R1)
and minor (R2) radii. On the thin toroidal shell we are considering here, ρ ≡ r/R2 takes values
1 − δ � ρ � 1 with δ 	 1. For very slender tori (which are nearly cylinders), the nematic director
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FIG. 2. (a) Toroidal coordinates. The plane y = 0 is shown for the x � 0 half of the toroid using (ρ,φ,ψ)
coordinates where φ is the azimuthal angle and ψ the poloidal angle. Here R1,2 are the major and minor radii,
respectively, of the torus; ρ ≡ r/R2 takes values 1 − δ � ρ � 1 with δ 	 1 for a thin shell. (b) Nematic director
field lines for the left chiral ground state (ω < 0). (c) Plot of the magnitude of the velocity in the φ̂ direction
versus ψ . (d) Nematic director field lines for the right chiral ground state (ω > 0). (e) Plot of the magnitude of
the velocity in the φ̂ direction versus ψ . Activity is extensile (α < 0) and in (c) and (e), the speed is measured
in units of |αω|/γR2 (see the text).

will be everywhere oriented along φ̂. This bend-only configuration is divergenceless, hence the first
term of Eq. (7) is zero. Note, however, that κg will be different from zero because the nematic director
lines are not geodesics. In fact, κg = sin ψ/R2(ξ + cos ψ) and κn = − cos ψ/R2(ξ + cos ψ), so in
this case f a = −α∇ ln(ξ + ρ cos ψ). The condition (10) is not satisfied and there is no flow because
the active force is completely balanced by the pressure gradient.

For sufficiently fat (i.e., small ξ ) tori, this uniform azimuthal director state becomes unstable to
one that has nonzero twist. We extend the approach used in Refs. [42–44] to a two-dimensional
curved monolayer by considering the following variational ansatz which captures the qualitative
features of the chiral symmetry-breaking transition in the ground state at zero activity:

n̂ = ωξ

ξ + cos ψ
ψ̂ +

√
1 −

(
ωξ

ξ + cos ψ

)2

φ̂, (11)
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where ω is a variational parameter describing the degree of twist in the director field.
In Appendix E we show that to leading order in 1/ξ , the two ground states in Figs. 2(b) and 2(d)

correspond to

ω = ±
√

5

4ξ 2
− K2

2K3
, (12)

provided that the quantity under the square root is positive (otherwise the ground state is the untwisted
state ω = 0). To O(ω), the corresponding active force, evaluated on the surface of the torus (i.e.,
ρ = 1), reads

f a =
−α

(
ρ̂ cos ψ − ψ̂ sin ψ + φ̂

ωξ sin ψ

ξ+cos ψ

)
R2(ξ + cos ψ)

. (13)

The condition (10) is now satisfied by a closed loop C everywhere in the φ̂ direction and so we
conclude that there must be thresholdless flow. In a two-dimensional nematic shell draped on a
substrate, momentum is not generally conserved; therefore, a frictional term −γ vk must be added to
the right-hand side of Eq. (2a). (In general, γ will be a second-rank tensor, but we ignore this effect
in our simplified treatment.) In the limit γ � η/L2, where L is the size of the sample, this frictional
drag dominates the viscous forces and the revised form of Eq. (2a) reads

∇P + γ v = f a. (14)

Taking the divergence of Eq. (13), we see that Eq. (14) can be solved to obtain the pressure
P = −α ln(ξ + ρ cos ψ). Therefore, on the shell where ρ = 1, the velocity is given by

v = −α

γR2

ωξ sin ψ

(ξ + cos ψ)2
φ̂ + O(ω2). (15)

This solution is a flow one way in the φ̂ direction on the top half of the toroidal shell and in the
opposite direction on the bottom half. The orientation of the flow is determined by the sign of the
activity (contractile or extensile) and the chirality of the ground state, as illustrated in Fig. 2.

In the above analysis, we used a smooth, defect-free toroidal ansatz (11), which explicitly excludes
the possibility of topological defects in the nematic director configuration. This is valid in the limit
of high slenderness ξ , in which the Gaussian curvature is too small to induce defects [40]. However,
as we have noted above, defects make flow inevitable, since they induce large director gradients
near themselves. Therefore, by excluding such defects, we have actually maximized the chance

of having no thresholdless flow. We therefore conclude that for tori fatter than ξ < ξc =
√

5K3
2K2

(the last equality holding approximately when K3 � K2), thresholdless active flow will definitely
occur. If disclinations are not generated and the aforementioned conditions for the validity of the
frozen director approximation hold, then the flow field should be approximately described by our
result (15).

In Appendix F we solve the three-dimensional (3D) bulk version of this toroidal system with
no-slip boundary conditions. This is a more complicated calculation, as Eq. (14) becomes ∇P −
η∇2v = f a , which must be solved in the bulk toroidal geometry, but the general features of the
solution are similar to the shell case.

V. THREE-DIMENSIONAL SYSTEMS WITH CURVED BOUNDARIES

We now turn to investigate how the geometry of the boundaries and anchoring conditions of the
director can also force thresholdless flow in bulk active nematics under confinement. This may be of
practical importance, since controlling boundaries and boundary conditions for liquid crystals is a
highly developed technology that has long been used for the construction of liquid crystal displays.
Efforts are under way to extend such control to the active regime [13,45,46].
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Consider nonplanar alignment of the director to the walls of a three-dimensional channel with
torsional symmetry [by which we mean equivalently that the sample is bounded by a surface of
revolution about the z axis as shown in Fig. 1(a)]. The nematic liquid crystal fills the bulk bounded
by the surface. If we make the additional assumption that the pressure gradient vanishes along the
direction of torsional symmetry, which we denote by ν̂, a nonzero component of the active force
along ν̂ will result in thresholdless flow.

A small section of a channel V ′ bounded by an arbitrarily shaped surface with torsional symmetry
along ν̂ is shown in Fig. 1(a), where the local surface normal is represented by the unit vector N̂(x).
Denoting the torsional coordinate by φ, the volume V ′ is the section of the three-dimensional channel
bounded by the surfaces φ = φ0 and φ = φ0 + δφ. The integrated force F(φ0) acting on the volume
V ′ can then be obtained by integrating the force density (fa)i = α∂j (ninj ) over the infinitesimal
volume V ′. Applying the divergence theorem, we obtain the projection of F(φ0) along ν̂(φ0) in
terms of the anchoring conditions of the nematic director at the boundary, leading to the sufficient
condition for thresholdless flow

0 �= F(φ0) · ν̂(φ0) = α

∫∫
∂V (φ0,φ0+δφ)

dS(N̂ · n̂)(ν̂ · n̂) + αδφ

∫∫
X(φ0)

dS(ν̂ × ẑ · n̂)(ν̂ · n̂), (16)

where ẑ is the axis of torsional symmetry [see Fig. 1(a)], so that in cylindrical coordinates centered
on the axis of symmetry, ν̂ × ẑ is a unit vector in the radial direction. A detailed derivation of Eq. (16)
in the case of general curvilinear coordinates under suitable assumptions is provided in Appendix C.
Here we note that in the case of a sample with high slenderness (for which the radius of curvature
along ν̂ is much greater than in the directions perpendicular to it), the second term may be dropped
relative to the first term. Once this simplification is made, the condition (16) becomes

0 �= F(φ0) · ν̂(φ0) = α

∫∫
∂V (φ0,φ0+δφ)

dS(N̂ · n̂)(ν̂ · n̂), (17)

which we see is met as long as the nematic director n̂ is not perpendicular to N̂ or ν̂ on all the
surfaces bounding the volume element.

