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Abstract

In the first paper of this series, we study the level population problem of recombining carbon ions. We focus our
study on high quantum numbers, anticipating observations of carbon radio recombination lines to be carried out by
the Low Frequency Array. We solve the level population equation including angular momentum levels with
updated collision rates up to high principal quantum numbers. We derive departure coefficients by solving the level
population equation in the hydrogenic approximation and including low-temperature dielectronic capture effects.
Our results in the hydrogenic approximation agree well with those of previous works. When comparing our results
including dielectronic capture, we find differences thatwe ascribe to updates in the atomic physics (e.g., collision
rates) and to the approximate solution method of the statistical equilibrium equations adopted in previous studies.
A comparison with observations is discussed in an accompanying article, as radiative transfer effects need to be
considered.
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1. Introduction

The interplay of stars and their surrounding gas leads to the
presence of distinct phases in the interstellar medium (ISM) of
galaxies (e.g., Field et al. 1969; McKee & Ostriker 1977).
Diffuse atomic clouds (the cold neutral medium, CNM) have
densities of about -50 cm 3 and temperatures of about 80 K,
where atomic hydrogen is largely neutral but carbon is singly
ionized by photons with energies between 11.2 and 13.6 eV.
The warmer (~8000 K) and more tenuous (~ -0.5 cm 3)
intercloud phase is heated and ionized by far ultraviolet
(FUV)and extreme ultraviolet (EUV)photons escaping from
H II regions (Wolfire et al. 2003), usually referred to as the
warm neutral medium (WNM) and warm ionized medium
(WIM). The phases of the ISM are often globally considered to
be in thermal equilibrium and in pressure balance (Savage &
Sembach 1996; Cox 2005). However, the observed large
turbulent width and presence of gas at thermally unstable,
intermediate temperatures attests to the importance of heating
by kinetic energy input. In addition, the ISM also hosts
molecular clouds, where hydrogen is in the form of H2 and self-
gravity plays an important role. All of these phases are directly
tied to key questions on the origin and evolution of the ISM,
including the energetics of the CNM, WNM, and the WIM; the
evolutionary relationship of atomic and molecular gas; the
relationship of these ISM phases with newly formed stars; and
the conversion of their radiative and kinetic power into thermal
and turbulent energy of the ISM (e.g., Elmegreen & Scalo 2004;
Scalo & Elmegreen 2004; Cox 2005; McKee & Ostriker 2007).

The neutral phases of the ISM have been studied using
optical and UV observations of atomic lines. These observa-
tions can provide the physical conditions but are limited to
pinpoint experiments toward bright background sources and are
hampered by dust extinction (Snow & McCall 2006). At radio
wavelengths, dust extinction is not important, and observations
of the 21 cm hyperfine transition of neutral atomic hydrogen

have been used to study the neutral phases (e.g., Weaver &
Williams 1973; Heiles & Troland 2003b; Kalberla et al. 2005).
On a global scale, these observations have revealed the
prevalence of the two-phase structure in the ISM of cold
clouds embedded in a warm intercloud medium, but they have
also pointed out challenges to this theoretical view (Kulkarni &
Heiles 1987, p. 87; Kalberla & Kerp 2009). It has been
notoriously challenging to determine the physical character-
istics (density, temperature) of the neutral structures in the ISM
becauseseparating the cold and warm components is challen-
ging (e.g., Heiles & Troland 2003a). In this context, carbon
radio recombination lines (CRRLs) provide a promising tracer
of the neutral phases of the ISM (e.g., Peters et al. 2011; Oonk
et al. 2015a).
Carbon has a lower ionization potential (11.2 eV) than

hydrogen (13.6 eV) and can be ionized by radiation fields in
regions where hydrogen is largely neutral. Recombination of
carbon ions with electrons to high Rydberg states will lead to
CRRLs in the submillimeter to decameter wavelength range.
CRRLs have been observed in the ISM of our Galaxy toward
two types of clouds: diffuse clouds (e.g., Konovalenko & Sodin
1981; Erickson et al. 1995; Roshi et al. 2002; Stepkin
et al. 2007; Oonk et al. 2014) and photodissociation regions
(PDRs), the boundaries of H II regions and their parent
molecular clouds (e.g., Natta et al. 1994; Wyrowski
et al. 1997; Quireza et al. 2006). The first low-frequency
(26.1 MHz) CRRL was detected in absorption toward the
supernova remnant Cas A by Konovalenko & Sodin (1980)
(wrongly attributed to a hyperfine structure line of N14 ,
Konovalenko & Sodin 1981). This line corresponds to a
transition occurring at high quantum levels (n= 631).
Recently, Stepkin et al. (2007) detected CRRLs in the range
25.5–26.5 MHz toward Cas A, corresponding to transitions
involving levels as large as n=1009.
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Observations of low-frequency carbon recombination lines
can be used to probe the physical properties of the diffuse ISM.
However, detailed modeling is required to interpret the
observations. Watson et al. (1980), Walmsley & Watson
(1982) showed that, at low temperatures ( T 100 Ke ),
electrons can recombine with carbon ions by simultaneously
exciting the –P P2

1 2
2

3 2 fine structure line, a process known as
dielectronic capture.3 Such aprocess occurs to high n
statesand can explain the behavior of the high-nCRRLs
observed toward Cas A. Walmsley & Watson (1982) modified
the code from Brocklehurst & Salem (1977) to include
dielectronic recombination. Payne et al. (1994) modified the
code to consider transitions up to 10,000 levels. All of these
results assume a statistical distribution of the angular
momentum levels, an assumption that is not valid at
intermediate levels for low temperatures. Moreover, the lower
the temperature, the higher the n level for which that
assumption is not valid.

The increased sensitivity, spatial resolution, and bandwidth of
the Low Frequency Array (LOFAR;van Haarlem et al. 2013) is
opening the low-frequency sky to systematic studies of high
quantum number radio recombination lines. The recent detection
of high-level CRRLs using LOFAR toward the line of sight of
Cas A (Asgekar et al. 2013), Cyg A (Oonk et al. 2014), and the
first extragalactic detection in the starburst galaxy M82 (Morabito
et al. 2014) illustrate the potential of LOFAR for such studies.
Moreover, pilot studies have demonstrated that surveys of low-
frequency radio recombination lines of the galactic plane are
within reach, providing a new and powerful probe of the diffuse
ISM. These new observations have motivated us to reassess
some of the approximations made by previous works and to
expand the range of applicability of recombination line theory in
terms of physical parameters. In addition, increased computer
power allows us to solve the level population problem
considering a much larger number of levels than ever before.
Furthermore, updated collision rates are now available (Vrin-
ceanu et al. 2012), allowing us to explicitly consider the level
population of quantum angular momentum sublevels to high
principal quantum number levels. Finally, it can be expected that
the Square Kilometer Array(SKA)will further revolutionize our
understanding of the low-frequency universe with even higher
sensitivity and angular resolution (Oonk et al. 2015a).

In this work, we present the method to calculate the level
population of recombining ions and provide some example
results applicable to low-temperature diffuse clouds in the ISM.
In an accompanying article (Salgado et al. 2017, from here on
Paper II), we will present results specifically geared toward radio
recombination line studies of the diffuse ISM. In Section 2, we
introduce the problem of level population of atoms and the
methods to solve this problem for hydrogen and hydrogenic
carbon atoms. We also present the rates used in this work to solve
the level population problem. In Section 3, we discuss our results,
focusing on hydrogen and carbon atoms. We compare our results
in terms of the departure coefficients with previous results from
the literature. In Section 4, we summarize our results and provide
the conclusions of the present work.

