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Abstract
AWeyl semimetal wire with an axialmagnetization hasmetallic surface states (Fermi arcs)winding
along its perimeter, connecting bulkWeyl cones of opposite topological charge (Berry curvature).We
investigate what happens to this ‘Weyl solenoid’ if thewire is coveredwith a superconductor, by
determining the dispersion relation of the surfacemodes propagating along thewire. Coupling to the
superconductor breaks up the Fermi arc into a pair ofMajoranamodes, separated by an energy gap.
Upon variation of the coupling strength along thewire there is a gap inversion that traps theMajorana
fermions.

1. Introduction

A three-dimensionalWeyl semimetal has topological features that are lacking in its two-dimensional
counterpart, graphene [1–3]. One striking feature is the appearance of surface states, in Fermi arcs connecting
Weyl cones of opposite topological charge (Chern number or Berry curvature) [4]. Unlike the surface states of a
topological insulator, which are the only source ofmetallic conduction, the Fermi arcs at the surface compete
with theWeyl cones in the bulkwhen it comes to transport properties. Quantumoscillations in the
magnetoresistance are one example of an effect where the Fermi arcs play a prominent role [5, 6], the chiral
magnetic effect without Landau levels is another example [7].

An interesting way to differentiate surface frombulk is to bring theWeyl semimetal into contact with a
superconductor.While theWeyl cones in the bulk remain largely unaffected, the surface states acquire the
mixed electron-hole character of a charge-neutral Bogoliubov quasiparticle—aMajorana fermion [8–13]. Here
we investigate this proximity effect in the nanowire geometry offigure 1, inwhich an axialmagnetization causes
the surfacemodes to spiral along thewire, essentially forming a solenoid on the nanoscale [7].We study the
dispersion relation of theMajoranamodes and identify amechanism to trap the quasiparticles at a specified
location along thewire.

In the next sectionwe identify the pair of 2 quantumnumbers n k, that label the four surfacemodes in a
given orbital subband. The electron-hole index ν is generic for any surface statewhere electrons and holes are
coupled byAndreev reflection [14–16]. The connectivity indexκ is specific for the Fermi arcs, it distinguishes
whether the surface state reconnects in the bulkwith theWeyl cone at positive or negative energy. In section 3we
construct the 4×4matrixHamiltonian in the n k, basis, constrained by particle-hole symmetry, as an effective
low-energy description of the two-dimensional surfacemodes.

We then proceed in section 4with a numerical calculation of the three-dimensional band structure of a
microscopicmodel Hamiltonian. The unexpected feature revealed by this simulation is a gap inversion,
visible in the band structure as a level crossing between two surfacemodes with the same connectivity index.
The gap inversion can be controlled by variation of the tunnel coupling between the semimetal and the
superconductor. At the domainwall where the gap changes sign, a charge-neutral quasiparticle is trapped—as
we demonstrate numerically and explain within the context of the effective surface Hamiltonian in section 5.
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In section 6we study the same gap inversion analytically, via amode-matching calculation. In the concluding
section 7we comment on the relation of the gap inversion to the flow of Berry curvature in the Brillouin zone.

2. Connectivity index of surface Fermi arcs

The geometry under consideration is shown infigure 1. AWeyl semimetal wire oriented along the z-axis is
covered by a superconductor.We include a thin insulating layer between the superconductor and theWeyl
semimetal, forming a tunnel barrier. Amagnetization in the z-direction breaks time-reversal symmetry and
separates theWeyl cones along the pzmomentumdirection in the Brillouin zone. (Induced superconductivity in
the presence of time-reversal symmetry, withminimally fourWeyl points, has a different phenomenology [13].)
The surface states connecting theWeyl cones are chiral, circulating with velocity vf in a direction set by the
magnetization. If inversion symmetry is broken the surface states also spiral with velocity vz along thewire [7].

As shown infigure 2, resulting fromamodel calculation described in section 4, at the interface with a
superconductor the surface spectrum is drasticallymodified.We seek an effectiveHamiltonian that describes
this proximity effect on the Fermi arcs.

Thefirst questionwe have to address is which pairs of states are coupled by the superconducting pair
potentialΔ. In the bulk spectrum the answer is well known [8, 12]: Superconductivity couples electrons in a
Weyl cone of positive Berry curvature to holes in aWeyl cone of negative Berry curvature, and vice versa. To
decide this question for the surface states, we assign to each Fermi arc a ‘connectivity index’ k = 1, depending
onwhether it reconnects in the bulkwith theWeyl cone at positive or negative energy. Inspection offigure 2
shows thatΔ predominantly couples Fermi arcs with sameκ, pushing them apart, without removing the
crossing between states of oppositeκ.

More explicitly, in a slab geometrywe can identify k = ksign y and in a cylindricalwire geometrywewould
have k = fpsign . The coupling of stateswithdifferentκ is then forbiddenby (translational or rotational)
symmetry.More generally, in the absence of any symmetry, the signof k = 1 sayswhether the Fermi arc
connectswith theWeyl cone atE , and thus identifieswhich pairs of Fermi arcs are predominantly coupled byΔ.

