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We present the extension of the effective field theory framework to the mildly non-linear scales.
The effective field theory approach has been successfully applied to the late time cosmic acceleration
phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological
observables on linear scales. However, mildly non-linear scales need to be consistently considered
when testing gravity theories because a large part of the data comes from those scales. Thus,
non-linear corrections to predictions on observables coming from the linear analysis can help in
discriminating among different gravity theories. We proceed firstly by identifying the necessary
operators which need to be included in the effective field theory Lagrangian in order to go beyond the
linear order in perturbations and then we construct the corresponding non-linear action. Moreover,
we present the complete recipe to map any single field dark energy and modified gravity models into
the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-
Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory
and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived
the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear
contributions coming from the linear order perturbations which at the next order act like source
terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic
term and the speed of propagation for scalar mode, are automatically satisfied once the viability of
the theory is demanded at linear level. The approach we present here will allow to construct, in a
model independent way, all the relevant predictions on observables at mildly non-linear scales.
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I. INTRODUCTION

The cosmological constant problem is challenging standard General Relativity (GR). This led people to propose in
place of the cosmological constant new alternatives in the form of dynamical dark energy (DE) or theories of modified
gravity (MG) in order to account for the late time acceleration of the Universe [1–9]. Collective properties of these
alternative proposals are that 1) the dynamics of the graviton turns out to be modified due to the addition of new
degrees of freedom (DoFs); 2) the additional DoFs are suppressed on very small scales, as local tests show that GR
is very efficient in describing physical phenomena on such scales. Therefore, the GR limit is recovered by demanding
the presence of screening mechanisms (see ref. [7] for a review).
It appears clear that we are facing with two scale regimes. One at large scales, where gravity is modified and

standard linear perturbation theory is sufficient to study the growth of small inhomogeneities, and a non-linear
regime at small scales, where screening mechanisms take place hiding any modifications and standard perturbation
theory breaks down. However, in this picture, a third regime in between can be also considered which preserves
the imprint of a modification of gravity because the screening mechanisms are not fully operating. Indeed, N-body
simulations of several theories start exhibiting deviations from the linear results, e.g. in the power spectrum, at scales
of k & 0.1h/Mpc giving an indication of the threshold of validity of the linear theory[10–13]. In this intermediate,
mildly non-linear regime, one can still employ the standard perturbation theory for modes that are well within the
horizon but one has to go one order further in the perturbative expansion in order to incorporate effects coming from
non-linearities [14–20]. When one stays beyond the horizon the gradient expansion technique is usually adopted [21–
29]. In the present work we will focus on the mildly non-linear regime and we will go beyond the linear order in
perturbation theory as we are interested in sub-horizon modes.
Going beyond the linear regime from the theory point of view is increasingly becoming a necessity as precision

cosmology is probing non-linear scales with high accuracy. Namely, a substantial part of the galaxy clustering, CMB
lensing and, most importantly, weak lensing data come from those scales. Usually, signals from intermediate and
non-linear scales are cut off from the linear analysis, hence an important amount of information is yet to be accessed.
In the intermediate regime, where the deviations from GR are still substantial, gravity theories leave different imprint
on observables, thus new ranges of possibilities to test gravity exist. For instance, modifications of gravity have a
strong impact on the clustering of dark matter, then non-linear one loop corrections to the matter power spectrum
have be considered [30–32]. Furthermore, some MG theories induce additional non-Gaussianities beyond the ones
coming from the usual gravitational evolution which can be studied through the higher order correlation functions,
i.e the bispectrum and trispectrum [33, 34, 78]. They offer a possible window into the effects of non-linearities and
can allow to discriminate between different gravity models. Finally, disentangling DE and MG models is an hard task
and the key to distinguish between them potentially lies in the non-linear regime of structure formation. Indeed, MG
models due to the presence of a fifth force deeply modify the process of structures formation leaving testable probes
which are difficult to mimic with DE (see ref. [36, 37] for a review).
Testing gravity theories against observations is extremely important yet at the same time difficult because of the

large number of models one has to consider. The demand for a unified framework to encompass all single scalar
field DE and MG models led to the formulation of the effective field theory approach (hereafter EFT) [38–49]. This
framework has been constructed ad hoc to describe linear order perturbations on large scales by means of a finite
number of relevant operators and the resulting action is written in terms of perturbations up to second order. In
this work we will construct, on top of the linear EFT action, a mildly non-linear approach by adding the necessary
operators to the EFT action such that we move to the next leading order in perturbations. In particular, we will
construct a 4th order action from which it will be possible to obtain the equations of motion at second order in
perturbations. The resulting extended framework will allow to have a model independent parametrization of any
theory with one extra scalar DoF and at the same time it will preserve a direct link between a specific theory and the
EFT language. In this regard, we will provide a general recipe to map a given theory into the non-linear EFT action,
thus being of immediate application. The resulting framework will be the theoretical building block to develop all the
cosmological observables of interest in follow up works.
The manuscript is organized as follows. In Sec. II, we present the EFT formalism to describe linear order pertur-

bations, later we extend it beyond the linear order and the new action will come with new operators. In Sec. III,
we present a general Lagrangian for a single scalar field by using the ADM formalism and we describe the general
procedure to construct a perturbed action up to a desired order in perturbations. Then, in Sec. III A, we specialize
these action to the class of operators to which beyond Horndeski and low energy Hořava gravity belong. In Sec. III B
we translate the EFT action in ADM notation and we work out a general recipe to map any given single scalar field
theory in the EFT language. In Secs. III C-IIID, we apply this prescription to the case of beyond Horndeski and
low-energy Hořava gravity. In Sec. IV, we derive the action for the non-linear curvature perturbation and discuss the
stability of the theory at the next to leading order. Finally, in Sec. V, we summarize the main results and discuss the
potential of the extended EFT framework to mildly non linear regime.
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II. EXTENDING THE EFFECTIVE FIELD THEORY BEYOND THE LINEAR ORDER

An effective approach to describe the linear perturbations of a single scalar field around a given background has
been recently proposed, firstly in the context of Inflation and Quintessence [50–53], later it has been applied to the
late time acceleration with the name EFT of DE/MG [38, 39]. The EFT of DE/MG provides an agnostic approach to
study linear cosmological perturbations around a Friedmann-Lemaitre-Robertson-Walker (FLRW) background of all
dark energy and modified gravity models which show an additional scalar DoF. The EFT framework is constructed
at the level of the action, in the unitary gauge, and is made up of all the spatial-diffeomorphism invariant operators
necessary to describe linear perturbations around a FLRW background. Each individual operator is then accompanied
by a time dependent free function, dubbed EFT function. The choice for the unitary gauge results in the scalar DoF
being absorbed in the metric, a choice which can be undone by performing the, so called, Stückelberg technique,
which is realized by restoring the time diffeomorphism invariance by an infinitesimal time coordinate transformation,
i.e. t→ t+ π(xµ), where π is the explicit DoF.
Let us now consider a flat FLRW background line element of the form

ds2 = −dt2 + a(t)2δijdx
idxj , (1)

where a(t) is the scale factor. Then, following the above prescriptions, the quadratic action describing the modified
Friedman equations and the linear perturbations around a flat FLRW metric reads

S(2)
EFT =

∫

d4x
√−g

[

m2
0

2
(1 + Ω(t))R + Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2 − M̄3

1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2

−M̄
2
3 (t)

2
δKµ

ν δK
ν
µ +

M̂2(t)

2
δg00δR+m2

2(t)h
µν∂µg

00∂νg
00

]

, (2)

where m2
0 is the Planck mass, R and R are respectively the 4th and 3rd dimensional Ricci scalar and Kµν the extrinsic

curvature associated to the constant time hypersurfaces and K is its trace, g00 is the upper time time component
of the metric tensor gµν and hµν = gµν + nµnν , with nµ being the time-like unit vector. Moreover, operators are
expanded around the background as A = A0 + δA. Finally, the above action is associated with the usual matter
action, Sm(gµν , χm).
Action (2) was the first proposal and it includes theories like Horndeski [54, 55], beyond Horndeski [56, 57] and

low-energy Hořava gravity [58, 59]. Later, it has been generalized to include a wider class of theories [49, 60] such
as high-energy Hořava gravity [61]. We refer the reader to refs. [38–41, 44, 49, 60], for a complete overview on the
mapping of these theories in the EFT framework. In this work we will be mostly interested in beyond Horndeski and
low-energy Hořava gravity models, in which case action (2) is sufficient to describe linear perturbations.
In order to go beyond the linear order in perturbations, one needs to extend the quadratic EFT action. This amount

to including all the necessary operators which contribute to higher order in metric perturbations, as well as expanding
the existing operators to the necessary order. At the next to linear order the equations of motion will be of second
order in perturbations, this implies that, at the level of the action, we have to add to the existing action operators
which contribute up to 4th-order in perturbations while being negligible at the linear order. We will illustrate with
an example why that has to be the case. Let us consider a general field φ and we will expand it up to the leading
orders of interest as