2. Theory

A large fraction of our understanding of the physical
processes in the universe comes from observations of atomic
lines in astrophysical plasmas. In order to interpret the
observations, accurate models for the level population of
atoms are needed as the strength (or depth) of an emission
(absorption) line depends on the level population of atoms.
Here, we summarize the basic ingredients needed to build level
population models and provide a basic description of the level
population problem. We begin our discussion by describing the
line emission and absorption coefficients ( jν and kν, respec-
tively), which are given by (Shaver 1975; Gordon &
Sorochenko 2009)
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where h is the Planck constant, ¢Nn is the level population of a
given upper level ( ¢n ), and Nn is the level population of the lower
level (n); f n( ) is the line profile, ν is the frequency of the
transition, and ¢An nand ¢ ¢( )B Bn n nn are the Einstein coefficients for
spontaneous and stimulated emission (absorption),4respectively.
Under local thermodynamic equilibrium (LTE) conditions,

level populations are given by the Saha–Boltzmann equation
(e.g., Brocklehurst 1971):
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where Te is the electron temperature, Neis the electron density
in the nebula, Nionis the ion density, meis the electron mass, k
is the Boltzmann constant, h is the Planck constant, c is the
speed of light, and Ry is the Rydberg constant; wnl is the
statistical weight of the level n and angular quantum
momentum level l[w = +( )l2 2 1nl , for hydrogen], and wi is
the statistical weight of the parent ion. The factor

p( )h m kT2 e e
2 1 2 is the thermal deBroglie wavelength, L( )Te ,

of the free electron.5 In the most general case, lines are formed
under non-LTE conditions, and the level population equation
must be solved in order to properly model the line properties as
a function of quantum level (n):
Following, for example, Seaton (1959a) and Brocklehurst

(1970), we present the results of our modeling in terms of the
departure coefficients (bnl), defined by
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and bnvalues are computed by taking the weighted sum of the
bnl values:
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3 This process has been referred to in the astronomical literature as
dielectronic-like recombination or just dielectronic recombination. Strictly
speaking, dielectronic recombination refers to dielectronic capture followed by
stabilization. Dielectronic capture refers to the capture of the electron in an
excited nstate accompanied by simultaneous excitation of the P2

1 2 core
electron to the excited P2

3 2 state. The captured electron can either autoionize,
be collisionally transferred to another state, or radiatively decay.

4 We provide the formulation to obtain the values for the rates in Appendix C.
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Note that, at a given n, the bnlvalues for large llevels influence
the final bnvalue the most due to the statistical weight
factor. At low frequencies, stimulated emission is important
(Goldberg 1966), and we introduce the correction factor for
stimulated emission as defined by Brocklehurst & Seaton
(1972):
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Unless otherwise stated, the bnvaluespresented here corre-
spond to αtransitions ( ¢ = + n n n1 ). The description of
the level population in terms of departure coefficients is
convenient as it reduces the level population problem to a more
easily handled problem, as we will show in Section 2.1.

2.1. Level Population of Carbon Atoms under
Non-LTE Conditions

The observations of high-n carbon recombination lines in the
ISM motivated Watson et al. (1980) to study the effect on the
level population of dielectronic capture and its inverse process
(autoionization) in low-temperature ( T 100 Ke ) gas. Watson
et al. (1980) used l-changing collision rates6 from Jacobs &
Davis (1978) and concluded that,for levels » –n 250 300,
dielectronic capture for carbon ions can be of importance. In a
later work, Walmsley & Watson (1982) used collision rates
from Dickinson (1981) and estimated a value for which
autoionization becomes more important than angular momen-
tum changing rates. The change in collision rates led them to
conclude that the influence of dielectronic capture on the
bnvalues is important at levels n 300. Clearly, the results are
sensitive to the choice of the angular momentum changing
rates. Here, we will explicitly consider l sublevels when solving
the level population equation.

The dielectronic capture and autoionization processes affect
only the C+ ions in the P2

3 2 state, sowe treat the level
populations for the two ion cores in the P2

1 2 states separately
in the evaluation of the level population (Walmsley &
Watson 1982). The equations for carbon atoms recombining
to the P2

3 2 ion core population have to include terms
describing dielectronic capture (anl

d ) and autoionization (Anl
a ):
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The left-hand side of Equation (7) describes all ofthe processes
that take an electron out of the nl level, and the right-hand side
the processes that add an electron to the nl level; ¢ ¢Anln l is the
coefficient for spontaneous emission, ¢ ¢Bnln l is the coefficient
for stimulated emission or absorption induced by a radiation
field Iν; ¢ ¢Cnln l is the coefficient for energy-changing collisions
(i.e., transitions with ¹ ¢n n ), ¢Cnlnl is the coefficient for
l-changing collisions,Cnl i, (Ci nl, ) is the coefficient for colli-
sional ionization (three-body recombination); and anl is the
coefficient for radiative recombination. A description of the
coefficients entering into Equation (7) is given in Section 2.3
and in further detail in the appendix. The level population
equation is solved by finding the values for the departure
coefficients. The level population for carbon ions recombining
to the P2

1 2 level is hydrogenic, and we solve for the departure

coefficients (bnl
1 2) using Equation (7),ignoring the coefficients

for dielectronic capture and autoionization.
After computing the bnl

1 2 and bnl
3 2, we compute the

departure coefficients (bn
1 2 and bn

3 2) for both parent ion
populations by summing over all l states (Equation (5)). The
final departure coefficients for carbon are obtained by
computing the weighted average of both ion cores:
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Note that, in order to obtain the final departure coefficients,
the relative population of the parent ion cores is needed. Here,
we assume that the population ratio of the two ion cores +N3 2 to

+N1 2 is determined by collisions with electrons and hydrogen
atoms. This ratio can be obtained using (Ponomarev &
Sorochenko 1992; Payne et al. 1994)
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where g = ´ - - - -T4.51 10 cm se e
6 1 2 3 1 is the de-excitation

rate due to collisions with electrons, g = ´ -5.8 10H
10

- -T cm se
0.02 3 1 is the de-excitation rate due to collisions with

hydrogen atoms (Payne et al. 1994),7 NH is the atomic
hydrogen density, and = ´ - -A 2.4 10 s3 2,1 2

6 1 is the
spontaneous radiative decay rate of the core. In this work,
we have ignored collisions with molecular hydrogen, which
should be included for high-density PDRs. Collision rates for
H2 excitation of C+ have been calculated by Flower (1988). In
the cases of interest here, the value of Ris dominated by
collisions with atomic hydrogen. We recognize that the
definition of R given in Equation (9) is related to the critical
density (Ncr) of a two-level system by = +( )R N N1 1 Xcr ,
where NX is the density of the collision partner (electron or
hydrogen). The LTE ratio of the ion core is given by the

6 We use the term l-changing collision rates to refer to collision rates that
induce a transition from state nl to nl 1.

7 Payne et al. (1994) used rates from Tielens & Hollenbach (1985), based on
Launay & Roueff (1977) for collisions with hydrogen atoms and Hayes &
Nussbaumer (1984) for collisions with electrons. Newer rates are available for
collisions with electrons (Wilson & Bell 2002) and hydrogen atoms (Barinovs
et al. 2005), but the difference in values is negligible.

3

The Astrophysical Journal, 837:141 (18pp), 2017 March 10 Salgado et al.



statistical weights of the levels and the temperature (Te) of the
gas:

=
+
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where = =g g4, 23 2 1 2 are the statistical weights of the fine
structure levels,andD =E 92 K is the energy difference of the
fine structure transition. The LTE level population ratio as a
function of temperature is shown in Figure 1, illustrating the
strong dependence on temperature of this value. At densities
below the critical density (» -300 cm 3 for collisions with H),
the fine structure levels fall out of LTE, and the value for R
becomes very small (Figure 1). Note that R is not very sensitive
to the temperature.

With the definition of R given above, the final departure
coefficient can be written as (Ponomarev & Sorochenko 1992)
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The final departure coefficient is the value that we are
interested in to describe CRRLs.

2.2. Numerical Method

Having described how to derive the bn
final, now we focus on

the problem of obtaining the departure coefficients for both ion
cores from the level population equation. We use the same
procedure to obtain the departure coefficients for both parent
ion cores, as the only difference in the level population
equation for the P2

3 2 and the P2
1 2 cores is the inclusion of

dielectronic recombination and autoionization processes. We
will refer tobnl and bn without making a distinction between
P2

3 2 and P2
1 2 in this subsection.