To illustrate this criterion with an example, consider an active nematic confined between two
infinite parallel plates, one with perpendicular and the other with planar anchoring, shown in Fig. 3.
The director field and flow profile for this system were determined numerically in Ref. [25] and
are calculated approximately in Appendix G. Here we deduce the main features of the flow using
simple geometric arguments without carrying out explicit calculations. First, notice that because of
the symmetry in the y direction, this system is the high slenderness limit of a similar torsionally
symmetric system. This can be seen by giving the system torsional symmetry by revolving the figure
about, say, the point (−R,0) in the (x,y) plane to create an annulus. The high slenderness limit
is obtained by sending R → ∞ and recovering Fig. 3, in which case Eq. (17) is exact. However,
F · ν̂ = 0 in this cell because N̂ · n̂ = 0 on one plate and ν̂ · n̂ = 0 on the other. Nonetheless, active
nematics flow at arbitrary small α in such a mixed alignment cell. This can be explained by applying
Eq. (17) to either of the two portions of the cell, on opposite sides of the plane (parallel to both
walls), whose surface normal N̂ makes an angle of π/4 with n̂. The boundary conditions on n̂, and
continuity, ensure that such a plane exists, though it will not, for arbitrary and unequal values of the
Frank constants K1,2,3, be the midplane. According to Eq. (17), the resulting active forces in each
of the two portions will be nonzero but of opposite sign; hence, the two sides must flow in opposite
directions. In the special case of equal Frank constants K1 = K2 = K3, the midplane is the plane on
which the surface normal N̂ makes an angle of π/4 with n̂ and the flow in the two halves cancels
out, leading to zero net flow in the whole cell. In the generic case of unequal Frank constants, this
cancellation does not occur, leading to nonzero net flow, as discussed in Appendix G.
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FIG. 3. Nematic director field ground state and associated flow generated with mixed boundary conditions
in two dimensions. (a) Director field in the isotropic case K1 = K3 and (b) associated plot of the magnitude
of the velocity vy versus x. (c) Director field in the anisotropic case K1 � K3 and (d) associated plot of the
magnitude of the velocity vy versus x. The director field is represented by dark blue rods and the velocity
is measured in units of |α|L/2πη, with extensile activity (α < 0). Movies are available in the Supplemental
Material [47].

VI. FLOW IN MICROCHANNELS WITH PRESCRIBED ANCHORING ANGLE

We now illustrate this criterion for thresholdless active flow in three dimensions with the simple
case of an infinite cylindrical channel with a nematic director field anchored on its boundary at a
fixed angle �0 to the axis of the cylinder, as shown in Fig. 4. Taking the usual cylindrical coordinates
(ρ,θ,z), there is full symmetry in the θ direction as well as the z direction (which we also take to
be the direction of symmetry ν̂ of Sec. IV). Furthermore, since the cylinder can be thought of as an
infinitely slender torus, again Eq. (17) is exact.

Even if �0 = π/2 (homeotropic anchoring), the nematic director configuration that minimizes
the Frank free energy gradually escapes into the third dimension [48,49], becoming aligned with the
ν̂ axis at the center of the cylinder, as shown in Fig. 4. Consider now a different volume, enclosed on
the outside by the outer boundary in Fig. 4 and on the inside by a concentric inner cylinder, so that N̂
and ν̂ are aligned in the radial and axial directions, respectively. Since N̂ · n̂ is nonzero on the inner
surface, there is a net active force along ν̂ that cannot be balanced by pressure gradients, provided
the symmetry considerations guarantee that ν̂ · ∇P = 0. The same argument can be repeated for
any two concentric cylinders inside the channel. We can thus conclude that spontaneous flow along
ν̂ must occur for arbitrarily small activity, as shown in Fig. 4(b).

We now proceed to compare the conclusion of the previous argument with an explicit solution
of the approximate equations of motion in the frozen director limit. The analytic form for the
ground-state director field in the one-Frank-constant approximation [see Fig. 4(a)] is given by
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FIG. 4. Cylindrical bulk nematic with prescribed anchoring angle at the boundary. (a) Nematic director field
lines with constant anchoring angle at the boundary �0 (equal to 70◦ in the figure). (b) Plot of the magnitude
of the velocity in the ν̂ direction versus ρ, in the case of extensile activity (α < 0). The velocity is measured in
units of 2R|α|/η.

n̂ = ν̂ cos � − ρ̂ sin �, where ρ ≡ r/R denotes the dimensionless radial coordinate and �(ρ)
satisfies tan 1

2�(ρ) = ρ tan 1
2�0 [50]. The corresponding active force reads

f a = 4αγ

R(1 + γ 2ρ2)3
[ρ̂(3 − γ 2ρ2)γρ − ν̂(1 − 3γ 2ρ2)], (18)

where γ ≡ tan �0
2 . In order to solve for the flow v in ∇P − η∇2v = f a , we use the fact that in a

simply connected domain every vector field f a has a unique (up to additive constants) Helmholtz
decomposition f a = ∇χ + ∇ × A with ∇ · A = 0, provided that on the boundary the normal
component of ∇ × A vanishes. Matching the terms respectively with ∇P and ∇2v gives

∇P = 4αγ 2ρ(3 − γ 2ρ2)

R(1 + γ 2ρ2)3
ρ̂, �(ρ) = −2α

η

γρ(1 − γ 2ρ2)

(1 + γ 2ρ2)2
θ̂ ,

where the vorticity �(ρ) ≡ ∇ × v and we have used the identity ∇2v = −∇ × ∇ × v (which holds
since ∇ · v = 0). The relation∫∫

∂V

dS τ̂ · � ≈ −α

η

∫
∂V

dS(N̂ · n̂0)(ν̂ · n̂0), (19)

derived in Appendix D, fixes the constant of integration. Integrating again and taking into account
the no-slip boundary condition for v then yields the solution

v = −2Rα

γη

[
1

1 + γ 2ρ2
− 1

1 + γ 2
+ 1

2
ln

1 + γ 2ρ2

1 + γ 2

]
ν̂, (20)

which is depicted in Fig. 4. The direction of flow is in the positive or negative ν̂ direction depending
on whether the active forces are extensile (α < 0) or contractile (α > 0). Note that the active force
changes sign in the bulk if �0 > π/3, but this is not sufficient to reverse the flow. To see this, it can
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FIG. 5. (a) Director field ground state plotted in the plane y = 0. (b) Flow profile for the Frederiks cell
illustrated by the velocity vector field plotted at y = 0. Note that there is net mass transport only in the y

direction. A movie is available in the Supplemental Material [47].

be verified that

dv

dρ
= 2Rαγρ

η
· (1 − γ 2ρ2)

(1 + γ 2ρ2)2
ν̂

and so, since γ = tan �0/2 � 1 and ρ � 1, the only turning point in the bulk for v is at ρ = 0.

VII. ACTIVE PUMPS IN A FREDERIKS CELL

We now present the design of an active pump without moving parts based on a nematic
Frederiks twist cell. Active liquid crystals controlled by a magnetic field have been recently realized
experimentally [51], although in our case, the pump generates a persistent active flow that can be
switched on by means of an applied electric field instead. As shown in Fig. 5(a), the setup for the
cell is two parallel plates of infinite extent in the (y,z) plane at x = ±L/2.

The plates are prepared with planar (parallel) anchoring but twisted relative to each other by
an angle ζ0. This pure twist nematic distortion leads to a vanishing active force, as noted earlier.
However, if a sufficiently large electric field E is applied along the x direction, the familiar Frederiks
instability [29] can be induced, in which the nematic director tilts towards the x direction inside
the cell. This triggers a spontaneous transverse flow in the (y,z) plane, as can be deduced upon
applying Eq. (17) (which is again exact using arguments similar to those used for the geometry of
Fig. 3) to the volume enclosed by two planar boundaries parallel to the plates anywhere inside the
cell. If the director is tilted on at least one of the two planar boundaries, then the right-hand side of
Eq. (17) is different from zero and there is an active force along a direction of symmetry (i.e., the y

direction) that cannot be balanced by pressure gradients (in fact, we will see later that ∇ · f a = 0
and so ∇P = 0 everywhere), resulting in flow.

In order to calculate the director field analytically, we parametrize it with the angles θ (x)
and ζ (x), representing rotation about the y and x axes respectively, so that n̂ = sin θ (x)x̂ +
cos θ (x)[sin ζ (x) ŷ + cos ζ (x) ẑ], with θ (±L/2) = 0 and ζ (±L/2) = ±ζ0/2. To provide a simplified
illustration of the pump design, we assume a single Frank constant K . The resulting Euler-Lagrange
equations read K∇2n̂ + gnx x̂ = μ(x)n̂, where μ(x) is the Lagrange multiplier ensuring n2 = 1 and
g ≡ ε0�χE2, where �χ is the anisotropy in the electric susceptibility and ε0 the permittivity of
free space.
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As detailed in Appendix H, the critical field (above which flow occurs) is given by gc =
K(π/L)2[1 − (ζ0/π )2], and writing g = gc + �g, the maximum tilt amplitude θ0 is related to
the incremental field �g close to the transition by θ2

0 = 2�g

Kk2(1−γ 2) , where we have defined k ≡ π/L

and γ ≡ ζ0/π . Working to O(θ0), the solution for the director field [illustrated in Fig. 5(a)] is
n̂ = θ0 cos(kx)x̂ + n̂0 where n̂0 ≡ sin(γ kx) ŷ + cos(γ kx) ẑ. The corresponding active force reads

f a = −αθ0k[sin(kx)n̂0 + γ cos(kx)x̂ × n̂0], (21)

leading to the flow [shown in Fig. 5(b)]

vy = αθ0

ηk(1 − γ 2)

[
sin

γπ

2
− sin γ kx sin kx − γ cos γ kx cos kx

]
,

vz = αθ0

ηk(1 − γ 2)

[
2

π
kx cos

γπ

2
− cos γ kx sin kx + γ sin γ kx cos kx

]
, (22)

and vx = 0. As previously noted, the flow occurs in the plane transverse to the electric field. Since
either ±θ0 may be selected, there is spontaneous symmetry breaking when the system selects the
sign of θ0 for the director field, which in turn determines the direction of the flow together with
the sign of α. There is no net flow in the z direction as vz is antisymmetric about x = 0. However,
there is net flow in the y direction, with the maximum attained at x = 0.