3. Effective surfaceHamiltonian

The superconducting proximity effect is governed by the Bogoliubov-DeGennes (BdG)Hamiltonian,
describing the coupling of electrons and holes by the pair potential. In the numerical simulationswewill work
with the BdGHamiltonian in a 3Dmicroscopicmodel. For analytical insight we aim for an effective 2D
description involving only surfacemodes.

Each orbital subband n is associatedwith fourMajoranamodes, labeled by a pair of 2 indices k n, . (See
figure 2.)The connectivity index k =  identifies the connectivity of the surfacemode (with theWeyl cone at

Figure 1.Panel (a)Weyl-Majorana solenoid, formed by aWeyl semimetal wire with an axialmagnetization, coupled via a tunnel
barrier to a superconductor. Charge-neutralMajoranamodes propagate along thewire, confined to the normal-superconductor (NS)
interface. A gap inversion in a segment of length L, induced by a variation in coupling strength, traps a pair of quasiparticles at the two
ends of the segment. Panel (b) SNS slab geometry to study theMajoranamodes at theNS interface.
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positive or negative energy), the electron-hole index n =  identifies the pair ofMajorana fermions that form a
Dirac fermion. The corresponding BdGHamiltoniann is a 4×4matrix with pz-dependent elements. Inwhat
followswe omit the subband index n for ease of notation.

The fundamental symmetry of the BdGHamiltonian is particle-hole symmetry,

* k n k n= - -p p , 3.1z y y z y y( ) ( ) ( )

with Paulimatrices ka and na acting, respectively on the connectivity and electron-hole degree of freedom
(a =  x y z1, 2, 3 , , and a = 0 for the unitmatrix). The operation of particle-hole conjugation squares to
+1, which places the system in symmetry classD [17]—this is the appropriate symmetry class in the absence of
time-reversal and spin-rotation symmetry.

If we neglect themixing by disorder of surface states with opposite connectivity index k = , the 4×4
matrix decouples into two blocks H related by particle-hole symmetry,

⎜ ⎟⎛
⎝

⎞
⎠ * n n= = - -+

-
- +

H
H

H p H p
0

0
, . 3.2z y z y( ) ( ) ( )

The 2×2matrices H can be decomposed into Paulimatrices,

ån n=   + 
a

a a
=

H p D p D p , 3.3z z z0 0
1

3

( ) ( ) ( ) ( )

with real pz-dependent coefficientsDα.
Diagonalization of theHamiltonian (3.2) gives the dispersion relation k nE pz, ( ) of the fourMajoranamodes

in the nth subband,

åk k n k= +k n
a

a
=

E p D p D p . 3.4z z z, 0
1

3
2( ) ( ) ( ) ( )

Particle-hole symmetry is expressed by = - -k n k n- -E p E pz z, ,( ) ( ). Inversion symmetry, = -k n k nE p E pz z, ,( ) ( ),
is satisfied ifD0 is an even function of pzwhile each of the functions D D D, ,1 2 3 has a definite parity (even
or odd).

4.Numerical simulation of amicroscopicmodel

Wenow turn to amicroscopicmodel of aWeyl semimetal in contact with a superconductor, whichwe solve
numerically. TheWeyl semimetal has BdGHamiltonian

Figure 2.Band structure of aWeyl semimetal in the slab geometry offigure 1(b), calculated from the tight-bindingmodel described in
the text5. In panel (a) there is only theWeyl semimetal, in panel (b) the superconducting contacts have been added. Inversion
symmetry has not been broken, so the spectrumhas pz symmetry, in addition to the particle-hole symmetry = - -E p E pz z( ) ( ). In
the slab geometry the transverse wave vector ky is a good quantumnumber, and tomake thefigure less crowded only subbands at a
single value of ky are shown. (The Fermi arcs in panel (a) are approximately at  fv ksin y .)The superconductor breaks up the two
Dirac fermion surfacemodes in panel (a) into fourMajorana fermionmodes in panel (b), labeled by a pair of indices k n = , 1. The
Majoranamodes are nearly charge-neutral, as indicated by the color scale (with electron charge +e).

5
Themicroscopicmodel parameters in the slab geometry of figure 2 are (energies in units of t0, lengths in units of a0): t=2, tz=1,
= -m 0.30 , l = 0, b = 0.6, =t 7˜ , =t 3.5z̃ , m = -10W

4, m = 3.5S , =U 0.1barrier ,D = 0.20 , =d 2barrier ,W=120, p=k 120y .
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n t s s s
n t s ln t s bn t s mn t s

= + +
+ + + -

= + - - + -

k

k

k

H t k t k t k

m

m m t k k t k

sin sin sin

,

2 cos cos 1 cos , 4.1

z z x x y y z z z

z x z z z z

x y z z

W

0 0 0 0 0 0

0

( ) ( )
( )

( ) ( ) ( ) ( )

with chemical potentialμ and charge operator

m
n t s= -

¶
¶

=Q e
H

e . 4.2z
W

0 0 ( )

The Paulimatrices sa and ta refer to spin and orbital degrees of freedom, respectively, while na acts on the
electron-hole index. Themomentum k varies over the Brillouin zone p<ak∣ ∣ of a simple cubic lattice (lattice
constant ºa 10 ). This is amodel of a layeredmaterial in the Bi2Se3 family [18], withweak coupling <t tz in the
z-direction, perpendicular to the layers in the x–y plane.