φ = φ0 + δφ = φ0 + δ1φ+
1

2
δ2φ+ ...+

1

n!
δnφ , (3)

where φ0 is its homogeneous background value, δφ is its total perturbation part which can be expanded up to an
arbitrary n-th order. In the present work we are interested in the linear order, i.e. δ1φ and in δ2φ which is the second
order perturbation. In the action we can construct terms of the form ∼ δ1φ

2δ2φ, which is a 4th-order term. When
computing the Euler-Lagrange equations w.r.t. δ1φ we obtain the following term

∂L

∂δ1φ
∼ 2δ1φδ2φ → 3rd-order term , (4)

which can be ignored for the desired equation of motion. On the other hand, when we compute the Euler-Lagrange
equation for the δ2φ variable, we get

∂L

∂δ2φ
∼ δ1φ

2 → 2nd-order term , (5)
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which will contribute to the equations of motion and hence needs to be considered in the action. The above argument
holds for other combinations as well, such as δ2φ

2 or terms involving derivatives which do not change the perturbative
order. Let us note that terms at 4th-order of the form δ1φ

4 will be not considered as it is clear from the above
argument that they will not give any contribution to the second order equations of motion.
According to the above arguments many geometrical quantities and their combinations can be constructed. In the

following, we will consider only additional operators necessary to deal with theories like Horndeski/beyond Horndeski
and low-energy Hořava gravity. The main result is the identification of the following operators as the ones needed to
extend the EFT action in order to start including non-linear effects:

(δg00)3 , (δK)3 , (δg00)2δK , δg00(δK)2 , (δg00)2δR , δg00δKµ
ν δK

ν
µ ,

δKν
µδK

µ
λδK

λ
ν , δKδKν

µδK
µ
ν δg00δRδK , δg00δKµ

ν δRν
µ , hµν(∂µg

00∂νg
00)δg00. (6)

Note that, as usual, δ is the total perturbation, which later will be splitted into the first and second order contribution
according to eq. (3). They are respectively accompanied by the following new EFT functions1

M4
3 (t) , M1(t) , M3

1 (t) , M2
4 (t) , M2

5 (t) , M2
6 (t) , M2(t) , M3(t) , M4(t) , M5(t) , m2

3(t) , (7)

where the names of the new EFT functions have been chosen according to the mass dimension of the operator.
So, after identifying the necessary operators, we propose the following action as the one describing the perturbations

up to one order beyond the linear one:

S(4)
EFT =

∫

d4x
√−g

[

m2
0

2
(1 + Ω(t))R + Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2 − M̄3

1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2

−M̄
2
3 (t)

2
δKµ

ν δK
ν
µ +

M̂2(t)

2
δg00δR+m2

2(t)h
µν∂µg

00∂νg
00 +M1(t)(δK)3

+M4(t)δg
00δRδK +M2

4 (t)δg
00(δK)2 +M2

5 (t)(δg
00)2δR+M3

1 (t)(δg
00)2δK

+M2
6 (t)δg

00δKµ
ν δK

ν
µ +M4

3 (t)(δg
00)3 +M2(t)δK

ν
µδK

µ
λδK

λ
ν +M3(t)δKδK

ν
µδK

µ
ν

+M5(t)δg
00δKµ

ν δRν
µ +m2

3(t)h
µν (∂µg

00∂νg
00)δg00

]

. (8)

Eq. (8) represents the extension of the EFT framework to the next to linear order in perturbations. We have
identified 11 new operators which need to be included in the original quadratic EFT action in order to study non-
linearities for theories belonging to the classes of beyond Horndeski and low-energy Hořava gravity and we have also
defined the corresponding EFT functions. Let us conclude this Section by noticing that the action presented above
does not permit any Ostrogradsky ghosts. This is guaranteed by the building blocks used to construct the new
operators [57]. In other words, by construction, there will be no higher than second order time derivatives in the
equations of motion.
In the next sections we will provide a useful recipe to map a given gravity theory in the EFT framework presented

above.

III. FROM AN ADM ACTION TO THE EFFECTIVE FIELD THEORY LANGUAGE

The EFT framework is powerful in treating model independent parametrization of gravity as well as to study
specific theories by mapping them into the EFT formalism. In this section we will present the prescription one needs
to follow to map any single scalar field gravity model into the EFT framework.
We first construct a general Lagrangian which includes all the operators one needs in order to parametrize a single

scalar field dark energy and modified gravity model up to 4th-order in perturbations. In this regard, we will use
the ADM language and we will generalize the prescription in refs. [47, 49]. Subsequently we will rewrite the EFT
action (8) in pure ADM notation. Finally, comparing the two actions we will be able to identify the expressions of
the EFT functions in terms of the general Lagrangian.

1 The choice of names is based on the following dimensional analysis: we have [L] = [M−1], where L is length and M is mass. Now,
looking at the original Lagrangian we can see that δg00 is dimensionless as expected. So automatically R and K have the dimension
related to the amount of derivatives they possess. So [R] = [L−2] = [M2] and [K] = [L−1] = [M ].
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In the Arnowitt-Deser-Misner (ADM) formalism [62] one starts from a 3+1 decomposition described by the following
metric

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj) , (9)

where N(x, t) the lapse function, N i(x, t) the shift vector and hij the the three dimensional metric describing the
equal time hypersurfaces. The normal vector to said hypersurfaces and the corresponding extrinsic curvature look as
follows:

nµ = Nδµ0, Kµν = hλµ∇λnν . (10)

We can write down a general Lagrangian which is function of all the geometrical quantities that can be constructed
with ADM geometrical objects and give contribution up to 4th order in perturbations. We decided to consider all the
operators which allow to include theories with up to to sixth order in spatial derivatives, in this case the Lagrangian
can be written as follows 2:

L(t, N,K,S,R,U ,Z,Z1,Z2, α1, α2, α3, α4, α5, K̃, K̃1, Z̃, Z̃1, α6, α7, α8, α9) , (11)

where specifically the operators are

S = KµνK
µν , Z = RµνRµν , U = RµνK

µν , Z1 = ∇iR∇iR , Z2 = ∇iRjk∇iRjk ,

K̃ = KijK
ikKj

k , K̃1 = KijRikKj
k, Z̃ = RijRikRj

k, Z̃1 = KijRikRj
k,

α1 = aiai , α2 = ai∆ai , α3 = R∇ia
i , α4 = ai∆

2ai , α5 = ∆R∇ia
i,

α6 = Rija
iaj , α7 = Kija

iaj , α8 = ∆Rija
iaj , α9 = ∆Kija

iaj, (12)

with ∆ = ∇k∇k and ai is the acceleration of the normal vector, nµ∇µnν . ∇µ and ∇k are the covariant derivatives
constructed respectively with the four dimensional metric, gµν and the three metric, hij .
Now, we can construct the action beyond the linear order as follows

S
(2)
ADM =

∫

d4x
√−gL(t, N,K,S,R,U ,Z,Z1,Z2, α1, α2, α3, α4, α5, K̃, K̃1, Z̃, Z̃1, α6, α7, α8, α9) , (13)

where the Lagrangian (11) has been expanded according to:

L =

3
∑

m=0

∑

n1+...+nd=m

(δN)n1 ...(δα9)
nd

n1!...nd!

(

∂mL

∂δNn1 ...∂δαnd

9

)

δN,...,δα9=0

+O(4) . (14)

Let us note that stopping at 3rd order in derivatives in the above expansion means that we are considering 3rd order
terms in the total perturbation, i.e. δ3. However, when we expand δ in its linear and second order perturbations
following eq. (3), the δ3 terms will give perturbations up to 4th-order, such as δ21δ2 accordingly to what we have
demanded.
Once that has been done, we finally obtain the non-linear action in the ADM formalism up till the desired order. The

prescription described so far is very general and can be applied to any set of operators. In the upcoming subsections
we will make this approach explicit for a subset of operators and provide the final mapping results.

A. Non-linear action in ADM formalism

In this section we will apply the procedure described in the previous section to the subset of operators to which
beyond Horndeski and low-energy Hořava gravity belong. Therefore, we will restrict the form of the Lagrangian (11)
to the following one

L ≡ L(t, N,K,S,U , K̃,R, α1) , (15)

2 Let us note that another operator can be added when writing the general ADM Lagrangian, i.e. the derivative of the lapse function
Ṅ . Usually, adding this operator leads to the appearance of more then one extra scalar DoF in the final theory. However, it has been
shown that if the initial Lagrangian containing this operator is degenerate, the theory still propagates only one extra scalar DoF [63].
The inclusion of this operator to the ADM Lagrangian needs to be done carefully. We will leave for future work the investigation of
such additional operator when will will also consider an even more general EFT action.



