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ABSTRACT
Hot Jupiters (HJs) are Jupiter-like planets that reside very closely to their host star, within
∼ 0.1 AU. Their formation is not well understood. It is generallybelieved that they cannot
have formed in situ, implying that some form of migration must have occurred after their
initial formation. We study the production of HJs through secular evolution in multiplanet
systems with three to five planets. In this variant of high-e migration, the eccentricity of the
orbit of the innermost planet is excited on secular time-scales, triggering orbital migration
due to tidal dissipation. We use a secular dynamics code and carry out a population synthesis
study. We find that HJs are only produced if the viscous time-scale is short (≈ 0.014 yr).
In contrast, in up to≈ 0.3 of systems, the innermost planet is tidally disrupted. Theorbital
period distribution is peaked around 5 d, consistent with observations. The median HJ mass
is 1MJ with a maximum of≈ 2 MJ, similar to observed HJs. Approximately 0.1 of the HJs
have retrograde orbits with respect to the stellar spin. We do not find a significant population
of warm Jupiters in our simulations, i.e. planets with semimajor axes between 0.1 and 1 AU.

Key words: gravitation – planets and satellites: dynamical evolutionand stability – planet-
star interactions

1 INTRODUCTION

In the past decades, radial velocity and transit methods have re-
vealed a population of gas giant planets of order Jupiter mass
around solar-type stars with orbital periods downward of 10d,
i.e. hot Jupiters (HJs). The current consensus is that HJs could
not have formedin situ in the protoplanetary disc phase because
of an insufficient amount of disc material and/or too high tem-
peratures at these close regions to the host star (e.g.Lin et al.
1996; however, recently it has been suggested thatin situ for-
mation might be possible through core accretion,Lee et al. 2014;
Batygin et al. 2016). If HJs were formed at larger separations, i.e.
beyond the snow line of one to a few AU, then this implies that
they must have experienced strong inwards migration after their
formation, by two orders of magnitude in separation. Two main
migration scenarios have been proposed: (1) migration induced by
orbital energy dissipation due to gas drag in the protoplanetary disc
phase (e.g.Goldreich & Tremaine 1980; Lin & Papaloizou 1986;
Bodenheimer et al. 2000; Tanaka et al. 2002), and (2) migration in-
duced by tidal dissipation in the HJ, requiring high orbitaleccen-
tricity (commonly known as ‘high-e’ migration).

⋆ E-mail: hamers@ias.edu

For high-e migration, various subscenarios have been pro-
posed to drive the high eccentricities needed to produce theob-
served short orbital periods through tidal dissipation. They include
(i) eccentricity excitation because of close encounters between
planets (Rasio & Ford 1996; Chatterjee et al. 2008; Ford & Rasio
2008; Juríc & Tremaine 2008; Beaugé & Nesvorný 2012), (ii)
excitation of the eccentricity because of secular Lidov-Kozai
(LK) oscillations (Lidov 1962; Kozai 1962) induced by a dis-
tant binary companion star or an additional (massive) planet
on an inclined orbit (Wu & Murray 2003; Fabrycky & Tremaine
2007; Naoz et al. 2012; Petrovich 2015a; Anderson et al. 2016;
Petrovich & Tremaine 2016), (iii) secular eccentricity excitation
induced by a close and coplanar, but eccentric planetary com-
panion (Petrovich 2015b), and (iv) eccentricity excitation induced
by secular chaos in multiplanet systems with at least three plan-
ets in mildly inclined and eccentric orbits (Wu & Lithwick 2011;
Lithwick & Wu 2011, 2014).

It is currently unclear which of the two scenarios (1) and (2)
applies to observed HJs, or if a combination gives rise to HJs.
Both scenarios have successes and failures in describing properties
of observed HJs. The observed period distribution of HJs peaks
around∼ 3 − 5 d, and their eccentricities are close to zero (e.g.
Santerne et al. 2016). Most high-e migration scenarios predict that
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2 Hamers et al.

the final orbit of the HJ should indeed be circular and pile up a
short period, around∼ 3 d. Disc migration scenarios are more dif-
ficult to reconcile with the observed peak in the period distribu-
tion (but seeLin et al. 1996). On the other hand, high-e migration
through LK cycles in three-body systems (subscenarios ii and iii)
requires the presence of a stellar binary or compact planetary com-
panion, which have not (yet) been detected around all HJs (e.g.
Knutson et al. 2014; Ngo et al. 2015). Moreover, the predicted pro-
duction rate is too low, and the predicted periods are too short (e.g.
Anderson et al. 2016).

Subscenario (iv) involves three or more planets around a sin-
gle star, i.e.Np ≥ 3 systems (Wu & Lithwick 2011; Lithwick & Wu
2011, 2014). Similarly to three-body systems (i.e. a binary compan-
ion or two planets), secular interactions can change the eccentrici-
ties of the orbits, in particular the innermost orbit, on long time-
scales (i.e. much longer than the orbital periods). ForNp = 2,
high relative inclinations (typically& 40◦) and/or tight and ec-
centric outer orbits are required to produce high eccentricities. If
Np ≥ 3, then the conditions for producing high eccentricities inthe
innermost orbit are less stringent. The initial eccentricities and rel-
ative inclinations can be much smaller, and the planets neednot be
very closely spaced. Suborbital effects such as close encounters and
mean motion resonances are then typically unimportant, andthe
long-term evolution is driven mainly by secular interactions. The
secular evolution is typically chaotic, giving rise to highly irregular
eccentricity oscillations. Over the course of∼ 0.1 − 10 Gyr, high
eccentricities can be reached in the inner orbit, potentially leading
to HJs. A well known example is the Solar system, in which secular
chaos can drive the orbit of Mercury to become unstable (i.e.lead
to an ejection of the planet, or a collision of the planet withthe Sun)
on a time-scale of 5 Gyr, and with a probability of a few per cent
(Laskar & Gastineau 2009; Lithwick & Wu 2014).

The less stringent conditions for secular chaos inNp ≥ 3 sys-
tems are compatible with current observations of HJs which ex-
clude close-in companions for a subset of HJs, whereas detections
of further-away companions (at& 5−10 AU) are still largely incom-
plete because of observational limitations. This argumentcan also
be reversed: the production of HJs through secular chaosrequires
further-away companions, therefore such companions are expected
to be observed around HJ-hosting stars in the future.

Parameter space studies and/or Monte Carlo studies to quan-
tify observed properties of the HJs in multiplanet systems are still
lacking. The long secular time-scales compared to the shortorbital
periods imply that directN-body integrations, such as those car-
ried out byWu & Lithwick (2011) andBeaugé & Nesvorný(2012),
are computationally very expensive to carry out, especially con-
sidering the large number of parameters. Until recently, secular,
orbit-averaged methods valid for high eccentricities and inclina-
tions were limited toNp = 2 and to systems that are not too com-
pact, as a consequence of the expansion of the Hamiltonian interms
of ratios of binary separations.

In recent work (Hamers & Portegies Zwart 2016), we pre-
sented a generalization of the secular, orbit-averaged method previ-
ously applied to hierarchical three-body systems (e.g.Lidov 1962;
Kozai 1962; Harrington 1968; Naoz et al. 2013a), to systems com-
posed of nested binary orbits, with an arbitrary number of bodies
and an arbitrary hierarchy, and to fifth order in terms of binary sep-
aration ratios for binary-binary interactions. In this paper, we apply
this method to study the formation of HJs through secular evolu-
tion in multiplanet systems withNp = 3 to Np = 5 planets. The
main practical advantage of this method is that compared to direct
N-body integrations, the evolution can be computed much faster.

Using a combination of population synthesis and grid sam-
pling, we study the dependence of the HJ properties on various pa-
rameters, including the efficiency of tidal dissipation, the number
of planets, the width of the initial mutual inclination and eccentric-
ity distribution, and the radius of the innermost planet. These pa-
rameters, in particular the efficiency of tidal dissipation, are highly
uncertain.

The structure of this paper is as follows. In Section2, we de-
scribe the secular method and other assumptions and in Section3,
we verify it by comparing to a (limited) number of directN-body
integrations. In Section4, we present the results from the popula-
tion synthesis study. We discuss our results in Section5, and con-
clude in Section6.

2 METHODS AND ASSUMPTIONS

2.1 Notations and overview

In Table1, we give a list of relevant quantities with a description.
Where applicable, we give for reference the values of the (initial)
parameters that were assumed in the various sections of thispaper.

2.2 Secular dynamics

To model the long-term gravitational dynamics of the mul-
tiplanet system, we used the algorithm SecularMultiple
(Hamers & Portegies Zwart 2016) within the AMUSE framework
(Portegies Zwart et al. 2013; Pelupessy et al. 2013). Secular-
Multiple applies to self-gravitating systems composed of nested
binaries with an arbitrary number of bodies and an arbitraryhierar-
chy. A multiplanet system is represented as a ‘nested’ hierarchical
multiple system of point particles; the star is contained within the
‘innermost’ binary system (i.e. Jacobian coordinates; seee.g. fig.
3 of Hamers & Portegies Zwart 2016). The algorithm is based on
an expansion of the Hamiltonian in terms of binary separation
ratios, which are assumed to be small. The resulting Hamiltonian
is orbit averaged, and the equations of motion, defining a system
of ordinary differential equations, are solved numerically in terms
of the orbital vectorsek andhk for all binariesk.

As shown inHamers & Portegies Zwart(2016), depending on
the compactness of the system, high orders are required to accu-
rately describe the orbital evolution. Here, we included terms cor-
responding to binary-binary interactions (pairwise terms) up and
including fifth order in the separation ratios. To third order (‘oc-
tupole order’), we included the triplet binary terms (correspond-
ing to interactions between three binaries), although these terms
are unimportant for multiplanet systems with roughly equal-mass
planets (Hamers & Portegies Zwart 2016). For the fourth and fifth
orders, terms associated with interactions between more than two
binaries were not included; as shown inHamers & Portegies Zwart
(2016), these terms are unimportant compared to the pairwise bi-
nary terms.