We follow the methods described in Brocklehurst (1971) and
improved in Hummer & Storey (1987) to solve the level
population equation in an iterative manner. First, we solve the
level population equation by assuming that the l sublevels are
in statistical equilibrium, that is, =b bn nl for all lsublevels.
We refer to this approach as the nmethod (see Appendix B).
Second, we use the previously computed values to determine
the coefficients on the right-hand side of Equation (7) that

contain terms with ¢ ¹n n. Thus, the level population equation
for a given n is a tridiagonal equation on the l sublevels
involving terms of the type l 1. This tridiagonal equation is
solved for the bnl values (further details are given in
Appendix B). The second step of this procedure is repeated
until the difference between the computed departure coeffi-
cients is less than 1%.
We consider a fixed maximum number of levels, nmax, equal

to 9900. We make no explicit assumptions on the asymptotic
behavior of the bnfor larger values of n. Therefore, no fitting or
extrapolation is required for large n. The adopted value for nmax

is large enough for the asymptotic limit— b 1n for
>n nmax—to hold even at the lowest densities considered

here. For the nlmethod, we need to consider all l sublevels up
to a high level ( ~n 1000). For levels higher than this critical n
level (ncrit), we assume that the l sublevels are in statistical
equilibrium. In our calculations, =n 1500crit , regardless of the
density.

2.3. Rates Used in This Work

In this section, we provide a brief description of the rates used
in solving the level population. Further details and the
mathematical formulations for each rate are given in Appendices
C, D, E,and F. Accurate values for the rates are critical to obtain
meaningful departure coefficients when solving the level popula-
tion equation (Equation (7)). Radiative rates are known to high
accuracy (<1%) as they can be computed from first principles. On
the other hand, collision rates at low temperatures are more
uncertain (~20%, Vriens & Smeets 1980).

2.3.1. Einstein A and B Coefficients

The Einstein coefficients for spontaneous and stimulated
transitions can be derived from first principles. We used the
recursion formula described in Storey & Hummer (1991) to
obtain the values for the Einstein ¢ ¢Anln l coefficients. To solve
the nmethod (our first step in solving the level population
equation), we require the values for ¢Ann , which can be easily
obtained by summing the ¢ ¢Anln l :

å å= +¢
¢=

-

= ¢
¢ ¢( ) ( )A

n
l A

1
2 1 . 13nn

l

n

l l

nln l2
0

1

1

Figure 1. Left panel: R value as a function of electron temperature, in a range of densities. The R value is nearly independent of temperature, and for > -N 10 cme
3,

»R 1. Right panel: ion LTEratios as a function of Te, independent of density.
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The mathematical formulation to obtain values for spontaneous
transitions is detailed in Appendix C.

The coefficients for stimulated emission and absorption
( ¢Bnn ) are related to the ¢Ann coefficients by

n
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2.3.2. Energy-changing Collision Rates

In general, energy-changing collisions are dominated by the
interactions of electrons with the atom. The interaction of an
electron with an atom can induce transitions of the type

+ +-
¢ ¢

- ( )X e X e , 16nl n l

with ¢ ¹n n changing the distribution of electrons in an atom
population. Hummer & Storey (1987) used the formulation of
Percival & Richards (1978). The collision rates derived by
Percival & Richards (1978) are essentially the same as that
fromGee et al. (1976). However, the collision rates from Gee
et al. (1976) are not valid for the low temperatures of interest
here. Instead, we use collision rates from Vriens & Smeets
(1980). We note that at high Teand for high nlevels, the Bethe
(Born) approximation holds, and values of the rates from
Vriens & Smeets (1980) differ by less than 20% when
compared to those from Gee et al. (1976). The good agreement
between the two rates is expected since the results from Vriens
& Smeets (1980) are based on Gee et al. (1976). On the other
hand, at low Teand for low n-levelvalues,the two rates differ
by several orders of magnitude, and, indeed, the Gee et al.
(1976) values are too high to be physically realistic. A
comparison of the rates for different values of Teand
 + Dn n n transitions is shown in Figure 2. We explore

the effects of using Vriens & Smeets (1980) rates on the bn
values in Section 3.2.

The inverse rates are obtained from thedetailed balance:
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In order to solve the nlmethod, rates of the type ¢ ¢Cnln l with
¹ ¢n n are needed. Here, the approach of Hummer & Storey

(1987) is followed, and the collision rates are normalized by the
oscillator strength of the transitions (Equation(5) in Hummer
& Storey 1987). Only transitions withD =l 1 were included as
these dominate the collision process (Hummer & Storey 1987).

2.3.3. Angular Momentum Changing Collision Rates

For low nlevels, the l-level population has to be explicitly
calculated. Moreover, for the dielectronic capture process, the
angular momentum changing collisions set the value for which
the dielectronic capture process is important, and transitions of
the type

+ ++


+ ( )X XC C 18nl nl 1

must be considered. In general, collisions with ions are more
important than collisions with electrons. Here, for simplicity,
we adopt that +C is the dominant cation.

Hummer & Storey (1987) used l-changing collision rates
from Pengelly & Seaton (1964), which are computed iteratively
for a given n level starting at l=0 or = -l n 1. However, as
pointed out by Hummer & Storey (1987) and Brocklehurst
(1971), the values for the l-changing rates obtained by starting
the iterations at l=0 differ from those obtained when starting
at = -l n 1. Moreover, averaging the l-changing rates
obtained by the two different initial conditions leads to an
oscillatory behavior of the rates that depends on l (Brocklehurst
1970). Hummer & Storey (1987) circumvented this problem by
normalizing the value of the rates by the oscillator strength
(Equation(4) in Hummer & Storey 1987). In addition, at high
nlevels and high densities, the values for ¢ ¢Cnln l can become
negative (Equation(43) in Pengelly & Seaton 1964). This
poses a problem when studying the level population of carbon
atoms at the high nlevels of interest in the present work.8 The
more recent study of Vrinceanu et al. (2012) provides a general
formulation to obtain the value of l-changing transition rates.
These new rates use a much smaller cutoff radius of the
probability of the transition for large impact parameters.
Furthermore, the rates from Vrinceanu et al. (2012) are well
behaved over a large range of temperatures and densities, and
they do not exhibit the oscillatory behavior with l sublevel
shown by the Pengelly & Seaton (1964) rates. Therefore, we
use the Vrinceanu et al. (2012) rates in this work. Vrinceanu
et al. (2012) derived the following expression, valid for >n 10
and < ´n T 2.4 10 Ke

4 1 2:
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where a0 is the Bohr radius and μ is the reduced mass of the
system. Values for the inverse process are obtained by using
thedetailed balance:

=
+
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2 3
. 20nl nl nl nl1 1

We note that the l-changing collision rates obtained by using
the formula from Vrinceanu et al. (2012) can differ by a factor
of 6 (Vrinceanu et al. 2012) from those using the Pengelly &
Seaton (1964) formulation. We discuss the effect on the final
bnvalues in Section 3.2, where we compare our results with
those of Storey & Hummer (1995) in the hydrogenic
approximation and with those of Ponomarev & Sorochenko
(1992) for carbon atoms.

2.3.4. Radiative Recombination

Radiative ionization occurs when an excited atom absorbs a
photon with enough energy to ionize the excited electron. The
process can be represented as follows:

n+ ++ - ( )X h X e , 21nl

and the inverse process is radiative recombination. We use the
recursion relation described in Storey & Hummer (1991) to

8 We note that this was not a problem for Hummer & Storey (1987), since
they assumed astatistical distribution of the llevels for high n.
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obtain values for the ionization cross section (Appendix D).
Values for the radiative recombination (anl) coefficients were
obtained using the Milne relation and standard formulas (e.g.,
Rybicki & Lightman 1986, Appendix D). The program
provided by Storey & Hummer (1991) only produces reliable
values up to ~n 500 due to cancellation effects in the iterative
procedure. In order to avoid cancellation effects, the values
computed here were obtained by working with logarithmic
values in the recursion formula. As expected, our values for the
rates match those of Storey & Hummer (1991) well.