VIII. CONCLUSION

In this article we have addressed what is perhaps the most well-known manifestation of active
fluids: the onset of spontaneous active flow. Unlike polar active fluids composed of self-propelled
particles, active nematics in a uniform configuration do not display net flow unless a critical threshold
of activity (which is system size dependent) is exceeded. The mechanism of this instability has
been extensively studied [2,18]. When activity overcomes the elastic energy it causes a continuous
distortion of the alignment of the nematic molecules, which in turn generates an active force and
hence flow. The typical experimental manifestation of this instability is a chaotic flow marked by
the creation and annihilation of defect pairs in the nematic director.

In this work we have studied a different mechanism for spontaneous active flow in which flow
is induced by special sets of nematic distortions that are imposed by means of curved substrates,
boundaries, or external fields, without relying on activity itself to trigger such distortions. In this
case, the only role of the active force is to balance frictional or drag forces at steady state (not
to compete against elastic forces). As a result, the ensuing flow is laminar and occurs even for
infinitesimally small values of the activity coefficient. Besides highlighting the relation between
thresholdless active flow and symmetry breaking of the ground-state nematic director, our work may
prove of practical interest in the developing field of active nematic microfluidics or experimental
studies of living liquid crystals [13] under confinement.

Moreover, the ability to produce such controlled laminar active flows in active nematics makes
it possible to study the mechanical response and excitations of materials that break time-reversal
symmetry by organizing themselves in controlled nonequilibrium steady states. A recent example is
the study of topological sound modes propagating within spontaneously flowing polar active liquids
under confinement [19], which could now be generalized to active nematics. These topological sound
modes can be viewed as electrons moving in a pseudo-magnetic-field induced by the background
flow playing the role of a vector potential. Therefore, our strategies to induce active laminar flow
(well below the instability threshold towards chaotic flow) represent a step towards engineering
well-controlled persistent synthetic gauge fields in active nematics. Future work should clarify the
topologically protected nature of the active nematic excitations that arise in the presence of such
thresholdless laminar flows.
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APPENDIX A: IRRELEVANCE OF NONEQUILIBRIUM MOLECULAR FIELDS

As noted in the main text, the equations of motion we have used are not, in fact, the most general.
In particular, the Frank free energy F appearing in the Navier-Stokes equation (2a) need not, and
indeed will not, be equal to that in the nematodynamic equation (2b), since we are dealing with a
nonequilibrium system. Distinguishing these two free energies by writing them as Fv and Fn, we
will now demonstrate that the fact that Fv �= Fn affects neither our criterion for flow nor, for small
activity, the flow that occurs when this criterion is met.

Rewriting the equations of motion (2a)–(2c) taking into account this difference gives

ρ0
Dvk

Dt
= −∂kP + η∇2vk + α∂j (njnk) + ∂j (λijkhvi), (A1a)

Dni

Dt
= λijk∂j vk − 1

γ1
[hni − (hnjnj )ni], (A1b)

∇ · v = 0, (A1c)

where the molecular fields hν , ν = [v,n], appearing in these equations are given by hν = δFν

δn̂ , which
implies

hν ≡ δFν

δn̂
= 2(K2ν − K3ν)[n̂ · (∇ × n̂)]∇ × n̂ − K3ν∇2n̂ + (K3ν − K2ν)n̂ × ∇(n̂ · ∇ × n̂)

+ (K3ν − K1ν)∇(∇ · n̂). (A2)

Here the Fν’s, ν = [v,n], are the nonequilibrium generalizations of the equilibrium Frank free energy
F . They are constrained by rotation invariance in exactly the same way as in equilibrium and must
therefore both take the usual Frank free-energy [29] form

Fν = 1

2

∫
d3r{K1ν(∇ · n̂)2 + K2ν[n̂ · (∇ × n̂)]2 + K3ν |n̂ × (∇ × n̂)|2}. (A3)

However, although the form of the two free energies must be the same, away from equilibrium,
the values of the Frank constants K1,2,3 need not be the same in the two free energies. Only in
equilibrium, in which the activity parameter α = 0, do the two Frank free energies become equal
(Fv = Fn). In an active system, however, the fundamentally nonequilibrium nature of the problem
means that there are no such requirements of equality; that is, Fv �= Fn away from equilibrium, in
contrast to the equations of motion (2a)–(2c), in which we took Fv = Fn = F . Our point here is
that this is not, strictly speaking, true. Nonetheless, we do expect [18] that both α and the difference
between Fv and Fn will be proportional to the density of active particles and will hence be very
small when that density is small. Since we are interested in the small activity (i.e., low active particle
density) limit, in the main text we ignored the difference between Fv and Fn. In this appendix
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we show that none of the conclusions of the main text are altered by this difference. Specifically,
we demonstrate first that for small activity, none of the flow fields v(r) that we calculated are
quantitatively affected to leading order in activity α. Then we will show that our conclusions about
the classes of configurations that do not exhibit thresholdless flow (e.g., pure twist) are completely
unaffected by these differences to any order in α. This justifies our neglect of those differences in
the main text.

We begin by considering situations in which the activity α does induce thresholdless flow. We
will show that, even when α is very small, the terms involving hv in Eq. (A1a) are always negligible,
relative to the α terms. This is because, in the small activity limit, hv → hn, with the difference
hv − hn ∝ α, since, as noted earlier, the difference between hv and hn is a purely active effect.
However, we have already shown in the main text that hn ‖ n̂; it is straightforward to show that
when hv ‖ n̂, the terms involving hv in Eq. (A1a) vanish. Hence, the only piece of those terms that
can survive must arise from the difference hv − hn, which, as we have just argued, is proportional
to α. However, these terms also involve more spatial derivatives of n̂ than the α term (to be precise,
three versus one) and so on dimensional grounds, we expect the ratio of the hv terms to the α terms
to be ∼( a

L
)2, where a is a microscopic length (e.g., the size of the active particles), while L is the

length scale over which n̂ varies (usually a macroscopic length). Hence, the hv terms in Eq. (A1a)
are completely negligible, regardless of the value of α, in a macroscopic geometry. Note that the

length a that appears in this estimate cannot be the instability length Linst ∼
√

K
α

discussed in the
main text, since, as we just argued, the ratio of the hv to the α term must be independent of α.

For the second case, in which there is no thresholdless flow, the nematic director must minimize
the Frank free energy Fn. The Euler-Lagrange equations for the director field configurations n̂ν(r)
minimizing Fν are then simply

hν = μν(r)nν, (A4)

where μν(r) is a Lagrange multiplier. The active force f a may be rewritten

f a = α[n̂∇ · n̂ − n̂ × (∇ × n̂)]. (A5)

Now let us consider the cases in which we argued in the main text that there could be no
thresholdless flow. We will start with the case in which a pure twist configuration [i.e., one with
∇ · n̂ = 0 and n̂ × (∇ × n̂) = 0] minimizes Fn, the free energy appearing in the n̂(r) equation of
motion. We can immediately see that such a director field has no active force. One might wonder
whether active flow in this case can be induced by the activity-induced difference between hv and
hn; we will now prove that this is not the case.