Relativistic corrections were included by adding the orbit-
averaged precession rates of the line of apsides to the or-
bits, to the first post-Newtonian (PN) order. Terms in the
PN potential associated with interactions between binaries (e.g.
Naoz et al. 2013b) were neglected (see also appendix A7 of
Hamers & Portegies Zwart 2016).

MNRAS 000, 1–14 (2016)
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Symbol Description

Values in section
3 4

Np Number of planets 3 3-5
M⋆ Stellar mass 1 M⊙ 1 M⊙
mi Mass of planeti 3× 10−4 M⊙ (i = 1) 0.5-5MJ

1× 10−4 M⊙ (i > 1)
R⋆ Stellar radius 1 R⊙ 1 R⊙
Ri Radius of planeti 1RJ 1-1.5RJ

η Tidal disruption factor (cf. equation6) − 2.7
tV,⋆ Stellar viscous time-scale − 5 yr
tV,1 Planet 1 viscous time-scale ≈ 4.8 yr 0.0137, 0.137, 1.37 yr
kAM ,⋆ Stellar apsidal motion constant − 0.014
kAM ,1 Planet 1 apsidal motion constant 0.19 0.25
rg,⋆ Stellar gyration radius − 0.08
rg,1 Planet 1 gyration radius − 0.25
Ps,⋆ Stellar spin period − 10 d
Ps,1 Planet 1 spin period − 10 hr
θ⋆ Stellar obliquity (stellar spin-orbit 1 an-

gle)
− 0◦

θ1 Planet 1 obliquity (planet 1 spin-orbit 1
angle)

− 0◦

ai Planeti orbital semimajor axis 1 AU (i = 1) 1-4 AU (i = 1)
6 AU (i = 2) 6-10 AU (i = 2)

12-62 AU (i = 3) 15-30 AU (i = 3)
35-50 AU (i = 4)
60-100 AU (i = 5)

ei Planeti orbital eccentricity ≈ 0.4-0.6 0-0.8
ii Planeti orbital inclination1 0-30◦

ωi Planeti argument of pericentre 0-360◦ 0-360◦

Ωi Planeti longitude of ascending node 0-360◦ 0-360◦

β Width of inclination and eccentricity
distribution

− 8.2, 14.6, 32.8

Table 1. Description of the quantities used. Where applicable, we give the values of the (initial) parameters that are assumed inSections3 and4.

2.3 Tidal evolution

The tidal evolution of the innermost planet and the star was mod-
elled with the equilibrium tide model ofEggleton et al.(1998). This
model includes the effect of precession of the orbit of the innermost
planet due to tidal bulges and rotation of both the star and innermost
planet. We also included spin-orbit coupling and followed the spin
directions of both the star and the innermost planet, assuming ini-
tially zero obliquities. The equilibrium tide model is described in
terms of the viscous time-scaletV , the apsidal motion constantkAM ,
the gyration radiusrg and the initial spin periodPs, for both the star
and the innermost planet. Our assumed values are given in Table 1.
Most of the values are adopted fromFabrycky & Tremaine(2007).

We assumed a constant tidal viscous time-scaletV for both the
star and the innermost planet. Apart from its simplicity, a tempo-
rally constanttV,1 for the innermost planet during high-e migration
follows from the equations of motion with a number of physically
motivated assumptions (Socrates & Katz 2012). We note that our
assumption of a constanttV,1 is in contrast toWu & Murray (2003);
Wu & Lithwick (2011), who assumed atV,1 depending on the or-
bital period (Socrates et al. 2012).

3 VERIFICATION OF THE SECULAR METHOD WITH
N-BODY INTEGRATIONS

As mentioned in Section1, the secular evolution of multiplanet
systems can be chaotic, especially when the number of planets is

Np ≥ 3. In directN-body integrations, this implies that changing
the initial orbital phases or the accuracy of the integration can lead
to a completely different outcome after some time during which the
eccentricities have changed by, say, the order of unity. This implies
that it is not very meaningful – on a one-to-one basis – to compare
results from directN-body integrations to those from SecularMul-
tiple, in which the orbits are averaged over. Our expectation is that
SecularMultiple produces the correct secular dynamical evolution
in a statistical sense, i.e. for an ensemble of systems.

In this section, we investigate this expectation by comparing
results from SecularMultiple to those from the directN-body code
ARCHAIN (Mikkola & Merritt 2008). The latter code uses algo-
rithmic chain regularization to integrate the equations ofmotion
with high precision. In addition to relativistic corrections, tidal in-
teractions are taken into account with the same model assumed for
the secular integrations. For more details regarding the direct N-
body code, we refer toAntonini et al.(2016) and Antonini et al. (in
preparation).

3.1 Initial conditions

The ARCHAIN code was used to integrate 100 three-planet sys-
tems for≈ 120 Myr (cf. Table1). The stellar mass was set to
M⋆ = 1 M⊙, and the planetary masses were assumed to bem1 =

3×10−4 M⊙ ≈ 0.314MJ andm2 = m3 = 1×10−3 M⊙ ≈ 1.05MJ. The
initial semimajor axes were assumed to bea1 = 1 AU, a2 = 6 AU,
anda3 was varied between 12 and 62 AU with increments of 0.5

MNRAS 000, 1–14 (2016)
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Figure 1. The distributions of the innermost planet’s orbit semilatus rectum,
r1,slr,f ≡ a1,f

(

1− e2
1,f

)

, after 120 Myr of evolution according to ARCHAIN
(black solid line) and to SecularMultiple (red dashed line). TheD and p
statistics for the two-sided KS test between the distributions are indicated
in the panel. In the inset, the PDF is shown for log10(r1,slr,f /AU) < −1.5.

AU. The eccentricities and inclinations for all orbits wereset equal
to each other, and values were assumed ranging between≈ 0.4 and
0.6 (with the inclinations measured in radians). The other orbital
angles,ωi andΩi, were sampled from flat distributions between
0 and 360◦. The innermost planet was assumed to have a radius
R1 = 1RJ, a viscous time-scaletV,1 ≈ 4.8 yr, and an apsidal motion
constantkAM ,1 = 0.19. Tidal disruptions were not checked for (in
contrast to Section4).

With ARCHAIN, the typical integration time of a single sys-
tem was∼ 1 week (on a single CPU core). With comparable hard-
ware, the corresponding integration time with SecularMultiple
ranged between order 10 s (if there is no strong tidal evolution in
the innermost orbit) to order a few min (if there is strong tidal evo-
lution in the innermost orbit), corresponding to a speed-upfactor
between∼ 103 and∼ 104.

3.2 Results

With ARCHAIN, a fraction of 0.32 of the systems became HJ sys-
tems by 120 Myr, i.e. the final semilatus rectum of the orbit ofthe
innermost planet,r1,slr,f ≡ a1,f

(

1− e2
1,f

)

, reachedr1,slr,f < 0.091 AU,
corresponding to the semimajor axis of a 10-d planet in a circular
orbit around a Solar-mass star. We use the semilatus rectum to de-
fine HJs, because after 120 Myr, some systems were still decaying
tidally (i.e.a1 ande1 decreasing), while decoupled from the secular
oscillations. In the latter case, when tidal evolution dominates, the
final result (i.e. after≫ 120 Myr) is a circular orbit with semima-
jor axis a1,f = r1,slr,f . The HJ fraction after 120 Myr of evolution
obtained with SecularMultiple is 0.33.

In Fig.1, we show the distribution ofr1,slr,f after 120 Myr of
evolution in terms of the cumulative density function (CDF)ac-
cording to ARCHAIN (black solid line) and according to Secular-
Multiple (red dashed line). There is a pileup of systems around
log10(r1,slr,f /AU) ≈ −1.7 corresponding to systems in which a HJ
was formed. The number of systems subsequently stalls at≈ 0.32
with increasingr1,slr,f , until at log10(r1,slr,f /AU) ≈ −0.4, this number

0 20 40 60 80 100 120

tHJ/Myr

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

D ≈ 0.16; p ≈ 0.763
N -body

secular

Figure 2. The CDF of the HJ formation times (see text for definition)
according to ARCHAIN (black solid line) and to SecularMultiple (red
dashed line). KS test statistics are indicated.

increases again. The latter correspond to non- (or weakly) migrat-
ing planets; either their semimajor axes have decreased slightly due
to tidal evolution, and/or their eccentricities are excited because of
secular evolution.

In terms of r1,slr,f , there is statistical agreement between
ARCHAIN and SecularMultiple; the two-sided Kolmogorov-
Smirnov (KS;Kolmogorov 1933; Smirnov 1948) test statistics are
D ≈ 0.082 andp ≈ 0.881. There is a tendency for SecularMul-
tiple to (slightly) overestimate the smallest semilatus recta, or the
smallest orbital periods of the HJs, compared to ARCHAIN. Wedo
not believe that this discrepancy strongly affects our conclusions in
the integrations in Section4.

In Fig.2, we show another comparison between the two meth-
ods in terms of the distributions of the HJ formation times, i.e. the
times whenr1,slr,f . 0.09 AU (corresponding to an orbital period of
10 d around a solar-mass star). With both methods, most (≈ 0.7)
HJs are produced early in the evolution, i.e. within the first10 Myr.
The KS test yieldsD ≈ 0.16 andp ≈ 0.763, showing that the two
distributions are statistically consistent. Nonetheless, the formation
times in SecularMultiple after 10 Myr tend to be slightly longer.