The particle-hole symmetry relation is

*s n s n= - -k kH H . 4.3y y y yW W( ) ( ) ( )

Themagnetization term bµ breaks time-reversal symmetry, *s s= -k kH Hy yW W( ) ( ) . Inversion symmetry,
t t= -k kH Hx xW W( ) ( ) , is broken by the strain term lµ .

TheWeyl semimetal is in contact with a spin-singlet s-wave superconductor, withHamiltonian

n t s mn t s n t s= - - + - - + DH t k k t k2 cos cos 1 cos . 4.4x y z z z z xS 0 0 0 0 0 0 0[˜( ) ˜ ( )] ( )

There are different chemical potentials in theWeyl semimetal, m m= W, and in the superconductor, m m= S. At
theNS interface we include an electrostatic potential barrier of width dbarrier, raisingμ to a value m º UB barrier.
The resulting spatial profile m x( ) is shown infigure 3.

Figure 3. Spatial profile of the chemical potential m x( ).

Figure 4.Data points: Band structure in the slab geometry (colored according to the charge expectation value), showing the level
crossing at pz=0 between a pair ofMajoranamodes with k = +1, n = 1. The parameters are those offigure 2(b) (see footnote 5),
except for the tunnel barrier heightUbarrier, which is varied to tune through the gap inversion. The dashed curves arefits

6 to the
dispersion (4.5) from the effective surfaceHamiltonian.

6
Thefit parameters used in figure 4 are = + +D p p p0.016 0.035 0.24z z z0

2 4( ) , c=0.085,  =c 0.056.
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Weconsider the two geometries shown infigure 1, awire geometry and a computationallymore efficient
slab geometry8. In each case there is translational invariance along the z-direction. In the slab geometry there is
in addition translational invariance in the y-direction, so themodes are labeled by a continuous quantum
number ky.

9

Figure 6.Band structure in awire geometry (square cross section7), showing allmodes in the energy range- < <E t0.2 0.20 . (The
previous plots in the slab geometry showed only themodeswith a single ky value, but in thewire ky is not a good quantumnumber.)
The gap between pairs ofmodes in the same subband andwith the same connectivity index closes at pz=0 upon variation of the
tunnel barrier height.

Figure 5.Band structure in the slab geometry, showing the level crossing near pz=0 betweenmodeswith the same connectivity
index. In the lower panels we show the crossing as a function of pz atfixed tunnel barrier heightUbarrier, in the upper panels we show
the crossing atfixed pz as a function ofUbarrier. The parameters and color scale are those offigure 2(b) (see footnote 5), but we took a
nonzero m = t0.05W 0 (notice the displacement of electron and hole bands in the bulkWeyl cones) in order to demonstrate that the
level crossing does not require a vanishing chemical potential. The level crossing also persists if inversion symmetry is broken by a
nonzero l = t0.05 0, but the crossing point is displaced away from pz=0 (compare black and red curves in panel (b), at pz=0 and

= - ´ -p a6 10z
4

0).

7
Themicroscopicmodel parameters in thewire geometry of figure 6 are (energies in units of t0, lengths in units of a0): t=2, tz=1,
= -m 0.30 , l = 0, b = 0.6, =t 7˜ , =t 3.5z̃ , m = 0.05W , m = 3.5S ,D = 0.40 , =d 1barrier ,W=79.

8
To discretize themodelHamiltonianwe used theKwant toolbox [19].

9
The slab geometry has aky degeneracy in the spectrum, corresponding to surface states at the oppositeNS interfaces =x W0, .We

therefore only need to show a single sign of ky to obtain the full spectrum, as in figure 2.
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The dispersion relation in the slab geometry is shown infigure 2. Themode crossings at nonzero pz appear
becausemodeswith different connectivity indexκ are uncoupled in the absence of disorder. Infigure 4we show
a different type of crossing, near pz=0 betweenmodes with the sameκ, induced by variation of the tunnel
barrier height. This crossing appears generically whenwe vary interface parameters, infigure 5we show that it
persists at nonzero chemical potential m m= W in theWeyl semimetal10. Inversion symmetry breaking by a
nonzeroλmoves the crossing point away from pz=0, but does not destroy it. Thewire geometry gives similar
results, see figure 6.