6

and the operators will be decomposed according to eq. (3) up to 4th-order as follows:

N = 1 + δN = 1 + δ1N +
1

2
δ2N , K = −3H + δK = −3H + δ1K +

1

2
δ2K , α1 = δα1 = δ1α1 +

1

2
δ2α1 ,

Kν
µ = −Hδνµ + δKν

µ = −Hδνµ + δ1K
ν
µ +

1

2
δ2K

ν
µ , R = δR = δ1R+

1

2
δ2R , Rν

µ = δ1Rν
µ +

1

2
δ2Rν

µ ,

S = Kν
µK

µ
ν = 3H2 + δS = 3H2 − 2HδK + δKν

µδK
µ
ν

= 3H2 − 2Hδ1K −Hδ2K + δ1K
ν
µδ1K

µ
ν + δ1K

ν
µδ2K

µ
ν +

1

4
δ2K

ν
µδ2K

µ
ν ,

U = Rµ
νK

µ
ν = δU = −Hδ1R− 1

2
Hδ2R+ δ1Rµ

ν δ1K
ν
µ +

1

2
δ1Rµ

ν δ2K
ν
µ +

1

2
δ1K

ν
µδ2Rµ

ν +
1

4
δ2Rν

µδ2K
µ
ν ,

K̃ = −3H3 + δK̃ = −3H3 − 3HδS + 3H2δK + δ1K
l
jδ1K

k
l δ1K

j
k +

3

2
δ2K

l
jδ1K

k
l δ1K

j
k , (16)

where H = ȧ/a is the Hubble function. Let us note that δ1 contains linear order terms and might have also second
order terms obtained by combinations of the first order metric perturbations. Then, with δ2 we mean purely second
order perturbations. In the above expressions for completeness we kept all the contributions up to 4th order, however
some of them will be discarded since they do not give contributions to second order perturbation equations (as
discussed in the previous section), for example terms like ∼ (δ1)

3.
In order to obtain the non-linear ADM action, we now apply the prescription of the previous section. In Appendix A

we report in detail the whole calculation, here we show the final action

S
(4)
ADM =

∫

d4x
√−g

{

L̄+ Ḟ + 3HF + (LN − Ḟ)

(

δ1N +
1

2
δ2N

)

+

(

Ḟ +
1

2
LNN

)[

(δ1N)2 + δ1Nδ2N +
1

4
(δ2N)2

]

+
3

2

(

1

6
LNNN − Ḟ

)

(δ1N)2δ2N + (LS − 3HL
K̃
)

(

δ1K
ν
µδ1K

µ
ν + δ1K

ν
µδ2K

µ
ν +

1

4
δ2K

ν
µδ2K

µ
ν

)

+
1

2
A
[

(δ1K)2 + δ1Kδ2K +
1

4
(δ2K)2

]

+
1

4
LKKK(δ1K)2δ2K +Q

(

δ1Nδ1Kδ2K +
1

2
(δ1K)2δ2N

)

+ B
(

δ1Nδ1K +
1

2
δ1Nδ2K +

1

2
δ2Nδ1K +

1

4
δ2Nδ2K

)

+ I
(

1

2
(δ1N)2δ2K + δ1Nδ2Nδ1K

)

+C
(

δ1Kδ1R+
1

2
δ1Kδ2R+

1

2
δ2Kδ1R+

1

4
δ2Kδ2R

)

+D
[

δ1Nδ1R+
1

2
δ1Nδ2R+

1

2
δ2Nδ1R+

1

4
δ2Nδ2R

]

+E
(

δ1R+
1

2
δ2R

)

+ J
[

1

2
(δ1N)2δ2R+ δ1Nδ2Nδ1R

]

+ P
(

δ1Nδ1K
ν
µδ2K

µ
ν +

1

2
δ2Nδ1K

ν
µδ1K

µ
ν

)

+

+
1

2
LNU

(

δ1Nδ1Rµ
ν δ2K

ν
µ + δ1Nδ1K

µ
ν δ2Rν

µ + δ2Nδ1Rµ
νδ1K

ν
µ

)

+ LKS

(

1

2
δ1K

µ
ν δ1K

ν
µδ2K + δ1K

µ
ν δ2K

ν
µδ1K

)

+
3

2
L
K̃
δ2K

j
i δ1K

i
kδ1K

k
j + Lα1

(

δ1α1 +
1

2
δ2α1

)

+
1

2
Lα1N (δ1Nδ2α1 + δ2Nδ1α1)

+
1

2
LNKR (δ1Nδ1Kδ2R+ δ2Nδ1Kδ1R+ δ1Nδ2Kδ1R)

}

, (17)

where: 3

A = LKK − 4HLSK, B = LKN − 2HLSN + 3H2LNK̃
, C = LKR +

1

2
LU ,

D = LNR +
1

2
L̇U −HLNU , E = LR − 3

2
HLU − 1

2
L̇U , F = LK − 2HLS + 3H2L

K̃
,

I = −HLNNS +
1

2
LNNK +

3H2

2
LNNK̃

, J = −H
2
LNNU +

1

2
LNNR − 1

2
L̇U ,

3 Comparing these definitions with the ones in ref. ([49]) one can notice some differences. They are simply due to a different way we
defined the operators in the original action, mostly due to the introduction of the operator K̃. Thus, being just a matter of definitions
the final results match each others.
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P = LNS − 3HLNK̃
, Q =

1

2
LNKK − 2HLNKS . (18)

We have now constructed a general ADM action up to 4th order in perturbations for the relevant operators we
need for our purpose. This step is fundamental to construct a general recipe to map any gravity theory in the EFT
language. We will show it in details in the next section.

B. Mapping from a general ADM Lagrangian to the EFT framework

We wish now to proceed and present a self-consistent mapping between the actions (2) and (17) respectively in
the EFT framework and the ADM formalism. Once this mapping will have been established it will be fairly easy to
embed any single scalar field theory into the EFT framework, as long as it can be rewritten in ADM quantities.
Having expanded in perturbations the ADM action (17), now we start to rewrite the EFT action (2) in terms of

the ADM geometric quantities. Once this has been done it will be straightforward to compare the two actions and
present the connection between the EFT functions and the derivatives of the Lagrangian present in the ADM action.
This procedure follows ref. [49] where a similar one has been already employed for the linear EFT action.
Starting with the Ricci scalar term in action (2), we get up to 4th-order

∫

d4x
√−gm

2
0

2
(1 + Ω)R =

∫

d4x
√−g

[

m2
0

2
(1 + Ω)

(

R+ S −K2
)

+m2
0Ω̇
K

N

]

=

=

∫

d4x
√−gm2

0

[

1

2
(1 + Ω)

(

δ1R+
1

2
δ2R

)

+ 3(1 + Ω)H2 + 2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈

− 1

2
(1 + Ω)

(

(δ1K)2 + δ1Kδ2K +
1

4
(δ2K)2 − δ1K

ν
µδ1K

µ
ν − δ2K

ν
µδ1K

µ
ν − 1

4
δ2K

ν
µδ2K

µ
ν

)

+
(

−Ω̇H + 2(1 + Ω)Ḣ + Ω̈
)

(

(δ1N)2 − δ1N − 1

2
δ2N +

1

4
(δ2N)2 + δ1Nδ2N − 3

2
(δ1N)2δ2N

)

+ Ω̇

[

δ1K

(

−δ1N − 1

2
δ2N + δ1Nδ2N

)

+
1

2
δ2K

(

−δ1N + (δ1N)2 − 1

2
δ2N

)]]

+O(5). (19)

Now, we expand the time-time component of the metric as

g00 = −1 + δ1g
00 +

1

2
δ2g

00 = −1 + 2δ1N − 3(δ1N)2 + δ2N − 3

4
(δ2N)2 − 3δ1Nδ2N + 6(δ1N)2δ2N +O(5) , (20)

and obtain the perturbations

δg00 = 2δ1N − 3(δ1N)2 + δ2N − 3

4
(δ2N)2 − 3δ1Nδ2N + 6(δ1N)2δ2N +O(5) ,

(δg00)2 = 4(δ1N)2 + 4δ1Nδ2N − 18(δ1N)2δ2N + (δ2N)2 +O(5) . (21)

Therefore, the new operators which contribute to second order equations of motion of the scalar perturbations are
the following:

(δg00)3 = 12(δ1N)2δ2N ,

(δK)3 =
3

2
(δ1K)2δ2K ,

(δg00)2δK = 2(δ1N)2δ2K + 4δ2Nδ1Nδ1K ,

δg00(δK)2 = δ2N(δ1K)2 + 2δ1Nδ1Kδ2K ,

(δg00)2δR = 2(δ1N)2δ2R+ 4δ2Nδ1Nδ1R ,

δg00δKµ
ν δK

ν
µ = 2δ1Nδ1K

µ
ν δ2K

ν
µ + δ2Nδ1K

µ
ν δ1K

ν
µ ,

δKδKµ
ν δK

ν
µ =

1

2
δ2Kδ1K

µ
ν δ1K

ν
µ + δ1Kδ2K

µ
ν δ1K

ν
µ ,

δg00δKµ
ν δRν

µ = δ1K
µ
ν δ1Rν

µδ2N + δ2K
µ
ν δ1Rν

µδ1N + δ1K
µ
ν δ2Rν

µδ1N ,

hµν∂µg
00∂νg

00 = 4
α1

N4
= 4

(

δ1α1 +
1

2
δ2α1

)

(1− 4δ1N − 2δ2N) ,
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hµνδg00∂µg
00∂νg

00 = 4
α1

N4
(2δ1N + δ2N) = 4 (δ1α1δ2N + δ2α1δ1N) , (22)

where we have used for the last two operators the following:

