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Abstract

A Weyl semimetal wire with an axial magnetization has metallic surface states (Fermi arcs) winding
alongits perimeter, connecting bulk Weyl cones of opposite topological charge (Berry curvature). We
investigate what happens to this ‘Weyl solenoid’ if the wire is covered with a superconductor, by
determining the dispersion relation of the surface modes propagating along the wire. Coupling to the
superconductor breaks up the Fermi arc into a pair of Majorana modes, separated by an energy gap.
Upon variation of the coupling strength along the wire there is a gap inversion that traps the Majorana
fermions.

1. Introduction

A three-dimensional Weyl semimetal has topological features that are lacking in its two-dimensional
counterpart, graphene [ 1-3]. One striking feature is the appearance of surface states, in Fermi arcs connecting
Weyl cones of opposite topological charge (Chern number or Berry curvature) [4]. Unlike the surface states of a
topological insulator, which are the only source of metallic conduction, the Fermi arcs at the surface compete
with the Weyl cones in the bulk when it comes to transport properties. Quantum oscillations in the
magnetoresistance are one example of an effect where the Fermi arcs play a prominentrole [5, 6], the chiral
magnetic effect without Landau levels is another example [7].

An interesting way to differentiate surface from bulk s to bring the Weyl semimetal into contact with a
superconductor. While the Weyl cones in the bulk remain largely unaffected, the surface states acquire the
mixed electron-hole character of a charge-neutral Bogoliubov quasiparticle—a Majorana fermion [8—13]. Here
we investigate this proximity effect in the nanowire geometry of figure 1, in which an axial magnetization causes
the surface modes to spiral along the wire, essentially forming a solenoid on the nanoscale [7]. We study the
dispersion relation of the Majorana modes and identify a mechanism to trap the quasiparticles at a specified
location along the wire.

In the next section we identify the pair of Z, quantum numbers v, « that label the four surface modesina
given orbital subband. The electron-hole index v is generic for any surface state where electrons and holes are
coupled by Andreev reflection [14—-16]. The connectivity index « is specific for the Fermi arcs, it distinguishes
whether the surface state reconnects in the bulk with the Weyl cone at positive or negative energy. In section 3 we
constructthe4 x 4 matrix Hamiltonian in the v, & basis, constrained by particle-hole symmetry, as an effective
low-energy description of the two-dimensional surface modes.

We then proceed in section 4 with a numerical calculation of the three-dimensional band structure of a
microscopic model Hamiltonian. The unexpected feature revealed by this simulation is a gap inversion,
visible in the band structure as a level crossing between two surface modes with the same connectivity index.
The gap inversion can be controlled by variation of the tunnel coupling between the semimetal and the
superconductor. At the domain wall where the gap changes sign, a charge-neutral quasiparticle is trapped—as
we demonstrate numerically and explain within the context of the effective surface Hamiltonian in section 5.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Panel (a) Weyl-Majorana solenoid, formed by a Weyl semimetal wire with an axial magnetization, coupled via a tunnel
barrier to a superconductor. Charge-neutral Majorana modes propagate along the wire, confined to the normal-superconductor (NS)
interface. A gap inversion in a segment of length L, induced by a variation in coupling strength, traps a pair of quasiparticles at the two
ends of the segment. Panel (b) SNS slab geometry to study the Majorana modes at the NS interface.

In section 6 we study the same gap inversion analytically, viaa mode-matching calculation. In the concluding
section 7 we comment on the relation of the gap inversion to the flow of Berry curvature in the Brillouin zone.

2. Connectivity index of surface Fermi arcs

The geometry under consideration is shown in figure 1. A Weyl semimetal wire oriented along the z-axis is
covered by a superconductor. We include a thin insulating layer between the superconductor and the Weyl
semimetal, forming a tunnel barrier. A magnetization in the z-direction breaks time-reversal symmetry and
separates the Weyl cones along the p, momentum direction in the Brillouin zone. (Induced superconductivity in
the presence of time-reversal symmetry, with minimally four Weyl points, has a different phenomenology [13].)
The surface states connecting the Weyl cones are chiral, circulating with velocity v, in a direction set by the
magnetization. If inversion symmetry is broken the surface states also spiral with velocity v, along the wire [7].

As shown in figure 2, resulting from a model calculation described in section 4, at the interface with a
superconductor the surface spectrum is drastically modified. We seek an effective Hamiltonian that describes
this proximity effect on the Fermi arcs.