To see this, note that in a pure twist state, since n̂ × (∇ × n̂) = 0, ∇ × n̂ must be parallel to n̂
itself. This implies that

∇ × n̂ = g(r)n̂(r), (A6)

where g(r) is some scalar function of r . Furthermore, since n̂ is divergenceless in a pure twist state
(∇ · n̂ = 0), a well-known identity of vector calculus implies that ∇2n̂ = −∇ × (∇ × n̂); using
(A6) in this identity gives

∇2n̂ = −g∇ × n̂ − ∇g × n̂ = −g2n̂ + n̂ × ∇g, (A7)

where in the second equality we have used (A6) a second time. Using (A6), (A7), and ∇ · n̂ = 0 in
our expression (A2) for the molecular field hn gives

hn = (2K2n − K3n)g2n̂ − K2nn̂ × ∇g. (A8)

A moment’s reflection reveals that, for this to be parallel to n̂, as it must be if we are to satisfy the
director equation of motion (A1b) with v = 0, we must have ∇g ‖ n̂. For such a g, (A8) implies

hn = (2K2n − K3n)g2n̂ (A9)
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and, by the same reasoning,

hv = (2K2v − K3v)g2n̂. (A10)

Thus, for any pure twist configuration that gives hn ∝ n̂ (which is just the condition for minimizing
the Frank energy Fn subject to the constraint |n̂| = 1), the active force f a vanishes and both hv and
hn are everywhere parallel to n̂. However, the latter conditions imply, as noted earlier, that all of
the terms involving hv and hn in Eqs. (A1a) and (A1b) vanish. Since f a does as well, and all of
the other terms in those equations vanish when v = 0, we can conclude that, if n̂ is in a pure twist
configuration that minimizes Fn, there will be no thresholdless active flow.

APPENDIX B: JUSTIFICATION OF THE FROZEN DIRECTOR AND ISOTROPIC VISCOSITY
TENSOR APPROXIMATIONS AND APPLICATION IN THE CASE OF WEAK NEMATIC ORDER

We demonstrate here that the condition γ1 	 η is sufficient to justify the frozen director
approximation. We also show that any system with weak nematic order will be in this limit. We begin
by noting that if the active and viscous terms are balanced in Eq. (2a), this implies schematically
that if the system has a characteristic length scale L, then ηv/L2 ∼ α/L and so v ∼ αL/η. This last
result implies that the Reynolds number Re ≡ ρ0vL

η
= ρ0L

2α

η2 . Furthermore, using this estimate of v

in Eq. (2b) and balancing the flow alignment terms λijk∂j vk against the molecular field terms hi , we
obtain

1

γ1

δF

δn̂
∼ α/η. (B1)

Note that the situation here is quite different from the usual case of flow alignment: In a classic
flow alignment experiment, we apply a large shear flow to a large sample. In that case, the molecular
fields hi , which scale like 1/L2, cannot balance the flow alignment terms, which are proportional
to the shear rate, which scales like 1/L for fixed boundary velocity. Hence, what happens instead
is that the director field realigns itself by a large amount to make the λijk∂j vk terms cancel each
other. In our case, because the velocities induced by the active forces are, by assumption, small and
the sample is small, the molecular fields can balance the flow alignment terms without substantial
realignment of the director.

Assuming that α is small enough that Re 	 1, we can make the familiar Stokes approximation
of neglecting the inertial terms on the left-hand side of Eq. (2a). Finally, we may neglect the λ term
in Eq. (2a), which is of order γ1

η
α
L

and is therefore smaller than the unperturbed active force by a
factor of γ1

η
.

We also need to take into account the change in the active force resulting from the change in
the director field δn̂ ≡ n̂ − n̂0 induced by the flow; here n̂0 is the equilibrium configuration of the
nematic director (that is, the one that minimizes the Frank free energy or, equivalently, the field
that is present before the activity is switched on). Since schematically the molecular field δF

δn̂ ∼ Kδn
L2

[note that δn appears in this expression rather than n because ( δF
δn̂ )n̂=n̂0 = 0], our estimate (B1) of

that field implies that the magnitude δn of the perturbation in the director field must be of order
αγ1L

2

ηK
∼ γ1

η
( L
Linst

)2, where Linst is the length scale beyond which the uniform state becomes unstable.
Since we are considering systems that are smaller than this length and since we are also assuming
γ1 	 η, the change δn in n̂ is 	n̂0, the undistorted director configuration, and hence negligible.

To summarize, in the frozen director regime, defined as γ1 	 η, and small activity α 	 K/L2,
we can determine the flow field simply by balancing the viscous force η∇2v plus the pressure
gradient ∇P against the active force f a computed for the unperturbed equilibrium configuration n̂0

that minimizes the Frank free energy; that is, we can take the active force

f a = α(n̂ · ∇n̂ + n̂∇ · n̂) ≈ α(n̂0 · ∇n̂0 + n̂0∇ · n̂0). (B2)
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Making this substitution and neglecting the λ term in Eq. (2a) simplifies (2a)–(2c) to

0 = −∇P + η∇2v + α(n̂0 · ∇n̂0 + n̂0∇ · n̂0) (B3)

with ∇ · v = 0.
We now justify the isotropic viscosity approximation. In the limit of weak order, which in the

notation of Kuzuu and Doi [32] is the limit S2,S4 	 1, our isotropic viscosity approximation becomes
valid because α4 (our activity parameter α should not be confused with Kuzuu and Doi’s anisotropic
viscosities), which is just the isotropic piece of the viscosity, is much greater than the anisotropic
pieces α1,5,6 of the viscosity, since the latter all vanish when S2,4 → 0, with (again in the notation of
Kuzuu and Doi) η = α4/2 ≈ η∗C3r2. Furthermore, the coefficient γ1 = α3 − α2 = 10η∗C3r2S2/λ.
Taking the ratio γ1/η then gives γ1/η ≈ 10S2/λ, which is always much less than 1 when the order is
weak, since the flow alignment parameter λ is typically O(1), and S2 	 1 when the order is weak.
We therefore expect our analytic solutions for the velocity fields, which assumed both isotropic
viscosity and γ1 	 η (to justify the frozen director approximation) to be quantitatively accurate in
all active systems in which the nematic order is weak.

Note that no matter how strong the order is, at sufficiently long wavelengths, fluctuations in
the nematic order parameter are much smaller than fluctuations in the nematic director. Hence, the
director field representation is always a good approximation at sufficiently long wavelengths. In the
case of weak nematic order, the nematic correlation length is of order a/S, where a is a molecular
length (∼1 nm) and S is the nematic order parameter. Taking S ∼ 0.01, the nematic correlation
length is of order 100 nm, much smaller than the size of a millimeter-sized sample.

We also note that this in particular implies that the frozen director approximation will always be
valid for systems close to a weakly-first-order nematic to isotropic (N -I ) transition. Since many N -I
transitions are indeed weakly first order [29], this means it should be quite easy to experimentally
test our quantitative predictions for the flow field.

Next, in the remainder of this section we extend the results of Sec. III in the case of a simply
connected sample in the frozen director approximation, in which case the condition for thresholdless
flow ∇ × f a �= 0 is necessary as well as sufficient. We consider the case in which the director field
that minimizes Fn is pure splay, by which we mean ∇ × n̂ = 0. The curl of the active force is now
given by

∇ × f a = α∇ × [n̂∇ · n̂] = α∇(∇ · n̂) × n̂, (B4)

which is also zero when the pure splay director field is a ground state of Fn, because the Euler-
Lagrange equations that arise from minimizing Fn then require that hn ‖ n̂, which in turn, from
(A2), requires that ∇(∇ · n̂) is parallel to n̂. Furthermore, when ∇ × n̂ = 0, we can write n̂ =
∇�(r), which then implies hv = −K1v∇2∇�, and hn = −K1n∇2∇�. Thus, hv ‖ hn, so, if hn ‖ n̂
everywhere, hv ‖ n̂ everywhere as well. Hence, once again, the hv and hn terms in Eqs. (A1a) and
(A1b), respectively, vanish, as does the curl of the active force. Under the conditions of this section
we can conclude that there is no flow.

We now turn to the case of a pure bend field (i.e., one for which ∇ · n̂ = n̂ · ∇ × n̂ = 0). Using
the identity ∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A), with A = n̂ and
B = ∇ × n̂, and recalling that n̂ · ∇ × n̂ must vanish in a pure bend field gives

(n̂ · ∇)∇ × n̂ + (∇ × n̂ · ∇)n̂ + n̂ × (∇ × ∇ × n̂) = 0. (B5)

If this pure bend state is also a ground state of Fn, the Euler-Lagrange equation (A4) for Fn

is satisfied. For pure bend, that equation reduces to ∇2n̂ ‖ n̂, so that n̂ × (∇ × ∇ × n̂) = −n̂ ×
∇2n̂ = 0, thereby eliminating the last term of (B5). To compute ∇ × f a , we now use the identity
∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B, again with A = n̂ and B = ∇ ×
n̂, for −n̂ × (∇ × n̂), to get

∇ × f a = (n̂ · ∇)∇ × n̂ − (∇ × n̂ · ∇)n̂. (B6)
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FIG. 6. Volume V ′ with cross section X bounded by the surfaces ξ2 = φ0 and φ0 + δφ. The faces of V ′ are
∂V (φ0,φ0 + δφ), X(φ0), and X(φ0 + δφ).