Despite the statistical consistencies as described above,it
should be taken into account that the conditionKi j ≤ 0 occurred
in both the secular and direct integrations. The quantityKi j is de-
fined for two adjacent orbitsi and j, with a j > ai, as

Ki j ≡
a j(1− e j) − ai(1+ ei)

RH;i j
, (1)

where

RH;i j ≡
ai + a j

2

(

mi + m j

3M⋆

)1/3

(2)

is the mutual Hill radius. With SecularMultiple, Ki j ≤ 0 occurred
for ≈ 0.00016 and≈ 0.021 of all output times for orbit pairs
(1,2) and (2,3), respectively. With ARCHAIN, these fractions were
≈ 0.0002 and≈ 0.015, for the same orbit pairs. IfKi j ≤ 0, then the
assumptions on which the secular method is based formally break
down, and results should be interpreted critically. In our popula-
tion synthesis study (Section4), integrations were stopped at oc-
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currences ofKi j ≤ 0. To investigate whether this affects our con-
clusions, some of the integrations were not stopped whenKi j ≤ 0.

4 POPULATION SYNTHESIS

We used SecularMultiple to compute the dynamical evolution of
a population of multiplanet systems with three to five planets. The
innermost planet was initially located between 1 and 4 AU com-
mensurate with planet formation just beyond the snow line. Taking
into account tidal evolution, we focus on the orbital evolution of
the innermost planet in the context of WJs and HJs.

4.1 Initial conditions

To generate the initial conditions of our systems, we used a combi-
nation of grid and Monte Carlo sampling. We defined a grid with
the following parameters: (1) the viscous time-scaletV,1 of the in-
nermost planet, (2) the number of planetsNp, (3)β, which is related
to the rms width of the initial inclination and eccentricitydistribu-
tion (see below), and (4) the radius of the innermost planet,R1. The
following values were considered:















































tV,1 ∈
{

10−3,10−2,10−1,100
}

tV,SKD;
Np ∈ {3,4,5};
β ∈

{

(

20 π
180

)−2
,
(

15 π
180

)−2
,
(

10 π
180

)−2
}

≈ {8.2,14.6, 32.8};
R1 ∈ {1.0,1.5}RJ.

(3)

For gas giant planets and high-e migration,Socrates et al.(2012)
provided the constrainttV,1 . 1.2 ×104 hr, by requiring that a HJ at
5 d is circularized in less than 10 Gyr. We adopted a referencevalue
tV,SKD = 1.2 × 104 h ≈ 1.37 yr , and consideredtV,1 corresponding
to 1, 10, 100 and 1000 times more efficient tides compared totV,SKD

(smallertV,1 correspond to more efficient tides). The viscous time-
scaletV,SKD corresponds to a tidal quality factor ofQ1 ≈ 1.1× 105

(cf. equation 37 fromSocrates et al. 2012), andQ1 ∝ tV,1.
We considered two planetary radii of 1 and 1.5RJ. Large plan-

etary radii might be expected because of inflation due to tidal heat-
ing, and are also observed (this is known as the radius anomaly,
Laughlin et al. 2011).

For each of the 72 combinations of grid parameters, we sam-
pled NMC = 1000 systems using the following approach. The
massesmi of the Np planets were sampled from flat distributions
with 0.5 MJ < mi < 5 MJ. The inclinationsii (as measured in ra-
dians, and defined with respect to an arbitrary reference plane) and
eccentricitiesei of the planetary orbits were both sampled from a
Rayleigh distribution,

dN
dx
∝ x exp

(

−βx2
)

, (4)

whereβ = 〈x2〉−1 (assuming 0< x < ∞) characterizes the width of
the distribution. The sampling limits were 0< ei < 0.8 and 0◦ <
ii < 30◦. The arguments of pericentreωi and the longitudes of the
ascending nodesΩi were sampled from flat distributions between
0◦ and 360◦.

The semimajor axes of the planetsai were sampled from flat

distributions, with the fixed ranges






































1.0 AU < a1 < 4.0 AU;
6.0 AU < a2 < 10.0 AU;
15.0 AU < a3 < 30.0 AU;
35.0 AU < a4 < 50.0 AU;
60.0 AU < a5 < 100.0 AU.

(5)

These choices are somewhat arbitrary. The semimajor axes ofplan-
ets beyond∼ 5 AU are still poorly constrained by observations. As-
sumptions must therefore be made regarding the semimajor axes,
in particular for orbits outside of the innermost planet. The ranges
of a1, a2 and a3 are similar to the values that were assumed by
Wu & Lithwick (2011) (1, 6 and 16 AU, respectively). The choice
of a flat distribution, apart from its simplicity, is motivated by the
ability to easily disentangle any dependence of the resultson the
semimajor axes. At any rate, it should be taken into account that
our choice of the initial semimajor axes is not unique, and likely
affects the results of the population synthesis.

We rejected a sampled combination ofmi, ai andei if Ki j <

K0 ≡ 2 for any adjacent pair (i, j) = (i, i + 1) of orbits (cf. equa-
tion 1). The specific value ofK0 is arbitrary. Choosing the value
K0 = 0 would produce a large fraction of systems in which the sec-
ular method is questionable from the start (cf. Section3), whereas a
large value ofK0, sayK0 = 12, would produce too-well-separated
systems in which the eccentricities would hardly evolve, and no
WJs or HJs would be formed. As a compromise, we setK0 = 2.

For the other (non-sampled) initial parameters, we refer tothe
last column of Table1. Regarding the star, we adopted a constant
viscous time-scale oftV,⋆ = 5 yr. Assuming a (massless) compan-
ion at an orbital period of 4 d, this corresponds to a tidal quality
factor of Q ∼ 6 × 108 or Q′ ≡ 3Q/(4kAM ,⋆) ∼ 3 × 106, which is
typical for Solar-type stars (Ogilvie & Lin 2007).

4.2 Stopping conditions

The integrations were stopped if one of the following conditions
was met.

(i) The integration time reached 10 Gyr.
(ii) A HJ was formed, i.e.P1 < 10 d ande1 < 10−3. The orbit is

then well within the regime of the decoupling of tidal from secular
evolution, and there is no further evolution due to tides raised on
the planet. Tides raised on the star are still important, butthe time-
scale for inspiral,∼ 20 Gyr (assuming a stellar viscous time-scale
of 5 yr), is longer than the Hubble time.

(iii) The innermost planet was tidally disrupted by the star, i.e.
rp,1 = a1(1− e1) < rt, wherert is given by

rt = ηR1

(

M⋆
m1

)1/3

. (6)

Here,η is a dimensionless parameter; throughout, we assumedη =

2.7 (Guillochon et al. 2011).
(iv) The conditionKi j ≤ 0 (cf. equation1) occurred for any

pair of adjacent orbits (i, j), i.e. the secular approximation formally
broke down. We also carried out additional simulations for some
parameter combinations without this stopping condition toinvesti-
gate the sensitivity of our results on this condition.

(v) The run time of the simulation exceeded 12 CPU hours (im-
posed for practical reasons).2

2 Depending on the parameters, the secular time-scales can bevery short
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fno migration fHJ fTD fKi j≤0 frun time exceeded

tend/Gyr tend/Gyr tend/Gyr tend/Gyr tend/Gyr

tV,1/yr Np β R1/RJ 5 10 tx 5 10 tx 5 10 tx 5 10 tx 5 10 tx

1.37× 10−3 3 8.2 1.0 0.822 0.816 0.831 0.008 0.008 0.007 0.048 0.049 0.047 0.122 0.127 0.115 0.000 0.000 0.000
1.37× 10−3 3 8.2 1.5 0.820 0.810 0.828 0.021 0.023 0.018 0.020 0.020 0.019 0.138 0.146 0.134 0.000 0.000 0.000
1.37× 10−3 3 14.6 1.0 0.912 0.906 0.916 0.010 0.010 0.009 0.022 0.023 0.021 0.056 0.061 0.054 0.000 0.000 0.000
1.37× 10−3 3 14.6 1.5 0.929 0.921 0.933 0.011 0.012 0.010 0.010 0.011 0.010 0.050 0.054 0.045 0.000 0.000 0.000
1.37× 10−3 3 32.8 1.0 0.987 0.986 0.987 0.000 0.000 0.000 0.003 0.003 0.003 0.010 0.011 0.010 0.000 0.000 0.000
1.37× 10−3 3 32.8 1.5 0.990 0.989 0.990 0.001 0.001 0.001 0.001 0.001 0.001 0.008 0.009 0.008 0.000 0.000 0.000
1.37× 10−3 4 8.2 1.0 0.347 0.321 0.372 0.007 0.009 0.006 0.055 0.058 0.056 0.591 0.611 0.566 0.000 0.001 0.000
1.37× 10−3 4 8.2 1.5 0.324 0.298 0.362 0.014 0.018 0.013 0.062 0.062 0.059 0.600 0.622 0.566 0.000 0.000 0.000
1.37× 10−3 4 14.6 1.0 0.580 0.547 0.591 0.006 0.006 0.006 0.043 0.045 0.041 0.371 0.401 0.362 0.000 0.001 0.000
1.37× 10−3 4 14.6 1.5 0.552 0.520 0.579 0.015 0.015 0.015 0.032 0.034 0.031 0.400 0.429 0.374 0.000 0.000 0.000
1.37× 10−3 4 32.8 1.0 0.867 0.858 0.881 0.002 0.002 0.002 0.010 0.010 0.008 0.121 0.130 0.109 0.000 0.000 0.000
1.37× 10−3 4 32.8 1.5 0.886 0.870 0.887 0.007 0.007 0.005 0.003 0.003 0.003 0.102 0.117 0.103 0.000 0.001 0.000
1.37× 10−3 5 8.2 1.0 0.117 0.092 0.139 0.005 0.006 0.005 0.045 0.045 0.043 0.833 0.853 0.811 0.000 0.004 0.002
1.37× 10−3 5 8.2 1.5 0.107 0.085 0.130 0.008 0.008 0.007 0.057 0.057 0.054 0.828 0.844 0.809 0.000 0.006 0.000
1.37× 10−3 5 14.6 1.0 0.239 0.209 0.275 0.005 0.005 0.005 0.051 0.051 0.051 0.705 0.732 0.669 0.000 0.003 0.000
1.37× 10−3 5 14.6 1.5 0.264 0.214 0.289 0.015 0.018 0.016 0.045 0.045 0.043 0.676 0.708 0.649 0.000 0.014 0.002
1.37× 10−3 5 32.8 1.0 0.669 0.612 0.689 0.005 0.005 0.005 0.025 0.026 0.022 0.301 0.325 0.279 0.000 0.032 0.005
1.37× 10−3 5 32.8 1.5 0.660 0.592 0.673 0.006 0.006 0.005 0.019 0.021 0.020 0.312 0.362 0.299 0.000 0.016 0.000