Tomodel this effect in the framework of the surfaceHamiltonian (3.3), we take amomentum-independent
complex off-diagonal potential - º DD iD1 2 with amplitudeD = -c U Uc0 barrier( ) that crosses zero at some
critical barrier heightUc. Inversion symmetry imposes a definite parity on the real diagonal potential

mºD pz3 ( ), such that even a small admixture of an odd-parity component enforces m =0 0( ) when l = 0. If
we take m l= ¢ + p c c pz z( ) the dispersion relation (3.4) in the pair ofmodes with k = +1has the form

n l= + - + ¢ + nE p D p c U U c c p . 4.5z z c z0
2

barrier
2 2( ) ( ) ( ) ( ) ( )

The dashed curves infigure 4 arefits to this functional form,with l = 0 and a quartic D pz0 ( ). The qualitative
behavior agrees reasonably well.

5.Quasiparticle trapping by gap inversion

The gap inversion offigure 4 can be used to trap a quasiparticle by varying the tunnel barrier heightU zbarrier ( )
(bymeans of a variation in the thickness of the insulating layer), from a value above the critical strengthUc to a
value belowUc. A demonstration of this effect in the slab geometry is shown infigure 7, wherewe plot the local
density of states and charge polarization y n y y yá ñá ñ Î - +- 1, 1z

1∣ ∣ ∣ ( ) at each site of the lattice.
In terms of the surfaceHamiltonian, the quasiparticle trapping is described by the Schrödinger equation
y y=H z E z( ) ( )with

⎛
⎝⎜

⎞
⎠⎟*

m
m

=
  +  D

D   - H
D p p z

z D p p
. 5.1z z

z z

0

0

( ) ( ) ( )
( ) ( ) ( )

( )

We take a realD = -z c U z Ucbarrier( ) ( ( ) ) and, respectively, an even and odd pz-dependence ofD0 and
m = c pz—consistent with inversion symmetry. If we neglect quadratic terms inD0 we have amatrix differential
equation offirst order,

⎡⎣ ⎤⎦ n
y

n n y = - D c
z

E D z zi
d

d
0 . 5.2z x0 0( ( )) ( ) ( ) ( )

LetD z c( ) vary from a positive value for <z 0 and >z L to a negative value in the interval < <z L0 .
For sufficiently large Lwe can consider the domainwall at z=0 separately from the one at z=L. At energy
= E D 00 ( ) there is a bound state at z=0withwave function

⎜ ⎟⎛
⎝

⎞
⎠ òy n y= 


¢ D ¢ z

c
z zexp

1
d 0 . 5.3

z

y
0

( ) ( ) ( ) ( )

This should be a decaying function of z∣ ∣, so y =  i0 1,( ) ( ) is an eigenstate of ny with eigenvalue±1.
Figure 7 shows that the bound state is a charge-neutral quasiparticle. There is one state at energy+D 00 ( ) and

a second state at-D 00 ( ), but because the BdG equation doubles the spectrumonly a singleMajorana fermion is
trapped at z=0. A secondMajorana fermion is trapped at z=L. All of this is for a single orbitalmode n.We
have found numerically that the critical barrier heightUc is weakly n-dependent, so a domainwall traps one
Majorana fermion per orbital subband.

6. Analyticalmode-matching calculation

6.1.Hamiltonianwith spatially dependent coefficients
To analytically substantiate our numerical findings we have performed amode-matching calculation in the slab
geometry offigure 1(b), matching electron and holemodes in the normal (N) region < <x W0 to Bogoliubov
quasiparticles in the superconducting (S) regions <x 0, >x W . This procedure can be greatly simplified if we
choose a single BdGHamiltonianHwith x-dependent coefficients, rather than the different HW and HS of

10
Infigures 2, 4, and 7we also added a small offset of - t10 4

0 to mW to break the electron-hole degeneracy.
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section 4—the former choice is a less realisticmodel of an SNS junction than the latter, but as wewill see the
results are essentially equivalent.

Our starting point is therefore theHamiltonian

n t s s s
n t s ln t s bn t s

m n t s n t s

= + +
+ + +
- + D

H t k t k t k

m

x x

sin sin sin

, 6.1

z z x x y y z z z

z x z z z

z x

0 0 0 0

0 0 0 0

( )

( ) ( ) ( )

with chemical potential m x( ), pair potentialD x( ), andmass term

= + - - + -km m t k k t k2 cos cos 1 cos . 6.2x y z z0( ) ( ) ( ) ( )

Wewill compare our analyticalmode-matching calculation to a numerical solution of the discretized
Hamiltonian (6.1). For this analytics, but not for the numerics, wemake one further simplification, which is to
linearize theHamiltonian in the transversemomentum component kx, so that themode-matching calculation
requires the solution of a set offirst order differential equation in x.We thus replace k ksin x x and replace the
mass term (6.2) by

= + - + -m k k m t k t k, 1 cos 1 cos . 6.3y z y z z0˜ ( ) ( ) ( ) ( )

6.2. First-order decoupling of themode-matching equations
The Schrödinger equation y y=H E produces 8 coupled differential equations, and an attempt at direct
solution produces unwieldy results. Our approach is to partially decouple these by suitable unitary
transformations ofH.We take the inversion symmetry breaking strengthλ and chemical potentialμ as small
parameters and seek a decoupling up to corrections offirst or second order in l m, .