Using our previous result (B5) together with n̂ × (∇ × ∇ × n̂) = 0, we can rewrite this equation as

∇ × f a = 2(n̂ · ∇)∇ × n̂ = −2(∇ × n̂ · ∇)n̂. (B7)

This is as far as we can go considering completely general pure bend configurations. To proceed
further, we will now, in addition to imposing pure bend, add the additional restriction to 2D
configurations, by which we mean that n̂ only depends on x and y, and has no z component,
in some Cartesian coordinate system. Then ∇ × n̂ is in the z direction and so (∇ × n̂ · ∇)n̂ = 0,
which implies from (B7) that ∇ × f a = 0 as well. Similarly, we have that hn = −K3n∇2n̂ ‖ n̂ by
virtue of the Euler-Lagrange equations. Since hv = −K3v∇2n̂, this is also parallel to n̂ and so the
hv terms vanish, contributing nothing to Eq. (A1a).

We can thus conclude that under the conditions of this section, a two-dimensional active nematic
with a director field in its ground state must have both splay and bend for there to be thresholdless
flow in the absence of external fields. For fully three-dimensional configurations of an active nematic,
on the other hand, for which there is also twist to take into account, it is unclear whether or not both
splay and bend are necessary for thresholdless flow to occur in the absence of external fields. What
we can conclude though is that, under the conditions of this section and in the absence of external
fields, the ground-state director field must at the very least either have both splay and twist, or have
bend, in order to induce thresholdless active flow.

In summary, we have identified three large classes of spatially nonuniform director configurations,
namely, all pure twist and in the case of simply connected geometries in the frozen director
approximation, all pure splay, and pure 2D bend, which do not induce thresholdless active flow.
Thus, the requirements for thresholdless active flow are far more stringent than the mere existence
of a spatially nonuniform director field.

APPENDIX C: DERIVATION OF GEOMETRIC INTEGRAL CONDITIONS
FOR THRESHOLDLESS ACTIVE FLOW

Here we derive the geometric integral formula

F(φ0) · ν̂(φ0) = α

∫∫
∂V (φ0,φ0+δφ)

dS(N̂ · n̂)(ν̂ · n̂) + αδφ

∫∫
X(φ0)

dS(ν̂ × ẑ · n̂)(ν̂ · n̂) (C1)

used in Sec. V for a sample with symmetry and arbitrary smooth cross section X, parametrized
by general orthogonal curvilinear coordinates ξ1,2,3 shown in Fig. 6. In the main text we make the
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replacements in notation ξ̂ 1 → N̂ , the normal to the bounding surface ∂V ; ξ̂ 2 → ν̂, the direction of
symmetry; and ξ̂ 3 → τ̂ = N̂ × ν̂. The net active force F(φ0) acting on this volume is given by

F(φ0) =
∫∫∫

V ′
h1h2h3dξ1dξ2dξ3 f a, (C2)

where the geometrical scale factors h1,2,3 are the ratios of the infinitesimal distances to infinitesimal
changes dξ1,2,3 in the curvilinear coordinates (and should not, of course, be confused with the
components of the molecular fields h). Applying the divergence theorem to the component of F(φ0)
along the direction ξ̂ 2 enables us to convert the volume integral in Eq. (C2) into an integral over the
surface ∂V ′ of V ′:

F(φ0) · ξ̂ 2(φ0) = α

∫
∂V ′

dS(ξ̂ 1 · n̂)(ξ̂ 2 · n̂). (C3)

To evaluate this surface integral, we note that the surface ∂V ′ of V ′ can be divided into three parts:
the portion of the sample surface ∂V (φ0,φ0 + δφ) that borders V ′ and the two cross-sectional caps
X(φ0) and X(φ0 + δφ) (see Fig. 6). Doing so gives three surface integrals to evaluate, the first of
which is

Iα
∂V (φ0,φ0+δφ) = αξ̂ 2(φ0) ·

∫ φ0+δφ

φ0

dξ2

∫
dξ3h2h3n1ni ξ̂ i .

Using the facts that the element of surface area dS = dξ2dξ3h2h3, n1 = N̂ · n̂, n̂ = ni ξ̂ i , and, in the
notation of the main text, ξ̂ 2(φ0) = ν̂, we obtain the first term on the right-hand side of Eq. (C1):

Iα
∂V (φ0,φ0+δφ) ≈ α

∫
∂V (φ0,φ0+δφ)

dS(N̂ · n̂)(ν̂ · n̂). (C4)

Now evaluating the integrals across the cross sections, it is convenient to combine them as follows:

Iα
X(φ0) = αξ̂ 2(φ0) ·

∫
dξ1dξ3h1h3n2[−ni ξ̂ i(φ0)],

I α
X(φ0+δφ) = αξ̂ 2(φ0) ·

∫
dξ1dξ3h1h3n2[ni ξ̂ i(φ0 + δφ)],

so that

Iα
X(φ0) + Iα

X(φ0+δφ) ≈ αδφξ̂ 2 ·
∫

dξ1dξ3h1h3n2ni∂2ξ̂ i(φ0) ≈ αδφ

∫
dξ1dξ3h1h3n2ξ̂ 2 · (ni∂2ξ̂ i),

(C5)

again taking ξ̂ 2 inside the integral sign. The second term Iα
X(φ0) + Iα

X(φ0+δφ) can be simplified by

noting that ξ̂ 2 · ∂2ξ̂ i = ∂2ξ̂ 2 · ξ̂ i − ξ̂ i · ∂2ξ̂ 2. Since ξ̂ 2 · ξ̂ i = δi2, which is independent of φ, the
first term vanishes. The argument of the integral in Eq. (C5) can then be rewritten ξ̂ 2 · (ni∂2ξ̂ i) =
−ni ξ̂ i · (∂2ξ̂ 2) = −n̂ · (∂2ξ̂ 2), where we have used the fact that ni ξ̂ i = n̂ (this simply being the
decomposition of n̂ along the local coordinate axes ξ̂ i). Now using the fact that ∂2ξ̂ 2 = ∂φφ̂ = −r̂ ,
where r̂ is the unit vector in the radial direction from the axis of toroidal symmetry, we obtain

Iα
X(φ0) + Iα

X(φ0+δφ) ≈ αδφ

∫∫
X(φ0)

dS[(ν̂ × ẑ) · n̂](ν̂ · n̂), (C6)

where we have used the fact that r̂ = ν̂ × ẑ. Adding this expression for the contribution of the cross
sections X(φ0) and X(φ0 + δφ) to the net toroidal force to that of the boundary ∂V as given by (C4)
immediately gives Eq. (16).
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High slenderness limit. In the case of torsional symmetry with an arbitrary (smooth) cross section
X where the volume has a high slenderness σ , the second term in Eq. (16) may be dropped if the
first term is nonzero. To see this, suppose that the length scale in the ξ̂ 1 and ξ̂ 3 directions is L, while
in the ξ̂ 2 direction it has a length scale of σL. A very slender sample will therefore have σ � 1,
whereas a fat sample will have σ ≈ 1. The first term in Eq. (16) is proportional to L2σ , whereas the
second term is proportional to L2 and so can be neglected compared with the first term.

APPENDIX D: CONDITION ON THE VORTICITY FOR FLOW
IN THE FROZEN DIRECTOR REGIME

Under the assumptions of Sec. V (i.e., torsional symmetry and that the pressure gradient is
orthogonal to the direction of torsional symmetry ν̂), we can provide a simple geometric statement
of Eq. (B3) in terms of the vorticity of the flow � ≡ ∇ × v and the anchoring condition of the
director at the boundary. If we apply the divergence theorem to Eq. (B3) over the pillbox volume V ′
in Fig. 1(a), we obtain

η

∫∫
∂V ′

dS N̂ × � +
∫∫

∂V ′
dS N̂P = α

∫∫
∂V ′

dS N̂ · n̂0n̂0, (D1)

using ∇2v = −∇ × � and the divergence theorem applied to ∇ × �. In the case of a slender sample,
if we now again project along the direction of symmetry ν̂(φ0) and sum over all such pillbox volumes
comprising the sample, we may take ν̂ inside the integral and obtain∫∫

∂V

dS τ̂ · � ≈ −α

η

∫
∂V

dS(N̂ · n̂0)(ν̂ · n̂0), (D2)

where ∂V is now the boundary of the sample and τ̂ = N̂ × ν̂.