α1 = aiai = hij∂i lnN∂j lnN = hij
∂iN

N

∂jN

N
,

∂µg
00∂νg

00 = 4
∂µN

N3

∂νN

N3
. (23)

The expansion of the other operators is trivial.
Then, the EFT action (2) in the ADM formalism can be written as follows

S
(4)
EFT =

∫

d4x
√−g

{

m2
0

[

1

2
(1 + Ω)

(

δ1R+
1

2
δ2R

)

+ 3(1 + Ω)H2 + 2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈

]

+ Λ

−
[

m2
0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

+ 2c
]

(

δ1N +
1

2
δ2N

)

+
[

m2
0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

+ 3c+ 2M4
2

]

(

(δ1N)2 + δ1Nδ2N +
1

4
(δ2N)2

)

+

[

−3

2
m2

0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

− 6c− 9M4
2 + 12M4

3

]

δ2N(δ1N)2

+

(

1

2
m2

0(1 + Ω)− M̄2
3

2

)(

δ1K
µ
ν δ1K

ν
µ + δ2K

µ
ν δ1K

ν
µ +

1

4
δ2K

µ
ν δ2K

ν
µ

)

−
(

1

2
m2

0(1 + Ω) +
M̄2

2

2

)(

(δ1K)2 + δ1Kδ2K +
1

4
(δ2K)2

)

+
3

2
M1(δ1K)2δ2K

+

(

4M2
5 − 3

2
M̂2

)(

1

2
(δ1N)2δ2R+ δ1Nδ2Nδ1R

)

+

(

m2
0Ω̇ +

3

2
M̄3

1 + 4M3
1

)(

1

2
(δ1N)2δ2K + δ1Nδ2Nδ1K

)

+ 2M2
4

(

1

2
(δ1K)2δ2N + δ1Nδ1Kδ2K

)

−
(

m2
0Ω̇ + M̄3

1

)

(

δ1Nδ1K +
1

2
δ1Nδ2K +

1

2
δ2Nδ1K +

1

4
δ2Nδ2K

)

+ M̂2

(

δ1Rδ1N +
1

2
δ1Rδ2N +

1

2
δ2Rδ1N +

1

4
δ2Rδ2N

)

+ 4m2
2

(

δ1α1 +
1

2
δ2α1

)

+ 2M2
6

(

δ1Nδ1K
µ
ν δ2K

ν
µ +

1

2
δ2Nδ1K

µ
ν δ1K

ν
µ

)

+M3

(

δ1Kδ1K
µ
ν δ2K

ν
µ +

1

2
δ2Kδ1K

µ
ν δ1K

ν
µ

)

+ M4 (δ1Nδ1Rδ2K + δ1Nδ2Rδ1K + δ2Nδ1Rδ1K) +
3

2
M2δ1K

µ
λδ1K

λ
ν δ2K

ν
µ

+ (4m2
3 − 8m2

2)(δ1α1δ2N + δ2α1δ1N) +M5

(

δ1K
µ
ν δ1Rν

µδ2N + δ2K
µ
ν δ1Rν

µδ1N + δ1K
µ
ν δ2Rν

µδ1N
)}

, (24)

from which it is easy to identify the following relations with action (17)

L̄+ Ḟ + 3HF = m2
0

(

3(1 + Ω)H2 + 2Ḣ(1 + Ω) + 2HΩ̇ + Ω̈
)

+ Λ,

LN − Ḟ = −
[

m2
0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

+ 2c
]

,

Ḟ +
1

2
LNN = m2

0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

+ 3c+ 2M4
2 ,

3

2

(

1

6
LNNN − Ḟ

)

= −3

2
m2

0

(

−HΩ̇ + 2(1 + Ω)Ḣ + Ω̈
)

− 6c− 9M4
2 + 12M4

3 ,

LS − 3HL
K̃
=

1

2
m2

0(1 + Ω)− M̄2
3

2
, A = −m2

0(1 + Ω)− M̄2
2 ,

1

4
LKKK =

3

2
M1,

Q = 2M2
4 , B = −

(

m2
0Ω̇ + M̄3

1

)

, I = m2
0Ω̇ +

3

2
M̄3

1 + 4M3
1

D = M̂2, E =
1

2
m2

0(1 + Ω), J = 4M2
5 − 3

2
M̂2, P = 2M2

6

1

2
LNKR =M4, LKS =M3, L

K̃
=M2 ,
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1

2
LNU =M5 Lα1

= 4m2
2

Lα1N

2
= 4m2

3 − 8m2
2 . (25)

Inverting these relations we obtain the full mapping we set out to derive:

1 + Ω =
2E
m2

0

, Λ = L̄+ Ḟ + 3HF − 2
(

3EH2 + 2ḢE + 2H Ė + Ë
)

,

c = −1

2
(LN − Ḟ)−

(

−H Ė + 2EḢ + Ë
)

, M̄2
3 = −2LS + 6HL

K̃
+ 2E , M̄2

2 = −A− 2E ,

M4
2 =

1

2

(

LN +
LNN

2

)

− c

2
, M̄3

1 = −2Ė − B , M̂2 = D , m2
2 =

Lα1

4
,

M1 =
1

6
LKKK , M2

4 =
1

2
Q , M3

1 =
1

4

(

I + Ė +
3

2
B
)

, M2
5 =

1

4
J +

3

8
D , M2

6 =
1

2
P ,

M2 = L
K̃
, M3 = LKS , M4 =

1

2
LNKR , M5 =

1

2
LNU ,

M4
3 =

1

48

(

6Ë − 6H Ė + 12EḢ − 3Ḟ + 15LN + 9LNN + LNNN

)

, m2
3 =

Lα1N

8
+
Lα1

2
. (26)

The last relations allow to map any action, which has been previously written in ADM form, in the EFT formalism
up to the next leading order perturbations. Let us note that the ADM action (17) is more general than the EFT
one (eq. (24)). For example the ADM action has the term C, which does not appear in the EFT action. That
is because in the EFT action such a term corresponds to the EFT function m̄5 (see refs. [40, 49]), which, for the
class of models considered in this paper, is zero. We will illustrate the generality of the Lagrangian (15) in the
Appendix III A, referring to all the combinations of perturbative terms which in principle should be present but that
have been excluded because the EFT action we are considering is restricted for a class of theories or because some
terms have to be excluded in order to have an healthy theory [64, 65].

C. Non-linear beyond Horndeski mapping

Now we will apply the procedure described in the previous section to a specific theory, i.e. the beyond Horndeski
models [56, 57].
The beyond Horndeski class of models has been presented as an extended version of the Horndeski models allowing

for equations of motion which are 3rd order in spatial derivatives. While the additional terms allow for higher order
spatial derivatives they have been constructed in such a way that time derivatives do not go beyond the second
order. Imposing this restriction it is guaranteed that the theory is free from the Ostrogradski instability [66] and thus
propagates only one additional scalar DoF [57, 67, 68].
For the present purpose, we will consider the Lagrangian as presented in ref. [56] as it is directly written in terms

of geometrical quantities and it reads

Lbh = A2(t, N) +A3(t, N)K +A4(t, N)(K2 −KijK
ij) +B4(t, N)R

+ A5(t, N)
(

K3 − 3KKijK
ij + 2KijK

ikKj
k

)

+B5(t, N)Kij

(

Rij − hij
R
2

)

, (27)

where Ai, Bi are general functions of t and N . The above Lagrangian can be rewritten in terms of the scalar field,
φ, as shown in ref. [56]. The way the Lagrangian (27) is written greatly simplifies the steps to write it in term of the
operators introduced in Sec. III A, indeed we have:

LbH = A2(t, N) +A3(t, N)K +A4(t, N)(K2 − S) +B4(t, N)R

+ A5(t, N)
(

K3 − 3KS + 2K̃
)

+B5(t, N)

(

U − KR
2

)

, (28)

with which it is easy to apply the prescription in eqs. (26) and obtain the new operators

M2 = 2A5 , M3 = −3A5 , M4 = −1

2
B5N , M1 = A5, M2

4 =
1

2
(A4N − 3HA5N) , M5 =

1

2
B5N ,

M2
6 =

1

2
(3HA5N −A4N ) , M2

5 =
1

8

(

1

2
HB5NN +B4NN +

1

2
Ḃ5 + 3B4N +

3

2
HB5N

)

,
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M3
1 =

1

4

(

−2HA4NN +
1

2
A3NN + 3H2A5NN + Ḃ4 −

1

2
B̈5 +

3

2
A3N − 6HA4N + 9H2A5N

)

,

M4
3 =

1

48

[

A2NNN − 3HA3NNN + 6H2A4NNN − 6H3A5NNN − 3(Ȧ3 − 4ḢA4 − 4HȦ4 + 6H2Ȧ5 + 12HḢA5)

+15
(

A2N − 3HA3N + 6H2A4N − 6H3A5N

)

+ 9
(

A2NN − 3HA3NN + 6H2A4NN − 6H3A5NN

)

+6

(

B̈4 −
1

2
B

(3)
5

)

− 6H

(

Ḃ4 −
1

2
B̈5

)

+ 12Ḣ

(

B4 −
1

2
Ḃ5

)]

, (29)

and m2
3 = 0. The mapping of the linear operators can be found in ref. [49]. As one can notice from the mapping in

eq. (27) many EFT functions are not independent, rather we have the following relations

M2
6 = −M2

4 , 6M1 = 3M2 = −2M3 , M5 = −M4 . (30)

As a consequence, one needs only 6 independent new EFT functions to describe beyond Horndeski at second order in
perturbations.