1.37× 10−2 3 8.2 1.0 0.835 0.818 0.846 0.002 0.004 0.002 0.028 0.032 0.027 0.135 0.146 0.125 0.000 0.000 0.000
1.37× 10−2 3 8.2 1.5 0.819 0.807 0.830 0.002 0.005 0.001 0.046 0.048 0.045 0.133 0.140 0.124 0.000 0.000 0.000
1.37× 10−2 3 14.6 1.0 0.913 0.908 0.916 0.001 0.001 0.000 0.021 0.022 0.021 0.065 0.069 0.063 0.000 0.000 0.000
1.37× 10−2 3 14.6 1.5 0.920 0.912 0.924 0.001 0.001 0.001 0.020 0.020 0.018 0.059 0.067 0.057 0.000 0.000 0.000
1.37× 10−2 3 32.8 1.0 0.990 0.990 0.991 0.001 0.001 0.001 0.003 0.003 0.003 0.006 0.006 0.005 0.000 0.000 0.000
1.37× 10−2 3 32.8 1.5 0.988 0.988 0.988 0.001 0.001 0.001 0.003 0.003 0.003 0.008 0.008 0.008 0.000 0.000 0.000
1.37× 10−2 4 8.2 1.0 0.305 0.289 0.335 0.000 0.000 0.000 0.068 0.071 0.068 0.627 0.638 0.596 0.000 0.002 0.001
1.37× 10−2 4 8.2 1.5 0.334 0.300 0.343 0.002 0.002 0.002 0.063 0.063 0.062 0.601 0.635 0.593 0.000 0.000 0.000
1.37× 10−2 4 14.6 1.0 0.565 0.544 0.582 0.000 0.000 0.000 0.052 0.052 0.050 0.383 0.404 0.368 0.000 0.000 0.000
1.37× 10−2 4 14.6 1.5 0.565 0.531 0.584 0.002 0.003 0.003 0.037 0.038 0.035 0.396 0.426 0.378 0.000 0.002 0.000
1.37× 10−2 4 32.8 1.0 0.887 0.872 0.897 0.000 0.000 0.000 0.008 0.008 0.007 0.105 0.118 0.096 0.000 0.002 0.000
1.37× 10−2 4 32.8 1.5 0.884 0.866 0.883 0.003 0.003 0.002 0.005 0.006 0.005 0.108 0.121 0.108 0.000 0.004 0.002
1.37× 10−2 5 8.2 1.0 0.086 0.068 0.112 0.000 0.000 0.000 0.050 0.051 0.050 0.864 0.878 0.838 0.000 0.003 0.000
1.37× 10−2 5 8.2 1.5 0.106 0.091 0.128 0.002 0.002 0.001 0.068 0.069 0.066 0.824 0.831 0.804 0.000 0.007 0.001
1.37× 10−2 5 14.6 1.0 0.243 0.201 0.266 0.001 0.001 0.001 0.059 0.059 0.057 0.696 0.729 0.675 0.001 0.010 0.001
1.37× 10−2 5 14.6 1.5 0.246 0.202 0.274 0.001 0.001 0.001 0.052 0.054 0.051 0.701 0.728 0.670 0.000 0.015 0.004
1.37× 10−2 5 32.8 1.0 0.684 0.633 0.689 0.000 0.000 0.000 0.025 0.027 0.023 0.290 0.322 0.283 0.001 0.018 0.005
1.37× 10−2 5 32.8 1.5 0.640 0.586 0.653 0.001 0.001 0.001 0.023 0.024 0.019 0.336 0.369 0.319 0.000 0.020 0.008

1.37× 10−1 3 8.2 1.0 0.807 0.798 0.810 0.000 0.000 0.000 0.041 0.042 0.041 0.152 0.160 0.149 0.000 0.000 0.000
1.37× 10−1 3 8.2 1.5 0.815 0.804 0.827 0.000 0.000 0.000 0.038 0.040 0.035 0.147 0.156 0.138 0.000 0.000 0.000
1.37× 10−1 3 14.6 1.0 0.921 0.913 0.922 0.000 0.000 0.000 0.023 0.023 0.021 0.056 0.064 0.057 0.000 0.000 0.000
1.37× 10−1 3 14.6 1.5 0.924 0.921 0.928 0.000 0.000 0.000 0.022 0.022 0.022 0.054 0.057 0.050 0.000 0.000 0.000
1.37× 10−1 3 32.8 1.0 0.990 0.989 0.991 0.000 0.000 0.000 0.003 0.003 0.003 0.007 0.008 0.006 0.000 0.000 0.000
1.37× 10−1 3 32.8 1.5 0.988 0.988 0.988 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.012 0.012 0.000 0.000 0.000
1.37× 10−1 4 8.2 1.0 0.355 0.331 0.377 0.000 0.000 0.000 0.059 0.060 0.057 0.586 0.607 0.566 0.000 0.002 0.000
1.37× 10−1 4 8.2 1.5 0.376 0.348 0.391 0.000 0.000 0.000 0.052 0.052 0.051 0.572 0.599 0.558 0.000 0.001 0.000
1.37× 10−1 4 14.6 1.0 0.536 0.499 0.557 0.000 0.000 0.000 0.046 0.046 0.046 0.418 0.453 0.397 0.000 0.002 0.000
1.37× 10−1 4 14.6 1.5 0.551 0.515 0.574 0.000 0.000 0.000 0.035 0.036 0.033 0.414 0.442 0.392 0.000 0.007 0.001
1.37× 10−1 4 32.8 1.0 0.893 0.872 0.898 0.000 0.001 0.001 0.008 0.009 0.007 0.099 0.117 0.094 0.000 0.001 0.000
1.37× 10−1 4 32.8 1.5 0.885 0.868 0.889 0.000 0.000 0.000 0.016 0.017 0.012 0.099 0.114 0.099 0.000 0.001 0.000
1.37× 10−1 5 8.2 1.0 0.111 0.081 0.128 0.000 0.000 0.000 0.066 0.067 0.066 0.823 0.843 0.805 0.000 0.009 0.001
1.37× 10−1 5 8.2 1.5 0.123 0.095 0.136 0.000 0.000 0.000 0.055 0.056 0.054 0.822 0.845 0.809 0.000 0.004 0.001
1.37× 10−1 5 14.6 1.0 0.262 0.220 0.286 0.000 0.000 0.000 0.052 0.053 0.049 0.685 0.719 0.663 0.001 0.008 0.002
1.37× 10−1 5 14.6 1.5 0.261 0.227 0.293 0.000 0.000 0.000 0.047 0.050 0.045 0.692 0.718 0.661 0.000 0.005 0.001
1.37× 10−1 5 32.8 1.0 0.688 0.628 0.703 0.000 0.000 0.000 0.033 0.040 0.033 0.279 0.314 0.259 0.000 0.018 0.005
1.37× 10−1 5 32.8 1.5 0.666 0.615 0.690 0.000 0.000 0.000 0.031 0.033 0.032 0.303 0.339 0.277 0.000 0.013 0.001