For the nmethod, we require the sum of the individual anl
values:

åa a=
=

-

( ). 22n
l

n

nl
0

1

The averaged an values agree well with the approximated
formulation of Seaton (1959a) to better than 5%, validating our
approach.

2.3.5. Collisional Ionization and Three-body Recombination

Collisional ionization occurs when an atom encounters
an electron and, due to the interaction, a bound electron

from the atom is ionized. Schematically the process can be
represented as

+ + +- + - - ( )X e X e e . 23n

The inverse process is given by the three-body recombination,
and the value for the three-body recombination rate is obtained
from thedetailed balance:

p
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We used the formulation of Brocklehurst & Salem (1977) and
compared the values with those from the formulation given by
Vriens & Smeets (1980). For levels above 100 and at

=T 10 Ke , the Brocklehurst & Salem values are a factor of
2 larger, but the differences quickly decrease for higher
temperatures. To obtain the Cnl i, values that are needed in the
nlmethod, we followed Hummer & Storey (1987) and
assumed that the rates are independent of the angular

Figure 2. Comparison of energy-changing collision rates. The dashed lines correspond to the Gee et al. (1976) rates, while the solid lines are from Vriens & Smeets
(1980). Large differences between Gee et al. (1976) and Vriens & Smeets (1980) can be seen at low Teand at low nlevels. As is well known, transitions withD =n 1
dominate. The difference between D >n 1 and D =n 1 rates is less at lower Te.
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momentum. The mathematical formulation is reproduced
inAppendix F forthe convenience of the reader.

2.3.6. Dielectronic Recombination and Autoionization
on Carbon Atoms

The dielectronic recombination process consists of dielectronic
capture followed by stabilization. Dielectronic capture involves
an electron recombining into a level n while simultaneously
exciting one of the bound electrons (left side of Equation (25),
below). This state ( *Xn ) is known as an autoionizing state. In this
autoionizing state, the atom can stabilize either by releasing the
recombined electron through autoionization (inverse process of
dielectronic capture) or through radiative stabilization (right-hand
side of Equation (25)). Dielectronic capture and autoionization
are only relevant for atoms with more than one electron:

* n+  ++ -
¢ ¢ ( )X e X X h . 25nl n l

For C+ recombination, at ~T 100 Ke , free electrons in the
plasma can recombine to a high nlevel, and the kinetic energy
is transferred to the core of the ion, producing an excitation of
the –P P2

1 2
2

3 2 finestructure level of the C
+ atom core (which

has a difference in energy D =E 92 K). Due to the long
radiative lifetime of the finestructure transition ( ´4 10 s5 ),
radiative stabilization can be neglected.

Following Watson et al. (1980), Ponomarev & Sorochenko
(1992)compute the autoionization rate using the formulation
by Seaton et al. (1976):

w
=

W( )
( )

( )A
Ryc

h

l

n j nl
4

,
, 26nl

a
3

with W( )l the collision strength for the –P P2
1 2

2
3 2 excitation at

the threshold. As inWatson et al. (1980), we used the formula
obtained by Osterbrock (1965):

W =
- + + +

( )
( )( )( ) ( )

( )l
l l l l l

227

2 1 2 1 2 3 2
, 27

valid for >l 4. In order to avoid the singularity at l=0, we
computed the autoionization rate, Anl

a , from the approximate
expression given in Dickinson (1981):

p
=

+( )
( )A

Ryc

n l
2.25

2

1 2
, 28nl

a
3 6

which is valid for >l 10. The dielectronic recombination rate
is obtained by thedetailed balance:

a =+ ( )N N N A . 29e nl
d

nl nl
a

1 2

Walmsley & Watson (1982) defined bdi as the departure
coefficient when autoionization/dielectronic recombination
dominates:

= -D

=

+

+ [ ]

( )

b
g N

g N
E kT

R

exp ,

1
. 30

di e
1 2 1 2

3 2 3 2

In this work we are interested in the dielectronic capture and
subsequent radiative and collisional redistribution. The cascade
calculations necessary to compute the total, level-resolved
dielectronic recombination rates are beyond the scope of this
work. These rates have been published elsewhere (e.g., Safronova

et al. 1998; Altun et al. 2004). However, we note that—for the
parameter space of interest to us—these published rates do not
depend on the autoionization rates and essentially sum over the
relevant Einstein A transition rates. We have verified that our
Einstein A coefficients are in agreement with those used by Gordon
& Sorochenko (2009, p. 282) and Storey & Hummer (1991).

3. Results

The behavior of CRRLs with frequency depends on the level
population of carbon via the departure coefficients. We
compute departure coefficients for carbon atoms by solving
the level population equation using the rates described in
Section 2.3 and the approach in Section 2.2. Here, we present
values for the departure coefficients and provide a comparison
with earlier studies in order to illustrate the effect of our
improved rates and numerical approach. A detailed analysis of
the line strength under different physical conditions relevant for
the diffuse clouds and the effects of radiative transfer are
provided in an accompanying article (Paper II).

3.1. Departure Coefficient for Carbon Atoms

The final departure coefficients for carbon atoms (bn
final) are

obtained by computing the departure coefficients recombining
from both parent ions, those in the P2

1 2 level and those in the
P2

3 2 level. Therefore, it is illustrative to study the individual
departure coefficients for the P2

1 2 core, which are hydrogenic,
and the departure coefficients for the P2

3 2 core separately.

3.1.1. Departure Coefficient in the Hydrogenic Approximation

In Figure 3 we show example bnand bbn n values obtained in
the hydrogenic approximation at =T 10 and 10 Ke

2 4 for a
large range in density. The behavior of the bnvalues as a
function of n can be understood in terms of the rates that are
included in the level population equation. At the highest
nlevels, collisional ionization and three-body recombination
dominate the rates in the level population equation, and the
bnvalues are close to unity. We can see that, as the density
increases, collisional equilibrium occurs at lower n levels, and
the bn values approach unity at lower levels. In contrast, for the

Figure 3. The bn values (left) and bbn n values (right) for the hydrogenic
approximation at =T 10 and 10 Ke

4 2 (upper and lower panels, respectively)
for different densities (Ne, color scale). The departure coefficients obtained
using the nlmethod show a “bump” at low nlevels. The strength and position
of the “bump” depend on the physical conditions. As density increases, the
l-changing collisions redistribute the electron population more effectively.
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lowest n levels, the level population equation is dominated by
radiative processes, and the levels drop out of collisional
equilibrium. As the radiative rates increase with decreasing n
level, the departure coefficients become smaller. We note that
differences in the departure coefficients for the low n levels for
different temperatures are due to the radiative recombination
rate, which has a -Te

3 2 dependence.
At intermediate n levels, the behavior of the bn as a function of

n shows a more complex pattern with a pronounced “bump” in
the bn values for intermediate levels ( ~n 10 to ∼100). To guide
the discussion, we refer the reader to Figure 3. Starting at the
highest n, b 1n , as mentioned above. For these high n levels,
l-changing collisions efficiently redistribute the electron popula-
tion among the l states and, at high density, the bnl departure
coefficients are unity as well (Figure 4, upper panels). For lower
values of n, the bnvalues decrease due to an increased importance
of spontaneous transitions. At these n levels, the bnvalues
obtained by the nlmethod differ little from the values obtained by
the nmethod, since l-changing collisions efficiently redistribute
the electrons among the l sublevels for a given n level. For lower n
levels, the effects of considering the lsublevel distribution
become important as l-changing collisions compete with
spontaneous decay, effectively “storing” electrons in high l
sublevels for which radiative decay is less important. Specifically,
the spontaneous rate out of a given level is approximately

- ( )A n l10 snl
10 3 2 1 and is higher for lower l sublevels.