The first question we have to address is which pairs of states are coupled by the superconducting pair
potential A. In the bulk spectrum the answer is well known [8, 12]: Superconductivity couples electrons in a
Weyl cone of positive Berry curvature to holes in a Weyl cone of negative Berry curvature, and vice versa. To
decide this question for the surface states, we assign to each Fermi arc a ‘connectivity index’ x = %1, depending
on whether it reconnects in the bulk with the Weyl cone at positive or negative energy. Inspection of figure 2
shows that A predominantly couples Fermi arcs with same &, pushing them apart, without removing the
crossing between states of opposite «.

More explicitly, in a slab geometry we can identify x = sign k, and in a cylindrical wire geometry we would
have 1 = sign p,. The coupling of states with different £ is then forbidden by (translational or rotational)
symmetry. More generally, in the absence of any symmetry, the sign of K = 41 says whether the Fermi arc
connects with the Weyl cone at +E, and thus identifies which pairs of Fermi arcs are predominantly coupled by A.

3. Effective surface Hamiltonian

The superconducting proximity effect is governed by the Bogoliubov-De Gennes (BdG) Hamiltonian,
describing the coupling of electrons and holes by the pair potential. In the numerical simulations we will work
with the BAG Hamiltonian in a 3D microscopic model. For analytical insight we aim for an effective 2D
description involving only surface modes.

Each orbital subband # is associated with four Majorana modes, labeled by a pair of Z, indices «, v. (See
figure 2.) The connectivity index x = =+ identifies the connectivity of the surface mode (with the Weyl cone at
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Figure 2. Band structure of a Weyl semimetal in the slab geometry of figure 1(b), calculated from the tight-binding model described in
the text’. In panel (a) there is only the Weyl semimetal, in panel (b) the superconducting contacts have been added. Inversion
symmetry has not been broken, so the spectrum has +p, symmetry, in addition to the particle-hole symmetry E(p,) = —E(—p,).In
the slab geometry the transverse wave vector k, is a good quantum number, and to make the figure less crowded only subbands ata
single value of k, are shown. (The Fermi arcs in panel (a) are approximately at v, sin k;.) The superconductor breaks up the two
Dirac fermion surface modes in panel (a) into four Majorana fermion modes in panel (b), labeled by a pair of indices x, ¥ = %1. The
Majorana modes are nearly charge-neutral, as indicated by the color scale (with electron charge +e).

positive or negative energy), the electron-hole index v = = identifies the pair of Majorana fermions that form a
Dirac fermion. The corresponding BAG Hamiltonian H,isa4 x 4 matrix with p,-dependent elements. In what
follows we omit the subband index # for ease of notation.

The fundamental symmetry of the BAG Hamiltonian is particle-hole symmetry,

H(p,) = =Ky, H¥(=p) Ky 15 (3.1)

with Pauli matrices «,, and 1, acting, respectively on the connectivity and electron-hole degree of freedom
(=1, 2,3 — x, y, zand a = 0 for the unit matrix). The operation of particle-hole conjugation squares to
+1, which places the system in symmetry class D [17]—this is the appropriate symmetry class in the absence of
time-reversal and spin-rotation symmetry.

If we neglect the mixing by disorder of surface states with opposite connectivity index k = +,the4 x 4
matrix H decouples into two blocks H related by particle-hole symmetry,

H 0
H= ( o+ H,)’ H (p,) = —y,H{(—p)v, (3.2)
The2 x 2 matrices H. can be decomposed into Pauli matrices,
3
Hi(p,) = £Do(£p,)vo + ZDa(iPZ)Vm (3.3)
a=1

with real p,-dependent coefficients D,,.
Diagonalization of the Hamiltonian (3.2) gives the dispersion relation E, ,, (p,) of the four Majorana modes

in the nth subband,
3
E..(p,) = kDy(kp,) + v / S Di(kp,). (3.4)
a=1

Particle-hole symmetry is expressed by E, ., (p,) = —E_,,_, (—p,). Inversion symmetry, E,. , (p,) = E, ., (—p,),
is satisfied if Dy is an even function of p, while each of the functions D;, D,, D5 has a definite parity (even

or odd).

4. Numerical simulation of a microscopic model

We now turn to a microscopic model of a Weyl semimetal in contact with a superconductor, which we solve
numerically. The Weyl semimetal has BAG Hamiltonian

> The microscopic model parameters in the slab geometry of figure 2 are (energies in units of t, lengths in units of ap): t = 2,1, = 1,
my=—-03,A=0,6=06,f=7, fz =35, Hw = 1074, s = 3.5, Ubarrier = 0.1, Ag = 0.2, dpgrrier = 2, W = 120, ky = 7T/120~
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Figure 4. Data points: Band structure in the slab geometry (colored according to the charge expectation value), showing the level
crossing at p, = 0 between a pair of Majorana modes with k = +1, v = +1. The parameters are those of figure 2(b) (see footnote 5),
except for the tunnel barrier height Upyrier, Which is varied to tune through the gap inversion. The dashed curves are fits® to the
dispersion (4.5) from the effective surface Hamiltonian.