1.37× 100 3 8.2 1.0 0.835 0.824 0.845 0.000 0.000 0.000 0.035 0.039 0.033 0.130 0.137 0.122 0.000 0.000 0.000
1.37× 100 3 8.2 1.5 0.844 0.836 0.856 0.000 0.000 0.000 0.038 0.039 0.037 0.118 0.125 0.107 0.000 0.000 0.000
1.37× 100 3 14.6 1.0 0.916 0.908 0.916 0.000 0.000 0.000 0.015 0.016 0.014 0.069 0.076 0.070 0.000 0.000 0.000
1.37× 100 3 14.6 1.5 0.909 0.903 0.913 0.000 0.000 0.000 0.019 0.020 0.016 0.072 0.077 0.071 0.000 0.000 0.000
1.37× 100 3 32.8 1.0 0.981 0.981 0.982 0.000 0.000 0.000 0.003 0.003 0.003 0.016 0.016 0.015 0.000 0.000 0.000
1.37× 100 3 32.8 1.5 0.993 0.992 0.993 0.000 0.000 0.000 0.001 0.002 0.001 0.006 0.006 0.006 0.000 0.000 0.000
1.37× 100 4 8.2 1.0 0.334 0.304 0.358 0.000 0.000 0.000 0.051 0.053 0.051 0.615 0.642 0.590 0.000 0.001 0.001
1.37× 100 4 8.2 1.5 0.361 0.343 0.378 0.000 0.000 0.000 0.057 0.060 0.056 0.582 0.596 0.566 0.000 0.001 0.000
1.37× 100 4 14.6 1.0 0.577 0.543 0.591 0.000 0.000 0.000 0.038 0.038 0.035 0.385 0.419 0.374 0.000 0.000 0.000
1.37× 100 4 14.6 1.5 0.562 0.529 0.569 0.000 0.000 0.000 0.059 0.060 0.055 0.379 0.406 0.375 0.000 0.005 0.001
1.37× 100 4 32.8 1.0 0.885 0.869 0.895 0.000 0.000 0.000 0.014 0.014 0.013 0.101 0.115 0.092 0.000 0.002 0.000
1.37× 100 4 32.8 1.5 0.889 0.872 0.897 0.000 0.000 0.000 0.011 0.013 0.011 0.100 0.112 0.092 0.000 0.003 0.000
1.37× 100 5 8.2 1.0 0.094 0.073 0.113 0.000 0.000 0.000 0.055 0.057 0.056 0.851 0.866 0.831 0.000 0.004 0.000
1.37× 100 5 8.2 1.5 0.130 0.098 0.149 0.000 0.000 0.000 0.068 0.069 0.067 0.802 0.827 0.782 0.000 0.006 0.002
1.37× 100 5 14.6 1.0 0.249 0.197 0.272 0.000 0.000 0.000 0.050 0.053 0.049 0.700 0.742 0.678 0.001 0.008 0.001
1.37× 100 5 14.6 1.5 0.235 0.200 0.271 0.000 0.000 0.000 0.063 0.065 0.060 0.701 0.729 0.668 0.001 0.006 0.001
1.37× 100 5 32.8 1.0 0.715 0.662 0.726 0.000 0.000 0.000 0.016 0.017 0.016 0.269 0.304 0.256 0.000 0.017 0.002
1.37× 100 5 32.8 1.5 0.700 0.646 0.719 0.000 0.000 0.000 0.019 0.024 0.018 0.280 0.310 0.261 0.001 0.020 0.002

Table 2. Outcomes of theNMC = 1000 Monte Carlo realizations for various combinations of the grid parameterstV,1 (in units of yr, rounded to two decimal
places),Np, β (rounded to one decimal place) andR1 (in units ofRJ).
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fno migration fHJ fTD fKi j≤0 frun time exceeded

tend/Gyr tend/Gyr tend/Gyr tend/Gyr tend/Gyr

tV,1/yr Np β R1/RJ 5 10 tx 5 10 tx 5 10 tx 5 10 tx 5 10 tx

1.37× 10−2 3 8.2 1.0 0.835 0.818 0.846 0.002 0.004 0.002 0.028 0.032 0.027 0.135 0.146 0.125 0.000 0.000 0.000
1.37× 10−2 3 8.2 1.0 0.917 0.916 0.922 0.002 0.002 0.002 0.080 0.080 0.075 − − − 0.001 0.002 0.001
1.37× 10−2 3 14.6 1.0 0.913 0.908 0.916 0.001 0.001 0.000 0.021 0.022 0.021 0.065 0.069 0.063 0.000 0.000 0.000
1.37× 10−2 3 14.6 1.0 0.973 0.973 0.974 0.002 0.002 0.002 0.025 0.025 0.024 − − − 0.000 0.000 0.000
1.37× 10−2 3 32.8 1.0 0.990 0.990 0.991 0.001 0.001 0.001 0.003 0.003 0.003 0.006 0.006 0.005 0.000 0.000 0.000
1.37× 10−2 3 32.8 1.0 0.996 0.996 0.996 0.000 0.000 0.000 0.004 0.004 0.004 − − − 0.000 0.000 0.000
1.37× 10−2 4 8.2 1.0 0.305 0.289 0.335 0.000 0.000 0.000 0.068 0.071 0.068 0.627 0.638 0.596 0.000 0.002 0.001
1.37× 10−2 4 8.2 1.0 0.805 0.788 0.812 0.011 0.014 0.010 0.169 0.180 0.164 − − − 0.015 0.018 0.014
1.37× 10−2 4 14.6 1.0 0.565 0.544 0.582 0.000 0.000 0.000 0.052 0.052 0.050 0.383 0.404 0.368 0.000 0.000 0.000
1.37× 10−2 4 14.6 1.0 0.879 0.868 0.880 0.005 0.005 0.004 0.106 0.111 0.106 − − − 0.009 0.016 0.010
1.37× 10−2 4 32.8 1.0 0.887 0.872 0.897 0.000 0.000 0.000 0.008 0.008 0.007 0.105 0.118 0.096 0.000 0.002 0.000
1.37× 10−2 4 32.8 1.0 0.980 0.976 0.979 0.000 0.001 0.001 0.019 0.021 0.019 − − − 0.001 0.002 0.001
1.37× 10−2 5 8.2 1.0 0.086 0.068 0.112 0.000 0.000 0.000 0.050 0.051 0.050 0.864 0.878 0.838 0.000 0.003 0.000
1.37× 10−2 5 8.2 1.0 0.637 0.586 0.641 0.008 0.009 0.007 0.306 0.319 0.298 − − − 0.049 0.086 0.054
1.37× 10−2 5 14.6 1.0 0.243 0.201 0.266 0.001 0.001 0.001 0.059 0.059 0.057 0.696 0.729 0.675 0.001 0.010 0.001
1.37× 10−2 5 14.6 1.0 0.785 0.744 0.790 0.002 0.002 0.002 0.191 0.204 0.181 − − − 0.022 0.050 0.027
1.37× 10−2 5 32.8 1.0 0.684 0.633 0.689 0.000 0.000 0.000 0.025 0.027 0.023 0.290 0.322 0.283 0.001 0.018 0.005
1.37× 10−2 5 32.8 1.0 0.954 0.913 0.952 0.001 0.002 0.001 0.044 0.048 0.039 − − − 0.001 0.037 0.008

Table 3. Similar to Table2, here showing results from a subset of simulations without theKi j ≤ 0 stopping condition which can be recognized from the entries
with fKi j≤0 marked as−. For convenience, the corresponding entries with theKi j ≤ 0 stopping condition enabled are included as well (repeatedfrom Table2).

4.3 Results

4.3.1 Overview

Our results are summarized in Table2. For each combination of
tV,1, Np, β andR1, we list the fractions with respect to theNMC =

1000 Monte Carlo-sampled systems of the following outcomes,
closely related to the stopping conditions.

(i) No migration occurred, i.e. the final orbital periodP1 > 100 d
( fno migration).

(ii) A HJ was formed (fHJ; WJs: see below).
(iii) The innermost planet was tidally disrupted (fTD).
(iv) Ki j ≤ 0 occurred for any orbit pair (fKi j≤0).
(v) The maximum run time of 12 CPU hours was exceeded

( frun time exceeded).

These fractions are given after either 5 or 10 Gyr of integration,
or by sampling a random time between 100 Myr and 10 Gyr for
each of the systems, corresponding to a constant star formation rate
(indicated withtx in the table; output times were separated by 100
Myr). For tV,1 ≈ 1.4 × 10−2 yr andR1 = 1RJ, we also carried out
simulations without theKi j ≤ 0 stopping condition. The results
from the latter simulations are given in Table3, and can be recog-
nized in that table from the entries withfKi j≤0 marked as−.

The fractions of HJs formed are typically low; the largest frac-
tion is 0.023, obtained after 10 Gyr for the set of simulations with
tV,1 ≈ 1.4 × 10−3 yr, Np = 3, β ≈ 8.2 andR1 = 1.5RJ. In contrast,
the fraction of tidal disruptions is larger, typically a fewper cent,
and reaching values of≈ 0.2−0.3 for Np = 5 if theKi j ≤ 0 stopping
condition is not imposed (cf. Table3).

The number of WJs (defined as planets with an orbital period
between 10 and 100 d at a given time) is even smaller than the
number of HJs, and the associated fractions are not includedin Ta-
bles2 and 3. Among the 72,000 integrations in Table2, 186 HJs

compared to the integration time of 10 Gyr, implying that a very large num-
ber of oscillations need to be computed. Consequently, somesimulations
can take several hours to complete, in contrast to Section3, in which the
secular time-scales are typically short compared to the integration time of
120 Myr (see also Section5.1).

were formed after 10 Gyr, whereas the number of WJs at that time
is 11 (the number of WJs and HJs at 5 Gyr is seven and 166, re-
spectively). Moreover, the semimajor axes of the WJs are≈ 0.1 AU
(cf. Fig.4), i.e. the WJs are on the ‘hot’ end of the WJ spectrum,
and near the (not well-defined) boundary between WJs and HJs.

For values oftV,1 & 1.4× 10−2 yr, i.e. for relatively weak tidal
dissipation strength in the innermost planet, no HJs are formed at
all, for any of the combinations of the grid parameters. Notethat
the number of Monte Carlo realizations per parameter combination
was limited toNMC = 1000, implying that the HJ fractions could
be less than 0.001, but nonzero. Also, uncertainties associated with
the stopping conditionKi j ≤ 0 and premature terminations of the
integrations because of the exceeding of the maximum run time,
should be taken into account. These are discussed in more detail in
Section5.1.

Note that the cumulative ‘non-migrating’ fractions in Table 2
are typically lower compared to the fraction of HJs found in Sec-
tion3. This can be attributed to the high initial eccentricities and
inclinations that were assumed in Section3, of ≈ 0.5, whereas they
were typically lower in the population synthesis.