APPENDIX E: ANALYSIS OF THE ACTIVE NEMATIC ON A TOROIDAL SHELL

Here we provide the calculation for the optimal value of ω in the ansatz

n̂ = ωξ

ξ + cos ψ
ψ̂ +

√
1 −

(
ωξ

ξ + cos ψ

)2

φ̂ (E1)

for a toroidal nematic shell. The Frank free energy

F = 1

2

∫
d3r{K1(∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2 + K3|n̂ × (∇ × n̂)|2}

−K24

∫
dS · [n̂∇ · n̂ + n̂ × (∇ × n̂)] ≡ F1 + F2 + F3 + F24 (E2)

must be minimized by varying the parameter ω. For completeness, we include the saddle-splay
contribution to the Frank free energy (the K24 term), which can be relevant in curved geometries
where the director field is not completely specified on the boundary, although we will show that
there is no contribution in this case. For a thin shell, the ρ integral runs from 1 − δ to 1, whereas the
surface integral is taken over the surfaces ρ = 1 and ρ = 1 − δ where δ 	 1. In toroidal coordinates
(ρ,φ,ψ), the scale factors are (hρ,hφ,hψ ) = R2(1,ξ + ρ cos ψ,ρ); for the ansatz (E1) it follows that

∇ · n̂ = ωξ 2(1 − ρ) sin ψ

R2ρ(ξ + ρ cos ψ)(ξ + cos ψ)2
, (E3)

∇ × n̂ = ρ̂
sin ψ

[
ρ + ω2ξ 3(1−ρ)

(ξ+cos ψ)3

]
R2ρ(ξ + ρ cos ψ)

√
1 − ω2ξ 2

(ξ+cos ψ)2

− φ̂
ωξ

R2ρ(ξ + cos ψ)
+ ψ̂

cos ψ

√
1 − ω2ξ 2

(ξ+cos ψ)2

R2(ξ + ρ cos ψ)
.

(E4)
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As mentioned above, our first observation is that there is no contribution from saddle splay. To see
this, note that for a shell of any thickness, F24 comprises two surface integrals, on the outside and
the inside of the shell. Plugging the expressions (E4) and (E3) into (E2) over the outside surface
only at ρ = ρ0, we obtain

F outside
24

K24
= −R2

∫
dφ dψ

(
ρ0 cos ψ + ω2ξ 3

(ξ + cos ψ)2

)
. (E5)

As the first term is zero, only the second term remains and the integral is independent of ρ0. Thus
the integral over the inside surface exactly cancels that on the outside surface and F24 = 0.

For the volume integrals, since ∇ · n̂ = 0 at ρ = 1, we also have F1 = 0. Since we expect that
close to the transition ω will be small, we expand F2 and F3 to O(ω4). The Frank free energy then
takes the form Aω4 + Bω2 + C + O(ω6), which has its minimum at ω2 = −B/2A, provided that
A > 0 and B < 0. It is sufficient to expand the coefficient of ω2 and ω4 in 1/ξ to leading order;
doing this gives

F2

K2
= δ

2

∫
dφ dψ

ω2ξ 4

(ξ + cos ψ)4

(
1 − ω2ξ 2

(ξ + cos ψ)2

)
≈ πδξ

∫
dφ(ω2 − ω4), (E6)

F3

K3
= δ

2

∫
dφ dψ

(
cos ψ + ω2ξ 3

(ξ+cos ψ)2

)2 + sin2 ψ

1− ω2ξ2

(ξ+cos ψ)2

ξ + cos ψ
≈ πδξ

∫
dφ

(
const − ω2 5

2ξ 2
+ ω4

)
. (E7)

For chiral symmetry breaking, since we require that A > 0 and B < 0, we see that K2/K3 must
be at least of order 1/ξ 2. Thus, to leading order in 1/ξ , we may neglect the higher-order terms in
1/ξ of each coefficient and the K2 contribution to the ω4 term, obtaining

ω = ±
√

5

4ξ 2
− K2

2K3
, (E8)

provided that the expression under the square root is positive.

APPENDIX F: ANALYSIS OF A 3D BULK TOROIDAL NEMATIC

We now consider a 3D bulk version of the shell problem dealt with in Sec. IV B: a bulk toroid
with planar anchoring and no slip on the surface. For very slender tori (which are nearly cylinders)
the nematic director will be everywhere oriented along ν̂ = φ̂, the direction of torsional symmetry.
Recent experimental and theoretical studies [42,43] have shown that as the aspect ratio of the tori is
lowered (i.e., as we move towards fatter tori), a structural transition to a chiral configuration takes
place in the ground state, leading to the twisted nematic texture shown in Fig. 7.

The following double-twist ansatz has proved effective in capturing the qualitative features of the
chiral symmetry-breaking transition in the ground state at zero activity [42–44]:

n̂ = ωξρ

ξ + ρ cos ψ
ψ̂ +

√
1 −

(
ωξρ

ξ + ρ cos ψ

)2

φ̂, (F1)

where ω is a variational parameter describing the degree of twist in the director field. In this
expression, (ρ,φ,ψ) are toroidal coordinates [see Fig. 8(a)], where ρ is the dimensionless radial
coordinate varying between 0 and 1, ψ is the poloidal angle, φ is the toroidal or azimuthal angle,
and the slenderness of the torus ξ ≡ R1/R2 is the aspect ratio of its major (R1) and minor (R2) radii.

To leading order in 1/ξ , the ground states shown in Figs. 7(a) and 7(c) are ω = ±2
√

5
16ξ 2 − K2−K24

K3
,

provided that the quantity under the square root is positive (otherwise the ground state is the untwisted
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FIG. 7. (a) Nematic director field lines of an active nematic in the left chiral ground state (ω < 0) and
associated flow in cross section (b). (c) Nematic director field lines of an active nematic in the right chiral
ground state (ω > 0) and associated flow in cross section (d). Activity is extensile (α < 0); red denotes flow
in the negative φ direction, violet denotes flow in the positive φ direction, and green denotes no flow. See
Supplemental Material [47] for a movie of this flow.

state ω = 0). To O(ω), the active force reads

f a =
−α

(
ρ̂ cos ψ − ψ̂ sin ψ + φ̂

ωξρ sin ψ

ξ+ρ cos ψ

)
R2(ξ + ρ cos ψ)

. (F2)

In Appendix B we showed that in the frozen director regime Eqs. (2a)–(2c) reduce to

0 = −∇P + η∇2v + α(n̂0 · ∇n̂0 + n̂0∇ · n̂0) (F3)

with ∇ · v = 0. Using this and taking the divergence of Eq. (F3) implies that ∇2P = 0. If the
pressure is independent of the azimuthal coordinate φ, to O(ω), the solution for the pressure

P = −α ln(ξ + ρ cos ψ) (F4)

cancels the source term’s ρ and ψ components. If we now write v = u(ρ,ψ) + vφ(ρ,ψ)φ̂, where
u(ρ,ψ) is the projection of v on the (ρ,ψ) plane, u vanishes on the boundary and so throughout the
bulk. Thus (F3) reduces to

∇2(vφφ̂) = αωξρ sin ψ

ηR2(ξ + ρ cos ψ)
φ̂, (F5)

with vφ = 0 at ρ = 1. As

∇2(vφ(r,ψ)φ̂) = φ̂

(
∇2 − 1

R2
2(ξ + ρ cos ψ)2

)
vφ = φ̂

1

cos φ
∇2(vφ cos φ), (F6)
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FIG. 8. Two coordinate systems used to parametrize a toroid. The plane y = 0 is shown for the x � 0 half
of the toroid using (a) (ρ,φ,ψ) coordinates, where ψ is the poloidal angle and φ the azimuthal angle, and
(b) (σ,τ,φ) coordinates in which σ ∈ [0,σa] with σa < 1. Curves of constant τ are shown, increasing from 0 to
2π in the clockwise direction and converging at the point (x = R0,z = 0).

it is sufficient to solve

∇2[vφ(r,ψ) cos φ] = αωξρ sin ψ cos φ

ηR2(ξ + ρ cos ψ)2
. (F7)

In order to do this, we make use of the Green’s function for the scalar Poisson equation with vanishing
boundary conditions on the surface of a toroid. This is specified in alternative toroidal coordinates
(σ,τ,φ), which are shown in Fig. 8(b). Mapping our (ρ,φ,ψ) coordinates to (σ,τ,φ), first we note
that

x = R2[(ξ + ρ cos ψ) cos φ,(ξ + ρ cos ψ) sin φ,ρ sin ψ],

ρ̂ = [cos ψ cos φ, cos ψ sin φ, sin ψ],

ψ̂ = [− sin ψ cos φ,− sin ψ sin φ, cos ψ],

φ̂ = [− sin φ, cos φ,0], (F8)

where [Ax,Ay,Az] ≡ Ax x̂ + Ay ŷ + Az ẑ is shorthand for Cartesian coordinates. The scaling factors
in our original coordinate system are

hρ = R2, hφ = R2(ξ + ρ cos ψ), hψ = R2ρ. (F9)