D. Non linear low-energy Hořava gravity mapping

A second example we will use in this section is the low-energy Hořava gravity [58, 59] and we will provide the
mapping for the new EFT functions.
In this theory the action is modified by adding higher order spatial derivatives but without adding higher order time

derivatives to avoid Ostrogradski instabilities [66]. From a practical point of view the theory has been constructed
by considering space and time on different footing thus leading to the breaking of the full diffeomorphism invariance
and to Lorentz violations at all scales. In this way the theory propagates one extra scalar DoF. Moreover, the theory
is renormalizable, thanks to power-counting arguments [69, 70], as expected for a candidate for quantum gravity.
Here, we will consider the low-energy Hořava gravity action, which is constructed with all the operators satisfying

the above requirements and with second order spatial derivatives. Then, the action reads [61]:

SH =
1

16πGH

∫

d4x
√−g

[

KijK
ij − λK2 − 2ξΛ̄ + ξR+ ηaia

i
]

, (31)

where the coefficients λ, η, ξ are running coupling constants, Λ̄ is the ”bare” cosmological constant and GH is the
coupling constant [60, 61]:

1

16πGH

=
m2

0

(2ξ − η)
. (32)

Again, also in this case it will be very easy to translate the above action in terms of the operators presented in
Sec. III B, because the action is already written in ADM formalism. Then, we get

SH =
m2

0

(2ξ − η)

∫

d4x
√−g

[

S − λK2 − 2ξΛ̄ + ξR+ ηα1

]

. (33)

Now, using the prescription in eqs. (26) it is easy to show that the new EFT functions are:

M4
3 =

m2
0Ḣ

8(2ξ − η)
[1 + 2ξ − 3λ] , m2

3 =
m2

0η

2(2ξ − η)
, (34)

being the others zero. The mapping of the linear part of the action in terms of the EFT functions can be found in
ref. [49, 60].
Finally, in the case of low-energy Hořava gravity one needs to account for two extra new EFT functions for the

next to leading order in the expansion.

IV. QUARTIC ACTION AND STABILITY

In this section we will consider for the first time the 4th order action in terms of non-linear perturbation from which
it will be possible to obtain the non linear perturbed equation for the curvature perturbation at the next to leading
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order. The derivations has been done by using the Mathematica packages xAct [79] and xPand [80]. Once this has
been done we will conclude by commenting on the stability of the second order perturbation.
The second order action has been largely considered in refs. [38–41, 44, 49, 60, 76], where the linear perturbed

equations and the stability conditions have been derived and the phenomenology associated to the extra d.o.f. has
been investigated. We will mention it in the following just for completeness. In what follows we will restrict our
analysis only to the class of theories belonging to beyond Horndeski, the generalization is quite straightforward.
Let us start by considering the perturbations of the ADM metric components (eq. 9):

N = 1 + δ1N +
1

2
δ2N +O(3) ,

Ni = ψ1 +
1

2
ψ2 +O(3) ,

γij = a2e2ζ = δija
2

(

1 + 2ζ1 + 2ζ21 + ζ2 +
1

2
ζ22 + 2ζ1ζ2 + 2ζ21ζ2

)

+O(5) . (35)

We are considering only the scalar part of the metric while neglecting vector and tensor perturbations. The reason is
the following [77, 78]: at linear order scalar and tensor perturbations completely decouple and vector perturbations
decay. At the next to leading order tensor perturbations might appear in the second order scalar equation but their
contribution is negligible with respect to the linear scalar perturbation contribution. The opposite does not hold
in general, i.e. linear order scalar perturbations cannot be neglected in the second order equations for vector and
tensor fields. Since in this section we will focus only on the 4th order action for scalar perturbations, for the reasons
mentioned above, we will neglect the linear vector and tensor perturbations contributions.
The second order action for the linear scalar perturbations, after integrating out the non dynamical fields (δN1, ψ1)

and considering the Fourier Transform of the spatial part 4, reads [49]

S(2) =

∫

dk3

(2π)3
a3
{[

3

2
W5 +

W1W2
5

W2
4

]

ζ̇1(k)ζ̇1(−k)−
k2

a2

[

H

2

W5W6

W4
+

1

2

d

dt

(W5W6

W4

)]

ζ1(k)ζ1(−k))
}

, (37)

where we have defined

W0 = −m2
0(1 + Ω) ,

W1 = c+ 2M4
2 − 3m2

0H
2(1 + Ω)− 3m2

0HΩ̇− 3H2M̄2
2 − 3HM̄3

1 ,

W4 = −2m2
0H(1 + Ω)−m2

0Ω̇− M̄3
1 − 2HM̄2

2 ,

W5 = 2m2
0(1 + Ω) + 2M̄2

2 ,

W6 = −4

(

1

2
m2

0(1 + Ω) + M̂2

)

. (38)

Let us now focus on the 4th order action and write it as follows

S(4) = S
(4)
22 + S

(4)
21 , (39)

where S
(4)
22 is the 4th order action made by purely second order perturbations and S

(4)
21 contains 4th order terms

resulting from the coupling between linear perturbations and purely second order ones. Once all the operators in

action (8) have been written in terms of perturbations given by the perturbed metric (35), S
(4)
22 and S

(4)
12 read

S
(4)
22 =

∫

dk3

(2π)3
a3
{

−W0
k2

a2
ζ2(k)ζ2(−k)− 3W4δN2(k)ζ̇2(−k)−

3

2
W5ζ̇2(k)ζ̇2(−k)

−
[

W4N2(k) +W5ζ̇2(k)
] k2

a2
ψ2(−k) +W1δN2(k)δN2(−k)−W6δN2(k)ζ2(−k)

k2

a2

}

, (40)

4 We have considered the following Fourier Transform for the perturbation functions

φ(~x, t) =
1

(2π)3

∫
dk3φ(~k, t)ei

~k·~x , (36)

however in the text we dropped the vector form on ~k → k.
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and

S
(4)
21 =

∫

dk3dk31
(2π)6

a3
{

X1δN2(−k)δN1(k1)δN1(k − k1) +

(

3W1 + 2X3
k21
a2

)

δN2(−k)ζ1(k1)δN1(k − k1)

+W6
(k21 + k · k1)

4a2
δN2(−k)ζ1(k1)ζ1(k − k1) +

(

3W1

2
+X3

k2

a2

)

ζ2(−k)δN1(k1)δN1(k − k1)

+W6

(

− k2

2a2
− k21

2a2
+
k · k1
2a2

)

ζ2(−k)ζ1(k1)δN1(k − k1)−W0
(k2 + k21 − k · k1)

2a2
ζ2(−k)ζ1(k1)ζ1(k − k1)

+X2
k21
2a2

δN2(−k)ψ1(k1)δN1(k − k1) +

(

M4
4(k · k1)2 − 4k2k21

a4
+W4

k21 − k · k1
2a4

)

ζ2(−k)ψ1(k1)δN1(k − k1)

+

(

4 ((k − k1) · k1)2 − 4k21(k − k1)
2)

a4
− k21W4 + (k − k1) · k1W4

2a2

)

δN2(−k)ψ1(k1)ζ1(k − k1)

+

(

δN1(k1)

(

−8k2M4

a2
− 9

2
W4

)

+ ψ1(k1)

(W5(k · k1 − k21)

2a2

))

ζ2(−k)ζ̇1(k − k1)

+

(

6X2δN1(k1)− ζ(k1)

(

8M4k
2
1

a2
+

9W4

2

)

− k2X8

a2
ψ1(k1)

)

δN2(−k)ζ̇(k − k1)

+

(

X10(k1 · (k − k1))
2 +X4k

2
1(k − k1)

2

2a4

)

δN2(−k)ψ1(k1)ψ1(k − k1) +X2
k2

a2
ψ2(−k)δN1(k1)δN1(k − k1)

+W5

(

k21k
2 − 16k21k · k1 + 3(k · k1)2

8a4

)

ζ2(−k)ψ(k1)ψ1(k − k1) + (2X2δN1(k1)δN1(k − k1)) ζ̇2(−k)

+

[

−
(

8k21M4 +
9W4

2

a2

)

ζ1(k1)δN1(k − k1)− 3X8δN1(k1)ζ̇1(k − k1)−
9W5

2
ζ1(k1)ζ̇1(k − k1)

−X8
k21
a2
ψ1(k1)δN1(k − k1)−W5

(

k21 + (k − k1) · k1
2a2

)

ψ1(k1)ζ1(k − k1)−
54k21M1

a2
ψ1(k1)ζ̇1(k − k1)

+

(

3k21(k − k1)
2M1 − 12((k − k1) · k1)2M1

2a4

)