Thus,high l sublevels are depopulated more slowly relative to
lower l sublevels on the same n level. This results in a slight
increase in the departure coefficients. Reflecting the statistical
weight factor in Equation (5), the higher l sublevels dominate the
final bnvalue, resulting in an increase in the final bnvalue. As the
density increases, the l sublevels approach astatistical distribution
faster. As a result, the influence of the l sublevel population on the
final bnis larger for lower densities than for higher densities at a
given Te. The interplay of the rates produce the “bump” thatis
apparent in the bn distribution (Figure 3).

The influence of l-changing collisions on the level populations
and the resulting increase in the bn values werealready presented
by Hummer & Storey (1987) and analyzed in detail by Strelnitski
et al. (1996) in the context of hydrogen masers. The results of our

level population models are in good agreement with those
provided by Hummer & Storey (1987), as we show in Section 3.2.

3.1.2. Departure Coefficient for Carbon Atoms including
Dielectronic Capture

Only carbon atoms recombining to the P2
3 2 ion core are

affected by dielectronic capture. Having analyzed the departure
coefficients for the hydrogenic case, we focus now on the bnl

3 2

values and the resulting bn
final as introduced in Section 2.1.

Figure 5 shows example values for bn
3 2 for =T 50, 100,e

200, and 1000 K and electron densities between -10 and3

-10 cm2 3. As pointed out by Watson et al. (1980), the low-lying
l sublevels are dominated by the dielectronic process, and the bnl

3 2

values are equal to bdi (Equation (30)). As can be seen in Figure 1,
such values can be much larger than unity at low densities,
resulting in an overpopulation of the low n levels for the 3/2 ion
cores. In Figure 6 we show bn

final as a function of n level under the
same conditions. We see that at high electron densities the
departure coefficients show abehavior similar tothe hydrogenic
values. Furthermore, an increase in the level population to values
larger than unity is seen at low densities and moderate to high
temperatures.
To guide the discussion, we analyze the behavior of the bn

final

when autoionization/dielectronic capture dominates. This
occurs at different levels depending on the values of Te and
Ne considered. Nevertheless, it is instructive to understand the
behavior of the level population in extreme cases. When
autoionization/dielectronic capture dominates, the bn

final in
Equation (12) is given by

»
+

+

+ +

+ +

[ ]
[ ]

( )b
b N N

R N N1
. 31n

nfinal
1 2

3 2 1 2 LTE

3 2 1 2 LTE

At high densities, R approaches unity, and we note two cases.
The first case is when Te is high, the maximum value of

=+ +[ ]N N 23 2 1 2 LTE , meaning that a large fraction of the ions

are in the P2
3 2 core. Consequently, » +( )b b 2 3n n

final 1 2 ,
sothe effect of dielectronic capture is to increase the level
population as compared to the hydrogenic case. We also note

Figure 4. Example of hydrogenic bnlvalues at low densities (left panel) and high densities (right panel). A statistical distribution of the l sublevels is attained at levels
as low as ∼40. For lower levels, radiative processes dominate the level population. At low density (left panel), radiative processes dominate even at high nlevels.
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that since b 1n
1 2 , the final b 1n

final . The second case we
analyze is for low Te, where the ion LTE ratio is low and most
of the ions are in the P2

1 2 core. Thus, »b bn n
final 1 2 and the

departure coefficients are close to hydrogenic.
At low densities, R 1 and, as above, we study two cases.

The first is when Te is high, the maximum value of
=+ +[ ]N N 23 2 1 2 LTE and » +b b 2n n

final 1 2 , sodielectronic
capture produces a large overpopulation as compared to the
hydrogenic case. The second case is when Te is low and most
of the ions are in the P2

1 2 level and, as in the high-density
case, the »b bn n

final 1 2. We note from this analysis that
overpopulation of the bn

final (relative to the hydrogenic case)
is only possible for a range of temperatures and densities. In
particular, bn

final is maximum for high temperatures and low
densities.

Having analyzed the behavior of the bn
final values in the

extreme =b bn di
3 2 case, now we analyze the behavior of bn

3 2

with n. The population in the low n levels is dominated by

dielectronic capture (Watson et al. 1980; Walmsley &
Watson 1982) and =b bn di

3 2 up until a certain n level where
bn

3 2 begins to decrease down to a value of one. The n value
where this change happens depends on temperature, moving to
higher n levels as Te decreases. To understand this further, we
analyze the rates involved in the lsublevel population
(Figure 5). The low l sublevels are dominated by dielectronic
capture and autoionization, and the bnl values for the 3/2 ion
cores are =b bnl di

3 2 . For the higher l sublevels, other processes
(mainly collisions) populate or depopulate electrons from the
level n, and the net rate is lower than that of the low l
dielectronic capture/autoionization. This lowers the bnl value,
which is effectively delayed by l-changing collisions since they
redistribute the population of electrons in the n level. The bnl
for the highest l values dominate the value of bn

3 2 due to the
statistical weight factor.
We note that the behavior of the bn

3 2 cores as a function of n
(see Figure 7) can be approximated by

» ´ - +
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟ ( ) ( )b

l

n
btanh 1 1 32n

m
di

3 2
3

with bdidefined as in Walmsley & Watson (1982)
(Equation (30)), and lm was derived from fitting our results:

» ´
- -

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )l

N T
60

10 10
. 33m

e e
0.02

4

0.25

In diffuse clouds, the integrated line-to-continuum ratio is
proportional to bbn n. We note that the bn behavior is more
complex, as can be seen in Figure 8. The low n “bump” on the
bn
final makes the bbn n high at low densities and for levels
between about 150 and 300. Since the bn

final values decrease
from values larger than one to approximately one, the bn

changes sign. In Figure 9 we show the electron density as a
function of the level where the change of sign on the bbn n

occurs. At temperatures higher than about 200, our models for
= -N 0.1 cme

3 show no change of sign due to the combined
effects of l-changing collisions and dielectronic capture.

Figure 6. Final departure coefficients for carbon atoms (bn
final) as a function of n

level at =T 50, 100, 200, and 1000 Ke for different densities (Ne, color
scale). The “bump” seen in hydrogenic atoms is amplified by dielectronic
capture. As density increases, the bn

finalvalues are closer to the hydrogenic
value.

Figure 7. The bn
3 2 values for carbon as a solidblack line;the discontinuity at

n=1500 is due to the ncrit value. Overplotted as a red dot-dashedline is the
approximation in Equation (32). The blue dashedline is the value of bdi.

Figure 5. Departure coefficients for the P2
3 2 parent ions as a function of n at

=T 50, 100, 200, and 1000 Ke for different densities (Ne, color scale). The
values for low n levels are close to bdi and decrease toward a value of one. At
high densities, »b 1n

3 2 .
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3.2. Comparison with Previous Models

The level population of hydrogenic atoms is a well-studied
problem. Here, we will describe the effects of the updated
collision rates as well as point out differences due to the
improved numerical method.

3.2.1. Hydrogenic Atoms

At the lowest densities, we can compare our results for
hydrogenic atoms with the values of Martin (1988) for
hydrogen atoms. The results of Martin (1988) were obtained
in the low-density limit: no collision processes were taken into
account in his computations. The results are given in terms of
the emissivity of the line normalized by the Hβemissivity. As
can be seen in Figure 10, our results agree to better than
5%and for most levels to better than 0.5%.

At high densities, we compare the hydrogenic results
obtained here with those of Hummer & Storey (1987). Our
approach reproduces well the bnl(and bn) values of Hummer &
Storey (1987) (to better than 1%) when using the same
collision rates (Pengelly & Seaton 1964; Gee et al. 1976), as
can be seen in Figure 11. We note that the effect of using
different energy-changing rates ( ¢Cn n, ) has virtually no effect on
the final bnvalues. On the other hand, using Vrinceanu et al.
(2012) values for the Cnl nl, 1 rates results in differences in the
bnvalues of 30% at = = -T N10 K, 100 cme e

3 3. As expected,
the difference is less at higher temperatures and densities since
the values are closer to equilibrium (see Figure 12). At low n
levels, our results for high llevels are overpopulated as
compared to the values of Hummer & Storey (1987), leading to
an increasein the bnvalues.