4.3.2 Final orbital period distributions

In Fig.3, we show the distributions of the orbital periods of the in-
nermost planet at various times, combining results from allparame-
ter combinations. With the solid lines, we show the distributions for
the ‘non-disruptive’ systems in which a WJ or HJ was formed, or
no migration occurred (i.e. excluding outcomes iii throughv from
Section4.3.1). We consider the distributions after 5 Gyr (red line),
10 Gyr (blue line), and assuming a random time for each system
between 100 Myr and 10 Gyr (tx; green line). The crosses show the
(unbiased) observed distribution fromSanterne et al.(2016); error
bars are indicated with black lines. Open circles show the distribu-
tion from fig. 23 ofAnderson et al.(2016) for m1 ≡ Mp = 1 MJ

andχ = 100, whereχ ≡ 10τ1/s andτ1 is the tidal time lag of the
innermost planet (cf. table 1 of the latter paper). WithkAM ,1 = 0.25
(cf. Table1), m1 = 1 MJ andR1 = 1RJ, χ = 100 orτ1 = 10 s cor-
responds to a viscous time-scale of≈ 0.082 yr (or a viscous time-
scale of≈ 0.28 yr for R1 = 1.5RJ).

The simulated orbital period distribution is peaked around

MNRAS 000, 1–14 (2016)
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Figure 3. Solid lines: the distributions of the orbital period of the innermost
planet at 5 and 10 Gyr, and at a random time (tx). Crosses: observations
from Santerne et al.(2016); error bars are indicated with black lines. Open
circles: distribution from fig. 23 ofAnderson et al.(2016) for Mp = 1 MJ

andχ = 100. Distributions are normalized to unit total area.

log10(P1/d) ∼ 0.7, or P1 ∼ 5 d. The location of the peak in the
simulations is consistent with observations, which show a peak at
the same orbital period. Compared toAnderson et al.(2016), who
considered high-e migration in stellar binaries, our orbital period
distribution is wider and peaked at longer periods (∼ 5 d versus
∼ 2 d). This is likely not only due to the (fundamental) difference
in the orbital configuration (an inclined three-body systemversus a
mildly inclined multiplanet system with three to five planets), but
also other parameters such as the viscous time-scale and in partic-
ular the planetary radius (cf. Section4.3.3).

Similarly to previous studies of high-e migration in other con-
texts (e.g.Petrovich & Tremaine 2016; Antonini et al. 2016), the
simulations fail to produce the large observed population of WJs in
the region between∼ 10 and 100 d.

4.3.3 Dependence on the grid parameters

In Fig.3, we combined results from all parameters. Here, we con-
sider in more detail the dependence of the results on the parameters
individually.

In Fig.4, the innermost orbit semilatus rectum distributions
after 10 Gyr (or after a stopping condition was met) are plotted for
different slices of the parameter space. Considering tidal evolution
only, the final semimajor axis (at the moment of circularisation) is
expected to be equal to the semilatus rectum. In each panel, dis-
tributions are shown for all parameters combined, except one (dif-
ferent line styles). In addition, we distinguish between the different
types of systems: no migration (black), HJs (light red), WJs(light
blue), tidally disrupted inner planets (yellow),Ki j ≤ 0 (dark blue)
or exceeding of run time (dark red).

In the top panel, we show the dependence ontV,1. The distri-
butions for the non-HJ and non-WJ forming systems are essentially
independent oftV,1. HJs and WJs are only formed for viscous time-
scales of. 1.4 × 10−2 yr and≈ 1.4 × 10−3 yr, respectively. The
requirement of highly efficient tides for HJ production was also
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Figure 4. The innermost orbit semilatus rectum distributions after 10 Gyr
(or after a stopping condition was met) plotted for different slices of the
parameter space. In each panel, distributions are shown forall parameters
combined, except one (different line styles). The varying parameters are
tV,1, Np, β and R1 in the top through bottom panels, respectively. Differ-
ent types of systems are indicated with different colours: systems with no
migration (black), HJs (light red), WJs (light blue), tidally disrupted inner
planets (yellow),Ki j ≤ 0 (dark blue) or exceeding of run time (dark red).

found for other high-e migration scenarios, in particular in stellar
binaries (Petrovich 2015a).

The dependence on the number of planets andβ is shown
in the second and third panels of Fig.4, respectively. Despite the
expected propensity of exciting higher eccentricities with a larger
number of planets and/or smallerβ, the dependence of the semilatus
rectum distributions on these parameters is not markably strong.

The dependence on the radius of the innermost planet is shown
in the bottom panel of Fig.4. For HJs, the final semilatus rectum
is smaller for smaller radii (see e.g. equation 3 ofWu & Lithwick
2011). For the tidally disrupted planets, a larger radius corresponds
to a larger tidal disruption radius (cf. equation6), and therefore a
larger semilatus rectum at the moment of disruption.
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Figure 5. The initial distributions of the semimajor axes (left column) and
the eccentricities (right column) for the various outcomesof the Monte
Carlo simulations. Colours indicate systems with no migration (black), HJs
(light red), WJs (light blue), tidally disrupted inner planets (yellow),Ki j ≤ 0
(dark blue) or exceeding of run time (dark red).

4.3.4 Dependence on the initial orbital properties

In Fig.5, we show how the various outcomes in our simulations de-
pend on the initial semimajor axes (left column) and the eccentrici-
ties (right column), for the three innermost orbits. We recall that the
semimajor axes were sampled linearly from fixed ranges, whereas
the eccentricities were sampled from a Rayleigh distribution with
various widths expressed byβ (cf. Section4.1).

The largest differences in the initial semimajor axes between
the various outcomes are apparent in the innermost orbit. The dis-
tribution of the initiala1 for the HJ and tidal disruption systems is
skewed towards small values compared to the other systems, with
a1 . 2 AU for most (≈ 0.95 and≈ 0.8, respectively) of the sys-
tems. This can be attributed to two effects. For the typicala2 anda3

in the simulations, a smalla1 implies a larger commensurability be-
tween the LK time-scales associated with orbit pairs (1,2) and (2,3),
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a3, e3; a1 > 1AU (N = 2)

Figure 6. Observed distributions of the semimajor axes (top panel) and the
eccentricities (bottom panel) for planets withm1 sin(i) > 0.1 MJ obtained
from theOpen Exoplanet Catalogue. We consider multiplanet systems with
at least two observed planets, and make a distinction between systems with
the innermost observed orbita1 < 1 AU (solid lines) anda1 > 1 AU (dashed
lines).

and therefore more likely chaotic evolution and higher eccentrici-
ties (e.g.Hamers et al. 2015). Also, the required eccentricities for
small pericentre distances (important for tidal dissipation or tidal
disruption) are lower for smaller semimajor axes.

The systems with exceeded run times (dark red lines) pref-
erentially have largea1, whereasa2 is preferentially small. These
systems are unlikely to result in HJs (cf. Section5.1). With regard
to the other orbits and outcomes, no strong differences can be dis-
cerned in the initial distributions of the semimajor axes.

HJ and tidal disruption systems typically show a preference
for initially higher values of the eccentricities, notablye2. Other-
wise, there is no strong dependence on the initial eccentricities.

Observations of companion planets to HJs are currently still
strongly limited. In the latest surveys, detections of Jupiter-mass
planets are only 100% complete for planets out to≈ 10 AU
(Bryan et al. 2016). In our simulations, except for the innermost
two planets, the orbits span a much larger range in semimajor
axis. Despite the incompleteness of the observations, we show in
Fig.6 observed distributions of the semimajor axes (top panel)
and the eccentricities (bottom panel) for planets withm1 sin(i) >
0.1 MJ obtained from theOpen Exoplanet Catalogue (Rein 2012;
https://github.com/OpenExoplanetCatalogue). We consider multi-
planet systems with at least two observed planets, and make adis-
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Figure 7. The initial distributions of the AMD for the various outcomes
of the Monte Carlo simulations. Colours indicate systems with no migra-
tion (black), HJs (light red), WJs (light blue), tidally disrupted inner planets
(yellow), orbit crossings (dark blue) or exceeding of run time (dark red).
The black vertical dotted line indicated AMD= m1

√
a1.

tinction between systems with the innermost observed orbita1 <

1 AU (solid lines) anda1 > 1 AU (dashed lines). Some difference
can be seen in the distributions ofa2 for the two populations with
a1 < 1 AU anda1 > 1 AU: a2 tends to be smaller for the former
population. This trend is not reflected in our simulations (cf. the
second row of Fig.5). With regard toa3, there seems to be a large
difference in the distribution ofa3 for the two populations. How-
ever, our observational sample only includes five systems with at
least three planets, so with this low number of systems this differ-
ence cannot be considered significant.

Another, more theoretically oriented, quantity is the angular-
momentum deficit (AMD). The AMD is defined as

AMD =
Np
∑

i=1

mi
√

ai

[

1−
√

1− e2
i cos(ivar,i)

]

, (7)

whereivar,i is the inclination with respect to the invariable plane, i.e.
the plane perpendicular to the total orbital angular-momentum vec-
tor of the system. In terms of the AMD, high eccentricities and/or
chaotic motion can be achieved if AMD& m1

√
a1 (Wu & Lithwick

2011; Lithwick & Wu 2011, 2014).
In our simulations, there is indeed a strong dependence on

the AMD. In Fig.7, we show the initial distributions of the AMD
for the various outcomes. Of the non-migrating systems (black
line), nearly all (≈ 0.99) have an AMD which is< m1

√
a1. In

contrast, virtually all tidally disrupted systems (yellowline) have
an AMD & m1

√
a1, and the HJ systems (light red line) have an

AMD & 0.8m1
√

a1, with the majority (∼ 0.8) of systems having
AMD > m1

√
a1.

The systems in whichKi j ≤ 0 occurred (dark blue line) have
higher AMD compared to the non-migrating systems, which canbe
attributed to the higher eccentricities attained with higher AMDs,
therefore more likely leading toKi j ≤ 0. Nonetheless,≈ 0.75 of
these systems have< m1

√
a1, indicating that the majority of sys-

tems withKi j ≤ 0 would not have produced HJs or tidally dis-
rupted planets if the stopping condition atKi j ≤ 0 had not been
imposed. This is consistent with the result that the HJ fractions are

not strongly affected in the runs without this stopping condition (cf.
Table3 and Section4.3.1).