ψ1(k1)ψ1(k − k1)− 36M1ζ̇1(k1)ζ̇1(k − k1)

]

ζ̇2(−k)

+W5

(

k2k21 − 2(k · k1)k · (k − k1)− (k · k1)2 + 2(k · k1)(k − k1) · k1
2a4

)

ψ2(−k)ψ1(k1)ζ1(k − k1)

+

(

−X8k
2

a2
δN1(k1) +W5

(

k · k1 − k2

2a2

)

ζ1(k1) + 3M1

(

k2k21 + (k · k1)2
a4

)

ψ1(k1)

)

ψ2(−k)ζ̇1(k − k1)

+

(

4M4
(k · k1)− k2k21

a4
−W4

k2 + k · k1
2a2

)

ψ2(−k)ζ1(k1)δN1(k − k1) +
1

2a6
[

3k2k21(k − k1)
2

−6k21(k · (k − k1))
2 − 3k2(k1 · (k − k1)) + 6(k · k1)

(

k · (k − k1)
)(

k1 · (k − k1)
)]

ψ2(−k)ψ(k1)ψ(k − k1)

−
(

X8δN2(−k)
3

2
+

32k2M1

3a2
ψ2(−k)

)

ζ̇1(k1)ζ̇1(k − k1)

+

(

X10(k · k1)2 +X4k
2k21

a4

)

ψ2(−k)ψ1(k1)δN1(k − k1)

}

, (41)

with the following definitions

X1 =
3

4

[

− 2c− 16H3M3 − 8(M4
2 − 2M4

3 ) + 3H(8M3
1 + 3M̄3

1 + 2m0Ω̇) + 3H2(2M̄2
2 + 8M2

4 +m2
0(1 + Ω))

]

,

X2 = −3

4

[

− 16H2M3 + 8M3
1 + 3M̄3

1 + 2H [2M̄2
2 + 2(4M2

4 +m2
0(1 + Ω))]

]

,

X3 = 8M2
5 − M̂2 ,

X4 =
1

2

[

m2
0(1 + Ω) + M̄2

2 + 4M4
2 + 6HM1

]

,

X8 = m2
0(1 + Ω) + M̄2

2 + 4M2
4 − 16HM3 ,

X10 = −W5

4
− 2M2

4 +HM3 . (42)
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Now we proceed to remove the non dynamical fields {δN2, δN1, ψ1, ψ2} from the action S(4), resulting in an action
dependent only on the curvature perturbation {ζ2, ζ1} and their derivatives. First, in order to eliminate the {δN1, ψ1}
fields we will use the constraint equations from the second order action (see ref. [49] for details), which have been

used to obtain the final form for action (37). They will introduce in action S(4) terms proportional to {ζ̇1, ζ1}. At this
point it is possible to vary the 4th order action with respect to δN2 and ψ2 and use the resulting constraint equations
to eliminate these fields from the action. After some manipulation we end up with the following two parts for the
action S(4):

S
(4)
22 =

∫

dk3

(2π)3
a3
{(

3

2
W5 +

W1W2
5

W2
4

)

ζ̇2(k)ζ̇2(−k)−
k2

a2

[

H

2

W5W6

W4
+

1

2

d

dt

(W5W6

W4

)]

ζ2(k)ζ2(−k))
}

, (43)

and

S
(4)
21 =

∫

d3kd3k1
(2π)6

a3
[

ζ2(−k)
{

K1(k, k1)ζ1(k1)ζ1(k − k1) +K2(k, k1)ζ̇1(k1)ζ1(k − k1) +K3(k, k1)ζ1(k1)ζ̇1(k − k1)

+K4(k, k1)ζ̇1(k1)ζ̇1(k − k1)
}

+ ζ̇2(−k)
{

K1d(k, k1)ζ1(k1)ζ1(k − k1) +K2d(k, k1)ζ̇1(k1)ζ1(k − k1)

+K3d(k, k1)ζ1(k1)ζ̇1(k − k1) +K4d(k, k1)ζ̇1(k1)ζ̇1(k − k1)
}]

. (44)

Due to their complicated nature we will present the Kernels Ki,Kid in Appendix B. The variation of the action S(4)

with respect to ζ2 thus gives the non linear dynamical evolution equation for the curvature perturbation at the second
perturbative order. Let us stress that the action presented in Eqs. (43)-(44) is crucial for the study of the mildly non
linear regime and for the investigation of the impact that modifications of gravity might have on the observables.
From the structure of actions (43)-(44), it is possible to deduce that the linear order perturbations appearing in

action (44) can be interpreted as source terms modifying the evolution of the second order curvature perturbation.
Moreover these terms introduce non linearities in the equations thus are responsible for any effect due to screening
mechanisms.
The stability conditions can be read off from the action (43) which as expected assumed the same form of the second

order action (37). Thus the stability conditions for the avoidance of ghosts in the scalar sector and the condition on
the positivity of the speed of propagation for the scalar mode at next leading order do not change. We write them
here for completeness [49]:

3

2
W5 +

W1W2
5

W2
4

> 0 ,

c2s =

H
2

W5W6

W4

+ 1
2

d
dt

(

W5W6

W4

)

3
2W5 +

W1W
2

5

W2

4

> 0 . (45)

Let us note that despite the results in this section have been derived for the beyond Horndeski class of models
they can be easily extended to Lorentz violating theories, which are the only ones excluded. In particular, we do not
expect that any extension of the above treatment to more general theories will change the stability requirement with
respect to the one obtained for linear theory in ref. [49].

V. CONCLUSIONS

Identifying the correct underlying theory of gravity comes more and more within our reach as high precision
observational cosmology develops. However, connecting theory with observations or N-body simulations remains a
difficult task. Usually, Boltzmann codes or N-body codes rely on specific gravity theories, rendering the testing of
a large number of models heavily resource consuming. Recently, tools to study linear cosmological perturbations
in a quite general fashion have been proposed [71–74], including one based on the EFT of DE/MG [75]. The EFT
formalism presents a unifying and model independent framework to study linear perturbations of a large class of single
scalar-tensor theories.
In this paper we presented the extension of the EFT of DE/MG to the next to leading order in perturbations while

preserving the model independent aspect which is typical of the EFT formalism. This extension will allow for the
study of corrections to the power spectrum coming from non-linearities as well as high order correlators such as the
bispectrum, opening up the possibility to study the mildly non-linear scales (k & 0.1h/Mpc) of a wide class of MG
and DE models. These, intermediate scales, are of particular interest as a substantial part of current and upcoming
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cosmological datasets come from there, hence, being able to extract information at this regime will improve our ability
to test theories of gravity.
In order to present the extended action (8), we proceeded to identify the necessary operators which have to be

included in the EFT framework when considering higher order perturbations. This was not a trivial task as to go
one order higher in the equations of motion requires one to go up to the 4th-order in perturbations in the action.
Many relevant operators can in principle be constructed and added to the Lagrangian, therefore we decided to focus
on those which are necessary to expand to the next to leading order in perturbations the class of theories to which
beyond Horndeski and low-energy Hořava belong. Let us notice that in doing this choice we are covering most of the
theories which are of cosmological interest. We left for future work the inclusion of a larger class of theories to the
extended EFT action, such as high-energy Hořava gravity [61] and DHOST [63]. In this respect, we have identified
11 new operators each with its own EFT function.
Having extended the EFT framework with the necessary operators we proceeded in constructing a general and

self consistent recipe which maps any given theory (which falls in the beyond Horneski or low-energy Hořava gravity
classes) into the EFT formalism. In order to obtain such recipe, we started by writing a general Lagrangian in
terms of ADM quantities. This led to the identification of all the operators contributing to the next to linear order in
perturbations and with up to six spatial derivatives. Subsequently, we restricted our analysis only to those contributing
to beyond Horndeski and low-energy Hořava gravity classes and we have expanded the Lagrangian for the relevant
operators up to 3rd order in the total perturbations. To complete the mapping we had to use a similar procedure in
order to rewrite the EFT Lagrangian in terms of the geometrical ADM quantities. Finally, we proceeded to relate
the EFT Lagrangian to the ADM one. As a result, each EFT function is written in terms of the general Lagrangian
thus simplifying the mapping of a chosen theory in the EFT framework. This exemplifies the EFT as a unifying
framework, besides its model independent qualities. We concluded with the application of the mapping on the two
main classes of theories which inspired the EFT action, the beyond Horndeski theory and the low-energy Hořava one.
We found that in the case of the beyond Horndeski models only 6 new functions out of the original 11 needs to be
considered for second order perturbations equations, while in the case of low- energy Hořava, they drastically reduce
to two.
Finally, we have derived the non-linear action for the curvature perturbation which is a novel result in the field for

the mildly non linear regime which will prove useful when investigating the behavior of second order perturbations
and their impact on observables. We found that the purely second order part of the action resembles the one at linear
order, plus a piece which account for the interaction between linear and non linear terms. In particular this part of
the action is responsible of the non linearities in the equation for the second order curvature perturbation because it
will act as a source term. The structure of the action confirms that the stability conditions for the scalar mode (i.e.
avoidance of ghost instability and positive speed of propagation) derived at the linear level guarantee the stability of
higher orders as well. Thus, imposing a stable linear theory will ensure the stability at the next perturbative order
as well as expected.
In future works as a first application of this newly developed non-linear formalism, we will proceed to calculate the

model independent matter power spectrum going one order beyond the linear one.
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Appendix A: Expanding the ADM Lagrangian