In the alternative coordinate system,

x = R0

1 − σ cos τ
[
√

1 − σ 2 cos φ,
√

1 − σ 2 sin φ,−σ sin τ ]

= R0(1 + σ cos τ )

[
cos φ, sin φ,

−σ sin τ

(1 + σ cos τ )

]
+ O(σ 2),

σ̂ = [cos τ cos φ, cos τ sin φ,− sin τ ] + O(σ ),

τ̂ = [− sin τ cos φ,− sin τ sin φ,− cos τ ] + O(σ ),

φ̂ = [− sin φ, cos φ,0]. (F10)
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The surface σ = const (0 � σ < 1) describes the surface of a torus with major radius R1 =
R0/

√
1 − σ 2 and minor radius r = R0σ/

√
1 − σ 2, as can be seen from the fact that x, y, and z

above satisfy (√
x2 + y2 − R0√

1 − σ 2

)2

+ z2 = R2
0σ

2

1 − σ 2
. (F11)

The scaling factors in the new coordinate system are

hσ = R0√
1 − σ 2(1 − σ cos τ )

, hτ = R0σ

1 − σ cos τ
, hφ = R0

√
1 − σ 2

1 − σ cos τ
. (F12)

Translating between the original and alternative toroidal coordinate systems,

R2 = R0σa√
1 − σ 2

a

, ρ =
√

1 − σ 2
a

1 − σ 2

σ

σa

, ξ = R1

R2
= 1

σa

R2(ξ + ρ cos ψ) = R0

√
1 − σ 2

1 − σ cos τ
,

ρ sin ψ

ξ + ρ cos ψ
= −σ sin τ√

1 − σ 2
(F13)

and Eq. (F7) may be expressed in (σ,τ,φ) coordinates to O(σa) as

∇2[vφ(σ,τ ) cos φ] = −αωσ sin τ cos φ

ηR2
+ O

(
σ 2

a

)
. (F14)

In this coordinate system, we may now use the Green’s function for the Laplacian vanishing on
the surface of a toroid with σ = σa , which is given by [52]

G(x,x′) = 1

πR0

√
1 − σ cos τ

√
1 − σ ′ cos τ ′

∞∑
n=0

∞∑
m=0

(−1)nεnεm

�(m − n + 1/2)

�(m + n + 1/2)
gmn

× cos m(τ − τ ′) cos n(φ − φ′), (F15)

where gmn ≡ gmn(σ ′,σ,σa) is given by

gmn ≡ Tmn(σ<)

Tmn(σa)
[Tmn(σa)Smn(σ>) − Tmn(σ>)Smn(σa)],

εn is 1 if n = 0 and 2 otherwise, and σ> and σ< denote the higher and lower of σ and σ ′, respectively.
In addition, Tmn(σ ) and Smn(σ ) are toroidal harmonic functions defined as

Tmn(σ ) ≡ σ−1/2Qn
m−1/2(1/σ ), Smn(σ ) ≡ σ−1/2P n

m−1/2(1/σ ), (F16)

where the functions Qλ
ν (1/σ ) and P λ

ν (1/σ ) are the associated Legendre functions of order λ

and degree ν. Applying the Green’s function to the source and using the asymptotic forms [53]
T11(σ ) ∼ − 3π

8
√

2
σ and S11(σ ) ∼

√
2

π
σ−1 for σ 	 1 gives, to leading order in σa = 1/ξ ,

vφ = −4αωR2σa

3η
sin τ

1

σ 3
a

∫ σa

0
dσ ′σ ′2g11 + O

(
σ 2

a

)

= αωR2σa

8η
sin τs(1 − s2) + O

(
σ 2

a

) = −αωR2

8ηξ
sin ψρ(1 − ρ2) + O(1/ξ 2), (F17)

where s ≡ σ/σa and we have used the results (F13) to translate back to (ρ,φ,ψ) coordinates.
Thus, when there is a chiral twisted ground state, the activity creates a flow one way in the φ̂

direction in the top half of the toroid and in the opposite direction in the bottom half. The orientation
of the flow is determined by the sign of the activity (contractile or extensile) and the chirality of the
ground state, as illustrated in Fig. 7.
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APPENDIX G: PARALLEL PLATES WITH MIXED BOUNDARY CONDITIONS

We consider a two-dimensional system confined between two infinite plates, which has been
previously studied numerically [25]. The configuration is shown in Fig. 3(a); the plates are orthogonal
to the x axis, separated by a distance L, and prepared with homeotropic alignment (in the x direction)
on one plate and planar alignment (in the y direction) on the other.

We will begin by demonstrating that for any values of the Frank constants, this geometry leads
to thresholdless flow. Seeking a solution of the form

n̂ = x̂ cos θ (x) + ŷ sin θ (x) (G1)

to the Euler-Lagrange equations for (4),

μ(r)n̂ = h ≡ δF

δn̂
= 2(K2 − K3)[n̂ · (∇ × n̂)]∇ × n̂ − K3∇2n̂ + (K3 − K2)n̂ × ∇(n̂ · ∇ × n̂)

+ (K3 − K1)∇(∇ · n̂), (G2)

where μ(r) is a Lagrange multiplier, leads to ∇ × n = ẑθ ′ cos(θ ). Taking this together with (G1)
implies that the twist vanishes (n · ∇ × n = 0). Using this and (G1) in the Euler-Lagrange equation
(G2) leads to

K1(θ ′2 cos θ + θ ′′ sin θ )x̂ + K3(θ ′2 sin θ − θ ′′ cos θ ) ŷ = μ(r)[x̂ cos θ (x) + ŷ sin θ (x)]. (G3)

From the y component of Eq. (G3) it follows that

μ(r) sin θ = K3(θ ′2 sin θ − θ ′′ cos θ ). (G4)

Using this relation in the x component of (G3) gives

K1(θ ′2 cos θ + θ ′′ sin θ ) tan θ = K3(θ ′2 sin θ − θ ′′ cos θ ), (G5)

which can be solved for θ ′′:

θ ′′ = (K3 − K1)θ ′2 sin(2θ )

2(K1 sin2 θ + K3 cos2 θ )
. (G6)

From this solution, it is straightforward to show that

θ ′ = k√
1 + (

K3−K1
K3+K1

)
cos(2θ )

, (G7)

where the constant of integration k �= 0, since the boundary conditions do not allow θ (x) to be a
constant. Hence, (G7) implies that θ ′ �= 0 throughout the sample. Using the original ansatz (G1) to
calculate the curl of the active force gives, after some algebra,

∇ × f a = α ẑ[θ ′′ cos(2θ ) − 2θ ′2 sin(2θ )]. (G8)

Using our solution (G6) for θ ′′ in Eq. (G8) gives

∇ × f a = αθ ′2 sin(2θ ) ẑ
[

(K3 − K1) cos(2θ )

2(K1 sin2 θ + K3 cos2 θ )
− 2

]
. (G9)

Since, as we showed earlier, θ ′ �= 0 throughout the sample and the expression in the square brackets
is strictly negative, (G9) implies that ∇ × f a �= 0 throughout the sample, except at the points where
θ is an integer multiple of π/2. Since ∇ × f a �= 0, there must be flow, as noted in the main text.

From (G7), we see that the case K1 = K3 (as in the commonly made one-Frank-constant
approximation previously studied numerically [25]) is particularly simple, since θ ′ = k, which
implies θ = kx + C, where C is another constant of integration. The constants C and k can be easily
determined from the boundary conditions θ (x = 0) = 0 and θ (x = L) = π

2 , which imply k = π/2L

and C = 0. Thus the director field ground state has the solution

n̂ = x̂ cos kx + ŷ sin kx, (G10)
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which leads to the active force density

f a = α(n∇ · n − n × ∇ × n) = αk(−x̂ sin 2kx + ŷ cos 2kx). (G11)

To actually determine this flow v(r), we use the unique Helmholtz decomposition into parts with
pure gradient and pure curl. Matching these terms respectively with ∇P and ∇2v, as in Eq. (B3),
and taking into account the no-slip boundary conditions yields

P = α

2
cos 2kx, v = αL

2πη

(
cos

πx

L
+ 2

x

L
− 1

)
ŷ. (G12)

As can be seen in Fig. 3(b), the flow profile is antisymmetric about the midpoint between the plates at
x = L/2. Thus there is no net mass transport in this simple example. Net mass transport is possible,
however, if the alignment angle on the boundary is modified; for example, if it were possible for the
right-hand plate to be prepared so that the director field made an angle of π/4 with the normal, then
just the left-hand half of Fig. 3 would be realized, with flow now only in the positive y direction.