There are distinct differences with respect to the AMD be-
tween the HJ and tidal disruption systems. Many (≈ 0.7) of the
HJs have AMD< 1.5m1

√
a1, whereas for the tidal disruption sys-

tems this fraction is markedly lower,≈ 0.4. The preference for the
tidal disruption systems for higher AMDs can be explained bythe
higher eccentricities reached in the innermost orbit, therefore more
likely resulting in the (immediate) tidal disruption of theinnermost
planet, rather than tidal dissipation, which requires a certain amount
of time to dissipate energy and reduce the eccentricity. This implies
that there is a ‘window’ for producing HJs through secular evolu-
tion: the AMD should be large enough to excite high eccentricities,
but small enough to prevent violent excitation of the eccentricities
leading to tidal disruption before tidal dissipation can beeffective.

4.3.5 Mass dependence

The orbits of lower-mass planets carry less orbital angularmo-
mentum compared to higher-mass counterparts, making the former
more susceptible to angular-momentum exchanges with orbits of
other planets. Therefore, secular eccentricity excitation is expected
to be more pronounced if the outer planets are more massive than
the innermost planet. In our simulations, we assumed a flat distri-
bution of the planetary masses between 0.5 and 5MJ.

In the top panels of Fig.8, we show the distributions of the
mass of the innermost planet for the various outcomes in the sim-
ulations. For the non-migrating systems, the mass distribution is
consistent with a flat distribution, reflecting the initial distribution,
and showing no mass preference. HJ and tidal disruption systems
show different mass distributions. For the latter groups, there is a
preference for lower-mass planets, withm1 . 1 MJ for ∼ 0.4 and
∼ 0.5 of the systems, respectively. There are few HJs and tidal dis-
ruption systems withm1 & 2 MJ. This implies a clear quantitative
prediction for high-e migration in multiplanet systems, and which
was given qualitatively inWu & Lithwick (2011): the HJ should
have a typical (median) mass of∼ 1 MJ, and not be more massive
than∼ 2 MJ.

Observations show a deficit of massive HJs (Zucker & Mazeh
2002; Udry & Santos 2007), which seems consistent with the above
prediction. More quantitatively, the observed mass distributions of
planets withm1 sin(i) > 0.1 MJ (obtained from theOpen Exoplanet
Catalogue) are shown in the bottom panels of Fig.8. We made a
distinction between discovery method (RV or transit) and semima-
jor axis (a1 < 0.1 AU anda1 > 1 AU). The planets from the RV
observations within 0.1 AU are typically of lower mass compared
to planets at> 1 AU. This trend is consistent with the predictions as
described above. However, one should be cautious when ascribing
the observed mass difference to secular evolution alone, given that
the latter unlikely produces all HJs, and the observed mass distri-
bution is also likely affected by other processes, such as primordial
‘mass segregation’, whereas in the simulations we assumed an ini-
tially flat distribution. Moreover, the RV observations arebiased,
because planets at> 1 AU are more easily detected if they are more
massive.

4.3.6 HJ formation times

As mentioned in Section1, secular evolution in multiplanet sys-
tems typically occurs on long time-scales of the order of Gyr, im-
plying that HJs formed through this mechanism could have been
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Figure 8. Top panels: distributions of the initial mass of the innermost
planet for the Monte Carlo simulations with all grid parameters combined.
Different types of systems are indicated with different colours: systems
with no migration (black), HJs (light red), WJs (blue), tidally disrupted
inner planets (yellow),Ki j ≤ 0 (dark blue) or exceeding of run time
(dark red). Bottom panels: the observed mass distributionsof planets with
m1 sin(i) > 0.1 MJ (obtained from theOpen Exoplanet Catalogue). Two
discovery methods are included: RV (red) and transit (blue). Also, a dis-
tinction is made between the semimajor axis:a1 < 0.1 AU (solid lines) and
a1 > 1 AU (dashed lines).

deposited at their current orbit at late stages in the MS lifetime of
the host star. In Fig.9, we show the ‘final’ times associated with the
various outcomes in our population synthesis (with all parameters
combined). For systems in which a stopping condition occurred,
these final times are the age of the system when the integration was
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Figure 9. The final times associated with the various outcomes in our pop-
ulation synthesis (with all parameters combined). For systems in which a
stopping condition occurred, these final times are the age ofthe system
when the integration was stopped. In the case of HJs (light red lines), these
times are the times of HJ formation. Different types of systems are indicated
with different colours: systems with no migration (black), HJs (light red),
WJs (blue), tidally disrupted inner planets (yellow),Ki j ≤ 0 (dark blue)
or exceeding of run time (dark red). The same data, shown using linear
scales on the abscissa, are shown in the insets. Red open circles and yellow
crosses: data for HJs and tidal disruptions, respectively,from the second
panel of fig. 22 (Mp = 1 MJ) of Anderson et al.(2016).

stopped. In the case of HJs (light red lines), these times arethe
times of HJ formation, as defined in Section4.2.

The HJs in our simulations are indeed formed late, with a
median formation time of≈ 1 Gyr, and with a fraction≈ 0.1 of
the HJs formed after≈ 6 Gyr. These times are much longer com-
pared to times associated with high-e migration due to close en-
counters (Rasio & Ford 1996; Chatterjee et al. 2008; Ford & Rasio
2008; Juríc & Tremaine 2008), and somewhat longer compared
to those typically found for high-e migration in stellar binaries
(Anderson et al. 2016; cf. the red open circles in Fig.9). In contrast,
tidal disruptions occur much earlier, with≈ 0.85 of the disruptions
occurring before 1 Gyr. We note that the peak around 100 Myr in
the HJ formation times arises from the systems with the shortest
viscous time-scale of≈ 1.4× 10−3 yr.

4.3.7 Stellar obliquity

In Fig.10, we show, for all grid parameters combined, the distri-
butions after 10 Gyr (or after a stopping condition) of the stellar
obliquity, i.e. the angle between the stellar spin and the orbit of the
innermost planet. In the simulations, spin-orbit couplingwas in-
cluded taking into account the spin directions of both the star and
the innermost planet (cf. Section2.3). Initially, the stellar spin and
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Figure 10. Distributions after 10 Gyr (or after a stopping condition) of the
stellar obliquityθ⋆ for the Monte Carlo simulations with all grid parame-
ters combined. As in Fig.4, different types of systems are indicated with
different colours: systems with no migration (black), HJs (light red), WJs
(blue), tidally disrupted inner planets (yellow),Ki j ≤ 0 (dark blue) or ex-
ceeding of run time (dark red). Open circles: distribution from fig. 24 of
Anderson et al.(2016) for Mp = 1 MJ and χ = 100. Crosses: observed
projected obliquity distribution, adopted fromLithwick & Wu (2014). Note
that observed (i.e. projected) obliquities are shifted to lower angles relative
to the intrinsic obliquities. The PDFs are normalized to unit total area.

innermost orbit were assumed to be aligned, i.e. zero obliquity was
assumed (cf. Table1).

For high-e migration scenarios with three bodies (or, more
generally, LK cycles with tidal friction), it has been well estab-
lished that the obliquity for HJs should be clustered around40◦

and 130◦ (Fabrycky & Tremaine 2007; Naoz & Fabrycky 2014;
Anderson et al. 2016). This can be explained intuitively by not-
ing that during LK cycles, the eccentricity maxima occur at mutual
inclinations of≈ 40◦ or 130◦, and mutual inclination tends to be
‘locked’ after the onset of strong tidal dissipation (this is assum-
ing that the stellar spin vector itself does not change due tospin-
planet orbit coupling; seeStorch et al. 2014; Storch & Lai 2015;
Anderson et al. 2016). Observations have revealed a range of obliq-
uities, depending on the stellar surface temperature (e.g.Winn et al.
2011; Mazeh et al. 2015).

In our simulations, we find that the obliquity distributions
of the HJs and tidally disrupted planets are distinct from non-
migrating systems. The obliquities of the former are broadly dis-
tributed between∼ 0◦ and∼ 140◦, with a preference for obliquities
around 30◦ and 60◦ for HJs, and 50◦ for tidal disruption systems. In
contrast, the observed HJ obliquity distribution peaks around 20◦

(cf. the black crosses in Fig.10).
There is no clear peak around 130◦, as found e.g. by

Anderson et al.(2016), who considered high-e migration in stellar

binaries (cf. the black open circles in Fig.10). This can be attributed
to the fact that in our simulations, the planets were always initially
prograde, and there is no expected characteristic symmetric inclina-
tion for secular evolution in multiplanet systems. Nevertheless, we
still find that∼ 0.1 of the HJs systems have retrograde obliquities.

5 DISCUSSION

5.1 Uncertainties in the secular integrations

Here, we discuss uncertainties associated with the stopping condi-
tion Ki j ≤ 0 and premature terminations of the integrations because
the run time exceeded our maximum set value (cf. Section4.2).

A comparison of the HJ fractions between runs with and with-
out theKi j ≤ 0 stopping condition enabled in Table3 shows that
disabling the stopping condition results in different fractions. Typ-
ically, the fraction increases, which can be understood by noting
that systems in whichKi j ≤ 0 occurs are likely to produce high
eccentricities in the inner orbit, and therefore HJs. Nonetheless, the
fractions remain small, not reaching values larger than 0.007 (com-
pared to the largest fraction of 0.004 for the simulations inTable
3 with the Ki j ≤ 0 stopping condition enabled), indicating that the
result of small HJ fractions is robust. Nevertheless, it remains un-
clear how the results would be affected ifN-body integrations were
used, which evidently do not suffer from limitations associated with
small or negativeKi j. This important aspect should be investigated
in future work.