For afirst-order decoupling we rotate the nx and tx spinors by the unitaries

qn t s fn t s= =q fU Uexp i , exp i . 6.4y z z y z
1

2

1

2 0( ) ( ) ( )

The rotation angles q f, are x and kz-dependent,

q q= - D = D Dt k acos sin , sin , 6.5z zeff eff( ) ( )

f f= D =M m M bcos , sin , 6.5eff ˜ ( )

D = D +x x t k csin , 6.5z zeff
2 2 2( ) ( ) ( )

= + D +M x m x t k dsin . 6.5z z
2 2 2 2( ) ˜ ( ) ( )

Figure 7.Density of states (dot size) and local charge polarization (color) at =E t0.016 0 in anNS junction in the slab geometry11with
a z-dependent tunnel barrier height. The vertical dashed lines indicate the tunnel barrier at theNS interface. The horizontal lines
indicate the regions where the tunnel barrier heightUbarrier is varied from t0.3 0 to t0.5 0 and back, passing through the critical value

=U t0.411c 0 near z=0 and = ºz L50 . At these domainwalls the gap between a pair of surfacemodes (at given p=k 120y∣ ∣ )
closes and reopens, trapping a charge-neutral quasiparticle. The parameters are the same as infigure 4, with periodic boundary
conditions in the z-direction.

11
Figure 7 is for anNS junctionwith a single interface at positive and negative p= k 120y . Figures 2, 4, and 5 are for an SNS junction

with two interfaces at a single p=k 120y .
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Notice that q  - kcos sign z forD  0.We can avoid this discontinuity at kz=0 by keeping a small nonzero
Δ in the normal region.

The transformedHamiltonian,

n t s s n t s bn t s
m q n t s m q f n t s m q f n t s
l qn t s l q f n t s l q f n t s

=

= + - + +
- - -
+ + +

f q f q q fH U U HU U

t k k M V xsin

cos sin cos sin sin

sin cos cos cos sin , 6.6

z z x x y y z z z z b

z x z z x x

x z z z z x z

,

0 0

0 0 0

0 0

( ) ( )

( )

† † † †

is diagonal in the ν and τ degrees of freedomup to corrections offirst order in l m, , and up to a boundary
potentialVb(x) resulting from the commutator of = - ¶ ¶k xix and the x-dependent superconducting gap
D x( ) at theNS interface. In this sectionwe discard the boundary potential, to simplify the calculations—wewill
fully include it in the appendix.

The term mn t sµ x x 0 in theHamiltonian (6.6) can bemade diagonal in ν and τwith the unitary
transformation

=y f q y f q yH U P H P U a, 6.7, , 3 , 3 ( )† †

yn t s=yU bexp i , 6.7y
1

2 0 0( ) ( )

⎛
⎝⎜

⎞
⎠⎟

t t s t t s
t t s t t s

=
+ -
- +

P c
1

2

i

i
, 6.7

z x y

z x y
3

0 0 0

0 0 0

( ) ( )
( ) ( ) ( )

y q f q= - - dcos 1 sin cos cos , 6.72 2 1 2( ) ( )

y q f f q= - - - esin 1 sin cos sin sin . 6.72 2 1 2( ) ( )

The four blocks in the shiftmatrix P3 (with =P 13
3( ) ) refer to the ν degree of freedom. The transformed

Hamiltonian is

d d= + +y f qH H H H a, 6.8, , diag diag offdiag ( )

n t s s n t s bn t s= + - +H t k k M bsin , 6.8z x x y y z z zdiag 0 0 0 0( ) ( )

d m n t s l n t s= - - D -H M t M k c1 sin , 6.8z z z zdiag
2 2 1 2

0 0 0 0( ) ( ) ( )

d m n t s l n t s n t s= D + - D - D-H M M m M t k dsin . 6.8y y z x z z z x x z zoffdiag
2 2 1 2( ) ( ) [ ˜ ( ) ] ( )

The symbol δ keeps track of the order in l m, of the diagonal (‘diag’) and off-diagonal (‘offdiag’) blocks.

6.3. Second-order decoupling via Schrieffer–Wolff transformation
The Schrieffer–Wolff transformation

⎜ ⎟⎛
⎝

⎞
⎠d d

d
n n d n n d= = º + + -d

y f q
d-H H S

s
s

s se e ,
0

0
i i , 6.9S S

x y x ySW
i

, ,
i 1

2

1

2
( ) ( ) ( )†

†

withHermitian off-diagonalmatrix dS given by

d d=S H H, i , 6.10diag offdiag[ ] ( )

removes the off-diagonal blocks up to corrections of second order in δ:

d d= + +H H H . 6.11SW diag diag
2( ) ( )

The solution of equation (6.10) is12

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥d

b
l

t t
m

t bs s s=
- D

-
D

-
D

+ -s
M M

m
t k

M M
tk t k

1

2

sin
i i sin . 6.12z

z z
x y y x x y2 2 1 2 0( )

˜ ( ) ( )