Net mass transport also occurs if K1 �= K3. Consider the extreme case when K1 � K3; then (G7)
implies θ ′ = k√

2 sin θ
, which in turn implies

cos θ = C − k√
2
x, (G13)

where C is another constant of integration. The boundary conditions θ (x = 0) = 0 and θ (x = L) =
π
2 now imply k =

√
2

L
and C = 1. Using these in Eq. (G13) then gives

n̂ = x̂
(

1 − x

L

)
+ ŷ

√
2

x

L
−

(
x

L

)2

,

f a = −2α

L

(
1 − x

L

)
x̂ + α∂x

[(
1 − x

L

)√
2

x

L
−

(
x

L

)2]
ŷ. (G14)

The solutions for the pressure P and velocity field v are now

P = −α

[
2

x

L
−

(
x

L

)2]
, v = ŷ

αL

3η

{
x

L
−

[
2

x

L
−

(
x

L

)2]3/2}
, (G15)

for which there is a net mass transport J in the y direction per unit length in the z direction given by

J =
(

8 − 3π

48

)
ρ0αL2

η
. (G16)

The velocity field (G15) is illustrated in Fig. 3(d), which shows that nearly all of the flow is in the
positive y direction.

APPENDIX H: ANALYSIS OF THE FREDERIKS CELL ACTIVE PUMP

Our starting point is the following parametrization for the director field [see Fig. 5(a)]:

n̂ = sin θ (x)x̂ + cos θ (x) t̂(x), (H1)

where we have defined an x-dependent unit vector orthogonal to x̂:

t̂(x) ≡ sin ζ (x) ŷ + cos ζ (x) ẑ. (H2)

The boundary conditions, expressed in terms of the angles θ (x) and ζ (x), are θ (±L/2) = 0
and ζ (±L/2) = ±ζ0/2. Making the single-Frank-constant approximation (K1,2,3 ≡ K), the Euler-
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Lagrange equation for n̂ is

K
d2n̂(x)

dx2
+ gnx(x)x̂ = μ(x)n̂, (H3)

where μ(x) is the Lagrange multiplier ensuring that n2 = 1 and g ≡ ε0�χE2 can be experimentally
controlled with an electric field E.

Since t̂(x) is a unit vector in the plane orthogonal to x̂, its derivative must be a vector orthogonal
to itself in that plane, whose magnitude is ζ ′(x) ≡ dζ

dx
. This observation implies

d t̂(x)

dx
= ζ ′(x) t̂ × x̂, (H4)

repeated application of which in turn leads to a natural decomposition of d2 n̂(x)
dx2 along the orthonormal

triad t̂ , x̂, and t̂ × x̂:

d2n̂(x)

dx2
= [θ ′′ cos θ − θ ′2 sin θ ]x̂ − [ζ ′2 cos θ + θ ′′ sin θ + θ ′2 cos θ ] t̂

+ [ζ ′′ cos θ − 2θ ′ζ ′ sin θ ] t̂ × x̂. (H5)

Comparing this expression with the Euler-Lagrange equation (H3), this must also equal

1

K
[μ(x)n̂ − gnx x̂] = μ − g

K
sin θ x̂ + μ

K
cos θ t̂. (H6)

Equating the x̂ components of these two expressions enables us to solve for the Lagrange multiplier
μ(x):

μ(x) = K[θ ′′ cot θ − θ ′2] + g. (H7)

From the t̂ × x̂ components of (H5) and (H6) we immediately obtain

ζ ′′ cos θ = 2θ ′ζ ′ sin θ, (H8)

which can be reorganized as

ζ ′′

ζ ′ = 2θ ′ sin θ

cos θ
. (H9)

The left-hand side of this expression is d ln ζ ′
dx

, while the right-hand side is −2 d ln cos θ
dx

. Hence this
equation can be rewritten as

d

dx
[ln(ζ ′ cos2 θ )] = 0 (H10)

or

ζ ′ = C sec2 θ, (H11)

where C is a constant of integration that can be fixed by the boundary conditions, which, taken
together with Eq. (H11), imply ζ0 = C

∫ L/2
−L/2 sec2 θ dx.

From the t̂ component of (H6) we obtain, using (H7) and (H11),

−K[C2 sec3 θ + θ ′′ sin θ + θ ′2 cos θ ] = (K[θ ′′ cot θ − θ ′2] + g) cos θ, (H12)

which can be solved for θ ′′:

θ ′′ = −C2 sec3 θ sin θ − g

K
sin θ cos θ. (H13)
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The first integral of this gives

θ ′2 = g

K
(sin2 θ0 − sin2 θ ) + C2(sec2 θ0 − sec2 θ ), (H14)

where θ0 is the maximum value taken by θ . Equation (H14) can be solved analytically in closed
form

sin θ

sin θ0
= sn

[(
x + L

2

)√
g

K
+ C2 sec2 θ0

∣∣∣∣ g sin2 θ0

g + KC2 sec2 θ0

]
, (H15)

where sn[z|m] is the Jacobi elliptic function with elliptic modulus m. It is more informative, however,
to look at the θ0 	 1 limit of the derivative of (H14), which is

θ ′′ + θ

(
g

K
+ C2

)
− 2

3
θ3

(
g

K
− 2C2

)
= 0. (H16)

This is recognizable as Duffing’s equation; its solution can be expanded [54] in the small parameter
ε ≡ −θ2

0 (2g/K − 4C2)/(3g/K + 3C2) as

θ [t(x)]

θ0
= cos t + ε

[
1

32
(cos 3t − cos t) − 3

8
t sin t

]
+ O(ε2), (H17)

where we have defined t(x) ≡ x
√

g/K + C2 for reasons that we now explain. Duffing’s equation
can be used to approximate a planar pendulum for which the period is T = 2π (1 − 3ε/8) + O(ε2).
In our case, in order to satisfy the boundary condition θ (±L/2) = 0 (with the maximum attained at
x = 0) we require t(L/2) = T/4 or

L

2

√
g

K
+ C2 = π

2

(
1 − 3

8
ε

)
. (H18)

Close to the Frederiks transition, where the field is just above its critical value gc,
θ (x) = θ0 cos(πx/L) + O(ε), and to leading order the boundary condition on ζ is therefore
ζ0 = LC(1 + θ2

0 /2). When g = gc, the critical value of the field, Eq. (H18) is satisfied with θ0 = 0,
in which case C = ζ0/L and ε = 0, allowing us to conclude that

gc = K

L2

(
π2 − ζ 2

0

)
. (H19)

Then writing g = gc + �g and expanding Eq. (H18) to first order in the small quantities �gL2/K

and θ2
0 , we can now relate the maximum amplitude θ0 to the incremental field �g:

θ2
0 = 2�gL2

K
(
π2 − ζ 2

0

) . (H20)

APPENDIX I: LIVING LIQUID CRYSTALS

These systems are a mixture of living bacteria, which provide the activity, and a background
medium composed of nematically ordered nonactive molecules. That such a system is an active
nematic can be seen on symmetry grounds: The symmetry is that of a nematic and the bacteria are
active. Hence, the composite system as a whole is an active nematic and since the hydrodynamic
equations are, as always, determined by symmetry (and the fact that the system is active), the
hydrodynamic equations will be those we have considered here, except for one detail: Living liquid
crystals are a mixture of two components (i.e., bacteria and background liquid crystal) and each
component is separately conserved (assuming we neglect birth and death of the bacteria, which
is frequently but not always the case; see [55]). Hence, there is one more conserved variable in
this two-component active nematic and, as usual in hydrodynamics [56], conserved quantities are
hydrodynamic variables. So the two-component active nematic has one more hydrodynamic variable
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than the one-component active nematic that we have considered throughout the rest of this paper,
which, of course, changes the hydrodynamics. We can take this extra hydrodynamic variable to be
the concentration c(r,t) of bacteria. The detailed effects of this modification of the hydrodynamics
are not addressed in this paper. Here we limit ourselves to the observation that the hydrodynamic
equations are sufficiently similar in that case that the criterion ∇ × f a �= 0 for thresholdless flow,
described in detail after Eq. (1), is unchanged. Here we assume that in the composite system, frequent
reversals in the direction of bacterial flow occur; however, note that if these reversals are rare, then
different behavior may arise.
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