3.2.2. Carbon

Now we compare departure coefficients obtained here with
the results of Ponomarev & Sorochenko (1992) and the
effect of including l-changing collisions on the departure
coefficients;see Figures 13 and 14. It is worth mentioning that
Ponomarev & Sorochenko (1992) did not include l-changing
collisions and instead assumed a statistical population. We will
focus the discussion on the bn values from Ponomarev &
Sorochenko (1992) as the Walmsley & Watson (1982) values
are similar.

While the results presented here are remarkably different
from those of Walmsley & Watson (1982) and Ponomarev &
Sorochenko (1992), some trends are similar. We will first
discuss the differences. Our results in Figures 13 and 14 show a
pronounced “bump” for low n in the range 50–150. This bump
is similar to what we see for the hydrogenic approximation but
enhanced by dielectronic capture (see Figures 3.6 and 8;
Section 3.1.2). As discussed in Section 3.1.1, this bump arises
at these intermediate n levels because collisions compete with
spontaneous decay, effectively “storing” electrons in high l
sublevels for which radiative decay is less important. This
means that the inclusion of l-changing collisions leads to
significantly larger bn values for n in the range 50–150 as
compared to Ponomarev & Sorochenko (1992). Regardless of
the l-changing collision rates used, at higher n we note that our
bn values with increasing n asymptotically approach unity
much faster than for Ponomarev & Sorochenko (1992). This is
especially true for lower electron densities ( <n 1.0e cm−3) and
is a direct consequence of using the nlmethod to compute the
departure coefficients.
Although the detailed behavior of our bn values differs

strongly from Ponomarev & Sorochenko (1992), there are also
similarities in the general trends that we observe as a function
of electron density and temperature. In particular, the very low
and very high n asymptotic behavior of the bn values is similar
to that ofPonomarev & Sorochenko (1992) in that the highest
electron densities for a given electron temperature have the
lowest bn values at low n and approach equilibrium (bn=1)
the fastest with increasing n. For higher electron densities and
lower electron temperatures, our results become increasingly
similar to the hydrogenic case and agree with that of
Ponomarev & Sorochenko (1992). This is expected because,
as discussed in Section 3.1,at high densities the bn values
approach equilibrium.
In terms of bbn n our results show, as expected, good

agreement with the hydrogenic case and with Ponomarev &
Sorochenko (1992) in the high-density and low-temperature
limit. However, for the lower densities and higher temperatures
shown in Figures 13 and 14,our models predict bbn n values
that are lower by up to about an order of magnitude than that
ofPonomarev & Sorochenko (1992). This is particularly
striking for the Te=100K and ne=0.05cm−3 model shown
in Figure 14, where we find that both the maximum negative

Figure 8. The bbn n values for carbon atoms at =T 50, 100, 200,e

and 1000 K for different densities (Ne, color scale).

Figure 9. Levels where the bbn n values go to zero for =T 50,e

100, and 200 K. At temperatures larger than 200 K and forelectron densities
around - -10 cm1 3,the bbn n values do not go through zero.
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bbn n value and the maximum positive bbn n value are more than
an order of magnitude lower than the corresponding Pono-
marev & Sorochenko (1992) values.

Since the integrated optical depth is directly proportional to
the value of bbn n (e.g., Shaver 1975; Walmsley & Watson
1982; Salgado et al. 2017), we can interpret bbn n as a
stimulation factor. This means that, for a given set of physical
conditions, our models predict much lower maximum inte-
grated optical depths for carbon as compared to earlier
investigations (e.g., Walmsley & Watson 1982; Ponomarev
& Sorochenko 1992). This is true for both emission (negative
bbn n) and absorption (positive bbn n). In particular, our models

predict that equilibrium will be reached at much lower n
(typically around n= 600) and thus that the integrated optical
at high n (low frequencies) will show a rather flat behavior for
>n 600, whereas the previous models by Walmsley & Watson

(1982) and Ponomarev & Sorochenko (1992) predict a strong
increase with increasing n.

We find that, although our bn values asymptotically approach
equilibrium at high n,this value is not yet reached at n=1000.

Figure 10. Difference between the emissivities (normalized to Hβ) for low nllines at low density and the results from Martin (1988) in the low-Neapproximation. Our
results agree to better than 1% at most levels.

Figure 11. A comparison of the effect of different collision rates on the final bnvalues for =T 1000 Ke and = -N 100 and 10 cme
6 3. H&S are the departure

coefficients from Hummer & Storey (1987),who used Gee et al. (1976); GPLR corresponds to the use of n-changing collision rates from Gee et al. (1976), andV&S
from Vriens & Smeets (1980); P&S corresponds to the use of l-changing collision rates from Pengelly & Seaton (1964), andVOS corresponds to Vrinceanu et al.
(2012). The largest differences are ~30% due to the use of different l-changing collision rates.

Figure 12. Comparison between our bnvalues (black) at =T 10 Ke
4 and

= -N 100 cme
3 and the results from Hummer & Storey (1992) (dashedred

line). Differences are due to the use of l-changing collision rates from
Vrinceanu et al. (2012).
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Therefore, the bbn n values we find are nearly, but not yet
completely, constant in the range n=600–1000, and as such the
dependence of integrated optical depth on bbn n remains
important at high n. Finally, we note that, for sufficiently high
electron temperatures and low electron densities, our models
predict the existence of a region at intermediate n (n=100–200)
where the bbn n values can become positive. This behavior is a
direct consequence of the inclusion of l-changing collisions in our
models. A more detailed comparison of the departure coefficients
obtained using the l-changing collision from Pengelly & Seaton
(1964) and those using the rates from Vrinceanu et al. (2012)
(Figure 15) reveals differences of less than 30% for the
conditions of interest for CRRL studies.

Apart from the l-changing collisions, there are other
potentially important differences between our models and
those published by Ponomarev & Sorochenko (1992).
Ponomarev & Sorochenko (1992) do not provide the explicit
values of the rates that they use. However, they refer back to
Walmsley & Watson (1982) for these rates, and as we
use the same formalism, we do not think that the rates are at
the heart of the discrepancy. In addition, we note that we use
somewhat different collision rates in our simulations.
However, as illustrated in Figures 13 and 14, the exact
collision rates have only limited influence on the bn values.
Rather, we suspect that the approximate way the statistical

equilibrium equations are solved by Ponomarev & Sor-
ochenko (1992) may have influenced their results and that
including l-changing collisions properly rather than adopting
a statistical populationas done by Ponomarev & Sorochenko
(1992) is important.
A further assessment of the effect of any uncertainty in the

adopted dielectronic capture rates on the final departure
coefficients can be performed by arbitrarily multiplying the
dielectronic capture rate by a factor. We note that a dielectronic
capture rate a factor of 30% higher (lower) increases
(decreases) the departure coefficients at low levels ( <n 100)
by 30%. At the higher levels of interest for the study of
CRRLs( >n 250), a factor of 30% on the dielectronic capture
rates changes the values of the departure coefficients by less
than 10% (Figure 16, upper panels). As expected, the values for
bbn n are affected more by the change on the dielectronic

capture rate and can be altered by factors of a few (Figure 16,
lower panels). It is clear that aquantitative interpretation of
CRRLs would be served by more accurate dielectronic capture
rates that include the fine structure levels.

4. Summary and Conclusions

We have solved the level population equation for hydro-
genic atoms using novel rates involved in the process. The
level population equation is solved in two approximations: the

Figure 13. Comparison between the CRRL departure coefficients from Ponomarev & Sorochenko (1992) (panels (a) and (d); reproduced with permission from
Ponomarev V.O. & Sorochenko R. L., 1992, Soviet Astronomy Letters, 18, 215. Copyright 1992, AIP Publishing LLC), this work using l-changing collision rates
from Pengelly & Seaton (1964) (panels (b) and (e)), and those from Vrinceanu et al. (2012) (panels (c) and (f)) at Te=50K. Lines marked as 1, 2, and4 correspond
to electron densities =n 0.05e , 0.1, and 1.0cm−3 (solid, dotted, and dashed lines), respectively. The top panels show bn vs.n, and the bottom panels show the product
bbn n vs.n.
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n method and the nl method. The departure coefficients
obtained using the n method are similar to values from the
literature (e.g., Brocklehurst 1970 and Shaver 1975). Our
results using the nl method reproduce those from Hummer &
Storey (1987) well, once allowance is made for updates in the
collisionrates.