Hy (k) = v, 7, (toy sink, + to,sink, + t,0; sink;)
+ m(k)VszUO + )\VZTZUO + ﬁVOTOUz — KVzTp00,
m(k) =mg + t(2 — cosky — cosk,) + t;(1 — cosk,), (4.1)

with chemical potential 1+ and charge operator

OHwy

Q= —e on

= eV, Ty0yp. (4.2)

The Pauli matrices o, and 7, refer to spin and orbital degrees of freedom, respectively, while 2, acts on the
electron-hole index. The momentum k varies over the Brillouin zone |k,| < 7 of a simple cubiclattice (lattice
constant ag = 1). This is amodel of a layered material in the Bi,Se; family [18], with weak coupling #, < ¢ in the
z-direction, perpendicular to the layers in the x—y plane.

The particle-hole symmetry relation is

Hw (k) = —0, VJ,H{,kV(—k) oy Uy (4.3)

The magnetization term oc/3 breaks time-reversal symmetry, Hy (k) = 0, Hy/(—k)o,. Inversion symmetry,
Hy (k) = 7, Hw (—k) Ty, is broken by the strain term ocA.

The Weyl semimetal is in contact with a spin-singlet s-wave superconductor, with Hamiltonian
Hs = [{(2 — cosk, — cosk,) + 1,(1 — cosk,) v, 900 — i, To00 + Aol To0p. (4.4)
There are different chemical potentials in the Weyl semimetal, ;1 = 11y, and in the superconductor, p = pg. At

the NS interface we include an electrostatic potential barrier of width dpayrier, raising poto avalue p1y = Ubarrier-
The resulting spatial profile . (x) is shown in figure 3.

© The fit parameters used in figure 4 are Do (p,) = 0.016 + 0.035 pz2 +0.24 pz4, ¢ = 0.085, " = 0.056.
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Figure 5. Band structure in the slab geometry, showing the level crossing near p, = 0 between modes with the same connectivity
index. In the lower panels we show the crossing as a function of p, at fixed tunnel barrier height Upyyricr, in the upper panels we show
the crossing at fixed p, as a function of Upyrier. The parameters and color scale are those of figure 2(b) (see footnote 5), but we took a
nonzero fty, = 0.05 t, (notice the displacement of electron and hole bands in the bulk Weyl cones) in order to demonstrate that the
level crossing does not require a vanishing chemical potential. The level crossing also persists if inversion symmetry is broken by a
nonzero A = 0.05 t,, but the crossing point is displaced away from p, = 0 (compare black and red curves in panel (b), at p, = 0 and

b = -6 x 1074 / fay).
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Figure 6. Band structure in a wire geometry (square cross section”), showing all modes in the energy range —0.2 < E/t, < 0.2.(The
previous plots in the slab geometry showed only the modes with a single k, value, but in the wire k, is not a good quantum number.)
The gap between pairs of modes in the same subband and with the same connectivity index closes at p, = 0 upon variation of the
tunnel barrier height.

We consider the two geometries shown in figure 1, a wire geometry and a computationally more efficient
slab geometry®. In each case there is translational invariance along the z-direction. In the slab geometry there is
in addition translational invariance in the y-direction, so the modes are labeled by a continuous quantum

number k),.9

7 The microscopic model parameters in the wire geometry of figure 6 are (energies in units of o, lengths in units of ap): t = 2,t, = 1,
my=—03,A=0,8=06,F=7,F =35, 1y = 0.05, ig = 3.5, Ay = 0.4, dyarrier = 1, W = 79.

8 To discretize the model Hamiltonian we used the Kwant toolbox [19].

? The slab geometry has a -k, degeneracy in the spectrum, corresponding to surface states at the opposite NS interfaces x = 0, W.We
therefore only need to show a single sign of k, to obtain the full spectrum, as in figure 2.
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The dispersion relation in the slab geometry is shown in figure 2. The mode crossings at nonzero p, appear
because modes with different connectivity index x are uncoupled in the absence of disorder. In figure 4 we show
adifferent type of crossing, near p, = 0 between modes with the same «, induced by variation of the tunnel
barrier height. This crossing appears generically when we vary interface parameters, in figure 5 we show that it
persists at nonzero chemical potential i = /1, in the Weyl semimetal'’. Inversion symmetry breaking by a
nonzero A moves the crossing point away from p, = 0, but does not destroy it. The wire geometry gives similar
results, see figure 6.