The Schrieffer–Wolffmatrix dS contributes terms of order d2 to the energy spectrum,which is given by the
eigenvalues of d d+ +H H Hdiag diag SW with

d d d d d d= + +H S H S Hi , i , . 6.13SW
1

2 offdiag diag
3[ ] [ ] ( ) ( )

12
To solve equation (6.10) for ds we substitute the block-decomposition

⎛
⎝⎜

⎞
⎠⎟= +

-
H

h

h

0

0
diag , ⎜ ⎟⎛

⎝
⎞
⎠d d

d
=H h

h
0

0
offdiag † of the 8×8matrices

Hdiag and dHoffdiag in the ν degree of freedom.We thus arrive at the equation d d d- =- +sh h s hi involving 4×4matrices. This Sylvester
equation has a unique solution (unless +h and -h have a common eigenvalue, which they do not).
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6.4.Dispersion relation of the surfacemodes
Themode-matching calculation at energyEwith theHamiltonian d+H Hdiag diag (not yet including the
Schrieffer–Wolff correction)now involves four uncoupled differential equations, labeled by n t Î - +, 1, 1{ },
for a two-component spinor y x( ):





n
y

s ns n b s y

mt l n

= + + + -

= - D +

t
x

E t k M

M t M k

d

d
i sin

1 sin . 6.14

x z y y

z z
2 2 1 2

[ ( ) ( ) ]

( ) ( ) ( )

We solve this for piecewise constant coefficients. For the normal (N) region at < <x W0 we choose

m mD = D = a, , 6.15N N ( )

and for the superconducting (S) region at <x 0 and >x W we choose

m mD = D = b, , 6.15S S ( )

demanding continuity of y x( ) at =x W0, .We keep afinite pair potentialDN in the normal region to avoid
the discontinuity at pz=0 noted in section 6.2.

To obtain the dispersion relation at a singleNS interface wemay take  ¥W andmatch decayingwave
functions at both sides of the interface at x=0. Such a bound surface state is possible if n b-M has the
opposite sign inN and S, which requires n = +1 (sinceβ andM are both positive).We denote ºM MN inN
and ºM MS in S, and similarly denote

⎪

⎪

⎧
⎨
⎩



m l - D + º




M t M k1 sin

in N,

in S.
6.16z z

2 2 1 2 N

S

( ) ( ) ( )

The sign±accounts for the quantumnumber τ in equation (6.14).
For a surface statewe need b- < - MN N∣ ∣, b- > MS S∣ ∣ in some interval of E k k, ,y z around zero.

Solution of equation (6.14) gives thewave function profile

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


y

k

b
=

-

+ + -
>k-






x C

t k

E M
xe

i i sin
, for 0, 6.17x t y

N
N

N N

N( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


y

k

b
=

- -

+ + -
<k






x C

t k

E M
xe

i i sin
, for 0, 6.18x t y

S
S

S S

S( ) ( )

with inverse decay lengths

k b= + - - + t k M Esin 6.19yN,S
2 2

N,S
2

N,S
2( ) ( ) ( )

on the normal and superconducting sides of theNS interface.
The amplitudes CN and CS are to be adjusted so that y x( ) is continuous at x=0. By requiring that the

matrix of coefficients of themode-matching equations has vanishing determinant, we arrive at the dispersion
relation of the surfacemodes,

 


b b
d= +

- - -
-

+

 

E k k t k
M M

M M
, sin , 6.20y z y

N S S N

S N

2( ) ( ) ( ) ( ) ( )

discarding terms of second order in m l, . The level crossing at kz=0, for a given ky, happens for
= -m t kcos 1y0 ( ). The corresponding charge expectation value m= - ¶ ¶Q e E is

b b d= - - - D - - - D +
-Q e M M M M M M1 1 , 6.21S N

1
N S

2
S
2

S N
2

N
2( ) [( ) ( ) ] ( ) ( )

one order in m l, less accurate than the energy.
Infigure 8we compare the numerical diagonalization of theHamiltonian (6.1)with the analyticalmode

matching calculation. Unlike the comparison infigure 4, here there is not a singlefit parameter. The agreement
is excellent for the energy, somewhat less for the average charge.

6.5. Effective surfaceHamiltonian
In section 3we constructed an effective surfaceHamiltonian by relying only on particle-hole symmetry. As an
alternative route, we present here a derivation starting from themodelHamiltonian (6.8).

Themotion perpendicular to theNS interface at x=0 is governed by the reducedHamiltonian

n t s n t s bn t s= - +Ĥ t k M , 6.22z x x z z z0 0 0 0 ( )
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with neglect of the terms m lµ , aswell as the ky and kz-dependent terms formotion parallel to the interface. The
wave function profile y x( ) at E=0,

⎡
⎣⎢

⎤
⎦⎥òy y n t s bn t s y=  = ¢ ¢ -^

-H x t x M x0 exp d 0 , 6.23
x

y z y
1

0
0 0 0( ) ( ( ) ) ( ) ( )

decays for  -¥x (inside the superconducting region) because of the term bµ -¥ >M ( ) and for
 +¥x (inside theWeyl semimetal region) because of the term bµ > ¥M ( ). This two-sided decay is

ensured if y 0( ) is an eigenstate with eigenvalue+1 of both n t sy0 0 and n t sz y0 . The resulting eigenspace has
rank two.