By including the dielectronic capture process together with the
nlmethod, we are able to model the level population of carbon in
terms of the departure coefficients. Our results are qualitatively
similar to those of Watson et al. (1980) andWalmsley &Watson
(1982). However, the values obtained here differ considerably
from those from the literature. The differences can be understood

Figure 14. Comparison between the CRRL departure coefficients from Ponomarev & Sorochenko (1992) (panels (a) and (d); reproduced with permission from Ponomarev
V.O. & Sorochenko R. L., 1992, Soviet Astronomy Letters, 18, 215. Copyright 1992, AIP Publishing LLC), this work using l-changing collision rates from Pengelly &
Seaton (1964) (panels (b) and (e)), and those from Vrinceanu et al. (2012) (panels (c) and (f)) at Te=100K. Lines marked as 1, 2, and4 correspond to electron densities

=n 0.05e , 0.1, and 1.0cm−3 (solid, dotted, and dashed lines), respectively. The top panels show bn vs.n, and the bottom panels show the product bbn n vs.n.

Figure 15. Comparison between the CRRL departure coefficients obtained using l-changing collision rates from Vrinceanu et al. (2012; using their semiclassical
result) and Pengelly & Seaton (1964) at 50 and 100 K. The largest differences are ~30% at levels ∼300.
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in terms of the use of improved collision rates and the improved
numerical approach using the nl method. We confirm that
dielectronic recombination can indeed produce an increase in the
values of the departure coefficients at high n levels compared to
the hydrogenic values. In particular, the inclusion of l-changing
collisions is important in calculating the departure coefficients.
The exact l-changing collision rates are not very well known and
are a topic of debate within the atomic physics community (e.g.,
Guzmán et al. 2016). The semiclassical results by Vrinceanu
et al. (2012), used here, differ by up to a factor of ∼6 from their
quantum mechanical results, which are closer to the rates
presented by Pengelly & Seaton (1964). The Pengelly & Seaton
(1964) rates are not appropriate for this work as the rates become
negative for <n 0.05e cm−3. We are aware that Guzmán et al.
(2017) have very recently presented new l-changing rates that
may resolve this issue,and we will investigate these rates in a
future paper.

In anticipation of low-frequency radio recombination line
surveys of the diffuse ISM now being undertaken by LOFAR,
we have expanded the range of applicability of the formulation
to the conditions of the CNM. For this environment, external
radiation fields also become important at intermediate principal
quantum levels, while at high levels the influence of radiation
fields on the level population is less important. In an
accompanying paper (Salgado et al. 2017), we discuss the
expected line strength for low-frequency CRRLs and the
influence of an external radiation field. Throughout this work
we have used a zero radiation field. In this companion paper,
we compare our results to existing observations of CRRLs
toward CasA and regions in the inner galaxy. We also describe
the analysis techniques and diagnostic diagrams that can be
used to analyze the forthcoming LOFAR CRRL survey.
The departure coefficients obtained here have been used to
analyze the LOFAR observations of CasA (Oonk et al. 2017).

Appendix A
List of Symbols

Figure 16. Upper panels: the difference (in percent) of the departure
coefficients after multiplying the dielectronic capture rate by a factor of 1.3
(0.7) in blue (red) for a temperature of 100 K and densities of 0.01 -cm 3 (left)
and 0.1 -cm 3 (right). Lower panels: bbn n for the same physical conditions as in
the upper panels. At n levels lower than ∼200, the bbn n values derived by
using the modified dielectronic capture rates (blue and red) are similar to those
without modification (black). At higher levels the overall trends are similar, but
they can differ by factors of a few.

Table 1
List of Symbols

Symbol Description

A3 2,1 2 Spontaneous transition rate of the carbon fine structure
line –P P2

3 2
2

1 2

Aa
nl Autoionization rate

¢An n Einstein coefficient for spontaneous transition between ¢n and n

¢ ¢An l nl Einstein coefficient for spontaneous transition between ¢ ¢n l state to
nl state

a0 Bohr radius
anl Photoionization cross section

¢Bnn Einstein coefficient for stimulated transition from level ¢n to n
bn Departure coefficient for level n
bn

1 2 Departure coefficient for atoms recombining from the 1/2 ion core
for level n

bn
3 2 Departure coefficient for atoms recombining from the 3/2 ion core

for level n
bn
final Departure coefficient for atoms recombining from both ion cores
anC Carbon recombination line for α transition

¢Cn n Rates for energy-changing collisions between level ¢n and n
( )C n l, Coefficient for recursion relations used to obtain the radial

matricesvalues
c Speed of light

+EMC Emission measure of carbon ions
g3 2 Statistical weight for the fine structure level P2

3 2

g1 2 Statistical weight for the fine structure level P2
1 2

h Planck constant
n( )I0 Intensity of the background continuum

nI
line Intensity of the line

nI
cont Intensity of the continuum
I158 Intensity of the fine structure line of carbon at 158mm
jν Line emission coefficient
kν Line absorption coefficient
k Boltzmann constant
L Path length of cloud
l Angular momentum quantum number
Ncr Critical density for collisions on a two-level atom
Nn Density of atoms in level n
Nnl Density of atoms in level n and sublevel l
Ne Electron density
NH Hydrogen density
Nion Density of the parent ions

+N3 2 Level population of carbon ions in the P2
3 2 core

+N1 2 Level population of carbon ions in the P2
1 2 core

n Lower principal quantum number
¢n Upper principal quantum number

nmax Maximum level considered in our simulations
ncrit Critical level considered in our simulations for the nlmethod
nt Level where observed lines transition from emission to absorption
R( )n l, Normalized radial wave function for level n, l
R Ratio between the fine structure ( –P P2

3 2
2

1 2) level population and

the fine structure level population in LTE
¢( )R l l, Integral of the radial matrix elements

Ry Rydberg constant
T0 Temperature of power-law background spectrum at frequency n0

Te Electron temperature
Z Nuclear charge
an Radiative recombination coefficient to a level n
anl Radiative recombination coefficient to a level n and sublevel l
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Appendix B
Level Population

The strength (or depth) of an emission (absorption) line
depends on the level populations of atoms. The line emission
and absorption coefficients are given by (e.g., Shaver 1975;
Gordon & Sorochenko 2009)

n
p

f n=n ¢ ¢ ( ) ( )j
h

A N
4

, 34n n n

n
p

f n= -n ¢ ¢ ¢( ) ( ) ( )k
h

N B N B
4

, 35n nn n n n

where h is the Planck constant, ¢Nn is the level population of a
given upper level ( ¢n ), and Nn is the level population of the
lower level (n); f n( ) is the line profile, ν is the frequency of the
transition, and ¢An nand ¢ ¢( )B Bn n nn are the Einstein coefficients
for spontaneous and stimulated emission (absorption), respec-
tively. Following Hummer & Storey (1987), we present the
results of our modeling in terms of the departure coefficients
(bn) and the correction factor for stimulated emission/
absorption (bn):
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Unless otherwise stated, the bnvaluespresented here corre-
spond to b +n n1, , that is, αtransitions. When a cloud is located
in front of a strong background source, the integrated line-to-
continuum ratio is proportional to bbn n (Shaver 1975; Payne
et al. 1994). We expand on the radiative transfer problem in
Paper II.