To model this effect in the framework of the surface Hamiltonian (3.3), we take a momentum-independent
complex off-diagonal potential D; — iD, = A with amplitude Ay = ¢ (Upamier — U,) that crosses zero at some
critical barrier height U,. Inversion symmetry imposes a definite parity on the real diagonal potential
D3 = 11(p,), such that even a small admixture of an odd-parity component enforces 4. (0) = 0 when A = 0.If
wetake 1 (p,) = c’\ + ¢’p, the dispersion relation (3.4) in the pair of modes with x = +1 has the form

Eu(pz) = DO(PZ) + V\/Cz(Ubarrier - UC)Z + (C/)\ + C”PZ)Z- (4-5)

The dashed curves in figure 4 are fits to this functional form, with A = 0 and a quartic Dy (p,). The qualitative
behavior agrees reasonably well.

5. Quasiparticle trapping by gap inversion

The gap inversion of figure 4 can be used to trap a quasiparticle by varying the tunnel barrier height Up,pier (2)
(by means of a variation in the thickness of the insulating layer), from a value above the critical strength U, to a
value below U.. A demonstration of this effect in the slab geometry is shown in figure 7, where we plot the local
density of states and charge polarization (¢|1,|1) (¥|1p)! € (—1, +1) ateach site of the lattice.

In terms of the surface Hamiltonian, the quasiparticle trapping is described by the Schrodinger equation
H.v(z) = EY(z) with

. (i Do(£p,) + j1(£p,) AG) )]. 5.1)

AN (z) + Do(£p,) — p(Ep,

Wetakeareal A(z) = ¢(Uparier (2) — U) and, respectively, an even and odd p,-dependence of Dy and
i = c”p,—consistent with inversion symmetry. If we neglect quadratic terms in D, we have a matrix differential
equation of first order,

Firic'y, 32— [ B % D)o — A Jv:@). (5.2)
dz

Let A(z) /c” vary from a positive value for z < 0 and z > L to anegative value in the interval 0 < z < L.
For sufficiently large L we can consider the domain wall at z = 0 separately from the oneatz = L. Atenergy
E = +D;(0) there is abound state at z = 0 with wave function

bo(z) = exp(i% j; “dz A(z’)uy)wi(O). (5.3)

This should be a decaying function of |2|, so ¢1.(0) = (1, ) is an eigenstate of v/, with eigenvalue 1.

Figure 7 shows that the bound state is a charge-neutral quasiparticle. There is one state at energy + Dy (0) and
asecond state at — Dy (0), but because the BAG equation doubles the spectrum only a single Majorana fermion is
trapped at z = 0. A second Majorana fermion is trapped atz = L. All of this is for a single orbital mode n. We
have found numerically that the critical barrier height U, is weakly n-dependent, so a domain wall traps one
Majorana fermion per orbital subband.

6. Analytical mode-matching calculation

6.1. Hamiltonian with spatially dependent coefficients

To analytically substantiate our numerical findings we have performed a mode-matching calculation in the slab
geometry of figure 1(b), matching electron and hole modes in the normal (N) region 0 < x < W to Bogoliubov
quasiparticles in the superconducting (S) regions x < 0, x > W. This procedure can be greatly simplified if we
choose a single BAG Hamiltonian H with x-dependent coefficients, rather than the different Hyy and Hg of

101, figures 2,4, and 7 we also added a small offset of 10™* £, to 1y to break the electron-hole degeneracy.

6
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Figure 7. Density of states (dot size) and local charge polarization (color) at E = 0.016 ¢, in an NS junction in the slab geometry'' with
az-dependent tunnel barrier height. The vertical dashed lines indicate the tunnel barrier at the NS interface. The horizontal lines
indicate the regions where the tunnel barrier height Upyrier is varied from 0.3 £, to 0.5 t; and back, passing through the critical value
U. = 0.411 tynearz = Oand z = 50 = L. At these domain walls the gap between a pair of surface modes (at given |k,| = 7/120)
closes and reopens, trapping a charge-neutral quasiparticle. The parameters are the same as in figure 4, with periodic boundary
conditions in the z-direction.

section 4—the former choice is a less realistic model of an SNS junction than the latter, but as we will see the
results are essentially equivalent.
Our starting point is therefore the Hamiltonian