The 2×2 effective surfaceHamiltonian Heff formotion parallel to the surface is obtained by projectingH
onto this two-dimensional eigenspace, resulting in

t l t m t= - - - DH t k t M k Msin sin 1 . 6.24y z z zeff 0 0
2 2 1 2( ) ( ) ( )

The corresponding charge operator ismomentumdependent,

m t= - ¶ ¶ = - DQ e H e M1 . 6.25zeff eff
2 2 1 2( ) ( )

In this effective surface description the energy scalesΔ andμ should be regarded as weighted averages of the x-
dependent parameters from equation (6.15).

The two surfacemodes have opposite charge =  - DQ e M1 2 2 1 2( ) and dispersion relation

l m= - D + +  +
-E k t k m k k t k t k m k k t ksin , sin sin , sin , 6.26z y y z z z z z y z z z

2 2 2 2 1 2 2 2 2( ) ( ˜ ( ) ) [ ˜ ( ) ] ( )

representing the spiraling surface Fermi arc illustrated infigure 1. The±index corresponds to the ν index of
section 3, theκ index is taken care of by the sign of ksin y. The gap d = -+ -E E E0 0( ) ( ) at kz=0 equals

d
m

=
+ D

= + -E
m

m m t k
2 m

, 1 cos . 6.27y
eff

eff
2 2

eff 0∣ ( )∣ ( )

We interpret meff as the effective coupling strength of the surface state to the superconductor, and as the
parameter that in themicroscopicmodel of section 4 is varied by varyingUbarrier. The level crossing then happens
when =m 0eff . At the level crossing the excitations are charge neutral.

Wemay include the Schrieffer–Wolff correction, by projecting dHSW from equation (6.13) onto the surface
eigenspace. The result is a correction of order d2 to the effective surfaceHamiltonian,

⎛
⎝⎜

⎞
⎠⎟d

b
ml

t t
l l m t= -

D + D

- D
+ + D + DH

t k

M

t k Mm

M
m

sin

2
2

sin
. 6.28

y z z z x
eff 3

2

2 2

2 2 2 2 2 2
0

˜ ( ˜ ) ( )

Thedominant effect of this correction is to shift the level crossing away from kz=0 to l b= -k t t ksinz z y( )( ) .

Figure 8.Colored data points: energy spectrum (color scale as infigure 2) and average charge obtained from a numerical
diagonalization of the discretizedHamiltonian (6.1). The top row is form0=0.05, the bottom row for =m 00 , other parameters:
t=2, tz=1, l = 0, b = 0.6, m = D = -10N N

2, m = 0.2S ,D = 0.8S ,W=120, ky=0.01. The black dashed curves result directly
from the analyticalmode-matching calculation, equations (6.20) and (6.21),without any adjustable parameters.
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7. Conclusion

In summary, we have investigated the superconducting proximity effect on the dispersion relation of surface
modes in aWeyl-Majorana solenoid—aWeyl semimetal nanowirewith an axialmagnetization covered by a
superconductor. The surface Fermi arc connecting bulkWeyl cones is broken up into nearly charge-neutral
Majoranamodes.We have identified a ‘connectivity index’ that determines betweenwhich pair ofmodes a gap is
opened by the superconductor.

We have discovered that the sign of the induced gap can be inverted by variation of the tunnel coupling
strength between the semimetal and the superconductor. A domainwall separating segments of the nanowire
with opposite sign of the gap traps a charge-neutral quasiparticle. This boundMajorana fermion is not at zero
energy, so it should not be confusedwith theMajorana zero-modes in semiconductor nanowires [20–22]. The
gap inversion is studied for a 3DmodelHamiltonian, both numerically in a tight-binding formulation, and
analytically viamodematching at the normal-superconductor interface. Further insight is obtained by an
effective 2D surfaceHamiltonian.

In closingwe remark on a global aspect of the gap inversion in terms of the flowof Berry curvature
(topological charge) in the Brillouin zone [23]. Theminimal number of twoWeyl cones in aWeyl semimetal
with broken time-reversal symmetry is doubled if we include the electron-hole degree of freedom. The sign of
the Berry curvature at a given point in the Brillouin zone is not changed by the doubling [8], so the Fermi arc
connectingWeyl cones of opposite Berry curvaturemust still run across the Brillouin zone—but now it has a
choice: itmay connect cones of the same or opposite electrical charge. If we inspect figure 4we see that the Fermi
arcs always connectWeyl cones of the same electrical charge (coded blue or red), except at the gap inversion
point. At the critical tunnel barrier height =U Ucbarrier theMajorana surfacemodes connect bulk states of
opposite electrical charge (fromblue to red).