B.1. Hydrogenic Atoms

Under thermodynamic equilibrium conditions, level popula-
tions are given by the Saha–Boltzmann equation (e.g.,

Brocklehurst & Seaton 1972; Gordon & Sorochenko 2009):
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where Neis the electron density in the nebula, Nionis the
ion density, meis the electron mass, k is the Boltzmann
constant, Ry is the Rydberg constant, wnl is the statistical
weight of the level n and angular quantum momentum level
l[w = +( )l2 2 1nl , for hydrogen], and wi is the statistical
weight of the parent ion. The factor p( )h m kT2 e e

2 0.5 is the
thermal de Broglie wavelength, Λ, of the free electron
L » ´ - -[ ( ) ]T T4.14133 10 cme e

3 16 1.5 3 . In general, lines are
formed under non-LTE conditions, and, in order to properly
model the line behavior, the level population equation must be
solved. We follow the methods described in Brocklehurst
(1971) and improved upon by Hummer & Storey (1987), as
described in Section 2. Here, we give a detailed derivation of
the theory and methods. First, we solve the level population
equation assuming astatistical population of the angular
momentum llevels,
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for all nlevels. This assumption greatly simplifies the
calculations but is only valid when l-changing transitions are
faster than other processes, and, in general, this is not the case
for low nlevels. The level population equation under this
assumption is (e.g., Shaver 1975; Gordon & Sorochenko 2009)
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The right- and left-hand sides of Equation (40) describe how
level nis populated and depopulated, respectively. We take
into account spontaneous transitions from level nto lower
levels ( ¢Ann ), stimulated emission and absorption ( n¢B Inn ,

n¢B In n ), collisional transitions ( ¢Cnn ), radiative recombination
(an), collisional ionization (Cin), and three-body recombination
(Cni). Equation (40) can be written in terms of the departure
coefficients (bn):
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The previous equation can be written as a matrix equation of
the form ´ =R b S by choosing the appropriate elements to

Table 1
(Continued)

Symbol Description

anl
d Dielectronic capture rate

b ¢nn Correction factor for stimulated emission
ge De-excitation rate for carbon ions in the P2

3 2 core due to collisions

with electrons
gH De-excitation rate for carbon ions in the P2

3 2 core due to collisions

with hydrogen atoms
DE Energy difference between two levels
Dn ¢ -n n, difference between the upper and lower principal quantum

number
η Correction factor to the Planck function due to non-LTE level

population
μ Reduced mass
ν Frequency of a transition
n0 Reference frequency for the power-law background spectrum
f n( ) Line profile
wnl Statistical weight of level nl
wi Statistical weight of parent ion
cn Ionization potential of a level n, divided by kTe
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form the matrices R and S (e.g., Shaver 1975):
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It is easy to solve for the bnvalues by using standard matrix
inversion techniques. We will refer to this approach of solving
the level population equation as the nmethod.

At low nlevels, the quantum angular momentum distribu-
tion must be obtained, since the assumption that the angular
momentum levels are in statistical equilibrium is no longer
valid. Moreover, as described in Watson et al. (1980)
andWalmsley & Watson (1982), dielectronic capture is an
important process for carbon ions at low temperatures and
densities. Since the dielectronic capture process depends on the
quantum angular momentum distribution, we need to include
the l sublevel distribution for a given nlevel.

The level population equation considering llevels is as
follows:
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To solve for the llevel distribution at a given nlevel, we
followed an iterative approach as described in Brocklehurst
(1971) andHummer & Storey (1987). We will refer to this
approach of solving the level population equation as the
nlmethod.

We start the computations by applying the nmethod, that is,
assuming =b bnl n for all llevels, thus obtaining ( )bnl

0 values.
For levels above a given ncrit value, we expect the l sublevels to
be in statistical equilibrium. In this case, Equation (39) is valid,
and the bnlvalues are equal to those obtained by the nmethod.
On the first iteration, we start solving Equation (46) at =n ncrit

and use the previously computed values ( ¢ ¢
( )bn l
0 )for levels

¢ ¹n n. Equation (46) is then a tridiagonal matrix (only
elements with ¢ = l l 1enter into the equation), and, by
solving the system of equations, we obtain ( )bnl

1 values. The
operation is repeated for all nlevels down to =n nmin . In all
ofour simulations, we assume =n 3min since we are focused
on studying carbon atoms whose ground level corresponds to
n=2. We repeat the operation by using the ( )bnl

1 values instead
of the ( )bnl

0 values. Hummer & Storey (1987) have proven that
considering collisions from (and to) all ¢n levels guarantees a

continuous distribution between both approaches at levels close
to ncrit. The final bnvalues are computed by taking the
weighted sum of the bnl values:
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Details on the parameters used in this work are given in the text
(Section 2.2).

Appendix C
Radial Matrices and Einstein A Coefficients

In general, the radiative decay depends on the angular
momentum quantum number of the electron at the level n.
Transitions from level nl to ¢ ¢n l are described by ¢ ¢Anln l
coefficients, in the dipole approximation (Seaton 1959a):
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where a0is the Bohr radius andR( )n l, is the normalized radial
wave function solution to the Schrödinger equation of the
hydrogen atom (Burgess 1958; Brocklehurst 1971). The
computation of the matrix elements is challenging (see
Morabito et al. 2014 for details), and we follow the recursion
relations given by Storey & Hummer (1991) to calculate them
up to n=10,000, defining
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where the first argument of ¢( )R l l, corresponds to the lower
state. For a given ¢n level, Storey & Hummer (1991) give the
following relations, with the starting values:
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Appendix D
Radiative RecombinationCross Section

Storey & Hummer (1991) give a formula for computing the
photoionization cross section:
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To obtain the radial matrices elements, we use the same
recursion formula as for the Einstein A coefficients with the
substitution k=n i , with ithe imaginary number. The

( )C n l, coefficients are

k
=

+
( )

( )
( )C n l

l

l
,

1
, 56

2 2

and the initial values are

¢ ¢ - =( ) ( )R n n, 1 0, 57

p
¢ - ¢ =

¢ -
¢k=

¢+ - ¢⎡
⎣⎢

⎤
⎦⎥( )

( )!
( ) ( )R n n

n
n e1,

1

4 2 2 1
4 , 58n n

0

1 2
2 2

 k

p k

k k
k

¢ - ¢ =
+

- -

´
¢ - ¢

+ ¢
¢ - ¢

k

k

¹
=

¢

¢+ =

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( )

( )

[ ( ) ( )]
( )

( ) ( )

R n n

s

n n

n
R n n

1,

1

1 exp 2

exp 2 2 arctan

1
1, . 59

s

n

n

0
1

2 2

1 2

2 2 2 0

We are interested in computing the recombination cross section
for an electron with energy Erecombining to a level nl. From
theMilne relation we obtain (e.g., Rybicki & Lightman 1986)
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expressed in terms of the radial matrices. Here, nh n is the
ionization energy of the level n. The final rate is obtained by
integrating the cross section over a Maxwellian velocity
distribution:
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We consider =x E kTe, and I(x) is the function in the integral.
To integrate the cross section, we followed an approach similar
to Burgess (1965). We divide the integral into 30 segments
starting at = ´ -x kT 100

10and ending at = ´x kT20f .
Each segment is integrated by using a six-point Gauss–
Legendre quadrature scheme. This approach provides the value
of the integral close to kT, sotwo correction factors must be
applied: for the small values of xwe note that the integrand is
almost constant and the value of the integral is then ( )I x x 2;0 0

2

for large values of x we use a six-point Gauss–Legendre

quadrature starting at = ´x kT200 and ending at
= ´x kT30f . As mentioned in Section 3 we compare the

sum over lof our radiative recombination rates with the
formula of Seaton (1959b):
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Values for the c l( )Sn n are given by Seaton (1959b) in two
approximations for large and small arguments, and tabulated
values are also given for values in between the approximations.
A first-order expansion of the Gaunt factor (Allen 1973)
provides an accurate formula for the recombination coefficient:
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Appendix E
Energy-changing Collision Rates

Vriens & Smeets (1980) obtained the following semiempirical
formula for excitation by electrons. The formula is given by
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Appendix F
Collisional Ionization

We use the formulation in the code of Brocklehurst & Seaton
(1972) to obtain the values for the collisional ionization rates,
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and the formulation is based on Burgess & Percival (1968):
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