H = v,7,(toy sink, + to, sink, + t,0, sink;,)
+ mu, T 00 + A\, T,00 + BroToo,
— 1 xX) v, To00 + A(X) v T 00, (6.1)

with chemical potential y (x), pair potential A (x), and mass term
m(k) = mo + t(2 — cosk, — cosk,) + t,(1 — cosk,). (6.2)

We will compare our analytical mode-matching calculation to a numerical solution of the discretized
Hamiltonian (6.1). For this analytics, but not for the numerics, we make one further simplification, which is to
linearize the Hamiltonian in the transverse momentum component k,, so that the mode-matching calculation
requires the solution of a set of first order differential equation in x. We thus replace sin k, — k, and replace the
mass term (6.2) by

i(ky, k;) = mo + t(1 — cosk,) + t,(1 — cosk,). (6.3)

6.2. First-order decoupling of the mode-matching equations
The Schrodinger equation Hy) = Et produces 8 coupled differential equations, and an attempt at direct
solution produces unwieldy results. Our approach is to partially decouple these by suitable unitary
transformations of H. We take the inversion symmetry breaking strength A and chemical potential 4 as small
parameters and seek a decoupling up to corrections of first or second order in A, p.

For a first-order decoupling we rotate the v, and 7, spinors by the unitaries

Uy = exp (%i@VyTZ O'Z), Uy = exp(%igbl/oTyaz). (6.4)
The rotation angles 6, ¢ are xand k,-dependent,
cosf = —(t, /Aeg)sink,, sinf = A/Aegs, (6.5a)
cosp = Aeg /M, sing = m/M, (6.5b)
A (x) = \/Az(x) + t2sin’k,, (6.5¢)
M (x) = m? + D(x) + t2sin’k,. (6.5d)

1 Figure 7 is for an NS junction with a single interface at positive and negative k, = 47 /120. Figures 2, 4, and 5 are for an SNS junction
with two interfaces atasingle k, = 7/120.
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Notice that cos § — —sign k, for A — 0. We can avoid this discontinuity at k, = 0 by keeping a small nonzero
A in the normal region.
The transformed Hamiltonian,

Hy¢=U]U/HU, U]
=t 7, (0xky + 0y sink,) — My, 7,0, + BroToo; + Vi (x)
— pcost v, oy — psinf cos ¢ VT, 0, — psinfsin g vy Ty 0
+ Asin Qv 7y 0, + Acos@ cos ¢ v, T, og + AcosOsinp v, T, 0y, (6.6)

is diagonal in the v and 7 degrees of freedom up to corrections of first order in A, i, and up to aboundary
potential Vj(x) resulting from the commutator of k, = —i0/0x and the x-dependent superconducting gap
A (x) at the NS interface. In this section we discard the boundary potential, to simplify the calculations—we will
fully include it in the appendix.

The term ocpiv, 7y 0p in the Hamiltonian (6.6) can be made diagonal in v and 7 with the unitary
transformation

Hy, 40 = U P} Hy P35 Uy, (6.7a)
Uy = exp (%wyoTyao), (6.7b)
To + T2)og (T — 1T,) 0
3:l(o Yoo ( 'y)()’ 6.70)
2\ (0 — oo (7 + i7)) 09
cos®) = (1 — sin?@ cos? ¢)~'/2 cos 0, (6.7d)
sinty) = —(1 — sin®6 cos? )~ '/2 sin ¢ sin 6. (6.7¢)
The four blocks in the shift matrix P; (with (P;)*> = 1) refer to the v degree of freedom. The transformed
Hamiltonian is
Hze,“',¢,0 = Hdiag + 6Hdiag + 6Hoffdiag’ (680)
Hgiog = v, (0xky + 0, sink,) — My, 190, + Brym0s, (6.8b)
6Hgiag = —p1(1 — A2 /M 217,00 — A(t; /M) v, 1900 sink;, (6.8¢)
6Hoftgiag = H(A/M)vy1y0, + AM? — A2 [0, — (A/ M)t v, T 0, sink, ). (6.8d)
The symbol § keeps track of the order in A, 1 of the diagonal (‘diag’) and off-diagonal (‘offdiag’) blocks.
6.3. Second-order decoupling via Schrieffer—Wolff transformation
The Schrieffer—Wolff transformation
Hew = eSH,, , je=i85, 55 = [ © bs) _ L, + iv)8s + (v, — iv) 85t (6.9)
SW — P, ¢p,0 > — 6ST 0 =57 Wx y 5 Wx y > .
with Hermitian off-diagonal matrix 4S given by
[5S, Hdiag] = iCSHoffdiag) (6.10)
removes the off-diagonal blocks up to corrections of second order in 6:
Hgw = Hdiag + 0Hdiag + O(6?). (6.11)
The solution of equation (6.10) is'*
1 A . At, sink, BA . .
bs = mr, — ————7 | — —i7, |(iBoy + o, tk, — oyt sink,). 6.12
mM[(MZ—AZ)l/Z( M ) M y](ﬁo / 2 (612)