Infigure 4 the anomalous connection by Fermi arcs ofWeyl cones of opposite electrical charge and opposite
topological charge happens only at an isolated point in parameter space, because the superconductivity is
induced only at the surface of theWeyl semimetal. By inducing superconductivity throughout the bulk (for
example, using the heterostructure approach of [8]) one should be able to stabilize the anomalous connection in
an entire region of parameter space.We expect an anomalous Josephson effect to develop in theWeyl-Majorana
solenoid as a result of this topologically nontrivial connection.
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Appendix. Effect of the boundary potential on themode-matching calculation

The unitary transformations in section 6 introduce a boundary potential in theHamiltonian (6.8a), given by

⎡
⎣⎢

⎤
⎦⎥n t s

q f y n t s f y q y f n t s

f y q y f n t s

n t s

=-
¶
¶

= ¢ + ¢ - ¢ + ¢

- ¢ - ¢

=-
D +

D

y f q q f yV x tU x P U x U x
x

U x U x P U x

t t

t

tm

x m

x

x

i ,

sin sin cos cos

cos sin cos

d

d
, A1

b z z x

z y x x x y

x z y

z

z
x x y

3 3

1

2

1

2
1

2
1

2
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( )
( ) ( )

† † † † † †

wherewe abbreviated

= +m m t ksin . A2z z z
2 2 2 1 2( ˜ ) ( )

For simplicity we omittedVb(x) from themode-matching calculations and the derivation of the effective surface
Hamiltonian in section 6. In the followingwe include it in the calculation, resulting in an improved agreement of
the analytics with the numerics butwithout simple closed-form expressions as equations (6.20) and (6.21).

The step-function variation of the pair potentialD x( ) at theNS interfaces =x W0, produces a delta-
function boundary potential. Let us focus on the interface at x=0, withD = DN for >x 0 andD = DS for
<x 0. Because of the boundary potential, thewave function does not vary continuously across theNS interface.

Instead, thewave functions at the two sides of the interface x=0 are related by the transfermatrix,
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 òy y n t s an t s= = - = -+ -
-

+

t
x V x0 e 0 ,

1
d , A3z x b y x z

i
NS

0

0

0
1

2
NS( ) ( ) ( ) ( )

where the angleα is given by the integral

òa = D
D +

=
D

-
D

D

D m

m m m
d arctan arctan . A4z

z z z
2 2

N S

S

N

( )

Note that at the level crossing point we havemz=0 hence a = 0, so the level crossing itself is not affected by the
boundary potential.

As explained in section 6.5, to obtain the effective surfaceHamiltonianwe impose a two-sided decay of the
wave function, by demanding thatψ is an eigenstate with eigenvalue+1 of n t sy0 0 in S and of n t sz y0 inN. The
former condition can be rewritten as a boundary condition inN,

 y y n t s= =+ + -U U0 0 , e e . A5b b y
i

0 0
iNS NS( ) ( ) ( )

Note thatUb and n t sz y0 commute, so they can be diagonalized simultaneously. The rank two eigenspace of
eigenvalue+1 is spanned by the vectors

a a a a
a a a a

= - - +
= - - +

v
v

0, 0, sin , i sin , 1 cos , i i cos , 0, 0 ,
sin , i sin , 0, 0, 0, 0, 1 cos , i i cos .

1

2

( )
( )

TheHamiltonian projected onto this eigenspace is

t g lt mt

g a a

= - -

= + D

H t k M t k m

m

sin sin ,

cos sin , A6

y z z z z

z

eff 0 0( ¯ )( )
( ¯ ) ( )

where the x-dependent gapD x( ) in the full Hamiltonian has been replaced by a spatial average D̄,
and = + DM mz

2 2 1 2¯ ( ¯ ) .
Comparisonwith equation (6.24) shows that the effect of the boundary potential is to renormalize the

parametersλ andμ by a factor γ. ForD  mzS wehave

g = D + D - D-m . A7zN
2 2 1 2

N( ) ( ¯ ) ( )

The fullmode-matching calculation of section 6.4 is alsomodified by the new boundary condition. Since
equation (A3)mixes the ν and τ indices, we can no longer use the block-diagonalization of theHamiltonian to
simplify themodematching, andwe could notfind a closed-form solution analogous to equations (6.20) and
(6.21). Including both the diagonal and off-diagonal terms in theHamiltonian (6.8)wefind the energy and
charge expectation value shown infigure A1 (dashed curves). The solid curves are the numerical solution of the
tight-bindingmodel. Comparisonwith figure 8, wherewe did not include the boundary potential and discarded

Figure A1.Colored data points: Energy spectrum (color scale as infigure 2) and average charge obtained from anumerical
diagonalization of the discretizedHamiltonian (6.1). The parameters are the same as infigure 8. The black dashed curves result from
themode-matching calculations including the boundary potential and the full Hamiltonian (with the off-diagonal terms).

12

New J. Phys. 19 (2017) 025006 PBaireuther et al



off-diagonal n t, terms in theHamiltonian, shows little difference in the energy but an improved agreement in
the charge.
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