The fraction of systems in which the run time was exceeded
is typically less than 0.01 (cf. Tables2 and3). These systems show
a strong preference for large initiala1, typically a1 ∼ 3.5 AU, and
smalla2, typically a2 ∼ 6.5 AU (cf. Fig.5). This implies short secu-
lar time-scales in the innermost orbit. Consequently, the number of
oscillations within the time-span of 10 Gyr is very large, requiring
much computation time and thus hitting our set limit of 12 CPU
hours.

Also, the number of systems in which the run time was ex-
ceeded typically increases withβ. For largeβ, the initial eccentrici-
ties and inclinations are small, implying relatively weak secular ex-
citation. This is also reflected by the AMD – systems in which the
run time was exceeded typically have small AMD, AMD. m1

√
a1

(cf. Fig.7). Also, m1 tends to be large, typicallym1 ∼ 4 MJ (cf.
Fig.8).

The HJ systems, on the other hand, are associated witha1 .

2 AU and no strong preference fora2 (cf. Fig.5), a smallβ, large
AMD & m1

√
a1 (cf. Fig.7), andm1 . 2 MJ. This suggests that

the HJ fractions would likely not be very different if the stopping
condition (v) had not been imposed.

In addition, we also carried out a subset of simulations witha
shorter maximum CPU run time of 4 hours. We found that decreas-
ing the maximum CPU time increases the fractionfrun time exceeded

and decreasesfno migration, whereasfHJ is not strongly affected.

5.2 HJ fraction and comparisons to other variants of high-e
migration

In our population synthesis simulations, the highest intrinsic HJ
fraction obtained was 0.023, assumingtV,1 ≈ 1.4 × 10−3 yr. This
corresponds to 1000 times more efficient tides compared totV,1 ≈
1.4 yr, which would circularize a HJ at 5 d in less than 10 Gyr
(Socrates et al. 2012). For most other parameter combinations with
non-zero fractions, the fractions are between∼ 0.001 and∼ 0.01.
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For the purposes of this section, we adopt a fractionfHJ,multi,sim =

0.01, taking into account that this fraction can be higher by a fac-
tor of at most a few if tidal dissipation in the innermost planet is
extremely effective (tV,1 . 1.4× 10−2 yr).

Assuming a giant planet occurrence rate around MS stars
of fGP = 0.1 and an optimistic multiplanet fraction of 1, we
find a HJ fraction around MS stars offHJ,multi = fHJ,multi,sim fGP =

0.001. In contrast, the observed HJ fraction isfHJ,obs ∼ 0.01 (e.g.
Wright et al. 2012), an order of magnitude larger. We emphasize
that higher HJ fractions would be obtained in simulations with even
smaller values oftV,1 (i.e. even more efficient tides), and/or larger
planetary radiiR1. Also, we (necessarily) made assumptions about
the orbital configurations (most importantly the semimajoraxes,
eccentricities and inclinations), which also affect the simulated HJ
fractions.

Our adopted simulated HJ fraction of∼ 0.01 is similar or
slightly lower compared to studies of high-e migration in two-
planet or stellar binary systems.Anderson et al.(2016) find a frac-
tion of fHJ,bin,sim ∼ 0.03 for high-e migration in stellar binaries.
In Petrovich & Tremaine(2016), the two-planet case is considered,
and fHJ,two−p,sim = 0.051 is found fortV,1 = 1.4 yr. The high fraction
in the latter paper may be due to higher assumed initial inclinations
and more compact systems (smallera2/a1) compared to our sim-
ulations. The two-planet case is also considered byAntonini et al.
(2016), who find fHJ,two−p,sim = 0.01 for tV,1 = 1.4 yr.

5.3 Effects of disc evolution

In young stellar systems (age. 10 Myr), a gas disc is still
present and this affects the orbital evolution of the planets (e.g.
Matsumura et al. 2010). In the simulations of Section3, the HJ for-
mation time was typically. 10 Myr (cf. Fig.2), suggesting that
the effects of a dissipating gas disc should have been taken into
account. We emphasize that the purpose of the simulations inSec-
tion3 was to test the SecularMultiple algorithm from a compu-
tational point of view, focusing only on the gravitational dynam-
ics and tidal evolution. The initial conditions might not berealistic,
given the large assumed initial eccentricities and inclinations (rang-
ing between∼ 0.4 and∼ 0.6). We consider the initial conditions to
be more realistic in Section4, in which smaller initial inclinations
and eccentricities were assumed. In that section, the HJ formation
times are much longer, i.e. at least∼ 100 Myr (cf. Fig.9), and there-
fore the effects of a dissipating gas disc are likely not important.

5.4 HJs, hot Neptunes and super-Earths from tidally
downsized HJs

Depending on the parameters, the fraction of tidally disrupted plan-
ets in our simulations can be large, typically a few times larger
compared to the HJ fraction (cf. Table2). We adopted the tidal
disruption threshold fromGuillochon et al.(2011), who assumed
coreless planets. InLiu et al. (2013), it was found that during close
encounters with their host star, Jupiter-like planets withmassive
cores (order 10 Earth masses) can retain part of their envelope. Con-
sequently, the planet would not be completely tidally disrupted, but
transformed into a low-mass HJ, a hot Neptune or a super-Earth,
depending on the amount of mass lost.

When related to our simulations, this suggests that there could
be a significant contribution to low-mass HJs, hot Neptunes or
(short-period) super-Earths driven by secular evolution in multi-
planet systems. This does require that the original planet was not

too massive (. 2 MJ, cf. the yellow lines in Fig.8), and the typi-
cal formation time of the tidally downsized planet is expected to be
much shorter compared to that of HJs formed through tidal evolu-
tion (cf. Fig.9).

6 CONCLUSIONS

We have studied the orbital migration of Jupiter-like planets in-
duced by secular interactions in multiplanet systems (three to five
planets), resulting in HJs. In this variant of high-e migration, the
eccentricity of the orbit of the innermost planet is excitedto high
values on secular time-scales (order Gyr). Combined with tidal dis-
sipation, which is highly effective for high eccentricities, this can
produce a Jupiter-like planet in a tight orbit. Our conclusions are as
follows.

1. For a set of three-planet systems we have shown that the secular
code SecularMultiple (Hamers & Portegies Zwart 2016) produces
results that are statistically consistent with those of more accurate
directN-body integrations (Section3).

2. We carried out a population synthesis study of multiplanet sys-
tems with SecularMultiple, taking into account tidal dissipation
in the innermost planet and the central star (Section4). We found
HJ fractions of at most 0.023, assumingtV,1 ≈ 1.4 × 10−3 yr.
This corresponds to 1000 times more efficient tides compared to
tV,1 ≈ 1.4 yr, for which a HJ at 5 d would circularize in less than
10 Gyr (Socrates et al. 2012). For relatively weak tidal dissipation
(tV,1 & 1.4 × 10−2 yr), we found no HJs. Larger fractions would
be obtained for even lower values of the innermost planet viscous
time-scale (stronger tides), i.e.tV,1 . 1.4×10−3 yr. The HJ fractions
are similar or lower compared to other variants of high-e migration,
but this comparison depends strongly on the system parameters,
such as the initial semimajor axes, eccentricities, inclinations, the
viscous time-scales and the radius of the innermost planet.

3. In the population synthesis, we found that the fraction ofsystems
in which the innermost planet is tidally disrupted is typically a few
times larger compared to the HJ fraction. The large proportion of
tidally disrupted planets to HJs can be explained qualitatively by
noting that the eccentricity of the innermost orbit can be violently
excited in multiplanet systems, implying that the planet israpidly
tidally disrupted before tidal dissipation is able to shrink and circu-
larize the orbit. The large fraction of tidal disruptions insome of our
simulations suggests that tidal disruptions in multiplanet systems,
even if not extremely compact, could be common. For non-compact
planetary systems, this suggests a possible difference in metallicity
between stars with two or fewer planets, compared to stars with
three or more planets.

4. The orbital period distribution of the HJs in our simulations is
strongly peaked around∼ 5 d, which coincides with the peak in
the observed orbital period distribution of gas giant planets. The
location of the peak is affected by the assumed tidal dissipation ef-
ficiency and the planetary radius. In our simulations, HJs with the
longest periods correspond to an inflated planet with radiusR1 =

1.5RJ. No significant number of planets was found in the simula-
tions with orbital periods in the ‘period valley’ between 10and 100
d, whereas observations show a significant population of planets in
this regime, i.e. WJs. It is unlikely that WJs are produced through
secular evolution in multiplanet systems, unless tidal dissipation
is extremely efficient. Other high-e migration scenarios also fail
to produce WJs in the observed proportion (Petrovich & Tremaine
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2016; Antonini et al. 2016). Alternative candidates for the origin of
WJs arein situ formation or disc migration.

5. Our simulated HJs and tidally disrupted planets are preferentially
not massive, i.e.m1 . 2 MJ, with a median value of≈ 1 MJ (cf.
Section4.3.5), which is similar to observations. The stellar obliq-
uity distribution is fairly uniform between∼ 0◦ and∼ 140◦ with
some preference for obliquities around 30◦ and 60◦. There is no
clear peak at∼ 130◦, as opposed to high-e migration in stellar bi-
nary or two-planet systems (cf. Section4.3.7). Approximately 0.1
of the HJs have retrograde obliquities.

6. Another characteristic of HJs formed in our simulations relevant
for observations is the late formation time of up to∼ 10 Gyr (cf.
Section4.3.6). This is in stark contrast to disc migration, for which
formation is expected to occur within the first few Myr. Also,this
characteristic can potentially distinguish between othervariants of
high-e migration, which typically predict shorter formation times.
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