The Schrieffer—Wolff matrix S contributes terms of order 6 to the energy spectrum, which is given by the
eigenvalues of Hgjog + 0Hdgiag + OHsw with

8Hsw = $1[6S, 6Hofiding] + 1[6S, 6Haiag] + O(6?). (6.13)

1214 solve equation (6.10) for &s we substitute the block-decomposition Hygj,y = }(;+ ho » OHoffdiag = ((;)hlf é}(l)) ofthe 8 x 8 matrices

Hiag and 6Hogdiag in the v degree of freedom. We thus arrive at the equation dsh_ — h+657: i6h involving4 x 4 matrices. This Sylvester
equation has a unique solution (unless 4 and h_ have acommon eigenvalue, which they do not).

8
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6.4. Dispersion relation of the surface modes

The mode-matching calculation at energy E with the Hamiltonian Hyj,g + 6Hgieg (not yet including the
Schrieffer—Wolff correction) now involves four uncoupled differential equations, labeled by v, 7 € {—1, +1},
for a two-component spinor ¥ (x):

ty% = [i(E + U)oy + tvo,sink, + (Mv — B)o, ]y

U=pr(1 — N/MH/2 + X, /M)vsink,. (6.14)

We solve this for piecewise constant coefficients. For the normal (N) regionat 0 < x < W we choose

A=AN p= iy (6.15a)
and for the superconducting (S) region at x < 0 and x > W we choose

A=As, p=ps (6.15b)

demanding continuity of 1) (x) at x = 0, W. We keep a finite pair potential Ay in the normal region to avoid
the discontinuity at p, = 0 noted in section 6.2.

To obtain the dispersion relation at a single NS interface we may take W — oo and match decaying wave
functions at both sides of the interface at x = 0. Such a bound surface state is possible if M — [ has the
opposite sign in N and S, which requires v = 41 (since fand M are both positive). We denote M = My in N
and M = M;in S, and similarly denote

£ -
a1 — N/MAV? £ AL/ M)sink, = {ui n N, (6.16)
g inS.
Thesign £ accounts for the quantum number 7in equation (6.14).

For a surface state weneed My — 3 < —|U%|, Ms — 8 > |U3|in some interval of E, k,, k, around zero.

Solution of equation (6.14) gives the wave function profile

.4 ..
iky — it sink
P (x) = Cye W/t Ni 7|, for x>0, (6.17)
E+ U+ My — 0
.+ ..
— ik — itsink
Y (x) = CgeXs/t Si 7|, for x <O, (6.18)
E+ U+ Ms— B
with inverse decay lengths
Kis = Y1 sinky + (Mys — B — (B + U g)? (6.19)

on the normal and superconducting sides of the NS interface.

The amplitudes Cy and Cs are to be adjusted so that 1/ (x) is continuous at x = 0. By requiring that the
matrix of coefficients of the mode-matching equations has vanishing determinant, we arrive at the dispersion
relation of the surface modes,

(My — BUT — (Ms — BUY

+ 08, 6.20
YA ) (6.20)

Eilky, k,) = tsink, +

discarding terms of second order in y, A. Thelevel crossingatk, = 0, for a given k,, happens for
my = t(cosk, — 1). The corresponding charge expectation value Q = —edE/0p is

Qs = Fe(Ms — My)"'[(My — B)y1 — AY/MS — (Ms — B)§1 — AY/MZ] + O(6), (6.21)

oneorder in y, Alessaccurate than the energy.

In figure 8 we compare the numerical diagonalization of the Hamiltonian (6.1) with the analytical mode
matching calculation. Unlike the comparison in figure 4, here there is not a single fit parameter. The agreement
is excellent for the energy, somewhat less for the average charge.

6.5. Effective surface Hamiltonian
In section 3 we constructed an effective surface Hamiltonian by relying only on particle-hole symmetry. As an
alternative route, we present here a derivation starting from the model Hamiltonian (6.8).