In this appendix we present the non-linear ADM Lagrangian we have used to derive the action in Sec III A.
According to the expansion (14) up to 3rd order for the operators in the Lagrangian (15) we can write

L = L̄+ LNδN + LKδK + LSδS + LUδU + L
K̃
δK̃ + LRδR+ Lα1

δα1 +
1

2

[

LNNδN
2 + LKKδK

2

+ 2 (LNKδNδK + LNSδNδS + LNUδNδU + LNRδNδR+ LNα1
δNδα1 + LKSδKδS
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+ LKRδKδR)] +
1

6

(

LNNNδN
3 + LKKKδK

3
)

+ LKRNδNδKδR+ LKNSδNδKδS

+
1

2

(

LNNKδN
2δK + LNNK̃

δN2δK̃ + LNNSδN
2δS + LNNUδN

2δU + LNNRδN
2δR+ LKKNδK

2δN
)

.(A1)

Let us note that we have excluded from the above expansion all the terms which are not included in the EFT action (8),

such as LSSδS2, LUUδU2, LKKSδK
2δS, LKα1

δKδα1, LSUδSδU , LSRδSδR, LRUδRδU , LK̃K̃
δK̃2, LRRδR2, LKUδKδU .

Indeed, in order to include some of these operators the EFT action should be extended as well by considering additional
operators, such as λ1(t)δR2 which will account for δR2, δU2 and δRδU . In this respect the Lagrangian described

by the operators {N,K,S,R,U , K̃, α1} is more general than the EFT action. However, let us note that not all the
combinations can be considered in general since some of them might imply an unhealthy theory [64, 65].
In order to obtain action (17) we have adopted the following expansions:

LNδN = LN(δ1N +
1

2
δ2N) ,

1

2
LNN(δN)2 =

1

2
LNN

[

(δ1N)2 + δ1Nδ2N +
1

4
(δ2N)2

]

+O(5) ,

1

6
LNNN(δN)3 =

1

6
LNNN

[

(δ1N)3 +
3

2
(δ1N)2δ2N

]

,+O(5)

LNSδNδS = −2HLNS

(

δ1Nδ1K +
1

2
δ1Nδ2K +

1

2
δ2Nδ1K +

1

4
δ2Nδ2K

)

+LNS

[

δ1N(δ1K
ν
µδ1K

µ
ν + δ1K

ν
µδ2K

µ
ν ) +

1

2
δ2Nδ1K

ν
µδ1K

µ
ν

]

+O(5) ,

LNKδNδK = LNK

(

δ1Nδ1K +
1

2
δ1Nδ2K +

1

2
δ2Nδ1K +

1

4
δ2Nδ2K

)

+O(5) ,

LNRδNδR = LNR

(

δ1N +
1

2
δ2N

)(

δ1R+
1

2
δ2R

)

,

LNUδNδU = LNU

[

δ1N(−Hδ1R− 1

2
Hδ2R+ δ1Rµ

ν δ1K
ν
µ +

1

2
δ1Rµ

ν δ2K
ν
µ +

1

2
δ1K

ν
µδ2Rµ

ν )

+
1

2
δ2N(−Hδ1R− 1

2
Hδ2R+ δ1Rµ

ν δ1K
ν
µ)

]

,

LNNS(δN)2δS = LNNS

[

−2H(δ1N)2(δ1K +
1

2
δ2K) + δ1K

ν
µδ1K

µ
ν (δ1N)2 − 2Hδ1Nδ2Nδ1K

]

+O(5) ,

LNNK(δN)2δK = LNNK

[

(δ1N)2(δ1K +
1

2
δ2K) + δ1Nδ2Nδ1K

]

+O(5) ,

LNNU(δN)2δU = LNNU

[

(δ1N)2(−Hδ1R− 1

2
Hδ2R+ δ1Rµ

ν δ1K
ν
µ)−Hδ1Nδ2Nδ1R

]

,

LNNR(δN)2δR = LNNR

[

(δ1N)2(δ1R+
1

2
δ2R) + δ1Nδ2Nδ1R

]

+O(5) ,

LNKKδN(δK)2 = LNKK

[

(δ1K)2
(

δ1N +
1

2
δ2N

)

+ δ1Kδ2Kδ1N

]

+O(5) ,

LSδS = −6H2LS − 2(HL̇S + ḢLS)

(

1− δ1N + (δ1N)2 − (δ1N)3 − 1

2
δ2N +

1

4
(δ2N)2 + δ1Nδ2N − 3

2
(δ1N)2δ2N

)

+LS(δ1K
ν
µδ1K

µ
ν + δ1K

ν
µδ2K

µ
ν +

1

4
δ2K

ν
µδ2K

µ
ν ) ,

LKSδSδK = LKS

(

−2H((δ1K)2 + δ1Kδ2K +
1

4
(δ2K)2) + δ1K

µ
ν δ1K

ν
µδ1K +

1

2
δ1K

µ
ν δ1K

ν
µδ2K + δ1K

µ
ν δ2K

ν
µδ1K

)

,

LKδK = 3HLK + L̇K

(

1− δ1N + (δ1N)2 − (δ1N)3 − 1

2
δ2N +

1

4
(δ2N)2 + δ1Nδ2N − 3

2
(δ1N)2δ2N

)

+O(5) ,

1

2
LKK(δK)2 =

1

2
LKK

(

(δ1K)2 +
1

4
(δ2K)2 + δ1Kδ2K

)

,
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1

6
LKKK(δK)3 =

1

6
LKKK

(

(δ1K)3 +
3

2
(δ1K)2δ2K

)

,

LKRδRδK = LKR

[

δ1Kδ1R+
1

2
δ1Kδ2R+

1

2
δ2Kδ1R+

1

4
δ2Kδ2R

]

,

LRδR = LR(δ1R+
1

2
δ2R) ,

LUδU =
1

2

[

LU(−3H(δ1R+
1

2
δ2R) + δ1Rδ1K +

1

2
δ1Rδ2K +

1

2
δ2Rδ1K +

1

4
δ2Kδ2R)− L̇U(δ1R+

1

2
δ2R

−δ1Rδ1N − 1

2
δ1Rδ2N − 1

2
δ2Rδ1N − 1

4
δ2Rδ2N + δ1R(δ1N)2 + δ1Rδ1Nδ2N +

1

2
δ2R(δ1N)2 − δ1R(δ1N)3)

]

,

L
K̃
δK̃ = 9H3L

K̃
+ 3(2HḢL

K̃
+H2L̇

K̃
)

(

1− δ1N + (δ1N)2 − (δ1N)3 − 1

2
δ2N +

1

4
(δ2N)2 + δ1Nδ2N − 3

2
(δ1N)2δ2N

)

+L
K̃

(

−3H(δ1K
µ
ν δ1K

ν
µ + δ1K

µ
ν δ2K

ν
µ +

1

4
δ2K

µ
ν δ2K

ν
µ) + δ1K

j
i δ1K

i
kδ1K

k
j +

3

2
δ1K

j
i δ1K

i
kδ2K

k
j

)

+O(5) ,

LNK̃
δK̃δN = LNK̃

[

δ1N

(

3H2δ1K +
3

2
H2δ2K − 3H(δ1K

µ
ν δ1K

ν
µ + δ1K

µ
ν δ2K

ν
µ)

)

+
1

2
δ2N(3H2δ1K +

3

2
H2δ2K

−3Hδ1K
µ
ν δ1K

ν
µ) + δ1Nδ1Kijδ1K

ikδ1K
j
k

]

,

LNNK̃
δK̃(δN)2 = LNNK̃

[

(δ1N)2(3H2δ1K +
3

2
H2δ2K − 3Hδ1K

µ
ν δ1K

µ
ν ) + 3H2δ1Nδ2Nδ1K

]

,

Lα1
δα1

= Lα1

(

δ1α1 +
1

2
δ2α1

)

,

Lα1Nδα1δN = Lα1N

(

δ1δNδ1α1 +
1

2
δ1Nδ2α1 +

1

2
δ2Nδ1α1

)

+O(5) ,

LNKSδNδKδS = −LNKSH
(

2δ1Nδ1Kδ2K + δ2Nδ1K
2
)

+O(5) ,

LNKRδNδKδR =
1

2
LNKR (δ1Nδ1Kδ2R+ δ2Nδ1Kδ1R+ δ1Nδ2Kδ1R) +O(5) , (A2)

where we have simplified some of the terms by using a number of useful identities already derived in the literature
[40]

∫

d4x
√−gB(t)K =

∫

d4x
√−g Ḃ

N
=

∫

d4x
√−gḂ

(

1− δ1N + (δ1N)2 − (δ1N)3 − 1

2
δ2N +

1

4
(δ2N)2

+ δ1Nδ2N − 3

2
(δ1N)2δ2N

)