The motion perpendicular to the NS interface at x = 0is governed by the reduced Hamiltonian

H, = tv,190.ky — My, 190, + (o003, (6.22)
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energy

Pz [A/ao]

Figure 8. Colored data points: energy spectrum (color scale as in figure 2) and average charge obtained from a numerical
diagonalization of the discretized Hamiltonian (6.1). The top row is for my = 0.05, the bottom row for my = 0, other parameters:
t=2t=1,X=0,3=06, uy = Ay = 1072, g = 0.2, Ag = 0.8, W = 120, k, = 0.01. The black dashed curves result directly
from the analytical mode-matching calculation, equations (6.20) and (6.21), without any adjustable parameters.

with neglect of the terms oy, A as well as the k;, and k,-dependent terms for motion parallel to the interface. The
wave function profile ¢ (x)at E = 0,

H Y =0= () =exp [tilj(;x dx'(M (x")vero0, — ,BZ/ZTOO'),):IT/}(O), (6.23)

decays for x — — oo (inside the superconducting region) because of the term «cM (—o0) > (3 and for

x — 400 (inside the Weyl semimetal region) because of the term o3 > M (00). This two-sided decay is
ensured if 1 (0) is an eigenstate with eigenvalue +1 of both 17y 0, and v, 7 0,. The resulting eigenspace has
rank two.

The2 x 2 effective surface Hamiltonian Heg for motion parallel to the surface is obtained by projecting H
onto this two-dimensional eigenspace, resulting in

He = Tot sink, — A(t,/M)Tysink, — p(1 — A2/ M?)'/ 27, (6.24)
The corresponding charge operator is momentum dependent,
Qeff = —€ OHegs /Op = e(1 — N /MP)!/ 27, (6.25)

In this effective surface description the energy scales A and y should be regarded as weighted averages of the x-
dependent parameters from equation (6.15).
The two surface modes have opposite charge Q. = e (1 — A?/M?)'/? and dispersion relation

Ei(k;) = tsink, — (A + > (ky, k.) + £2sin2k,) /2 [\, sink, £ pyfii? (k) ko) + t2sin’k.],  (6.26)

representing the spiraling surface Fermi arc illustrated in figure 1. The + index corresponds to the vindex of
section 3, the x index is taken care of by the sign of sin k. The gap 6E = E,(0) — E_(0) atk, = Oequals

2 pmegr
ym + &

We interpret m. as the effective coupling strength of the surface state to the superconductor, and as the
parameter that in the microscopic model of section 4 is varied by varying Upayrier- The level crossing then happens
when m.g = 0. At the level crossing the excitations are charge neutral.

We may include the Schrieffer—Wolff correction, by projecting éHsw from equation (6.13) onto the surface
eigenspace. The result is a correction of order §? to the effective surface Hamiltonian,

O0E = Mgt = |mo + t(1 — cosk,)|. (6.27)

tsink N7, t,sink, + AMih
SHup = — y( Tt SInk, + MTy

2pM° VM2 — A

The dominant effect of this correction is to shift the level crossing away from k, = 0to k, = —(\/B)(t/t,)sink,,.

+ (V% + A+ MN)TOJ. (6.28)
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7. Conclusion

In summary, we have investigated the superconducting proximity effect on the dispersion relation of surface
modes in a Weyl-Majorana solenoid—a Weyl semimetal nanowire with an axial magnetization covered by a
superconductor. The surface Fermi arc connecting bulk Weyl cones is broken up into nearly charge-neutral
Majorana modes. We have identified a ‘connectivity index’ that determines between which pair of modes a gap is
opened by the superconductor.

We have discovered that the sign of the induced gap can be inverted by variation of the tunnel coupling
strength between the semimetal and the superconductor. A domain wall separating segments of the nanowire
with opposite sign of the gap traps a charge-neutral quasiparticle. This bound Majorana fermion is not at zero
energy, so it should not be confused with the Majorana zero-modes in semiconductor nanowires [20-22]. The
gap inversion is studied for a 3D model Hamiltonian, both numerically in a tight-binding formulation, and
analytically via mode matching at the normal-superconductor interface. Further insight is obtained by an
effective 2D surface Hamiltonian.

In closing we remark on a global aspect of the gap inversion in terms of the flow of Berry curvature
(topological charge) in the Brillouin zone [23]. The minimal number of two Weyl cones in a Weyl semimetal
with broken time-reversal symmetry is doubled if we include the electron-hole degree of freedom. The sign of
the Berry curvature at a given point in the Brillouin zone is not changed by the doubling [8], so the Fermi arc
connecting Weyl cones of opposite Berry curvature must still run across the Brillouin zone—but nowithasa
choice: it may connect cones of the same or opposite electrical charge. If we inspect figure 4 we see that the Fermi
arcs always connect Weyl cones of the same electrical charge (coded blue or red), except at the gap inversion
point. At the critical tunnel barrier height Upapier = U, the Majorana surface modes connect bulk states of
opposite electrical charge (from blue to red).

In figure 4 the anomalous connection by Fermi arcs of Weyl cones of opposite electrical charge and opposite
topological charge happens only at an isolated point in parameter space, because the superconductivity is
induced only at the surface of the Weyl semimetal. By inducing superconductivity throughout the bulk (for
example, using the heterostructure approach of [8]) one should be able to stabilize the anomalous connection in
an entire region of parameter space. We expect an anomalous Josephson effect to develop in the Weyl-Majorana
solenoid as a result of this topologically nontrivial connection.
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Appendix. Effect of the boundary potential on the mode-matching calculation
The unitary transformations in section 6 introduce a boundary potential in the Hamiltonian (6.8a), given by
Vi (x) = — itU} (x) P} U} (x) U (x) 1.7 0% [;, Uj (x) U (x)P5Uy, (x)]
X

= ;t(t‘)’sinqﬁ + Y100 — %t(qS’sinLZJ + 0 cos ) cos P) v, T, 0,
— %t(d)’ cosyp — 0'sin1) cos P) 1,1, 0,

5t dAE)
N(x) + m?  dx

Uy Tx Oy (A1)

where we abbreviated
m, = (m? + t2sin*k,)!/2. (A2)

For simplicity we omitted V,(x) from the mode-matching calculations and the derivation of the effective surface
Hamiltonian in section 6. In the following we include it in the calculation, resulting in an improved agreement of
the analytics with the numerics but without simple closed-form expressions as equations (6.20) and (6.21).

The step-function variation of the pair potential A (x) at the NS interfaces x = 0, W produces a delta-
function boundary potential. Let us focus on the interface atx = 0, with A = Ay for x > 0and A = Agfor
x < 0.Because of the boundary potential, the wave function does not vary continuously across the NS interface.
Instead, the wave functions at the two sides of the interface x = 0 are related by the transfer matrix,
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charge energy

(Q/e)
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S
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Figure A1. Colored data points: Energy spectrum (color scale as in figure 2) and average charge obtained from a numerical
diagonalization of the discretized Hamiltonian (6.1). The parameters are the same as in figure 8. The black dashed curves result from
the mode-matching calculations including the boundary potential and the full Hamiltonian (with the off-diagonal terms).

O+

. 1
P(0F) = eMwsyp(07), Mys = —— dx v, 70, Vp (x) = _%aVyTxUz: (A3)
tJoo
where the angle « is given by the integral
A
o= Y aA Lz = arctan A arctan ﬁ (A4)
As A? + m; m, m,

Note that at the level crossing point we have m, = 0 hence ac = 0, so thelevel crossing itselfis not affected by the
boundary potential.

As explained in section 6.5, to obtain the effective surface Hamiltonian we impose a two-sided decay of the
wave function, by demanding that v is an eigenstate with eigenvalue +1 of 4y 790, in S and of 1/, 790}, in N. The
former condition can be rewritten as a boundary condition in N,

P01 = Uyt (01), Uy = eMvygryoye M, (A5)
Note that Uy, and v, 70, commute, so they can be diagonalized simultaneously. The rank two eigenspace of
eigenvalue +1 is spanned by the vectors
v = (0, 0, sinq, isina, 1 — cosa, —1 + icosa, 0, 0),
v, = (sina, isina, 0, 0, 0, 0, 1 — cosa, —1 + 1cos ).

The Hamiltonian projected onto this eigenspace is

Hee = 7ot sink, — (y/M)(Anot, sink, — pr,m,),
v =cosa + (A/m,)sina, (A6)

where the x-dependent gap A (x) in the full Hamiltonian has been replaced by a spatial average A,
and M = (m? + AH/2,

Comparison with equation (6.24) shows that the effect of the boundary potential is to renormalize the
parameters A and p by a factor . For Ag >> m, we have

v = (A% + mH V2 (Ax — A). (A7)

The full mode-matching calculation of section 6.4 is also modified by the new boundary condition. Since
equation (A3) mixes the v and 7 indices, we can no longer use the block-diagonalization of the Hamiltonian to
simplify the mode matching, and we could not find a closed-form solution analogous to equations (6.20) and
(6.21). Including both the diagonal and off-diagonal terms in the Hamiltonian (6.8) we find the energy and
charge expectation value shown in figure A1 (dashed curves). The solid curves are the numerical solution of the
tight-binding model. Comparison with figure 8, where we did not include the boundary potential and discarded
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off-diagonal v, 7 terms in the Hamiltonian, shows little difference in the energy but an improved agreement in
the charge.
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