+O(5) , (A3)

and

∫

d4x
√
gλ(t)RµνK

µν =

∫

d4x
√
g

(

λ(t)

2
RK − λ̇(t)

2N
R
)

. (A4)

Appendix B: The Kernels for the quartic action

In this Appendix we list the Kernels used to define action (44). They are:

K1(k, k1) =
1

24

(

−12W0
k2 + k21 − k · k1

a2
+ 6W5W2

6

k2k21 + 2(k · k1)(k − k1) · k1 − (k · k1)(−2k · k1 + k · (2k + k1))

a4W2
4

+
3W5W2

6

W2
4

k2k21 − 16k21k · k1 + 3(k · k1)2
a4

+
36M1W3

6

W3
4a

6

(

k2k21(k − k1)
2 − 2k21 [k · (k − k1)]

2 − k2[k1 · (k − k1)]
2

+2(k · k1)[k · (k − k1)]{k1 · (k − k1)}
))

,
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K2(k, k1) =
1

24

[6W5W6(3W2
4 + 2W1W5)

a2W3
4

{k2 + 2
(k · k1)k1 · (k − k1)

k21
− k · k1

k21
(−2k · k1 + k · (2k + k1))}

3W5W6(3W2
4 + 2W1W5)

a2W3
4

{k2 − 16k · k1 + 3
(k · k1)2
k21

} − 36M1W2
6 (3W2

4 + 2W1W5)

a4W4
4

{k2(k − k1)
2

−2(k · (k − k1))
2 − k2(k1 · (k − k1))

k21
+ 2

(k · k1)[k · (k − k1)]{k1 · (k − k1)}
k21

}
]

,

K3(k, k1) =
[W5W6

W2
4

(−8
k2k21M4

a4
+ 8

(k · k1)2M4

a4
− W4

2a2
[k2 − k21 + 2k · k1]) +

W6W5

2a2W4
(−k21 + k · k1)

+
W5W6(3W2

4 + 2W1W5)

8a4W4
4 (k − k1)2

(k2k21 − 16k21(k · k1) + 3(k · k1)2) +
W2

6 (3W2
4 + 2W1W5)

a4W4
4

(3M1k
2(k1)

2

2

−3
k21

(k − k1)2
(k · {k − k1})2M1 − 3M1

k2(k1 · {k − k1})2 + 2[k · k1][k1 · (k − k1)][k · (k − k1)]

2(k − k1)2
)

+
W5W6

2a2W4
(2k2 + k21 − 2k · k1) +

W2
6M1

a4W2
4

(3k2k21 + 3(k · k1)2) +
W5W2

6

a4W3
4

(X10(k · k1)2 +X4k
2k21)

]

,

K4(k, k1) =
1

24

[36W1W2
5

W2
4

+
12W5(3W2

4 + 2W1W5)

a2W3
4

[

M4(−8k2 + 8
(k · k1)2
k21

) +W4a
2(1− k · k1

k21
)
]

+
3W5(3W2

4 + 2W1W5)
2

a2(k − k1)2W4
4

(

k2 − 16k · k1 + 3
(k · k1)2
k21

)

+
12W5

a2W2
4

(

16k2M4W4 + a2(2(6W2
4 +W1W5)

− (k · k1)
k21

(3W2
4 + 2W1W5))

)

+
256k2M1W6

a2W4
− 36(3W2

4 + 2W1W5)
2

k21(k − k1)2a2W5
4

{

k2k21(k − k1)
2 − 2k21(k · (k − k1))

2

−k2(k1 · (k − k1))
2 + 2(k · k1)[k · (k − k1)][k1 · (k − k1)]

}

+
24k2W2

5W6X2

a2W3
4

+
24k2W2

5X3

a2W2
4

24(3W2
4 + 2W1W5)W6W5

a2W4
(k2X4 +X10

(k · k1)2
k21

) +
24W6

a2W3
4

{3(k2 + (k · k1)2
k21

)M1(3W2
4 + 2W1W5)

−k2X8W5W4}
]

,

K1d(k, k1) =
[

− W5W6(k
2
1 + k · k1)

4a2W4
+

W5W6

W2
4

(
−4M4k

2
1(k − k1)

2 + 4M4(k·(k − k1))
2

a4
−W4

k21 − k1 · (k − k1)

2a2
)

+
W5W6

2a2W4
(k21 + k1 · (k − k1)) +

(3W2
4 + 2W1W5)W6W5

4a4W3
4

(k21 − 2
(k · k1)(k · (k − k1))

k2
− (k · k1)2

k2
)

+2
(k · k1)(k1 · (k − k1))

k2
+

W2
6M1

2a4W2
4

(3k21(k − k1)
2 − 12(k1 · (k − k1))

2)

−W2
6 (3W2

4 + 2W1W5)M1

2a4W4
4

(3k21(k − k1)
2 − 6

k21(k · (k − k1))
2

k2
− 3(k1 · (k − k1))

2

+6
[k · k1][k · (k − k1)][k1 · (k − k1)]

k2
)− W5W2

6

2a4W3
4

(X10(k1 · (k − k1))
2 +X4k

2
1(k − k1)

2)
]

,

K2d(k, k1) =
[W5(3W2

4 + 2W1W5)

a2W3
4

(−4M4k
2
1(k − k21) + 4

(k1 · (k − k1))
2M4

k21
−W4a

2(1/2− k · (k − k1)

2k21
))

−W5(3W2
4 + 2W1W5)

W2
4

(−1/2− k1 · (k − k1)

k21
) +

W5(3W2
4 + 2W1W5)

2

4W4
4

(1− 2
k1 · (k − k1)

k21
− (k · k1)2

k2k21

+2
(k · k1)(k1 · (k − k1))

k2k21
) +

(3W2
4 + 2W1W5)W6M1

2a2W3
4

(3(k − k1)
2 − 12

(k1 · (k − k1))
2

k21
)

−W6M1(3W2
4 + 2W1W5)

2

2a2W5
4

(3(k − k1)
2 − 6

(k · (k − k1))
2

k2
− 3

(k1 · (k − k1))
2

k21

+6
(k · k1)(k · (k − k1))(k1 · (k − k1))

k2k21
)− W6W5(3W2

4 + 2W1W5)

2a2W4
4

(X10
(k1 · (k − k1))

2

k21
+X4(k − k1)

2)
]

,

K3d(k, k1) =
[

− 9W5

2
+

W5

2a2W4
(16M4k

2
1 + 9a2W4) +

W5(3W2
4 + 2W1W5)

2a2W3
4

(−8k21M4 + 8
(k · k1)2
k2

M4 − a2W4
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−k · k1
k2

a2W4) +
54k21M1W6

a2W4
+

W6M1(3W2
4 + 2W1W5)

2a4W3
4

(3k21 − 12
(k1 · (k − k1))

2

(k − k1)2
)

−W6M1(3W2
4 + 2W1W5)

2

2a2W5
4

(3k21 − 6
(k · (k − k1))

2

(k − k1)2
− 3

(k1 · (k − k1))
2

(k − k1)2

+6
[k · k1][k · (k − k1)][k1 · (k − k1)]

k2(k − k1)2
)− (3W2

4 + 2W1W5)

2W2
4

(W5
k · k1
k2

−W5 −
2M1W6

a2W4
(3k21 +

(k · k1)2
k2

))− k21W2
5W6X2

2a2W3
4

+
W2

5

W2
4

(3W1 +
2k21X3

a2
)

− (3W2
4 + 2W1W5)W6W5

2W4
4a

2
(X10(2

(k · k21)2
k2

+
(k1 · (k − k1))

2

(k − k1)2
) +X4(3k

2
1)−

k21W5W6X8

a2W2
4

−W5(k
2W6X8/W4 − 9W4a

2/2− 8k21M4)

a2W4

]

,

K4d(k, k1) =
[

− 36M1 +
194M1(3W2

4 + 2W1W5)

3W2
4

+
M1(3W2

4 + 2W1W5)
2

W4
4

(+3/2− 6
(k1 · (k − k1))

2

k21(k − k1)2
)

−M1(3W2
4 + 2W1W5)

3

W6
4

(3/2− 3
(k1 · (k − k1))

2

k21(k − k1)2
− 3

(k · (k − k1))
2

k2(k − k1)2
+ 3

[k · k1][k · (k − k1)][k1 · (k − k1]

k2k21(k − k1)2
)

−X1W3
5

W3
4

+ 2
X2W2

5

W2
4

− 3
X2(3W2

4 + 2W1W5)W2
5

2W4
4

− M1(3W2
4 + 2W1W5)

2

W5
4

(
X4

2
+X10

(k1 · (k − k1))
2

2k21(k − k1)2
)

+
9W5X8

2W4
− X8(3W2

4 + 2W1W5)W5

W3
4

− (3W2
4 + 2W1W5)

W2
4

{M1(3W2
4 + 2W1W5)

3

W4
(−3− 3

(k · k1)2
k2k21

) +
X8W5

W4

}

−W5

W4
(
k2X8(3W2

4 + 2W1W5)

k21W2
4

− 6W5X2

W4
)
]
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